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Using stationary solutions of the linearized two-dimensional Gross-Pitaevskii equation, we describe the
wave pattern occurring in the supersonic flow of a Bose-Einstein condensate past an obstacle. It is shown that
these waves are generated outside the Mach cone. The developed analytical theory is confirmed by numerical
simulations of the flow past body problem in the frame of the full nonstationary Gross-Pitaevskii equation.
Relation of the developed theory with recent experiments is discussed.
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I. INTRODUCTION

Experimental creation of Bose-Einstein condensate �BEC�
has led to emergence of a new field of nonlinear wave dy-
namics owing to a remarkable richness of nonlinear wave
patterns supported by this medium. First, vortices and bright
and dark solitons were observed and their dynamics were
studied theoretically in framework of the mean-field ap-
proach �see, e.g., Ref. �1�, and references therein�. Then, dis-
persive shocks generated by a large and sharp disturbance of
BEC were found in experiment �2,3� and explained theoreti-
cally �3,4� in the framework of the Whitham theory of modu-
lations of nonlinear waves �see also the numerical experi-
ment in Ref. �5��. At last, the stationary waves generated by
supersonic flow of BEC past obstacles have recently been
observed �6�. They were studied in Refs. �7–9� where the
main focus was on the nonlinear component representing a
train of solitons �a single soliton in the simplest case, see �8��
or, more precisely, having a form of a modulated nonlinear
periodic wave. The theory developed in Refs. �7–9� shows
that there exist stationary spatial solutions of the Gross-
Pitaevskii �GP� equation which describe nonlinear waves
supported by a supersonic BEC flow with Mach number

M =
u

cs
� 1, �1�

where u is velocity of the oncoming flow at x→−� and cs is
the sound speed of the long-wavelength linear waves. The
density n of the condensate, as well as the components of the
velocity field, depend on the variable

w = x − ay �2�

alone, where a is the slope of the phase lines with respect to
the y axis and it is supposed that the velocity of the oncom-
ing flow is directed along the x axis. Then, the Mach cone for
sound waves with infinitely large wavelength corresponds to
the slope

aM = �M2 − 1, �3�

and it was shown in Ref. �9� that the spatial �oblique� soli-
tons have a�aM, that is they are located inside the Mach
cone. In particular, it was shown that the shallow solitons are
formed close to the Mach cone a−aM �aM and are asymp-

totically described by the Korteweg–de Vries �KdV� equa-
tion; and deep solitons have a�1 �i.e., they are formed at
small angles with respect to direction of the oncoming flow�
and are asymptotically described by the nonlinear
Schrödinger �NLS� equation.

On the contrary, the linear waves are generated outside
the Mach cone and they have a�aM. In fact, these linear
waves had been observed in numerical simulations some
years ago �10� but a complete theory of their generation has
not been developed so far. However, this task is quite topical
in view of recent experiments �6�. In connection with this
experiment, in the recent paper �11� the linear waves gener-
ated by the flow of condensate past an obstacle were inter-
preted as a Cherenkov radiation of Bogoliubov excitations,
some properties of the emerging wave pattern were derived,
and nonstationary numerical simulation was performed
which showed good agreement with the experiment. The aim
of this paper is to develop an analytical theory of the station-
ary wave pattern and to compare it with the numerical simu-
lations. Although we consider the wave pattern generated by
the BEC flow, one should notice that the method used here
can be applied to description of other similar effects, in par-
ticular, to waves generated by polaritons flow past a defect in
a semiconductor microcavity which were discussed in Refs.
�12,13�.

II. LINEAR WAVES GENERATED IN A BEC FLOW
PAST AN OBSTACLE

Our analysis is based on the use of the mean-field descrip-
tion of BEC dynamics in the framework of the GP equation

i�
��

�t
= −

�2

2m
�� + U�r�� + g���2� , �4�

where ��r� is the order parameter �“condensate wave func-
tion”�, U�r� is the potential which confines atoms of a Bose
gas in a trap and/or describes interaction of the BEC with the
obstacle, and g is an effective coupling constant arising due
to interatomic collisions with the s-wave scattering length as,
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g = 4	�2as/m , �5�

m being the atomic mass. Here we consider the Bose-
Einstein condensate with repulsive interaction between par-
ticles for which g�0.

As suggested by the experimental setup �6�, we consider a
two-dimensional flow of a condensate, so that the condensate
wave function � depends on only two spatial coordinates,
r= �x ,y�. To simplify the theory, we assume that the charac-
teristic size of the obstacle is much less than its distance
from the center of the trap, so that the oncoming flow can be
considered as uniform with constant density n0 of atoms and
constant velocity u0 directed parallel to x axis �see also esti-
mates in Ref. �8��. It is convenient to transform Eq. �4� to a
“hydrodynamic” form by means of the substitution

��r,t� = �n�r,t� exp� i

�
�r

u�r�,t�dr�	 , �6�

where n�r , t� is density of atoms in BEC and u�r , t� denotes
its velocity field, and to introduce dimensionless variables

x̃ = x/�2
, ỹ = y/�2
, t̃ = �cs/2�2
�t ,

ñ = n/n0, ũ = u/cs, �7�

where 
=� /�2mn0g is the BEC healing length and numeri-
cal constants are introduced for future convenience. As a
result of this transformation we obtain the system �we omit
tildes for convenience of the notation�

1

2
nt + ��nu� = 0,

1

2
ut + �u � �u + �n + �
 ��n�2

8n2 −
�n

4n
� = 0, �8�

where �= ��x ,�y�. Since we shall consider waves far enough
from the obstacle, the potential is omitted in Eq. �8�.

We are interested in linear waves propagating on the
background flow with n=1, u=M, v=0. Hence, we introduce

n = 1 + n1, u = M + u1, v = v1, �9�

and linearize the system �8� with respect to small deviations
n1 , u1 , v1. As a result we obtain the system

1

2
n1,t + u1,x + Mn1,x + v1,y = 0,

1

2
u1,t + Mu1,x + n1,x −

1

4
�n1,xxx + n1,xyy� = 0,

1

2
v1,t + Mv1,x + n1,y −

1

4
�n1,xxy + n1,yyy� = 0, �10�

which describes propagation of linear waves in BEC with a
uniform flow. We obtain the applicability condition of these
equations, if we notice that in the linear wave u1�Mn1 and
the nonlinear terms of the order of magnitude u1�u1
���Mn1�2 can be neglected as long as they are much less

than the linear ones ��n1. Thus, we get the criterion

n1 � 1/M2. �11�

Hence, if M is large enough, the linear theory is applicable to
description of waves outside the Mach cone far enough from
the obstacle, where the density amplitude n1 of the wave
satisfies the condition �11�. For harmonic waves n1 ,u1 ,v1
�exp�i�kxx+kyy�− i�t� the system �10� yields at once the
dispersion relation

�

2
= Mkx ± k�1 +

k2

4
, �12�

where k=�kx
2+ky

2. Actually, this is a well-known dispersion
relation of the Bogoliubov excitations in BEC with a flow
�see, e.g., Ref. �11��.

Now we consider the stationary wave patterns far enough
from the obstacle where the condition �11� is supposed to be
fulfilled. In fact, this problem is analogous to the Kelvin
theory of ship waves generated by a ship moving in a deep
water, but with a different dispersion law �12�. In this
method, the wave pattern stationary in the ship reference
system is represented as a wave packet propagating with the
group velocity equal to the ship velocity. Hence, it can be
considered in framework of the modulation theory of linear
waves. Here we shall follow Kelvin’s method in its form
presented in Refs. �14,15�.

First, we notice that in a stationary wave pattern �=0
and, hence, the components of the wave vector k= �kx ,ky� are
the functions of the space coordinates �x ,y� connected with
each other by the relationship

G�kx,ky� 
 Mkx + k�1 +
k2

4
= 0, �13�

where we have taken into account that for chosen geometry
of the BEC flow the wave must propagate upwind, i.e., kx
�0.

Next, the “ship wave” pattern corresponds to a modulated
two-dimensional wave where the wave vector k is a gradient
of the phase �14�,


 = �
0

r

k · dr . �14�

Hence, the components �kx ,ky� satisfy the condition

�kx

�y
−

�ky

�x
= 0, �15�

which, with an account of Eq. �13�, yields the equation for ky

�ky

�x
− f��ky�

�ky

�y
= 0, �16�

where f��ky� is defined by the derivative of an implicit func-
tion �13�:
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f� = −
�G/�ky

�G/�kx
. �17�

It follows from Eq. �16� that kx and ky are constant along the
characteristics defined as solutions of the equation

dy

dx
= − f��ky� . �18�

At last, since at large distances from the obstacle, the
latter can be considered as a pointlike source of waves, the
resulting stationary wave is centered, that is the characteris-
tics intersect at the point �x ,y�= �0,0� of the location of the
obstacle. Hence, we obtain the solution

y

x
= tan � = −

�G/�ky

�G/�kx
, �19�

where � is the angle between the x axis and the radius vector
r of the point A with wave vector �kx ,ky�; see Fig. 1 where
other convenient parameters are also defined, namely, the
angle � between the wave vector k and a negative direction
of the x axis, and the angle �=	−�−� between vectors k
and r. Since the function G�kx ,ky� is the dispersion law for
linear �Bogoliubov� waves, the relation �19� can be obvi-
ously interpreted as follows: the ratio of the y and x coordi-
nates in the wave pattern formed by a pointlike wave source
is equal to the ratio of the corresponding components of the
group velocity vector �see Ref. �11��.

Thus, we have

kx = − k cos �, ky = k sin � , �20�

G�k,�� = − Mk cos � + k�1 +
k2

4
= 0. �21�

Then elementary calculation gives for Eq. �19� the expres-
sion

tan � =
�2M2 − 1 − tan2 ��tan �

�M2 + 1�tan2 � − �M2 − 1�
�22�

and Eq. �21� yields

k = 2�M2 cos2 � − 1. �23�

Thus, we have found that for a fixed value of � the compo-
nents �kx ,ky� are constant along the line �=const with �
defined by Eq. �22� and the length of the wavevector given
by Eq. �23�. Therefore the phase �14� can be conveniently
calculated by integration along the line �=const with con-
stant vector k, so that


 = �k cos ��r . �24�

This means that the lines of constant phase �e.g., the wave
crests� 
 are determined in parametrical form by Eq. �22� and

r =



k cos �
, �25�

where k is given by Eq. �23� and � can be calculated from
tan �=−tan��+�� which gives, after elementary algebra, the
expression

tan � =
2M2

k2 sin 2� . �26�

This expression permits one to express Eq. �25� as

r =
4


k3
�M2�M2 − 2�cos2 � + 1 �27�

and Eq. �22� as

tan � =
�1 + k2/2�tan �

M2 − �1 + k2/2�
. �28�

At last, the curves with constant phase 
 are given in Carte-
sian coordinates by the formulas

x = r cos � =
4


k3 cos ��1 − M2 cos 2�� ,

y = r sin � =
4


k3 sin ��2M2 cos2 � − 1� . �29�

Thus, we have found the expressions describing the linear
wave pattern in a parametric form where the parameter �
changes in the interval

− arccos
1

M
� � � arccos

1

M
. �30�

For �=0 we have x�0 and y=0, that is small values of �
correspond to the wave before the obstacle. Series expan-
sions of Eqs. �29� give for small �

χ η

µ
k

y

x

A

FIG. 1. Sketch of the wave front with wave vector k normal to
it at the point A and coordinates � and � defining the parameters of
the wave pattern at this point.
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x � −



2�M2 − 1
+

�2M2 − 1�

4�M2 − 1�3/2�2,

y �
�2M2 − 1�

2�M2 − 1�3/2� , �31�

hence the wave crests have here a parabolic form

x�y� � −



2�M2 − 1
+

�M2 − 1�3/2

�2M2 − 1�

y2. �32�

The boundary values �= ±arccos�1/M� correspond to the
lines

x

y
= ± �M2 − 1 = ± aM , �33�

that is, the curves of constant phase become asymptotically
the straight lines parallel to the Mach cone. The general pat-
tern is shown in Fig. 2.

III. NUMERICAL SIMULATIONS

We have compared the above approximate analytical
theory with the exact numerical solution of the GP equation,
which in nondimensional units �7� takes the standard form

i�t = −
1

2
��xx + �yy� + U�x,y�� + ���2� , �34�

which corresponds for U=0 to the system �8� with

� = �n exp�i�r

u�r�,t�dr�	 .

In our simulations the obstacle was modeled by an impen-
etrable disk with radius r=1. Such an obstacle introduces
large enough perturbation into the flow to generate an ob-
lique solitons pair behind it �see Ref. �8��. We assume that at
the initial moment t=0 there is no disturbance in the conden-
sate, so that it is described by the plane wave function

���x,y��t=0 = exp�iMx�

corresponding to a uniform condensate flow. For large
enough evolution time, the wave pattern around the obstacle
tends to a stationary structure. An example of such a struc-

ture for M =2 is shown in Fig. 3. A dashed line corresponds
to the analytic theory developed in the preceding section; as
we see it agrees very well with the numerical results for
M =2.

The condition �11� indicates that the nonlinear effects
grow up with increase of M. To demonstrate this explicitly,
we have compared the wavelength � at y=0 calculated using
the developed linear analytic theory with the same parameter
obtained from our full numerical simulations. According to
linear theory, the wavelength at y=0 �i.e., �=0� is constant
and equal to

� =
2	

k
=

	

�M2 − 1
, �35�

where we have used Eq. �23� �similar expression was derived
in Ref. �11��. In Fig. 4 we compare this dependence of the
wavelength � on the Mach number M with the results of
numerical simulations at the point with n1�0.1. As we see,
Eq. �35� is very accurate for values of M satisfying the con-
dition �11� and discrepancy between analytical and numerical
results slightly increases with increase of M. In general, this
plot confirms validity of a linear theory in the region of its
applicability.

Similar numerical simulations have been performed in a
recent paper �11�. However, in �11� the case of time-
dependent flow changing with time Mach number and other
parameters was discussed. Correspondingly, the stationary
pattern described by the present theory has not been
achieved. For comparison of the present theory with the ex-
periment �6� one should take into account that in the experi-
ment the obstacle was located very close to the center of the
trap and it was large enough to create a shadow behind it.
Therefore it would take quite a long time to reach the quasi-
stationary stage of BEC evolution with considerable density

�2 2 4 6 8 10
x

�15

�10

�5

5

10

15
y

FIG. 2. Wave pattern of stationary linear waves generated in the
flow of BEC past a pointlike obstacle. Dashed line corresponds to
the Mach cone of linear waves in the long wavelength limit.

FIG. 3. Numerically calculated wave pattern of stationary linear
waves generated in the flow of BEC past an obstacle. The Mach
number is equal to M =2 and the radius of an impenetrable obstacle
to r=1. Dashed line corresponds to the linear analytical theory for
the line of constant phase. It corresponds to Eqs. �29� but the curve
is shifted to 1 unit of length to the left from the center of the
obstacle for better fitting to numerics. It should be noted that this
distance is negligibly small in our theory corresponding to a point-
like obstacle. A pair of oblique dark lines behind the obstacle cor-
respond to spatial solitons studied in Ref. �8�.
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of the condensate behind the obstacle. We suppose that for
this reason the oblique solitons predicted in �8� were not
visible in this experiment. Nevertheless, the general picture
of arising experimental pattern of linear waves agrees quali-
tatively with the pattern described by the present analytical
theory and observed in numerical simulations.

IV. CONCLUSION

We have developed here the theory of linear waves gen-
erated by the flow of BEC past an obstacle. The linear ap-
proximation is correct for small enough amplitudes of the
perturbation. This condition is satisfied in the case of small
disturbance introduced by the obstacle and not too high val-
ues of the Mach number. Our numerical simulations confirm
the analytical theory in the region of its applicability.

The described here wave pattern corresponds to a station-
ary limit of patterns observed in recent experiments �6� �see
also Ref. �11��. As was shown in Ref. �8�, at long enough
time of free expansion of the condensate released form a
trap, there exists a region around the obstacle where the flow
can be considered as almost uniform and quasistationary.
The developed here theory can be applied to the quantitative
description of the experimental data corresponding to this
region of the BEC flow.
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