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Abstract
We consider Bose–Einstein condensates with two- and three-body interactions periodically
varying in time. Two models of time-dependent three-body interactions, with quadratic and
quartic dependence on the two-body atomic scattering length as, are studied. It is shown that
parametric instabilities in the condensate lead to the generation of Faraday waves (FWs), with
wavelengths depending on the background scattering length, as well as on the frequency and
amplitude of the modulations of as. From an experimental perspective, this opens a new
possibility to tune the period of Faraday patterns by varying not only the frequency of
modulations and background scattering length, but also the amplitude of the modulations. The
latter effect can be used to estimate the parameters of three-body interactions from the FW
experimental results. Theoretical predictions are confirmed by numerical simulations of the
corresponding extended Gross–Pitaevskii equation.

Keywords: Bose–Einstein condensate, Faraday waves, dynamic properties of condensates, BEC
in periodic nonlinear potentials

(Some figures may appear in colour only in the online journal)

1. Introduction

The role of three-body interactions in Bose–Einstein con-
densates (BECs) has attracted a great deal of attention [1–5].
Typically, in dilute systems such as BECs, three-body effects
are quite small in comparison with two-body effects. One of
the relevant roles that a three-body interaction can play was
shown in [6], in the particular case of attractive two-body
interactions, where a critical maximum number of atoms exist
for stability. The addition of a repulsive three-body potential,
even for a very small strength of the three-body interaction,
can considerably extendthe region of stability. It was also
shown in [7] that, if the atom density is considerably high, the
three-body interaction can start to play an important role.
More recently, a possible interesting scheme for obtaining a
condensate with almost pure three-body effects has been

suggested in [8]. The idea consists of implementing periodical
variations in time of the s-wave atomic scattering length as
near zero, such that we have a varying two-body interaction.
It can be achieved, for example, by using Feshbach resonance
techniques, varying the external magnetic field near the
resonance [9, 10]. Therefore, by considering this procedure,
two-body effects can be averaged to zero, enhancing the
effective three-body interaction, which is proportional to an
even power of the two-body interaction. Note that an analo-
gue of this scheme has been considered before, within an
investigation of the role of three-body interactions in arrest
collapse in BECs [11]. At the same time, the periodic mod-
ulations in time of two- and three-body interactions can lead
to parametric instabilities in the ground state, resulting in the
generation of Faraday waves (FWs) [12]. The FWs are pat-
terns in BECs which are periodic in space, with the period
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determined by the periodic modulation of trap parameters and
strengths of the two- and three-body interactions. The FWs in
BECs with two-body interactions have been investigated
theoretically in [13], as well as created in cigar-shaped
experimental setups [14].

Much attention has been devoted recently to FWs in
several investigations. They can be divided into two groups.
First, by dealing with the time variation of transverse trap
parameters, leading to effective time-dependent nonlinearity
in the reduced low-dimensional Gross–Pitaevskii (GP)
equation. As examples with oscillating transverse frequency
of the trap, we can mention the following recent studies: low-
and high-density one-component BECs [13, 15–18]; two-
component BECs in trap with modulated transverse confine-
ment [15, 19]; Fermi superfluids in BECs with two- and three-
body interactions [20]; and Fermi superfluids at zero tem-
perature [21], where the FWs were considered as a relevant
tool to study Bardeen–Cooper–Schrieffer/BEC crossover. A
second group of investigations has used the modulation in
time of the strength of the interaction. As an example, we
have two-component BECs with time-dependent inter- and
intra-species interactions, with single and coupled BECs with
time-dependent dipolar interactions, where FWs are con-
sidered an excellent tool to study nonlocal effects in polar
gases [22, 23]. Another example is given in [24], considering
studies of superfluid Bose–Fermi mixtures with modulated
two-body scattering length for the Bose–Fermion system.
Also belonging to this group are studies with an analysis of
parametric instabilities in an array of BECs with varying
atomic scattering length, based on a discrete nonlinear
Schrödinger equation [25]. One should also observe that an
analogue of FW patterns can also be found in optical fibre
systems [26–28].

By taking into consideration effects due to three-body
interactions in BECs, an important point that one should
consider is that three-body effects are defined by the value of
the two-body interaction (atomic scattering length). There-
fore, by varying the scattering length in time, the three-body
interaction will also be affected, with the functional form
being defined by the corresponding physical model. By taking
into account this dependence, one can expect new peculia-
rities in the FW generation in BECs with two- and three-body
interactions. With this motivation, we are concerned in the
present paper with an investigation of FW generation in BECs
by considering two possible regimes leading to the modula-
tion of the three-body parameter. First, motivated by a model
presented in [8], we analyse the case when the strength of the
three-body interaction is proportional to the square of the two-
body scattering length. In such a model, the corresponding
GP type of equation has a term that mimics three-body
interactions, which appears in the description of high-density
BECs in cigar-type traps [29, 30]. A second possibility for the
modulation of the three-body parameter can arise by con-
sidering the case of large two-body scattering lengths near the
Efimov regime [31], where the number of three-body states
(resonant or bound) increases as the energy of the two-body
system goes to zero. In such cases, the strength of the three-

body interaction is predicted to be proportional to the fourth
power of the atomic scattering length [3, 4].

In both the cases we have analysed, we observe that the
FW parameters depend additionally on the amplitude of the
time modulations of the atomic scattering length, and not just
on the corresponding frequency and background two-body
scattering length, such that one can experimentally tune the
wavelength of FW. In this way, from the amplitude of the
modulations necessary to experimentally obtain the FW pat-
terns one can also estimate the two- and three-body interac-
tion parameter.

2. Model

Let us consider a quasi-one-dimensional (1D) Bose–Einstein
condensate with atoms of mass m, with two- and three-body
interactions varying in time. The system is described by a 1D
time-dependent Gross–Pitaevskii equation (GPE), with cubic
and quintic terms parametrised, respectively, by the functions
Γ(t) and G(t). By also considering a possible time-indepen-
dent external interaction Vext, with the wave-function ψ ≡ ψ
(x, t) normalized to the number of atoms N, the equation is
given by

� �Z Z

Z Z Z Z Z

s
s
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s
s
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2
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where Γ(t) is related linearly with the two-body s-wave
atomic scattering length as(t), which can be varied in time by
considering Feshbach resonance techniques [9]. The possible
ways that the three-body strength G(t) can be varied in time
will depend on specific atomic characteristics, which are also
related to the type of two-body interaction, as well as induced
by some external interactions acting on the condensate.

Several examples can be considered, following
equation (1), which can be rewritten with dimensionless
quantities [32], by changing the space-time variables such that
t → t/ω⊥ and x → xl⊥, where we have a length scale l⊥ and a
transverse frequency ω⊥ related by l⊥ ≡ � X?m2 . There-
fore, in the new dimensionless quantities, with

Zw � ?u u x t l,( ) and � .X� ?V ,ext ext we have
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where the dimensionless time-dependent two- and three-body
parameters are, respectively, given by
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In the following expressions, we consider that no external
potential is applied to the system (. � 0ext ), such that the
natural scale is the s-wave two-body scattering length as at
t = 0, which will define ω⊥ and the corresponding
length l⊥ = 2as.
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First, in the present work, we consider a non-dissipative
system, such that γ (t) and g(t) are real. Next, the existence of
dissipation due to three-body recombination processes is also
studied by changing the definition of g(t) to a more general
form, where the dissipation is parameterised by a constant κ3,
such that

L� �g t g t i . 4c 3( ) ( ) ( )

The different scenarios of the time modulations for the two-
and three-body interactions can be exemplified by the
following models:

1. Three-body interaction proportional to [as(t)]2
(quadratic case). This case can occur in a model for
a BECs with a 1D non-polynomial GP equation,
confined in a cigar-type trap [29]. By a series
expansion, valid for small Za ,s

2∣ ∣ an effective quintic
parameter can be derived in equation (1), which is given
by �Xw ?G t a t2 .s

2( ) ( ) A similar form of the corre-
sponding equation, for a cigar-type trap, was also
derived in [30]. A quadratic dependence of G(t) on as(t)
can also occur in the case when

X( w ( xx t t kx, cos cos ,( ) ( ) ( ) corresponding to a
time-dependent short-scale nonlinear optical lattice. In
this case, averaged over short-scale modulations in
space, the dynamics are described by a GP equation
with effective time-dependent three-body interactions
[33, 34]. Another model with quadratic dependence on
as was also suggested in [8], considering effective three-
body interactions for atoms loaded in a deep optical
lattice.

2. Three-body interaction proportional to [as(t)]4
(quartic case). By varying as(t) through the Feshbach
resonance techniques, as the absolute value of this two-
body observable becomes very large, one approaches
the unitary limit ( l das∣ ∣ ) where many three-body
bound states and resonances can be found. This
behaviour will induce changes in the corresponding
quintic parameter of the GP equation, such that in
equation (1) we have _G t a ts

4( ) ( ) [3].

3. Modulational instability

In this section we consider a modulational instability (MI) of
the nonlinear plane-wave solution for the equation (2), such
that

¨R H
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To analyse MI we will look for a solution of the form

E E� � R �u x t A u x t e u A, , , with . 6ti( ) [ ( )] ( )( )

By substituting the above expressions in equation (2) and
keeping only linear terms δu ≡ δu(x, t), we have
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Now, by introducing δ u = v + iw, where v ≡ v(x, t) and w ≡
w(x, t), and going to the corresponding Fourier components, V
≡ V(k, t) and W ≡ W(k, t), according to

¨�v w e V W k, , d , 8kxi( ) ( ) ( )

we obtain the system of equations:
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Finally we have
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3.1. Influence of the inelastic three-body collisions

By taking into account inelastic three-body collisions, defined
by a dimensionless parameter κ3, one should add the term
L u ui 3

4∣ ∣ in equation (2). In this case, by replacing g(t) with
gc(t) = g(t) + iκ3, the equations (5) and (6) have to be
replaced by
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In the above expression for θ(t), we neglect δ u(x, t) with the
assumption that E�A t u x t, .( ) ( ) Next, by following the
procedure of the previous subsection, with δ u = v + iw, for
the Fourier component V we obtain
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Therefore, due to inelastic three-body collisions, in
equation (10) we have the additional dissipative term 6κ3
A4 dV/dt, together with a term L_ 3

2, which can be neglected
for small κ3. This will lead to the appearance of the threshold
in the amplitude of modulations of the scattering length for
the existence of the parametric resonances.

3.2. Model of three-body interactions with quadratic
dependence on the scattering length

3.2.1. Modulational instability for periodic variations of the
scattering length. Next, in this subsection, we consider the
MI for the case of periodic modulations of the scattering
length in time, given by γ(t), with the three-body interaction
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term, g(t), having a quadratic dependence on γ (t):

H H H X H H X� � � �t t g t c tcos , cos , 140 1 0 1
2[ ]( ) ( ) ( ) ( ) ( )

where γ0 refers to the natural two-body scattering length,
which can be attractive (γ0 > 0) or repulsive (γ0 < 0), and γ1
is the amplitude of the periodic modulation, such that we can
take it as a positive quantity. We should note that [1, 6] are
mainly concerned with three-body repulsion as a way to
stabilise a condensate with attractive two-body interaction.
However, in the present case, as we are interested in
examining the emergence of FW patterns, we consider
interesting conditions where the time-dependent parameter g
(t), given by equation (14), is positive (c > 0), implying in
attractive three-body interaction.

By considering equation (14), without dissipation
(κ3 = 0), from equation (10) we obtain

X X� 8 � � �
V
t

f t f t V
d
d

1 cos cos 2 0, 15
2

2
2

1 2[ ]( ) ( ) ( )

where

H H H

H H H

8 w % w � � �

w
�

%
w

%

⎡⎣ ⎤⎦k k k A A c

f
A cA

f
c A

2 2 ,

2 1 4
,

2
.

16

2 2 2 2 2
0

2
0
2

1
2

1
1

2 2
0

2
1
2 4

{ }( )
( )

( )
We have parametric resonances for two cases, at ω = 2Ω (η ≡
1) and ω = Ω (η ≡ 2), such that the corresponding
wavenumber kF

η is given by
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where M+ is for attractive or zero two-body interactions, γ0 �
0, and M− is for the repulsive case, γ0 < 0. In the present
case, as we are analysing the case with c > 0, M− can be set
to zero or negative only for repulsive interactions. In the
following, we consider only the relevant positive sign for the
resonance wavenumber kF.

1.  Let us consider more explicitly the first resonance,
ω = 2Ω (η = 1). In the attractive or zero two-body
interactions, γ0 � 0, M+ > 0, the wavenumber kF

1

(corresponding to a length L1) of the Faraday pattern, is
such that

Q X
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where L1 gives the period of the generated Faraday
pattern in space. For large frequencies of modulations,
with X �� M , the period behaves like X_L 1 .1 In
the case of repulsive two-body interactions, γ0 < 0,
which can be more easily explored in experiments, we
have two possibilities, with M− positive or negative.
When M− is positive, we can use the same expression
for kF as in equation (18) with M+ replaced by M−.

However, for such repulsive interaction, M− <0 can
only be satisfied if H � cA1 2 21

2( ) and H0∣ ∣ is within
the interval

H H
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If these conditions are satisfied, the Faraday patterns are
given by
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However, we should note that the above conditions with
(19) are too restrictive for experimental observation.
Instead, in the repulsive case (γ0 < 0), one should
search FW patterns outside this limit, when
equation (18) can be applied. In figure 1, we show the
behaviour of the period of the oscillations as a function
of the amplitude γ1, for two cases of repulsive
interactions, with fixed γ0= −0.5 and −1.

2.  For the second parametric resonance, ω = Ω (η = 2),
the corresponding pattern is only due to the three-body
effects. In this case, by following equation (17), we
obtain the same expressions (18) and (20) for η = 2, as
in the first case shown above, with replacement of ω by
2ω. For the period, we have �L L21 2.

From equations (18) and (20), we observe the existence
of an additional dependence on the wavenumber of the
Faraday pattern from the amplitude of modulations γ1. This
result is new, as far as we know, since in previous
investigations [13–15] kF is independent of γ1. For large
H � 11 we have estimated that LF ∼ 1/γ1 . Thus, by varying
γ1 and with the knowledge of the effective parameters for the
two- and three-body interactions, one can tune the corre-
sponding period of the Faraday pattern.

3.2.2. Modulational instability for fast periodic variations of the
scattering length. Let us consider the case of strong fast
modulations, when X H �, 11 and γ1/ω ∼ O(1). Following
[11, 35], it is useful to perform the following change of
variables:

� (
� (

u x t U x t t U x t

t U x t

, , exp i ,
i , , 21

1
2

2
4

( ) ( ) ( ( ) ∣ ( ) ∣
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where Γ1(t) and Γ2(t) are antiderivatives of γ1(t) and g(t),
respectively:

¨ ¨H( � ( �t s s t s g sd and d . 22
t t

1
0

1 2
0

( ) ( ) ( ) ( ) ( )

U ≡ U(x, t) is a slowly varying function of x and t. To find out
the GP equation, averaged over a period of fast oscillations,
we first obtain the averaged Hamiltonian. By substituting the
equation (21) into the expression for the Hamiltonian and by
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averaging over the period of rapid oscillations, we obtain
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The averaged GP equation is given by
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Performing standard MI analysis with the averaged
equation (24), i.e. considering the evolution of the perturbed

Figure 1. When the three-body interaction is proportional to [as(t)]2, given by equation (14), we show the behaviour of the period of FW
oscillations, LF = L1 in case 2Ω = ω, and = L2, when Ω = ω), given as functions of γ1, for a few set of frequencies ω and for two cases of
two-body repulsive interactions. All quantities are dimensionless and we fix the other parameters such that A = c = 1.

Figure 2. Behaviour of the central density u t0, ,2∣ ( ) ∣ as a function of time, showing the emergence of the first parametric resonance (for
ω = 20), from full numerical calculations. In full agreement with analytical predictions for the values of k, the resonance for k = kF = 3.2 is
obtained. The other parameters, in this case, are such that γ0 = 0, γ1 = 0.5, ò0 = 0.001, A = 1, and c = 1, with all quantities in dimensionless
units. In the right frame, we show a smaller time interval (t < 4) for a clear identification of the plots for the given values of k.
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nonlinear plane-wave solution in the form:

E� �U A U x t e, . 25g A ti eff
4( ( )) ( )

Next, with δU ≡ P + iQ, by performing the corresponding
Fourier transforms ¨�P kp k kxd exp i[ ( ) ( ) and

¨�Q kq k kxd exp i( ) ( )], we obtain the dispersion relation
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From this expression, the maximum gain occurs at the
wavenumber
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with the corresponding gain rate given by

�
�

p
g A

r

2

1
. 28c

eff
4

( )

Note that management of the scattering length can suppress
the MI and will correspond to a weakening of the effective
three-body interactions. This effect leads to arrest of collapse
and makes possible the existence of stable bright matter wave
solitons in BECs with effective attractive quintic nonlinearity
(see also [36]).

The procedure of averaging out two-body processes, with
enhancement of the three-body (attractive) interactions, in the
quasi-1D geometry, can lead to the collapse, which will
happen when the number of atoms N exceeds a critical value
Nc. However, for the strong and rapid modulations case, as we
verify from the averaged equation (24), a nonlinear dispersion
term appears. This term showed that for small widths the
effective repulsion can arrest the collapse, such that stable
bright solitons can exist for N > Nc. This problem requires a
separate investigation.

3.3. Model of three-body interactions with quartic dependence
on the scattering length

Let us now consider the case when the strength of three-body
interactions is proportional to the quartic power of the scat-
tering length; i.e., when g(t) _ as

4 [3], such that

H H H X H H X� � � �t t g t c tcos , cos .

29

E0 1 0 1
4[ ]( ) ( ) ( ) ( )

( )

Figure 3. Following figure 2 the behaviour of central density is displayed as a function of time, showing the emergence of the second
parametric resonance (ω = 40), from full numerical calculations. In this case, again in agreement with the analytical prediction, the resonance
occurs at k = 4.5. In the right frame, for t < 4, we also show the plots for the given k, in order to appreciate how the resonance starts to
appear. The other parameters are the same as in figure 2.

Figure 4. The length of Faraday pattern, LF, is presented as a
function of the frequency, for the first (η = 1) and second (η = 2)
resonances, by considering analytical (solid and dashed lines) and
numerical results (empty circle and crosses). As shown, we have a
perfect agreement between analytical and numerical results. LF and
ω are in dimensionless units.
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The possibility of attractive or repulsive three-body interac-
tion will correspond, respectively, to cE being positive or
negative, which can happen for attractive or repulsive two-
body interactions. In the next section, in our numerical search
for the FW patterns near the Efimov limit, both cases are
verified.

From equation (13) without the term L_ 3
2, the expression

for V ≡ V(k, t) is given by

� X L� 8 � � �
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Figure 5. For the case when the behavior of three-body interactions goes with the fourth power of the two-body interactions, in analogy with
figures 2 and 3, we present the behaviour of central density, as a function of time, showing the emergence of the first parametric resonance
(for ω = 20), from full numerical calculations. As before, we follow the analytical prediction, obtaining the resonance for k = 3.17. As in
previous figures, the other parameters, in dimensionless units, are such that γ0 = 0, γ1 = 0.5, ò0 = 0.001, A = 1, and c = 1. We also present a
plot, in the right frame, considering a smaller interval t < 4.

Figure 6. Following the results presented in figure 5, here we consider the second parametric resonance (ω = 40), from full numerical
calculations. As before, we follow the analytical prediction for the resonance, which is close to k = 4.477. We note, in this case, that the rate
of increasing of the amplitude at the resonance is not so fast as in the case of the first resonance. In the right panel we present two different
small time intervals, where we are comparing the results obtained at the resonance with two other values of k. As before, the other parameters
are in dimensionless units and such that γ0 = 0, γ1 = 0.5, ò0 = 0.001, A = 1, and c = 1.
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We should also note that in the above equations, for L v 0,3
we have A ≡ A(t), given by equation (11), such that hj ≡ hj(t)
and aj ≡ aj(t).

The parametric resonances occur at

IX
I� 8 �

2
1, 2, 3, 4 . 321( ) ( )

The first parametric resonance, given by η = 1, occurs for
X � 8 � %2 ,1( ) whereΔ is detuning. Note that, as expected,
all the resonances are absent when γ1 = 0, as one can verify
in the above expression, where hj = 0.

When a0 > 0, which can happen for attractive as well as
for repulsive two-body interactions, we obtain

X
� � �k a A

A a
1 1

4
. 33F 0

2

4
0
2

( )

And, in the case that a0 < 0, which can occur for repulsive
two-body interactions (γ0 < 0) when cE > 0, as well as for
attractive two-body interactions (γ0 > 0) if cE < 0, the
wavenumber is given by

X
� � �k a A

A a
1

4
1 . 34F 0

2

4
0
2

( )

Again we observe that the FW pattern, given by kF, will
depend on the modulation amplitude of the scattering length,
γ1, in view of the expression for a0 given in (31). In the limit
of large values for this amplitude and negative cE < 0
corresponding to the repulsive three-body interactions, we
have kF H_ 1

2, such that the FW period will be given by
H_L 1 .F 1

2

For small modulation amplitudes, h1, and for three-body
losses κ3, we can perform the analysis based on the pertur-
bation theory. The boundary value for the instability of
detuning, Δc, and the corresponding parametric gain pmax, are
given by

X
% �

8
�

h
p

h

4
and

2
. 35c

1

1
max

1 ( )

The threshold value of the amplitude of modulations when the
resonance occurs can be found from the condition h1
(k = kmax) = 6κ3 A4. By taking into account that

�k a Amax
2

0
2, considering H � 1,1 and neglecting the terms

L H_ ,3
2

1
2 we obtain

H
L

H
�

�
A a

c A

3
1 2

. 36th
E

1,
3

4
0

2
0
3
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Figure 7. The effect of dissipation in the system. We can exemplify
with the results presented in figure 5, by considering k = 3.17 at the
resonant position. For that, in our full numerical calculation, we add
in the quintic parameter g and a dissipative imaginary term κ3,
varying it from zero (non-dissipative case shown by the upper
results) to κ3 = 1 (lower curve), as indicated inside the frame. As
expected, the amplitude of the resonance decreases gradually as we
increase the dissipation. The other parameters are the same as given
in figure 5, in dimensionless units.

Figure 8. In these two panels we show that the effect of dissipation in the system can be compensated by varying the parameter γ1. For that,
we follow figure 7, for k = 3.17, selecting the case where the dissipation parameter is κ3 = 0.025. The parameter γ1 was varied, as shown
inside the frame, from 0.5 (same value as in figure 7), to 1. We notice that the maximum occurs near γ1 = 0.8. The panel on the right, for a
small time interval, is for easy identification of the different curves. The other parameters are the same as shown in figure 5.
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In numerical simulations, with A = γ0 = cE = 1, leads to γ1,
th = 1.8 κ3. We can look for κ3 = 0.01, 0.03.

The next resonance occurs at η = 2, with ω = Ω1 + Δ1,
with the wavenumber

X
� � �k a A

A a
1 1 . 37F 0

2

4
0

( )

In the particular case of γ0 = 0, we have H� �a a c3 8E0 0
0

1
4

and

�k k a . 38F F
0

0
0( ) ( )

In this case, the boundary value of instability of detuning Δ1c

and the corresponding parametric gain pmax are given by

X
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8
�

h
p

h

2
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2
. 39c1

2

1
max

2 ( )

The perspective on studying FW resonances with three-body
parameters having a quartic dependence on the s-wave two-
body scattering length as, can happen when as is negative
(unbound two-body states) and very large, near the Efimov
limit (where the number of three-body bound states, as well as
three-body resonances, are expected to increase as the system
approaches the unitary limit l das∣ ∣ ) [37]. Near this limit,
the three-body parameter goes with a fourth power of as and

Figure 9. For the repulsive case, with γ0 = −0.2 and γ1 = 0.2, from full numerical results, we present the case when the three-body
interaction g(t) is given by equation (29) (quartic case). The first parametric resonance for ω = 20, ò0 = 0.001, A = 1, and cE = +1 (such that
g(t) > 0), is found at k = 3.139 (in agreement with the prediction). In the right panel, for a small interval of time, we show how the amplitude
is changing for a small variation of the parameter k. All quantities are dimensionless.

Figure 10. Following figure 9, we show the corresponding second parametric resonance (ω = 40) for the repulsive two-body interaction
(γ0 = −0.2), when we have a positive three-body parameter (cE = +1), in the quartic case. The resonance, as predicted, appears at k = 4.45.
This is shown by comparing with results obtained for k smaller and larger than this value, when the oscillation patterns remain almost
constant (see right panel). In this case, as compared with figure 9, the peak of the resonant value is manifested for larger values of t. All
quantities are dimensionless and, except for k and ω, the other parameters are given in figure 9.
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can be positive or negative. The corresponding contribution
of three-body collisions to the ground-state energy is
proportional to the three-body parameter and density (∼g
n3). In this case, for repulsive g, one can find a stable ground
state [3]. Figure 3 shows the evolution of the central densities
for the second parametric resonance, which occurs at the
theoretical predicted value, k = 4.5.

4. Numerical simulations

First, we consider the case when the strength of the three-
body interaction is related to the square of the two-body
scattering length as, and we present our results in figures 2–4.
The emergence of a parametric resonance is displayed in
figure 2, for some specific dimensionless parameters, with the
modulated two-body parameter given by γ0 = 0, γ1 = 0.5 and
ω = 20. The amplitude A and three-body parameter c are fixed
to one, as indicated in the respective captions. The results
were obtained for � u1 2( ∣ ∣ ) in the central position, as a
function of time, by varying the wave number k.

The dependence of the spatial period of the Faraday
pattern, LF, on the frequency of modulations is presented in
figure 4, for the first and second resonance. As shown, the
analytical predictions given by equations (18) and (20) are in
good agreement with full numerical calculations.

By considering the second model, when the strength of
the three-body interactions is proportional to the fourth power
of the two-body scattering length, we present the results of
numerical simulations in figures 5–11. As we have considered
in the first case, given in figures 2 and 3, for this second case
the evolution of the central density with the time are plotted in
figures 5 and 6, considering the first and second parametric
resonance, respectively. The theoretical predictions for the
positions of the resonances are quite well reproduced by the

numerical results. The growth rate for the second resonance is
shown to be much slower than for the first one.

The influence of dissipation, due to inelastic three-body
interactions on the process of the Faraday pattern generation,
is presented in figure 7, considering the case for the resonance
value k = 3.17, which was shown (without dissipation) in
figure 5. It is observed that the amplitude of the resonance
decreases gradually with increasing of the dissipation, as
expected. In this figure, the value of the dissipation parameter,
0 < κ3 < 1, is presented inside the frame close to the cor-
responding plot. In figure 8, the observed results are
demonstrating the existence of a threshold in the amplitude of
the modulations, given by γ1. To verify that, we have selected
from figure 7 the case of κ3 = 0.025.

In case of repulsive interactions (γ0 < 0), we first present
modelling results for the first and second parametric reso-
nance in figures 9 and 10, by considering that the three-body
parameter is attractive, such that cE > 0 in equation (29). The
corresponding predicted values, k = 3.14 (first resonance) and
4.46 (second resonance), are confirmed by the numerical
simulations. The growth rate, for the second resonance, is
again lower than the case of the first parametric resonance.
The results, in both the cases (first and second resonance) are
compared with two values of k outside of the position of the
resonance. In the second panels of figures 9 and 10, as in
some of our previous results, we show small intervals in time
of the respective results shown in the first panels, for better
identification of the plots.

As a final result, in figure 11, we also find it useful to
present one model result for the quartic case with repulsive
two-body interaction when the three-body interaction is also
repulsive, such that cE < 0 in equation (29). In this case, only
the first parametric resonance is shown, with ω = 20 and
cE = −1, considering that the resonant position is very well
defined by the analytical expression, kF = 3.129, with results

Figure 11. This figure presents the first parametric resonance, with ω = 20, for the quartic case (see equation (29)) with repulsive two-body
interaction (γ0 = −0.2), following the same dimensionless parametrisation as in figure 9, except that the sign of the three-body parameter g(t)
is inverted with cE = −1. The resonance, as predicted, appears at k = 3.129, with the right panel showing that density oscillation remains
almost constant for smaller and larger values of k. By comparing with figure 9, the resonance is manifested at smaller values of t in the case of
g(t) < 0.
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similar to the ones presented in figure 9, such that the second
resonance position can be easily predicted by using the cor-
responding analytical expression. As shown, the resonant
pattern grows faster in the case of repulsive three-body
interaction.

In the above full numerical results presented in this work,
the simulations were performed by using a split-step fast-
Fourier-transform algorithm, with boundary conditions suffi-
ciently extended to avoid reflection effects on the evolutions.
In order to facilitate the emergence of Faraday patterns,
we started from a uniform density profile of modulus
one, adding a small perturbation with the form

�� � �u i kx1 1 cosinitial 0 ( ) ( ). The results obtained for the
evolutions of the density profiles are quite stable numerically,
such that one can easily verify the resonance positions. As a
final remark on the present numerical approach, supported by
our comparison of results obtained for figures 9 and 11, in the
quartic case with repulsive two-body interaction, it is
worthwhile to point out that we found the resonant behaviour
more stable for longer evolution times when considering
repulsive three-body interactions than in the case with
attractive three-body interactions.

5. Conclusion

In this work we have investigated the generation of Faraday
patterns in a BEC system by engineering time-dependent
three-body interactions. Two models were analysed, accord-
ing to the mechanism of modulation and behaviour of the
three-body interaction with respect to the atomic scattering
length as. First, we considered the strength of the three-body
interaction as related to the square of as, supported by the
model of [8]. Next, we studied the generation of FWs in the
condensate when the strength of the three-body interaction is
proportional to the fourth power of the atomic scattering
length, which is valid for large values of as near the Efimov
limit [3, 4, 37].

The results of our analysis and numerical simulations
show that the time-dependent three-body interaction excites
Faraday patterns with the wavenumbers defined not only by
as and modulation frequency, but also by the amplitude of
such oscillation. In the case of rapidly oscillating interactions,
we derive the averaged GP equation by considering effective
attractive three-body interactions. The MI analysis showed
that the attractive three-body interaction effects are weakened
by the induced modulations of nonlinear quantum pressure. In
our analysis we have considered both cases of repulsive and
attractive two-body interactions. We also present simulations
for repulsive three-body interactions in the quartic case, when
it is proportional to the fourth power of as, considering the
case of repulsive two-body interaction, where the behaviour
of the resonances can be well identified in agreement with
predictions. In all the cases the resonance positions can be
easily verified with the help of analytical expressions.

For the experimental observation of Faraday waves the
case of the repulsive two-body interactions is important, since
in the attractive case the initial noise, which can originate

from thermal fluctuations, can initiate MI, competing with
the parametric one. Analytical predictions derived in the
present work are in good agreement with results of numerical
simulations, considering the full time-dependent cubic-quintic
extended GP equation.
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