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Fig. 9.1. Laminar flow around

a cylinder for small Re

Fig. 9.4. The flow with a fully

Fig. 9.3. Illustrating a Karman street developed turbulent wake



Classical Fluids with viscosity
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Quantum Fluids-
BEC
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remains in this position during the experiment. Images of
the BEC density profile after different expansion times 7.,
are then taken by means of destructive absorption imaging.
Two examples are shown in Fig. 1. The field of view is
centered in the region around the defect in order to observe

FIG. 1 (color online). Experimental [10] density profiles (in-
tegrated along z) of a BEC hitting an obstacle at supersonic
velocities v/c; = 13 (a) and 24 (b). The angles of the conical
wave fronts are sin(#) = 0.73 and sin(f) = 0.43, respectively.
The condensate flow is from the right to the left.
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We consider point obstacles

Frisch et al PRL1992, subsonic
Winiecki et al, PRL 1999 supersonic-> “vortex street”
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Cutting in x we see dark solitons
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We consider now extended
obstacles like a corner
(wedge)



Dynamics of a dilute condensate is described
by the Gross-Pitaevskii equation ~1961

In dimensionless units.



Gross-Pitaevskii Eq. in hydrodynamic form for
potential tlow V xy =0

I V. (nu)=0
ot
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And sound velocity for uniform solution is

c =+/n  No viscosity
’ quantum pressure term



With boundary conditions at infinity
nel, Uu—(M,0) g |r| —> 00

and impenetrability condition at body surface S

U.N|S= O,



Now we consider in the hydrodynamic form a stationary system of
equations for the density n(x,y) and two components of the velocity

field u= (u(x,y),v(x,y))

(nu), +(nv), =0

2 2 \
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Supersonic flow M >>1

Stationary 2D NLS can be shown to
asymptotically reduce to a 1D NLS

i‘PT+%\PYY—\‘P\21P=O

Where T=x/M and Y=y



1D “unsteady”
dispersive shock | 2D steady
T dispersive shock
A
Y 4
“piston”
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Piston analogy in the problem of flow in dispersive shock
flow of dispersive fluid past body



The theory of DSWs is based on the study of a
certain nonlinear free-boundary problem for the
modulation (Whitham) equations—the so-called
Gurevich-Pitaevskii problem (1973).

A.V. Gurevich and L.P. Pitaesvkii, Sov. Phys. JETP, 38,291 (1974)
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M >>1

Dispersive shock




Analytical theory of shocks

The region of oscillations is presented as a
modulated periodic wave:

n(Y,T)=i()L4 —A—A-A)+

(A = 23)(Ay = A)sn* (4 (A, = A3)(A, = A,)0,m)

wnere (=R =hy)
O=Y-UI'-6 (& =) = )

1
U= EEA" (phase velocity)




The parameters A =A(Y,T), i=1,2,3,4 change

slowly along the shock. Their evolution is
described by the Whitham modulational equations
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For the corner, the relevant modulation
solution has the form of a centered
characteristic fan with

A=-1,A =1, A =1+aM
Y

pe =V.(-LLA,,1+ aM)

which explicitly takes the form
Y 1+ aM - A,)(A, - 1K (m)

—=l()\.3 +1+aM) -
T 2 (A, - DK (m) — aME(m)

. 20+ aM - 1))
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DSW
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Piston 1D see M. Ablowitz et al, PRL 2008.
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Extended wing See arXiv:0906.2394



Conclusions

-Depending on corner aperture different patterns arise for supersonic
flow past a corner.

-Problem can be viewed as a Gurevich-Pitaevskii problem and is
tractable through Whitham modulation theory

-Remarkable agreement of theory and numerical simulations of 1D NLS
stationary 2D NLS

-Transition wave appearance for aM>2.

-Results can also be applicable to more general forms of slender
obstacles as a wing.






Increasing the radius -> more solitons!
M=5, r=5
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Increasing radius generate more dark solitons!




