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Abstract.
The stability of a Bose–Einstein condensed state of trapped ultra-cold atoms is investigated

under the assumption of an attractive two-body and a repulsive three-body interaction. The
Ginzburg–Pitaevskii–Gross (GPG) nonlinear Schrödinger equation is extended to include an
effective potential dependent on the square of the density and solved numerically for the s-wave.
The lowest collective mode excitations are determined and their dependences on the number of
atoms and on the strength of the three-body force are studied. The addition of three-body dynamics
can allow the number of condensed atoms to increase considerably, even when the strength of the
three-body force is very small compared with the strength of the two-body force. We study in detail
the first-order liquid–gas phase transition for the condensed state, which can happen in a critical
range of the effective three-body force parameter.

1. Introduction

The theoretical research on Bose–Einstein condensation (BEC) [1], a phenomenon predicted
more than 70 years ago, has received considerable experimental and theoretical support in
recent years [2]. The relevance of BEC for understanding the properties of liquid 4He was
pointed out by London [3], suggesting that the peculiar phase transition that liquid helium
undergoes at 2.18 K is a BEC phenomenon. It is also important to observe that, at the level of
two-body collisions, Bogoliubov in 1947 [4] has shown for a homogeneous gas that BEC is
only possible for systems with repulsive potentials.

Intense experimental research on BEC for magnetically trapped weakly interacting atoms
have been done recently [5–8]. In the experiment reported in [5], a condensate of approximately
2000 spin-polarized 87Rb atoms was produced in a cylindrically symmetric magnetic trap [2, 9].
It is a common understanding that, at low temperature and density, where interatomic distances
are much greater than the distance scale of atom–atom interactions, two-body interactions take
a simple form and three-body interactions can be neglected. In such a regime, only two-body
s-wave scattering is important. With a low enough temperature the magnitude of the scattering
length a is much less than the corresponding thermal de Broglie wavelength, and the exact
shape of the two-atom interaction is unimportant.

The experimental evidence of Bose–Einstein condensation in magnetically trapped weakly
interacting atoms [5–8] has brought considerable support to the theoretical research on bosonic
condensation. The nature of the effective atom–atom interaction determines the stability of
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the condensed state: the two-body pseudopotential is repulsive for a positive s-wave atom–
atom scattering length and it is attractive for a negative scattering length [10]. The ultra-cold
trapped atoms with repulsive two-body interaction undergo a phase transition to a stable Bose
condensed state, in several cases found experimentally, such as for 87Rb [5], 23Na [7] and 1H
[8]. However, a condensed state of atoms with a negative s-wave atom–atom scattering length
(as in the case of 7Li [6]) would be unstable, unless the number of atoms N is small enough
such that the stabilizing force provided by the harmonic confinement in the trap overcomes the
attractive interaction, as found on theoretical grounds [11, 12]. It was indeed observed in the
7Li gas [6], for which the s-wave scattering length is a = −14.5 ± 0.4 Å, that the number of
allowed atoms in the Bose condensed state was limited to a maximum value of between 650
and 1300, which is consistent with the mean-field prediction [11].

So, for systems of atoms with attractive two-body interaction, it is widely believed
[11, 13, 14] that the condensate has no stable solution above a certain critical number of atoms
Nmax. However, as reported in [15, 16], the addition of a repulsive potential derived from
three-body interactions is consistent with a number of atoms larger than Nmax. Even for a
very small strength of the three-body force, the region of stability for the condensate can be
extended considerably. By considering the possible effective interactions, it was reported
in [17] that a sufficiently dilute and cold Bose gas exhibits similar three-body dynamics
for both signs of the s-wave atom–atom scattering length. It was also suggested that, for
a large number of bosons the three-body repulsion can overcome the two-body attraction, and
a stable condensate will appear in the trap [18]. If an atomic system is characterized by having
effectively an attractive two-body interaction together with a repulsive three-body interaction,
two mechanisms for stability are possible: (a) the kinetic energy acting at lower densities
and (b) the repulsive weak three-body force effective at higher densities. These mechanisms
indicate that, for the same number of atoms, one lower-density phase and a higher-density
phase can be found, if the three-body force is weak enough not to dominate the effective
interaction.

It was pointed out in [19] that an easier experimental approach to probing density
fluctuations is to consider an observable directly sensitive to the probability of finding three
atoms near each other, which will correspond to the loss rate of atoms due to three-body
recombination. Such a three-body recombination rate in BEC was considered recently in
[14, 20, 21] (see also the review of [13]). It was shown in [20] that the three-body recombination
coefficient of ultracold atoms to a weakly bound s level goes to infinity in the Efimov limit
[22]. The Efimov limit is a particularly interesting three-body effect, which happens when the
two-body scattering length is very large (positive or negative). In this case, with the two-boson
energy close to zero, the three-boson system presents an increasing number of loosely bound
three-body states, which have large spatial extension and do not depend on the details of the
interaction [23].

So, our main motivation is to provide an extension to the Ginzburg–Pitaevskii–Gross
(GPG) equation [24, 25], which considers a three-body interaction and, in this way, provides
the framework for a numerical investigation of the relevance of the three-body interaction
in Bose–Einstein condensation. Recently, we presented a first dynamical approach in this
direction [26], where it was shown that the decay time of a trapped atomic system (as considered
in the present paper) that starts in a denser (liquid) phase is longer than expected due to strong
oscillations of the mean-squared radius. As observed in [26], such oscillations of the mean-
squared radius also happen if the real part of the three-body effective potential, parametrized
by λ3 (or g3 in dimensionless units), is zero. The collapse ‘burns’ the atoms in the states with
higher densities and explains a sudden increase of the square radius after each compression,
with the atoms remaining in dilute states. The inclusion of the repulsive three-body force still
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maintains the oscillatory mode, but the compression is not as dramatic as in the former case
and, consequently, atoms in higher-density states are not so efficiently burned. In the situation
when the three-body repulsion dominates over the two-body attraction, the condensate can be
in a denser phase where it is expected to be strongly unstable due to recombination losses.
However, the dynamics of the condensate is modulated by an oscillatory mode with a frequency
nearly twice that of the trap†, as also found when λ3 = 0 [28]. In the case of λ3 > 0, the
oscillatory mode dominates the dynamics of the condensate, implying density fluctuation and
thus the condensate does not decay as quickly as expected.

In this paper we consider a possible general scenario of atomic systems with attractive two-
body and repulsive three-body interactions, extending previous studies considered in [16, 26].
The lowest collective mode excitations are also determined and their dependences on the
number of atoms and on the strength of the three-body force are studied. We show that, in a
dilute gas, a small repulsive three-body force added to an attractive two-body interaction is able
to stabilize the condensate beyond the critical number of atoms in the trap, found just with an
attractive two-body force [11], such that a kind of liquid–gas phase transition occurs. By using
the mean-field approximation, we investigate the competition between the leading term of an
attractive two-body interaction, originated from a negative two-atom s-wave scattering length,
and a repulsive three-body effective interaction, which can happen near the Efimov limit [22]
(|a| → ∞) as discussed in [17]‡. With respect to the realization of the above scenario, we
note that recently the possibility of continuously altering the two-body scattering length, from
positive to negative values, by means of an external magnetic field was reported [30]. This was
further investigated in optically trapped caesium gas [31]. By tuning the two-body scattering
length, one can approach the Efimov limit, where new physics is expected. The first step to
understanding the new physics that can happen as one approaches this limit is to consider the
situation in which the three-body effect is not negligible.

The paper is organized as follows. In section 2, we introduce the Ginzburg–Pitaevskii–
Gross formalism. In section 3, we present the main numerical results for the static solutions,
together with a variational analysis. In section 4, we present a stability analysis and results
for collective excitation in the condensate. In this section 4 we also observe that the inclusion
of three-body effects points out possible evidence of a liquid–gas phase transition in the
condensate. Finally, in section 5, we present our main conclusions.

2. Ginzburg–Pitaevskii–Gross formalism

In the following, we present our formalism, where the original Ginzburg–Pitaevskii–Gross
nonlinear equation [24, 25], which includes a term proportional to the density (two-body
interaction), is extended through the addition of a term proportional to the density squared
(a three-body interaction). Next, after reducing such an equation to dimensionless units, we
study numerically the s-wave solution by varying the corresponding dimensionless parameters,
which are related to the two-body scattering length, the strength of the three-body interaction
and the number of atoms in the condensed state. As particularly observed in [32], to incorporate
all two-body scattering processes in such a many-particle system, the two-body potential should
be replaced by the many-body T -matrix. Usually, at very low energies, this is approximated
by the two-body scattering matrix, which is directly proportional to the scattering length [12].
So, in order to obtain the desired equation, we first consider the effective Lagrangian, which

† Also clarified in [27] by using the virial approach.
‡ See [23, 29] for the universal aspects of the Efimov limit.
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describes the condensed wavefunction in the Hartree approximation, implying the GPG energy
functional

L =
∫
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In our description, the atomic trap is given by a rotationally symmetric harmonic potential,
with angular frequency ω, and LI gives the effective atom interactions up to three particles.
The effective interaction Lagrangian for ultra-low temperature bosonic atoms, including two-
and three-body scattering at zero energy, is written as
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where �r12 and �R3 are the relative coordinates, given by �r12 = �r1 −�r2 and �R3 = �r3 − (�r1 + �r2)/2;
and �R123 ≡ (�r1 + �r2 + �r3). T (3)(0) and T

(2)
jk (0) are the corresponding three- and two-body

T -matrices, which are evaluated at zero energy. The two-body T -matrix for each pair (jk)
is subtracted from T (3)(0) to avoid double counting and Ki is the kinetic energy operator for
particle i.

We can approximate the above effective interaction Lagrangian at low densities by
averaging the T -matrices over the relative coordinates, considering that the thermal wavelength
is much greater than the characteristic interaction distances,
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The integrations of the T -matrices over the relative coordinates give the zero-momentum
matrix elements:∫
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where a is the two-body scattering length. For the connected three-body T -matrix, also by
integrating over the coordinates, we obtain the corresponding zero-momentum ( �p12 = 0, �P3 =
0) matrix elements, which give us the strength of the three-body effective interaction λ3, as
follows:∫
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where 〈 | ≡ 〈 �p12 = 0, �P3 = 0| and | 〉 ≡ | �p12 = 0, �P3 = 0〉.
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The nonlinear Schrödinger equation, which describes the condensed wavefunction in the
mean-field approximation, is obtained from the effective Lagrangian given in equation (1). By
considering the interaction in equation (3), it can be written as [33]
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For a stationary solution, 
(�r, t) = e−iµt/h̄ ψ(�r), and the above equation can be written as
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where µ is the chemical potential (single-particle energy) and ψ(�r) is normalized as∫
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The total energy of the system is given by
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The central density of the system can be obtained directly from the solution of the above
equation, normalized as in equation (8):

ρc = N |ψ(0)|2. (10)

The physical scales presented in the above equations can be easily recognized by working with
dimensionless equations. By rescaling equation (7) for the s-wave solution, we obtain[
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number of atoms N :∫ ∞

0
dx |#(x)|2 = n where n ≡ 2N |a|

√
2mω

h̄
. (13)

The boundary conditions in equation (11) are given by [11]
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In terms of the dimensionless variables, the total energy of the system is given by
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where φ(x) ≡ #(x)/n1/2 is normalized to one.
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3. Liquid–gas phase transition: static solutions

3.1. Variational approach

As a further reference to our results, and the stability analysis, it will be helpful first to consider
a variational procedure [34], using a trial Gaussian wavefunction for ψ(�r). So, in equation (9)
we consider the following variational wavefunction (normalized to one):
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)3/4

exp

[
− r2

2α2

(mω
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)]
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where α is a dimensionless variational parameter. The corresponding root-mean-square radius,
r0, will be proportional to the variational parameter α:
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The expression for the total variational energy, which is obtained after replacing equation (16)
in equation (9), is given by
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In the same way, we can obtain the corresponding variational expression for the single-particle
energy, equation (7):
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The variational central density, using equations (10) and (16), can also be given in terms of
this parameter α:

ρc,var(α) =
(mω
πh̄

)3/2 1

α3
. (20)

The approximate solutions for the total energy are obtained from the extrema of (18) with
respect to variation of the parameter α. The variational solutions of Evar(α) are given, as a
function of n and g3 (where a < 0 and g3 > 0), by the real roots of ∂Evar(α)/∂α = 0†.

In figure 1, we first illustrate the variational procedure considering an arbitrarily small
three-body interaction, chosen as g3 = 0.005. In the upper part of the figure, we show five
small plots for the total variational energy E, in terms of the variational width α. Each one
of the small plots corresponds to particular values of n. For each number n we report the
energy of the variational extrema in the lower part of figure 1. In region (I) where the number
of atoms is still small, the attractive two-body force dominates over the repulsive three-body
force and just one minima of the energy as a function of the variational parameter α is found.
That is also the case for g3 = 0. When the number of atoms is further increased (region (II))
two minima appear in the energy E(α). An unstable maximum is also found between the
two minima. The lower-energy minimum is stable, while the solution corresponding to the
smaller α is metastable. This solution has a higher density and, consequently, its metastability
is justified by the repulsive three-body force acting at higher densities. The minimum number
n for the appearance of the metastable state is characterized by an inflection point in the
energy as a function of α. The value of n at the inflection point corresponds to the peak

† By using a numerical procedure one can easily reach the extrema of equation (18) by varying the parameter α, once
the other parameters are fixed.
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Figure 1. In the lower part, we have a comparison between variational (full curve) and exact
(broken curve) numerical calculations of the condensate energy as a function of the reduced number
of atoms n for g3 = 0.005. In the upper frame we show five plots of the variational energy as
a function of the variational parameter α for five particular values of n shown also in the lower
frame. (I) (respectively IV) corresponds to a small (large) n region where only one stable solution
is encountered; (II) (respectively III) to a small (large) n region where we observe three extrema for
the energy; (C) corresponds to a particular n where we obtain two stable solutions with the same
energy E1 = E2. E is given in units of (Nh̄ω)/n.

in the plot of extremum energy versus n because for larger n three variational solutions are
found as depicted in the lower part of figure 1. The attractive two-body and trap potentials
dominate the condensed state in the low-density stable phase up to the crossing point (C).
At this point, the denser metastable solution becomes degenerate in energy with the lower-
density stable solution and a first-order phase transition takes place. Since the two solutions
differ by their density this transition is analogous to a gas–liquid phase transition for which
the density difference between the liquid and the gas is the order parameter. In the variational
calculation this occurs at the transition number n ≈1.3, while the numerical solution of the
nonlinear Schrödinger equation (NLSE) gives 1.2. In region (III), we observe two local
minima with different energies, a higher-density stable point and a lower-density metastable
point. The metastable solution disappears in the peak at the boundary between region (III)
and (IV). In regions (III) and (IV) the three-body repulsion stabilized a dense solution against
the collapse induced by the two-body attraction. The qualitative features of the variational
solution are clearly verified by the numerical solution of the NLSE, as shown by the broken
curve.
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3.2. Numerical results

The numerical solutions of equation (11) are obtained for several values of β, using three
values of g3 to characterize the solutions. We have used the Runge–Kutta (RK) and ‘shooting’
method to obtain the corresponding solutions in each case [35]. The stability assignment for
the stationary solutions was made by studying the corresponding time-dependent Schrödinger
equation, using the Crank–Nicolson (CN) method (see [11, 36]). The numerical procedure to
determine such stability was done in the following way: when applying the CN method, we
started by using the static solution obtained from the RK method and observed whether the
modulus of the wavefunction remained constant. If this occurred for a long period of time (of
about 500 units of dimensionless time τ = ωt) the solution was considered stable, otherwise
it was considered unstable.

In figure 2 we present the total energy as a function of the number of atoms, represented
by the reduced number n defined in equation (13), for three significative values of the quintic
parameter g3, given by 0, 0.016 and 0.03. The results agree with [15]. When g3 = 0, the stable
solutions for the energy start at zero (for n = 0) and reach a critical limit at nmax � 1.62. There
are no solutions for higher n, but the plot also shows a branch with unstable solutions (with
higher energies) for n � 1.62. Our results are consistent with results given in [32]. When
g3 = 0.03, only stable solutions appear for the energy, with no limit on the number of atoms,
having a maximum at n ∼ 2. So, this and higher values for g3 already represent a dominance
of the quintic term in the interaction of equation (11). We observe that the numerical stability
analysis is consistent with the variational approach discussed in the previous subsection. The
more interesting case represented in figure 2 is for g3 = 0.016, as in such a case we observe

Figure 2. The total energy, in units of (h̄ω)/
(
2|a|√(2mω)/h̄

)
, is shown as a function of the

reduced number of atoms n, given by equation (13), for g3 = 0, 0.016 and 0.03. The inset points
out critical limits discussed in the text.
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Figure 3. The chemical potential, in dimensionless units (β = µ/(h̄ω)), is shown as a function of
the reduced number of atoms n, for the same set of g3 as shown in figure 2. The inset points out
the critical limits corresponding to figure 2 (CG and CL correspond to C), and the straight line with
an arrow indicates the transition from a less dense to a more dense phase.

a region of the plot where we can have up to three solutions for the same n. The inset to this
figure amplifies the region of the plot where, for g3 = 0.016, the solutions become unstable
(between A and B) or metastable (between A and C, or B and C). At point C a phase transition
occurs from a less dense (gas) to a more dense (liquid) phase.

In figure 3, following a correspondence to figure 2, we present the results for the chemical
potential in dimensionless units (β) as a function of n. The line with an arrow in the inset to this
figure indicates the approximate position in n where the phase transition (from a ‘gas’ phase to
a ‘liquid’ phase) occurs. For g3 = 0.016 the part of the plot linking points A and B is unstable
(see both figures 2 and 3), otherwise it is stable. Finally, for g3 = 0.03, the function of the
energy in terms of n is always single valued and stable. Our calculation for g3 = 0 also agrees
with results presented in [11], with the maximum number of atoms limited to nmax ≈ 1.62†.
As we can see, for n � nmax two solutions are possible, one of which is unstable. For g3 higher
than zero, a new pattern appears. For instance, the plot for the case of g3 = 0.016 (see the
inset) can be divided into several sectors according to the stability analysis, with the help of
figure 2. Starting from n = 0 (β = 1.5) until point CG, and from CL to higher values of n, we
have stable solutions; from CG to A and from B to CL we obtain metastable solutions; from A
to B the solutions are unstable, corresponding to maxima for the energies.

In figure 4 we also plot the central density ρc, defined in equation (10), as a function of the
number n. We use the same values of the parameter g3 as used in figures 2 and 3. The inset to

† Our n is equal to |C3D
nl | of [11].
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Figure 4. The central density, in dimensionless units, as a function of the number n, for the same
set of parameters g3 given in figures 2 and 3.

the figure also points out the phase transition which occurs when g3 = 0.016. As the straight
line with an arrow shows, after the transition the system becomes more than three times denser
than the original one. Also, for 0 < g3 < 0.0183, we observe that the density ρc presents back
bending typical of a first-order phase transition.

By extending the observations of a first-order phase transition, given in figures 2–4 for
g3 = 0.016, we also determined the region of g3 where such kinds of phase transition can
occur. In figure 5 we have a phase diagram, where the critical boundary separating the two
phases and a critical point at n = 1.8 and g3 = 0.0183 are shown. For g3 less then such a
critical value, we observe two regions with distinct phases, similar to gas and liquid phases.
These two different phases are also clearly identified in our figure 4, where we present the
central density as a function of n.

For each g3, the transition point given by the crossing point in E versus n (see figure 2)
corresponds to a Maxwell construction in the diagram of µ versus n. At this point an
equilibrated condensate should undergo a phase transition from the branch extending to small
n to the branch extending to large n. The system should never explore the back-bending part
of the diagram because, as seen in figure 2, it is an unstable extremum of the energy. From
figures 1–5, it is clear that the first branch is associated with small densities, large radii and
positive chemical potentials, while the second branch presents a more compact configuration
with a smaller radius, a larger density and a negative chemical potential. This justifies the term
gas (G) for the first one and liquid (L) for the second one. However, we want to stress that
both solutions are quantum fluids.
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Figure 5. Graphical representation of the interface between the two distinct phases (gas and liquid),
in the plane defined by the reduced number of atoms n and the parameter g3 (lower frame); and for
the central density ρc versus g3 (upper frame). The arrows in the lower frame correspond to the
point where the phase transition occurs for g3 = 0.016, when changing n.

4. Collective excitations

In this section, from the time evolution of the GPG equation, given in equation (6), we consider
the ground-state collective excitations for the system [37–39]. Following [39], the collective
excitations are described by the Bogoliubov equations [4, 25, 34, 40]. After including three-
body interactions they take the form

[Lν − h̄ων]uν +
{
NU0 + 2λ3N

2|ψg|2
}
[ψg]2vν = 0

[Lν + h̄ων]vν +
{
NU0 + 2λ3N

2|ψg|2
}
[ψ∗

g ]2uν = 0
(21)

where

Lν ≡ H0 − µ + 2U0N
∣∣ψg

∣∣2
+ 3λ3N

2|ψg|4. (22)

H0 is the harmonic oscillator Hamiltonian, U0 ≡ −(4πh̄2|a|)/m, ων is the frequency of the
collective oscillations, N is the number of atoms and ψg ≡ ψg(r) is the ground state solution
of equation (7). The above equations have been solved by using several methods [38, 39, 41].
In the present calculations we have employed two methods: a time-dependent and a time-
independent one. In the time-dependent procedure we have added a weak perturbation to
the potential and, with the CN algorithm, examined the time evolution of equation (6) for a
selected point of the wavefunction. The lowest collective oscillations (ων) were determined
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Figure 6. Collective frequencies as a function of the reduced number of atoms n. The inset shows
the critical points corresponding to the previous figures.

through Fourier transformation [39]. By using the time-independent algorithm, we have solved
equations (21) with the matching algorithm [42] generalized for two functions u and v. The
method works by departing from the analytically known u, v andων for the harmonic oscillator
(the chemical potential near to 3/2h̄ω). Then we successively apply the matching method for
the coupled u and v, gradually decreasing the chemical potential. This allows one to reach
subsequent solutions, by employing the deformation algorithm described in [35]. We obtain
exact agreement between both methods, time-dependent or time-independent.

Figure 6 shows the collective frequencies ων as a function of n for the first mode (l = 0).
The solutions corresponding to g3 = 0 agree well with those given in [38], losing stability as
ων → 0. By using this criterion, we have obtained the regions of stability for g3 = 0.016. For
g3 = 0.03 all the solutions are stable. Following the inset of figure 6, for g3 = 0.016, one can
observe that, as the number of atoms is increased, in the less dense phase, the frequency of
the collective excitations decreases and is related to stable solutions up to the point CG; from
this point down to the point A (increasing n), the frequency continues to decrease to zero,
but now related to metastable solutions. As already explained previously in the discussion of
figures 2–5, and also from the variational energy solutions given in figure 1, it is very likely
that a phase transition occurs, from CG to CL (or from the metastable solutions, given in the
branches CG–A and B–CL, to the corresponding stable solutions with fixed n). Once in the
denser phase (from B passing through the point CL), the frequency of the collective excitations
increases as the number of atoms increases, in contrast to the behaviour observed for the system
in the less dense phase. This can be qualitatively understood considering the variational energy
of the two phases and the corresponding stable energy as shown in figure 1. The curvature of
the variational energy as a function of α at the minimum for the liquid phase is greater than the
corresponding one in the gas phase (compare in figure 1 insets (I) and (II) with insets (III) and
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Figure 7. Collective frequencies as a function of the chemical potential β.

(IV)). This indicates, in agreement with figure 6, that the restoration force is stronger for the
liquid phase than for the gas phase and consequently the frequencies of the collective modes
starting at the point CL are higher than the corresponding ones for the gas phase ending at CG.
As we include more particles the frequencies of the oscillations increase in the liquid phase.
Corresponding to figure 6, in figure 7 the collective frequencies are shown as a function of the
chemical potential β. From right to left, as the chemical potential decreases up to CG, β also
decreases; from CG to A, and from B to CL the solutions are metastable, such that the system
will look for a transition to a stable branch (from CG, increasing β, and from CL, decreasing
β). From CL, as we further decrease the value of β the frequency of the collective excitations
increases.

5. Conclusions

To summarize, we have presented results for the total energy, chemical potential and central
density in terms of the number of atoms in the condensed state, for a range of values of the
three-body strength. We also study the lowest collective mode excitations of the ground state.

Our calculation presents, at the mean-field level, the consequences of a repulsive three-
body effective interaction for the Bose-condensed wavefunction, together with an attractive
two-body interaction. A first-order liquid–gas phase transition is observed for the condensed
state as soon as a small repulsive effective three-body force is introduced. In dimensionless
units the critical point is obtained when g3 ≈ 0.0183 and n ≈ 1.8. The characterization
of the two phases through their energies, chemical potentials, central densities and collective
excitations were also given for some values of the three-body parameter g3. The results
presented in this paper can be relevant to determine a possible clear signature of the presence
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of repulsive three-body interactions in Bose-condensed atoms. It points to a new type of phase
transition between two Bose fluids. Because of the condensation of the atoms in a single
wavefunction this transition may present very peculiar fluctuations and correlation properties.
Consequently, it may fall into a different universality class than the standard liquid–gas phase
transition, which is strongly affected by many-body correlations. This matter certainly deserves
further study.
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