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Stability of a Bose-condensed mixture on a bubble trap
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Stability and the dynamical behavior of binary Bose-Einstein condensed mixtures trapped on the surface
of a rigid spherical shell are investigated at the mean-field level, exploring the miscibility with and without
vortex charges and considering repulsive and attractive interactions. To compute the critical points for stability,
we follow the Bogoliubov–de Gennes method for the analysis of perturbed solutions, with the constraint
that initially the stationary states are in a complete miscible configuration. For the perturbed equal-density
mixture of a homogeneous uniform gas and when hidden vorticity is verified, with the species having opposite
azimuthal circulation, we consider a small perturbation analysis for each unstable mode, providing a complete
diagram with the intra- and interspecies interaction role on the stability of the miscible system. Finally, beyond
small-perturbation analysis, we explore the dynamics of some repulsive and attractive interspecies states by full
numerical solutions of the time-dependent Gross–Pitaevskii equation.
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I. INTRODUCTION

The reports on the realization of the long-time predicted
Bose-Einstein condensation [1,2], with ultracold repulsive
[3,4] and attractive interacting atoms [5], followed by the
possibilities to control the atomic interactions via Feshbach
resonance mechanisms [6] (reported in Refs. [7–9]), have
opened the door to laboratory investigations to probe plenty of
quantum phenomena expected to happen close to zero temper-
ature. Concerning the experimental and theoretical progress
on studies with ultracold gases, some review papers and text-
books [10–15] are available, providing a broad perspective of
the theme, from which other relevant works can be traced.

Just after the first cold-atom experiments, following a the-
oretical prediction in Ref. [16], two overlapping condensates
with spin states of 87Rb was produced in Ref. [17], with
the separation dynamics of the two-spin components of the
mixture reported in Ref. [18]. At this time, the properties
of binary condensed mixtures had also been investigated in
Refs. [19,20]. Later on, with cold-atom mixtures, we can
verify an original theoretical study on the rotating properties
of two cold-atom species in Ref. [21], which was followed
by suggestions of possible realizations of ferro-fluidity with
two-component dipolar systems [22]. These investigations
with binary atomic species became relevant for facing new
challenges due to quantum degeneracy for different kinds of
atoms, including fermionic isotopes, mixtures of Bose con-
densates, superfluidity, and Josephson tunneling, as pointed
out in Ref. [15]. Some experimental realizations with cold-
atom mixtures, such as those reported in Refs. [23,24], have
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provided a realistic basis for heteronuclear ultracold chem-
istry, which emerged as a new field of interest with intense
research activities in recent years (see, e.g., Refs. [25–27] and
quoted citations).

Relevant in these cases with binary systems are the mis-
cible and immiscible properties, which are derived from
relations between the atoms inter- and intraspecies two-body
interactions [19,20], and also controlled by the confinement
[28,29]. The control in experimental realizations with differ-
ent atomic species can be followed by the laboratory activities
with ultracold molecular systems, as verified, for example,
in Refs. [23,24,30–33]. Specifically, in Ref. [31], the dual
species with 87Rb and 41K were confined in an optical dipole
trap in the proximity of interspecies Feshbach resonances.
This system was also recently reported in Ref. [34] with
attractive interactions. There is also an increasing interest in
investigating superfluid mixtures of condensates, which can
be experimentally probed as reported in Ref. [35].

Among the studies with dipolar bosonic quantum gases
[36–39], motivated by quantum ferrofluid instability obser-
vation [40], roton instability and droplet formation with
dipole-dipole interactions was investigated in Ref. [41] by
solving the cubic-quintic Gross–Pitaevskii (GP) formalism
[42,43], where the significant role of three-body interaction
in the droplet formation was pointed out. Later on, the misci-
bility properties of two-component BECs were investigated in
a few works by some of us [44–46] using two different dipolar
and nondipolar hyperfine spin states of a single isotope. These
studies were followed by considering mass-imbalance and
rotating effects with different isotopes or atomic species in
Ref. [47]. Moreover, the studies with dipolar systems pre-
sented in Ref. [48] are of particular interest for possible
experimental realizations in which the dipolar interactions are
shown to be instrumental to control and tune the interactions
of rotating binary mixtures, as well as for the spatial separa-
tion of the species. Within a Bogoliubov–de Gennes (BdG)
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calculation, by exploring possible photonic and rotonic phase
transitions, it was pointed out in Ref. [49] the relevance of the
confinement geometry, in a work considering the miscibility
and stability of dipolar bosonic mixtures.

The dynamics of binary condensates have also shown re-
markable effects in rotating systems [50]. The activities in
this direction have been intensified by investigations in which
the stability of a system can be probed by considering or-
bital angular-momentum analysis. Among other works, we
can mention a miscibility analysis that was performed in
Ref. [51] for a binary condensed system in a ring geometry;
in Ref. [52], the authors reported a study with repulsive Bose-
Einstein condensates (BECs) trapped in a two-coupled-rings
configuration. Reference [53] is another recently reported
work considering processes in rotating BECs with angular
quantum momentum and torque transfer. These kind of inves-
tigations with coupled systems are of interest due to the actual
experimental possibilities with tunable two-species coupled
systems [54–58], which could be applied to condensates
confined in spherical geometries by simulating microgravity
conditions.

On the properties of coherent matter-wave bubbles, the in-
terest started with the investigations reported in Refs. [59,60],
in which one can find a proposal of possible experimen-
tal schemes. Recent realistic possibilities in performing
cold-atom experiments with low-gravity conditions at the in-
ternational space station (ISS) [61–63] have drawn particular
attention to the studies of condensates confined in bubble
traps, as exemplified by Refs. [64–69]. More recently, fol-
lowing observations aboard the international space station
with ultracold atom bubbles created by using radio-frequency
[70], it was further reported in investigations on the nature
and properties of bubble configurations with different sizes in
Ref. [71]. Among other future experiments in microgravity
conditions, it was pointed out in this reference the real per-
spectives to generate vortices in condensate bubbles through
distinct mechanisms, such as direct stirring, trap rotation, or
spontaneous generation across the condensate phase transi-
tion. In view of such advances in the control of condensed
bubble generations on the ISS, it seems plausible to believe
that further experimental control can be reached in order
to tune interacting binary condensed mixtures. With bubble-
trapped condensates, we can also point out the recent studies
reported in Refs. [72,73] and related to singly quantized vor-
tices and superfluidity.

By considering repulsive Bose-Bose mixtures, following a
previous suggestion in Ref. [74], Ref. [75] recently predicted
a mixed-bubble regime in which bubbles of the mixed phase
coexist with a pure phase of one of the components. Such
an interesting study in which self-bound droplets are stabi-
lized by the repulsive Lee-Huang-Yang (LHY) [76] energy
contribution, has also been verified in a recent experimental
realization, as reported in Ref. [77]. This is a beyond-
mean-field effect that occurs for unequal masses or unequal
intraspecies coupling constants, being due to a competition
between the mean-field term, quadratic in densities, and a non-
quadratic beyond-mean-field correction (for a related review,
with an updated bibliography, see Ref. [78]). However, our
following approach still relies on the mean-field GP formal-
ism. We do not consider here the possibility of canceling the

two-body interactions and consequent overvaluing the LHY
term correction, with the outcome of droplets formation.

Our motivation is concerned with the aforementioned
theoretical and experimental interest, in view of existing lab-
oratory facilities to investigate ultracold atomic BEC systems
confined in circular and spherical geometries. By considering
previous studies with single confined species, we concentrate
the present analysis on clarifying the dynamical behavior of
binary atomic mixture confined within the skin of a three-
dimensional (3D) spherical trap. By assuming the initial
stationary condition of the binary mixture as homogeneous
and trapped at the surface of a rigid sphere with radius R, the
system is effectively two dimensional (2D), with all dynamics
described by the two polar angles θ and φ. Such simple
spherical geometry with two species confined at a surface of
a bubble, can hopefully be useful to set up the initial experi-
mental conditions for some related investigations, as well as
for other kinds of studies, such as when assuming deformed
radial geometries, or by considering atomic species with more
involved inter- and intraspecies interactions, as in the case of
dipolar binary systems in spherical geometries.

The remainder of this paper is structured as follows: The
basic framework of the mean-field model formalism is in-
troduced in Sec. II. In Sec. III, our approach in probing the
stability of an original stationary solution is exemplified by
applying the method to the nonvorticity case of a homoge-
neous two-species mixture. In Sec. IV, we study the stability
of stationary states with quantized vortices in the shell by con-
sidering the specific case with both species having opposite
charge vorticity, s2 = −s1 = −1. In this case, a variational
approach is shown to be helpful in establishing analytical
solutions in support of the full-numerical ones. The dynamics
and stability of the states are studied in detail in Sec. V, with
analysis of time-evolution of the unstable modes. Finally, in
Sec. VI, we present our conclusions and outlook. An Ap-
pendix is also included concerning our numerical method for
real-time integration of the GP equation.

II. MODEL FORMALISM

In our present study, we assume two atomic species (i =
1, 2) with the same mass M, which are initially within a
homogeneous mixture, with both species having the same
density. Apart from the theoretical convenience to consider
a more symmetric initial configuration, which also will facil-
itate the analysis of the expected pattern results, studies with
equal-mass binary systems are supported by existing BEC ex-
periments with two-spinor states of the same isotope [16,17].
The stability of the initial configuration will be studied by
adding a small time-dependent perturbation in the initial con-
figuration. For the stability, we observe that our study is
concerned only with the occurrence of dynamical instability in
the system. The possibility of energetic instability of the cou-
pled condensates is not being considered in the present work,
in which we have assumed zero temperature T . Energetic
instabilities play a role only in excited states because they
need a way to get rid of energy, which in BEC systems can be
accomplished by losing the extra energy through contact with
the thermal cloud [15]. They could occur in our approach only
for T > 0, when having excited angular-momentum states,
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with vortices in a spherical geometry [69,79]. In that case, the
generated vortices migrate to the equator line of the sphere and
are annihilated. However, for that, a dissipation mechanism
is required, as interactions between the condensate with the
thermal cloud. Here, we are concerned with Bose gases at
effectively zero temperature; thus, in practice, there is no
thermal cloud to allow a dissipation mechanism.

The inter- and intraspecies interactions are given by gi j ≡
(4π h̄2ai j/M ), where ai j is the atom-atom scattering length.
As the interaction ratio between interspecies and intraspecies,
g12/gii (by assuming g11 = g22) increases, unstable modes
causing inhomogeneities should appear, analogous to the one-
dimensional (1D) ring case [51]. Therefore, in our following
approach, we assume that the two atomic species are confined
in the skin of a 3D spherical shell with fixed radius R, im-
plying the existence of the condensate densities only inside
an infinitesimal range, with R(1 ± δ/2). This trapped region
covering the whole sphere we can label as V, the total volume
of the confinement, given by V ∼ 4πR3δ. By modeling the
system with an effective δ ≈ 0, we can write the density
states for each component i, with the radial function given
in terms of the Dirac delta δ(r − R), such that |�i(r, t )|2 =
δ(r − R)|ψi(�, t )/R|2, where � ≡ (θ, φ) gives the angular
position in the sphere.

To validate approximately the assumption δ ≈ 0, we need
to estimate the level energies of a trapping interaction in the
radial direction, for an infinite potential well, centered on
R, with radial size Rδ/2 [radial wave function being zero
at R(1 ± δ/2)]. For a δ enough small, the energy difference
between the ground and first-excited state should be enough
large. For such an estimate, we can follow Secs. VI and VII
of Ref. [66], in which they consider a thicker shell for the
confining region of a given condensate. By following this
approach, we can verify that the single-particle radial en-
ergy excitation (ground to first-excited states), in energy units
h̄2/(MR2), is given by ER = 3π2/(2δ2). Correspondingly, in
the same units, the estimated absolute value of the energy
obtained from the nonlinear quartic interaction term, for each
species i with scattering lengths aii, with the condensed parti-
cles in the ground-state level, is given by I = 3Ni|aii|/(4Rδ).
Therefore, for I � ER, we need δ � 2π2R/(Ni|aii|). This
indicates the strict range of validity of our reduction from
3D to the hard 2D sphere, which can be accomplished by
controlling the two-body scattering lengths and the number of
atoms. The two-body inter- and intraspecies interactions can
be written as dimensionless parameters by γi j ≡ gi jNj/R3 =
4πNj (ai j/R), in which it was included the density dimension
(1/R3) and the number of atoms, Nj . In our case, the above
estimation for the 2D reduction is given by δ � 8π3/|γi j |.
To bring this estimate to the realistic values of the physics
parameters, we first note that the two-body interactions ai j

can be tuned by using Feshbach resonance mechanisms, with
its absolute value varying from almost zero to very large
values as 100a0, where a0 is the Bohr radius. On the bubble
dimensions, according to Ref. [71], the radial sizes R can be
of the order of 1 mm or even larger, with the bubble thickness
Rδ being of the order of few μm. For instance, let us assume
|ai j | ≈ 100a0, with R ≈ 100 μm ≈ 2 × 106a0. In this case,
|γi j | = 4πNj |ai j |/R ∼ 2πNj × 10−4, which should be within
the covered range of |γi j | values to be considered for the

strict validity of the 2D reduction that we are assuming. As
realistic values for the thickness are of the order of few μm,
we can take δ ∼ 10−2 → 10−3. So, a 3D treatment may be
required only when very large values of γi j are considered. In
such a case, our 2D approach is expected to provide a good
approximation.

By assuming R to be our length scale, with the time unit
given by MR2/h̄, with the states ψi=1,2 ≡ ψi(�, t ) normalized
to one, the original nonlinear Schrödinger equation is reduced
to the following dimensionless coupled equation:

i
∂ψi

∂t
=
[

1

2
L2 +

∑
k=1,2

(
γik|ψk|2

)]
ψi, (1)

where L ≡ −i[êφ
∂
∂θ

− êθ
1

sin θ
∂
∂φ

] is the dimensionless
angular-momentum operator (êφ and êθ being, respectively,
unit vectors along the azimuthal φ and polar θ directions),
with

L2 ≡ −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ
L2

z

]
, (2)

where L2
z ≡ − ∂2

∂φ2 . With the total two-component wave-
function �(�, t ) ≡ �[ψ1, ψ2] normalized to the number of
atoms N , such that

∫
d�|�(�, t )|2 = N1 + N2 ≡ N , the

functional energy corresponding to (1) is given by

E [ψ1, ψ2] =
∑

i

Ni

N

∫
d�

[
|Lψi|2

2
+
∑

j

γi j

2
|ψi|2|ψ j |2

]
.

(3)

The inter- and intraspecies two-body interactions, respectively
γi j and γii, in our approach, are assumed that in general can be
repulsive (>0) or attractive (<0), with possible static and dy-
namical solutions being considered. Let us consider initially
the nonperturbed stationary solutions of Eq. (1), normalized
to one, with chemical potentials μi, as given by

ψi0 ≡ ψi0(θ, φ, t ) = fi(θ )√
2π

ei(siφ−μit ), (4)

in which the φ dependencies are assumed with given charges
si ∈ Z, defined as the initial vorticity of the components i,
which yields

〈Lz〉i = −i
∫

d�ψ∗
i

∂ψi

∂φ
= si

∫ π

0
dθ sin θ | fi(θ )|2 = si, (5)

such that when nonzero can create vortices on the sphere.
It is worth to stress that si �= 0 affects the fi(θ ) boundary
condition, due to the 1/ sin2 θ Laplacian term, implying in
fi(π ) = fi(0) = 0 for si �= 0.

The stationary solutions of the linear part of Eq. (1) (when
γik = 0) are the well-known spherical harmonics Y�i,si (θ, φ)
(�i = 0 → ∞, −�i � si � �i) in which the associated Leg-
endre functions P�i,si (θ ) are the solutions in the θ variable.
Therefore, as we are considering the interactions, with γik �=
0, we can generate a multiplicity of stationary solutions for
a coupled system, which emerge from the linear ones. These
nonlinear solutions can be continued by increasing the nonlin-
earity of the system.

033318-3



ANDRIATI, BRITO, TOMIO, AND GAMMAL PHYSICAL REVIEW A 104, 033318 (2021)

Within our aim to follow the simplest solutions and learn
about their stability, as well as the vorticity of these states
when considering opposite values of the azimuthal quantum
number si (which can be of interest in experimental setups),
we start by considering the nonvorticity case, in which si = 0.
For that, we first notice that the spherical harmonic state with
�i = 0, simply given by the constant 1/

√
4π , is the ground

state of the linear part and also a stationary state of the full
nonlinear problem. Although it is not necessarily the ground
state of the mixture, as we should consider the miscibility
of the coupled system through the intra- and interspecies
interactions. In this regard, we can split the possible nonlinear
stationary solutions of (3) into two distinct cases related to
the miscibility of the mixture. More precisely, by follow-
ing a simple energetic consideration as given in Ref. [20],
comparing the nonlinear energy contribution of a complete
miscible configuration, with a complete immiscible one, in
which the two species are not interacting (but constrained
within the same total volume), one can show that the immisci-
ble configuration (g12 >

√
g11g22) provides the lower energy.

However, this analysis does not provide an exact relation at
which the system becomes unstable. For that, a more detailed
stability analysis is required, in which the trap geometry and
kinetic-energy term can also be relevant. This will be shown
in the present case, where we have the confinement region on
a spherical surface.

In Sec. III we explore the stability of the uniform state to
exemplify our scheme in a full analytical case without vortic-
ity. In Sec. IV, the approach is applied to the hidden-vorticity
case, where we consider the �i = 1 solution for the linear part,
with si = ±1.

The stability of these states is studied by assuming they are
submitted to infinitesimal time-dependent perturbations uiν ≡
uiν (θ, φ) and viν ≡ viν (θ, φ), with oscillating modes ων , with
perturbed solutions given by

ψi(θ, φ, t ) = ψi0 + [uiνe−iων t + v∗
iνeiω∗

ν t ]ei(siφ−μit ). (6)

By considering a linear stability analysis, uiν and viν will
also be associated to integer quantum numbers ν, which are
representing the perturbation modes being considered as su-
perposition to the stationary states.

III. HOMOGENEOUS NONVORTICITY CASE

Let us first consider the Bogoliubov modes on top of ho-
mogeneous states with no vorticity by following Refs. [51,80]
such that si = 0. By looking at the solutions of the linear
part of Eq. (1), we notice that they are given by the usual
Legendre polynomials P�0 (cos θ ) that are eigenfunctions of L2

with eigenvalues �0(�0 + 1), with 〈Lz〉i = 0. As instructive in
the present section, for the stationary solutions we consider
the simplest ground-state �0 = 0, such that fi(θ ) = 1/

√
2 in

Eq. (4), which also reduces the nonlinear term to a constant,
given by the binary interactions. Next, in order to probe the
stability of these solutions under small perturbations, in our
analytical approach we assume the perturbations are given
by eigenfunctions of the angular-momentum operator L2 and
Lz; namely, the spherical harmonics, Y�,m ≡ Y�,m(θ, φ), with
(�, m) being the corresponding quantum numbers. Therefore,
with the full angular dependence of the perturbation expanded

in spherical harmonics, considering in Eq. (6) si = 0, with
ν ≡ � and the frequency oscillating modes given by ων = ω�,
we have

uiν (θ, φ) ≡ ui�Y�,m, viν (θ, φ) ≡ vi�Y�,m. (7)

The oscillating modes are assumed in general as complex
quantities, ω� ≡ Re(ω�) + iIm(ω�), such that stable solutions
imply Im(ω�) = 0 for all possible values of �. By replacing
(6) with (7) in (1), followed by a linearization, which retains
only the first-order terms of ui� and vi� in the nonlinear part,
we obtain the respective BdG coupled equations [81]. Defin-
ing �̃2 ≡ �(� + 1) to simplify the following formalism, from
Eqs. (1), (6), and (7), we obtain

μi =
∑

k=1,2

γik

4π
,

0 =
(

ω� − �̃2

2

)
ui�e−iω�tY�,m −

(
ω∗

� + �̃2

2

)
v∗

i�eiω∗
� tY ∗

�,m

−
∑

k

γik

4π

{
(uk� + vk�)e−iω�tY�,m + c.c.

}
, (8)

in which the expression for μi could be directly verified from
Eq. (1) by considering the normalization of the stationary
solutions. The linear independence of e−iω�t and eiω∗

� t in (8)
implies in two separate equations, leading to a relation be-
tween ui� and vi�,(

ω� − �̃2

2

)
ui� = −

(
ω� + �̃2

2

)
vi� =

∑
k=1,2

γik

4π
(uk� + vk�),

with the solution for the oscillating modes given by

ω2
�,± = �̃2

2

[
�̃2

2
+ γ11 + γ22 ±

√
(γ11 − γ22)2 + 4γ12γ21

4π

]
.

(9)

As a general outcome from the above, we note that the
solutions become unstable when assuming overall attractive
interactions, such that the second term within the square
brackets is negative, with absolute value larger than �(� +
1)/2. In our following approach along this work, we are
assuming that γ12 = γ21, implying that the particle numbers
are the same for both species (N1 = N2), considering that
g12 = g21 and both particles have the same mass. For the
intraspecies interactions, we are assuming γ11 = γ22, which
can be easily satisfied by altering the two-body scattering
lengths using Feshbach resonance techniques [8]. Therefore,
we obtain

ω2
�,± = �(� + 1)

2

[
�(� + 1)

2
+ γ11 ± |γ12|

2π

]
. (10)

In this case, the interspecies interaction γ12 being attractive or
repulsive is not relevant because the results related to stability
should be the same. The fact that the results do not depend on
the sign of γ12 is related to the simple homogeneous spherical
symmetry we are considering. Besides that, for γ11 > 0 only
the minus sign branch can be unstable subject to the condition
|γ12| > γ11 + π�(� + 1). Another point is that, for γ11 < 0,
we can only have a small stability branch if the kinetic-energy
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FIG. 1. The stable and unstable regions are represented for γ12

versus γ11, indicating the miscible and immiscible phase regions,
respectively. In panel (a), for γ11 = γ22, the stable regions are right
below the line modes with � = 1, 2, and 3; whereas, (b) for γ11 =
−γ22, they are inside circles. All quantities are dimensionless, with
units defined in the text.

term �(� + 1)/2 is dominating the term inside the square
brackets of (10).

Another simple possibility occurs for γ11 = −γ22 in
Eq. (9), which will result that the oscillating modes become
independent of the signs of both intra- and interspecies inter-
actions (γ11 and γ12) given by

ω2
�,± = �(� + 1)

2

⎡
⎣�(� + 1)

2
±
√

γ 2
11 + γ 2

12

2π

⎤
⎦. (11)

In this case, the stability frontiers for each perturbation mode
� are circles with radius π�(� + 1) due to the square brackets
term.

In both cases given by Eqs. (10) and (11), the stable and
unstable regions are represented by diagrams of γ12 versus γ11

in the two panels of Fig. 1, in which the miscible phases are
identified as stable regions.

The present homogeneous case, with the stationary so-
lution in the ground state, is quite simple, as verified by
the corresponding chemical potential given by Eq. (8), such
that it serves the purpose to clarify the approach we are
going to consider for the nonhomogeneous case, with vor-
ticity (in which we assume si �= 0). Within both conditions,
γ11 = γ22 > 0 [Fig. 1(a)], given by Eq. (10), and γ11 = −γ22

[Fig. 1(b)], given by Eq. (11), the instabilities are prescribed
by the threshold for the imaginary frequency modes, which
are, respectively, given by

Im(ω�,−) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

±[ �̃2

4π

(|γ12| − γ11 − π�̃2
)] 1

2

∣∣∣∣
γ11=γ22

±
[

�̃2

4π

(√
γ 2

11 + γ 2
12 − π�̃2

)] 1
2

∣∣∣∣
γ11=−γ22

.

(12)

However, we should notice that the second case (γ11 = −γ22)
is already contained in the first case, given the follow-
ing replacement: γ11 → 0 and γ12 → (γ 2

11 + γ 2
12)1/2. From

Eqs. (9)–(12), we can also verify that, given the nonlinear in-
teraction term, there is a critical upper value � = �max, which
contributes to Im(ω�,−). However, it should also be clear that
the lower-level modes with � < �max are already establishing
the instability of the system.

For simplicity, in the following we select the condition
γ11 = γ22 = 10, which is given by Eq. (10), for comparison

of the analytical with the full numerical results. In contrast
with the analytical results where we can explicitly select the
angular-momentum quantum numbers, in the numerical ap-
proach we start from the general perturbation form in Eq. (6)
and only factor out the azimuthal exponential part of the
spherical harmonics. This procedure then demands a dis-
cretization of the differential operator L2 in the θ coordinate,
which provides a general platform to also handle nonuniform
states, as will be needed in the next section to study vortices.
Consequently, within a numerical approach we have an arbi-
trary indexing ν of the states according to Eq. (6), which is
fixed provided that the imaginary part of the eigenvalues ων

are in decreasing order. More details of the BdG system in the
numerical approach are provided in the next section.

In Fig. 2, our results are shown for the imaginary spectrum,
in which the different instability modes are being explic-
itly identified. In Fig. 2(a), Eq. (10) is used and the modes
are indexed by their angular-momentum quantum number. In
Fig. 2(b), the numerical results are presented using numerical
diagonalization and the modes are sorted in decreasing order.
The critical values for γ12 at which the instabilities start are
given by |γ12|crit � 16.28, 28.85, 47.70, and 72.84 for the
unstable modes with � = 1, 2, 3, and 4, respectively. Clearly,
this shows that the geometry of the system can extend the
stability criterium beyond the g12 >

√
g11g22, as also verified

in the case of ring geometry [51].
Figures 2(a) and 2(b), with the analytical and numerical

results, respectively, show a notable agreement of both ap-
proaches. Nevertheless, in the numerical approach we cannot
separate explicitly the total angular-momentum numbers �,
since in this case no constraints are implied a priori for the
θ coordinate, providing us a general method applicable even
for nonuniform stationary states. Instead, we can only sort
all imaginary eigenvalues in ascending order, as mentioned
above. Despite this caveat, a correspondence is verified be-
tween the numerical levels of instabilities with the analytical
�-mode solutions, such that the overall results are identical.

In Figs. 2(c)–2(e), we also add three ground-state den-
sity plots as functions of θ , which are obtained numerically,
without constraining the species to be completely misci-
ble. Therefore, as the instability modes grow from zero, the
lowest-energy state enters an immiscible phase, and the over-
lap becomes smaller as the interspecies coupling γ12 grows.

The analysis of these results, obtained in a simple no-
vorticity full-analytical situation, is instructive to guide us in
the analysis of the instabilities that occur in vortex states.

IV. QUANTIZED VORTICES ON A BUBBLE

In our approach, we are assuming that both species
are initially with the same density, in the lowest nonin-
teracting stationary states �i = 1, and with opposite charge
vorticity between the components, given by s2 = −s1 = 1
in Eq. (4) [15]. Therefore, we are considering initially the
states within a complete miscible configuration and hidden
vorticity, where by “hidden” we mean that there is no net
angular azimuthal momentum despite each species having
a single charged vortex. As mentioned right after Eq. (4),
this choice s1,2 = ±1 implies that f j (θ ) must vanish at the
poles to avoid divergences in the kinetic energy. Therefore,
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FIG. 2. In panel (a), the imaginary frequency mode values [posi-
tive branch of Im(ω�,−), for � = 1, 2, 3, and 4, given by Eq. (12)] are
shown as functions of the interspecies interaction γ12, by considering
γ11 = γ22 = 10. In panel (b), the numerical solutions for the maxi-
mum values of Im(ων ), given by (6), show the exact correspondence
with panel (a), with the legend indicating the order of dominance
of the modes. Correspondingly, the precise ground-state densities
| f j (θ )|2 (θ in rad) for both species j = 1 (dashed lines) and j = 2
(solid lines), are shown in panels (c)–(e) for three specific values
of γ12 (indicated at the top), without constraining the solutions to
a uniform miscible state. Concomitantly to the appearance of the
instabilities of miscible uniform state, the actual ground state enters
an immiscible phase. All quantities are dimensionless, with units
defined in the text.

homogeneous states are no longer allowed in such cases of
hidden vorticity (HV), which will restrict more the possibil-
ity of analytical solutions for the stationary equations and

for the BdG stability analysis, when considering nonzero
interactions.

From Eqs. (1), (2), and (4), we obtain the corresponding
stationary eigenvalue equation, with fi(θ ) being the eigen-
functions and μi the eigenvalues, given by

μi fi =
(

1

2
L2

si
+
∑

k=1,2

γik

2π
f 2
k

)
fi

= −1

2

d2 fi

dθ2
− cot θ

2

dfi

dθ
+ s2

i fi

2 sin2 θ
+
∑

k=1,2

γik

2π
f 2
k fi,

(13)

in which we are defining the dimensionless operator L2
si

as
the squared angular-momentum operator L2 given in Eq. (2),
after replacing the L2

z operator in favor of the corresponding
azimuthal quantum number, which is s2

i in this case. For
general solutions of the above nonperturbed stationary equa-
tion, as considering different possible interactions γi j , which
appear in the nonlinear coupling term, we found appropriate
to apply numerical techniques, particularly by taking into
account the stability analysis which will be followed with
small time-dependent perturbations. Because the correspond-
ing linear counterpart of Eq. (13) has analytical solutions
which are given by the associated Legendre functions, the
numerical solutions are obtained starting with an analytical
continuation from noninteracting case to arbitrary interacting
parameters γi j .

Another relevant aspect is that, in our approach, the initial
condition is given by a complete mixed configuration of the
two species. By considering that, in the following, we intro-
duce a variational solution analysis for HV states, which will
be compared with the corresponding full numerical results.

A. Variational treatment—homogeneous case

For a variational solution, we consider here the vorticity
case with s1 = −s2 = 1, for which the lowest level provided
by the linear solution is given by � = 1. Therefore, for such
a homogeneous case, we assume the corresponding linear
solutions fi = √

3/4 sin θ being identical for both species
and modified by a variational parameter β, such that f 2

v =
λ(sin θ )β , with λ given by the normalization of fv . This varia-
tional solution is obviously limited to β > 0, in order to have
a normalized wave function. With the above assumptions,
the nonlinear inter- and intraspecies interaction parameters
can be replaced by a single parameter γ ≡ γ11 + γ12. The
component wave functions are given by ψv ≡ ψ1 = ψ2 =√

1/(2π ) fv (θ ), where fv ≡ fv (θ ) = [λ(sin θ )β]1/2 are nor-
malized such that∫

d�|ψv|2 = λ

∫ π

0
dθ (sin θ )β+1 = λJ (β ) = 1, (14)

from where we have an integral definition for J (β ), with the
following properties (β > 0):

J (β ) = β

β + 1
J (β − 2),

dJ (β )

dβ
=
∫ π

0
dθ (sin θ )β+1 ln (sin θ ). (15)
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FIG. 3. In terms of the summed interaction parameters γ ≡
γ11 + γ12 (with γ11 = γ22), in panel (a) we have the minimization
variational parameter β. In panel (b), an almost perfect agreement
between variational and exact-numerical results are shown for the
energies and chemical potentials. In both panels (a) and (b), the
corresponding attractive asymptotic results are shown in the insets.
All quantities are dimensionless, with units defined in the text.

With the above, the total energy (3) can be written as a func-
tion of γ and β:

E (γ , β ) = (β + 2)2

8β
+ γ

4π

J (2β )

[J (β )]2

= (β + 2)2

8β
+ γ

8π

(β + 1)2

�(2β + 2)

[
�(β + 1)

�
(

β

2 + 1
)
]4

, (16)

where the nonlinear term was expressed in terms of the well-
known gamma function �(ζ ) [which is an extension of integer
number factorial �(n) = (n − 1)!]. Therefore, by minimizing
E (γ , β ) for the parameter β, we obtain a relation between γ

and the variational β, such that we have also the correspond-
ing minimized energies, given as Evar (β ). The results of this
variational procedure are displayed in the Fig. 3. In Fig. 3(a)
we show the functional relation between the variational pa-
rameter β and the interaction parameter γ = γ11 + γ12, and in
Fig. 3(b) we present the variational results for the energy and
chemical potential as functions of γ , together with the exact
numerical results. As verified, the variational results provide
the almost exact solutions, even for very large nonlinearities.

The chemical potential, also shown, can be obtained directly
from Evar (β ),

μvar (β ) = 2Evar (β ) − (β + 2)2

8β
. (17)

In case of attractive overall interactions (γ11 + γ12 < 0) we
observe in Fig. 3(a) that the minimization of the energy will
correspond to increasing values of β. To clarify the limit
for large negative γ , we apply in Eq. (16) the well-known
Stirling’s formula, derived for real positive variables z � 1
(shown to be valid even for relatively low values of z [82]),
given by �(z + 1) ∼ √

2πz(z/e)z. With this expression, for
β � 1,

(β + 1)2

�(2β + 2)

[
�(β + 1)

�(β/2 + 1)

]4

= e

√
1

2π

(2β + 2)2(2β )(2β )

(2β + 1)(2β+3/2) ∼ e

√
β

π

(
2β

2β + 1

)2β

=
√

β

π
. (18)

By replacing (18) in (16), in the asymptotic region, the varia-
tional energy obtained for γ < 0 is given by

E (γ , β ) ∼ β

8
− |γ |

8π

√
β

π
. (19)

The minimization of the energy will give us βmin =
|γ |2/(4π3), with the corresponding negative energy going
asymptotically as −βmin/8. By removing the β dependence
for asymptotically large negative interactions, we obtain the
energy and chemical potential as

E (γ ) ∼ − |γ |2
32π3

, μ ∼ −3|γ |2
32π3

. (20)

We should also observe that the corresponding variational
densities, given by | fv (θ )|2 = (sin θ )β/[2πJ (β )], goes to a
Dirac-δ function representation located at π/2 when β → ∞.
This is being represented in Fig. 4(a) for a few values of
the interaction parameter γ ≡ γ11 + γ12, in which variational
results identified by the corresponding values of β are being
compared with exact numerical results. The results for the
densities are quite representative of the deviations between
exact and variational results (deviations which are partially
hidden in the observables as energy and chemical potentials).
Therefore, to enhance the deviation between variational and
exact results, the density peaks are shown in Fig. 4(b) as a
function of γ .

B. Bogoliubov–de Gennes stability analysis

Once verified, the nonperturbed stationary solutions, their
stability is probed by considering the time-dependent analysis
with small perturbations. Due to the strict phase dependence
of φ for the stationary state ψi0 in Eq. (4), it is convenient
to follow by expanding the perturbed states in an angular-
momentum basis, as done in Ref. [81]. By separating the
azimuthal dependence φ as a phase with quantum number
m, let us consider in Eq. (6), the infinitesimal time-dependent
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FIG. 4. In panel (a), considering four values of γ , | f (θ )|2 vari-
ational results (with β indicated) are being compared with the full
numerical ones. In panel (b), the density peaks [1/J (β ), for the vari-
ational case] are shown as functions of γ ≡ γ11 + γ12 (γ11 = γ22).
All quantities are dimensionless, with units defined in the text.

perturbations with the coefficients uiν , viν replaced by

uim(θ, φ) ≡ uim(θ )eimφ, v∗
im(θ, φ) ≡ v∗

im(θ )e−imφ. (21)

By factoring the azimuthal dependence, in the next, we follow
by defining uim ≡ uim(θ ) and vim ≡ vim(θ ). The correspond-
ing BdG equations, which can be solved numerically for the
given integers m ∈ Z, can be derived by substituting the coef-
ficients defined by Eq. (21) into the corresponding differential
nonlinear equation [81].

From that, by considering the chemical potentials μi, with
the corresponding eigenfunctions fi(θ ), as given in Eq. (13),
the corresponding set of coupled equations for (u1, v1, u2, v2)
is given by the following BdG matrix:⎛
⎜⎜⎝

D+
1 α11 α12 α12

−α11 −D−
1 −α12 −α12

α21 α21 D+
2 α22

−α21 −α21 −α22 −D−
2

⎞
⎟⎟⎠
⎛
⎜⎝

u1

v1

u2

v2

⎞
⎟⎠ = ω

⎛
⎜⎝

u1

v1

u2

v2

⎞
⎟⎠. (22)

In the above, we are defining αi j ≡ γi j fi f j/(2π ) and D±
i ≡

(L2
si±m)/2 − μi + (2γii f 2

i + γi j f 2
j )/(2π ) (i �= j). By giving

the values of m and si, this system can be solved numer-
ically. Also, by considering Eq. (2), if one looks for a
simplification of the matrix elements, we can identify the
following relations between the operators D±

i : One, which is
in general given by D+

1 − D−
1 = D−

2 − D+
2 = 2m/sin2 θ ; and

another, valid for γ11 = γ22, γ12 = γ21: D+
1 − D−

2 = D−
1 −

D+
2 = μ2 − μ1 = 0. With these relations, the four operators

appearing in the diagonal part of (22) can be reduced to

just one operator such that D−
1 + ω = D+

1 + ω − 2m/sin2 θ ,
D+

2 − ω = D+
1 − ω − 2m/sin2 θ , D−

2 + ω = D+
1 + ω.

Despite the general analytical treatment presented so far for
the BdG equations, we restrict the analysis to the stability of
a mixture that was initially in a fully miscible configuration,
with γ11 = γ22 and f1(θ ) = f2(θ ) ≡ f (θ ). Within the present
assumptions, with s1 = −s2 = 1, the numerical approach re-
quires first to solve Eq. (13), and then use the resulting f (θ ) in
Eq. (22). In Sec. III we have a particular case with s j = 0 and
fi(θ ) constant, with the given numerical results for γ11 = 10
shown in Fig. 2(b).

The numerical solution of Eq. (13) is determined by us-
ing the Newton conjugate-gradient (NCG) method, which is
suitable for analytical continuation from a known solution
for a particular case [83]. The starting point is taken from
the noninteracting case, which has the associated Legendre
functions as general solutions, Ps

� (cos θ ), with s = ±1 and
� = 1, corresponding to the lowest energy level providing the
HV condition, which also implies that μ = 1. Nevertheless, it
is worth emphasizing that we have a full spectrum also when
considering higher angular momentum � that can be obtained
using this analytic continuation procedure.

V. STABILITY AND DYNAMICS OF HIDDEN
VORTICITY STATES

In this section, we investigate the stability of the cou-
pled stationary states (with their corresponding vorticity
established by s1 = −s2 = 1) under small time-dependent os-
cillatory perturbation as given by (21). The instabilities are
being verified for different modes of perturbations, which are
numerically identified by the quantum number m appearing in
(21). Therefore, systematically, by solving the corresponding
GP formalism, we obtain the lowest-order unstable modes. As
considering the symmetry of the solutions, which are identical
for positive and negative values of m, in our following analysis
we are just referring to the positive values, with m starting
from zero. Concerning our general study for the stability of the
system, we are summarizing the results in the diagram shown
in Fig. 5, in which the phase space is defined by the inter- and
intraspecies interactions, with γ11 = γ22. In this diagram, for
the intra- and interspecies interactions, we are assuming both
possibilities that they can be repulsive γi j > 0 or attractive
γi j < 0, varying from −50 up to 50, with the only restric-
tion that the intraspecies interactions are identical for both
species. The diagram indicates the stable and unstable regions
with the corresponding predominant modes, which is the one
with the largest imaginary part, following the same procedure
as we have considered for the homogeneous case shown in
Fig. 1. However, by considering the inhomogeneous case, it is
worth emphasizing the very different behavior depending on
whether some of the interaction parameters can be negative.
In this case, the diagram is indicating the instability region,
considering the dominant unstable mode, from m = 0 up to
m = 9. This highlights important features, since we can see
how many modes simultaneously can destabilize the system,
as well as their magnitude, which is important by analyzing
the full numerical solution of the time-dependent problem.

In general, as verified in Fig. 5, many modes start
to compete as |γ12| increases, even more rapidly for the
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FIG. 5. Stability diagram, in a phase space defined by the inter-
species γ12 versus the intraspecies interactions γ11 = γ22, for |γi j | <

50. The dark area is the stable region, with the unstable ones domi-
nated by perturbation modes with m up to 9 (as indicated). In all the
cases, the vorticity is given by s1 = −s2 = 1. The γi j interactions are
dimensionless, with units defined in the text.

attractive region. Moreover, it is also important to note from
this diagram that the binary system can be stable mainly for
γ11 > 0, with repulsive and attractive interspecies γ12 within
some ranges. Besides that, we can also observe a small stable
interval for γ11 < 0, when the interspecies absolute value |γ12|
is comparable with γ11, which is related to the necessary en-
ergy at which we have the kinetic energy dominating, together
with the interplay between attractive and repulsive nonlinear
interactions. As in the other regions, which are stable under
small time-dependent perturbations, we have confirmed the
stability of this particular region. For example, by considering
γ11 = −2.0 with γ12 = 0, the corresponding state remains
stable for a larger time interval, going until t = 100, which
we found enough for any manifestation of instability.

In Fig. 6 our results are concentrated in two specific cases
in order to help elucidating the results shown in the diagram
and expose the relevance of the different modes to generate the
instabilities. In these two plots, we are considering the partic-
ular behavior of the maximum values of the unstable modes,
for fixed values of one of the interactions. In the Fig. 6(a) we
fix the intraspecies interactions, with γ11 = 10, with the inter-
species interaction γ12 varying in a larger interval than the one
shown in Fig. 5, from −50 up to +100. The stable regions are
clearly identified as those for |γ12| � γ11 = 10, in this case,
with the first dominant unstable mode being for m = 2. The
competing behavior of all the unstable modes, up to m = 5,
are shown in this panel, at which the dominant modes (for the
instability) are those with the largest values for the Im(ωm).
In Fig. 6(b) we present the corresponding spectrum for the
case γ12 = 0, in which the system is uncoupled such that both
species 1 and 2 have the same spectrum, considering that we
are assuming γ11 = γ22. This figure, more than indicating the
stable regions shown in Fig. 5, also clarifies how the different
modes contribute to the instability.

From the initial form of the perturbations, given by
Eqs. (6) and (7), we interpret imaginary values of ω as an

FIG. 6. The above two panels (a) and (b) refer to the imaginary
spectrum of the BdG equations, given by the Im(ωm ), with unstable
modes up to m = 5. They correspond to two lines of Fig. 5. Panel
(a) is obtained by varying γ12 with fixed γ11 = 10; with panel (b),
by varying γ11 with fixed γ12 = 0. As in Fig. 5, the vorticity is for
s1 = −s2 = 1. All quantities are dimensionless, with units defined in
the text.

exponentially growing perturbation, which in turn shows that,
after some evolution period, the perturbations should not be
assumed small in comparison with the condensate wave func-
tions (4), as initially assumed to obtain the BdG equations.
This implies that any initial perturbation different from zero
will drastically change the condensate state after a sufficiently
long time. To analyze such an effect, we just use the respective
stationary state obtained numerically as the initial condition
in the full time-dependent problem represented by Eq. (1),
whereas any exponentially raising perturbation is triggered by
the numerical noise. As a main measure to track both species
density behavior, we introduce a functional for the miscibility
of both time-dependent densities |ψi|2 ≡ |ψi(θ, φ, t )|2, de-
fined by

�[ψ1, ψ2] ≡ [
∫

d�|ψ1|2|ψ2|2]
2∫

d�|ψ1|4
∫

d�|ψ2|4 , (23)

which is one for complete overlap of the densities (misci-
ble mixture); reducing to zero when the coupled system is
completely immiscible. In the following we present our main
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FIG. 7. Time evolution of the two-species overlap for a hidden
vorticity mixture state with s1 = −s2 = 1 and γii = 10, in a stable
(γ12 = 8, with dashed line) and an unstable (γ12 = 12, with solid
line) region. At t ≈ 48, with γ12 = 12, the miscibility suffers a short
pulsed change from the initial condition, which is verified to be
periodic in a longer-time interval (see Fig. 8). The radial density 3D
representation is for the initial condition of | f1(θ )|2 with γ12 = 12,
in which the phases around the surface are mapped to colors (the
corresponding 1D plot of | f1(θ )|2 is in Fig. 4, with γ11 + γ12 = 22).
All quantities are dimensionless, with units defined in the text.

results, exemplified by the case with intraspecies interactions
fixed at γ11 = γ22 = 10. For the interspecies interaction, we
present results for repulsive and attractive cases. The general
diagrams presented in Fig. 5 indicate that similar features
could be verified for other values of the interactions.

In the next section, our main results are illustrated with the
analysis of the dynamics of few representative cases consid-
ering repulsive and attractive interspecies cases. We mainly
focused on the cases that have repulsive intraspecies interac-
tions.

A. Dynamics of unstable states—repulsive interspecies case

The result for time evolution of the miscibility functional
(23) is presented in Fig. 7, considering a time interval t < 100,
in which we are comparing the time evolution of two states
subject to different stability conditions. As verified, when
using γ12 = 8 the overlap between the two states remains
complete. However, an unstable branch appears for γ12 > 10.
As can be noted, in agreement with the BdG prediction, for
the γ12 = 12 case the overlap changes drastically near t ≈ 48,
indicating that indeed some perturbation became relevant to
the condensate wave function, growing from initial numerical
finite precision. Meanwhile, there is no change in the den-
sity profile for both species for γ12 = 8, as expected since
it is stable against small perturbations. Near the final time
observed, t ≈ 90, the overlap starts to change again after a
period remaining in the initial value. A sketch of the initial
state is also provided as a surface plot where the radius of
the surface was taken as | f1(θ )|2, which is equal to | f2(θ )|2,
but their phases have different orientations as s1 = −s2 = 1,
which are displayed in colors over the surface. For a more
complete picture, we have verified the time evolution of the
miscibility for a longer time interval, shown in Fig. 8.
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FIG. 8. For the same conditions given in Fig. 7, we show the
corresponding long-time evolution (up to t = 400) of the two-
component angular momenta 〈Lz〉i (upper panel), with the associated
density overlap � (lower panel). A clear periodic behavior is verified
for both. All quantities are dimensionless, with units defined in the
text.

Analyzing Fig. 7 carefully, for this initial condition we see
that after a brief period, the overlap functional � becomes
smaller than 1, approximately for t ∈ [45, 65]; it stands for
a long period in its initial value, up to t ≈ 92, when it starts
to decrease again. Therefore, the question naturally arises of
whether this behavior is periodic. In Fig. 8, we confirm the
periodic behavior not only for �, but also for the angular
momentum of both species in a long-time dynamics. Never-
theless, the period of the angular momentum of each species
is twice the period of � and it reveals an interesting feature as
the species exchange their momenta between ±1 as � returns
to 1.

The oscillating period inferred from Fig. 8 was τ = 47 ± 1
for �. To obtain the period, we used the � < 0.2 points as
suggested by the minimum in Fig. 7, and computed time
instants where the derivative vanished, from which we com-
puted the average and standard deviation (explaining the ±1 in
τ ). However, it is worth emphasizing that this value depends
on how the instability is triggered. In our case, it is due to the
finite precision of numerical calculations. In Fig. 9 we pro-
vide some snapshots of the density at t = 55 of both species
illustrated by colors in a spherical shell. As can be seen, not
only the BdG prediction can be confirmed as the instability
mode grew and changed completely the initial density profiles
that were independent of φ angle but also the density for both
species breaks up in 2 disconnected pieces along the φ angle
in the spherical shell, which corroborates with a superposition
of modes with spatial frequency m = ±2. Specifically in this
case, corresponding to γ12 = 12 in Fig. 6(a), only m = 2 con-
tributes, explaining why we should expect only two pieces in
the dynamical breakup, although it is not a rule when more
than one mode is unstable.

033318-10



STABILITY OF A BOSE-CONDENSED MIXTURE ON A … PHYSICAL REVIEW A 104, 033318 (2021)

FIG. 9. Density plots for both species and average density at
t = 55 of the dynamics presented for γ12 = 12. Panel (a) displays the
images with z axis pointing outwards the page while panel (b) pro-
vides a 90◦ rotation with respect to panel (a), with the y axis pointing
into the page. All quantities are dimensionless, with units defined in
the text.

Finally, we explore another case with large interspecies
interaction in real-time evolution, using γ12 = 95 still for
γ11 = γ22 = 10 in Fig. 10. The two first columns refer to
the first species densities, while the last two correspond to
the second, in different view angles as denoted by the axes
legend at the bottom. At the initial instant, both species share
the same density profile, which can also be seen as a 1D
plot in Fig. 4, vanishing at the top due to the HV condition.
In a second instant t = 3.85 in Fig. 4(b) we already see the
formation of four localized peaks around the sphere along φ

direction, although the contrast is not so prominent. In a third
instant t = 4.15 we clear the immiscibility of the mixture with
four localized and narrow peaks. The color scale showed for
each instant provides a quantitative comparison for the density
clustering of the four pieces.

There is a sharp contrast between the two cases evaluated
in Figs. 9 and 10 in the time elapsed until the unstable mode
becomes dominant, in the first case at t ≈ 48 and in the second
t ≈ 3.8. This is explained by the magnitudes of the imaginary
part of the BdG eigenvalues provided in Fig. 6, and the mode
will destabilize more rapidly as γ12 grows, although we cannot
expect any proportional relation because the initial numeri-
cal inaccuracy that triggers these modes is hard to estimate.
However, Fig. 6 points out that the region γ12 = 95 has many
competing modes while in γ12 = 12 only the m = 2 mode is
unstable, and in contrast with the periodic behavior observed
in the latter case, in Fig. 11 we can see that no clear pattern
can be detected. We attribute the unrecognizable pattern in the
time evolution as a consequence of many modes excitation.

B. Dynamics of unstable states—attractive interspecies case

The case of attractive interspecies interaction was also ex-
plored in our study, as shown in the diagram given in Fig. 5
and by the stability spectrum shown in Fig. 6. In contrast

FIG. 10. Density time-evolution for the coupled system with
m = 4 dominant unstable mode. The first two columns are for the
species 1, with the remaining two columns for the species 2, consid-
ering two visualization angles, as indicated in the graphical legends
at the bottom. The upper row (a) represents the two densities at
the initial stage t = 0 (when both species are completely mixed,
|ψ1|2 = |ψ2|2). The middle row (b) is for an intermediate time t =
3.85, with the system partially immiscible with four maxima being
distinguished already in the sphere. In the lower row (c), t = 4.15,
we have already a final complete immiscible configuration with the
density peaks well localized on the sphere, at different positions. The
interaction parameters are γ11 = γ22 = 10 and γ12 = 95, with the ini-
tial condition obtained by the lowest energy state with s1 = −s2 = 1.
The time instants are dimensionless, with units given in the text.

with the repulsive cases, when the two species are prone to
breaking down into immiscible pieces, the attractive inter-
action should maintain the overlapping densities as initially
prepared in the stationary state, as being energetically favor-
able. Therefore, they shall maintain the miscibility, with the
unstable modes indicating that it will not be uniform in the
azimuthal φ direction.

In Fig. 12 we provide an example of real-time evolution of
unstable HV state with γ12 = −34 and γ11 = γ22 = 10. Dur-
ing all the time observed, both species have complete overlap,
with � = 1. The instability starts growing drastically for
t � 7, being dominated by the m = 3 mode, which can also
be followed by looking at our diagrammatic representation
given in Fig. 5, corresponding to the largest imaginary part in
the BdG spectrum. More closely, the dominance of the mode
m = 3 for γ12 = −34 is also shown in Fig. 6. The dominance
of this mode implies in the densities being broken into three
pieces around the sphere. From the time instant t = 7, when
the densities start to be accumulated at different positions on
the sphere, we show snapshots of them at t = 7.6 and t = 8.0.
In the upper row, with |ψ1|2 = |ψ2|2, both densities are shown
by color-density plots. In the lower row, the full wave function
is represented by using a radial surface plot for the densities,
with a color mapping for the phase, with the z axis tilted.
The numerical solution could be evaluated up to t = 8.1, as
at this instant the condensate wave functions start to become
singular in the numerical grid, breaking the energy and norm
conservation. Despite the methods of visualization being
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FIG. 11. The time evolution for 0 < t < 20 is shown for (a)
〈Lz〉i and for (b) the overlap � of the two components considering
the unstable hidden vorticity state s1 = −s2 = 1 with γii = 10 and
γ12 = 95. A drastic variation is verified close to t = 4. In panel (c),
three different angle views of the density distribution are selected for
the species 1 at t = 16. All quantities are dimensionless, with units
defined in the text.

complementary, especially at t = 8.0 when the condensates
are about to collapse, the radial plot is more suitable to see the
three peaks. The two-species angular-momentum values 〈Lz〉i

are also provided for completeness, with both being zero at
the collapse instant.

In this case shown in Fig. 12, the attractive interspecies
interaction γ12 = −34 is dominating against the repulsive in-
traspecies one, given by γ11 = 10. Therefore, effectively, we
have an overall attractive interaction with the system collaps-
ing. Indeed, in the beginning we observe the instability of
the mode m = 3 which split the condensate into three pieces.
Next, after a short time interval, the effective attraction shrinks
the localized densities until the collapse.

VI. CONCLUSIONS AND PERSPECTIVES

Summarizing our main outcome, we provide a dynamical
stability study of a binary Bose-Einstein condensed mixture
trapped on the surface of a rigid spherical shell, exploring
the miscibility of the system with and without vortex charges.
For that, the initial stationary solutions are treated by using
the usual GP mean-field approach, within two possible con-
figurations. First, with both species within a homogeneous
nonvorticity mixture; next, when the initial configuration is
in the lowest noninteracting stationary states, with opposite
charge vorticity. The stationary solution study is supple-
mented by a variational analysis for the specific case in which
the nonlinear system is with both species at the lowest level
(� = 1) that allows the existence of hidden vorticity.

In our approach to explore the stability of the system, we
consider the Bogoliubov–de Gennes method, in which the
stationary nonlinear formalism is submitted to a linearization,
with small time-dependent perturbation modes. The analysis
of both the cases, with and without vortex charges, is followed
by computing the critical points at which the system becomes
unstable.

The relevance of the different modes to generate the insta-
bilities is being exposed in the sample results presented in the
panels of Fig. 6, which are obtained numerically for a large
range of repulsive and attractive interactions. From this kind
of analysis, a complete diagram is provided in Fig. 5, in the
phase space defined by the inter- and intraspecies interactions,
where we can verify the stable regions, together with the
dominating unstable modes. In all these cases, we assume
opposite charge vorticity in the lowest initial stationary states.

The study of the dynamics of the mixture is been repre-
sented by the time evolution of the miscibility, given by the
overlap of the densities, together with the angular-momentum
distribution of the two species. For this purpose, we se-
lect a few cases to characterize stable and different unstable
regimes. In the selected examples, where we kept fixed and
repulsive the intraspecies interactions, we illustrate the time
evolution of the coupled densities distributed in the bubble
surface, by considering immiscible and miscible regimes,
which are, respectively, given by repulsive and attractive in-
terspecies interactions.

In the given illustrations, where we fix the intraspecies
interaction to be repulsive, we observe that the dominant
instability mode determines the number of parts that the ho-
mogeneous state breaks down. As shown, for sufficient high
interaction, although the total angular momentum remains
conserved, the individual vorticity can be lost. In the case
of attractive interspecies interactions, we first observe the
existence of a stable region, which occurs due to the geometry.
Also verified in this attractive case, is the split of the system
according to the most unstable mode, before the occurrence of
the collapse.

Finally, we understand that the present study can be rele-
vant in order to establish initial parameters for experimental
tests and realizations, as well as for more involved theoretical
approaches in which the miscibility of different kind of par-
ticles can be modified by their specific characteristics. Apart
of possible experimental setup difficulties for realizations in
microgravity conditions, a perspective theoretical investiga-
tion should be to extend the present study to the case of
strongly mass-imbalanced mixtures, such as with 87Rb and
133Cs [85,86], which have been explored in cold-atom exper-
iments. In view of previous studies [47], binary systems with
strong mass differences are expected to impact on the results
we have presented, being of interest to verify how the stability
and density distributions are affected. Therefore, by consid-
ering coupled systems with identical masses, the immediate
possible applications of our analysis could be when consider-
ing binary mixtures of the same isotope with different internal
spin states, as being considered in Refs. [16,17], or in the
case of a mixture with two close atomic isotopes, as 85Rb and
87Rb, which should present similar results as those observed
for identical mass mixtures. Another unavoidable future inves-
tigation refers to energetic instabilities, expected to emerge in
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FIG. 12. Density plots |ψ1|2 = |ψ2|2, in the interspecies attractive case with γ12 = −34 and γii = 10, within a completely miscible
configuration (� = 1). Three time instants close to the collapse are shown: (a) t = 7.0, (b) 7.6, and (c) 8.0, with the instability dominated
by m = 3. In the upper row, they are mapped to colors on the sphere surface (central visualization at θ = ±π/2). The maxima are in three φ

positions, which are best verified in the lower row with the z axis tilted by 45◦, where the densities have a radial representation with the phases
mapped to colors. In panel (d), we have the two-species time evolution 〈Lz〉i close to the collapse. The initial condition is for the lowest energy
state with s1 = −s2 = 1. All quantities are dimensionless, with units given in the text. In the Supplemental Material [84], a movie illustrates
the corresponding full-time evolution of the density until the collapse.

the condensates with quantized vortices in spherical geometry,
which can be verified by considering a time-dependent dissi-
pation mechanism related to condensate interactions with the
thermal cloud.
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APPENDIX: NUMERICAL METHOD FOR
TIME EVOLUTION

The numerical approach to solve Eq. (1) involves a com-
bination of techniques. First, a split-step method is used to
separate the evolution of nonlinear and linear parts. Thus,
from (1), at an arbitrary instant, we take a function ζi ≡
ζi(θ, φ, t ) = ψi, which satisfies

∂

∂t
ζi =

(∑
k

γik|ψk|2
)

ζi. (A1)

The nonlinear part is propagated in small time steps with
direct exponentiation, since both species densities are consid-
ered frozen and treated as static potentials.

The linear part demands some care to handle the boundary
conditions at the poles. A suitable approach is to work on the

Fourier-transformed space in the φ direction, which simplifies
the Laplacian (2) for each mode in the series. Thus from ζi, we
introduce

ζi =
∑

k

eikφζ̃ik, (A2)

for the given time instant, whereas the Fourier weights ζ̃ik are
functions of θ and time. Thereafter, from the linear part of
Eq. (1) we have the following time-dependent equation for
each mode k

∂

∂t
ζ̃ik = −1

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− k2

sin2 θ

]
ζ̃ik . (A3)

Within this approach, we can now clearly introduce the
boundary conditions at the poles, which depend on the fre-
quency mode k along the φ direction as

ζ̃ik|θ=0,π = δ0,k,
∂ζ̃i0

∂θ

∣∣∣∣
θ=0,π

= 0. (A4)

Once the boundaries are set appropriately, the finite dif-
ferences Crank-Nicolson semi-implicit method was used to
integrate the equations for each mode k in Eq. (A3). After the
solutions are determined for the next step for the coefficients,
they are transformed back to the spatial φ coordinate.

In summary, the split-step method requires a time step and
a discretization grid, then Eq. (A1) is propagated half time
step, then the linear part is solved in Eq. (A3) for an entire
time step going forward and backward in the Fourier space
and, finally, the nonlinear part is propagated by another half
time step, with the initial condition taken from the resulting
linear part propagation.
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