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6Instituto de Fı́sica Teórica, Universidade Estadual Paulista (UNESP), 01140-070 São Paulo, Brazil
(Received 5 March 2016; published 3 October 2016)

Binary mixtures of Bose-Einstein condensates (BECs) trapped in deep optical lattices and subjected to equal
contributions of Rashba and Dresselhaus spin-orbit coupling (SOC) are investigated in the presence of a periodic
time modulation of the Zeeman field. SOC tunability is explicitly demonstrated by adopting a mean-field
tight-binding model for the BEC mixture and by performing an averaging approach in the strong modulation
limit. In this case, the system can be reduced to an unmodulated vector discrete nonlinear Schrödinger equation
with a rescaled SOC tuning parameter α, which depends only on the ratio between amplitude and frequency
of the applied Zeeman field. We consider the attractive interaction case and focus on the effect of the SOC
tuning on the localized ground states. The dependence of the spectrum of the linear system on α has been
analytically characterized. In particular, we show that extremal curves (ground and highest excited states) of
the linear spectrum are continuous piecewise functions (together with their derivatives) of α, which consist of a
finite number of decreasing band lobes joined by constant lines. This structure also remains in the presence of
inter- and intra-species interactions, the nonlinearity mainly introducing a number of localized states in the band
gaps. The stability of ground states in the presence of the modulating field has been demonstrated by real-time
evolutions of the original (unaveraged) system. Localization properties of the ground state induced by the SOC
tuning, and a parameter design for possible experimental observation, have also been discussed.
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I. INTRODUCTION

Spin-orbit coupling (SOC), i.e., the intrinsic interaction
between the particle dynamics and its spin, is a phenomenon
known from the dawn of quantum mechanics, representing a
major source of magnetic intra-atomic interaction. In solid-
state physics, SOC plays an important role mainly in the
magnetism of solids that are well described in terms of
individual ions, as it is for the case for the rare-earth insulators,
as well as in the study of energy bands of semiconductors in
the vicinity of the extremal points where usually band splitting
is induced. The relevance of SOC in this context is well known
from pioneering works of Dresselhaus and Rashba [1–6] and
from the many theoretical and experimental developments
which originated from them. In particular, in the recent past few
decades there has been a flourishing of interest in developments
of materials with strong SOC for practical applications in the
fields of topological insulators [7], spintronics [8], anomalous
Hall effects [9], and quantum computation [10], among other
possibilities.

In generic condensed-matter materials, however, SOC is
rather weak and also very difficult to manage being largely su-
perseded by the electrostatic interactions. The situation is quite
different with ultracold atoms for which a variety of synthetic
SOC can be induced and managed by external laser fields. In
particular, SOC has been experimentally realized for binary
mixtures of Bose-Einstein condensates (BECs), as reported in
Refs. [11,12], and theoretically investigated in several papers.
The flexibility of ultracold atomic systems in the control of the
interactions and the different types of SOC implementations

permit us to explore novel magnetic phenomena difficult to
achieve with solid-state materials. In this regard, we can
mention the existence of new superfluid phases with unusual
magnetic properties [13,14], stripe modes [15], fractional topo-
logical insulators [16–18], new topological excitation such
as Weyl [19] and Majorana [20] fermions, antiferromagnetic
states [21], solitons [22–26], and gap solitons [27–29]. In
these contexts the tunability of SOC plays a crucial role both
for distinguishing different phases arising under variations of
parameters and for understanding the mechanism underlying
the phenomena as well as the interplay between SOC and the
inter- and intra-atomic interactions (nonlinearity).

Recently a lot of attention has been devoted to the inves-
tigation of universal high-frequency behavior of periodically
driven systems. The important consequences are dynamical
stabilizations and the Floquet engineering of cold-atomic
systems under temporal modulations of parameters of the
systems [30]. One should also notice the number of theo-
retical [31] and experimental [32] studies on SOC tunability,
which have been done for continuous BEC systems with equal
Rashba and Dresselhaus terms, by using rapid time variations
of the Raman frequency. In view of the relevance of SOC
induced phenomena, it is interesting to explore SOC tunability
also for different parameters’ modulations and in the presence
of discrete settings as the ones induced by the presence of deep
optical lattices (OLs).

The aim of the present paper is to investigate the SOC
tunability of a binary BEC mixture trapped in a quasi-
one-dimensional deep optical lattice in the presence of a
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time-dependent Zeeman field. In this respect, we consider a
combination of Rashba and Dresselhaus SOC realized either
by Raman coupling two hyperfine ground states as done in [11]
or by using a tripod scheme [33,34]. The external Zeeman field
is assumed to vary periodically in time, restricting mainly
to the case in which the amplitude, �1, and frequency, ω,
of the modulation is very large (strongly modulation limit).
The deepness of the OL is accounted for by adopting the
tight-binding SOC model of the BEC mixture introduced
in Ref. [35], which is in the form of a vector discrete
nonlinear Schrödinger equation with time-dependent Zeeman
field. We show that this model reduces to an effective time-
averaged equation which has the same form as for the original
unmodulated system, but with an effective SOC parameter
rescaled by a factor J0(α), where J0 is the zeroth-order Bessel
function and α ≡ 2�1/ω is the tuning parameter.

The effect of the modulating field on the energy (chemical
potential) spectrum is studied by exact analytical expressions
in the absence of nonlinearity, while we recourse to direct real-
and imaginary-time evolutions of the original system and to
exact self-consistent numerical diagonalization of the averaged
Hamiltonian system in the nonlinear case. In particular, we
show that the ground-state curve of the linear system is a
piecewise function of α consisting of equally spaced branches
(lobes) centered around the relative minima of the energy
(chemical potential) and joined by flat regions of constant
μ. A similar result applies also to the highest excited extremal
curve by symmetry arguments. In the presence of interactions,
besides the removal of the degeneracy of extended states, a
set of discrete localized levels appears in the forbidden zone
of the underlying linear band-gap structure, which displays
oscillatory behaviors in terms of the tuning parameter, with
amplitudes that decrease as α is increasing.

In this paper, we mainly consider the attractive interaction
case, focusing on the effect of the SOC tuning on the local-
ized ground states. The existence of ground-state stationary
discrete solitons is explicitly investigated both by means of
exact diagonalizations of the averaged system and by direct
imaginary-time evolutions of the original system. The stability
of these states is demonstrated by real-time evolutions of the
original (unaveraged) system. We also consider the effect
of the SOC tuning on localization properties of the ground
state, by showing that for fixed equal attractive inter- and
intraspecies interactions there exists an optimal value of α

for which the maximum localization of the wave function is
achieved. This optimal tuning corresponds to the point where
the separation of the ground-state level from the bottom of the
linear band assumes its maximum value as a function of α. The
existence and stability of stripelike soliton solutions are also
demonstrated. We find that, within the range of the α parameter
and nonlinearity for which these solutions exist, their behaviors
are similar to the one obtained for stationary ground states.
Finally, the possibility to observe these phenomena in real
experiments is briefly discussed at the end.

The paper is organized as follows. In Sec. II, we introduce
the model equations of a binary BEC mixture in a deep OL with
SOC and modulating Zeeman fields and derive the averaged
equations with rescaled SOC parameters. In Sec. III, we use the
dispersion relation of the averaged linear system to investigate
the properties of the ground and highest excited states as

functions of the tuning parameter. In Sec. IV we study how
the linear spectral properties are affected by the nonlinearity.
In Sec. V we study the influence of the SOC tuning on
discrete soliton ground states with respect to existence and
stability, as well as localization properties. The stability of
the results, under time integrations, is shown by considering
full numerical simulation of ground-state wave functions for
different parameter choices. Finally, in Sec. VI, we discuss
possible experimental implementations and physical estimates
and conclude by summarizing our results.

II. MODEL EQUATIONS, AVERAGING, AND SOC TUNED
LINEAR SPECTRUM

The model equations for a BEC mixture in a one-
dimensional (1D) geometry can be derived from a more gen-
eral three-dimensional formalism by considering a trapping
potential with the transversal frequency ω⊥ much larger than
the longitudinal one, ω⊥ � ω||. In the present case, the trap
potential in the x direction is an optical lattice given by a
periodic potential VOL(x) ∼ sin2(kLx), where kL is the lattice
wave number. In the mean field approximation, the system
is described by a 1D Gross-Pitaevskii (GP) coupled equation
for the two-component wave function, � ≡ �(x,t), which is
normalized to the total number, N , of atoms, as

� ≡
(

�1

�2

)
,

2∑
j=1

∫
dx|�j |2 = N. (1)

In the presence of SOC the corresponding GP formalism is
given by the following 1D Hamiltonian, with two terms. The
first term, H0, is linear and includes the SOC and optical lattice.
The other term, given by HNL, is nonlinear and includes the
two-body atomic interactions [21,27,36]. In matrix form, it
can be written as

i�
∂�

∂t
= [H0 + HNL]�,

H0 ≡ P 2
x

2m
+ �κ

m
Pxσx + VOL(x) + ��σz, (2)

HNL ≡ 2�ω⊥

(∑
j a1j |�j |2 0

0
∑

j aj2|�j |2
)

,

where σx,z are the usual Pauli matrices, ajj (j = 1,2) and a12

are the two-body scattering lengths between intra- and inter-
species of atoms, and the parameter � is defined by detuning
or by the external Zeeman field. The above formalism, Eqs. (1)
and (2), can be written as

i�
∂�j

∂t
=

[
− �

2

2m

∂2

∂x2
+ VOL(x) − (−)j��

]
�j

+ 2�ω⊥(ajj |�j |2 + aj,3−j |�3−j |2)�j

− i
�

2κ

m

∂�3−j

∂x
, (j = 1,2). (3)

The form of SOC corresponding to this GP system can be
obtained by coupling two hyperfine states |F = 1,mF = 0〉
and |F = 1,mF = −1〉, with the state |F = 1,mF = +1〉 far
detuned from the others, by means of a pair of Raman
laser beams, as implemented for the 87Rb condensate in
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the seminal work [11]. The SOC system considered in this
work is equivalent to Eq. (3) upon a pseudo-spin-rotation
σx → −σz and σz → σx , such that the Rashba and Dresselhaus
SOCs have equal strength [37]. Alternatively, it is possible to
use a tripod scheme for the generation of synthetic gauge
fields [33,34]. In this case, the scheme operates with atoms in
three degenerated ground states (|i〉,i = 1,2,3) coupled to a
common excited state (|e〉) by three laser beams. The optical
lattice, given by VOL(x) ≡ V0 cos(2kLx), can be generated
by two counterpropagating laser fields. For a dimensionless
formalism, we make the following replacements in Eq. (3):

x → x

kL

, t → t

ωR

, where ωR ≡ ER

�
≡ �k2

L

2m
;

VOL(x) → ERV (x) = ERV0 cos(2x), (4)

�j ≡
√

ωR

2ω⊥a0
ψj (x,t),

with the definitions

b ≡ 2κ

kL

, � = �

ωR

, gj = ajj

a0
, g = aj,3−j

a0
. (5)

In the above ER is the recoil energy and a0 is the background
scattering length. Therefore, with ψj ≡ ψj (x,t), we obtain

i
∂ψj

∂t
=

[
− ∂2

∂x2
+ V (x) − (−)j�

]
ψj − ib

∂ψ3−j

∂x

+ (gj |ψj |2 + g|ψ3−j |2)ψj , (j = 1,2). (6)

From Eqs. (5) and (1), the total number of atoms can be
written as

N = ωR

2ω⊥kLa0

2∑
j=1

∫
dx|ψj |2 ≡ ωRN

2ω⊥kLa0
, (7)

with N the rescaled number of atoms (norm).
A BEC system with a spin-orbit coupling as shown by

the above formalism, when loaded in a deep optical lattice,
can be described in the tight-binding model with mean-field
approximation, by the following system for the discrete
nonlinear Schrödinger equation with SOC (SOC-DNLS) [35]:

i
dun

dt
= − 
(un+1 + un−1) + i

χ

2
(vn+1 − vn−1)

+ �un + (γ1|un|2 + γ |vn|2)un,

i
dvn

dt
= − 
(vn+1 + vn−1) + i

χ

2
(un+1 − un−1)

− �vn + (γ |un|2 + γ2|vn|2)vn,

(8)

where


 ≡ 
n,n+1 =
∫

w∗(x − n)
∂2

∂x2
w(x − n − 1)dx,

γ = g
∫

|w(x − n)|4dx, γi = gi

∫
|w(x − n)|4dx, (9)

χ ≡ χn,n+1 = 2b

∫
w∗(x − n)

∂

∂x
w(x − n − 1)dx.

Notice that Eq. (8) has two conserved quantities: the norm,

N =
∑

n

(|un|2 + |vn|2), (10)

and the Hamiltonian (energy)

E ≡ H =
∑

n

{
−
(u∗

nun+1 + v∗
nvn+1) + i

χ

2
u∗

n(vn+1 − vn−1)

+ �0

2
(|un|2 − |vn|2) + c.c.

}
+ Eint, (11)

where Eint is the interaction energy,

Eint =
∑

n

{
1
2 (γ1|un|4 + γ2|vn|4) + γ |un|2|vn|2

}
, (12)

and c.c. denotes the complex conjugate of the expression in
the curly bracket. Next, in order to achieve a tunable SOC,
we assume that the Zeeman field is periodically varying in
time, as

� = �(t) = �0 + �1 cos(ωt), (13)

where �0 is the fixed constant part of the field and �1 is
the amplitude of the part modulated with frequency ω. In
view of this time dependence of the Zeeman field, given by
Eq. (13), it is convenient to express the coupled system (8) by
an effective time-averaged system, which can be implemented
by the following transformation:

un = Une
−iβ(t), vn = Vne

+iβ(t), (14)

where

β(t) = �1

∫ t

0
cos(ωτ )dτ = �1

ω
sin(ωt). (15)

Once the transformation (14) is made, the coupled Eq. (8) can
be rewritten, such that the explicit time dependence is removed
from the Zeeman field (remaining only the constant term �0),
being transferred to the constant χ , which has to be replaced
by χ exp[2iβ(t)].

Next, we perform the time averaging of Eq. (8), over the
period (T = 2π/ω) of the rapid oscillation, by using that

1

2π

∫ 2π

0
d(ωt) exp

(
2i�1

ω
sin(ωt)

)
= J0

(
2�1

ω

)
, (16)

where J0(α) is the zeroth-order Bessel function in the variable
α. The above averaging procedure applied to Eq. (8) leads to
the following coupled system:

i
dUn

dt
= −
(Un+1 + Un−1) + i

χJ0(α)

2
(Vn+1 − Vn−1)

+�0Un + (γ1|Un|2 + γ |Vn|2)Un, (17)

i
dVn

dt
= −
(Vn+1 + Vn−1) + i

χJ0(α)

2
(Un+1 − Un−1)

−�0Vn + (γ |Un|2 + γ2|Vn|2)Vn.

Quite remarkably, we see that the time-averaged system
given in Eq. (17) coincides with Eq. (8) under the following
replacement:

� → �0, χ → χeff ≡ χJ0(α), α ≡ 2�1

ω
. (18)
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Strictly speaking, these averaged equations are valid only in
the strong modulation limit, e.g., when �1 and ω are both very
large with their ratio being finite. However, we shall see later
that their validity extends in a wide range away from this limit.

In the next two sections we study the spectral properties
of the SOC system by diagonalizing the eigenvalue problem
obtained from the discrete coupled Schrödinger equation (17)
when we consider stationary solutions of the form

Un(t) = e−iμtUn, Vn(t) = e−iμtVn, (19)

where μ denotes the chemical potential. Notice that from
Eqs. (8) and (11) it readily follows that μ is related to the
energy E and to the number of atoms by the following relation:

μN = E + Eint, (20)

with Eint given by Eq. (12). Also notice that for the linear
system the chemical potential coincides with the energy per
particle, e.g., ε ≡ E/N = μ.

III. SPECTRAL PROPERTIES OF THE SOC TUNED
LINEAR SYSTEM

In the absence of any interaction, e.g., for γ1 = γ2 = γ = 0,
the averaged system given by Eq. (17) becomes exactly
solvable and the dispersion relation can be given analytically.
Indeed, from Eq. (18) we have that the linear dispersion
relations of the modulated system simply follow from the ones
of the unmodulated system given in [35,38], as

μ(k,α)± = −2
 cos(k) ±
√

�2
0 + [χJ0(α)]2 sin2(k), (21)

with k, the crystal momentum, varying in the first Brillouin
zone k ∈ [−π,π ]. The minus and plus signs refer to the
lower and upper parts of the dispersion curves (bands) in the
reciprocal space, respectively. In Fig. 1 we depict the linear

�3 �2 �1 0 1 2 3

�2

�1

0

1

2

FIG. 1. Dispersion curves of the SOC-DNLS system for the
linear case (γ1 = γ2 = γ = 0), with three different modulational
parameters: α = 0.4 (dotted-blue curves), α = 1.33734 (continuous
curves), α = 2.5 (dot-dashed-red curves). Other parameters are fixed
as 
 = 0.3, �0 = 1.352, χ = 1.5. Shadowed regions indicate the
linear bandwidths for values of α � α+

0 , where α+
0 ≈ 1.33734 is the

critical value in Eq. (25), at which the local extremal points coalesce.
Plotted quantities are in normalized units.

dispersion curves obtained from Eq. (21) for three different
values of the tuning parameter α.

Starting from Eq. (17), the behavior of the linear spectrum
as a function of the tuning parameter α can be further
investigated. In this respect, notice from Eq. (21) that the
dispersion curves have two degenerate extremal points at
positions

ks(α) = cos−1

[
−s

2


χJ0(α)

√
�2

0 + [χJ0(α)]2

4
2 + [χJ0(α)]2

]
(22)

with s = ±1.
As the chemical potential for ks is given by

μs ≡ μ(ks,α) =
s

√[
χ2J 2

0 (α) + 4
2
][

χ2J 2
0 (α) + �2

0

]
χJ0(α)

,

(23)
the solutions at the extremal points are obtained from

dμs

dα
= s

χJ 2
0 (α)

J1(α)
[
χ4J 4

0 (α) − 4
2�2
0

]
√[

χ2J 2
0 (α) + 4
2

][
χ2J 2

0 (α) + �2
0

] = 0,

(24)
which are at αi = α±

i (i = 0,1,2,...), given by

J0(α±
i ) = ±

√
2
�0

χ
(25)

and, at α = ηn (n = 0,1,2,...), for

J1(ηn) = 0. (26)

A typical dependence of the linear spectrum as a function
of the tuning parameter α is depicted in Fig. 2. In this figure,
shown is only part of the spectrum corresponding to the lower
band, since the part corresponding to the upper band can be
obtained from specular reflection with respect to the μ = 0
axis. Notice that different curves correspond to different values
of k and the spectrum for a given α covers the first band in the
whole Brillouin zone k ∈ [−π,π ].

From Fig. 2 one can directly verify that the conditions given
above are satisfied at the zeros of J1(α = ηn), given by Eq. (26),
and for the possible solutions α±

i of J0(α), given by Eq. (25). It
is also easy to check that for each ηi, i = 1,2,3, . . ., there exist
satellite solutions α−

i , α+
i of Eq. (25) lying immediately before

and after ηi and equidistant from it, e.g., ηi = (α+
i + α−

i )/2,
while for the point η0 = 0 there exists only the upper satellite
α+

0 . Thus, for all α ∈ R+ (notice that the dispersion relation
is symmetric in α), the sequence α∗ of all extremal points
resulting from the above equations can be put in increasing
order as follows:

α∗ ≡ {0,α+
0 ,α−

1 ,η1,α
+
1 ,α−

2 ,η2,α
+
2 ,...,} (27)

and thus the dependence on α of the extremal μ− curve can
be separately investigated for the sequence of nonoverlapping
intervals

Iη0 = [0,α+
0 ], Iηi

= [ηi − �i,ηi + �i], i = 1,2, . . . ,

Iαi
=]α+

i ,α−
i+1[, i = 0,1,2, . . . (28)

with �i = (α+
i − α−

i )/2.
One can prove that the chemical potential assumes a

constant value μ− = −2
 − �0 at the satellite points α±
i
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0 2 4 6 8 10 12
α

−4

−3

−2

−1

μ
α0

+ α1
− α2

−α1
+ α2

+ α3
+ α3

−

η1

η0

η2
η3

FIG. 2. Lower-band spectrum of chemical potential as a function
of α for a SOC-DNLS chain of 99 sites in the linear limit γ1 = γ2 =
γ = 0, for χ = 4.0, with other parameters fixed as in Fig. 1. The
dashed-red curve displays the ground-state dependence, while the top
dot-dashed-blue line corresponds to the lower limit of the interband
gap. For the chosen parameters we can identify one half lobe started
at the origin (with minimum at η0, going till α+

0 ) and three other lobes
(with minima at η1, η2, and η3), where the last one is hardly visible in
the given plot scale. Red bullets and blue squares correspond to values
of α given by Eqs. (25) and (26), with α+

0 = 1.9978, α−
1 = 2.9023,

α+
1 = 4.8504, α−

2 = 6.3065, α+
2 = 7.7503, α−

3 = 9.7298, and α+
3 =

10.6238. Plotted quantities are in normalized units.

and inside all the intervals Iαi
i = 0,1,2, . . .. This directly

follows from Eq. (21) and from the fact that inside the
intervals Iαi

the quasimomentum ks(α) becomes complex so
that the only physical acceptable solutions for μ− are the ones
independent on α, e.g., the ones for which k = 0,±π giving
μ = −2
 ± �0 and 2
 ± �0, respectively. Notice that, while
the values −2
 − �0 and 2
 + �0 correspond, respectively,
to the ground and to the highest excited states of the chemical
potential in the regions Iα , the other two constants −2
 + �0

and 2
 − �0 are delimiting the lower and upper borders of
the inter-band gap. From this it follows that the lower and
upper extremal curves are flat for all α ∈ Iαi

. It is worth noting
that in terms of the dispersion curves in the reciprocal space
the critical values α±

i also correspond to the values of α for
which the two minima (maxima) k−1 (k1) of the lower (upper)
band coalesce into a single minimum (maximum), at k = 0
(k = π ). This is pictorially illustrated in Fig. 1 where the
linear dispersion curves are depicted for different values of
the tuning parameter α.

On the other hand, in the Iηi
intervals, the dependence of

the chemical potential on α gives continuous local extremal
curves, referred to in the following as “lobes,” which are
symmetric around their minimum at α = ηi . The amplitudes
of the lobes decrease as α is increased, the absolute minimum
being attained at α = 0 where a half lobe is observed (notice
that due to the parity of μ on α we can restrict only to
non-negative values of α, meaning that the lobe around
α = η0 = 0 becomes a half lobe).

Also note that the lobe profiles tangentially intersect the
horizontal line −2
 − �0 at the borders of the Iηi

intervals.
From this it follows that the ground-state curve and its
derivative are both continuous functions of α. These properties
can be directly checked by plotting the curves μ−(ks,α) in the
interval Iηi

, with s = (−1)i+1 for the ith lobes, i = 0,1,2, . . ..
Thus, from the above analysis we conclude that the ground

state of the linear system is a continuous piecewise function
of α which consists of a finite number of equally spaced lobes
at α = ηi (half lobe at α = 0) joined by the constant line
μ− = −2
 − �0 inside the Iαi

intervals. It can be proved
that, for fixed values of the parameters, the number of lobes
in the ground-state curve (e.g., excluding the half lobe at the
origin) is given by the maximal integer, imax, for which the
quasimomentum ks(ηimax ), with s = (−1)imax+1, is still real.
Therefore, the sequence of intervals in Eq. (28) is finite, with
the last Iαimax

flat interval given by ]αimax ,∞].
Similar results follow by symmetry arguments also for the

highest excited extremal curve μ+(α∗). In this case μ+ =
2
 + �0 at satellite points, lobes have maxima at ηi and
tangentially intersect the constant line 2
 + �0 of intervals
Iαi

. Since the lower and upper border of the inter-band-gap are
constant in α, we also have that the lower band linear spectrum
is constrained inside the lower extremal (ground state) curve
and the lower gap border −2
 + �0 (similarly, the upper band
spectrum lies between the upper gap border 2
 − �0 and the
highest excited state extremal curve). In the next section we
shall see that some of the linear features survive also in the
presence of nonlinearity.

IV. SOC TUNED NONLINEAR SPECTRUM

Spectral properties of the nonlinear system have been
obtained from self-consistent exact diagonalization of the
averaged Hamiltonian system (17). The numerical approach
is described in more details in Ref. [39] for the single com-
ponent case, with extension to the multicomponent case being
straightforward. In all numerical calculations performed in the
nonlinear case we always rescaled the wave-function compo-
nents and the nonlinear coefficients in Eq. (8) according to

un → un√
N

, vn → vn√
N

, (29)

γ → γN, γi → γiN, i = 1,2, (30)

such that the total wave function is normalized to 1:∑
n

(|un|2 + |vn|2) = Nu + Nv = 1. (31)

In the top panels of Fig. 3 we depict the spectrum of
the energy per particle ε vs the tuning parameter α, as
obtained in the nonlinear cases for γ = −0.2 (left panels) and
γ = −0.8 (right panels), considering all equal, γ1 = γ2 = γ ,
attractive interactions. The spectrum shown in the top-left
panel, with γ = −0.2, is quite similar to the linear case,
with the eigenvalues oscillating as functions of the tuning
parameter, and with amplitudes decreasing as α is increased.
One should notice that only one lobe at the origin appears for
this set of parameters with χ = 1.5, in contrast with the linear
case shown in Fig. 2, with χ = 4.0, where other lobes can be
identified at the zeros of J1(α), given by Eq. (26). In the level of
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FIG. 3. Energy spectrum of the averaged SOC-DNLS system vs
α for a chain with 99 sites, with γ = −0.2 (left panels) and γ = −0.8
(right panels). In both cases, the full spectra are in the top panels with
corresponding lower part in the bottom panels. The arrows in the top
panels indicate the critical point α+

0 = 1.33734 at which the linear
bandwidths becomes uniform [see also Fig. 1 and Eq. (25)]. The other
parameters are fixed as 
 = 0.3, �0 = 1.352, and χ = 1.5. Notice
that for these parameters only the half lobe in the origin exists. The
blue bullets on top of the ground-state curves in bottom panels are
related to the wave functions shown in Figs. 5 (right panel) and 6 (left
panel). Plotted quantities are in normalized units.

the oscillations, the positions of the extremal points (maxima
or minima) observed in the lower and upper bands are in direct
correspondence with the zeros of the Bessel function, J0(α),
and its first derivative, J1(α). More explicitly, for the case
shown in the top-right panel, one can identify more clearly the
corresponding ground state in the lower band, which is given
in the lower-right panel of Fig. 3. The observed minima are
close to α = 0, 3.83, 7.02, 10.17 [zeros of J1(α)], with the
maxima close to α = 2.405, 5.52, 8.65 [zeros of J0(α)].

We also observe that the upward (downward) rearrange-
ment of the levels gives rise to the half lobe of the nonlinear
spectrum when the tuning parameter is varied in the region
0 < α � α+

0 , where α+
0 = 1.33734 is practically the same

value expected for the linear spectrum. Notice, however, that
the nonlinearity introduces localized states in the band gaps
(this occurring at first order in the perturbation while effects on
band levels are typically of higher orders). Except for this, the
qualitative behavior of the spectral oscillations (lobes) in the
presence of nonlinearity can be qualitatively understood from
the analysis performed in the previous section. In particular,
note from Eq. (21) and from the crossover of the linear bands
across the critical point in Eq. (25) that, for α < α+

0 , there
are points of the spectrum lying outside the shadowed region
of Fig. 1. These points correspond to the upper and lower
band half lobes observed in the top panels of Fig. 3 (for
the chosen parameters the linear spectrum has only the half
lobe at the origin and the flat semi-infinite interval ]α+

0 ,∞]).
However, for α � α+

0 , all points lie inside the shadowed
region corresponding to the flat curves shown in Fig. 3, in
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FIG. 4. Left panels: Ground-state energies as functions of the
tuning parameter α = 2�1/ω for different values of χ (indicated
inside the panels), with unequal, γ1 = −0.4,γ2 = −0.6,γ = −0.1
(top panel), and with all equal, γ1 = γ2 = γ = −0.8 (bottom panel),
nonlinearities. Other parameters are fixed as in Fig. 3. Right panels:
Full spectrum vs α for χ = 4.0 (top) and χ = 7.5 (bottom) with other
parameters fixed as in the corresponding left panel. Plotted quantities
are in normalized units.

full agreement with the analysis of the linear system, in spite
of the presence of the nonlinearity.

Spectral modulations induced by the Zeeman term in the
presence of nonlinearity are clearly visible in the bottom panels
of Fig. 3 for two different sets of nonlinearity parameters. As
shown, in these cases the main difference is the appearance of
isolated levels in the gaps. The spectral oscillations inside the
bands persist in the presence of nonlinearity, with the ground-
state curve oscillating in phase with curves of excited levels
inside the lower band.

The effects of the nonlinearity on the ground-state energy
and on the full spectrum are further investigated as functions
of α in Fig. 4. In particular, in the left panels of this figure
we show ground-state behaviors for different values of the
spin-orbit parameter χ , with two different choices of the
nonlinear parameters corresponding to attractive interactions.
In the upper-left panel we have all unequal interactions and,
in the lower-left panel, all the interaction parameters are the
same. The full spectra with respect to α, for two specific
values of χ , with all other parameters as in the corresponding
left panels are shown in the right panels of Fig. 4. From
this figure, we notice that the behaviors for “all equal” and
“all unequal” interactions are qualitatively similar, this being
particularly true if nonlinearities are not too large. Moreover,
the amplitudes of the oscillations increase with the increasing
of χ , as verified for the ground state, which is a natural
consequence of the χ dependence on the rescaling (18).
Notice the existence of points where a localized level in the
semi-infinite gap touches a band lobe (say, the ith lobe), with
subsequent detachment at a point α symmetrically located with
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respect to ηi (this being particularly visible for the first lobe
of the χ = 7.5 spectrum). The localization of the ground state
changes rapidly at such points, passing from a well-localized
state inside the gap to a nonlinear stripelike extended state
bordering the lobe band (see bottom right panel of Figs. 4
and 9 below).

In conclusion, as far as the nonlinear spectrum is concerned,
we can say that the main role of the nonlinearity is to introduce
localized states in the gap, which display very interesting
change of properties when they undergo collisions with the
band lobes. Remarkably, the structure of the extremal curves
(including the gap) of the linear band is well preserved also
in the presence of intermediate (not too large) values of the
nonlinearity (for instance, compare the top right panel of Fig. 4
with Fig. 2).

With respect to the localized states in the band gaps, they
refer to discrete versions of gap solitons of the continuous
BEC mixtures in OLs. Their existence is related to the
modulational instability of linear Bloch states [40], a well-
known phenomenon that we are not discussing here. Existence
and stability of SOC tunable discrete solitons will be instead
investigated in the next section by numerical methods. In
view of the qualitatively similar results observed for different
nonlinearity values, in the rest of this paper we refer only to
attractive and all equal magnitude interactions.

V. SOC TUNED DNLS SOLITONS

In this section we consider effects of the SOC tuning on the
existence, stability, and localization properties of stationary
solitonic ground states and stripe solutions of both averaged
and original (e.g., with time modulated Zeeman term) systems.
In this regard, we recourse to numerical methods which we
briefly describe here. For the averaged system, besides the
self-consistent numerical diagonalization to obtain spectral
properties discussed in the previous section, we also consider
the relaxation method based on imaginary-time evolution [41]
with a fourth-order Runge-Kutta (RK) method to obtain
the ground-state wave functions, with periodic boundary
conditions. Notice that in the imaginary-time evolution, and
in all our numerical calculations, the components un and vn

of the eigenstates are normalized according to Eq. (31). The
results obtained with imaginary-time propagation were found
in perfect agreement with the ones obtained by self-consistent
method and presented in Fig. 3 for the ground state.

Real-time evolution is also performed with the same RK
code, with time step up to 10−4, and the same periodic
boundary conditions. During the real-time evolution, the
conservation of the total norm was always monitored to check
the accuracy.

In the upper-block panels of Fig. 5 we depict the stationary
ground states of the averaged system in correspondence of
the four local minima α = ηi (i = 0,1,2,3) represented in the
energy curve displayed in the bottom-right panel of Fig. 3.
As expected, for attractive interactions these ground states are
found to be stable under time integrations of the averaged
equation Eq. (17), as well as under time evolutions of the full
system, with �1 = 100 and ω fixed according to the given
value of α. In Fig. 5, the stability under time evolution is
evidenced in the corresponding lower-block panels, where we
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FIG. 5. Ground-state wave functions related to the four minima
depicted in the right-lower panel of Fig. 3, corresponding to the zeros
of J1(α) (given inside the panels). In the upper block of panels we
have the u (pure real) and v (pure imaginary) components. In the right
lower block of panels, we indicate the time stability of the results by
considering just the module of the u component, for t = 0 and 20.
The parameters are as in the right frames of Fig. 3, with �1 = 100,
�0 = 1.352, γ = −0.8, 
 = 0.3, and χ = 1.5. The wave function is
normalized as in Eq. (31), with the respective number fractions of
the u component given by Nu = 0.9056, 0.9897, 0.9950, and 0.9967.
Plotted quantities are in normalized units.

show results for the absolute values of the u component,
considering t = 0 and 20. Notice, from the corresponding
panels of the blocks, the change of internal phase of the
wave function at different minima, with the tendency to
become more localized at small values of the tuning parameter,
expanding as α increases. It is worth remarking that maxima
of the oscillating part of the ground-state curves are in
correspondence to the Bessel function J0 zeros. Therefore,
they correspond to the vanishing of the rescaled SOC
parameter. Ground-state profiles at these points are obviously
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FIG. 6. Ground-state wave functions corresponding to the four
dots depicted in the left-lower panel of Fig. 3, for the α values
indicated inside the frames. In the upper block of panels we have
the components u (solid blue) and v (dashed red). In the lower
block of panels, the time stability is indicated by considering the
module of u for t = 0 and 20. The parameters are as in the left
frames of Fig. 3, with �1 = 100, �0 = 1.352, γ = −0.2, 
 = 0.3,
and χ = 1.5. Plotted quantities are in normalized units.

less localized, since their chemical potentials have minimal
distance from the linear band. In contrast, for α = 0 we have
J0(α) = 1, having the largest value of the SOC parameter.
One could expect the state to be more localized at this point.
The maximal localization, however, is achieved somewhere
between α = 0 and the first zero of J0 as a result of the interplay
between SOC and nonlinearity. Similar behaviors are found
also for a different (lower) value of the nonlinearity as one can
see from the panels of Fig. 6, corresponding to the ground-state
curve shown in the bottom left panel of Fig. (3). As one can
observe from Figs. 5 and 6, the maximal localization is also
achieved at the intermediate value α ≈ 1.25.

In order to better quantify the influence of the SOC
modulation on the ground-state localization, we have depicted

��0.8

��0.5

��0.2

0 2 4 6 8 10
0.00

0.05

0.10

0.15

FIG. 7. Ground-state gap energy, � ≡ ε1 − ε0, as a function of
the tuning parameter α, for different attractive interactions γ indicated
inside the frame. The maximum gap energy occurs at α = 1.12
(�max = 0.142), α = 1.18 (�max = 0.07), and α = 1.24 (�max =
0.02), for curves γ = −0.8, γ = −0.5, γ = −0.2, respectively. Other
parameters are fixed as in Fig. 3. Plotted quantities are in normalized
units.

in Fig. 7 the behavior of the ground-state gap energy, �, as
a function of α for three different values of the interatomic
interaction parameter γ , where � is defined as the difference
between the ground state and the first excited state of the lower
band. We observe that, for γ = −0.2, the maximum gap is
achieved for α ≈ 1.23, in correspondence to the intermediate
value between α = 0, where the SOC parameter is maximum,
and α = η1, where the corresponding ground-state curve has
its first local minimum.

One should also observe that, as it is natural to expect for
attractive interactions, the gap � increases as the interatomic
interaction increases, but the relative weight of the peak at α ≈
1.3 becomes more pronounced at small nonlinearities. The
peak is a consequence of the interplay of SOC and the nonlinear
interactions. Since at the largest value of � the energy of the
ground state is more detached from the linear band, it is clear
that at this value one expects the maximal localization to occur.
For the chosen parameters, this is achieved at α ≈ 1.2, with
a very small dependence on the interaction parameter γ , as
one can see from Fig. 7. A similar behavior is found also for
the excited localized wave functions inside the inter-band-gap;
however, we do not pursue the analysis of these states here,
because they appear to be unstable under time evolution.

We have also investigated the range of validity of the
averaged equations away from the strong modulation limit,
with results presented in Fig. 8. In this respect, we consider,
for a fixed value of α, the original time modulated system with
different oscillation amplitudes �1, ranging from very large
to relatively small values, with the corresponding frequency ω

fixed by the chosen α. We use the exact solution of the averaged
system as initial condition to start the time propagation under
Eq. (8). Typical stability results for the absolute values of the
ground-state components u and v are illustrated in Fig. 8,
by considering three fixed values of �1 (=10, 20, and 100),
with the time evolution being performed from t = 0 to 20.
As one can see, the results for t = 20 start to deviate from
the original one when we have �1 = 10 (better visualized
from the quite smaller values of the component v), increasing
the discrepancy for smaller values of this amplitude. We can
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FIG. 8. Full numerical simulations of |u| (upper block of panels)
and |v| (lower block of panels) in the ground state, for different
amplitude oscillations �1 = 10, 20, and 100 (as shown explicitly),
with nonlinearity fixed by γ = −0.8. The corresponding chemical
potential is μ = −2.20, with the other parameters being �0 = 1.352,

 = 0.3, χ = 1.5, and α = 3.83. In all the simulations, we start
relaxation with χeff = χJ0(α) = −0.604 (t = 0), performing real-
time evolution of Eqs. (8) with χ = 1.5. Plotted quantities are in
normalized units.

see from this figure that in the strong modulation limit the
eigenmodes of the averaged system are excellent solutions
of Eq. (8) for �1 = 100, remaining good even largely below
this value (some deviations in the v component start to appear
around �1 = 20). From this we conclude that, although from a
strict mathematical point of view the averaged theory is valid
for �1,ω → ∞, the range of applicability of our results is
quite large and is likely to be within the present experimental
feasibilities.

Besides the stationary ground states considered above,
it is also possible to have nonlinear ground-state solutions
resembling stripe solutions of the linear system. In this case,
stripes are linear superpositions of the degenerated ground
states with opposite quasimomentum in the lower branch
of the dispersion curve (see Fig. 1). These states can exist
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n
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|v|
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0.4

|u|
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FIG. 9. Ground-state wave-function components, u (upper panel)
and v (lower panel), for stripe-soliton solutions from full numerical
simulations, for the case with χ = 7.5. The corresponding chemical
potential is μ = −3.41. In both the panels, with black-solid lines
we have the case with t = 0. For t = 20, we verify the stability of
the results for �1 = 100 (red bullets) and �1 = 200 (blue squares).
Except for χ = 7.5, the other parameters are as in Fig. 8. In
the simulations, the relaxation is done with χeff = −3.021, and
performance of real-time evolution of Eqs. (8) is done with χ = 7.5.
Plotted quantities are in normalized units.

also in the presence of nonlinearity, although not as exact
linear combinations, as they have a more complicated format.
They can be constructed as long as quasi-double-degenerated
minima in the dispersion curve survive in the presence of
nonlinearity (this is true for weak nonlinearities). From a
numerical point of view, they can be constructed from exact
stripes of the linear system, continuing then by a path following
method as the nonlinearity is increased.

In Fig. 9, we show results obtained for a stripelike
soliton, with χ = 7.5, and for two large values for the
amplitude, �1 = 100 and 200 consistent with the ratio,
α = 2�1/ω = 3.83 as in Fig. 8 and at the position α = η1.
Notice that for the above values the modulated linear
dispersion curve has two minima in the lower branch,
such that one can directly check the results from the exact
modulated dispersion relation, which assures the existence of
a linear stripe solution for these parameter values.

From the above results we conclude that the modulation
of the Zeeman term can be effectively used for the tuning of
the SOC parameter via a simple rescaling in Eq. (18), and, in
turn, this permits us to control the energy and the localization
properties of the ground-state wave functions.

VI. DISCUSSION AND CONCLUSIONS

Before our concluding remarks, we shall briefly discuss
a parameter design for possible experimental observation of
the above results. In this respect we refer to the SOC for
the case of 87Rb atoms in the field of three laser beams
implemented in a tripod scheme. The ground states from the
5S1/2 manifold are coupled via differently polarized light, by
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choosing |1〉 = |F = 2,mF = −1〉, |2〉 = |F = 2,mF = +1〉,
and |3〉 = |F = 1,mF = 0〉 [34]. A deep optical lattice can
be induced by two additional contrapropagating laser beams
of strength of the order ≈10 recoil energy. The number of
atoms can be taken as N ≈ 3 × 103, with lattice wavelength
λL = 1 μm, radial trapping frequency ω⊥ ≈ 103 Hz, a0 =
100aB (with aB , the Bohr radius), and ωR = 2 × 105 Hz.
The strong modulation limit can be reached by considering
a modulated Zeeman field of normalized amplitude >20 and
frequency of the modulation fixed by ω = 2�1/α. Under these
circumstances, it should be possible to check our results and,
in particular, the localized properties of the ground stated at
specific values of the modulation parameter discussed above.

In conclusion, we have investigated the effect of a mod-
ulating Zeeman field on the energy spectrum and on the
eigenstates of a binary BEC mixture in a deep OL and in
the presence of SOC, by considering an exact self-consistent
numerical diagonalization of the averaged Hamiltonian. Sta-
tionary solitonic ground states and stripe modes are also
investigated as functions of the modulating parameter, both
by exact diagonalizations and by imaginary-time evolution.
In particular, we derived proper averaged equations and
showed that the chemical potentials of solitonic states display
oscillatory behaviors as a function of the tuning parameter
α, the amplitudes of which decrease as α is increased. The
dependence of the spectrum on the tuning parameter has been
fully characterized for the linear SOC system. In this case,
the dispersion relations were exactly derived and the extremal
curves (ground and highest excited states) of the linear system
were shown to be continuous functions, together with their
derivatives, consisting of a finite number of band lobes joined
by constant lines.

The linear case for BEC with SOC can be experimen-
tally realized, when the interactions are tuned to negligible

quantities, by using Feshbach resonance technics, i.e., by the
variation of the external magnetic field near the resonant value.
As for the nonlinear spectrum, it is shown that the main role
of the atomic interactions is to introduce localized states in the
band gaps. Remarkably, the structure of the extremal curves
of the linear band is well preserved also in the presence
of nonlinearity (at least, when such nonlinearities are not
too large). The ground-state stability in the presence of a
modulating field was demonstrated by real-time evolutions
of the original (nonaveraged) system.

Finally, we remark that the control of the localization
properties of the ground state of a BEC mixture in a deep
optical lattice by means of the SOC parameter could be very
useful for applications involving soliton dynamics, including
nonlinear Bloch oscillations, dynamical localization, and
interferometry. By following the present approach, indeed,
one could adjust the Zeeman field so to achieve the maximal
localization of a soliton ground state without changing the
inter- and intraspecies interactions.
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