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Abstract
Weperform a full three-dimensional study onmiscible-immiscible conditions for coupled dipolar
and non-dipolar Bose–Einstein condensates (BEC), confined in anisotropic traps. In view of recent
experimental studies, our focuswas the atomic erbium–dysprosium (168Er–164Dy) and dysprosium–

dysprosium (164Dy–162Dy)mixtures. Themiscibility is quantified by the overlap of the two-
component densities, using an appropriate defined parameter. By verifying that stable regimes for
pure-dipolar coupled BECs are only possible in pancake-type traps, we obtain some non-trivial local
minimumbiconcave-shaped states with density oscillations in both components. For non-dipolar
systemswith repulsive interactions, we show that immiscible stable configurations are also possible in
cigar-type geometries. Themain role of the trap aspect ratio and inter-species contact interaction for
themiscibility is verified for different configurations, fromnon-dipolar to pure dipolar systems.

1. Introduction

Following thefirst experimental realizationofBose–Einstein condensation (BEC) in 1995 [1], substantial progress
has been verified in experimental and theoretical investigationswith ultracoldquantumgases,which can be traced
by several paper reviewson the subject (as references in [2]), aswell as by a recent bookwritten by experts in the
field [3]. One can also follow the advances in quantumsimulations and control ofBECs in reviews such as [4, 5].
Fromstudieswithultra-cold atoms,we can improve our understanding onquantumproperties of a large variety of
bosonic and fermionic systems, aswell asmolecular configurationswith different atomic species. By controlling
atomic properties potential technological applications exist fromultra-precise clocks till quantumcomputation. In
this respect, by consideringBECmixingwith different atomic andmolecular configurations, alsowith degenerate
complex atoms (alkaline-earth, lanthanides) andFermi gases, one can investigate the crossover of BECproperties
withBardeen–Cooper–Schrieffer superconductivity, superfluid toMott insulator transition inbosonic and
fermionic systems, quantumphases ofmatter in optical lattices, ground-state fermionicmolecules [6].

BECwith two-componentswasfirst producedwith different hyperfine states of 87Rb [7]. This is a simple
exampleof amulticomponent systemmadewith amixture of two-species of bosons. Following that, one should
notice several investigations using binarymixtures. This can be exemplifiedwithworks considering thedynamics
of binarymixtureswith bosons and fermions [8]; studies on the dynamics of phase separation andonhow to
control it [9, 10]; also consideringmixtureswith different isotopes of the sameatomic species [11], orwith different
atomic species [12]. As a relevant characteristics ofmulticomponent ultracold gases, wehave theirmiscibility
behaviorwhichwill dependon the nature of the interatomic interactions betweendifferent species.Miscible or
immiscible two-component BECsystems can bedistinguishedby the spatial overlap or separation of the respective
wave-functions of each component. Their phase separationswere observed in spinorBECsof sodium inall
hyperfine states ofF=1 [13]. The advances in the experimental investigationswithmulti-component BECs have
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activated a large amount of theoretical descriptions applied to condensedmixtures having spatially segregated
phases, by studying their properties related to static anddynamical stability [14–26].

Dipolar atomic andmolecular systems, as well asmixtures with different dipolar atoms, have been explored
in theoretical works connectedwith BEC since 2000 [27, 28], followed by several other investigationsmotivated
by the increasing experimental possibilities in cold-atom laboratories to probe the theoretical analysis and
eventual proposals. The theoretical effort in this direction can be traced back by the following sample works,
[29–41]. Amore complete bibliography on the subject, covering experimental and theoretical approaches, can
be found in recent reviews and dissertations, as given in [41–45].

When considering the investigations with dipolar systems in cold-atom laboratories, the pioneer work is the
experiment with chromium 52Cr, reported in [46]. Among theworks following that, we have the investigations
on the stability of dipolar gases [34], as well as on collisions of dipolarmolecules [47].With ultra-cold atoms
having non-negligiblemagneticmoments, we have experiments with dysprosiumdescribed in [48], considering
the dysprosium isotopes 162,164Dy; and the investigationwith erbium 168Er in [42].More recently, quantum
droplets have being observed in a strongly dipolar condensed gas of 164Dy [49], with new features being verified
for dipolar BECs, due to the competition between isotropic short-range contact interaction and anisotropic
long-range dipole–dipole interaction (DDI).

By considering the quite interesting recent investigations in ultracold laboratories with two-component
dipolar BECs, studies on stability andmiscibility properties are of interest due to the number of control
parameters that can be explored in new experimental setups. The parameters are given by the strength of dipoles,
number of atoms in each component, inter- and intra-species scattering lengths, as well as confining trap
geometries or optical lattices. Among the theoretical studies cited above (most concentrated on stability of
dipolar condensates), we have some of them are particularly related tomiscibility of coupled BECs and structure
formation, as [19, 31, 37, 40].

In the present paper, ourmain proposal is to discussmiscibility conditions for general three-dimensional
(3D) atomic BEC systems, which are constituted by two-coupled dipolar or non-dipolar species confined by
asymmetric cylindrical harmonic traps. Due to stability requirements, the dipolar systems that we are
consideringwill be confined in pancake-type traps. In case of non-dipolar coupled systems, we also discuss the
miscibility by considering cigar-type symmetries. For our study on themiscibility, we start with a brief
discussion by considering the homogeneous case. In order to simplify the formalism and a possible experimental
realization, both species are assumed to be confined by a cylindrical trapwith the same aspect ratio.Without
losing the general conclusions related tomiscibility of two-atomic dipolar BEC species,most of our studywill
focus on the particular 168Er–164Dy and 164Dy–162Dymixtures,motivated by the actual experimental
possibilities [42, 48].

Our numerical results for the coupled dipolar Gross–Pitaevskii (GP) equation are presented by using
different parameter configurations for the trapping properties, as well as for the inter- and intra-species two-
body contact and dipolar interactions. The parameter region of stability for the dipolar system is discussed for
different trap-aspect ratio and number of atoms in each species. Aswe are going to evidence, for a givenmixture
of two condensates confined by harmonic traps, themain parameters of the system that are possible to be
manageable in an experimental realizationwith focus on themiscibility are the trap-aspect ratio and the two-
body scattering lengths (these ones, controlled via Feshbach resonance techniques [5, 50]).

Within our full-3Dmodel for the coupled densities, when considering pure dipolar systems trapped in
pancake-shaped harmonic potentials, we are also discussing some unusual localminimum structures and
fluctuations in the densities, which are verifiedwhen the system is near the instability border (considering the
critical aspect ratio and atomnumbers). These structures are verified for coupled systems that are partially
immiscible (168Er–164Dy, in the present case), as well as when it is completelymiscible, such as 164Dy–162Dy.
Such structures, verified forwell defined trap-aspect ratio and number of atoms in stable configurations, suggest
possible experimental studies with two-component dipolar BECs, consideringmiscible and immiscible systems.

The next sections are organized as follows. In section 2, we present the general 3Dmean-field formalism (in
full-dimension and dimensionless) for trapped two-component dipolar BECs, togetherwith the definition of
relevant parameters, as well as the numerical approachwe are considering. In section 3, wefirst write down the
miscibility conditions for homogeneous coupled systems, followed by the definition of an appropriate
miscibility parameter, which is found appropriate tomeasure the overlap between densities of a general coupled
system.Our numerical results are organized in two sections, in order to characterize themain relevant
conditions for the observation ofmiscibility in coupled BEC systems. The role of the trap symmetry for the
miscibility, considering different dipolar and non-dipolarmixed systems, is analyzed in section 4. In view of the
particular relevance of the inter-species two-body interactions on themiscibility, the corresponding results are
presented and discussed in section 5. Finally, in section 6, we present a summarwith our principal conclusions
and perspectives.
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2. Formalism for coupled BECwith dipolar interactions

For amixed systemwith two atomic species identified by i=1, 2, having theirmasses, number of particles and
local time-dependent wave-functions given bymi,Ni, and y yº ( )tr,i i , respectively, the general formof the
mean-fieldGP equation, for the trapped systemwith dipolar interactions, can be described by [29],
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where ( )V ri is the trap potential for each species i, with - ¢( )( )V r rij
d defining themagnetic-type dipolar

interaction between particles i and j. The nonlinear contact interactions between the particles are given by
pº ( )G m a2ij ij ij

2 , where a11, a22 and =a a12 21 are the two-body scattering lengths for intra (aii) and inter
(a12) species, withmij being the reducedmass +( )m m m mi j i j . In the above, bothwave-function components
are normalized as
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For the confining trap potentials we assume harmonic cylindrical shapes, with frequencies wi and aspect ratios
li, such that

w
l= + +( ) ( ) ( )V

m
r r rr

2
, 3i

i i
i

2

1
2

2
2 2

3
2

where it will be assumed that each species i is confined by an angular frequency wi along the x–y plane,
r º +
 ˆ ˆr e r e ;1 1 2 2 andwith l wi i along the z-direction ˆr e3 3. The trapwill be spherically symmetric for l = 1;i will
have a cigar shape for l < 1;i and a pancake shapewhen l > 1i .

For themagnetic-type dipolar interaction between particles i and j, with respective dipolemomentum
strength given by m m mºDij i j0 (m0 being the permeability in free space and mi the dipolemoment of the species
i), we have
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where - ¢r r determines the relative position of dipoles and θ is the angle between - ¢r r and the direction of
polarization.

Let us rewrite (1) in dimensionless quantities, with thefirst component defining the scales for length, with
 wº ( )l m1 1 and energy, w1.Within these units, we introduce new dimensionless variables and redefine
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With the above, and also by redefining thewave-functions for the atomic species i, f t y=( ) ( )l tx r, ,i i
3 , the

expression (1) can be rewritten as the following dimensionless coupled expressions:
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where f f tº ( )x,i i and f f t¢ º ( )y,i i .

2.1.Dipolar and contact interaction parameters
In our analysis, two kind of coupled atomic system are being treated. First, with the erbium 168Er and
dysprosium 164Dy, assumedwithmoment dipoles m m= 7 B and m m= 10 B, respectively (mB is the Bohr
magneton). Next, both components of the coupled system are from isotopes of the same atomic species, 164Dy
and 162Dy, such that themoment dipoles are the same m m= 10 B for both components. As a rulewe define as
component 1 in themixture themoremassive atomic species.

For the angular frequencies of the axial traps, we use w p= ´2 601 s−1 for the 168Er and w p= ´2 612 s−1

for 164Dy and 162Dy, corresponding to s » 1, with equal aspect ratios for both components: l l lº =1 2. The
time and space units will be such that w =- 2.651

1 ms and m=l 1 m (= Å104 = ´ a1.89 104
0). In case of purely

dipolar BECs, we take all the two-body scattering lengths =a 0ij . In several other cases wefix the scattering
lengths between 10a0 and a110 0, where a0 is the Bohr radius. In order to compare the dipolar and contact
interactions, the parameters for the intra- and inter-species dipolar interactions are given in terms of the length
scale. For themoment dipole of the species, in terms of the Bohrmagneton mB, we assume m m= 7 B for

168Er,
with m m= 10 B for both species of dysprosium, 164,162Dy. The two-body scattering lengths aij and dipolar

interactions ( )aij
d , given in units of a0, are related to the corresponding dimensionless parameters gij and dij as:

»a a g N150411 0 11 1, »¹a a g N1486ij ij j11 0 , »( )a a d N6301d
11 0 11 1, »( )a a d N6151d

22 0 22 2,

»( )a a d N6301d
12 0 21 1 = d N6301 12 2.

2.2. Numerical approach
For the numerical approach, used to obtain our results when solving the full-3D coupled equations (6) and (7),
we have employed the split-stepCrank–Nicolsonmethod, which is detailed in similar nonlinear studies, as in
[17, 51], where one canfindmore extended analysis and details on computer techniques convenient for
nonlinear coupled equations, facing stability and accuracy of the results. In view of the particular integro-
differential structure of the coupled nonlinear differential equations when having dipolar interactions, we had to
combine our approach in solving coupled differential equationswith a standardmethod for evaluating dipolar
integrals inmomentum space [29, 52, 53].

By looking for stable solutions, the 3Dnumerical simulationswere carried out in imaginary timewith a grid
size having 128 points for each dimension, wherewe haveD = D = D =x y z 0.2 for the space-steps and
D =t 0.004 for the time-step. The results were quite stable, verified by taking half of thementioned grid sizes.

As a preliminary calculation, which also help us to check the numerical code, we reproduce the stability
diagramobtained in [29] for a spherically symmetric trap (l = 1), where only one atomic species was used, 52Cr,
for the coupled system, with the two species ( =m m1 2) having opposite polarizations along the z direction.
Besides that, in our analysis, we have also verified the stability of the numerical results by studying the effect of
varyingλ. In this regard, once verified that pancake-type configurations are required for stable dipolar
configurations, themiscibility in cigar-type traps is being analyzed only for non-dipolar systems.

3.Miscibility of coupled systems

3.1.Homogeneous casewith hard-wall barriers
In order to characterize the transition betweenmiscible and immiscible states, let us consider a simpler case, for
the homogeneous 3D systemwith = =( ) ( )V Vr r 01 2 and hard-wall barriers, following the simplified energetic
approach presented in [15].Within this approximation, themiscible-immiscible transition (MIT) can be
characterized by a threshold parameter, which is defined by the relation between the two-body repulsive
interactions. The criterium formiscibility, also quoted in some recent works on binary BECmixtures (see, for
instance, [19, 21]), was previously obtained from stability analysis of the excitation spectrum in [14]. It can be
easily generalized to include all the two-body repulsive interactions.

As in the present case we are interested inmixed configurationwith contact and dipolar interactions, we
shouldfirst obtain a simple relation for the dipolar interactions appearing in the formalism. For that, we follow
the approach given in [29] to deal with the integro-differential formalismwherewe have a divergence of the
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integrand in the zero limit for the inter-particle distances. The convolution theorem and Fourier transforms are
applied for themagnetic dipolar potential and for the density components y∣ ∣i 2. The Fourier transformof the
dipolar potential (4) is given in terms of a cut-off parameter, which is of the order of the atomic radius. As this
parameter ismuch smaller than a significant length scale of the system, one can safely consider the limit where it
is zero, such that the dipolar potential between the atomic species i and j is given by


p
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p
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4

3
3 cos 1

4
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, 8ij
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ij ijk k
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where qk is the angle between thewave-vector k and the dipolemoment.
Therefore, by including together the contact anddipolar interactions, the condition forMITcanbewritten as
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whereD = 0 defines the critical value for the transition frommiscible (D > 0) to immiscible (D < 0) systems.
Themixed coupled state will have a lower total energywhen themutual repulsion between atoms is large enough
such that we haveD < 0, which is characterizing the system in an immiscible phase. The systemwill be in a
miscible phase whenD > 0, with a critical border for the transition given byD = 0. TheMIT occurswhen the
inter-species and intra-species interactions are balanced. As verified, the two-body interactions are just being
scaled by the dipolar interactions, in this simple case that the system is confined by hard-wall barriers. The
observation that the dipolar interactions are not playing a significant role results from the fact that theDDIs
averaged out for homogeneous gases. However, for numerical comparisonswithmore generalmiscibility
conditions, it is still quite useful, as it does not depend on the number of atoms and condensate size.

3.2.Miscibility in general coupled systems
Themiscible to immiscible transition for a coupled system, as defined by the critical limitΔ in (9), is changed
from a first-order transition that occurs for homogeneous system to a second-order one when the kinetic
energy is taken into account, as discussed in [20]. Therefore, in order to evaluate themiscibility of a coupled
system for amore general case, we define a parameter which gives an approximatemeasure of howmuch
overlapping we have between the densities of both components. By the definition of a parameter related to
the densities we aremodifying the one suggested in [20], where the overlap between the wave-functions was
considered. Both definitions are equivalent in particular cases. Our parameter to define themiscibility of a
coupled system is given by

ò òh f f f f= =∣ ∣∣ ∣ ∣ ∣ ∣ ∣ ( )x xd d . 101 2 1
2

2
2

As f1 and f2 are both normalized to one, also having the same center, this expression implies that h = 1 for the
complete overlap between the two densities, decreasing as the overlap diminishes. Therefore, we can define the
system as almost completely immiscible when h  1 (close to zero); and, almost completelymiscible when η is
close to one. This parameter is extending to general non-homogeneousmixtures theMIT criterium (9)discussed
for homogeneous systems.With η, intermediate cases can be determinedwhen the system is partially immiscible
or partiallymiscible. Fromour observation, whichwill follow from the analysis of results obtained for the
densities in the next sections, when h 0.5 the system shows already a clear space separation, with the
components having theirmaxima inwell separated points in the space, such that we can already define the
coupled system as immiscible. For η between 0.5 and 0.8, the two densities start having an increasing overlap
with theirmaxima approaching each other, such that we can define the systemwithin this interval as partially
miscible. Themaxima of the densities are close together for h 0.8, whenwe assume the system ismiscible.

As a side remark, we should observe that we are treating two condensates with different atomic species
symmetrically distributed around the center. As a general expected behavior, the density of themoremassive
species should be closer to the center, with the other density being pushed out. This can be explained even before
activating particular interactions between the atoms, as the kinetic energy of themassive species is smaller than
the corresponding kinetic energy of the lessmassive species.

Next two sections are dedicated to present ourmain results on themiscibility of coupled dipolar and non-
dipolar BECs.When choosing non-zero dipolar parameters, the results are exemplified by twomixtures for a
better characterization of themiscibility properties.Within the actual experimental possibilities in BEC
laboratories, we consider the erbium–dysprosium (168Er–164Dy) and dysprosium–dysprosium (164Dy–162Dy)
mixtures.

5
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4.Miscibility results—role of the trap symmetry

The results analyzed in this section for themiscibility properties of coupled atomic condensates aremore
concernedwith the role of the symmetry of the harmonic trap, considering different configurations for the
possible internal interactions (contact and dipolar) between the atoms of both species. The contact interactions
are characterized by the atomic two-body scattering lengths, with dipolar interactions due to themagnetic
dipolemoment of each atomic species. In the following, we split the section in three subsections for clarity. In
part A,we considermiscibility in the case we have no contact interactions, startingwith a discussion on the
stability of such dipolar systems in terms of the trap-aspect ratio and number of atoms. As shown, for realistic
number of atoms, we need pancake-shaped traps. Next, in part B, our analysis is concentrated in non-dipolar
coupled structures, wherewe can examine cigar-type and pancake-type BEC configurations.We conclude the
sectionwith part C, by analyzing our results for the case that we have both dipolar and contact interactions.

4.1.Miscibility in pure dipolar interactions
4.1.1. Stability analysis
The homogeneous case of purely dipolar condensate is unstable due to anisotropy of theDDI.However, in away
similar as the case of homogeneous non-dipolar BEC that are unstable (for attractive two-body interactions,
<a 0), the instability usually can be overcome by applying some external trap, whichwill help to stabilize the

dipolar BECby imprinting anisotropy to the density distribution [34]. This is applicable for single andmulti-
component dipolar BECs.On the stabiliy of two condensates purely dipolar, separated by a distance, we can
mention [38]. For the case of single component dipolar condensates, it was previously shown in [27, 28] that, by
increasing the aspect ratioλ one can obtain amore stable configuration due to theDDI becoming effectively
more repulsive.

As shown by the stability diagrams given in the two panels offigure 1, pure dipolar condensates require
pancake-type traps to be stable, with the coupledmixture becoming less stable when the dipolar strengths (inter
and intra-species) are close to the same values (for some fixed ratio of number of atoms in both species). This
effect ismainly due to the inter-species repulsion in comparisonwith the corresponding intra-species ones.

To become clear this effect, our results are given for the coupled equations (6) and (7), considering the
dipolar BECmixtures with 168Er–164Dy (upper panel) , where 168Er (1st component) and 164Dy (2nd
component) and 164Dy–162Dy (lower panel), where 164Dy (1st component) and 162Dy (2nd component). The
fraction number of atoms N N2 , where º +( )N N N1 2 is shown as a function of the aspect ratioλ, considering
four sample fixed values for the component 1 of themixture, which are given by =N 10001 (red lines with
circles), 3000 (blue lines with triangles), 8000 (green lineswith stars) and 10 000 (magenta lineswith squares). In
both the cases, we use purely dipolar BECs ( =a 0ij ). The dipolar parameters of the 168Er–164Dy coupled system

are =( )a a66d
11 0, =( )a a131d

22 0 and =( )a a94d
12 0. Also, the dipolar parameters of the 164Dy–162Dymixtures are

=( )a a132d
11 0, =( )a a131d

22 0 and =( )a a131d
12 0. Fromboth the panels, one can extract the information that the

stability of pure-dipolarmixtures ismainly affected by the inter-species strengths of the dipolar interactions (in
comparisonwith the corresponding intra-species strengths). The systems aremore stable if less repulsion occurs
between inter-species atoms. By comparing the lowerwith the upper panel, we can verify the effect of reducing
by about half the dipolar strength of one of the component, increasing the stability of the system. Themaximum
effect can be seen for =N 02 ( =N N1), implying that a systemwith 10 000 atoms of 168Er can only be stable
within a pancake-like trapwith l 13, whereas with the same number of 164Dy atoms the stability can only be
reached for l 19.

For afixed aspect ratioλ, the two-component BEC can become unstable by increasing the fraction N N2 ,
where the critical number varies according to the fraction N N1 . Also, there is a critical trap aspect ratio (lc) for
the stability, As one can verify from the upper panel, for the 168Er–164DymixturewithN1= 3000, 8000, and
10 000 the, this critical aspect ratio starts from l »c 7, 11, and 13 respectively. On the other case, for the
164Dy–162Dymixture with the same sets ofN1 (= 3000, 8000, and 10 000), the critical lower limit for stability
starts with l »c 10, 17, and 19 respectively. This variation in the lc is obviously explained by the difference in
the dipolar strengths of both the cases, with the 168Er component having about half of the dipolar strength of
162,164Dy.

From the upper panel infigure 1, for the same total number of atoms of 168Er–164Dymixture, one can verify
that, for stability, lc is reduced (less deformed pancake-type trap)when considering >N N ;1 2 implying larger
fraction of 168Er atoms. As an example, for =( ) ( )N N, 3000, 80001 2 we have l » 16;c and for

=( ) ( )N N, 8000, 30001 2 wehave l » 14c . This behavior results from the respective strengths of the dipolar
interactions of both components, with the erbium component having =( )a a66d

11 0, which is smaller than the

corresponding value for the dysprosium component ( =( )a a131d
22 0). For the other case shown in the lower panel
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offigure 1, as both components have about equal DDI strengths, lc depends essentially only on the total number
of atoms.

This stability analysis will be considered in the following study on themiscibility of two coupledmixtures.
However, it can also be of interest for corresponding experimental investigations (for the specificmixtures we
have considered or for other similar dipolarmixtures).

4.1.2. Structure of coupled pure-dipolar condensates
Once analyzed the stability for pure dipolar coupled systems, in this subsectionwe characterize the role of the
trapping aspect ratioλ in the structure andmiscibility of a pure-dipolar coupled condensate. Therefore, as in the
preceding subsection, all the two-body scattering lengths ( =a 0ij ) arefixed to zero andwe consider both
coupled systemswith 168Er–164Dy and 164Dy–162Dy.Our numerical results for the structure of the coupled
system can be visualized through density plots, with the immiscible andmiscible regimes characterized by the
parameter η defined by (10). Infigure 2we present 3D surface plots for the densities f∣ ( )∣x y, , 0 2 in the (frames
(a), (c), (e), (g)) and f∣ ( )∣x z, 0, 2 (frames (b), (d), (f), (h)), given respectively in the (x, y) and (x, z) surfaces. These
plots are providing a 3D visualization of the density overlapping and distribution of the two-components.More
close to the center, we have themoremassive component (in red) of themixture, which is enhancedwhen the
system ismore immiscible. How close to the center is the other species (in green)will depend on howmiscible is
themixture, being clearly identified for immisciblemixtures. This can be verified by comparing the set of panels
(a)–(d) for 168Er–164Dywith the ones (e)–(h) for 164Dy–162Dy.

Corresponding to the panels offigure 2, we also have the one-dimensional (1D) plots for the densities in
figure 3, which are given as functions of one of the dimensions, x or z, with the other two dimensions at the
center. From these 1Ddensities, the amount of overlapping between the densities can better be observed, being
more helpful when comparing different parameter configurations. Both systems, 168Er–164Dy and 164Dy–162Dy,
represented infigures 2 and 3, are been shown for pancake-shaped trapswith l = 7. The number of atoms that
was consideredwas dictated by the stability of themixtures (as one can follow from figure 1), such that we can

Figure 1. Stability limits for the coupled pure-dipolar ( =a 0ij )BEC systems, 168Er–164Dy (upper panel, where 168Er is the species 1)
and 164Dy–162Dy (lower panel, where 164Dy is the species 1), showing the critical fraction of atoms N N2 as functions of the trap
aspect ratio (λ). In both panels, the given lines refer to fourfixed values for the number of atoms of the species 1:N1=1000 (red line
with circles),N1=3000 (blue linewith triangles),N1=8000 (green linewith stars) andN1=10 000 (magenta linewith squares).
For each one of the critical curves, only the lower-right region gives stable BECs. For the dipolar parameters, we have =( )a a66d

11 0,
=( )a a131d

22 0 and =( )a a94d
12 0, in panel (a); and =( )a a132d

11 0, =( )a a131d
22 0 and =( )a a131d

12 0 in panel (b).
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study the density properties when themixtures are stable but not far from the borderwhere they can become
unstable.

Infigure 2, panels (a)–(d), for the 168Er–164Dymixture we use two different set of parameters for the dipolar
interactions, such thatwe have the same value for themiscibility parameter (h = 0.77). In the upper frames (a),
(b)wehave =d 31.4211 , =d 0.8912 , =d 1.27822 and =d 44.7621 , with =N 30001 and =N 60;2 in the lower
frames (c), (d), =d 28.211 , =d 0.5912 , =d 0.8522 and =d 40.221 , with =N 27001 and =N 402 . The same
densities are shown in 1Dplots, in the four panels (a)–(d) offigure 3, in correspondencewith the panels (a)–(d)
offigure 2, to improve the visualization of the overlap between densities. Both components of the densities are
given as functions of x (left panels) and z (right panels), with the other dimensions at the center. Note that the

Figure 2. Surface plots of the densities for two cases of pure-dipolar ( =a 0ij ) coupled systems, confined by trapswith aspect ratio
l = 7. In the left panels we have the densities for z=0 in the (x y, ) surface, with the right ones for y=0 in the (x z, ) surface. In
panels (a)–(d)we have the 168Er–164Dy; considering =N 30001 and =N 602 in the panels (a), (b) and =N 27001 and =N 402 in
the panels (c), (d). The internal (reddish) structure is dominated by the 168Er, with the surrounding (greenish) by the 164Dy. In panels
(e)–(h)wehave the 164Dy–162Dy; with =N 15001 and =N 502 in the panels (e), (f) and =N 13501 and =N 502 in the panels (g),
(h). The internal (reddish) structure is dominated by the 164Dy, with the surrounding (greenish) by the 162Dy. In the case of
168Er–164Dy, shown in (a)–(d), themagnetic dipolar parameters are =( )a a66d

11 0, =( )a a131d
22 0 and = =( ) ( )a a a94d d

12 21 0. For both
configurations (a), (b) and (c), (d)we obtain h » 0.77. In the case of 164Dy–162Dy, shown in (e)–(h), the interactions between particles
are about the same, =( )a a131ij

d
0.We obtain h » 0.99 for both configurations (e), (f) and (g), (h).

8

J. Phys. Commun. 1 (2017) 035012 RKKumar et al



condensate is confined in a pancake-type cylindrical trap, with aspect ratio l = 7, such that the distribution
along the -z axis ismore concentrated near the center (z= 0) than the other two directions. As also
characterized by themiscibility parameter, h = 0.77, in the present case the coupled system is partiallymiscible.
This is quite well represented in the left four panels given infigure 3.

For the coupled system 164Dy–162Dywe use two other different set of parameters in our analysis, showing the
densities of the two coupled components in 3D and 1Dplots in the panels (e)–(h) offigures 2 and 3, respectively.
These results are given in correspondencewith the results presented for the system 168Er–164Dy in the panels (a)–
(d) offigures 2 and 3. For the parameters, we have =d 31.4211 , =d 1.04012 , =d 1.06522 and =d 31.19021 ,
with =N 15001 and =N 502 , in the frames (e), (f) offigures 2 and 3; with =d 28.211 , =d 1.04012 , =d 1.06522

and =d 28.07121 , with =N 13501 and =N 502 , in the frames (g), (h) of thesefigures. In this case, wherewe
have two isotopes of the same atom,we notice that the system is completelymiscible, having the same value close
to one for themiscibility parameter h = 0.99. The complete overlap between the densities of the two
components are clearly shown in panels (e)–(h) offigure 3.

In thesefigures 2 and 3, by using the aspect ratio l = 7, for each one of themixtures we can identify a non-
trivial structure emerging in the condensate near the boundary of stability, with a localminimumat the center
(for both components) in the symmetrical x–y plane (see left panels of bothfigures). At the z-direction, we have a
normalGaussian shape, as seen in the right panels of the figures.

In both themixtures shown infigures 2 and 3, the upper panels (a), (b) and (e), (f) are for parameters very
close to the stability threshold, as indicated by the results given infigure 1. Therefore, the structure observed for
the density of the component 1, which has the largest fraction of atoms in the coupled system, can be explained
byfluctuations close to the instability regime. For each system, by going from smaller values, shown in panels (c),
(d) and (g), (h), to larger values, shown in panels (a), (b) and (e), (f), ofN1 (keepingN2 about the same), we are
approaching the unstable regime, visualized by the occurrence of oscillation peaks in the density of the dominant
component in the system. The observed number of four peaks around the center is related to stability
requirements when the number of atoms is close to themaximumallowed limit for a given trap asymmetry. By
small variations of the parameters near the stability, before the collapse of the system, it is possible to increase
such number of peaks.

In both sets of systems shown infigures 2 and 3, while observing the peak oscillations occurring for the first
component, one can observe only the biconcave-shaped condensate for the second component. In this regard,
we should also note that biconcave-shaped structures with localminimum in dipolar BECs have already been
reported in the cases of single component condensates. In [33], such structures are explained as due to roton
instability for certain specific pancake-type trap aspect ratiosλ (≈ 7, 11, 15, 19, ...,), being not observed for other
values ofλ. In our analysis, we confirm the values reported in [33]. However, when considering single-
component BECs, we have also verified these type of structures for other particular trap-aspect ratios, such as
λ≈ 8, 12, 16, and 20.However, for the cases of fully anisotropic traps, where two aspect ratios are considered,
this kind of density fluctuation has also been observed in [39], for single component dipolar BECs.When
considering two-component systems, we have verified this kind of structured states with no particular
restriction on the values ofλ.

Figure 3. For the parameterizations used infigure 2, we have the corresponding 1Dplots for the central densities, as functions of x and
z. The panels are in direct correspondence with the ones offigure 2. The 168Er–164Dymixed system is shown in the left four (a)–(d)
panels, with 164Dy–162Dy given in the four right ones (e)–(h). The first component is shown by red lines with empty circles, with the
second shownby green lines with solid circles.
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The biconcave structure occurs for particular aspect ratios of the trap, due to the repulsive interaction
between the dipoles. In the present study for a coupled dipolar system, we observe that we have also the repulsive
inter-species DDI in addition to the intra-species DDI, leading to the observed four peaks in the density
oscillations. The biconcave structures with a localminimumand fewpeaks are occurring near unstable regimes,
whichmakes the experimental reproduction non-trivial to be observed.

In order to illustrate the behavior of the coupled densities, as we go from the parameter region close to the
border of stability to amore stable configuration, we show three illustrative density plots infigure 4 considering
the particular case with l = 8 for themixture 168Er–164Dy, with fixed number of dysprosium atoms =N 9502 .
From the panels (a) to (c)we are varying the number of erbium atoms from3000 to 2000.Wenotice that, by
going from amore stable region (shown in panel (c), where =N1 2000) to a region near the instability (panel (a),
where =N1 3000) the shape of the density distribution changes from aGaussian to a biconcave format. By
approaching very closely the instability region (increasingN1), one can observe thefluctuation in the density
around the center.

Besides the smallmass difference between the atoms, in these cases of pure-dipolar coupled systems, the
main difference is given by the respective dipolar interactions, which is directly related to themagneticmoment
dipoles of the components.While for the 168Er–164Dywe have quite differentmoment dipoles for the two
atomic components (one is about half of the other), for themixture 164Dy–162Dywe have about the same dipolar
parameters, with the inter- and intra-species interactions balancing each other. In view of that, the firstmixture
(with erbium) is expected to bemore immiscible. This is reflected in the corresponding values of η (= 0.77 for
168Er–164Dy, and= 0.99 for 164Dy–162Dy). The results for η are consistent with the approximate criterium that
one could use for homogeneousmixtures, wherewe haveD » -0.014 for 168Er–164Dy, whereasD » 0 for
164Dy–162Dy.However, with the parameter ηwe can have amore realistic indication of the partial overlap
between the densities.

4.2.Miscibility in non-dipolar coupled systems
4.2.1. Role of the trapping aspect ratio
The effect of the geometry due to the external harmonic trap potential on the phase separation of themixtures is
investigated in the next, by considering different aspect ratiosλ for the cases when the nonlinearity is given at
least by repulsive two-body interactions. Themiscibility parameter, given by the factor η, indicating the amount
ofmixing in the densities of the two-component, is presented as a function ofλ infigure 5, for the case that two-
body contact interactions arefixed such that = =a a a4011 22 0 and =a a5012 0, with fixed number of atoms for
both components. As discussedwhen this parameter was defined, a complete overlap between the densities
implies in h = 1, being zero in the other limit of a complete immiscible system. For the given non-zero contact
interactions, we observe that a completemiscible coupled dipolar system cannot be obainedwithin a stable
configuration, as themaximumvalue verified for themiscibility parameter is below 0.6 for both dipolar systems
and number of atoms thatwe have considered. However, as we have already pointed out in the previous
subsection, a value of ηnear 1 is possible to be obtained in case of complete dipolar systems (when the contact
interactions are set to zero).

The purpose of this subsection ismainly to discuss full non-dipolar systems, with results given infigure 5 for
non-zero dipolar interactions (for the 168Er–164Dy, as well as for 164Dy–162Dy). These two kind ofmixtures are of
interest to showhow the dipolar interactions canmodify themiscibility behavior of a coupled BEC system. As
noticed by the red-solid linewith empty circles given in thisfigure (with =d 0ij ), for non-dipolar systemswe
can also obtain stable almost immiscible states in cigar-type configurationswith l < 1.With non-zero dipolar
parameters, and considering the given contact interactions, stable condensates are limited to pancake-type

Figure 4. Surface-density plots for the pure-dipolar ( =a 0ij ) coupled system 168Er–164Dy, with l = 8 andfixed =N 9502

(dysprosium component), shown in three plots asN1 (erbium component) is varied: (a) =N 30001 (left panel), (b) =N 29001 (center
panel), and (c) =N 20001 (right panel). The internal (red) part is dominated by 168Er, with the surrounding one (green) by 164Dy. The
biconcave-shaped structure changes to aGaussian one as we go to amore stable configuration.
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configurationswith l > 6 for 168Er–164Dymixture; and l > 15 for the 164Dy–162Dymixture. Aswe can see
from these results for a non-dipolar coupled system, the immiscibility ismore evident when the trap is strongly
deformed. It can happen for pancake-type traps, as well as for cigar-type traps.However, due to the stability of
the condensates, it should bemore favorable to build immiscible coupled condensates with pancake-type traps.

Figure 5.Themiscibility parameterη is shownas a functionofλ, for three configurations,withfixednumberof atoms ( = =N N 60001 2 )
and contact interactions ( = =a a a4011 22 0 and = =a a a5012 21 0). Fornon-dipolar ( =( )a 0ij

d ) systemsη is givenby a solid-red-circled

line.The solid-blue-with-bullets line, for 168Er–164Dy ( =( )a a66d
11 0, =( )a a131d

22 0 and = =( ) ( )a a a94d d
12 21 0). The solid-green-with-

triangles, for 164Dy–162Dy [ =( )a a132d
11 0, =( )a a131d

22 0 and = =( ) ( )a a a131d d
12 21 0]. Stability of thedipolarmixtures restrict the studyofη

to pancake-type traps, having l > 6 for 168Er–164Dy and l > 15 for 164Dy–162Dy.

Figure 6. 1Dplots of the coupled densities for a non-dipolar case, considering three values for the aspect ratio: cigar-type l = 0.1,
where h = 0.32 (panels (a) and (d)); symmetric-case l = 1, where h = 0.99 (panels (b) and (e)); and pancake-type l = 20, where
h = 0.43 (panels (c) and (f)). The two-body contact parameters and number of atomsNi are as infigure 5. Thefirst component is
shown by red lines with empty circles, with the second one shown by green lineswith solid circles. Infigure 7we add 3D illustrations
for the stronger deformed cases, with l = 0.1 and 20.
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4.2.2.Miscibility in cigar- and pancake-type traps
For non-dipolarmixtures, we resume our analysis by the 1Ddensity plots given infigure 6, followed by a
corresponding 3D illustration infigure 7. For the parameters we have both components with the same number
of atoms ( = =N N 60001 2 ), andwith repulsive two-body interactions such that = =a a a4011 22 0 and

=a a5012 0. Infigure 6, the panels (a)–(c) display the central densities ( = =y z 0) as functions of x; with the
panels (d)–(f) showing the densities (for = =x y 0) as functions of z.

From these density plots, we can also infer howwell themiscibility parameter η, given by (10), can be
quantitatively used to estimate themiscibility condition of a two-component condensate. In the upper panels,
(a) and (d), for a cigar-type trapwith l = 0.1, we have h = 0.32, which is quite well characterizing a situation
when the component densities have theirmaximumat distinct positions, with a small overlap between them.
Correspondingly, we observe similar relations between the value of h = 0.43 and the distinct positions of the

Figure 7.Corresponding tofigure 6, we include 3D illustrations for the stronger deformed cases, with l = 0.1 (left panel) and 20
(right panel).

Figure 8. 1Dplots for the densities of the coupled system 168Er–164Dy system,with both components having the same number of
atoms, = =N N 60001 2 , and subject to non-zero dipolar interactions, given by =( )a a66d

11 0, =( )a a131d
22 0 and = =( ) ( )a a a94d d

12 21 0.
In this case, we have also non-zero intra- and inter-species contact interactions, with = =a a a4011 22 0 and =a a5012 0. The results
are for three different pancake-type traps, with l = 6, where h = 0.55 (upper frames); l = 10, where h = 0.43 (middle frames);
and l = 20, where h = 0.33 (lower frames). The components are being identified inside the upper panels.
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extremes for the two components, in the case of a pancake-type trapwith l = 20, shown in panels (c) and (f).
On the other hand, for l = 1, shown in the panels (b) and (e), we can observe a strong superposition of the two
components, with theirmaxima at the same position, with themiscibility parameter close to one (h = 0.99).

The two 3D illustrations shown infigure 7, for the strong deformed cases with l = 0.1 (cigar type) and
l = 20 (pancake type) are also characterizing the corresponding density distributions.

By considering the above discussion on the usefulness of themiscibility parameter η, in the next density
results that will be shownwe rely on the value of this parameter as a relevant quantitative observable for the
miscibility analysis and corresponding surface visualization of the densities. As observed, for thatwe can take

h < 0.5 as being almost immiscible, withmaxima for the two components inwell distinct positions. In the other

Figure 9.Themiscibility η is shown as a function of a12 in three frames, with fixed intra-species contact interactions, = =a a11 22 40a0
(a), 10a0 (b) and 0 (c). The aspect ratio is l = 20, with number of atoms = =N N 60001 2 . The dipolar parameters used for the curves
shown in each panel are given inside the frame (c).When the system turns out to be unstable, the lines are interrupted or no-results
shown.

Figure 10. 1Dplots of the densities for a non-dipolar system, by varying the inter-species two-body interactions, with =a a1012 0,
where h = 1.0 (upper frames); =a a4312 0, where h = 0.77 (middle frames); and =a a6012 0, where h = 0.28 (lower frames). The
other scattering lengths are fixed, with = =a a a4011 22 0. The trap aspect ratio isλ=20, and the number of condensed atoms is the
same, = =N N 60001 2 , for both 168Er and 164Dy components. The components are being identified inside the upper panels.
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extreme, the system can be considered as almostmiscible for h > 0.7. The other intermediate cases can be taken
as partiallymiscible systems.

4.3.Miscibility in coupled BECwith dipolar and contact interactions
Themiscibility behavior of the coupled condensate in terms of the aspect ratioλ is further investigated in
figure 8 for dipolar systems in addition to the repulsive two-body contact interactions already used infigures 6, 7
( = =a a a4011 22 0, =a a5012 0). In this case, we consider the coupled system

168Er–164Dy, with the dipolar
parameters given by =( )a a66d

11 0, =( )a a131d
22 0 and = =( ) ( )a a a94d d

12 21 0 (respectively, corresponding to
=d 62.811 , =d 127.822 , = =d d 89.512 21 ). By considering the same atomnumber for the components
= =N N 60001 2 , as verified before, stable results are possible only for pancake-type trapping potentials with

l > 6. In general, pancake traps provide strong axial confinement and help to increase the repulsive interaction
along radial directions which guides to phase separation between themixtures. Infigure 8, by increasing the
values for the aspect ratio (such as l = 6, 10 and 20), we can verify how the structure of the densities for the two
components varies in an immiscible condition. The above observations for dipolar and non-dipolar BECs
explain their specific characteristics. In particular, for erbium–dysprosium coupled dipolar condensate in stable
configurations (l > 6), we are clarifying that it presents immiscible density structures, which aremore
pronounced for larger values of the trap-aspect ratio.

5.Miscibility results—role of the inter-species interaction

Besides the trap symmetry, another quite relevant parameter for themiscibility of coupled condensates is given
by the inter-species interaction. In this case, when considering a systemwithfixed dipolarity, the appropriate
parameter, which can be tuned via Feshbach resonance techniques [5], is given by the inter-species contact
interaction. Therefore, our aim in the following analysis is to characterize the role of the inter-species scattering
length a12 for themiscibility. For that, we assume both species have the same intra-species scattering lengths,

= =a a a4011 22 0, choosing a particular large pancake-type trapwith l = 20 andfixed number of atoms for

Figure 11. 1Dplots of the densities, with component 1 being dipolar and component 2 non-dipolar, such that =( )a a66d
11 0,

= = =( ) ( ) ( )a a a 0d d d
22 12 21 , by considering three different inter-species two-body interactions: =a a1012 0, where h = 0.91 (upper
frames); =a a4312 0, where h = 0.81 (middle frames); and =a a6012 0, where h = 0.59 (lower frames). As infigure 10,λ=20,

= =N N 60001 2 , and the intra-species contact interactions are fixedwith = =a a a4011 22 0. The components are being identified
inside the upper panels.
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both components, = =N N 60001 2 . These parameters are dictated by the previous stability analysis, looking for
stronger characterization ofmiscibility properties.

The general behavior for themiscibility can be verified by the parameter η, which is shown infigure 9 as a
function of the ratio a a12 0, considering three panels with different values for =a aii 0 40, 10 and 0. The
parameter η, for the overlap between the two-component densities, is represented by considering five cases as
indicated inside the frames, where in the frame (c)we have the dipolar parameters valid for the three frames.
When both components are dipolar, themixture 168Er–164Dy is represented by the red curves with empty circles,
with themixture 164Dy–162Dy represented by black curves with solid squares.When both components are non-
dipolar, we showwith green-curves with triangles.When only a single component has dipolar interactions, we
have two cases, representedwith blue curveswith filled circles ( = =( ) ( )a a a66 , 0,d d

11 0 22 ) andmagenta linewith

empty triangles ( = =( ) ( )a a a131 , 0d d
11 0 11 ).

We should point out that themiscibility is going down slowly (increasing the immiscibility of themixture) to
an approximate constant value for  ¥a12 . Even in the non-dipolar case: with =aii 40, 10 and 0, we have
h ~ 0.14, 0.10 and 0.04, respectively. This can be understood from the residualmixing of the two-component
wave-functions near the unitary limit of the inter-species (when  ¥a12 ). In this limit for the inter-species, we
should notice that we have thewell-known Efimov effect [54], with increasing number of three-body bound and
resonant statesmixing the two component system. Already observed in cold-atom laboratories [55], this a pure
quantum effect that occurs near zero two-body binding, when the effective potential goes as the inverse-square
of the distance, andwe have a long extension of the corresponding two-bodywave functions. The role of this
effect on coupled systems deserves further analysis in experiments, in particular when varying themass-ratio of
themixture, as the resonant states havewell-known theoretical predictions [56] also formass-asymmetric
mixtures.

Next, we can examine the role of themagnetic dipolar interactions in themiscibility of the two components.
First, we should remind that these interactions between themagnetic dipoles are long-range ones, which go as
the third power of the distance between the dipoles. They should actmore effectively when the components are
close together, but have residual effects due to long range behavior, whichmakes themiscibility be reduced to a
non-zero constant value for  ¥a12 , in away similar to the non-dipolar case in this limit, such that we have

Figure 12. 1Dplots of the densities, for the case that both components have non-zero dipolar interactions, with =( )a a66d
11 0,

=( )a a131d
22 0 and = =( ) ( )a a a94d d

12 21 0, considering three different inter-species two-body contact interactions, such that =a a1012 0,
where h = 0.84 (upper frames); =a a4312 0, where h = 0.41 (middle frames); and =a a6012 0, where h = 0.26 (lower frames). As in
figures 10 and 11,λ=20, = =N N 60001 2 , and the intra-species scattering lengths arefixed such that = =a a a4011 22 0. The
components are being identified inside the upper panels.
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combined effects of two long-range interactions. In the other extreme, we can see the role of dipolar interactions
in themiscibility by looking the regionwhere =a 012 in the panel (c).Whenwe have no inter-species dipolar
interactions (with only one of the species havingmagneticmoment) there is no coupling between the systems,
such that the overlap between the densities is partial. One of the densities is given by a linear trapped equation;
with the other given by a nonlinear equation (confined by the same harmonic trap, but additionally having the
repulsive dipolar interaction). As larger is the effect due to repulsive dipolar interactions, lessmiscible is the
system.When both intra-species dipolar interaction are switched on, we have also the corresponding inter-
species parameter coupling the system,with the net repulsive effect being averaged out.

Another aspect verified in the panels offigure 9 refers to the stability of the system, which can be observed for
this specific case thatwe have a pancake-shaped trapwith l = 20 andfixed number of atomsNi=6000.When
we have single dipolar interactionwith larger strength as =( )a a131d

22 0, the stability can happen only for some
limited values of the contact interactions, as indicated in the three panels by themaximumvalues obtained for
a12: for =a 0ii , panel (c), a a10 ;12 0 for =a a10ii 0, panel (b), a a50 ;12 0 andwith no limit in a12 when

=a a40ii 0, as shown in panel (c). These upper limits in a12 for the stability result from the specific trap
conditions and number of atomswe are considering, as one could trace, approximately, from the stability results
shown infigure 1. Therefore, by reducing the number of atoms for the component 2, we could increase the
upper limits for a12.

In general, from figure 9 one can observe that the immiscibility will significantly increase by increasing a12 in
all the verified situations. Also, by taking a fixed value for this inter-species contact interactionwith >a aii12 ,
from the three panels one can verify that by decreasing the intra-species contact interactions =a a11 22, the
immiscibility of the system increases (η decreases).

Density profiles of the coupled system are represented in the next figures 10–13, wherewe show results
considering three values of the two-body inter-species scattering lengths, with the corresponding intra-species
contact interactions aii kept fixed at 40a0. In all these cases, in order to facilitate the comparison of the results, we
assume the same three values for a12 (= a10 0, a43 0 and a60 0) andmaintain the trap-aspect ratio fixed to a
pancake-type, l = 20, with the number of particles given by = =N N 60001 2 , as in the plotted results of
figure 9. For a better quantitative comparison of the results, we present the densities in 1Dplots, as functions of x

Figure 13. 1Dplots of the densities for the case of 164Dy–162Dymixture, with =( )a a132d
11 0, =( )a a131d

22 0 and = =( ) ( )a a a131d d
12 21 0,

considering different inter-species two-body contact interactions, such that =a a1012 0, where h = 0.99 (upper frames); =a a4312 0,
where h = 0.91 (middle frames); and =a a6012 0, where h = 0.354 (lower frames). As infigure 12,λ=20, = =N N 60001 2 , and
the intra-species scattering lengths arefixed such that = =a a a4011 22 0. The components are being identified inside the upper panels.
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(left panels) and z (right panels). Infigure 10, we have the case of non-dipolar systems; infigure 11when
considering just one of the components being dipolar. Infigures 12 and 13, we consider two cases, when both
components are dipolar, with parameters corresponding to themixtures 168Er–164Dy and 164Dy–162Dy,
respectively.

First, by considering non-dipolar BECs, infigure 10, with three values for the inter-species scattering length,
(a12 varying between 10 and 60a0, with = =a a a4011 22 0). The transition is expected to occur close to »a a12 11

( »m m1 2). This is consistent with the results shown in this figure, wherewe can verify that for >a a12 11 there is
already a clear separation between the two species, with h = 0.28 for =a a6012 0. It is also shown that for

=a a1012 0 themixture is completelymiscible (h = 1), having a sudden transition for =a a4312 0 (just above
=a a4011 0) to a partial immiscible state. By further increasing a12, an almost complete immiscible state is

reached (for =a a6012 0, h = 0.28) .
Next, infigure 11, we study the case where only the component 1 is dipolar. By comparingwith the non-

dipolar case, we can observe the effect of the dipolar interaction in breaking the sudden transition verifiedwhen
increasing the inter-species contact interaction, such that the transition ismuch softer than the one shown for
the non-dipolar case.

In order to observe the effect in themiscibility when changing the inter-species scattering length for the cases
that both components are dipolar, we present 1Dplots for the densities infigures 12 and 13. For the kind of
mixture considered in 12 , the 168Er–164Dy, we notice that the system is partiallymiscible even at <a a12 11,
becoming almost immiscible for >a a3012 0. However, in case of 164Dy–162Dymixture, we observe that the
system is almostmiscible for small inter-species scattering lengths, becoming immiscible as we increase the
inter-species scattering length. Therefore, we clearly noticed from these twofigures, the immiscibility increasing
when the inter-species scattering length become dominant in respect to the dipolar interactions.

6. Summary and conclusion

Motivated by recent experimental studies with dipolar systems, we focus our study in the two coupledmixtures
given by 168Er–164Dy and 164Dy–162Dy. In the present work, our approachwas to evidence themiscibility
properties of a coupled condensate with two different species of atoms, having contact or dipolar pairwise
interaction between them. First, we did an investigation related to the stability of dipolar coupled systems, as one
varies the trap-aspect ratio and the number of atoms of both species. For realistic number of atoms in amixed
BEC system,we found necessary to consider pancake-type configurations (l > 1) for the coupled condensates,
when the dominant nonlinear interaction is dipolar. In order to bemore complete on the characterization of
miscibility, we have extended our study to non-dipolar systems in cigar-type configurations, where it was
possible to point out strong immiscibility for the coupled system.

For the study ofmiscibility, we extended an approach for the critical conditions of homogeneous coupled
systems confined in hard-wall barriers.We observed that the criticalMIT conditions remain unaffected by the
dipolar interactions, once all the parameters of the previous definition are rescaled by incorporating the dipolar
ones. In order tomeasure themiscibility of amore general confined coupled system, a relevant parameter ηwas
defined in terms of the two-component densities. For a general system, this parameter is shown to be adequate to
verify themiscibility of a coupled system than the usually simplified criteriumobtained for homogeneous
systems from energy consideration, where the kinetic energy is ignored.

By studying themiscibility for pure-dipolar coupled system (zero two-body contact interactions), wefirst
compare the properties of the twomixtures given by 168Er–164Dy and 164Dy–162Dy. Besides the smallmass
difference between the atoms in both this twomixtures, one should notice that themain difference in their
respective dipolar interactions ( )aij

d is due to the differences in themagneticmoment dipole of erbium and

dysprosium atoms. As verified, the twomixtures have quite differentmiscibility behavior, with 164Dy–162Dy
being completelymiscible (h = 0.99) and 168Er–164Dy partiallymiscible (h = 0.77), whenwe fix to the same
values the other parameters (trap-aspect ratio and number of atoms). Such behavior is clearly due to the inter-
species dipolar strength in comparisonwith the intra-species one. In this pure-dipolar case, we are also pointing
out some non-trivial biconcave-shaped structures, with localminimum states for both components of the
coupled system andwith the emergence of density oscillations (manifested by a few peaks), when the system is
near the stability border. This behavior is verified for both coupledmixtures that we have examined, with no
direct relationwith themiscibility of the species. Already reported in [39], this kind of nontrivial biconcave
configuration has also being observed for single component dipolar systems, with the density fluctuations
attributed to rotonmode of the condensates. The role of the trap aspect ratio and inter-species contact
interaction for themiscible-immiscible phase transitionwas studied for different configurations, fromnon-
dipolar to pure dipolar systems.
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The present results on themiscibility are expected to be quite relevant in studies with dipolar and non-
dipolar coupled systems, in order to set parameters in experimental realizations.Within this perspective, when
considering dipolar systems, we choose atomicmixtures with large repulsive dipolar strengths that are being
investigated in BEC laboratories. In a possible straightforward extension of this work, we could alter the
confining conditions of both condensates, with their center being separated by some distance, or by using
different aspect ratios. As another perspective for future developments, we canmention studies of systems under
rotations, where rich vortex structures will emerge, by following recent interest in the subject that can be traced
from [57] and references therein.
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