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a b s t r a c t

We study the Bose–Einstein condensation in non-extensive statistics for a free gas of
bosons, and extend the results to the non-relativistic case as well. We present results
for the dependence of the critical temperature and the condensate fraction on the
entropic index, q, and show that the condensate can exist only for a limited range
of q in both relativistic and non-relativistic systems. We provide numerical results for
other thermodynamics quantities like the internal energy, specific heat and number
fluctuations. We discuss the implications for high energy physics and hadron physics.
The results for the non-relativistic case can be of interest in cold-atom systems.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important results of the early Quantum Mechanics is the Bose–Einstein Condensate (BEC). It is a purely
uantum effect, however its implications appear at scales similar to those of the classical systems. The description of this
henomenon results from the application of the standard Boltzmann–Gibbs (BG) Statistics to quantum systems [1,2].
Our knowledge on the statistical aspects of mechanical systems has evolved fast in the last decades. The introduction

f non-additive entropy extended the reach of the statistical methods to new domains, where systems with complex
tructure, long-range interaction or following non-Markovian dynamics are found. Several new entropic formulas have
een proposed [3], but the Tsallis’s Entropy [4,5], Sq, is the most ubiquitous. The generalized entropy leads to a non-
xtensive thermodynamics that reduces to the standard Boltzmann–Gibbs theory when the entropic parameter, q,
pproaches the unit [6]. Although the reasons for the large number of systems following the Tsallis statistics are not
et clear, a recent result on the mechanism for the emergence of the non-additive entropy can give some clues on the
ubject [7,8].
It was shown that a fractal structure in the energy–momentum space, called thermofractal, can be present in any

nteraction system described in terms of the Yang–Mills fields [9]. Since this class of systems includes three of the four
nown interactions, it is clear that thermofractals can be found in many natural phenomena. Since the thermofractals
xhibit the non-additive statistics properties, it may explain why systems following the Sq are so common.
While BEC has been exhaustively studied under the light of the BG Statistics [10–12], the same does not hold for the

sallis Statistics. Apart from a few works on the Sq for quantum systems [13–19], and some applications for BEC, there is a
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ack of information on the behaviour of the condensates following the non-additive entropy. In the work by Chen et al. [20]
he non-extensive BEC was considered in both relativistic and non-relativistic regimes. The approach developed in that
ork and in the present one are similar in many aspects, but we advance in the study considering the dependence on
he number of particles, the behaviour of the functions with the parameter q, and the range in q one can obtain the
ondensate. One curious result obtained in that work is that the specific heat is not continuous at the critical temperature
or some values of q. Here we show that for the number of particles below N ∼ 100 the discontinuity is not observed,
but we verified that it appears for large values of N (typically N ≳ 100). In this work we provide a detailed description
of the non-extensive BEC, or qBEC. We investigate the constraints on the entropic parameter, q, for the formation of a
condensate, and evaluate the behaviour of the system near the critical temperature.

Although Sq is associated with systems of interacting particles or strongly correlated systems, these aspects do not
preclude the formation of BEC [10,21,22], even for systems with finite number of particles [11,12,23]. In this regard, it is
interesting to observe that small systems will follow Sq, instead of BG statistics [24,25], nevertheless, most of the works are
restricted to Boltzmann–Gibbs statistics, without considering the possibility of the existence of BEC in the non-extensive
Tsallis Statistics applied to quantum systems.

Despite a relative lack of information on the non-extensive BEC, there are many applications of the concept in different
areas, as in High Energy Physics and Hadron Physics, where the critical temperature of the phase-transition from the
confined to the deconfined quark regimes are associated to the formation of a condensate [26,27], or in studies of
the Neutron Star structure, where a phase-transition to the deconfined regime might appear [28]. A detailed study of
the constrains for the formation of the condensate and its characteristics is needed. Since one of the motivations for
the present work is the possibility of Bose–Einstein Condensate in the high energy collisions, we adopt the relativistic
description, which can be straightforwardly restricted to the non-relativistic case, as commented in the present work.

In Section 1 we briefly review the basic concepts associated with BEC in the BG statistics, and in Section 2 we review
the most important aspects of Sq for the present work. In Section 3 we describe the BEC in the non-extensive statistics,
and in Section 4 we present our conclusions.In this work, we adopt the natural units, with c = ℏ = kB = 1.

2. Bose–Einstein condensate in Boltzmann–Gibbs statistics

The thermodynamical potential for a relativistic gas of massless bosons in the Boltzmann–Gibbs statistics is given
by [13]

ln Z(T , V , µ) = −
V

2π2

∫
∞

0
dε ε2 ln [1 − exp[−β(ε − µ)]] , (1)

where β = 1/T is the inverse of the temperature. Using the thermodynamical relation

⟨N⟩ = β−1 ∂

∂µ
ln Z

⏐⏐⏐
β
, (2)

we obtain the occupation number of particles,

N(T , V , µ) =
V

2π2

∫
∞

0
dε

ε2

exp[β(ε − µ)] − 1
. (3)

The occupation number in the equation above diverges at the ground-state energy, ε = 0 in the limit µ → 0, therefore
an infinitesimal vicinity around this value is excluded from the integration and added separately, and we get

N(T , V , µ) ≡ N0 + Nε =
1

e−βµ − 1
+

V
2π2P

∫
∞

0
dε

ε2

exp[β(ε − µ)] − 1
, (4)

ith the first term being the number of particles in the ground-state, N0, which is added separately. The symbol P in
ront of the integration sign is used to remember that the singular point is removed, and this integral corresponds to the
umber of particles in the excited states, Nε . The integration can be computed numerically, and is associated to a family

of integrals of the type

gn(µ) =
1

Γ (n)

∫
∞

0
dε

εn−1

exp[β(ε − µ)] − 1
. (5)

The analysis of the family of function described by the equation above shows that, for n > 1,

gn(µ) = β−nLin
(
eβµ
)

, (6)

where Li is the polylogarithm function. In the case µ = 0, one gets gn(0) = β−nζ (n), where ζ is the zeta function. When
the function is limited, the maximum of gn(µ) happens for µ = 0. Thus, Nε remains finite and Eq. (4) gives the number of
particles in the system. The ratio N0/N is called condensate ratio, and is the most relevant quantity in the present work.
When µ → 0, the maximum number of particles in the excited states is reached at a critical temperature, Tc , and is

Nε(T ) ≤ Nε,max(Tc) ≡
VT 3

c ζ (3) . (7)

π2

2
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his is the maximum number of particles allowed in the excites states for the system at temperature Tc , and represents
the total number of particles if N0 = 0. The value for ζ (3) is finite, so the number of particles in the excited state, Nε(T )
remains finite. Below the critical temperature, Tc , however, the number of particles allowed in the excited states, Nε(T ),
becomes smaller than the maximum number of particles at the critical temperature, so the excess of particles must be at
the ground-state. If we consider that the total number of particles equals the maximum number of particles allowed at
the critical temperature, from the equation above, we get

N = Nε,max(Tc) =
VT 3

c

π2 ζ (3) , (8)

therefore

Tc =

(
N
V

)1/3
π

[πζ (3)]1/3
. (9)

The ratio

N0(T )
N

=
N − Nε(T )

N
= 1 −

(
T
Tc

)3

. (10)

ote that we obtain cubic behaviour in the present case because we are considering a relativistic gas, what changes the
hase-space topology. For a non-relativistic gas, we would have, instead of Eq. (10), a similar equation with power 3/2
n the temperature.

We will study also other quantities like the variance of the condensate population

∆N2
0 = β−1 ∂

∂µ
N0 =

e−βµ(
e−βµ − 1

)2 , (11)

he total energy of the system

U = −
∂

∂β
ln Z

⏐⏐⏐
µ

+
µ

β

∂

∂µ
ln Z

⏐⏐⏐
β

=
V

2π2

∫
∞

0
dε

ε3

exp[β(ε − µ)] − 1
=

3V
π2 g4(µ) , (12)

nd the specific heat at constant volume

CV =
∂U
∂T

⏐⏐⏐⏐⏐
N,V

=
V

2π2 β2
∫

∞

0
dε ε3

(
ε − µ + T

∂µ

∂T

)
exp[β(ε − µ)]

(exp[β(ε − µ)] − 1)2

=
3Vβ

π2

[
4g4(µ) −

(
µ − T

∂µ

∂T

)
g3(µ)

]
. (13)

bserve that the condition that N is constant might lead to a temperature dependence of the chemical potential.

. Bose–Einstein condensation in non-extensive statistics

Tsallis proposed a generalization of the Boltzmann–Gibbs statistics by introducing a new entropy formula, given by

Sq = k
1 −

∑
i p

q
i

q − 1
= −k

∑
i

pqi lnq pi , (14)

here pi is the probability, q is a parameter called entropic index, and

lnq z =
z1−q

− 1
1 − q

(15)

s the q-logarithm function. The new entropic formula has two remarkable facts: it allows to obtain a complete
hermodynamic description of the system through the Maximum-Entropy Principle; and it is non-additive.

The inverse of the q-logarithmic function is the q-exponential, that is common in the distributions of systems described
y the non-extensive thermodynamics that is derived from the non-additive entropy.

.1. Non-extensive thermodynamics

The non-extensive thermodynamics of quantum systems has been studied in [13,14]. It has been applied to investigate
ome systems, specially hadronic systems [29], with large implications in the study of, e.g., can be hadrons, Quark–
luon plasma and neutron-stars. It is interesting to notice that the running-constant at the non-perturbative regime has
een described by using the non-extensive statistics. The connections between the running-constant and the Sq has been
emonstrated in [9]. Here, BEC in the non-extensive statistics, using as starting point is the non-extensive quantum ideal
as, which was described in Ref. [13].
3
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The non-extensive entropy is given by the standard thermodynamics relation

S = −β2 ∂

∂β

(
ln Zq
β

)⏐⏐⏐⏐
µ

, (16)

here β = 1/(kT ), with k being the Boltzmann constant. For the non-extensive ideal gas of bosons or fermions, the
hermodynamical potential is given by

ln Zq(V , T , µ) = −ξV
∫

d3p
(2π )3

∑
r=±

Θ(rx) ln(−r)
q

(
e(r)q (x) − ξ

e(r)q (x)

)
. (17)

n the equations above, we have used the q-exponential functions{
e(+)
q (x) = [1 + (q − 1)x]

1
q−1 , x ≥ 0

e(−)
q (x) = [1 − (q − 1)x]−

1
q−1 , x < 0

, (18)

nd the q-logarithm functions, ln(+)
q (x) and ln(−)

q (x), defined as the inverse function of, respectively, e(+)
q (x) and e(−)

q (x). The
arameter ξ distinguishes the cases of bosons, with ξ = 1, and fermions, with ξ = −1. Here we are interested in the
irst case, so we fix ξ = 1. Also, we will deal with positive energies, ε ≥ 0, and negative chemical potentials, µ ≤ 0, so
:= β(ε − µ) ≥ 0, where ε is the single-particle state energy. Then, the relevant q-functions will be ln(−)

q (x) and e(+)
q (x).

The properties of the q-exponential function have been investigated in many works, and many of those properties are
mbedded in the so-called q-calculus [30]. An important property is the duality q ↔ q′

= 2 − q, which is very common
o be observed in non-extensive systems. This duality was investigated in Ref. [31] in the context of the q-reflection
ransformation that changes q = 1 + δ to q′

= 1 − δ, and it was shown that this transformation is isomorphic to a
eflection of the function domain, x → −x. In these regards, it is interesting to mention that for quantum relativistic
ystems in the non-extensive statistics, where particles pair creation is allowed, a complete description of the system in
hermodynamical terms is possible only with the inclusion of distributions with both q and q′

= 2 − q [32].

.2. Bose–Einstein condensation and non-extensive effects

Using the thermodynamical relation

⟨N⟩ = β−1 ∂

∂µ
ln Zq

⏐⏐⏐
µ

, (19)

we obtain the single-particle state occupation number for a bosonic gas,

n(+)
q (ε, β, µ) =

[
e(+)
q [β(ε − µ)] − 1

]−q
. (20)

We will investigate in what conditions the singularity corresponding to the Bose–Einstein condensation is present in
the formula above. Let εc be the single-particle energy that is the closest to the chemical potential value, µ. Following
the standard approach, we consider this case as separate from the other states, and its occupation number will be

n0
q(εc, β, µ) =

[
e(+)
q [β(εc − µ)] − 1

]−q
, (21)

while the number of particles in the other states are

nε
q(ε, β, µ) =

[
e(+)
q [β(ε − µ)] − 1

]−q
. (22)

Hereby, the total number of particles is

Nq ≡ N0
q + Nε

q =
[
e(+)
q [β(εc − µ)] − 1

]−q
+

V
2π2

∫
∞

0
dε ε2 [e(+)

q [β(ε − µ)] − 1
]−q

. (23)

f we consider µ → 0, the singularity in the occupation number corresponds to the ground-state, εc = 0.
A careful functional analysis must be carried out in order to verify if the condensate can be formed in the non-

extensive statistics, and what are the conditions and the qBEC behaviour in the positive case. For simplicity we introduce
x = β(ε − µ) in the following analysis. The expression for the number of particles in the excited states becomes

Nε
q =

V
π2 β−3 ζq(µβ) , (24)

here1

ζq(µβ) =
1
2

∫
∞

−µβ

dx (x + µβ)2
[
e(+)
q (x) − 1

]−q
. (25)

1 The definition of Eq. (25) corresponds to values q ≥ 1. The definition of ζq(µβ) for q < 1 includes an upper limit in the integral:
∞ dx →

∫ 1/(1−q) dx.

−µβ −µβ

4
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Fig. 1. Critical temperature (×(V/Nq)1/3) as a function of the entropic index q. Notice that the curve is independent of the values of V and Nq .

Notice that the maximum number of particles allowed at the critical temperature turns out to be

Nε
q,max(Tc) =

VT 3
c

π2 ζq(0) , (26)

nd therefore the critical temperature is

Tc =

(
Nq

V

)1/3
π[

πζq(0)
]1/3 . (27)

This expression is the generalization of Eq. (9) according the non-extensive statistics. Observe that ζq=1(0) = ζ (3). In
Fig. 1 we show the behaviour of the product (V/Nq)1/3Tc , which depends only on the entropic parameter q. The product
decreases almost linearly up to the vicinity of the critical value qc = 3/2. We will show below that this represents the
maximum value for the formation of the BEC in non-extensive systems, and that at this limit, the condensate is formed
only at temperatures near T = 0, and the low temperature is a manifestation of a phenomenon that will be investigated
in details here, the fact that systems with higher entropic parameters resist to the formation of the condensate, while
systems with low values of q are more favourable to the formation of the condensate.

Before studying the physical properties of the qBEC, we will study what are the conditions for it to be formed. The
result obtained for the critical temperature already suggests some critical value, and we will show here how it arises in
the non-extensive statistics. Considering the q-exponential function in its first order in the Taylor’s expansion around the
value x = 0, the integral above for µβ = 0 becomes (ζq ≡ ζq(0))

ζq =
1
2

∫
∞

0
dx x2−qdx , (28)

hich remains finite in the limit x → 0 if q < 3. But we have to investigate the limit x → ∞. In this case we have∫ x+
dx x2

[
e(+)
q (x) − 1

]−q
→

(q − 1)−
1

q−1

3 − 2q
x
3− q

q−1
+ (q > 1) , (29)

which remains finite in the limit x+ → ∞ only if q < 3/2. Therefore, the number of particles in the excited states will
remain finite if 1 < q < 3/2. In fact, the case q = 1 leads also to finite values, as this corresponds to the Boltzmann–Gibbs
condensate which was addressed in Section 2. Let us mention that in the case q < 1, the integral in the lhs of Eq. (29)
has the upper limit x+ = 1/(1 − q), and it turns out to be finite for any value of q < 1. Then, the range of values of q in
which Nε

q is finite can in fact be extended to any value q < 3/2. These results explain the limiting value for the parameter
q observed in Fig. 1. Therefore, the qBEC can be obtained only if q < 3/2.

Observe that ζq is independent of the temperature, so we can calculate the condensate ratio in a way similar to the
one used in the BG condensate. We observe that there is a critical temperature for which the number of particles in
5
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Fig. 2. Bose–Einstein condensation in the non-extensive statistics. Left panel: plot for fixed value of the number of particles, N = 100 and different
alues of the entropic index, q. Right panel: plot for fixed values of the entropic index, q = 0.8 and 1.2, and different number of particles.

he condensate, N0
q , is still much smaller than the total number Nq, and the number of particles in the excited states is

maximum. Below this temperature, any new particle will populate the condensate. In this case,

N0
q

Nq
= 1 −

Nε
q

Nq
= 1 −

(
T
Tc

)3

. (30)

The expression for the number of particles in the excited state is, now, slightly different that in Eq. (3), since it gives,
in the non-extensive case,

Nε
q =

V
2π2

∫
∞

0
dε ε2 [e(+)

q [β(ε − µ)] − 1
]−q

. (31)

Thus, the non-extensive Bose–Einstein condensate presents the same behaviour with the temperature as the
Boltzmann–Gibbs condensate. This result was verified by numerical calculations (see Section 3.4), as shown in Fig. 2,
where we see that the condensate fraction approaches the expected behaviour as the number of particles increases, for
different values of q in the allowed range.

In the left and right panels of Fig. 2 we plot the result of N0
q /Nq as a function of T/Tc performed by using this numerical

procedure. We observe in the left panel that, as q → 3/2, the ratio N0
q /Nq approaches the critical line expected in the

Boltzmann–Gibbs Statistics, independently of the number of particles or temperature. In the right panel of this figure it
is observed that the same effect is obtained when increasing the number of particles independently of the value of q.

The results shown in Figs. 1–2 evidence an interesting behaviour of the qBEC that cannot be observed in the Boltzmann–
Gibbs BEC. While in Fig. 1 we observed the resistance of the system to form the condensate as q increases, which is
manifested in the lower critical temperatures in those cases. However, in Fig. 2 we notice a behaviour that, at first sight,
seems to contradict the previous conclusion, since they show that the limiting behaviour of the qBEC formation is attained
by the systems with higher values of q before those with lower values. This contradiction is not real, though, since in the
latter figures the condensate fraction is plotted as a function of the ratio T/Tc .

The conclusions we can draw from these initial results are that, while the qBEC resistance for the condensate formation
increases with q, the phase-transition to the condensate is sharper for systems with large values of q than for those system
with lower values of q. To investigate this behaviour in more details, we will study the dependence of the number of
particles in the first excited state on the temperature.

We will show that the analysis of the fraction of particles in the first excited states confirms the conclusions obtained
above. A few modifications in our method are necessary, so let us describe them before turning our attention to the
physical aspects of the problem. While in Eq. (23) the system is supposed to have a continuum of states, one can obtain
a discretization of the energy levels when considering it inside a large cubical box of length L. Then, the energy levels of
relativistic massless particles is

Enx,ny,nz =
π

L

√
n2
x + n2

y + n2
z , nx, ny, nz ≥ 1 . (32)

he results obtained with the method described above are plotted in Fig. 3. We see that there is a peak in the ratio
1/N as a function of the relative temperature, T/T . The presence of the peak is observed for all values of q below q ,
q q c c

6



E. Megías, V.S. Timóteo, A. Gammal et al. Physica A 585 (2022) 126440

p

o
l

a
d
t

a
i
f
o

i
q
t
f

w

Fig. 3. Fraction of particles in the first excited state within the non-extensive statistics for fixed values of the number of particles, N = 10 (left
anel) and N = 100 (right panel), and different values of the entropic index, q.

Fig. 4. Left panel: fraction of particles in the condensate within the non-extensive statistics as a function of q. The maximum value of N0
q /Nq is

btained at qmax . Right panel: behaviour of qmax as a function of Nq . The value qmax = 1.14 is obtained for N = 409. It is shown as dashed (red)
ines in both panels the curve qmax = 1.14. We have considered T/Tc = 1 in both panels.

nd at a position near the critical temperature. As the number of particles increases, the peak becomes narrower. A clear
ependence on the value of q is observed, and as q increases the relative number of particles in the first excited state tends
o decrease. The shape of the curves are similar in all cases, including for q = 1 that corresponds to the BG condensate.

The reduction of the number of particles for higher values of q is associated with the sharper phase-transition discussed
bove, and results from the fact that a larger fraction of the particles are in the ground-state. This aspect is already present
n Fig. 2, where the smaller tails at the right side of the critical temperature indicates the predominance of the condensate
or those systems with large q. Therefore, the results of the analysis of the first excited state confirms the conclusions
btained above.
Another interesting aspect of the system that can be observed only in the non-extensive condensate can be observed

n Fig. 3. Comparing the left and right panels of the figure, we note that the distributions with q = 1.0, q = 1.1 and
= 1.2, that are clearly separated in the case of N = 10, becomes very similar for N = 100. This result indicates that

he relative contributions of the particles in the excited states changes with the number of particles. We will investigate
urther this aspect of the qBEC.

The behaviour of the part of the system at the excited states near the critical temperature is complex, therefore we
ill use some approximations to evaluate how the number of particles in the excited states vary with 0 < q < 3/2. As
7
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iscussed above, we can divide the integration in two regions, small x and large x, and the approximations

ζq ≃ ζq 1(x1) + ζq 2(x2) (33)

with {
ζq 1(x1) =

1
2

∫ x1
0 x2−qdx

ζq 2(x2) =
1
2 (q − 1)−

q
q−1
∫

∞

x2
x2−

q
q−1 dx

(34)

re valid for appropriately chosen x1 and x2. We will assume that there is a single value x1 = x2 = X for which the
pproximations above can be considered valid, where X is to be determined. In the range of values for q mentioned
bove the integrations can be easily performed, and we get⎧⎨⎩ζq 1(X) =

1
2

1
3−qX

3−q

ζq 2(X) =
1
2
(q−1)

−
1

q−1

3−2q X2− 1
q−1

. (35)

e choose X such that the integrands of the functions defined in Eq. (34) are continuous. This condition is satisfied only
f

X = (q − 1)−
1

2−q . (36)

With the approximations made above, we obtain the ζq function

ζq =
q(2 − q)

2(3 − q)(3 − 2q)
(q − 1)−1− 1

2−q . (37)

he number of particles in the excited states is, therefore, given by

Nε
q =

V
π2 β−3 q(2 − q)

2(3 − q)(3 − 2q)
(q − 1)−1− 1

2−q . (38)

he approximation used to obtain this analytical result works better for values of q close to 3/2, while for q ≲ 1.3 there
re some deviations. The equation above indicates that the number of particles would diverge when q tends to q = 3/2.
The critical value, qc = 3/2, appear also in the analysis of the condensate fraction as a function of q. In Fig. 4 (left) we

bserve a peak in the curve at a position qmax. which depends on the number of particles in the system. The behaviour of
max with N is shown in Fig. 4 (right), and we note its continuous increase with the number of particles, asymptotically
pproaching the value qc = 3/2. This plot, indeed, is related to that in Fig. 1.
The critical value, qc , is associated with the system for which the condensate can be formed just at T = 0. On the

ther hand, the N particle system with q = qmax(N) is the one with the sharpest transition to the condensate regime, as
videnced by the maximum ratio N0

q /Nq.

.3. Total energy, specific heat and number fluctuations

The aspects of the qBEC analysed so far do not consider the energy of the system. It turns out that the energy imposes
ome additional constraints on the non-extensive system. The total energy of the system is obtained by the standard
elation

Uq = −
∂

∂β
ln Zq

⏐⏐⏐
µ

+
µ

β

∂

∂µ
ln Zq

⏐⏐⏐
β

(39)

esulting in

Uq =
V

2π2

∫
∞

0
dε ε3 [e(+)

q [β(ε − µ)] − 1
]−q

. (40)

Notice that the integrand now has a term p3, even though we are in the relativistic regime. This is because we are now
calculating the total energy, while in the previous sections we were dealing with the total number of particles. By using
a matching procedure similar to the one presented for Nε

q , the total energy can be approximated by

Uq =
Vβ−4

2π2

∫
∞

0
dx x3

[
e(+)
q (x) − 1

]−q

=
Vβ−4

2π2

[∫ X

0
dx x3−q

+ (q − 1)−
q

q−1

∫
∞

X
dx x3−

q
q−1

]
, (41)

or X given by Eq. (36). The first integral in the last line of Eq. (41) converges to a finite value for q < 4, but the second
ntegral converges only if q < 4/3. The result for Uq is

Uq =
Vβ−4 q(2 − q)

(q − 1)−1− 2
2−q , (42)
2π2 (4 − q)(4 − 3q)
8
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Fig. 5. Total energy, normalized by the factor F̄U := N−1
q (V/Nq)1/3(Tc/T )3 (left panel), and specific heat at constant volume (×N−1

q ) (right panel), in
he non-extensive statistics. We display the results for fixed values of the entropic index, q = 0.8 and 1.2, and different number of particles, N = 10,
00 and 300. It is displayed also the results in BG statistics in both panels.

hich turns out to be a good approximation for 1.3 ≲ q < 4/3. Therefore, in the limit for q found in the analysis of the
condensate fraction, those systems with q > 4/3 present an infinite energy, despite the finite number of particles. The
conclusion is that they do not represent a physical system.

The energy of the system for q = 0.8 and q = 1.2, as a function of T/Tc , is shown in the left panel of Fig. 5. We
observe a linear behaviour for temperatures below Tc , which is a consequence of the formation of the condensate since
the number of particles in the ground-state is proportional to T . The energy of the system with q = 0.8 remains below
that for q = 1, while for q = 1.2 the energy remains systematically above the Boltzmann–Gibbs cases.

The system with large q presents a more pronounced change at the critical temperature than those with small q. This
aspect can be appreciated also by observing the behaviour of the specific heat at constant volume, CV ,q, that is calculated
by

CV ,q =
∂Uq

∂T

⏐⏐⏐⏐⏐
Nq,V

=
V

2π2 β2q
∫

∞

0
dε ε3

(
ε − µ + T

∂µ

∂T

)
e(+)
q [β(ε − µ)]2−q(

e(+)
q [β(ε − µ)] − 1

)q+1 . (43)

In the right panel of Fig. 5 we see that CV ,q ∝ T 3 up to the critical temperature, and there is a change of regime for
≳ Tc reflecting the modification in the system structure. There is a clear dependence on q in both Uq and CV ,q. We do not

observe any discontinuity in the specific heat at the critical point for finite values of N , contrary to the results obtained
in [20] for the relativistic case. However, we have checked that a gap is formed for number of particles larger than 100
with ∆CV ,q = CV ,q(T ≳ Tc)−CV ,q(T ≲ Tc) < 0, and eventually this becomes a discontinuity in the limit N → ∞. The main
ifference between our approach and that followed by Chen et al. apart from calculation procedures slightly different,
elies in the occupation number, with ours corresponding to a power q of the occupation number used in that work. In
his regard, we recall that powers in probability densities are a consequence of the Tsallis entropy, and in our case, it was
btained from a complete thermodynamical description of a relativistic gas in the Tsallis statistics [13].
Finally, we calculate the variance of the condensate population in the non-extensive statistics for fixed total number

f particles, given by

∆N0 2
q = β−1 ∂

∂µ
N0
q = q

e(+)
q [−βµ]

2−q(
e(+)
q [−βµ] − 1

)q+1 . (44)

This is plotted in Fig. 6 for fixed values of the entropic index. Notice that the variance tends to decrease with the value
of q. This is an interesting quantity, since it can be measured experimentally [33].

We note that the non-extensive non-relativistic case can be treated in a similar way, but a few results will be different.
The behaviour of the condensate fraction, as given by Eq. (10) will depend on (T/Tc)3/2. The range of value for the
entropic parameter, q, where the BEC can be obtained will be 0 < q < 3, while the energy of the system will be finite if
0 < q < 5/3. These differences between the relativistic and non-relativistic are due to the topology of the phase-space.
9
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Fig. 6. Variance of the condensate population in the non-extensive statistics for fixed values of the entropic index, q = 0.8 (left panel) and q = 1.2
right panel), and different number of particles.

.4. Numerical strategy

Apart from these analytical considerations, we have performed a numerical study of Bose–Einstein condensation. The
umerical calculations are performed with the following steps:

1. Given a value N̄q for the total number of particles, the critical temperature Tc is then computed as the value of
temperature such that N̄q = Nε

q,max(Tc). This leads to a dependence Tc ∝ (N̄q/V )1/3, a property that was already
obtained both in BG and in Tsallis statistics, cf. Eqs. (9) and (27).

2. For the same value of N̄q and for a given temperature T , usually different from Tc , it is computed the value of the
chemical potential µ such that N̄q = Nq(T , µ) = N0

q (T , µ) + Nε
q (T , µ).

3. We evaluate the ratios N0
q (T , µ)/N̄q and T/Tc at temperature T .

Let us mention that the curves of N0
q /Nq and N1

q /Nq as a function of T/Tc are independent on the value of V , and the
ame can be said for the variance ∆N0 2

q , the specific heat CV ,q and the product V 1/3Uq.

. Conclusions and outlook

We studied the Bose–Einstein Condensate in the non-extensive statistics (qBEC), contributing to complement the lack
f information on those systems. We calculated the critical temperature and the condensate fraction. These quantities
resent a dependence on the entropic parameter, q. We show that the qBEC can exist in non-extensive system only for
< qc with qc = 3/2.
At the critical value, qc , the critical temperature is null. As q decreases from its maximum value, the critical temperature

hows, initially, a fast increase, and then, around q = 4/3, it increases linearly as q decreases. This behaviour was
nterpreted as a resistance of the system to the formation of the condensate. The large is the entropic parameter, the
tronger is the resistance.
On the other hand, those systems with larger values for q present a sharper phase-transition. This was evidenced by

he behaviour of the condensate fraction at the critical temperature. The dependence of the condensate fraction with the
ntropic parameter was investigated in details, and we study it for all values of 0 < q < 3/2.
We studied the energy and the specific heat of the qBEC, and showed that the energy presents a divergence for q > 4/3.

Therefore, physical qBEC can exist only in the range 0 < q < 4/3. In the condensate regime, the specific heat is constant
for all values of q, but its value is q-dependent. This dependence arises from the fact that the condensate fraction depends
on the value q.

We analysed the variance of the number of particles.
The possibility of formation of a condensate phase in the hadronic systems have been postulated in several works [27,

34–36]. Investigations on the High Energy Physics distributions show that, for hadronic systems, q ∼ 1.14, in good
agreement with the theoretical prediction [8,9]. The results obtained here show that the QCD allows for the formation of
a condensate regime of the gluonic field. The implications of this results go beyond the high energy collisions, reaching
10
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he hadron [26,37,38] and neutron star structures [28,39–42]. It is remarkable that the results on the fractal structure
f Yang–Mills fields include systems governed by electrodynamic interaction, for which one expects q < 1, so effects of
he qBEC can be investigated in cold atom condensate as well. The observation of power-law distributions and chaotic
ehaviour in Bose–Einstein condensate with vertex [43–45] can be indicative of non-extensive behaviour in those systems.
n these regards, we commented about the extension of the results obtained here to the non-relativistic case.

The transition behaviour observed in the Bose–Einstein condensates when the temperature changes is of the same
ature of the behaviour of the quark condensates when the coupling changes (in a model with only contact interactions).
ut there is a difference though: quark models are handled with field theory techniques. We plan to perform a similar
tudy for hadronic condensates trying to connect the deviations from the extensive statistics, measured by q, to some sort
f effective interaction added to the system.
Finally, let us point out that while we have been mostly interested in possible applications of BEC to high energy

ollisions, hadron physics and the Quark–Gluon plasma, and subsequently we have mostly studied the case of relativistic
articles with negligible mass, there are other physical systems affected by BEC in which relativistic effects are important.
his is the case, for instance, of the BEC of spin triplet excitations (magnons) in TlCuCl3, first discovered in [46]. It was
tressed in later publications [47,48] the need of relativistic dispersion relations to correctly describe the experimental
ata also for not extremely low temperatures. In principle, the present non-extensive statistics study could be extended to
nvestigate the magnons BEC. Notice, however, that such quantum spin systems are governed by the spin–spin interaction,
nstead of the strong interaction, which might affect at least the range of values for q that turns out to be relevant in this
ase. This study might be relevant also for the understanding of the underlying dynamics of non-extensive statistics in
tomic systems.
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