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h i g h l i g h t s

• We study the expansion of strongly interacting Bose gas.
• Flow past obstacles generates shock waves.
• Shock waves of weak and strong interacting Bose gas showed to be similar.
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a b s t r a c t

We study the expansion dynamics of a condensate in a strongly interacting Bose gas in the presence
of an obstacle. Our focus is on the generation of shock waves after the Bose gas has passed the
obstacle. The strongly interacting Bose gas is described in the slave-boson representation. A saddle-point
approximation provides a nonlinear equation of motion for the macroscopic wave function, analogous
to the Gross–Pitaevskii equation of a weakly interacting Bose gas but with different nonlinearity. We
compare the resultswith theGross–Pitaevskii dynamics of aweakly interacting Bose gas and find a similar
behavior with a slower behavior of the strongly interacting system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many interesting features of a trapped Bose gas are described by
the Gross–Pitaevskii (GP) equation. This includes dynamical stud-
ies of the Bose–Einstein condensate (BEC), such as the expansion
of a BEC after switching off the trapping potential or the interfer-
ence of two separate BEC’s, has been performed with remarkable
accuracy [1]. The GP equation provides the macroscopic quantum
state of the condensed part of the Bose gas. It can be derived from a
microscopic statistical model of many-body states at temperature
T in the limit T = 0 by a saddle-point approximation. However,
the GP equation is restricted to a dilute Bose gas, with less then
one particle in the scattering volume. More recent experiments
with optical lattices have revealed that a much richer physics ap-
pears in a dense (or strongly interacting) Bose gas [2]. The idea is
that a static periodic potential of the optical lattice is provided by
counter-propagating Laser fields, where particles occupy the local
minima of the periodic potential. As soon as there is more than one
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particle per minimum the Bose gas must be considered as strongly
interacting. An immediate effect of stronger interaction is the de-
pletion of the condensate caused by the collision of particles. This is
also known from the famous example of interacting bosons in form
of superfluid helium. If the density of the Bose gas increases further
we can even destroy the condensate completely and create a new
quantum state in the form of a Mott insulator. In contrast to a BEC,
theMott insulator is characterized by local conservation of the par-
ticle number (i.e. n = 1, 2, . . . particles perminimumof the optical
lattice) but without phase coherence. In a trapped Bose gas, con-
trary to a translational invariant Bose gas, both states can co-exist
in the same system, which is known as the wedding-cake struc-
ture: at commensurate densities the system is in a Mott state with
constant density and at incommensurate densities the system is in
a Bose–Einstein condensed state with spatially changing density.

These strongly interacting systems cannot be described within
the GP approach because the latter only takes into account the con-
densate and neglects the interaction with non-condensed parti-
cles. In particular, depletion of the condensate or the formation
of a Mott insulating state is not accessible by the GP approach.
This problem has been addressed in a number of different ap-
proaches [3,4]. A very direct approach is an extension of the GP
equation that is able to take into account the interaction with the
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non-condensed particles. It is known as the slave-boson (SB) ap-
proach and provides also a nonlinear Schrödinger equation for the
macroscopic quantum state of the condensed part of the Bose gas.
The interaction with the non-condensed particles leads to a mod-
ified nonlinearity though. For a dilute Bose gas the nonlinearity
is the same as that of the GP equation but in the regime of the
dense Bose gas it is weaker than that of the GP equation. The equa-
tion of the strongly interacting Bose gas also indicates the disap-
pearance of the condensatewhenwe approach theMott-insulating
state at higher density. Previous studies of a dense trappedBose gas
have shown that the BEC can be completely destroyed at the trap-
ping center due to depletion at higher densities [5–8]. On the other
hand, the vortex structure is not much affected in the strongly in-
teracting system because the density of the condensate is low in
the vicinity of the vortex core [9].

The two-dimensional expansion of a dilute BEC past an obsta-
cle is a subject of intensive theoretical and experimental studies.
A relevant parameter in these studies is the Mach number M . It is
defined as the ratio of the asymptotic velocity of the flow to the
sound velocity in the medium [10]. For subsonic Mach numbers in
the range 0.5 . M . 0.9, it was reported the generation of pairs
of vortices and antivortices [11]. In case of a supersonic flow, the
generation of oblique dark solitons inside, and Kelvin ship waves
outside the Mach cone (imaginary lines drawn from the obsta-
cle at angles ± arcsin(1/M) with the horizontal axis) were found
[12–16]. It was shown in [17] that these dark solitons are convec-
tively unstable for large enough flow velocity (M & 1.5), i.e., prac-
tically stable in the region around the obstacle. A general theory on
dispersive shock waves for supersonic flow past an extended ob-
stacle was developed in [18] and a review paper on dark solitons
in BEC can be found at [19]. Experiments addressing this problem
were described in [20–22]. Recently, a renewed theoretical inter-
est in this issue was brought by the observation of an alternating
vortex emission for a suitable set of parameters. These are analo-
gous to the ‘‘von Kármán vortex street’’ in classical dissipative flu-
ids [23].

In this paperwe shall study the effect of the interaction between
the BEC and the non-condensed particles in a dynamical situation,
where a BEC is released from a parabolic trap and passes an ob-
stacle. The obstacle is modeled by an impenetrable disk. Due to a
complex interference the macroscopic wave function will experi-
ence strong density fluctuations. The results of our numerical sim-
ulation, based on the strongly interacting gas (SIG) equation, will
be compared with previous calculations, based on the GP equa-
tion. The paper is organized as follows: We briefly introduce the
SIG equation and compare it with GP equation. Then we present
the results of our numerical simulation for an expanding cloud in
two dimensions that passes an obstacle. Finally, we discuss these
results and compare them with those of the GP approach.

2. Slave-boson approach

We start from a Bose gas with hard-core interaction of a given
radius a, representing an effective scattering length. Then the Bose
gas can be approximated by a lattice gas with lattice constant a. In
other words, a provides the shortest relevant length scale in our
Bose gas. This scale remains in the Bose gas even after its release
from the trap. In general, a strongly interacting Bose gas has two
constituents, namely condensed particles and non-condensed par-
ticles. This is the case even at zero temperature. The interplay of all
these particles can be described by the slave-boson approach [5–9].
Although this is a many-body picture, the macroscopic wave func-
tion of the condensate is extracted by a variational procedure with
respect to the density of the condensate analogous to the deriva-
tion of the GP equation from the weakly interacting many-body

Bose gas model. The corresponding effective Hamiltonian of the
macroscopic condensate state �(r) is

H� = � Ja2

6
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The coefficients are ↵1 = 1 + ↵, ↵2 = ↵(1 + 1/↵2), where ↵ is a
numerical constant ↵ ⇡ 1/5.5 [5,9]. The kinetic energy parameter
J is associated with the mass of the bosonsm by the relation
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All model parameters are measured in terms of the length scale a
and the energy scale J . The dimensionless parameter µ is a one-
particle chemical potential that is associated with the density of
bosons. This can be understood as a potential that controls the
exchange of particles with the gas outside the trapped cloud by
assuming that the cloud is a grand-canonical ensemble of atoms.
Then the value of µ fixes the number of bosonic atoms in equilib-
rium.

The results of the SB approach can be compared with those
of the Bogoliubov approach in the regime of a dilute condensate.
The quasiparticle spectrum of a homogeneous condensate with
condensate density n0 reads [8]

E
k
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p
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k
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The two approaches are distinguished by the parameter g , which
is the interaction constant of the weakly interacting Bose gas g in
the Bogoliubov approach and a renormalized effective interaction
in the case of the SB approach. In the latter g is a function of the
chemical potential µ and the temperature with a maximum at
µ = 0 [7]. Thus, for ✏

k

= h̄2 k2/2m the sound velocity reads
vs = p

gn0/m. Moreover, the healing length can also be extracted
from the fluctuations of the SB approach as ⇠ = h̄/

p
2mgn0 [8],

which also agrees with the result of the Bogoliubov approach.
This means that the sound velocity and the healing length of the
strongly interacting Bose gas are renormalized in comparison with
the weakly interacting Bose gas. The behavior of the condensate
density and the renormalized interaction parameters of the SB
approach are depicted in Figs. 2, 3, respectively.

The obstacle is included by choosing specific boundary
conditions for the macroscopic wave function. In our case this is a
hard disk,where thewavefunction vanishes inside the disk. Finally,
the number of condensed bosonsN0 is determined by an integral of
|�(r)|2 over the entire volume of a three-dimensional Bose gas as

N0 = 1
a3

1
(1 + 1/↵)2

Z
|�(r)|2d3r. (6)
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Fig. 1. Behavior of the nonlinear term �� in Eq. (2) as a function of |�| for µ = 0
and µ = 10.

Fig. 2. The total bosonic density (full curves) and the condensate density (dashed
curves) as functions of the chemical potential in the SB approach.
Source: From Ref. [8].

2.1. The nonlinear term in SIG and GP

The form of the nonlinear term � is crucial for the physics
of the strongly interacting Bose gas and makes all the difference
in comparison to the GP approach. Despite the fact that it is
defined in the integral representation of Eqs. (2), (3), and (4), the
interpretation of its asymptotic behavior is relatively simple. First
of all, this term can be expanded for low condensate density (i.e. for
small �) to get

� ⇠ �(0) + � 0(0)|�|2 (7)

with � 0(0) < 0 [7]. The increasing behavior of this term with
|�|2 reflects the repulsive nature of the interaction between the
bosons. The truncation after the quadratic term |�|2 leaves us
with theGross–Pitaevskii Hamiltonian. In the opposite limit, i.e. for
|�| ⇠ 1, we get

� ⇠ const. |�|�1.

The behavior of �� as a function of |�|2 is shown in Fig. 1 for two
different values of the chemical potential µ. The nonlinearity is
obviously much weaker than that of the GP equation. Moreover,
it becomes weaker with increasing µ (i.e. increasing density of
the Bose gas). This reflects the depletion of the condensate for
increasing densities.

2.2. Dynamics of the macroscopic wave function

The dynamics of the quantum state of the condensate is given
by the nonlinear Schrödinger equation:

ih̄
@�(r, t)

@t
= H��(r, t) = � Ja2

6
1�(r, t)

+ J (↵1 � ↵2�) �(r, t), (8)

which will be called SIG equation. This differential equation
describes the expansion of the condensed part of a bosonic cloud
for a given initial state �(r, 0) at time t = 0. The spatial scale is
given by scattering length as ⇠ a. A typical experimental value
for 85Rb atoms near a Feshbach resonance is as ⇠ 200 nm [7]. It
should be noticed that the SIG equation becomes the GP equation
for a low-density condensate due to Eq. (7).

3. Numerical solution and results

To study the evolution of an initial state�(r, t = 0)with Eq. (8)
we assume a two-dimensional (2D) situation, where the expansion
is possible in the x, y direction but not in the z direction. This is a
typical case in which the trapping potential, after the formation of
the BEC, is switched off in two directions but a strongly confining
potential is kept in the perpendicular direction. Thenwe choose for
the initial state a 2D Gaussian function by

�(x, y, t = 0) = p
�1 exp

✓
�0.5

(x2 + y2)
� 2
2

◆
, (9)

where �1 and �2 are parameters which determine the shape of the
Gaussian.

We apply a 2D finite-difference method (Crank–Nicolson
method) combined with a split-step method to solve Eq. (8)

Fig. 3. Renormalized chemical potential and interaction strength of the SB approach as function of the bare chemical potential.
Source: From Ref. [8].
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numerically. Schematically this reads
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where V and T are the potential and kinetic term, respectively, �t
is the time step and CN [x, �t] is the action of the Crank–Nicolson
method for the kinetic term on the x direction. This approach is
accurate up toO(�t3), and good results are obtained for sufficiently
small time step �t . We use a Gauss–Hermite quadrature to
calculate at each time step the integrals � and Z(r) in (2) and
(3), respectively, and notice that the Gauss–Hermite integration
converges already for only nine points.

In our simulations, we use as boundary condition �(r) = 0 at
the boundary of a square region. An impenetrable obstacle is im-
plemented by assuming that the order parameter vanishes inside
a circle of radius r = 1. The obstacle can also be implemented as a
strong repulsive Gaussian potentialU(r) = U0 exp(�(x2+y2)/2)
with the chemical potential in Eq. (4) given by µ(r) = µ � U(r).
Both conditions give similar results.

It was shown in [11] that the flow of a dilute BEC past an ob-
stacle generates vortices and antivortices at subsonic velocity. In-
creasing the flowvelocity, the frequency of vortices generation also
increases. For large enough flow velocity, the generation of vor-
tices is so frequent that the distance between individual vortices
becomes less than their radial size and it takes a long time for their
separation from each other at finite distance from the obstacle
[12–14,17]. We study this transition from the generation of vor-
tices to the generation of dark solitons in a dense Bose gas, con-
sidering different profiles of the initial state (different values of �1
and �2 in Eq. (9)). The latter corresponds to a faster expansion for
a small initial profile and to a slower expansion for a bigger initial
profile. There is also an effect of the chemical potential µ on the
profile of the expanding cloud, as shown in Fig. 6: the width of the
cloud grows with µ for negative values, reaches its maximum at
µ = 0 and decreases as µ increases further. This can be under-
stood as an effect of a coupling between the condensate and the
non-condensed part of the Bose gas. Although the latter has not
been explicitly included in our dynamics, it affects the condensate
through the µ dependence of the nonlinear term [5–8]. The con-
densate fraction reaches its maximum atµ = 0. Consequently, the
size of the BEC has itsmaximum at this value. This describes the ef-
fect of the non-condensed part on the BEC in our SIG equation. The
GP equation, on the other hand, does not show any dependence
on the chemical potential because it is completely decoupled from
the non-condensed part of the Bose gas. (The chemical potential
µ adds only a phase to the macroscopic wave function in the GP
equation.)

We observe the emergence of pairs of vortices and antivortices
using �1 = 16 and �2 =

p
3�1 in Eq. (9) (cf. Fig. 4). This is

similar to what was found in recent experiments [22]. A faster
expansion of the BEC can be seen for the initial state in Eq. (9) with
�1 = �2 = 8 and different values of µ, namely µ = �1, µ =
0, µ = 1, µ = 2, µ = 10 and µ = 20. We observe in Figs. 5–8
a pair of oblique dark solitons past the obstacle and linear waves,
as in the case of GP [14]. For small values of chemical potential,
µ = �1, µ = 0, µ = 1, µ = 2, the pattern (position, slope and
amplitude of the soliton) is almost the same (cf. Fig. 6). However,
we find that the velocity of the expansion of the cloud becomes
smaller for an increasing chemical potential (see Figs. 7 and 8).

We also study the effect of the nonlinear term � in Eq. (2)
with the full potential of Eq. (8) for different values of µ on the

Fig. 4. Numerical solution of Eq. (8) for the initial profile given in Eq. (9) with
�1 = 16 and �2 =

p
3�1. The density plot is shown for t = 2 and µ = 0. We

observe the generation of pairs of vortices and antivortices past the obstacle. An
impenetrable disk of radius r = 1 is placed at (25, 0) in a BEC radially expanding
from the center (0, 0).

Fig. 5. Numerical solution of Eq. (8) for the initial profile given in Eq. (9) with
�1 = �2 = 8. The density plot is shown for t = 2 and µ = 0. The dark ‘‘V’’
structure corresponds to a pair of oblique dark solitons and the oscillation in front
of the obstacle corresponds to the ‘‘ship’’ waves. An impenetrable disk of radius
r = 1 is placed at (25, 0) in a BEC radially expanding from the center (0, 0).

Fig. 6. Cross sections of the density distributions for t = 2 at x = 60 for chemical
potential µ = �1, µ = 0, µ = 1 and µ = 2. The profile for different small µ
is almost the same. However, it should be noticed that the width of the cloud is
maximal for µ = 0, when the condensate fraction has its maximum.

dynamics. Since � becomes smaller as we increase µ (see Fig. 9),
the expansion velocity of the cloud is also reduced with increasing
µ. Correspondingly, the effective potential termof theHamiltonian
is strongly repulsive for small µ and becomes flat for bigger µ (see
Fig. 10).

Although the nonlinearity of the SIG equation is more complex
than its counterpart in the GP equation, the flow past an obstacle
shows qualitatively the same patterns as for the GP equation: it
is characterized by oblique dark solitons and by linear waves. Our
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Fig. 7. Numerical solution of Eq. (8) for the initial profile given in Eq. (9) with
�1 = �2 = 8. The density plot is shown for t = 6 and µ = 10. The dark ‘‘V’’
structure corresponds to a pair of oblique dark solitons and the oscillation in front
of the obstacle corresponds to the ‘‘ship’’ waves. An impenetrable disk of radius
r = 1 is placed at (25, 0) in a BEC radially expanding from the center (0, 0).

Fig. 8. Numerical solution of Eq. (8) for the initial profile given in Eq. (9) with
�1 = �2 = 8. The density plot is shown for t = 6 and µ = 20. The dark ‘‘V’’
structure corresponds to a pair of oblique dark solitons and the oscillation in front of
the obstacle corresponds to the ‘‘ship’’ waves. An impenetrable disk of radius r = 1
is placed at (25, 0) in a BEC radially expanding from the center (0, 0). We see that
for bigger µ, the expansion of the BEC is much slower than in the case illustrated in
Fig. 7.

Fig. 9. Cross section at x = 0 of the nonlinear term � in Eq. (2) for µ = 0 and
µ = 10. It goes to zero as we increase µ.

study suggests that these effects shall well appear in a strongly
interacting gas too and may be observed experimentally.

4. Conclusion

We have studied the two-dimensional expansion of a strongly
interacting BEC in the presence of an obstacle. The strong inter-
action was treated within the slave-boson approach, which leads

Fig. 10. Cross section at x = 0 of the potential term in Eq. (8) forµ = 0 andµ = 10.
It becomes flat as we increase µ. It makes the expansion of the cloud slower for
big µ.

to a nonlinear Schrödinger equation with a special nonlinearity,
different from the Gross–Pitaevskii term. We solved numerically
this equation and analyzed the contribution of the nonlinearity.
Similar to what was found in previous studies of the GP equation
[11,14], we observed the pairwise generation of vortices and an-
tivortices (at low velocity) and of shock waves (at high velocity),
respectively. We noticed that bigger values of the chemical poten-
tial (i.e. for higher densities of the Bose gas) the expansion is slower
due to a reduced nonlinear term. The characteristic features of the
SIG equation in terms of a generation of vortices, oblique dark soli-
tons and shipwaves are similar to those described by the GP. How-
ever, in contrast to the results of the GP equation, the densities of
the SIG vary with the chemical potential µ.
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