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Abstract
We study three-dimensional vortex lattice structures in purely dipolar Bose–Einstein condensate
(BEC). By using the mean-field approximation, we obtain a stability diagram for the vortex
states in purely dipolar BECs as a function of harmonic trap aspect ratio (λ) and dipole–dipole
interaction strength (D) under rotation. Rotating the condensate within the unstable region leads
to collapse while in the stable region furnishes stable vortex lattices of dipolar BECs. We analyse
stable vortex lattice structures by solving the three-dimensional time-dependent Gross–Pitaevskii
equation in imaginary time. Further, the stability of vortex states is examined by evolution in
real-time. We also investigate the distribution of vortices in a fully anisotropic trap by increasing
eccentricity of the external trapping potential. We observe the breaking up of the condensate in
two parts with an equal number of vortices on each when the trap is sufficiently weak, and the
rotation frequency is high.
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1. Introduction

Vortices in Bose–Einstein condensates (BECs) of alkali
atoms first observed in the laboratory in 1999 [1]. Since then
numerous experimental and theoretical studies along this
direction were performed [2]. For instance, these studies
include bending of vortex lines in a cigar shaped trap, array of
orderly aligned lattices in the quantum-Hall regime, Tka-
chenko oscillations in the lowest Landau level and so on
[3, 4]. The rotational properties of BECs of alkali atoms are
reviewed in [2, 5]. Several techniques such as rotating the
magnetic trap, laser stirring, decay of solitons, imprinting
vortices using topological phases, superimposing an oscillat-
ing excitation to the trapping potential, and applying artificial
magnetic fields [2, 6, 7] were adopted in BEC experiments to
nucleate the vortices.

Early experiments and theoretical studies on vortices in
BEC mostly focused on alkali Bose gases with local and
isotropic interaction. In particular, there are many numerical
studies proposed to analyse the stationary state of rotating

alkali BECs [8]. However, the experimental realization of
Bose–Einstein condensation in chromium (52Cr) [9], dys-
prosium (164Dy) [10], followed by erbium (168Er) [11] has
enlightened new directions in understanding the properties of
BEC in dipolar quantum gases. These recent works has
revealed new phenomena due to the peculiar competition
between isotropic short-range contact interaction (CI) and
anisotropic long-range dipole–dipole interaction (DDI). The
most significant features of the dipolar BECs are the emer-
gence of biconcave shaped states, the dependence of the
stability on the trap geometry, the roton-like dip in the dis-
persion relation for excitation waves, and the d-wave mode of
the collapse [12–15]. The rotational properties of dipolar Bose
gases have also been studied theoretically in the mean-field
regime [16–21]. These studies revealed that the rotational
properties of dipolar BECs are strongly influenced by the
harmonic trap aspect ratio, DDI strength, CI strength and
relative strengths between DDI and CI [20, 21]. Square and
triangular vortex lattice structures have been predicted in
dipolar BECs loaded in optical lattice potentials [22]. The
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stability of dipolar BEC is strongly dependent on the trap
geometry and dipolar interaction strength. So far the regime
for the stability has been analysed only for the non-vortex
states of dipolar BECs without rotation [23, 24]. Most of the
previous studies on vortices in dipolar BECs are based on
two-dimensional models only [16–20]. However, it will be
more realistic to investigate the stationary vortex structures in
full three-dimensions as they are readily comparable with
experiments.

In this paper, we study the vortex lattice structures of
purely dipolar BEC by considering the full three-dimensional
Gross–Pitaevskii (GP) equation. In particular, we analyse the
stability regime for vortex state in purely dipolar BECs with
respect to both trap aspect ratio and DDI strength. The sta-
bility of the vortices is confirmed by numerically evolving the
vortex states in real-time. We show stationary vortex lattice
structures for different trap aspect ratios within the stable
regime. Further, we study the collapse dynamics of biconcave
shaped condensate during rotation. We calculate the chemical
potential, rms (root-mean-square) radius and angular
momentum of condensate as a function of rotation frequency.
We estimate the number of vortices using Thomas–Fermi
(TF) approximation and compare them with that obtained
through numerical simulations. Finally, we notice the break-
ing of the condensate when the rotating dipolar BEC is in the
fully anisotropic trap.

The paper is organized as follows. In section 2, we pre-
sent the mean-field equation to study a dipolar BEC in a
rotating trapping potential. In section 3, we show the stability
diagram for states without and with vortices in purely dipolar
BECs as a function of harmonic trap aspect ratio and DDI
strength. In section 4, we study the stationary vortex struc-
tures observed numerically as well TF calculation on some
physical parameters during rotation of the condensate. Then
we investigate the spatial distribution of vortices in a fully
anisotropic trap in section 5. Finally, in section 6, we present
a brief summary and conclusions.

2. The mean-field GP equation in rotating frame

The pattern of vortices in the BEC can be studied using the
mean field GP equation [2, 25]. At ultra-low temperatures the
properties of a dipolar BEC of N atoms, can be described by
the mean-field GP equation in rotating frame with the non-
local nonlinearity of the form [16, 19]:
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where ∣ ( )∣¨ G �tr rd , 1.2 The trapping potential, Vtrap is
assumed to be fully asymmetric of the form
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where X X,x y and Xz are the trap frequencies, m is the atom
mass, and a is the atomic scattering length. �� �L iz

( )s � sx yy x corresponds to the z-component of the angular
momentum due to the rotation of the dipolar BEC about
z-axis with rotation frequency Ω.

For magnetic dipoles, the dipolar interaction is given by
[26, 27]
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where � � aR r r determines the relative position of dipoles,
θ is the angle between R and the direction of polarization, N0
is the permeability of free space, and N̄ is the dipole moment
of the atom. j is the angle between the orientation of dipoles
and z-axis. We consider the polarization of magnetic dipoles
along the direction of z-axis as long as j = 0.

To compare the contact and dipolar interactions, it is con-
venient to introduce the length scale ¯ ( )�N N Qwa m 12dd 0

2 2

[28]. 52Cr has a magnetic dipole moment of N̄ N� 6 B (NB is the
Bohr magneton) so that �a a16dd 0, where a0 is the Bohr
radius. The DDI strength is expressed as �D Na3 dd.

Convenient dimensionless parameters can be defined in
terms of a reference frequency X̄ and the corresponding
oscillator length ( ¯ )� X�l m . Using dimensionless vari-
ables a � a �l lr r R R, , a � a �a a l a a l, ,dd dd X̄a �t t ,
a �x x l, X̄a � a � 8a � 8y y l z z l, , , G Ga � l3 2 ,

equation (1) can be rewritten (after dropping the primes from
all the variables) as
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¯ ¯ ¯H X X O X X M X X� � �, ,x y z . We consider the cylindri-
cally symmetric harmonic trap with H O� with
X X X� � Sx y and we use the reference frequency X̄ as XS.
For the fully anisotropic trap, the reference frequency is taken
as the geometric mean, that is, ¯ ( )X X X X� x y z

1 3. From now,
we only refer to the dimensionless variables.

We perform the numerical simulations of the 3D GP
equation (3) using the split-step Crank–Nicolson method
described in [29, 30]. The dipolar integral in equation (3)
diverges at a short distance in coordinate space. However, this
can be circumvented by evaluating the integral in momentum
space [27, 31]. For the parameters we used in this work for
the dipolar GP with (a = 0), there is no minimizer [32, 33],
which means there is no actual ground state. So the states we
refer here are in fact lowest local minimum states.

The numerical simulations for the cylindrically sym-
metric and fully anisotropic traps are carried out with

q q192 192 192 and q q320 128 128 grid sizes
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respectively, with % � % � % �x y z 0.2 (space step) and
% �t 0.004 (time step).

3. Non-vortex and vortex states stability

The important feature of dipolar BEC is the emergence of
unusual states. The lowest local minimum state looks like a
biconcave shaped structure where the density maximum is not
in the center of the condensate [23, 24]. Furthermore, the
density oscillations of dipolar BEC with two and four peaks
were also reviewed in a fully anisotropic trap. In this section,
we are interested in studying the stability and structures in
purely dipolar BEC in pancake trap. We have composed the
stability diagram for a purely dipolar BEC as a function of the
trap aspect ratio (λ) and dipolar interaction strength (D). A
similar stability diagram is given in [23]. A dipolar BEC is
unstable and collapses for the number of atoms N above a
critical value. This can be studied by solving the three-
dimensional time-dependent GP equation (3). We have
broadened the stability diagram to M � 30 and calculated the
stability region of the solutions. The biconcave shaped con-
densate density as shown in figure 1(a) is obtained for the
parameters M � 7 and D = 30.4 from imaginary time pro-
pagation. In figure 1(b) we have shown the real-time evol-
ution of the biconcave shaped state. One may note that similar
biconcave structures are shown in [23, 24]. Also, we observed
such local density fluctuation for the following trap aspect
ratios M � 7, 8, 11, 12, 15, 16, 19, and 20. The structured
condensates are locally stable in the sense that they are stable
only within a local minimum of the energy. Further increase
in the number of particles or increase in dipolar interaction
energy will change the state to unstable. Here we are inter-
ested in rotating this biconcave shaped condensate to study
the time evolution. With this objective, we prepared the initial
state solution by solving the equation (3) using imaginary
time propagation in the absence of rotation (8 � 0) and then
seed the resulting solution in real-time propagation by
applying a rotation with frequency 8 � 0.5. At the time of

rotation, the dipoles are immensely pulled towards the outer
rim, and two peaks formed as shown in figure 2(b). These two
peaks sustain for a very short time, and biconcave shaped
condensate becomes unstable.

If we analytically evolve an exact solution with zero
angular momentum in the z direction, then term �8Lz in
equation (1) plays no role. However, this may not be the case
either physically or if it is evolved numerically. Physically,
there is always some fluctuation in the wave function field.
Fluctuations are random and have in principle contributions
of all components of different angular momentum. In the
numerical calculations, roundoff errors are always present and
give nonzero angular momentum contribution. The term
�8Lz will then act on the perturbations, growing them
exponentially (modulational instability) and the condensate
eventually collapses. The collapse dynamics during rotation is
shown as two- and three-dimensional view in figures 2 and 3,
respectively. Further, we have constructed a phase diagram
illustrating the stability region for stable vortex lattice in
M � D parameter space as shown in figure 4. The stable
region for vortex lattice is located below the stability region
of the states (dashed blue line with empty circles) in figure 4.
To carry out this observation, we have prepared the solution
using imaginary time propagation with 8 � 0 and progress
the solution in imaginary-time with rotation frequency
8 � 0.7. Nevertheless, the stability diagram has been
checked for the rotation frequencies in the range 0.7 and 0.99
and no significant changes in the stability boundary are
observed. Also, we examined the stability of stationary vortex
lattice solutions by evolving in real-time. In figure 4, the
region below the solid red line with empty circles corresponds
to stable vortex lattice. The vortex states are not stable in the
region between the dashed blue with empty circles and solid
red line with empty circles. In the next section, we discuss the
feasible vortex structures in the shaded region below the solid
red line. For the present study, we mainly consider two dif-
ferent harmonic trap aspect ratios, M � 10 and 30, and the
dipolar interaction strength is chosen within the vortex lattice
region in figure 4.

Figure 1. Three-dimensional contour plot showing the transparent view of density oscillation of biconcave shaped condensate for M � 7 and
D = 30.4 in the absence of rotation (8 � 0) evolve in real-time at time, (a) t = 0 and (b) t = 500. The contours levels are taken as
∣ ( ) ∣G �x y z, , 0.032 and 0.04.
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4. Stationary vortex lattices in purely dipolar BECs

In the following, we show several stationary vortex structures
in purely dipolar BEC in the different harmonic trap aspect
ratios M � 10 and 30, and correspondingly the dipolar inter-
action strength is chosen as �D 38 and 300, respectively.
First, in figure 5, we show the stationary vortex structures in
M � 10. We prepare the initial wave function by solving

equation (3) in the absence of rotation (8 � 0). The vortices
are then created by using imaginary time propagation with the
inclusion of rotation (8 v 0) to observe the stationary vortex
structures. When the condensate begins to rotate the multiply
quantized vortices enter into the condensate from the surface.
As time progress, these vortices approach to a stationary
vortex configuration as shown in figure 5. We notice the basic
configuration of centered single vortex surrounded by five

Figure 2. The condensate density ∣ ( ) ∣G x y, , 0 2 for M � 7 and D = 30.4 in xy plane showing the collapse dynamics of rotating biconcave
shaped condensate with 8 � 0.5 in real-time at time, (a) t = 0, (b) t = 60, (c) t = 64, and (d) t = 65.

Figure 3. Three-dimensional contour plots of the density ∣ ( ) ∣G x y z, , 2 for M � 7 and D = 30.4 showing the rotating biconcave shaped
condensate with 8 � 0.5 in real-time propagation at times (a) t = 0, (b) t = 60, and (c) t = 64. The contour levels are taken
as ∣ ( ) ∣G �x y z, , 0.042 .
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vortices at rotation frequency 8 � 0.7 as shown in
figure 5(b). At 8 � 0.8 the vortex structure is shown in
figure 5(c) resembles the structures observed in the references

[16, 20] for dipolar condensates. Further, we observed the
square lattice at 8 � 0.9. To test the stability of the vortex
structures, the relaxed solution is evolved in real -time for the
same parameters of imaginary time. The vortex structure
persisted as depicted in figure 6, even after long time
evolution.

At high rotation frequency (e.g. 8 � 0.97), we found 16
vortices as shown in figure 5(d). Moreover, one may note
from figure 4 that, for obtaining the vortex lattice in the
condensates with larger dipolar strength, it is necessary to
consider significantly larger λ. In this case we choose the trap
aspect ratioM � 30 with dipolar interaction strength �D 300
corresponding to about 118 000 52Cr atoms. We observed a
similar arrangement in the vortex structures inM � 10 and 30,
when the number of vortices are equal. It tells us that the
condensate tries to persist with the similar vortex structures,
even though the trap aspect ratio or dipolar interaction
strength are distinct. For instance, we noticed a qualitatively
similar array of vortex lattices for both M � 10 (see figure 6)
and M � 30 (see figure 7(b)), with 8 � 0.9 and 0.3, respec-
tively. We observe qualitatively similar structures for M � 10
(see figure 5(d)) and M � 30 (see figure 7(c)), with 8 � 0.97
and 0.4, respectively. The condensate in a strong pancake trap
creates a large number of vortices, even at low rotation
frequency.

Figure 4. Stability diagram of a purely dipolar BEC in cylindrically
symmetric trap as a function of trap aspect ratio (λ) and dipolar
interaction parameter (D). Below the dotted blue line the local
minimum with non-vortex state is stable while below the solid red
line is the region of stable vortex lattice.

Figure 5. Three-dimensional view of condensate density ∣ ( ) ∣G x y z, , 2 with vortex lattice of purely dipolar BECs with
M� � � �a a a D16 , 0, 38, 10dd 0 at rotation frequencies (a)8 � 0.5, (b)8 � 0.7, (c)8 � 0.8 and (d)8 � 0.97. The contour levels are

taken as ∣ ( ) ∣G �x y z, , 0.0125.2
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Further, we observed some distortion in the vortex lattice
structure when the number of vortices is sufficiently large. In
particular, the distortion is larger near to the surface than near
to the center of the condensate. All the vortices have the same
charge of vorticity, and their repulsion keeps the stable con-
figuration. We note that the size of the vortex core radius
becomes significantly larger in the vicinity of the surface than
in the middle of the condensate while increasing the rotation
frequency. Consequently, near to the surface, repulsive
interaction diminishes the density of vortices and leads to the
distortion in the vortex lattice. It is equivalent to observing
transverse shear waves in quantum gases for large rotation
frequencies [4]. In this regime, it takes place a decrease in the
elastic shear strength of the vortex lattice.

In figures 8 and 9, we plot the calculated values of che-
mical potential, rms radius, and angular momentum as a
function of rotation frequency for M � 10 and 30. First, we
calculate the chemical potential with respect to the rotation
frequency in mean-field TF regime. When the interaction
energy is large compared to the kinetic energy, the kinetic
energy can be neglected and enters into TF regime. We assume
the normalized density of the dipolar BEC of the form [34–37]
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where ( )SR t and Rz(t) are the radial and axial sizes. In the TF
regime one has the following set of coupled ordinary differential
equations for the evolution of the condensate sizes [35]:
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Here the atomic scattering length is taken as a = 0 so that the
dipolar interaction shows the dominant effect. It may be noted
that the external rotation expands the condensate radially and
shrinks it axially. As a consequence, the dependence of TF
radii on Ω can be given by [2],
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Also, the chemical potential has the form

( ) ( )( ) ( )N N8 � � 80 1 . 10TF TF
2 2 5

As shown in figure 8(a) the chemical potential decreases
continuously and it goes to zero when 8 � 1.0. In
figures 8(b)–(e) we plot the rms radius, � § �r2

( )( ) ( )�¨G Gt tr r r r, , d2 1 2
, and chemical potential as a

function of rotation frequency calculated from the numerical
solution of the GP equation. As expected, the condensate rms
radius increases with the increase of rotation frequency due to
the expansion of condensate. The rms radius is shown in
figures 8(b) and (c) for M � 10 and 30, respectively. One may
note that, in the absence of rotation, the numerically
calculated chemical potential compares well with TF results
[31]. Whereas, in the presence of rotation, the TF chemical
potential is about two times less than the numerically
calculated value. In figures 8(d) and (e) we show the variation
of chemical potential for M � 10 and 30 respectively. Next,
we calculate expectation value of angular momentum as a
function of Ω from the numerical solution. Figure 9, depicts
the plot of � §Lz with respect to Ω for M � 10 and 30. The
increase in the � §Lz is associated with the entry of vortices into
the condensate. We are interested in studying the dependence
of the vortex number (Nv) on the rotational frequency Ω in

Figure 6. Two-dimensional view of the stable evolution of the condensate density ∣ ( ) ∣G x y, , 0 2 with vortices arranged in a square lattice with
M� � � �a a a D16 , 0, 10, 38dd 0 , and 8 � 0.9 at time, (a) t = 0 and (b) t = 800.
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purely dipolar BEC. The rotating condensate has a dense
array of vortices with a uniform density ( ¯ ) �X Q� 8n mv .
The number of vortices present in the condensate is [2]

( ¯ ) ( ) ( )
�
X

�
8

8SN
m

R . 11v
2

The number of vortices increases linearly with Ω assuming
the BEC in a fixed axially symmetric harmonic trap. The

radius ( )SR 0 in TF regime can be calculated from the coupled
equations (6) and (7), and the corresponding ( )8SR can be
obtained from equation (9). In figure 10(a), we have estimated
the number of vortices in the different harmonic trap aspect
ratios M � 10, 20 and 30 in TF regime and compared with
numerically calculated equilibrium numbers. We noted some
deviations in the number of vortices from TF results and
calculated numerically. To compare the deviation in the

Figure 7. Three-dimensional view of condensate density ∣ ( ) ∣G x y z, , 2 with vortex lattice of purely dipolar BECs with
M� � � �a a a D16 , 0, 300, 30dd 0 at rotation frequencies (a) ∣ ( ) ∣G8 � �x y z0.27, , , 0.01252 , (b) ∣ ( ) ∣G8 � �x y z0.3, , , 0.0052 , (c)

∣ ( ) ∣G8 � �x y z0.4, , , 0.0052 and (d) ∣ ( ) ∣G8 � �x y z0.5, , , 0.0052 (e) ∣ ( ) ∣G8 � �x y z0.8, , , 0.0052 , and
(f) ∣ ( ) ∣G8 � �x y z0.97, , , 0.0042 .
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number of vortices in BEC without DDI, we calculate Nv for
the BEC without DDI by tuning to the magic angle
j = 54.7°, where the dipolar interaction averages to zero in
equation (4). Then we obtain Nv at �a a a50 , 1000 0 and we
observe the deviation as shown in figure 10(b). In particular,
when 8 � 0.9 the deviation is larger and it is due to the
strong expansion of condensate during the rapid rotation.

5. Vortex lattice in fully anisotropic trap

Finally, we concerned the purely dipolar BEC in fully ani-
sotropic trap with H O Mv v in the equation (3). Whenever

H Ov , the system breaks the cylindrical symmetry. For the
present analysis, we fix M O� �10, 1, and vary γ to study
the changes in the spatial distribution of vortices in purely
dipolar BECs by increasing the eccentricity of the trapping
potential along x-direction. The condensate strongly elongates
along the x-direction at -H 0.5. The centrifugal force also
elongates the condensate along x-direction. We have shown
four linearly arranged vortices in figure 11(a) for H � 0.5 and
8 � 0.425. In figures 11 and 12, we observed linear and zig-
zag arrangements of vortices with respect to the strength of
eccentricity of the trap, respectively. Such linear and zig-zag
vortex configurations have been observed in conventional

Figure 8. Plot of the chemical potential and rms radius as a function of the rotation frequency Ω for the dipolar BEC with the scattering length
M�a 0, =10 with �D 38 and λ=30 with �D 300. (a) TF chemical potential calculated from equation (10). Plot of the numerical

calculation of radius and chemical potential in (b), (c) and (d), (e) respectively.
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quasi two-dimensional BEC [40]. Further increase in Ω splits
the condensate at a critical rotation frequency (8sp). In addi-
tion to the repulsive dipolar force between condensate atoms,
the rotation provides supplementary elongation at .8 8sp.
Splitting is a combined effect of rotation and dipolar forces.
As rotation increases, the condensate creates extra vortices
and also stretches. In the limiting case, it remains a vortex in
the center and further stretching breaks the condensate in two
parts. With further increase of rotation, no more vortices are
generated since extra angular momentum can now be
accommodated by orbital angular momentum. Stretching is
enhanced depending on the trap geometries. We have
observed only two vortices as shown in figure 12(a) at
H � 0.7 for the rotation frequency 8 � 0.425. This is exactly
half the number of vortices when compared to that with
H � 0.5 for the same rotation frequency. This evidences the
dependence of the number of vortices on the eccentricity of
the trap. At sufficiently high 8sp, the condensate splits into
two parts as shown in figure 12(c). Here the splitting occurs at
8 � 0.91sp , which indicates that the trap with large γ requires
substantially larger rotation frequency than the condensate
with smaller γ. The phase of the vortices, marked with circles,

is shown in figures 11(d)–(f) and 12(d)–(f). We also marked
few more vortices as red squares. These vortices are called
hidden (or ghost) vortices since they cannot be observed in
3D density distribution. Due to hidden vortices, there is a
phase defect distributed along the y-axis in the split con-
densate. A similar phase distribution is observed in rotating
BEC in a double-well potential [38]. The splitting with vor-
tices are also observed in normal BEC, where it is triggered
by random noise or a complex frequency to the stationary
vortices [39]. However, splitting is spontaneous in rotating
dipolar BEC.

In figure 13, we show 8sp at different trap aspect ratios,
M � 10, 30, 50 and 100 with respect to the eccentricity of the
trap γ. When the anisotropy is fixed as H � 0.5 and M � 10
then the splitting is observed at 8 � 0.65sp . One can observe
that 8sp increases with increasing trap aspect ratio. For
instance, when M � 50 and 100 the corresponding required
8sp are 0.72 and 0.78, respectively. The strong axial trap
preserves the condensate from splitting, and one needs to
apply stronger Ω to observe it. On the other hand, if we
increase the anisotropy to H � 0.7, the 8sp also increases to
0.9 for M � 10. The condensate does not split in strong
enough axial traps as for H � 0.7 and λ = 50 and 100. We
have also carried out the calculations with an effective 2D GP
equation in a rotating frame and observed a similar splitting
with same vortex distribution for the corresponding para-
meters used in 3D calculations, confirming our results.

6. Summary and conclusion

In summary, we have studied the vortex lattice structures in
purely dipolar BEC of 52Cr atoms by considering the full
three-dimensional GP equation. We have identified the sta-
bility regimes for non-vortex as well as vortex states in purely
dipolar BECs with respect to both trap aspect ratio and DDI
strength. The stability of vortex lattice structures are con-
firmed by real-time evolution. We have shown stationary
vortex lattice structures for different trap aspect ratios within

Figure 9. Plot of the expectation value of angular momentum � §Lz as
a function of the rotation frequency Ω for the purely dipolar BEC
trapped in λ = 10, 30 and �D 38, 300, respectively.

Figure 10. Plot of the equilibrium vortex number (Nv) as a function of the rotation frequency Ω for the (a) purely dipolar BEC trapped in
M � 10, 20 and 30, with �D 38, 160 and 300, respectively and (b) non-dipolar BEC trapped in M � 30.
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the stability regime. Also, distortions in the lattices at high
rotation frequencies have been observed.

We estimated the number of vortices using TF approx-
imation and compared with those from numerical simulations.
Further, we have analysed the spatial distribution of vortices
in the fully anisotropic trap and observed linear and zig-zag
arrangement of vortices. We noticed the breaking up of the
condensates into two parts with an equal number of vortices.
The splitting occurs due to a combination of centrifugal force
due to rotation and repulsive dipolar interaction. Increasing
rotation frequency creates extra vortices and stretches. Close
to 8sp it appears a vortex at the center and further stretching
breaks the condensate in two parts. Critical rotation frequency
for splitting depends on the trap aspect ratio and dipolar
parameters.

The predicted phase diagram of the stable vortex state
will be useful to demonstrate the parameters such as dipolar
strengths and trap aspect ratios for making experimental and

theoretical studies on rotating dipolar quantum gases. Further,
the stability regime is relevant to investigate rapidly rotating
dipolar BECs in the lowest Landau level. We found that
dipolar BECs under rotation can produce square vortex lat-
tices. This was found with two-component BECs [41] and
recently in dipolar Fermi gas [42]. Observing the breaking in
the rotating dipolar BECs in a fully anisotropic trap will be a
new experimental exploration.
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