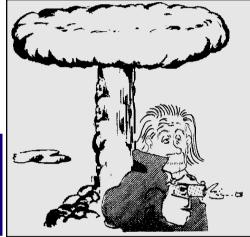
Coisas que

De que formas os movimentos podem ser produzidos?


Exclusivo: jegue do Ceará supera carrão BMW em teste PÁG. 128

UMA UNICA BALA DE 38 PODE DETONAR UMA CIDADE INTEIRA

Teoria diz que uma única bala pode destruir cidade de 100 mil habitantes e matar todo mundo

Absurdo. Um cara muito louco chamado Einstein descobriu que todas as coisas têm energia pra caramba. Um punhadinho de qualquer material tem energia suficiente para causar o maior estrago. Ele inventou uma fórmula esquisita ($E = m.c^2$) que mostra que uma única bala de 38 tem energia equivalente a 65 mil toneladas de dinamite. É ruim, hein? Isso dá para destruir uma cidade inteira. O problema é que ainda não inventaram um jeito fácil de usar todo esse poder.

Futebol

TRELÊ REVELA: ZELÃO É BEM MAIS POTENTE QUE TILICO MAS TILICO TEM MAIS RESISTENCIA

A majoria dos torcedores do São Páulio não sabe é que o timaço do MorunTri faz testes de potência e resistência com todos os seus craques. O grande técnico Trelezão diz que os testes feitos mostraram que o atacante Zelão detona na potência anaeróbica. Isso quer dizer que o supercracaço corre igual a um corredor de 100 metros rasos. Animal!!

Já o meia Tilico é um cara que detona

na resistência anaeróbica. Quer dizer. o gatão do MorunTri não corre tanto, mas consegue agüentar o jogo todo sem perder o gás. É igual a um cara que corre nas corridas mais longas. que não precisa ser tão rápido, mas tem de ter maior resistência.

Vai ver que é por causa dessa resistência toda que a mulherada não sai da cola do craque. Sorte dele.

Coisas que produzem movimento

Pense nas diferentes formas pelas quais podemos nos transportar de um lugar para outro. O que *produz o movimento* em cada caso?

Você pode pensar no sistema mais óbvio: nossas próprias pernas ao andar a pé ou de bicicleta, ou nossos braços, no caso da natação. Outro sistema evidente são os veículos movidos por um combustível, como os automóveis, as motocicletas, os aviões e os navios. Mas há outras possibilidades: o carrinho de rolimã; os trens, ônibus e automóveis elétricos; barcos movidos pelo vento ou pela correnteza e outros sistemas menos comuns.

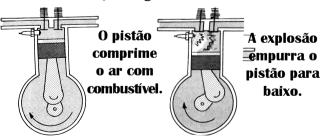
Cada um desses sistemas representa diferentes *fontes* de energia. Pensando nesses exemplos e na leitura do "jornal":

Faça uma lista de <u>todas</u> as fontes de energia diferentes que você conseguir imaginar e responda: Quantas formas de energia existem?

Substâncias que produzem movimento

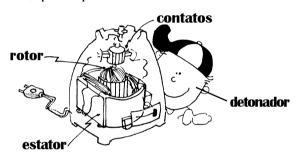
O que o motor de um carro tem em comum com os músculos de um animal? Se você respondeu "os dois começam com M", tudo bem, mas não é nisso que estávamos pensando...

Tanto os músculos dos animais (nos quais estamos incluídos) quanto os motores de carros, motos e caminhões produzem movimento a partir de uma reação química conhecida por *combustão*.


A queima dentro de um motor ocorre por uma reação química entre o oxigênio do ar e os combustíveis. Nos músculos, ocorre um processo semelhante, porém mais lento e com várias etapas, no qual os açúcares provenientes da digestão dos alimentos fazem o papel de combustível. Poderíamos resumir essas reações químicas da seguinte forma:

COMBUSTÍVEL + OXIGÊNIO → GÁS CARBÔNICO + ÁGUA

Porém, algo mais aparece como resultado dessa reação química. Nas substâncias do combustível estava armazenada uma certa quantidade de energia, que é liberada durante a reação química. Essa energia é que irá possibilitar o surgimento do movimento.


Podemos dizer que está havendo uma transformação de *energia química* em energia de movimento, que na Física é chamada de *energia cinética*.

Em um motor de carro, a energia química do combustível é convertida em *energia térmica*, ou seja, em calor, durante a explosão do combustível. Essa *energia térmica* liberada faz com que o ar superaquecido dentro do cilindro do motor do carro empurre o pistão do motor, produzindo movimento, ou seja, *energia cinética*.

Portanto, a energia química que estava armazenada no combustível se transformou em energia térmica, que em parte é convertida em energia cinética. Quanto mais energia térmica um motor conseguir transformar em cinética, mais econômico e eficiente ele é. Nos carros atuais essa taxa é de algo em torno de 25%.

Motores elétricos convertem *energia elétrica* em *energia cinética*. Os fios servem como "meio" de transporte da energia elétrica da fonte que a produz (uma usina elétrica, uma bateria ou uma pilha, por exemplo) até o motor que irá produzir o movimento. Dentro do motor, a passagem da corrente elétrica provoca um efeito magnético de repulsão entre o rotor, que é a parte interna giratória, e o estator, que é a parte externa do motor.

Os motores elétricos são mais eficientes do que os motores a combustão, no que diz respeito à porcentagem de energia transformada em cinética, atingindo taxas superiores a 80%.

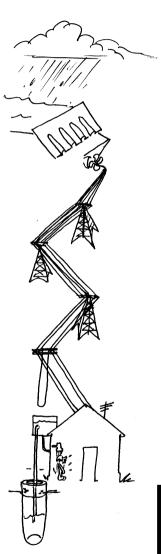
Porém, há uma coisa em que não pensamos: de onde vem a energia elétrica? Ela é realmente "produzida" nas usinas e nas pilhas? Na verdade, a energia elétrica das pilhas e baterias provém da energia química de substâncias que reagem em seu interior, enquanto a energia elétrica das usinas provém do movimento de turbinas que fazem girar um gerador. Esse movimento pode ser obtido, por exemplo, de quedas d'água, como é o caso das usinas hidrelétricas.

E por falar em quedas, de onde vem a energia cinética das coisas que caem? Será que ela surge do nada ou, ao contrário, também é originada da transformação de alguma outra forma de energia em movimento?

Gravidade e movimento

A gravidade também armazena energia. Quando uma bomba de água eleva a água de um poço até uma caixad'água, está usando a energia elétrica para efetuar uma certa tarefa. Mas para onde vai essa energia? Perde-se?

Não, a energia fica armazenada na forma de *energia* gravitacional. Quando a torneira é aberta, a atração gravitacional faz a água se mover e você pode lavar suas mãos.

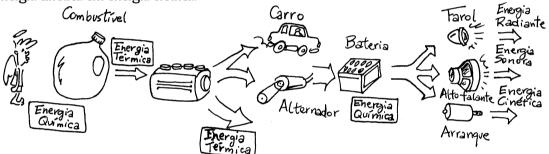

Mas a energia da água armazenada em lugares altos poderia ser usada para realizar outras tarefas, como, por exemplo, produzir energia elétrica em uma usina hidrelétrica.

Portanto, a energia elétrica que a usina produz tem origem na energia gravitacional armazenada pela água, que se transforma em energia cinética, movimentando as turbinas. A energia elétrica é transmitida pela rede elétrica para ser convertida em outras formas de energia, como energia térmica em um chuveiro, em cinética em um ventilador, e até novamente em energia gravitacional em uma bomba de água elétrica.

Esses exemplos nos mostram que a energia, de fato, sofre transformações. Na verdade, ela não pode ser "produzida" nem "eliminada". O que ocorre, na verdade, é sua conversão de uma forma em outra. Estamos falando de uma lei fundamental da Física:

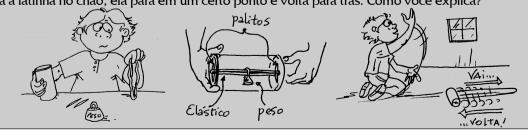
Lei da Conservação da Energia:

"Em um sistema isolado a energia total se conserva, independente das transformações ocorridas"



transformações de energia

Em um carro


O carro conta com duas fontes principais de energia: a bateria e o combustível. A parte elétrica do carro é acionada pela bateria, que transforma a energia química em energia elétrica. Os faróis usam essa energia para gerar luz, que é energia eletromagnética na forma radiante. A buzina e os altofalantes geram energia "sonora", que é uma forma específica da energia cinética do ar: as ondas sonoras. A partida do carro consome grande energia elétrica, que é convertida em energia cinética no chamado motor de arranque.

Quando o carro está em movimento, a energia química do combustível é transformada em energia térmica, e parte dessa energia se converte em energia cinética. Parte dessa energia cinética é usada para recarregar a bateria por meio de um elemento chamado dínamo ou alternador, que transforma energia cinética em energia elétrica.

Elásticos também armazenam energia

Quando você usa um estilingue, está armazendo a energia no elástico, que será liberada repentinamente durante o disparo, na forma de energia cinética. O elástico esticado possui aquilo que chamamos de energia potencial elástica. O mesmo ocorre ao se dar corda em um brinquedo, acionar a fricção de um carrinho ou armar um arco antes de disparar uma flecha. Tente fazer o brinquedo "latinha vai e volta", usando uma latinha, um elástico, peso e dois palitos. Quando você rola a latinha no chão, ela pára em um certo ponto e volta para trás. Como você explica?

na cozinha da sua casa

Faça um esquema mostrando as possíveis transformações de energia nos equipamentos de uma cozinha que sugerimos a seguir.

Fogão

Leve em conta as transformações de energia desde o gás até os movimentos que ocasionalmente ocorrem na água durante um cozimento.

A energia certamente provém da rede elétrica, e sofre transformações durante o funcionamento do liquidificador. O som também é uma forma de energia cinética, porque se dá pelo deslocamento do ar.

Microondas

Antes de produzir o calor, o forno de microondas emite energia na forma da energia "radiante" das microondas. Essa energia é também uma forma de energia elétrica.