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Superfluid fraction of few bosons in an annular geometry in the presence of a rotating weak link
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We report beyond mean-field many-body calculations of ground-state mass current and superfluid fraction for
a system of few bosons confined in a ring geometry in the presence of a rotating weak link induced by a potential
barrier. We apply the multiconfiguration Hartree method for bosons to do beyond mean-field calculations of
the average superfluid fraction for various barrier heights, interaction strengths, and number of particles. This
approach presents us a way to continuously sweep the interaction from a weak to strong case. For different
rotating frequencies, the ground-state energy remains periodic but with a different landscape depending on
the barrier height, and this periodicity implies a decrease on the mass current for fast rotating barriers. With
the rotation frequency close to zero, our results show that by sufficiently increasing the barrier, the superfluid
fraction eventually drops to zero regardless of interaction strength and number of particles. Also, the condensate
fraction depends almost exclusively on the interaction strength, which shows independence of superfluidity and
condensation. We also obtained correlation functions to explain the superfluidity behavior, which is not possible
in the mean-field theory. This may be relevant to new devices based on atomtronics.
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I. INTRODUCTION

The concepts of superfluidity [1–3] and Bose-Einstein con-
densation [4,5] have dominated the research of cold bosonic
systems. The presence of one does not necessarily imply the
other—whereas superfluidity is related to dissipationless flow
due to a minimum required energy to create excitations, Bose-
Einstein condensation is characterized by a single macro-
scopically occupied state. Superfluid systems with a very
small condensation fraction around 10%, like liquid helium,
are widely known [6,7], thereby characterizing independent
effects.

Nevertheless, many reports explore the superfluidity fea-
tures of a Bose-Einstein condensate (BEC), as dilute cold
bosonic gases are able to present both phenomena simulta-
neously [8]. Especially, persistent flow, a hallmark of super-
fluidity, has been reported for a BEC trapped in a ring shape
format early [9] and later in [10] in the presence of a tunable
weak link. This boosted the interest to quantitatively study
all the properties for the system due to a possible connec-
tion and quantum analogy with a superconducting quantum
interference device (SQUID) [11] that was experimentally
implemented [12] generating Josephson junctions [13].

Ring geometries are very interesting to study persistent
currents and quantum coherence. In the last few years, there
has been much interest in ring condensates, especially in the
context of the atomtronics field [14,15]. Many works studied
several properties on imposing rotation for a BEC confined
in a ring-shape geometry, observing hysteresis (“swallow tail
loops”) [16–19], excitation mechanisms [20–22], spin super-
flow [23,24], and superfluid fraction [25]. Former theoretical

*andriati@if.usp.br
†gammal@if.usp.br

studies rely mostly on the Gross-Pitaevskii (GP) equation
that set a clear limitation on controlling the interactions to
suppress the depletion from the condensate [26,27]. This
has changed in the past few years with the development of
methods able to compute many-body observables (generally
correlation functions) and assure correctness for a wider range
of interaction values [28–32].

The employment of new methods paves a way to study
independently the condensation phenomena and the superflu-
idity for a system of cold bosonic atoms and to sweep a wider
range of interaction strengths since depletion is included in
the description. Moreover, they enable us to have a deep
understanding of the physical system through new many-body
quantities unseen in the mean-field formalism, like correla-
tions, which has gained importance due to experimental mea-
surements in the past decade for cold atomic clouds [33–36].

Specifically, the multiconfiguration time-dependent
Hartree method for Bosons (MCTDHB) [31] has gained
attention for its quite straightforward generalization of the
GP equation, since it is still based on variational principles
but with more time-dependent single-particle states (also
known as orbitals) the atoms can occupy, therefore allowing
the expansion of the many-body state in a configuration basis
(Fock states) with each possible configuration expressed
by a well-defined occupation number of the single-particle
states. This procedure truncates the Hilbert space, whereas
the coefficients of the basis expansion and the orbitals are
determined by minimizing the action, enforcing an optimized
basis. The MCTDHB has shown to be a powerful tool for
many applications, for instance, to study quench dynamics
in optical lattices [37–45] and other applications [46–48] as
well as a version for fermions [49–53].

In the present paper, we study beyond mean field the super-
fluid fraction of a gas of few bosons at zero temperature in the
presence of a tunable weak link moving in a periodic system
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(an effective ring) using the MCTDHB to explore strong in-
teractions and to show the loss of the superfluid fraction under
a wide range of the physical parameters. For different rotating
frequencies, we found that the ground-state energy remains
periodic but with a different profile depending on the barrier
height, and this periodicity implies a decrease on the current
fraction for fast rotating barriers. With the rotation frequency
close to zero, our results show that increasing sufficiently
the barrier, the superfluid fraction eventually drops to zero
regardless of the interaction strength and number of particles.
Also, the condensate fraction depends almost exclusively on
the interaction strength, which shows independence of super-
fluidity and condensation. Eventually, we obtain correlation
functions to explain the superfluidity behavior, which is not
possible in the mean-field theory.

The paper is structured as follows. In Sec. II, we present
the model with the main equations; in Sec. III we show
the periodicity in the energy spectrum and we define the
superfluid fraction. In Sec. IV, we show the decrease of the
superfluid fraction due to the increase of the barrier height
and calculate the first-order correlations. Finally, in Sec. V we
present the conclusions.

II. MODEL AND METHODS

The specific form of a barrier is generally unknown from
an experimental perspective, though we must be able to define
it through its thickness and height. As most experiments use
lasers to physically implement a barrier [10], the height in
the model plays the principal role as it is directly related to
the laser beam intensity, while the thickness is determined
by the laser beam width. An approach based on Dirac delta
function for the barrier has been reported [54], which implies
zero thickness. In any case, for a barrier rotating with velocity
v, in the laboratory frame we thus have the one-body term of
the Hamiltonian in the general form

ĥ(t ) = − h̄2

2m

∂2

∂ x̄2
+ U (x̄ − vt ) , x̄ ∈ (−πR, πR], (1)

for a ring of radius R, where a specific form for U is chosen
in Sec. III. The two-body part is assumed to be described
by an effective contact interaction V (x̄ − x̄′) = g1Dδ(x̄ − x̄′),
where g1D is related to the transverse harmonic trap frequency
and the scattering length of the atoms [55]. Using the unitary
transformation to move to the rotating frame, exp (vt∂/∂x),
the time dependence of Eqs. (1) is removed, resulting in the
following many-body Hamiltonian in the second quantized
formalism:

H =
∫ πR

−πR
dx �̂†(x)

[
h̄2

2m

(
i
∂

∂x
+ mv

h̄

)2

+ U (x)

]
�̂(x)

+ g1D

2

∫
dx �̂†(x)�̂†(x)�̂(x)�̂(x), (2)

where x = x̄ − vt and �̂(x) is the bosonic field operator.
The MCTDHB is developed assuming a truncated Hilbert

space where the many-body state is a superposition of all
possible configurations Nc of N particles distributed over M

single-particle states, such that we can write

|�(t )〉 .=
Nc∑

α=1

Cα (t )|�n(α)〉, Nc =
(

N + M − 1

M − 1

)
, (3)

where each configuration |�n(α)〉 is a Fock state which sat-
isfies

∑M
i n(α)

i = N for any α, and n(α)
i is the occupation

number of the single-particle state φi(x, t ). Additionally, the
single-particle states must satisfy the orthogonality condi-
tion

∫
dxφ∗

l (x, t )φk (x, t ) = δlk,∀k, l = 1, ..., M. Using this
ansatz, the time-dependent equations can be extracted from
the minimization of the action with respect to the coefficients
Cα in Eqs. (3) and the single-particle states, with the action
defined by

S[C, {φk, φ
∗
k }] =

∫
dt

⎡
⎣〈�(t )|�̇(t )〉 − 〈�(t )|H|�(t )〉

−
M∑

k,l=1

μkl (t )〈φk|φl〉t

⎤
⎦, (4)

where the μkl are introduced as Lagrangian multipliers to
maintain orthonormality of the single-particle states. The
variational principle conducts to M nonlinear coupled partial
differential equations for the set {φk (x, t )} and a system of Nc

ordinary differential equations for the coefficients Cα [31,56].
It is worth mentioning that the GP equation is a special
case where we have just one possible configuration |�n〉 =
|N, 0, ..., 0〉, that yields for the macroscopically occupied
orbital φ(x, t ) the equation

ih̄
∂φ(x, t )

∂t
= [ĥ′ + g1D(N − 1)|φ(x, t )|2]φ(x, t ), (5)

with ĥ′ = h̄2/2m(i∂/∂x + mv/h̄)2 + U (x) the one-body
Hamiltonian in the rotating frame.

For numerical simulation purposes, we assume the fol-
lowing system of units: length measured in units of (πR),
density probability/particle in units of (πR)−1 and energy by
h̄ζ , where ζ = (h̄/2mπ2R2). Moreover, we introduce the di-
mensionless parameters 	 = mRv/h̄ and γ = 2mπRg1D/h̄2.
In numerical computations, all these transformations yield
the orthonormalization condition for the set of orbitals∫ 1
−1 dxφ∗

l (x, t )φk (x, t ) = δlk , where x must be interpreted in
units of πR in the simulations. Here we developed our own
codes to solve the MCTDHB equations with periodic bound-
ary conditions. Our codes were extensively tested, matching
the results of the examples of the code available in Ref. [57],
which has produced many results [39,46–49]. We adjusted the
number of single-particle states until the energy converged in
at least four decimal places.

III. PERIODICITY IN ENERGY SPECTRUM AND
DEFINITION OF SUPERFLUID FRACTION

In the absence of a barrier, the single-particle energy levels
as a function of 	 are parabolas given by Ej/(h̄ζ ) = ( j −
	)2π2, each one defined by the winding number of the phase
( j), centered at 	 j = j, and crossing each other at 	̃ j =
( j + 1/2) [18].
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(a)

(b)

FIG. 1. Energy per particle from the GP equation as a function
of 	 for different winding numbers ( j) with (a) γ (N − 1) = 50 and
(b) γ (N − 1) = 10. In both cases, the soliton’s energy is depicted
in blue, where the dotted part has winding number j = 1 and the
full line j = 0, connecting with the parabolas with corresponding
winding numbers. Other values of winding numbers are shown
in gray. The rotation velocity values in the horizontal axis are in
dimensionless units.

As a first approach, we use the GP equation once the
interaction is included in the description. In this case, still in
the absence of the barrier, there are two kinds of analytical
solutions. One with constant density, which results in the same
energy of thesingle-particle case, with the addition of an in-
teraction contribution, yielding E (GP)

j /(h̄ζ ) = ( j − 	)2π2 +
γ (N − 1)/4 as average energy per particle. The other is a
soliton given in terms of Jacobi elliptic functions [58,59] that
exists for a finite range of values of 	, where the extension
of this range depends on the interaction strength. Figure 1
shows an energy landscape of the analytical solutions of the
GP equation with the soliton solution energy connecting two
parabolas from constant density solutions, where the dotted
lines have winding number j = 1 and the filled line j = 0.

In Fig. 2, we present the phase of the soliton solutions. The
soliton solutions exhibit a transition between different wind-
ing numbers and, for increasing 	, a discontinuity in phase
occurs at 	 = 0.5, going from j = 1 to j = 0. Moreover,
these solutions yield what is known as a swallow-tail loop

FIG. 2. Phase profile of the soliton solution ϕ(x) for some values
of 	 corresponding to the red dots in Fig. 1(b). An abrupt transition
occurs at 	 = 0.5 that implies a transition in the winding numbers,
from j = 1 to j = 0.

in the energy shown in Figs. 1(a) and 1(b), which is related
to a hysteretic behavior [16–18,60]. The soliton branch in
Fig. 1 is an excited state and will not be further discussed here,
since the aim of the present paper is to measure the superfluid
fraction of the ground state. In addition, Fig. 1 reveals that the
ground-state energy has a periodic behavior with respect to the
rotation 	, with kinks where the parabolas cross each other at
	̃ j = ( j + 1/2). This periodic structure remains even in the
presence of a barrier, as will be shown later. An important
fact is that we can relate the mass current circulation with the
energy and use this periodicity to understand what happens to
the current under the action of fast rotating barriers.

Here we start a derivation of mass current by looking at
the time variation of the number of atoms within the range
[x1, x2] ⊆ [−πR, πR], as

d

dt

∫ x2

x1

dx 〈�(t )|�̂†(x)�̂(x)|�(t )〉

= i

h̄

∫ x2

x1

dx 〈[H, �̂†(x)�̂(x)]〉t , (6)

where 〈·〉t means the expectation value for an arbitrary many-
body state |�(t )〉. Using Eq. (2) with the usual commutation
relation for the boson field operator [�̂(x), �̂†(x′)] = δ(x −
x′) to evaluate the commutator of the Hamiltonian with the
density operator, the only terms that contribute are those
carrying a derivative, and yield

[�̂†(x)�̂(x),H]

= − h̄2

2m

(
�̂†(x)

∂2�̂(x)

∂x2
− ∂2�̂†(x)

∂x2
�̂(x)

)

+ ih̄v

(
�̂†(x)

∂�̂(x)

∂x
+ ∂�̂†(x)

∂x
�̂(x)

)
. (7)

It is straightforward to factor out the derivative with respect
to x, and further using Eq. (7) in Eq. (6) yields

d

dt
N ([x1, x2]; t ) = −[〈Ĵ (x2)〉t − 〈Ĵ (x1)〉t ] , (8)

where N ([x1, x2]; t )
.= ∫ x2

x1
dx〈�(t )|�̂†(x)�̂(x)|�(t )〉 is in-

troduced and the particle number current operator Ĵ (x) is
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given by

Ĵ (x) = − ih̄

2m

(
�̂†(x)

∂�̂(x)

∂x
− ∂�̂†(x)

∂x
�̂(x)

)
−v�̂†(x)�̂(x).

(9)

The reduced single-particle density matrix (1-RDM) de-
fined by n(1)(x, x′; t )

.= 〈�̂†(x′)�̂(x)〉t [34] has as a set of
eigenvalues and eingenstates defined by the solution of∫ πR
−πR dx n(1)(x, x′; t )ψ (x′, t ) = N (t )ψ (x, t ), with N (t ) the

average occupation number in the eigenstate ψ (x, t ), here
also called a natural orbital. Using these natural orbitals to
express the reduced single-particle density matrix n(1)(x, x′; t )
allows us to express the current as a superposition, 〈Ĵ (x)〉t =∑

k jk (x, t ), where

jk = −
[

ih̄

2m

(
ψ∗

k

∂ψk

∂x
− ψk

∂ψ∗
k

∂x

)
+ v|ψk|2

]
Nk, (10)

with the position and time arguments omitted.
For the ground state, the current 〈Ĵ (x)〉t must be indepen-

dent of position and time, because the density is not time
dependent. If we further average it over a period in the counter
direction of the barrier velocity, it yields

〈ρs〉(v) = τ
1

2πR

∫ −πR

πR
dx

( 〈Ĵ〉
N

)
, (11)

where τ = 2πR/v is the period of barrier rotation. This
quantifies the mean fraction of particles that go through the
counterdirection of the barrier in one period, that is from πR
to −πR indicated by the limits of integration taken. Therefore,
if 〈ρs〉(v) takes the value 1, it means a perfect superfluid
since all the particles are flowing with velocity −v in the
rotating frame, that is, they remain at rest for an observer
in the laboratory frame. Relations with other observables can
be established, for instance, using the average momentum per
particle,

〈ρs〉(v) =
(

1 − 〈p̂〉
mv

)
, p̂ = − ih̄

N

∫ πR

−πR
dx �†(x)

∂

∂x
�(x),

(12)
and a relation with the energy, by taking the derivative with
respect to the barrier velocity:

〈ρs〉(v) = 1

Nmv

∂E

∂v
, E = 〈H〉. (13)

The equation above can also be identified by the ratio
between the moment of inertia of the atoms and the moment
of inertia of a rigid body. Using v = ωR yields

〈ρs〉(ω) = 1

NmR2

(
1

ω

∂E

∂ω

)
= I (ω)

Icl
. (14)

The superfluid fraction at rest (or simply superfluid frac-
tion), denoted here by 〈ρs〉0 can be defined by taking the limit
of v → 0 in any of the forms Eqs. (11)–(13) or (14) and was
studied in this way in previous works [2,3,25,61]. With the
dimensionless system of units and parameters introduced at
the end of Sec. II, we have a suitable expression for numerical
calculations, defining ε

.= E/(h̄ζ ),

〈ρs〉(	) =
(

1

2π2N	

∂ε

∂	

)
, 〈ρs〉0

.= lim
	→0

〈ρs〉(	). (15)

(a)

(b)

FIG. 3. Ground-state energy (a) and current fraction (b) for 11
particles as a function of dimensionless rotation velocity 	 in the
rotating frame. The ground-state energy remains periodic as it was in
Fig. 1 but with a different landscape depending on the barrier height
λ, and this periodicity implies a decrease on the current fraction for
fast rotating barriers. We used γ = 10 and M = 5 orbitals in the
MCTDHB method.

Here we use the MCTDHB to find the ground state through
imaginary time propagation for several parameters, and we
first study the effect of rotation. Figure 3 illustrates the behav-
ior of the energy in panel (a) and the current fraction in panel
(b) as a function of the dimensionless barrier frequency 	 for
two different barrier heights, where the specific form used in
Eqs. (1) is

U (x) =
{

(h̄ζλ) cos2
(

x
2Rσ

)
if |x| � πRσ

0 if πR � |x| > πRσ,
(16)

where λ denotes the barrier height in dimensionless units and
the width of the barrier was taken fixed σ = 0.1.

The energy of the ground state in Fig. 3(a) has a period
1 with respect to dimensionless rotation frequency for both
cases of weak and strong barriers, while the difference relies
on the maximum that occurs at 	 j = j, that is, peaked or
smooth. The superfluid fraction in Fig. 3(b) was computed
using Eqs. (15) with finite differences to take the derivative.
It shows a periodic behavior with a damped amplitude as
function of 	, due to the periodicity of energy. According
to Eq. (15), the amplitude is damped by a factor of 1/	.

063625-4



SUPERFLUID FRACTION OF FEW BOSONS IN AN … PHYSICAL REVIEW A 100, 063625 (2019)

FIG. 4. Probability distribution as a function of position (upper
panel) where n(1)(x)

.= n(1)(x, x) = 〈�̂†(x)�̂(x)〉 and angular mo-
mentum distribution (lower panel) for barrier height λ = 1000. From
left to right, 	 = 0, 0.5, 1.0, corresponding to red crosses in Fig. 3.
As used in Fig. 3, here γ = 10, N = 11 particles and M = 5 orbitals.

In the regions where 〈ρs〉(	) < 1, the average momentum
must increase together with the barrier velocity according
to Eqs. (12). Indeed, that is what occurs in the lower panel
of Fig. 4 that shows the angular momentum distribution for
some values of 	. Moreover, there is a critical dependence
of the superfluid fraction on the barrier height, where Fig. 3
shows that, as 	 goes to zero, 〈ρs〉(	) diminishes when the
barrier height is increased. This fact will be explored in the
following.

IV. DECREASE OF SUPERFLUID FRACTION DUE TO
INCREASE OF THE BARRIER HEIGHT

Numerical calculations of the superfluid fraction were
carried out here using Eq. (13), finding the ground state
by imaginary time propagation for 	 = 0 and 	 = 0.02, to

approximate the derivative in 	 = 0.01 and so get 〈ρs〉(0.01).
As shown by Fig. 3 the slope of current fraction goes to
zero as 	 → 0, and therefore we use the value at 	 = 0.01
as the proper superfluid fraction, assuming the difference of
〈ρs〉0 − 〈ρs〉(0.01) to be close to zero. To assure this method is
valid, we compare with the result using Eqs. (12) at 	 = 0.02
to check if there is no appreciable (less than 1%) variation
on the estimation of superfluid fraction using a constant
extrapolation of 〈ρs〉(0.01).

In Fig. 5, we show the decrease of superfluid fraction for
an increase in the barrier height in the form of Eq. (16), using
a different number of particles and interaction strengths. Here
the tunneling of particles through the barrier becomes harder
as the barrier height is increased, thereby the system acquires
momentum easily for higher barriers since it drags almost
every particle with it. This easy momentum gain for very high
barriers is responsible for the loss of superfluid fraction 〈ρs〉0.
It can also be noted that the superfluid fraction decreases more
rapidly for fewer particles and lower interaction strengths;
however, the number of particles and strength of interactions
have a small impact in the form of the curves of 〈ρs〉0 as a
function of λ.

As can be seen in the upper panel of Fig. 6, the barrier
height λ influences mostly the density at its peak, while the
effect over the momentum distribution is a slight increase in
its variance, but preserving the average angular momentum
〈L̂〉 = 0, as can be checked in the lower panel. Therefore, the
angular momentum distribution is not very revealing about the
behavior of the superfluid fraction at rest, different from the
case for nonzero rotation shown in the lower panel of Fig. 4.
Nonetheless, the density drastically changes as the barrier
height increases, hence a more detailed study of 1-RDM,
〈�̂†(x′)�̂(x)〉, will be done in the following.

It is worth noting that this loss of the superfluid fraction
due to the increase in the barrier height is not related to the
condensate fraction. As can be inferred from Table I, the con-
densate fraction depends mostly on the interaction strength
and is minimally affected by the barrier height, particularly
for small values of γ .

(a) (b) (c)

FIG. 5. Decrease of superfluid fraction for a different number of particles and interaction strengths (γ ) due to increasing the barrier height
(λ). All the cases share the common feature to be a perfect superfluid as the barrier becomes vanishing small, soon or later depending on the
number of particles and interaction strength. For very high barriers, all particles are dragged together, imposing a rigid body rotation to the
system. The number of orbitals was chosen as needed to converge the results, where for γ � 10, M = 5 was used while for γ = 30, M = 9
was needed. The barrier height values in the horizontal axis are in dimensionless units.
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FIG. 6. Probability distribution of position (upper panel) and
angular momentum (lower panel) for five particles, γ = 30 and
different barrier heights λ = 10, 200, 10 000 in the left, center,
and right columns, respectively, in the absence of rotation 	 = 0.
The density distribution vanishes for λ > 103 at the peak of the
barrier in x = 0, despite that there is just a slight increase on the
width of the angular momentum distribution. As mentioned in Fig. 5,
for γ = 30 we needed nine orbitals.

We studied the difference between the MCTDHB and the
mean-field theory as illustrated in Fig 7. In this case, the
same values are predicted in the limits λ → 0 and λ → ∞;
nonetheless, between these values of the barrier height, a large
gap δ is found between the superfluidity curves. For instance,
the height λ̄ where 〈ρs〉0 goes below 0.6 is λ̄MCTDHB ≈ 468
and λ̄GP ≈ 1160, resulting in an appreciable difference of δ ≈
692. In another way to explore this difference, λ̄MCTDHB <

λ̄GP/2 to have less than 60% of superfluid.
Being able to investigate many-body quantities beyond

mean field, we further investigate how the tunneling amplitude
is affected by the barrier height, that is, the transition ampli-
tude for the system to move a particle from x to x′. This can be
achieved by |〈�̂†(x′)�̂(x)〉|2 weighted by the probabilities to
find the particles in respective positions given by n(1)(x) and
n(1)(x′). This is directly related to the first-order normalized

TABLE I. Maximum/minimum condensate fraction given by the
highest eingenvalue of n(1)(x, x′), over the set of values of λ in
Fig. 5. The maximum and minimum values for each case have little
influence from the barrier height whereas the superfluid fraction
maximum and minimum values go from 1 to 0, respectively. For
γ = 30, we were able to perform the calculations only for five
particles due to our code limitations. The number of orbitals used
follows the ones mentioned in Fig. 5 depending on γ .

N/γ 1 10 30

11 0.9936/0.9920 0.92/0.89
8 0.9946/0.9935 0.92/0.88
5 0.9962/0.9956 0.91/0.88 0.75/0.70

FIG. 7. Comparison between the superfluid fraction predicted by
mean-field GP equation (dashed line) and the MCTDHB with nine
orbitals (full line) for five particles and γ = 30, as function of barrier
height λ. δ is the gap between the curves. The barrier height values
in the horizontal axis are in dimensionless units.

correlation function defined by [34,62]

g(1)(x, x′) = 〈�̂†(x′)�̂(x)〉√
n(1)(x)n(1)(x′)

. (17)

The values of g(1) shall be drastically affected by the barrier
and must have an abrupt variation as xx′ > 0 changes to xx′ <

0, since the tunneling must be much harder if the shorter dis-
tance between two points has the barrier between them. Since
the system is periodic, this discussion applies just at the vicin-
ity of either x or x′ being zero, because if (x/πR)(x′/πR) =
−1, they are actually the same point in the ring.

The effect of barrier height mentioned above is in agree-
ment with the images in Fig. 8 that maps |g(1)(x, x′)|2 values
to colors. In Fig. 8(a), in the presence of a weak barrier, it
depends only on |x − x′|, while in Fig. 8(b) this symmetry
is lost, with an abrupt variation near at the barrier peak, x
or x′ approximately zero. Therefore, high barriers split the
image in four square blocks, with the darker regions (small
normalized tunneling probabilities) located on xx′ < 0. This
is consistent with previous studies in Ref. [63], despite the
different boundary conditions and interaction regimes.

We further stress the relevance of applying a method
that allows us to compute many-body quantities since, for
example, |g(1)(x, x′)|2 would be identical 1 for all x and x′ in
case one uses the GP equation that corresponds to just one
eigenstate of n(1)(x, x′). Therefore, this first-order correlation
function, besides its relation to the tunneling amplitude, pro-
vides us a measure of how well the system can be described by
a product state that corresponds to the mean-field approach.
In the ring studied, the higher the barrier the poorer the
description by a product state.

V. CONCLUSIONS

We have thoroughly studied the superfluidity aspects of a
gas of few bosons in ring geometry in presence of a rotating
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(a)

(b)

FIG. 8. |g(1)(x, x′)|2 mapped to colors in the ring for five particles
and γ = 30. Values of barrier heights used are λ = 10 in (a) and
λ = 104 in (b) but sharing the same color scale. Here, nine orbitals
were used in the numerical simulations.

barrier of variable height. We studied this system for different
rotation frequencies, barrier heights, interaction strengths, and
number of particles. For different rotating frequencies, the
ground state energy remains periodic but with a different
landscape depending on the barrier height, and this peri-
odicity implies a decrease on the current fraction for fast
rotating barriers. Another study with the rotation frequency

close to zero allowed us to study the superfluidity of the
stationary condensate. In this case, our results showed that
by sufficiently increasing the barrier, the superfluid fraction
eventually drops to zero regardless of interaction strength and
number of particles. Also, we showed that condensate fraction
depends almost exclusively on the interaction strength, which
shows that both superfluidity and condensation are indepen-
dent phenomena for the system.

The employment of MCTDHB allowed a continuous
sweep in the interaction strength, without breaking in weak
and strong interaction analysis [54,63], moreover, introduc-
ing many-body observables as correlation functions, which
played an essential role to describe the loss of the super-
fluid fraction through the concept of tunneling. The effect of
barrier height was studied regarding the correlation function
g(1)(x, x′). In the presence of a weak barrier, it depends only
on |x − x′|, which means the tunneling is harder the longer
the distance between the two points, while for a strong barrier
this symmetry is lost, with an abrupt variation near the barrier
peak.

All these features stress the relevance of the results, es-
sentially for further practical purposes as quantum analogs
of SQUIDS [10,12,17], with an accurate control of all pa-
rameters of the system. We emphasize that the results shown
here can be related to further experiments, since the first-order
correlation function was already explicitly measured [33] and
a continuous amplification of interaction strength can be done
using Feshbach resonance to prove the superfluid fraction
curves.
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