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We consider the mass-imbalanced sensibility for the emergence of vortex patterns in the Bose-Einstein 
condensed binary mixture of rubidium-cesium (85Rb-133Cs), confined in quasi-two-dimensional harmonic 
traps, with one species linearly perturbed in one direction. Non-dipolar coupled species are chosen 
to highlight mass symmetry effects. We first analyze the condensed mixture in the unperturbed non-
rotating regime, where radial phase separation is verified in the immiscible regime, which occurs for large 
ratio between inter- and intra-species repulsive interactions. By going to the linear perturbed regime, the 
radial phase separation that occurs in the immiscible condition splits up with the two densities having 
their maxima at distinct positions. In the rotating regime of both unperturbed and perturbed cases, the 
minimum rotation is determined in terms of the inter-species interaction to observe vortex structures. In 
the immiscible regime a dramatic spatial interchange between the species is verified by increasing the 
rotation.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The first reported experimental realization of a Bose-Einstein 
condensate (BEC) mixture with two hyperfine spin states of 
87Rb [1], and the corresponding experimental observation of vor-
tices in this two-component hyperfine mixture [2], have motivated 
several other theoretical and experimental studies with BEC binary 
mixtures. Actually, following these works, it is been quite well es-
tablished the observation and several studies with binary BEC mix-
tures having different hyperfine states, different atomic isotopes, 
as well as different atom-atom or atom-molecular mixtures [3–16]. 
Further, coreless vortices are also observed in the three-component 
order parameter with F = 1, for sodium condensates [17]. More 
related studies on vortices and vortex lattices observations, with 
particular focus on atomic systems having magnetic dipole mo-
ments, in which properties of quantum ferrofluids emerge, can 
also be found in the recent review by Martin et al. [18], where 
they discuss analytic treatments based on the Thomas-Fermi and 
variational approaches, as well as full numerical simulations. As 
verified, even with single atomic species, the studies on generat-
ing vortices in dipolar condensates lead to the appearance of a 
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rich variety of vortex lattice structures [19]. In view of the actual 
experimental progress with ultracold dipolar atomic systems [14], 
one of the interesting aspects been considered on the properties 
of rotating dipolar mixtures, is the possibility for tuning the cor-
responding inter-species dipolar interactions [20]. The studies on 
vortex patterns in multicomponent BECs are also interesting due 
to different miscibility properties. Peculiar vortex structures can be 
verified in addition to the fundamental Abrikosov’s triangular lat-
tice [21], such as squared, striped, with domain walls, and rotating 
droplets [22–26]. When considering ring-trap geometry, the misci-
bility and stability requirements for binary atomic BECs with repul-
sive interactions was recently studied in Ref. [27]. More recently, 
within the investigations with binary mixtures of Bose-Einstein 
condensates, we noticed studies with massive core vortices [28], 
as well as the dynamics of vortex-bright-soliton spontaneous gen-
eration with small mass imbalance between the species [29].

The experiment with the 85Rb-133Cs mixture, reported of hav-
ing three distinct density distributions, depending on the relative 
atom numbers in each component of BECs [8], was further ana-
lyzed by using the mean-field theoretical model [30]. From this 
analysis, it was observed that weak perturbations are provided by 
the tilt in the magnetic dipole trap, due to larger inelastic three-
body losses, which affect the equilibrium density distributions, dis-
playing different miscibility or phase separations. The tilt in the 
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magnetic dipole trap, having small differences between the species, 
was applied in one of the transverse direction, implying in a corre-
sponding shift in the relative trap centers. Therefore, by applying a 
linear-trap perturbation, in addition to the harmonic trap in a cigar 
shaped trap, one can analyze the effect of the tilt in the magnetic 
dipole trap and corresponding density distributions. Further, one 
could also consider a linear-trap perturbation in two-dimensional 
coupled systems, to investigate the effect on the vortex structure 
patterns.

Motivated by a previous investigation with dipolar mixtures 
[20], in which a remarkable mass-imbalance sensibility was ver-
ified in the miscibility and vortex-pattern distribution of sym-
metric- and asymmetric-dipolar mixtures, the focus of the present 
paper is to study the mass-imbalance effect in the density phase 
separation and corresponding vortex pattern structure, by con-
sidering two non-dipolar species in which the mass symmetry 
effect can be more clearly evidenced by varying the associated 
two-body interactions. For that, in our study we select the non-
dipolar coupled mixture 85Rb-133Cs due to the actual interest and 
experimental possibilities. With non-dipolar binary system, the 
mass-imbalance sensibility can be highlighted with simple non-
perturbed and perturbed pancake-like traps. We should observe 
that, among the non-dipolar binary mixtures being studied in cold-
atom laboratories, one can consider atomic elements with small 
mass difference, as two isotopes of rubidium [1] or two isotopes of 
cesium [31] or with large mass difference, as the binary mixture 
85Rb-133Cs [8,9]. The first case, use to be investigated by model ap-
proximations where both species have identical masses [32]. How-
ever, in view of the observed mass-imbalance sensibility [20], we 
found appropriate to work with the second case where the mass 
difference cannot be neglected, such that relevant related proper-
ties on the miscibility and vortex structures can be pointed out. As 
verified, the more mass-symmetric BEC mixtures, as 87Rb-85Rb or 
the dipolar one 164Dy-162Dy, can show triangular, squared, striped, 
domain wall, and rotating droplets vortex-lattice structures regard-
ing to the ratio between inter- and intra-species contact interac-
tion. On the other hand, highly mass-imbalanced mixtures, such as 
85Rb-133Cs, are more likely to present radial vortex-lattice patterns 
in the quasi-2D pancake-like configuration.

Our analysis is performed for a pancake-shaped trap configura-
tion, with the trap frequencies ωx = ωy ≡ ωρ � ωz (aspect ratio 
λ ≡ ωz/ωρ � 1), in which the underlying three-dimensional (3D) 
system can be reduced to a two-dimensional (2D) one. The ef-
fect of a perturbation in the original pancake-like harmonic trap 
is verified by adding a linear shift of one of the species along the 
x-direction. In our study, we assume fixed and repulsive the intra-
species interactions, a11 = a22, varying the inter-species one, a12, 
from attractive to repulsive interactions, which will correspond in 
going from miscible to immiscible regimes of the mixture. The crit-
ical rotation frequencies to generate vortices in the coupled system 
are verified by introducing rotation in the trapped system. We have 
also verified the density distribution of the two species and how 
the dynamics of vortices is being modified by increasing the rota-
tion. Guided by a previous analysis [20], we understand that highly 
mass-imbalanced mixtures in non-perturbed harmonic trap and 
without rotation should present radially phase-separated distribu-
tions in the immiscible regime where the inter-species a12 is posi-
tive and larger than the repulsive intra-species ones, aii (i = 1 and 
2). After verifying the effect of the shift-perturbation in one of the 
trapped species (non-rotating case), we study the non-perturbed 
and perturbed rotating mixtures, in order to observe how the ra-
dial separations and vortex-pattern structure are affected by the 
mass asymmetry, with particular focus in the immiscible regime.

In the next Sect. 2, we have the mean-field approach applied 
to rotating binary mixtures in a pancake-like trap, which includes 
a discussion on miscibility properties. In Sect. 3, after a brief dis-
cussion on our numerical procedure, we present our main results. 
Finally, in Sect. 4 we have a summary with concluding remarks.

2. Mean-field model for rotating binary BEC

In our approach for the coupled BEC system, the two atomic 
species i = 1, 2 with masses mi are assumed with the same num-
ber of atoms Ni ≡ N , confined in strongly pancake-shaped har-
monic traps with fixed aspect ratios λ ≡ λi = ωi,z/ωi,⊥ = 10, 
where ωi,z and ωi,⊥ are, respectively, the longitudinal and trans-
verse trap frequencies for the species i. We further assume the 
intra-species scattering lengths are identical and fixed for both 
species, with a11 = a22 = 150a0 (a0 is the Bohr radius), such that 
the relative strength is controlled by the inter-species interaction 
a12. The coupled Gross-Pitaevskii (GP) equation is cast in a dimen-
sionless format, with energy and length units given, respectively, 
by h̄ω1,⊥ and l⊥,1 ≡ √

h̄/(m1ω1,⊥). By taking the first species as 
the reference in our unit system, in the next we have ω⊥ ≡ ω1,⊥
and l⊥ ≡ l⊥,1. Correspondingly, the space and time variables are 
such that r → l⊥r and t → τ/ω⊥ , when going from full-dimension 
to dimensionless quantities. Within these units, for simplicity we 
first adjust both trap frequencies as m2ω

2
2,⊥ = m1ω

2
1,⊥ , such that 

the dimensionless non-perturbed 3D trap for both species have the 
same expression given by

V i,3D(r) = 1

2
(x2 + y2 + λ2z2) ≡ V 0(x, y) + 1

2
λ2z2, (1)

where V 0(x, y) is the 2D non-perturbed harmonic oscillator. By 
adjusting the trap frequencies as above, we have no explicit mass-
dependent factor in the trap potential. Next, we also assume a 
large value for the aspect ratios λ, which allows us to reduce 
the original 3D formalism to a 2D one, by the usual factoriza-
tion for the 3D wave function, ψi(x, y, τ )χi(z), where χi(z) ≡
(λi/π)1/4 e−λi z2/2. In this case, the ground-state energy for the har-
monic trap in the z−direction is a constant factor to be added in 
the total energy. It is safe to assume a common mass-independent 
transversal wave-function for both components, with λi = λ, as 
any possible mass dependence can be absorbed by changing the 
corresponding aspect ratio. This approach for the reduction to 2D 
implies that we also need to alter the nonlinear parameters ac-
cordingly, as the integration on the z−direction will bring us a 
λ−dependence in the non-linear parameters. So, the correspond-
ing coupled 2D GP equation in the rotating frame is given by

i
∂ψi

∂τ
=

{−m1

2mi

(
∂2

∂x2
+ ∂2

∂ y2

)
+ V i(x, y) − 
Lz

+
∑
j=1,2

gij |ψ j|2
}
ψi, (2)

where ψi ≡ ψi(x, y, τ ) and ψ ′
i ≡ ψi(x′, y′, τ ) are the components 

of the total 2D wave function, normalized to one, 
∫ ∞
−∞ dx dy |ψi|2 =

1. Lz is the angular momentum operator with 
 the corresponding 
rotation parameter (in units of ω⊥), which is common for the two 
components. The two-body contact interactions, which are related 
to the scattering lengths aij for the species i, j = 1, 2 (where aij =
a ji ) are given by

gij ≡ √
2πλ

m1aij N j

μi jl⊥
, (3)

where μi j ≡ mim j/(mi + m j) is the reduced mass; and we as-
sume a11 = a22, with the same number of atoms for both species, 
N1 = N2. In the next, the length unit will be adjusted to l⊥ =
1 μm ≈ 1.89 × 104a0, where a0 is the Bohr radius, such that aij
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can be conveniently given in terms of a0. V i=1,2(x, y) is the ex-
ternal potential provided by the harmonic trap, which we assume 
that the component i = 1 can be perturbed by the addition of a 
linear trap along x. It can be expressed by

V i(x, y) = x2 + y2

2
+ νi x = (x + νi)

2 + y2

2
− ν2

i

2
, (4)

where νi=1,2 = 0 for the non-perturbed case; and ν1 = 1, with 
ν2 = 0 for the perturbed case. As indicated by the above Eq. (4), in 
the perturbed case the center of the harmonic trap for the species 
i = 1 is shifted to x = −1.

A relevant property to be considered for coupled mixtures is 
the miscibility of the components. By following a simplified ener-
getic approach derived in Ref. [33] for homogeneous systems, one 
can characterize the transition between miscible and immiscible 
states for systems with repulsive two-body interactions by a cri-
terion, which is independent on the condensate atom numbers or 
trap sizes. Considering this criterion, a coupled system enters in 
an immiscible regime for G2

12 > G11G22, where Gij are given by 
the ratio between the corresponding two-body scattering lengths 
aij and reduced masses μi j , given by Gij ≡ 2π h̄2aij/μi j . This con-
dition to enter in an immiscible regime, which also corresponds to 
g2

12 > g11 g22 [using Eq. (3)], for a11 = a22 > 0, can define a thresh-
old parameter δ, given by

δ ≡ a12

a11
>

2
√

m1m2

m1 + m2
, (5)

where the right-hand-side is the mass-dependent critical value for 
the miscible-immiscible transition of homogeneous mixture. In the 
present case, this critical value is δ � 0.975, which is not far from 
the equal-mass case, such that we can still consider δ = 1 as the 
approximate value for the transition.

When considering general non-homogeneous coupled mixture, 
the miscibility was further studied in Ref. [34], where a conve-
nient parameter was defined for the miscibility, using the overlap 
between the densities, which for the present 2D case is given by

η =
∫

|ψ1||ψ2| dxdy =
∫ √

|ψ1|2|ψ2|2 dxdy, (6)

where both ψ1 and ψ2 are normalized to one. It implies in η = 1
for the complete overlap between the two densities and zero in 
the opposite limit. Equivalent to the above definition, one can also 
find some other suggestions, as in Refs. [35,36], used as criterion to 
separate the miscible and immiscible phases, based on the overlap 
of the densities.

3. Results for non-rotating and rotating binary mixtures in 
non-perturbed and perturbed traps

We start by a brief explanation on our numerical approach 
to obtain the results for general mass-imbalanced binary mix-
tures. As one can verify from the formalism given in section 2, 
the mass symmetry appears explicitly in the kinetic-energy terms 
(reflected in the second component of the coupled system), with 
the mass-imbalance factor given by (m2/m1 − 1). By assuming 
the species i = 2 as the larger-mass component of the mixture, 
in case of 85Rb-133Cs the mass-imbalanced factor is 0.5647. For 
the atom-atom interactions, we assume enough large repulsive 
intra-species scattering lengths a11 = a22 = 150a0, remaining the 
inter-species one to be explored from attractive to larger repul-
sive values, through the parameter δ, given by (5). The 2D cou-
pled mean-field equation, was solved by the split time-step Crank-
Nicolson method with an appropriate algorithm discretization as 
Fig. 1. The non-perturbed non-rotating (
 = 0) harmonically confined, with aspect 
ratio λ = 10, 2D component densities (units of l−2

⊥ ) are shown for the mixture 
85Rb-133Cs, using surface plots in the upper (a)-(d) panels, in which a12 = −100a0

(a), a12 = 100a0 (b), a12 = 150a0 (c), and a12 = 200a0 (d). With a11 = a22 = 150a0

fixed, the corresponding δ are indicated inside the lower panels, in which the re-
spective central densities (y = 0) are presented along the x−direction (units of l⊥), 
with the red-solid line referring to 85Rb (element 1) and the blue-dashed line to 
133Cs (element 2). (For interpretation of the colors in the figures, the reader is re-
ferred to the web version of this article.)

described in Ref. [37]. As our aim was to study some ground 
state properties of the mass-imbalanced coupled system, we have 
mainly concerned with time-independent solutions. As to con-
firm the stability of our results in the calculation of non-rotating 
ground states, for the initial component wave functions used in 
the time-dependent equation (2), we assume a simplified Gaussian 
expression, given by ψi,0(x, y) = (1/

√
π) exp

[−(x2 + y2)/2
]
. How-

ever, when studying rotational properties, for the initial compo-
nent wave-functions we consider these component wave functions 
with a single vortex at the center, modulated by a random phase 
at different space points, as

ψi,0(x, y) = (x + iy)√
π

exp

(
− x2 + y2

2
+2π iR(x, y)

)
, (7)

where R(x, y) is a random number in the interval [0, 1]. This pro-
cedure, found to be simpler than the one used in [26], has been 
shown to be relevant to address convergence issues, and to over-
come the impact of the initial condition on the final vortex so-
lutions [37]. Within our dimensionless variables, for the coupled 
system we use space step size 0.05 and time step 0.0005, with the 
stability being confirmed by performing time evolution from t = 0
up to t = 2000 (units ω−1

⊥ ).
In the next sub-sections, our main numerical results are de-

tailed, in which the unperturbed case, which can be found in sev-
eral other studies, as already mentioned, is reported to serve as 
reference to the other results we are presenting for the perturbed 
case, as well as for the rotating cases.

3.1. Non-rotating, non-perturbed and perturbed system

First, we present in Fig. 1 the results for the density distri-
butions of the two components within non-perturbed harmonic 
traps, in order to verify the corresponding miscibility properties 
in non-rotating conditions, 
 = 0. In the upper (a)-(d) four pan-
els, by using 2D surface plots, we show how the corresponding 
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Fig. 2. With the harmonic trap linearly perturbed in the x−direction (ν1 = 1, ν2 =
0), this figure shows the corresponding panels presented in Fig. 1. Except for the 
perturbation, all the other parameters are the same as used in Fig. 1. In this case, 
the two lower rows of panels are for |ψi(x, 0)|2 and |ψi(0, y)|2, along the x and y
directions, respectively.

densities of the two elements [85Rb and 133Cs] are spatially dis-
tributed, for different inter-species scattering lengths, and confined 
in harmonic traps with the same aspect ratio λ = 10. In the lower 
(a)-(d) four panels we show the respective densities [correspond-
ing to the (a)-(d) upper panels] along the x−direction, for y = 0. 
In all the results, the intra-species scattering lengths are kept fixed, 
a11 = a22 = 150a0, with the inter-species fixed at different values 
at each panel, such that in the panels (a) we have a12 = −100 a0; 
in panels (b), a12 = 100 a0; in panels (c), a12 = 150 a0; and, in pan-
els (c), a12 = 200 a0. The plots are showing the miscibility to im-
miscibility transition for non-rotating (
 = 0) binary BEC mixture 
confined in harmonic trap with aspect ratio λ = 10. The resulting 
distribution is such that, as δ becomes larger than 1, the mas-
sive component (i = 2, the 133Cs) remains with the maximum in 
the center, with the density of the lighter one being reduced to 
a minimum in the center. As verified, in the panels (a) of Fig. 1, 
the attractive interspecies interaction provides complete miscibil-
ity (overlap) of the species, with maxima for the densities at the 
center. As shown in the panels (c), for δ = 1 (a12 = aii ) we have 
already almost complete radial phase separations of the mixture, 
which is further characterized in the panels (d), with a12 = 200 a0, 
where δ = 4/3. These results are consistent with the ones verified 
in Ref. [36] for imbalanced-mass binary systems in pancake-like 
non-perturbed harmonic traps.

By considering linearly perturbed trap, our results for the misci-
bility to immiscibility transition of non-rotating (
 = 0) binary BEC 
are presented in Fig. 2. In the upper panels we have the surface 
plots with the 2D densities (|ψi(x, y)|2) given in the x − y plane, 
whereas in the two lower row of panels we have the correspond-
ing density results given for y = 0 and x = 0, respectively. In all 
these results, we consider four values for the interspecies scatter-
ing length, such that a12 = −100 in panels (a), a12 = 100 in panels 
(b), a12 = 150 in panels (c), and a12 = 200 in panels (d). The linear 
Fig. 3. The root-mean-square radii, 〈ri〉 ≡
√〈x2 + y2〉 (in units of l⊥), for the two 

components of the non-perturbed [panel (a)] and perturbed [panel (b)] harmoni-
cally trapped binary mixture, are shown as functions of a12 (in units of a0), corre-
sponding to Figs. 1 and 2 results, respectively, such that λ = 10 and aii = 150a0 The 
vertical dotted lines (at δ = 1) are close to the miscible-immiscible transition.

perturbation in the trap pushes the corresponding directly affected 
component along the direction of the perturbation (x-direction in 
our case), modifying the previous density distributions of both el-
ements. In case of attractive interspecies interaction the effect is 
just in a redistribution of the overlapped mixture. However, when 
a12 is repulsive, and particularly larger than a11, the perturbation 
affects the spatial distribution in the immiscible phase by chang-
ing the previous radial space separation to an axial one, with the 
two densities trapped with their maxima at distinct positions.

3.2. Space distribution, miscibility and critical rotation

In Fig. 3, by considering both unperturbed [panel (a)] and per-
turbed [panel (b)] harmonic traps, which have been presented in 
Figs. 1 and 2, we show the behavior of the dimensionless root-
mean-square (rms) radii 〈ri〉 ≡

√〈r2〉i ≡ √〈x2 + y2〉i in terms of 
the two-body inter-species interaction a12, for the two components 
i = 1, 2 of the binary mixture. Within our assumption for the intra-
species aii , the corresponding δ defined by the Eq. (5) is varying 
from -2/3 till 4/3. As verified, the rms radius of the less-massive 
component (the lighter one, species 1) increases as the interspecies 
interaction increases, in both unperturbed and perturbed situa-
tions. On the other hand, for the unperturbed case, shown in the 
panel (a) of Fig. 3, the second component (the heavier one, species 
2) increases as δ is increasing from negative values only till a re-
gion where δ � 2/3 (a12 � 100a0). For larger values of a12, by 
entering in the more miscible region, 〈r2〉 ≡

√〈r2〉 starts to reduce 
due to the radial phase separation of the two species, which oc-
curs as the a12 becomes more repulsive, saturating to some small 
radius at the center of the trap. By going from the unperturbed 
to the perturbed regime, the radial distribution is mainly modi-
fied at larger repulsive values of a12, resulting in an axial spatial 
distribution of the two species. In this space density distribution, 
the confined space of component 2 turns out to be larger than be-
fore, with the panel (b) of Fig. 3 reflecting the results presented in 
Fig. 2.

When the system is immiscible (or less miscible), the density 
distribution of the mixture is no more homogeneous, with the 
coupled system being affected by the repulsion between the two 
species. Even for the unperturbed case, we observe that the peak 
of the density of the lighter element (85Rb, i = 1) is deviated from 
the center of the trap (in case a12 < 0) to a ring surrounding the 
heavier element (133Cs, i = 2), which happens when a12 > a11, as 
observed from the panels (c) and (d) of Fig. 1. In this last situation, 
the component 2 becomes more strongly confined in the center 
of the trap due to the inter-species repulsion. In the perturbed 
case that we are considering, we have the density distribution af-
fected by the trap x−space dislocation of the 85Rb (component 1), 
which will also affect the 133Cs (component 2) density distribu-
tion, mainly due to the inter-species interaction. So, in both the 
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Fig. 4. Miscible-immiscible transition of non-rotating (
 = 0) binary BEC mixture in 
harmonic non-perturbed (dashed line) and linearly perturbed (solid line) traps, in 
terms of the inter-species a12. The parameters are as in Figs. 1–3, with the intra-
species interactions fixed to aii = 150a0. The vertical dotted line at δ = 1 indicates 
the miscible-immiscible transition for equal-mass homogeneous mixture.

cases (unperturbed and perturbed), it is relevant to verify how the 
density distribution is affected, by considering the miscibility of 
the two elements. The two-component transition from miscible to 
immiscible is well known as given by the condition expressed in 
Eq. (5)], when considering homogeneous systems [33]. However, 
for non-homogeneous systems it is more reliable to consider a pa-
rameter that reflects the density distribution of the species, such 
as the parameter η that was defined in Ref. [34]. By consider-
ing this parameter, also given by Eq. (6), a coupled system can be 
considered as completely miscible if η = 1 and completely immis-
cible if η = 0, limiting situations that can only be approached in 
both the cases we are considering, as verified in Fig. 4. In this fig-
ure, we show η as a function of the inter-species scattering length 
a12, for both non-perturbed and perturbed cases. As expected, for 
non-perturbed harmonic trap, the transition occurs near δ = 1, in 
agreement with Eq. (5), with the transition being softened when 
considering the perturbed trap. This miscibility analysis can fur-
ther explain the density distributions shown in Figs. 1 and 2, in 
which we noticed how the miscibility is affected by the transla-
tion in the x−position.

The radial distributions of the condensate densities, obtained 
for 
 = 0 and shown in the two panels of Figs. 3, are strongly 
affected by the miscibility of the mixture. They are relevant to es-
timate the critical frequency 
c required to generate vortices in 
a BEC system, as we discuss in the next. Even considering that 
such analysis is limited to homogeneous single component sys-
tems, in the present case of non-perturbed and perturbed coupled 
two-component systems it can reflect more directly the critical fre-
quencies in regions where the coupled system is more miscible, as 
for attractive inter-species. From our calculations, we found ap-
propriate to use a rotation frequency given by 
 = 0.7, which is 
enough larger than 
c to help us observe vortex lattice formations 
in both the cases we are discussing in this work.

For the moment, let us recover from Ref. [38] the discussion 
related to the full-dimensional critical frequency for a single com-
ponent system with mass M . By considering a BEC system in 
axially symmetric trap, with large number N and perpendicular 
Thomas-Fermi (TF) radial distribution R⊥ , the critical frequency 
was analytically derived in Ref. [39], being given by


c = 5

2

h̄

M R2⊥
ln

(
0.671R⊥

ξ0

)
, (8)

where ξ0 is the healing length (also called coherence length), eval-
uated for the density n0 in the center of the trap. For the deriva-
tion of (8), it was assumed that the characteristic dimensions of 
the cloud is large compared with the coherence length at the cen-
ter of the cloud, which is defined by the balance between quantum 
pressure and the interaction energy of the condensate [38,39], in a 
uniform medium. The coherence length can be expressed in terms 
of the scattering length a and central density n3D of the gas with-
out vortex by ξ = 1/

√
8πn3Da. The expression (8) gives the full-

dimensional critical frequencies to generate vortices in a uniform 
medium, expected to be valid for each single species indepen-
dently, when both densities are uniformly distributed in a radial 
space, having the maxima at the same localization x = y = z = 0. 
When considering a coupled system, the balance between quan-
tum pressure and the interaction energy (for each condensate) is 
being modified due to the miscibility of the components, such 
that the expression (8) is approximately valid only when the two 
species are miscible, not repelling each other, limited to regions 
where a12 � a11 (in our case, more precisely, due to the mass 
difference, a12 ≤ 146.3a0). Within our dimensionless units, defin-
ing the perpendicular radial distribution as R ≡ (R⊥/l⊥), with the 
full-dimensional frequency in terms of dimensionless one being 

c ≡ 
c,1ω⊥ , from (8) we obtain


c,1 = 5

2

1

R2
ln

(
0.671R

ξ̄0

)
≈ 5

2

1

R2
ln (40R |ψ01|) , (9)

where the dimensionless central healing length is ξ̄0 ≡[
8
√

λπ(a11/l⊥)N1|ψ01|2
]−1/2

, with the density of the component 

1 at the origin given by n0,1 = √
λ/π |ψ0,1|2. We are also consid-

ering our assumption for the intra-species scattering length and 
number of atoms, N1 = 104, a11/l⊥ = 150/(1.89 × 104) (such that 
ξ0/l⊥ = 0.01676/|ψ01|). Within the expectation that Eq. (9) is ap-
proximately valid for non-interacting systems, we can estimate the 
critical frequency and corresponding radial distribution R, by con-
sidering in particular the point where there is no inter-species 
interaction, a12 = 0. In this case, the 2D central densities is found 
|ψ0,1|2 = 0.019, with the critical frequency close to 0.15, implying 
that R ≈ 6.9. This value for the radial distribution is about twice 
the value of rms radius, 

√〈(x2 + y2)〉, as verified by the compo-
nent 1 in the panel (a) of Fig. 3.

Moreover, about the critical frequencies to generate vortices in 
binary coupled systems, it may be worth mentioning that further 
theoretical studies are demanding in order to derive an expression 
more general than the above (9), which can be extended to cou-
pled systems and reflect the computed results displayed in Fig. 5. 
For such, one can rely on some previous analytical studies (done 
for single components), in which the hydrodynamic equations have 
been applied under the TF approximation, as in Refs. [38,39], by 
considering the two regimes, with miscible [15] and immisci-
ble [33] phases for the coupled mixture.

In order to calculate the threshold rotation, we should empha-
size that it will be helpful the random phase in the initial wave 
function. Without random phase, a single vortex continues to exist 
for 
 < 
c . At the critical rotation frequency (
c ) a single vortex 
enters into the condensate. When the rotation frequency is sig-
nificantly higher than 
c , then more vortices will enter into the 
condensate. The 
c required to create the single vortex in rotating 
condensates depends on the interaction strength (that determines 
the radius) and the trap geometry (pancake or cigar). One needs 
larger 
c for more attractive interaction, which shrinks the con-
densate radius. In contrast, the repulsive interaction expands the 
radius, resulting in smaller 
c . Our main results on the critical 
frequencies are summarized in the Fig. 5, for both unperturbed 
[panel (a)] and perturbed [panel (b)] cases. By looking the results 
for the unperturbed case, given in the panel (a), we notice that 
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Fig. 5. In this figure, the lines (solid-red for 85Rb, dashed-blue for 133Cs) are repre-
senting the minimum critical frequency 
c (as functions of the inter-species a12), 
in order to generate vortices, which can exist only above the corresponding curves 
(
 ≥ 
c ). The non-perturbed and perturbed coupled systems are, respectively, in 
the left and right panels. The vertical dotted lines (both panels) are close to the 
miscibility transition for homogeneous systems. These results can be qualitatively 
compared with the ones respectively shown in Fig. 3 for the radii. In all the cases, 
aii = 150a0, with 
 given in units of ω⊥ .


c of both the first and second component are about the same 
until a12 ≥ 60 a0, when start deviating from each other. By increas-
ing the inter-species interaction a12, the critical frequency of the 
first component 
c1 diminishes due to its radial expansion, which 
makes more favorable to generate vortices with smaller rotation 
frequency, saturating at a12 ≈ 150 a0 (δ = 1). This result can be di-
rectly associated with the corresponding radial distribution shown 
in Fig. 3, in which we do not find big difference in the radius for 
a12 between 150 a0 and 200 a0. In contrast, 
c2 starts to increase 
from a12 ≥ 100 a0, reflecting the respective reduction in the radial 
distribution of the component 2.

Next, we consider the 
c for the case of binary mixtures, when 
the trap of component 1 is linearly shifted in the x−direction. In 
this case, the critical frequencies of both components are about 
the same as the ones obtained when in the presence of attrac-
tive inter-species interaction. The repulsive inter-species interac-
tion provides axial phase separation, introducing some small dif-
ference between 
c1 and 
c2 of the mixture. In this case, from 
the radial distribution of both systems, shown in Fig. 3, with √

〈r2
1〉 >

√
〈r2

2〉, one should expect 
c1 < 
c2 . However, we are ob-

serving that 
c1 > 
c2 , which can be explained by the fact that the 
first component density have its maximum distribution located a 
bit far from the center of the trap, as verified from panels (d) of 
Fig. 2, due to the immiscibility of the mixture.

In order to verify how the vortices are being generated when 
we are close to the critical limit of rotation, we present some re-
sults in Fig. 6, by considering, respectively, both the unperturbed 
and perturbed trap cases. For these sample results, the densities 
for the species i = 1, 2 are represented in the upper part of the 
figure by two sets with four panels [(ai ) and (bi )], in which the 
left set is for the unperturbed case, with the right set referring 
to the perturbed case. Correspondingly, we have the respective 
phases shown in two sets with four panels [(ci ) and (di )] in the 
lower part of the figure. For the non-perturbed case, shown in 
the left sets of Fig. 6 (densities and phases), we are considering 
the non-interacting case a12 = 0 in the panels (ai ) and (ci ), with 
rotation frequency 
 = 0.17; whereas in the panels (bi ) and (di ) 
we have a12 = 150a0 (δ = 1) with 
 = 0.22. In particular, for the 
case with δ = 1, in which from Fig. 5 we have 
c ∼ 0.01, one 
can verify the occurrence of vortices in the low-density region 
of component 1 [panel (b1)] from the corresponding phase dia-
gram, given in the panel (d1). Analogously, for the perturbed case 
Fig. 6. Sample results of 2D densities |ψi=1,2(x, y)|2 (units l−2
⊥ ) in the (x, y) plane 

(space unit l⊥) for the coupled non-perturbed (left upper set of panels) and linear 
perturbed (right upper set of panels) systems. Correspondingly, the phase diagrams 
are shown in the next two lower rows of panels (ci ) and (di ). In the non-perturbed 
cases (left set), the panels (ai ) and (ci ) are for a12 = 0 (δ = 0) with 
 = 0.17, with 
panels (bi ) and (di ) for a12 = 150a0 (δ = 1) with 
 = 0.22. In the perturbed case 
(right set), the panels (ai ) and (ci ) are for a12 = 0 (δ = 0) with 
 = 0.16, with 
panels (bi ) and (di ) for a12 = 150a0 (δ = 1) with 
 = 0.25. In all the cases, aii =
150a0, with trap aspect ratio λ = 10.

Fig. 7. Vortex-lattice structures in the 2D coupled densities, |ψi(x, y)|2 (units l−2
⊥ ), 

for the binary mixture 85Rb−133Cs, using pancake-like harmonic trap with aspect 
ratio λ = 10 and rotation frequency 
 = 0.7ω⊥ , in the (x, y) plane (space unit l⊥). 
With aii = 150a0, the a12 goes from attractive a12 = −50 a0 [panels (ai )], providing 
complete overlap of the densities; to three repulsive cases, with a12 = 50 a0 [panels 
(bi )], 150 a0 [panels (ci )] and 200 a0 [panels (di )], in which (ci ) and (di ) are in 
almost complete immiscible radial separation, with the lighter element occupying 
the center of the trap.

shown in the right sets of Fig. 6 (densities and phases), we have 
a12 = 0 with 
 = 0.16 in the panels (ai ) and (ci ); with the repul-
sive case, a12 = 150a0 (δ = 1), with 
 = 0.25, being shown in the 
panels (ai ) and (ci ). As shown in both the cases represented in the 
Fig. 6, with a12 = 150a0, we have already entered in the immiscible 
regime of the mixtures. Radial separation of the mixture is verified 
in case we have non-perturbed trap system, with the lighter ele-
ment (85Rb) surrounding the heavier element (133Cs), which is in 
the center. These results follow in correspondence with the ones 
verified in Figs. 1 and 3(a), when 
 = 0, for the relative position 
of the element densities in the trap.

Next, we consider a larger and fixed rotation, given by 
 = 0.7, 
which has shown to be enough to create some lattice patterns 
of vortices in both components of the mixture. These results are 
shown in Fig. 7, for the unperturbed case; and in Fig. 8 for the 
perturbed case. In both the cases, we assume four values for the 
two-body interaction, going from the attractive cases, a12 = −50a0
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Fig. 8. This figure shows the vortex-lattice structures corresponding to the results 
shown in Fig. 7, when the harmonic trap of component 1 is perturbed in the x−di-
rection (ν1 = 1, ν2 = 0). Except for the perturbation, the other parameters are as 
in Fig. 7, with 
 = 0.7ω⊥ , λ = 10, and with a12 = −50 a0 [panels (ai )], a12 = 50 a0

[panels (bi )], 150 a0 [panels (ci )] and 200 a0 [panels (di )]. The almost complete im-
miscible condition (ci ) and (di ) are providing space separation with both species 
having their maxima side-by-side in the x−direction.

(δ = −1/3), to three repulsive ones, with a12 = 50a0 (δ = 1/3), 
a12 = 150a0 (δ = 1), and a12 = 200a0 (δ = 4/3). As been clearly 
verified in both figures, the cases with δ ≥ 1 shown in the pan-
els (ci ) and (di ) correspond to the immiscible cases. Here, even 
for the unperturbed case, we can already observe a striking re-
sult due to the mass-imbalance sensibility of the mixture which is 
emerging as the rotation frequency is increased. As observed from 
Fig. 1, where we have 
 = 0 and from upper set of Fig. 6 where 
the rotation is quite small, in particular for the case with δ ≥ 1, 
we have radial space separation, the coupled element interchange 
their spatial separated positions for higher frequencies, such that 
with 
 = 0.7 we can already verify the lighter element occupy-
ing the center of the trap, with the heavier element surrounding 
the first (in opposite locations, as compared with the case of low 
or zero rotation frequency). Due to the immiscibility and confine-
ment to a smaller radius, the number of vortices of the component 
1, which is in the center, becomes smaller than the number of vor-
tices appearing in the component 2.

For the perturbed case, shown in Fig. 8, the x−dislocation of 
the component 1 density affects the radial-shaped structure sepa-
ration of the mixture, such that the coupled system turns out to 
display an axial phase-space separation with the species 1 shifted 
from the center. Due to the fact that component 1 is located in 
a smaller radius, this translation in the x−position will also affect 
the component 2, which was surrounding the first before the per-
turbation, as verified in particular for the immiscible regime shown 
by the panels (ci ) and (di ). In conclusion, the Figs. 7 and 8 are pre-
senting our main results concerning the mass-imbalance sensibility 
of the mixture when considering the relative space separation of 
the two components, particularly for repulsive inter-species in-
teraction larger than the intra-species ones. These results provide 
further support to the conclusions obtained in Ref. [20] about the 
relevance of the mass difference in a binary rotating mixture.

4. Summary and discussion

We have studied the 85Rb-133Cs binary BEC mixture in rotating 
non-perturbed and perturbed harmonic traps. First, we examine 
the equilibrium non-rotating ground states by changing the inter-
species contact interaction strength. Due to the mass-imbalance of 
the mixture, we observe a radial phase separation between the 
two confined species when the inter-species interaction a12 is re-
pulsive and larger than the corresponding intra-species a11 = a22, 
with both species confined in unperturbed harmonic traps. The 
mean-square radii of the binary BEC mixtures are obtained by ver-
ifying that 〈r2

1〉 of the first component (the lighter one) increases 
as a12 becomes more repulsive, with 〈r2

2〉 (of the heavier element) 
reverting its increasing behavior as a12 approaches the value of 
aii , in agreement with the mass-dependent condition (5) for the 
miscible-immiscible transition of homogeneous mixtures. This be-
havior occurs due to the strong inter-species repulsion. Next, to 
study the rotational properties of the 85Rb-133Cs BEC mixture, we 
introduce a non-zero angular momentum rotation frequency 
 (in 
units of the transversal trap frequency ω1,⊥), estimating the corre-
sponding critical values 
ci to observe a single vortex in the binary 
mixture. In agreement with the radial distributions given by the 
rms radii, the 
c1 continuously decreases as a12 becomes more 
repulsive, till reaching a minimum frequency value for a12 > aii . 
However, in the case of the heavier species, as a12 increases, the 
initial decreasing behavior of 
c2 reaches a minimum in corre-
spondence with the radial behavior. After that, 
c2 starts increas-
ing till a saturating limit for a12 > aii . This tendency that occurs for 
the non-perturbed coupled system is consistent with the immisci-
bility of the coupled mixture, such that the two species start to 
repel each other strongly for δ > 1. Without a perturbation in the 
trap, the distribution of the two densities becomes radially sepa-
rated in the immiscible regime, with the heavier element located 
in the inner part, such that a larger value of 
 is needed to start 
vortex generation. A linear perturbation applied to the element 1 
will affect this radial distribution, which happens in the immisci-
ble regime, having both element distributions with their maxima 
at separate positions, implying in having their density with similar 
side-by-side distributions. So, in both the cases, 
ci decreases in 
the miscible region as a12 increases, till some independent minima 
which occur when the system starts becoming immiscible, saturat-
ing at some value a12 > aii .

When the coupled system is confined by unperturbed harmonic 
traps, in this immiscible regime we have the less massive species 
surrounding the more massive one, for the non-rotating case 
 = 0
or when the rotation is not large enough. As we increase the fre-
quency of the rotation, a transition occurs resulting in an inter-
change on the radial space distribution of the mixture. As shown, 
in the immiscible regime, for 
 = 0.7 one can already verify that 
the peak of the density of the more massive element is no more in 
the center, but outside the center of the trap, in a ring surrounding 
the lighter one, which has moved to the center. The less massive 
element, in this case, becomes confined in the inner center region, 
under the pressure of the more massive element. This is a relevant 
“centrifugal effect” that, in some way, could be expected, as been 
relevant in order to calibrate experimental realizations with rotat-
ing mass-imbalanced BEC mixtures, such as 85Rb-133Cs. The effect 
can be further explored for different mass-imbalanced systems, by 
considering the corresponding frequencies for the transitions.

By studying the effect of linear perturbation (along the x−di-
rection) in the trap of one of the mass-imbalanced components 
(which we choose the lighter one of the 85Rb-133Cs mixture), we 
are providing some more elements for a possible simple experi-
mental realization in cold-atom laboratories, with rotating mass-
imbalanced binary non-dipolar systems. The presence of linear 
perturbation in the trap pushes the first component along that 
direction, altering the density distribution and the corresponding 
associated vortices in the rotating regime. In the attractive case 
and in the miscible regime (a12 < aii ), we just observe some ex-
pected changes in the vortex patterns, already explored in several 
other works. However, it is in the more repulsive case (immisci-
ble regime) that we have verified the more significant changes, 
with the previous radial space separation being changed to a 
side-by-side phase separation between the elements of the mix-
ture. Within such side-by-side spatial separation in the immiscible 
regime (δ > 1), both densities have their trapped regions basi-
cally governed by their mass differences. For both elements, the 
vortex-pattern structures are distributed within the corresponding 
available spatial regions.
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