
Incoherent �0 photoproduction in the PrimEx kinematics

via the MCMC intranuclear cascade model

(PrimEx Note 52)

Tulio E. Rodrigues

University of São Paulo, São Paulo, Brazil (tulio@if.usp.br)

November 21, 2007

Abstract

The nuclear incoherent �0 photoproduction cross sections from Carbon and Lead at for-

ward angles are calculated within the PrimEx kinematics using an extended version of the

MultiCollisional Monte Carlo intranuclear cascade model (MCMC). The model uses relativis-

tic kinematics and takes into account the elementary photoproduction from the nucleon and

the in-medium e¤ects due to short range correlations, as well as the pion-nucleus Final State

Interactions (FSI) in terms of a multiple-scattering and time dependent framework. The single

and double di¤erential cross sections are calculated in order to provide a consistent interpreta-

tion of the inelastic background of the PrimEx experiment at the Je¤erson Laboratory Facility.

The attenuation of the nuclear cross sections due to �0 absorption and re-scattering reproduces

very accurately previous measurement from Cornell after the inclusion of shadowing e¤ects of

the incoming photon.
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1 INTRODUCTION

The PrimEx experiment[1] at the Je¤erson Laboratory Facility (JLab) is currently performing

a high precision measurement of the �0 ! 

 decay width via the Primako¤ cross section[2].

The method, which was �rst proposed by Primako¤, propitiates the determination of the decay

width by the magnitude of the electromagnetic component of the �0 di¤erential cross section at

forward angles. However, additionally to the Coulomb contribution, neutral pions can also be

produced in the strong �eld of complex nuclei either coherently or incoherently. The incoherent

photoproduction is described as an incoherent sum of nucleon amplitudes and is associated with a

�nal state of a �0 plus an excited nucleus. Such complicated mechanism depends very critically on

the photoproduction process, as well as on the Final State Interactions (FSI) of the produced mesons

on their way out of the nucleus. The calculation of the nuclear amplitude can be performed using the

multiple-scattering integral formalism developed by Glauber[3]. The model is based on the Eikonal

approximation and consists of a powerful theoretical approach to evaluate the nuclear absorption

of mesons. However, the Galuber method has some limitations since it does not account for the

short range correlations and the local density �uctuation caused by the hadron-nucleus interaction.

The short range correlations are not expected to play a major role in high energy nuclear reactions,

except for soft �N scatterings that may a¤ect the �0 photoproduction cross sections at forward

angles, the main focus of the PrimEx experiment. Furthermore, the Glauber model does not account

for the energy losses during the �0 photoproduction and also at any given �N binary scattering.

Other restrictions of the analytical approach are associated with the inclusion of accurate physical

ingredients to describe the structure of light nuclei, such as the momentum distribution of the

bound nucleons; as well as the inclusion of kinematical constraints that propitiates the compatibility

between theory and experiment.
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The MCMC (Monte Carlo MultiCollisional) intranuclear cascade model consists of a relativistic

and time-dependent Monte Carlo algorithm that describes the dynamics of an excited nuclear

ensemble in terms of successive and time ordered binary collisions. This approach uses the concept

of interaction probability, instead of scattering amplitude, and is expected to work very e¢ ciently

if the relative motion of the colliding particles can be separated from the rest of the nuclear wave

function, which acts as a spectator during the interaction time. Such condition is perfectly ful�lled

in the PrimEx kinematics, where the pions to be transported in the nuclear medium have total

energy typically within 4.5 to 5.8 GeV.

It is also important to make salient that the MCMC and Galuber models have advantages

and disadvantages and a direct comparison between their predictions is extremely important in

order to provide two distinct and independent solutions for the inelastic background of the PrimEx

experiment. The calculations of the incoherent cross section using the Glauber model are described

elsewhere[4].

An extended version of the MCMC cascade[5] has been successfully applied for the interpretation

of the recent data of incoherent �0 photoproduction near the Delta resonance for 12C and 208Pb

obtained at the Mainz Microton Facility[6]. In this work, we have also calculated incoherent �0

photoproduction from 12C and 208Pb within 4.0 to 6.0 GeV in order to provide theoretical support

for the Collaboration. This version was implemented neglecting shadowing e¤ects of the incoming

photon and assuming an isotropic angular distribution for the elastic �0N scattering. Coherent

production (electromagnetic/nuclear) of neutral pions was also investigated in a recent paper[7]

taking into account the relativistic recoil of the nucleus. The calculations of the pion spectra due to

coherent production showed that those mechanisms are largely concentrated within the quasi-elastic

peak, with the total energy of the mesons being typically within the photon energy k and k � 10
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MeV.

Low energy photonuclear reactions in a wide range of target nuclei were also investigated in

other versions of the MCMC model dedicated to the quasideuteron channel[8, 9]. These works

provided a completely new approach for the implementation of the Pauli-blocking mechanism using

a non-stochastic method.

The MCMC model was also recently applied for the calculation of the � photoproduction cross

sections from Be and Cu around 9.0 GeV[10], following the same steps developed for the case

of �0. This paper showed that the inelastic background in the photoproduction yields obtained

at Cornell[11] is completely interpreted as the nuclear incoherent (NI) cross section for single �

production.

In this work, I report improved calculations for the incoherent �0 photoproduction cross section

from 12C and 208Pb within the PrimEx kinematics. The basic features and improvements of the

MCMC cascade model are: i) the use of a time dependent multicollisional relativistic kinematics,

ii) the inclusion of the �0 photoproduction mechanism within 4.0 to 6.0 GeV in terms of � and

! exchange, iii) the incorporation of an accurate momentum distribution for 12C based on the

global 1s and 1p proton knock-out data, iv) a rigorous non-stochastic Pauli-blocking both for the

photoproduction and multiple �0N scatterings, v) the implementation of the shadowing e¤ects

during the photo-nucleus interaction in terms of the VMD model with formation time constraint,

and vi) a consistent analysis of the full Final State Interactions of the produced mesons with

the nucleus, as well as the use of a realistic (di¤ractive) angular distribution for the �0N elastic

scattering.
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2 �0 PHOTOPRODUCTION FROM THE NUCLEON

The elementary �0 photoproduction from a single nucleon is represented by the following

process:


(k) +N(p1)! �0(p) +N(p2); (1)

where k; p1; p and p2 represent the 4-momentum of the incoming photon, struck nucleon, produced

pion and outgoing nucleon, respectively.

Following the same steps delineated in ref.[5], we can calculate the di¤erential cross section for

meson photoproduction from the nucleon at small angles in the center of mass of the s�channel

as[12]:

�
d�

d


�
N

�= jf1 � f2j2 +
��2

2

�
jf3 + f4j2 + 2Re (f �1 f2 + f �1 f4 + f �2 f3)

�
; (2)

where the fi�s are the Pauli-type amplitudes[13]. These amplitudes are functions of the invariant

amplitudes Ai = Ai(s; t), with s = (k+p1)2 and t = (k�p)2 representing the Mandelstam variables.

The relationship between the Pauli-type amplitudes fi�s and the analytical amplitudes Ai�s is given

by[12, 13], where we have assumed that the initial and �nal nucleon energies are the same (t� 1).

By decomposing the invariant amplitudes Ai in terms of regularized and parity-conserving t-

channel helicity amplitudes Fi, we obtain[14, 15]:

A1 = �
tF1 + 2mNF3
t� 4m2

N

(3)
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A2 =
F1

t� 4m2
N

+
1

t

�
F2 +

2mNF3
t� 4m2

N

�
(4)

A3 = �F4 (5)

A4 = �
2mNF1 + F3
t� 4m2

N

; (6)

where mN is the nucleon mass.

The amplitudes F2 (unnatural parity exchange) and F3 (natural parity exchange) receive con-

tributions from di¤erent trajectories, while the amplitudes Ai are known to be free of kinematical

singularities[12]. Since eq.(4) has a pole at t = 0, one is forced to postulate the so-called �conspiracy

relation�at zero momentum transfer(1):

F3(s; t = 0) = 2mNF2(s; t = 0): (7)

So, using eqs.(3 - 7) and writing eq.(2) in terms of the Fi�s, we have[14]:

�
d�

dt

�
N

=
�

p2

�
d�

d


�
N

=
1

32�

(
F 23
2m2

N

�
"
t+

�
m2
�

2k

�2# �
F 24 +

F 21
4m2

N

+
F 23
16m4

N

+
F1F3
2mN

1

p
p
s

�)
; (8)

where m� is the meson mass.

The helicity amplitudes Fi are then calculated using the Regge model, including ! and � mesons

1This relation is similar to the one obtained by Ball et al:[15]. The di¤erence comes from the pion exchange,
which does not contribute for �0 production.
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trajectories and taking into account the reggeon cuts[16]. Within this approach, the amplitudes

Fi lose the property of de�nite parity and also become �nite at zero momentum transfer. The

photon exchange amplitude FC , which is the elementary Primako¤ e¤ect, plays an essential role

at low momentum transfer and is included for �tting the data. However, since we are particularly

interested in the NI cross section, one has to subtract the Coulomb term in order to feed the cascade

input only with the strong part of the photoproduction amplitude. This procedure assures that the

Impulse Approximation (IA) holds for the description of the NI cross section from complex nuclei,

which is assumed to be proportional to the cross section from a single nucleon. So, the e¤ects of

the remaining A� 1 nucleons can be safely neglected in the photoproduction mechanism. The IA

obviously breaks down for the case of Coulomb interaction, which can not be constrained within the

nucleon dimension, interfering with the Coulomb �elds of the remaining nucleons. This 
�� nucleus

interaction, which is no longer interpreted as a two-body mechanism, can be coherent (Primako¤) or

incoherent (excited nucleus), but the later is strongly Pauli suppressed since the Coulomb amplitude

goes as 1
t
.

So, neglecting B-exchange (F4 = 0) and adding constructively the cuts and Coulomb contribu-

tions, we have[14, 16]:

F1 ! F1 + F
cut
1 + FC1 ; F3 ! F cut3 ; (9)

where:

F1(s; t) =

p
2

mN


1
1� e�i��(t)
sin [��(t)]

�(t) [1 + �(t)] [2 + �(t)]

�
s

s0

��(t)�1
; (10)
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F cut1 (s; t) =

p
2

mN


cut1
1� e�i��(0)
sin [��(0)]

�
s

s0

��(0)�1
eat

ln
�
s
s0

� ; (11)

FC1 (s; t) = �
2mN

t
0:0543

p
�

GE(t); and

F cut3 (s; t) = 2
p
2
cut3

1� e�i��(0)
sin [��(0)]

�
s

s0

��(0)�1
eat

ln
�
s
s0

� : (12)

The Regge trajectories were taken as �!;�(t) = 0:45 + 0:9t; with s0 = 1 GeV2. The parameters


1 = 115:4(3:7)
p
�b; 
cut1 = 55:2(5:7)

p
�b; 
cut3 = 13:5(0:8)

p
�b

GeV
, a = 1:20 GeV�2 (2) and �

 = 8:44

eV represent the best �t values to the available experimental data[16]; GE(t) is the electric dipole

proton form factor (3).

The results of the elementary photoproduction parameterization with and without the Coulomb

contribution are shown in �gure 1. The data were taken from [16, 17] and the solid histograms

represent our Monte Carlo generated input.

2This value is slightly higher than the value of Ref. [16] in order to improve our �tting at larger angles.
3The magnetic part of the Coulomb amplitude goes with t and does not contribute signi�cantly for low scattering

angles.
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Figure 1: Di¤erential cross section for �0 photoproduction from the proton. The blue lines include the strong (red)

and the Coulomb contributions to the cross section. The solid histograms are the cascade inputs, which take into

account only the strong part. The data points were taken from refs.[16] (squares) and[17] (circles).

Figure 2 presents our parameterization for the di¤erential cross section for �0 photoproduction

from the proton as a function of t.
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Figure 2: Di¤erential cross section for �0 photoproduction from the proton as a function of t. The notation is the

same as in �gure 1.

12



3 INCOHERENT �0 PHOTOPRODUCTIONFROMCOM-

PLEX NUCLEI

This section aims at the description of the cascade calculations for incoherent �0 photoproduc-

tion from complex nuclei. The calculations are suitable for light as well as heavy nuclei and can be

applied for single pion photoproduction mechanisms within 4.0 to 6.0 GeV.

3.1 The cascade approach

The intranuclear cascade approach consists of a semi-classical transport calculation that de-

scribes the dynamics of a nuclear reaction via a time-dependent multicollisional Monte Carlo algo-

rithm. The basic idea of the cascade model is that the active particles (particles that have kinetic

energies above the Fermi energy) perform binary scatterings with the remaining nucleons during a

time interval much lower than the collisional time between a pair of inactive particles (particles with

kinetic energy below the Fermi level). The model can be applied for hadron and photon induced

nuclear reactions, as far as we can neglect the e¤ect of other nucleons during the �rst interaction

mechanism. For high energy incoherent photoproduction processes, the photon is supposed to in-

teract with a single nucleon and the rest of the nuclear wave function can be safely neglected. The

two outgoing particles that come from the photoproduction vertex (the struck nucleon and the

�0 meson) are strongly susceptible to interact with the other nucleons, with high probability of

producing additional mesons via Final State Interactions. These two trajectories can be treated

semi-classically and are interpreted as two correlated branchings of the intranuclear cascade process.

The amount of absorption of the primary �0 photoproduction �ux depends very critically on the

photoproduction mechanism itself and also on the dynamics of the excited nuclear system. Such
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complicated process is generally treated using event generators that account for the meson multi-

plicities and gross features of physical observables, such as the multiplicities of nucleons that are

being emitted by the nucleus. This statistical approach is a convenient tool for the description of the

general behavior of the nuclei, since it can be constructed and sometimes adjusted to reproduce the

bulk properties of a high energy nuclear reaction. For the PrimEx Collaboration, however, the de-

tails of the multiple scatterings between the produced pions and the bound nucleons are of extreme

relevance, since we need accurate information of the amount of energy loss and the contribution of

secondary scatterings at forward angles. For this reason, an extended version of the MCMC cascade

has been recently developed for the speci�c description of the incoherent �0 photoproduction from

Carbon and Lead at extreme forward angles. The �ow diagram depicted in �gure 3 shows the basic

features and important modules of the cascade model.

The description of each module of the cascade model - which is certainly not the purpose of the

present analysis - can be found elsewhere[18]. In the following sections, I will brie�y describe some

of the important modules and MCMC features for the speci�c case of the PrimEx experiment.
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Figure 3: Flow diagram of the cascade model. The modules in light blue are associated with the physical inputs that

feed the cascade model, while the orange modules represent the MCMC structure itself. The evaporation module

(dark blue) is completely non-relevant in the present analysis and is presented only for the sake of completeness.
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3.2 Nuclear ground state

3.2.1 Nuclear density

The positions of the bound nucleons in the Monte Carlo are distributed using the nuclear

densities appropriate for light and heavy nuclei. For light nuclei, such as Carbon, we have adopted

the shell-model distribution of ref.[19]:

N(r) =
4

(a0
p
�)
3

�
1 +

�r2

a20

�
exp

�
�r2
a20

�
; (13)

where a0 = 1:65 fm and � = 1
6
(A� 4) : For intermediate and heavy nuclei, we have used a Woods-

Saxon distribution given by[19]:

N(r) =
N0

exp
h
(r�c)
z1

i
+ 1

; (14)

where c = 1:12A1=3 and z1 = 0:545 fm, with A = 4�
R
N(r)r2dr. The nuclear densities for Carbon

and Lead are shown in �gure 4.

0 2 4 6 8 10
0.00

0.04

0.08
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N(
r) 

(fm
-3
)

r (fm)

12C
208Pb

Figure 4: Normalized nuclear densities for Carbon (black) and Lead (red).
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3.2.2 Momentum distribution of the bound nucleons

Another important physical constraint to build-up a realistic nuclear ground state is the mo-

mentum distribution (MD) of the bound nucleons. Since we are speci�cally concerned with high

precision relativistic kinematics, we have to take into account the initial state of the struck nucleon

very accurately. Furthermore, the Pauli-blocking mechanism plays an essential role for low t and

small di¤erences in the parameterizations of the MD´s a¤ect drastically the shape of the cross sec-

tions at small angles. The PrimEx targets (C and Pb) have very distinct nuclear structures and the

shapes of the NI cross sections should re�ect these peculiarities. For this reason, two di¤erent MD

were used in our calculations: one suitable for heavy nuclei, and another one speci�cally devoted

for Carbon.

Momentum distribution for intermediate and heavy nuclei: The Fermi gas model is

known to work reasonably well for nuclei with A & 100, since the in�nite nuclear matter approx-

imation also holds with reasonable precision within this mass domain. For this reason, we can

safely use the Fermi gas model for the case of Lead. In this model, the MD of the bound nucleons

corresponds to a uniform distribution in a sphere in the momentum space:

WF (pN)d
3pN =

3

4�

p2N
p3F
dpN sin(�p)d�pd'p; (15)

where pF is the Fermi momentum and �p and 'p the angular variables that de�ne the direction of

the 3-momentum of the nucleon pN . The Fermi momentum is calculated assuming that all nucleons

are on-shell, pF =
p
"F ("F + 2m�

N), where m
�
N is the nucleon e¤ective mass with the Fermi energy
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being given as a function of the nuclear volume 
 = 4
3
�r30A using the known formula:

"pF =
1

2m�
N

�
3�2
� 2
3

�
Z




� 2
3

and (16)

"nF =
1

2m�
N

�
3�2
� 2
3

�
A� Z



� 2
3

: (17)

Momentum distribution for Carbon: Carbon is one of the most well studied nuclei of the

periodic table and presents some peculiarities typical of small systems. The momentum distribution

of the bound nucleons can be investigated using one-nucleon removal experiments, such as the quasi-

elastic (e; e0p) reaction. The missing energy Em and missing momentum pm can be written in the

form:

pm = p
0
N � q; (18)

Em = ! � Tp � TA�1; (19)

where p0N and Tp are the momentum and kinetic energy of the outgoing proton and TA�1 the kinetic

energy of the residual nucleus. ! and q represent the energy and momentum transfer of the virtual

photon. In PWIA, the �vefold di¤erential (e; e0p) cross section can be factorized in the form:

�ee0p =
d5�

d
ed
pdEp
= K�ep j��(pm)j

2 ; (20)

where K = p0NEp; �ep is the o¤-shell electron-proton scattering cross section [20], and ��(pm) is

the wave function in momentum space of the quantum state �, which can be approximated by a
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single-particle bound-state wave function. The factorization presented in (20) does not hold if we

take into account the distortion e¤ects of the incident electron and outgoing proton and electron.

However, one can still de�ne the reduced cross section �ee0p(pm) by the ratio between the measured

cross section and the electron-proton cross section:

�ee0p(pm) =
�ee0p
K�ep

: (21)

So, by measuring �ee0p, we can calculate the distorted momentum distribution �ee0p(pm), which

in PWIA is the squared Fourier transform of the radial wave function.

Obviously that the distortion e¤ects caused by the Final State Interactions of the emitted proton

and electron, as well as the distortion e¤ects on the wave function of the incident electron depend

very critically on the reaction mechanism. These distortions do not permit a model independent

result for the true momentum distribution of Carbon, which is the main focus of the present analysis.

The true MD is the undistorted spectral function integrated in missing energies and is not achievable

by proton knock-out experiments. For this reason, we have adopted the Plane Wave Impulse

Approximation (PWIA) of ref.[21] for the momentum distributions of the s and p�shells as the

reference input for the cascade calculation (see �gure 5). A complete review of the global proton

knock-out data of 12C can be found in ref.[21] and references therein.
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Figure 5: Reduced cross sections (momentum distributions) in PWIA for the s (bottom) and p�shells (top) of 12C.

The corresponding spectroscopic factors were taken from ref.[21].

In fact - complementary with the use of the PWIA for the MD - we have also run the cascade with

several sets of parameterization based on the existing 12C(e; e0p)11B data. Such analysis propitiated

the investigation of the sensitivity of the cascade model with a given parameterization, keeping the

PWIA as the reference value. Table 1 summarizes the world data used in the calculations.
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Dataset �Em(MeV ) Tp(MeV ) Kinematics Q2(GeV=c)2

1�p knock-out Saclay 76[22] 15� 22 87 perpendicular 0:16

" Saclay 82[23] 15� 22 99 parallel 0:09� 0:32

" Saclay 82[23] 15� 22 99 perpendicular 0:09� 0:32

" Tokyo 76[24] 6� 30 159 perpendicular 0:29

" NIKHEF 88[25] G.S. 70 parallel 0:02� 0:26

1�s knock-out Saclay 76[22] 30� 50 87 perpendicular 0:16

" Tokyo 76[24] 21� 66 136 perpendicular 0:29

" NIKHEF 88[25] 30� 39 70 parallel 0:02� 0:26

Table 1: Proton knock-out data used in the present analysis. Details in the text.

The momentum distributions associated with the data from Table 1 were �tted separately and

were incorporated as alternative inputs for the cascade model. The results of the NI cross sections

using these empirical MD parameterizations, as well as the sensitivity of the model with respect

to these inputs will be presented in another section. The �tted MD�s with its respective data are

shown in �gures 6 to 9 (p�shell) and 10 to 12 (s�shell).
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Figure 6: 1�p proton knock out. The data points are from ref.[22], while the red line is our �tting.
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Figure 7: 1�p proton knock out. The data points are from ref.[23] and the red and black lines are the �ttings for

parallel and perpendicular kinematics, respectively.
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Figure 8: 1�p proton knock out. The data points are from ref.[24] and the red line represents our �tting.

0 50 100 150 200 250 300
0.00

2.50x10-8

5.00x10-8

7.50x10-8

Em : G.S.
S1p = 2.20
Tp = 70 MeV

Re
du

ce
d 

cr
os

s 
se

ct
io

n 
(M

ev
/c

)-3

Missing momentum ( MeV/c)

 Nikhef 1988 (par. kin.)
 Fiting (χ2

red = 0.393)

Figure 9: 1�p proton knock out. The data points are from ref.[25] and the red line represents our �tting.
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Figure 10: 1�s proton knock out. The data points are from ref.[22] and the red line represents our �tting.
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Figure 11: 1�s proton knock out. The data points are from ref.[24] and the red line represents our �tting.
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Figure 12: 1�s proton knock out. The data points are from ref.[25] and the red line represents our �tting.
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3.3 Shadowing e¤ects in high energy photo-nucleus interactions

The direct coupling of high energy photons with vector mesons propitiates a phenomenological

analogy between photon and hadron induced nuclear reactions. The main hypothesis of the VMD

model is that the physical photon state can be decomposed into a bare and hadronic component,

where the former is not expected to interact with hadrons. So, the photon state is assumed to be

given by[26]:

j
i �=
p
Z3 j
Bi+

p
� jhi ; (22)

where the factor Z3 is introduced for the normalization of j
i. One important constraint of the

theory is that both j
Bi and jhi have the same quantum numbers
�
JPC = 1��

�
and the same 3-

momentum of the physical photon k. The assumption that the hadronic state jhi is solely attributed

to the vector mesons �, ! and � is one of the main restrictions of the VMD model and is also

employed in the present analysis. Considering only the low-mass components of the photon and a

narrow resonance state, we may write
p
� jhi as a superposition of vector meson states:

p
� jhsires =

P
V

e

fV
jV i ; (23)

where e
fV
is our choice of normalization for real photons[26], with the label s indicating that such

approximation is valid only for low mass constituents. For higher mass components, however, the

interaction of the vector mesons with hadrons is typically short-ranged and the hadronic photon

behaves similarly as a bare photon without substantial shadowing. Assuming that the bare photon

does not interact (VMD), we may connect the scattering amplitudes for high energy 
N ! X

processes to analogous amplitudes of vector meson scattering V N ! X using the S matrix:
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hXjS j
Ni =
P
V

e

fV
hXjS jV Ni : (24)

Employing the diagonal approximation and using (24), we may write the total photoabsorption

cross section in hadrons �
N due to vector mesons in the form:

�
N =
P
V

e2

f 2V
�V N ; (25)

where �V N is the total V N cross section. Taking the coupling constants and the VMD model II

from ref.[26] (4), we have:

��N = �!N = 19:1

 
1 +

0:766p
p(GeV=c)

!
mb and (26)

��N = 12 mb. (27)

So, inserting eqs.(26 - 27) into (25), we �nd for k = 5:2 GeV:

��
N = 84:7 �b; �
!

N = 7:9 �b; �

�

N = 4:8 �b, (28)

with a non-shadowed (NS) component of �NS
N = 24:5 �b, yielding a total cross section of �
Total

N =

121:8 �b. This value should be compared with the experimental results of �Total
p = 116 � 17 �b

found in the energy interval 3:5 � k � 5:4 GeV[27] and �Total
p = 126�17 �b found at 7.5 GeV[28](5).

4Table XXXV of ref.[26] summarizes the values of the coupling constants and the features of the VMD model
used in the present analysis.

5No distinction is made between the proton and neutron amplitudes in this approach, such that �Total
N = �Total
p =

�Total
n . The Coulomb term a¤ects only the NS contribution, but is neglected for the calculation of the NI cross
section. For details see section 2.
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Another important step for the evaluation of shadowing e¤ects for photo-nucleus interactions is

the concept of formation time, which is the time interval that the physical photon is momentarily in

a vector meson state. The physical photon is always making transitions back and forth between a

bare photon and hadronic states, keeping the steady state of eq.(22). Shadowing e¤ects are expected

to take place if the formation time is long enough to allow the virtual hadrons to undergo collisions

deep in the nuclei as if they were real hadrons. We can estimate the formation time using the

uncertainty principle:

tf �
����� 1

k �
p
k2 +m2

V

����� ; (29)

where mV is the mass of the vector meson. Obviously that this crude estimate gives only the order

of magnitude of tf , making it necessary further investigations of the quantitative results presented

later in this section (6). The vector meson mass mV can be calculated using the � meson as a

reference, since it contributes to approximately 70% of �Total
N , and a lorentzian distribution:

W (mV ) =
1

2�

��

(mV �m�)
2 +

�
��
2

�2 ; (30)

with m� = 769:3 MeV and �� = 150:2 MeV. The corresponding values of tf are then distributed

combining eqs. (29 - 30) and using M.C. techniques. For instance, taking the central valuemV = m�,

we found t0f � 3:5 fm/c for 5.2 GeV, which is associated with a formation distance of � 3:5 fm,

considering that the virtual particle is traveling almost at the speed of light. From a direct inspection

of eq.(29), we note that tf increases with higher photon energies and lower vector meson masses,

6The VMD model used in this analysis, as well as the estimated value of tf , provide additional theoretical
background for the qualitative interpretation of the shadowing e¤ects during non-di¤ractive �0 photoproduction
from nuclei. The quantitative results obtained in this section are not supposed to reproduce the PrimEx data, but
to be certainly superseded by the accurate results from measurements from Carbon and Lead. Additional discussion
on this subject will be presented in the conclusions.
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showing qualitatively that shadowing e¤ects are much less relevant for higher mass constituents

of the photon. The energy dependence of tf a¤ects the photon ability to interact with hadrons.

The higher is the photon energy, the stronger is its attenuation deep in the nuclei. The relationship

between ctf and the size of the nucleus also originates a much steeper decrease of the photoabsorption

cross section for heavier nuclei at higher energies, in comparison with light systems that tend to

reach an asymptotic value for much lower energies � 6 GeV.

The calculation of the shadowing e¤ect is carried out taking advantage of the MCMC cascade

model in a straightforward approach. The nuclear photoabsorption cross section is expected to be

proportional to the single nucleon cross section as follows:

�abs
A = A
abs
eff�

Total

N ; (31)

where the ratio
Aabseff

A
gives the amount of shadowing and is equal to unit for a pure electromagnetic

interaction (non-shadowed component). The label abs is introduced to indicate that we are consid-

ering the total photo-nucleus cross section at this point. Later on this note I will address the Aeff

factor for �0 photoproduction speci�cally.

The factor Aabseff can be calculated gathering information of the nuclear transparency to vector

mesons. In this approach, we can calculate Aabseff using the separation of (28) and the additional NS

contribution:

Aabseff =
�NS
N
�Total
N

A+ 4�

"
��
N + �

!

N

�Total
N

R
T�;!(r)N(r)r

2dr +
��
N
�Total
N

R
T�(r)N(r)r

2dr

#
; (32)

where TV (r) is the transparency for the respective vector meson (V � �; !; �). Since in our model

��N = �!N , we have T�(r) = T!(r) = T�;!(r): Obviously that for a non-shadowed photoabsorption,
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we have TV (r) = 1 and eq.(32) gives Aabseff = A. The nuclear transparency of vector mesons is

calculated as a function of the radial distance considering that vector mesons are coupled with

photons with impact parameters uniformly distributed in the area of a disc perpendicular to the

photon direction (z axis). For each cascade run, the vector meson mass mV and formation time

tf are distributed according with eqs.(29 - 30), conserving the 3-momentum of the system. The

formation time tf starts immediately after the vector meson and the struck nucleon reach their

minimal relative distance and the primary V N collisions are collected. This analysis provides the

information about the respective nuclear transparencies both in the incident (z < 0) and opposite

(z > 0) sides of the nucleus. The transparencies for Carbon and Lead for the three hadronic

constituents of the photon are shown in �gures 13 and 14, respectively.
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Figure 13: Nuclear transparency of 12C to vector mesons calculated via the MCMC cascade model. Details in the

text.
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Figure 14: Nuclear transparency of 208Pb to vector mesons calculated via the MCMC cascade model. Details in the

text.

So, including the MCMC results for TV (r) in eq.(32), one immediately obtains:
Aabseff

A
= 0:76 for

Carbon, and
Aabseff

A
= 0:75 for Lead. It is interesting to make salient that both factors are compatible,

even though one should expect a much higher attenuation for the case of Lead. However, the nuclear

transparency also depends on the formation time tf , reaching an asymptotic value after the hadronic

component is switched o¤. Such mechanism is very clear for the case of Lead (Figure 14), which

consists of a huge system where the interactions of the hadronic constituents with the nucleons are

unlikely to occur after a typical formation distance. For the case of Carbon, on the other hand, the

nuclear transparency is still decreasing deep in the nuclei, since the formation distance is compatible

with the nucleus size at 5.2 GeV and the vector mesons are expected to probe the whole nucleus.

For higher energies, however, the attenuation in Lead should be much stronger and the ratio
Aabseff

A

much lower, but at 5.2 GeV it is almost the same as for Carbon(7).

7The values of Aabseff for Carbon and Lead obtained with this simple approach are reasonably consistent with the
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3.4 Pauli-blocking in �0 photoproduction from complex nuclei

The accurate determination of the inelastic background in the PrimEx experiment is one of

the most important challenges of the available nuclear models. The precise data from PrimEx

demand a state-of-the-art approach for the understanding of the hadronic inelastic background,

since strong correlations are expected between some of the �tted parameters, such as the �0 ! 



decay width and the Primako¤ � nuclear coherent (NC) phase shift. Also, the magnitude of the

NC and NI cross sections are strongly correlated and energy dependent, making it necessary a

clear interpretation of the Pauli-blocking mechanism at small angles. The Pauli-suppression factor

can be calculated analytically considering the Fermi gas model with the in�nite nuclear matter

approximation or an independent particle model with Harmonic Oscillator (HO) wave functions.

The former calculation is expected to work properly for heavy nuclei, such as Lead, while the later

is useful for the description of �nite nuclei e¤ects in light and double magic nuclei, such as 16O. A

detailed review about neutral pion photoproduction from complex nuclei up to 900 MeV and the

Pauli-blocking suppression factors for heavy and light nuclei can be found in ref.[29] and references

therein. In this approach, the Pauli-suppression factor for heavy nuclei is given by:

1�G(q) =
3

4

�
q

pF

�
� 1

16

�
q

pF

�3
for q < 2pF and

= 1 for q > 2pF ; (33)

where pF is the Fermi momentum with q � k� representing the 3-momentum transfer. For light

nuclei, the following expression was obtained:

values reported on ref. [26] (see �g. 202), even though they provide only crude estimates for the case of PrimEx.
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1�G(q) = 1�
�
1 +

� q
2�

�4�
exp

�
�q2
2�2

�
; (34)

where �2 = 15
4R2

' 0:019 (GeV=c)2 :

The MCMC model, on the other hand, consists of an appropriate tool for the accurate deter-

mination of the Pauli-blocking suppression factor. Eqs. (33) and (34) were derived using closure

approximation without any speci�cation about the photoproduction operator. The MCMC model

also requires closure, since the NI amplitude for �0 photoproduction from the nucleus is obtained

as an incoherent sum of single nucleon amplitudes, but it still possible to include the dynamical

information for the elementary photoproduction during the evaluation of the Pauli-suppression fac-

tor. This powerful Monte Carlo method provides a more accurate calculation of the Pauli-blocking,

since it accounts for the underlying dynamics of the photoproduction mechanism. For the case

of heavy nuclei, such as Lead, one should expect only small di¤erences between eq.(33) and the

MCMC model, since both methods are based on the Fermi gas. These di¤erences arise from the

nucleon e¤ective masses (binding e¤ect), the neutron-proton asymmetry in heavy nuclei, and the

relativistic kinematics for the struck nucleon used in the MCMC model, besides the dynamics of

the �0 photoproduction previously mentioned. For the speci�c case of Carbon, one should expect

signi�cant di¤erences between the MCMC model and the calculations presented in ref.[29] due to

the inclusion of realistic M.D. of the bound nucleons based on the 1� s and 1� p proton knock-out

data. The Pauli-blocking factor in the MCMC model � herein denoted fPB (8) � is easily obtained

by the ratio between Pauli-allowed and the total number of events, after distributing the �0 pro-

duction angle in the center of mass of the s�channel using eq.(8). So, the total cross section after

8For notation purposes we are using fPB for the suppression factor calculated in the MCMC routine (for Carbon
and Lead) and G for the analytical solutions presented in eqs.(33) and (34).
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the inclusion of the Pauli-principle
�
d�
d


�PB
A
can be written as:

�
d�

d


�PB
A

= fPB(k; �)

�
d�

d


�PWIA

A

= AfPB(k; �)

�
d�

d


�
N

: (35)

Figure 15 shows the results of the Pauli-blocking factors as a function of polar angle (��0 � q
k
) ob-

tained via the MCMCmodel for 208Pb (blue line) and using eq.(33) with the same Fermi momentum

of pF = 279 MeV/c (black line). Since eq.(33) was derived independently of the photoproduction

dynamics, it is convenient to compare the prediction of the cascade model assuming an isotropic

�0 photoproduction in the center of mass of the s�channel (red line), where one easily veri�es a

very nice agreement between these approaches. It is clear that the Pauli-blocking factor depends

upon the photoproduction mechanism, since the later is much more favorable for �0 photoproduc-

tion at forward angles, enhancing the Pauli-blocking factor (less Pauli-suppression). The results for

Carbon are shown in �gure 16, where we have used a Fermi momentum of 221 MeV/c[30] for the

cascade calculations. A remarkable shape di¤erence between the MCMC predictions and the one

obtained with eq. (34) is observed. It is worth-mentioning, however, that the H.O. potential used

in ref.[29] is expected to work properly for nuclei with closed s and p�shells, such as the working

example presented there for 16O. In this model, the p3=2 and p1=2 states are degenerated (no spin-

orbit coupling), propitiating an analytical expression for G(k; �). However, for the PrimEx target

12C, the spin-orbit term plays an essential role, making the H.O. approximation a crude estimate

in comparison with the accurate M.D. used in the MCMC model (see previous section).

34



0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

π0 polar angle (Lab. frame)

Pa
ul

i-b
lo

ck
in

g 
fa

ct
or

γ208Pb−−>π0X
k = 5.2 GeV

fPB(k,θ) (MCMC)
fPB(k,θ) (MCMC isotropic)
 1 − G(k,θ) (Fermi gas)

Figure 15: Pauli-blocking factor for �0 photoproduction on 208Pb. The blue line represents the MCMC model

prediction taking into account the �0 photoproduction parameterization of eq. (8), while the red line is the same

result using an isotropic distribution of events. The result obtained with eq.(33) is shown by the black line.
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3.5 �0� nucleus �nal state interactions.

The calculation of the Final State Interactions (FSI) of the neutral pions with the nucleus

consists of the main issue for the determination of the NI cross section. The huge amount of

open channels requires a powerful tool, based on a sophisticated Monte Carlo algorithm, to address

the dynamics of such complicated system. The main disadvantage of the Glauber model for the

calculation of the absorption e¤ects in �0 photoproduction is that it does not account for the

energy losses during secondary scatterings and also neglects the short range correlations for particles

that undergo into collisions. These two approximations are expected to be quite reasonable if we

consider �0N scatterings in a high momentum transfer regime. For forward angle photoproduction,

however, soft scatterings are more strongly Pauli-forbidden, a¤ecting the NI cross section in shape

and magnitude.

Table 2 presents the �N ! X channels considered in the MCMC cascade. The entrance

channels are given by binary collisions with one pion (�0; �+; ��) and one nucleon (p; n). Collisions

of the type �N; �N�; ��; NN;NN� and N� are taken into account, but collisions between pairs

of pions are not considered due to a much lower pion density. There is a huge amount of important

channels for the case of PrimEx, since a great number of additional neutral pions can be produced

in secondary scatterings. In fact, multiple pion production dominates the total cross section within

the PrimEx energy range. The energy dependence of the cross sections for the entrance channels

�0p and �0n are presented in �gures 17 and 18, respectively.
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pπ0pπ−nπ0nπ+

∆(1950)- (F37)∆(1950)0 (F37)∆(1950)++ (F37)∆(1950)+ (F37)

N(1680)+ (F15)N(1680)0 (F15)N(1680)0 (F15)N(1680)+ (F15)

N(1520)+ (D13)N(1520)0 (D13)N(1520)0 (D13)N(1520)+ (D13)

∆(1232)- (P33)∆(1232)+ (P33)∆(1232)0 (P33)∆(1232)0 (P33)∆(1232)++ (P33)∆(1232)+ (P33)

nπ−nπ+nπ0pπ−pπ+pπ0

C
H
A
N
N
E
L

O
U
T

π−nπ+nπ0nπ−pπ+pπ0pCHANNEL IN

Table 2: �N ! X channels implemented in the MCMC cascade model. Details in the text.

The cross sections for the �N ! X channels included in the MCMC model were obtained

combining the properties of isospin invariance and time reversal of the strong interactions and the

results for charged pions, usually determined by �tting the experimental data. This procedure

allowed the inclusion of approximately 95% of the relevant channels within the PrimEx energy,

where we have neglected production of vector mesons and strange particles.
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Figure 17: �0p! X channels implemented in the MCMC model.

A typical entrance channel for a charged pion and its respective experimental data is presented in

�gure 19. The solid blue line represents our �tting, while the magenta line is the sum of all processes

included in the MCMC model, indicating that almost all channels were accounted for. The missing

channels refer to the production of vector mesons and strange particles and were not included into

the cascade. However, for the calculation of the interaction probability, we considered the total

�N cross section (blue line for the case of �gure 19), instead of the evaluated total cross section in

order to properly account for the pion transparency. The elastic channel is approximately 20 % of

the total cross section for k = 5:2 GeV (
p
s � 3:2 GeV) and consists of the major contribution of
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secondary scatterings within the PrimEx energy range. This speci�c channel needs special attention

and will be described in more detail later.

The main focus of the present calculation is to provide a rigorous method for the determination

of the NI contribution in the quasi-elastic hadronic background of the PrimEx data. Obviously that

the current version of the cascade model is not intended to calculate the total �0 background within

4.0 to 6.0 GeV, which is certainly not feasible considering the current status of the nuclear theory.

The main reason for this limitation is attributed to the fact that only the single pion production

channel is considered during the �rst photo-nucleus interaction (see previous section).
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Figure 18: �0n! X channels implemented in the MCMC model.
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This single meson photoproduction mechanism represents only a small fraction (� 10%) of

the total hadronic cross section [28] and, consequently, restricts our analysis to the quasi-elastic

domain. So, the calculations and results that follow consider only a single �0 photoproduction

that subsequently interacts with the bound nucleons in accordance with the elementary processes

depicted in �gures 17 and 18 and in table 2. For this reason, a careful analysis of the �0 production

kinematics that might contribute in the quasi-elastic domain has to be carried out, showing that

not only the single di¤erential but also the double-di¤erential �0 production cross section
�

d2�
d
dE�0

�
has to be considered during the data analysis in order to access the neutral pion energy spectra.
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Figure 19: ��p! X channels implemented in the MCMC model. The data points were taken from the PDG.
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3.5.1 The elastic �0N ! �0N channel

The elastic �0N ! �0N channel consists of the most important contribution (� 20%) of the

total �0N cross section within the PrimEx kinematics and is also an important source of high

energy neutral pions at forward angles. Many other channels can also contribute in the quasi-

elastic domain. For instance, a charged pion photoproduction can contribute to the �0 yield via a

charge-exchange process. Fortunately, the probability for a two-body charge exchange goes to zero

above
p
s � 2:5 GeV (see �gs. 17 and 18) and these processes can be safely neglected within the

PrimEx kinematics (E�0 � k). On the other hand, the decay of the vector mesons � and ! into the

�0 channel can contribute signi�cantly in the hadronic background of neutral pions. Speci�cally, the

channel ! ! �0
 is expected to play an important role at forward angles due to the combination of

three factors: i) a huge di¤ractive ! photoproduction in nuclei, ii) a signi�cant branching ratio for

the ! ! �0
 decay (8.5%) and, iii) a favorable kinematics for the production of high energy and

forward peaked pions in the ! ! �0
 decay. The contribution of the ! ! �0
 decay in the PrimEx

data was estimated using the MCMC model and also in ref.[31], but is not addressed in the present

note, which is speci�cally devoted for the NI �0 photoproduction.

The di¤erential cross section for elastic �N scattering in the center of mass frame is assumed to

be in the form[32]:

�
d�

d


�
�N!�N

=
�T (p)

�T (p0)
exp

�
a+ bt+ ct2

�
; (36)

where p0 = 20 GeV/c. The total �N cross section can be approximated using the parameterization:

�T (p) = 23:01 +
20:48

p(GeV=c)
; for �+ and (37)
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�T (p) = 24:1 +
26:78

p(GeV=c)
; for ��. (38)

The parameters a; b and c are the best �t parameters to the available data within 6 to 20 GeV

and are given by:

a = 3:60� 0:05

b = 8:8� 0:3 (GeV/c)�2

c = 2:3� 0:4 (GeV/c)�4; for �+ and

a = 3:65� 0:05

b = 9:5� 0:3 (GeV/c)�2

c = 2:7� 0:4 (GeV/c)�4; for ��:

The di¤erential cross sections for the elastic �+(�)p ! �+(�)p scattering within the PrimEx

kinematics are presented in �gures 20 to 24 together with the available data. Figure 20 shows the

prediction of eq. (36) for p = 4:95 GeV/c in comparison with the data of ref.[33]. Figures 21 and

22 present the results obtained at p = 7:0 GeV/c and p = 6:8 GeV/c for �� and �+, respectively,

in comparison with the data of ref.[34]. Figures 23 and 24 show the proposed parameterization

at p = 7:76 GeV/c and p = 7:89 GeV/c for �+ and ��, respectively, together with the data from

ref.[35]. It is worth-mentioning, however, that the later data include a sizable Coulomb contribution

at forward angles. Such contribution is obviously absent in eq.(36), which includes only the strong

part and is intended to reproduce the data only at larger angles.
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Figure 20: ��p! ��p di¤erential cross section at p = 4:95 GeV/c. The data points were taken from ref.[33].
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Figure 21: ��p! ��p di¤erential cross section at p = 7:0 GeV/c. The data points were taken from ref.[34].
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Figure 22: �+p! �+p di¤erential cross section at p = 6:8 GeV/c. The data points were taken from ref.[34].
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Figure 23: �+p! �+p di¤erential cross section at p = 7:76 GeV/c. The data points were taken from ref.[35].

44



0 5 10 15 20 25 30
0

20

40

60

80

100

 Exp data
 Proposed parameterization

π- polar angle (c.m. frame)

π-p --> π-p
pπ = 7.89 GeV/c

dσ
/d

Ω
 (m

b/
sr

)

Figure 24: ��p! ��p di¤erential cross section at p = 7:89 GeV/c. The data points were taken from ref.[35].

The di¤erential cross section for the elastic �0N ! �0N scattering can be deduced from the

results obtained for charged pions using the symmetries of the strong interaction and neglecting the

Coulomb part:

�
d�

d


�
�0N!�0N

�=
1

2

"�
d�

d


�
�+p!�+p

+

�
d�

d


�
��p!��p

#
: (39)

The result of the di¤erential cross section at the mean energy of 5.2 GeV is presented in �gure

25.
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Figure 25: �N ! �N di¤erential cross section at p = 5:2 GeV/c. The black and red lines are obtained with

eq.(36) for �+ and ��; respectively, while the blue line represents the MCMC input for �0N ! �0N .

3.5.2 Pauli-blocking in secondary �0N scatterings

One of the main hypotheses of the multiple-scattering formalism developed by Glauber is that

the nuclear correlations are not relevant during secondary �N scatterings. In this model, the

amplitude for �N scattering in the nucleus is approximated by the same quantity for the vacuum,

which is the same of neglecting the phase space reduction due to the Pauli principle. In the MCMC

model, however, the non-stochastic Pauli-blocking approach propitiates a time-dependent analysis

of multiple p�h excitations during the cascade process. The method is completely new and provides

a more rigorous formalism to address short range correlations in nuclear matter in comparison with

the statistical approaches employed in similar cascade models, such as the Liège INC model [36], as

well as in other re�ned transport calculations[37].

In order to evaluate the in�uence of the Pauli-principle during secondary scatterings, we have run
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the cascade model with and without the Pauli-blocking, collecting any given binary �0N collision

as a function of the intranuclear cascade time. The �nal results are extremely sensitive to the

kinematical cuts in the pion elasticity
�
"�0 =

E�0
k

�
(9). The higher is the pion elasticity (E�0 � k),

the lower is the �0N scattering angle and the higher is the fraction of Pauli-blocked events. On

the other hand, for extremely inelastic events ("�0 � 1), the pion´s ability to interact is strongly

reduced and the fraction of blocked events increases. So, the realistic picture can be achieved using

elasticity cuts compatible with the PrimEx analyses and the MCMC accuracy. The results of the

time derivative of the average number of �0N scatterings during a typical cascade at k = 5:2GeV are

presented in �gures 26 and 27 for Carbon and Lead, respectively. The total number of scatterings

is obtained by the integral
R
dN
dt
dt and the ratio between Pauli-allowed and the total number of

scatterings
�
rPauli = NPauli

NTotal

�
gives the fraction of unblocked events. The fraction of unblocked events

is 0:995 (0.956) for Carbon and 0.983 (0.938) for Lead taking into account an isotropic (di¤ractive)

�0N elastic scattering. The results show consistently that the Pauli-principle a¤ects 5 to 6 % of

all the binary events (considering the realistic di¤ractive distribution) during the cascade stage and

should be included for the calculation of the NI cross section. Considering that the Pauli-principle

a¤ects more signi�cantly the elastic channel, we can estimate that approximately 25 % of the elastic

�0N scatterings are being blocked, since this mechanism accounts for approximately 20 % of the

total �0N cross section.

9The pion elasticity constraint is imposed during the cascade process, which is interrupted after the pion energy
has dropped below a cuto¤ value. For the case of Carbon, the cascade model was run in the range from " = 0:82 to
" = 1:00 in steps of 0.02, while for Lead only a single run with " = 0:92 was performed. These values are compatible
with the PrimEx analyses in progress and can be further adjusted to cover any speci�c kinematical cut. However,
as we have mentioned before, the accuracy of the model decreases substantially for extremely inelastic events.
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Figure 26: Time derivative of the average number of secondary �0N scatterings on 12C at k = 5:2 GeV as a function

of the cascade time. The left panel is obtained assuming an isotropic �0N elastic scattering, while the right panel

shows the results using the parameterization of eq. (39). The black/red histograms were obtained without/with the

Pauli-principle taking into account elasticity cut of 0.82.
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Figure 27: Time derivative of the average number of secondary �0N scatterings on 208Pb at k = 5:2 GeV as a

function of the cascade time. The notation is the same of Fig. 26.
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4 RESULTS

4.1 Single di¤erential cross sections for incoherent �0 photoproduction

from Carbon and Lead

The single di¤erential cross section for incoherent �0 photoproduction from complex nuclei is

calculated using the elementary photoproduction cross section presented in section 2 and the steps

delineated in the previous section. The former introduces the dynamics of the photoproduction

mechanism and also the normalization of the �nal results, such as:

�
d�

d


�PWIA

A

= A

�
d�

d


�
N

: (40)

The other steps introduce the e¤ects of the nuclear matter, such as the Pauli-blocking during

the photoproduction, and the �0 � nucleus FSI. The �nal result of the NI cross section is then

obtained after running the cascade model:

�
d�

d


�PWIA

A

: � Pauli �>
�
d�

d


�PB
A

: � MCMC �>
�
d�

d


�FSI
A

: (41)

The nuclear shadowing does not change the shape of the cross sections, and:

�
d�

d


�FSI+SHAD
A

=
Aabseff
A

�
d�

d


�FSI
A

; (42)

with
Aabseff

A
= 0:76 for Carbon and 0:75 for Lead. The results for Carbon at 5.2 GeV taking into

account an elasticity cut on the pion energy of 0.92 are presented in �gure 28.
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Figure 28: Nuclear Incoherent (NI) cross section for �0 photoproduction from Carbon. The black histogram is the

PWIA, which is A times the single nucleon cross section. The red histogram includes the Pauli-principle during

the photoproduction, while the magenta represents the full calculation after including the �0�nucleus FSI. The

blue/olive line is a polynomial �tting that reproduces the results without/with shadowing within 1 % error.

The result for Lead is presented in �gure 29. The full FSI results without shadowing for Car-

bon and Lead (magenta histograms) were �tted using polynomial functions for future and more

convenient applications:

�
d�

d


�FSI
A

=
i=imaxP
i=0

ai (��)
i ; (43)

where ��(deg :) is the polar angle of the pion in the laboratory frame. Table 3 summarizes the
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�tting results that reproduce the histograms within 1 and 2% for Carbon and Lead, respectively.
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Figure 29: Nuclear Incoherent (NI) cross section for �0 photoproduction from Lead. The black histogram is the

PWIA, which is A times the single nucleon cross section. The red histogram includes the Pauli-principle during

the photoproduction, while the magenta represents the full calculation after including the �0�nucleus FSI. The

blue/olive line is a polynomial �tting that reproduces the results without/with shadowing within 2 % error.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10(�10�3) �2red

C 2.14 54.32 -162.03 280.12 -269.79 158.57 57.97 13.15 -1.799 0.136 -4.352 1.19

Pb 60.68 152.94 22.22 -11.99 0.86 0 0 0 0 0 0 1.09

Table 3: Parameters of the �ttings to the NI cross sections without shadowing. Details in the text.

51



4.2 Double di¤erential cross sections for incoherent �0 photoproduction

from Carbon and Lead

The double di¤erential cross section for incoherent �0 photoproduction from complex nuclei is

the most convenient observable for the evaluation of the hadronic background at forward angles.

Such theoretical prediction propitiates the construction of realistic event generators of the NI mech-

anism, since it includes the information about the energy losses due to the nuclear excitation either

with or without secondary meson-nucleus interactions. Di¤erent kinematical cuts may take place

in di¤erent analyses and the double di¤erential cross section could provide a consistent explanation

for possible variations in the absolute cross sections at larger angles. At extreme forward angles,

the pion energies are very close to the photon energy and di¤erent kinematical cuts should lead to

similar and consistent results. At larger angles, on the other hand, the shape of the NI cross section

is very sensitive to the cuts made on the pion energy and small di¤erences in the choice of the

elasticity cut could lead to di¤erent results in shape and magnitude. The double di¤erential cross

section as a function of the pion polar angle d2�
d�dE�0

is calculated in the Monte Carlo algorithm taking

into account the same kinematical cuts applied for the single di¤erential cross section, satisfying

the normalization:

R � d2�

d�dE�0

�FSI
A

dE�0 = 2� sin �

�
d�

d


�FSI
A

:

The results obtained for Carbon at "�0 � 0:92 are presented at selected polar angles in Fig.

30. The pion spectra exhibit a sharp peak close to the photon energy at lower angles, since the

nuclear excitation is quite small for low momentum transfer. The e¤ect of the Pauli-principle is

also observed for lower angles, where the pion spectrum decreases about one order of magnitude
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from 1.25 to 0.25 degrees.
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Figure 30: Double di¤erential cross section for incoherent �0 photoproduction from Carbon. The histograms repre-

sent the full calculation without shadowing.

The results for Lead are presented in Fig. 31, where one easily observes similar peaks near

the photon energy at low polar angles. For higher angles, however, broad energy distributions are

obtained due to a much larger phase space. The pion spectra both for Carbon and Lead are always

concentrated within approximately k and k � 200 MeV at polar angles up to 4.75 degrees.
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Figure 31: Double di¤erential cross section for incoherent �0 photoproduction from Lead. The histograms represent

the full calculation without shadowing.
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4.3 �0 energy spectra due to incoherent production from Carbon and

Lead

The pion spectrum due to incoherent production is another observable useful to delineate the

hadronic background. The pion spectra due to coherent production (Primako¤/Nuclear Coherent)

are known to be concentrated within typically k and k � 10 MeV[7], region where the incoherent

part does not vanish but is quite small. On the other hand, below k � 10 MeV, only the inelastic

part survives and the total pion spectra could be approximated by the sum of the NI part and the

decay of heavier mesons, such as � and !. So, to the extent that the adopted inelastic domain

("�0 � 0:92) satis�es the PrimEx environment, one can calculate the pion spectra directly from the

Monte Carlo. The spectra are normalized such that:

Z �
d�

dE�0

�FSI
A

dE�0 =

Z �
d�

d


�FSI
A

d
:

The results for Carbon and Lead (without shadowing) are presented in �gure 32. Both spectra

present a smooth decrease from E�0 � k � 30 MeV to E�0 � k due to the Pauli-principle, since

this region corresponds to pion production at extreme forward angles. It is also observed that

the pion spectra due to incoherent production do not vanish within the quasi-elastic domain of

coherent production (E�0 & k � 10 MeV), showing that the inelastic part can not be disentangled

from the coherent part using only the information of the pion energy distribution. Also, the energy

resolution of the PrimEx experiment (two photon cluster energy resolution) is not likely to allow

an accurate determination of the details of the pion spectra in such a narrow energy range. The

distributions present a clear �at shape for pions with lower energies (higher momentum transfer)

since the Pauli-principle is less relevant in this region.
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Figure 32: �0 energy spectra due to incoherent production from Carbon (black) and Lead (red) including full FSI

of the produced pions. The results are for pion elasticity grater than 0.92 and do not include shadowing.
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4.4 Revisiting the NI cross section for Carbon

4.4.1 NI cross section versus MD parameterization

As previously mentioned in this note, we have also run the cascade model for Carbon taking

into account di¤erent sets of momentum distributions in order to evaluate the sensitivity of the

model with respect to this important input. The runs were made combining 1s and 1p proton

knock-out data obtained at di¤erent facilities as sketched in table 4.

s�shell p�shell cascade run #

PWIA[21] PWIA[21] 1 (main run)

Saclay 76[22] Saclay 76[22] 2

Saclay 76[22] Saclay 82[23] (perp.) 3

Saclay76[22] Saclay 82[23] (par.) 4

Tokyo 76[24] Tokyo 76[24] 5

Nikhef 88[25] Nikhe¤ 88[25] 6

Table 4: Di¤erent sets of momentum distributions for the s and p shells of Carbon used in the present analysis.

The results of the di¤erential cross sections
�
d�
d�
= 2� sin � d�

d


�
including full FSI are presented in

�gure 33 for the six runs considered. The absolute di¤erences between the NI cross sections of runs

2 to 6 and main run 1 are shown in �gure 34, where one easily veri�es that the cascade results are

safely concentrated within 2 �b=rad from 0 to 4 degrees. The di¤erences do not exceed 0.5 �b=rad

up to approximately 0.5 degrees.
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Figure 33: Di¤erential cross section
�
d�
d�

�
of incoherent �0 photoproduction from Carbon as a function of the MD

parameterization.

In order to verify the consistency of the results, we have averaged the NI cross section between

runs 2 to 6 and compared this result, with one standard deviation, with the one obtained in main run

1. Figure 35 shows the averaged NI cross section from runs 2 to 6 in comparison with run 1. A nice

agreement between the results is veri�ed, making it possible to estimate a systematic uncertainty

in our main run # 1 due to the MD parameterization. This uncertainty can be estimated by the

relative di¤erence (RD) between main run 1 and the average from runs 2 to 6, which is presented

in �gure 36.
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Figure 34: Absolute di¤erences between the NI cross section obtained from main run 1 and run 2 to 6. The average

of the di¤erences is �0:11� 0:69 �b=rad from 0 to 4 degrees.

The relative di¤erence (%) so obtained was �tted assuming a polynomial function:

RD(Q2) =
6P
i=0

bi
�
Q2
�i
; (44)

where Q2(GeV=c)2 is the square of the 4-momentum transfer, given by: Q2 �= k2�2 +
�
m2
�

2k

�2
. The

�tted parameters bi are presented in table 5.

b0 b1 b2(�103) b3(�104) b4(�104) b5(�104) b6(�104) �2red

25.45 -710.25 5.984 -2.282 4.43 -4.27 1.61 0.88

Table 5: Fitting parameters of the relative di¤erence presented in �gure 36.

59



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0
5

10
15
20
25
30
35
40
45
50

γ12C −−> π0X
k = 5.2 GeV
επ0: [0.92− 1.0]

NI cross section (without shadowing)

dσ
/d

θ 
(µ

b/
ra

d)

π0 polar angle (deg.)

 MCMC (main run 1)
 MCMC (average from run 2 to 6)

Figure 35: NI cross section from main run 1 (black line) and the average value from run 2 to 6 with one standard

deviation (red points).

Figure 37 presents the RD as a function of Q2 for future reference. With this approach, the

sensitivity of the cascade model due to the MD parameterization for Carbon is estimated and can be

propagated to the �nal results (with or without shadowing) in order to provide a range of con�dence

in the model predictions.

Finally, �gure 38 shows the predictions of the cascade model for the NI cross section taking into

account the relative di¤erence obtained with di¤erent MD parameterizations. The upper and lower

histograms represent the results for run 1 plus and minus the �tted relative di¤erence, respectively.

It is worth mentioning, however, that the same procedure can be applied to the double di¤erential

cross section and also to the results that include shadowing, since the later does not change the
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shape of the cross sections.
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Figure 36: Relative di¤erence (%) between main run 1 and the average from runs 2 to 6. The polynomial �tting

reproduces the relative di¤erence within �2%:
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Figure 37: Relative di¤erence (%) as a function of Q2. Details in the text.
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Figure 38: Upper and lower limits of the Nuclear Incoherent cross section for �0 photoproduction from Carbon

obtained via the MCMC model.

4.4.2 NI cross section versus �0 elasticity

In this section, we investigate the in�uence of cuts in �0 elasticity on the shape and magnitude

of the NI cross section at small angles. The NI cross section at forward angles is expected to depend

very critically on kinematical cuts, since the momentum transfers are very small and the total en-

ergy carried out by the pion is sensitive to the nuclear excitation, as well as to the secondary elastic

scatterings at small angles. These secondary scatterings are more likely to contribute at forward

angles due to the di¤ractive behavior of the elementary �0N ! �0N process. So, any calculation

that provides information about the pion energy losses during multiple scatterings should include

such constraint to the elastic channel. Figure 39 shows the NI cross section
�
d�
d


�
for �0 photopro-
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duction at selected pion elasticity. The contribution of secondary scatterings at forward angles is

evident if we consider the increasing di¤erence between the NI cross section for wider elasticity cuts.

This result indicates that relaxing the elasticity cut has the natural e¤ect of increasing the back-

ground also at forward angles due to secondary scatterings. The result for "�0 : [0:98� 1:00] (olive

line) decreases very fast above approximately 3 degrees as a consequence of the higher momentum

transfer carried out by the struck nucleon.
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Figure 39: Nuclear Incoherent cross section for �0 photoproduction from Carbon as a function of pion elasticity.

Figure 40 presents the absolute cross section di¤erences between two distinct kinematical cuts.

It is also evident from �gure 40 that relaxing the cuts on pion energy increases the �0 background

isotropically up to 4 degrees. This fact reinforces the idea of using the double di¤erential cross

section to delineate the �0 background and make theory and experiment mutually consistent.
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Figure 40: Absolute cross section di¤erences between the NI cross section at distinct kinematical cuts.
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4.5 Aeff factor for incoherent �0 photoproduction from Carbon and

Lead: Comparing the MCMC predictions with the available data.

TheAeff factor for incoherent �0 photoproduction from the nucleus is one of the most important

step towards the determination of the magnitude of the NI cross section. Although the �0 ! 



decay width is only sensitive to the shape - instead of the magnitude - of the NI cross section;

it is also extremely relevant to verify that the nuclear background in the PrimEx data could be

interpreted in shape and magnitude as a non-di¤ractive incoherent mechanism. Such condition

would provide a clear veri�cation that the inelastic background is completely under control for

future experiments. The Aeff factor for �0 photoproduction is assumed to be the ratio between the

measured cross section from the nucleus and that from the nucleon:

A�
0

eff =

R �
d�
d


�
A
d
R �

d�
d


�
N
d

: (45)

In PWIA, we have A�
0

eff = A; since
�
d�
d


�PWIA

A
= A

�
d�
d


�
N
: So, taking into account the Pauli-

blocking during the photoproduction, as well as the full FSI of the produced pions, we arrive to the

following expression:

A�
0

eff (MCMC) =

R �
d�
d


�FSI
A

d
R �
d�
d


�
N
d


: (46)

Alternatively, the A�
0

eff factor can be calculated using the integral formalism of Glauber. In this

model - which does not account for shadowing - the following expression is deduced for high energy

pions:

A�
0

eff (Glauber) =
2�

��0N

Z 1

0

�
1� exp

�
���0N

Z 1

�1
N(b; z)dz

��
bdb; (47)
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where ��0N is the total �0N cross section and N(b; z) the nuclear density with r2 = b2 + z2 . So,

eqs. (46) and (47) can provide two di¤erent approaches to determine A�
0

eff .

An important measurement of A�
0

eff for Carbon and Lead was performed in the 70´s at Cornell.

In this experiment[19], the �0 yields from complex nuclei were measured and normalized to the

deuteron data, keeping the 4-momentum transfers in the range 0:10 < jtj < 0:25 (GeV=c)2 : This

procedure did not permit an unambiguous veri�cation of the absolute values of A�
0

eff , since the

normalization procedure was model dependent due to the Glauber corrections applied to the �0

absorption in the deuteron. However, these data represent the only measurements ever made

for A�
0

eff , making the confront between theory and experiment an urgent issue. Certainly, future

experiments would provide more accurate and model independent A�
0

eff factors from complex nuclei.

Since the NI cross section largely dominates the �0 yield from Cornell experiment, we neglect

the contribution from the Nuclear Coherent (NC) and Primako¤ - Nuclear Coherent interference

mechanisms and assume that the total cross section from the nucleus is uniquely attributed to the

NI cross section (10). So, in order to compare the predictions from the MCMC model with Cornell�s

data, we have to calculate the di¤erential cross section as a function of t and perform the following

integral:

A�
0

eff (MCMC) =

R 0:25
0:1

�
d�
dt

�FSI
A

dtR 0:25
0:1

�
d�
dt

�
N
dt

= A

R 0:25
0:1

�
d�
dt

�FSI
A

dtR 0:25
0:1

�
d�
dt

�PWIA

A
dt
; (48)

where we have used the identity
R 0:25
0:1

�
d�
dt

�PWIA

A
= A

R 0:25
0:1

�
d�
dt

�
N
in the last step. Figures 41 and

42 present our predictions for the NI cross section from Carbon and Lead as a function of t, in

comparison with the PWIA.

10The range of momentum transfers from Cornell experiment (0:10 < jtj < 0:25 (GeV=c)
2) guarantees that the

NC process does not contribute. However, the contributions from the decay of heavier mesons (� and !) are very
relevant within this kinematics, but they were clearly separated in the Cornell experiment[19].
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Figure 41: Nuclear Incoherent cross section for �0 photoproduction from Carbon as a function of t. The black line

is the PWIA, while the red line includes the e¤ect of Pauli-blocking and FSI.
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Figure 42: Nuclear Incoherent cross section for �0 photoproduction from Lead as a function of t. The black line is

the PWIA, while the red line includes the e¤ect of Pauli-blocking and FSI.

So, using eqs.(47) and (48), we can calculate the values of A�
0

eff (without shadowing) both for
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Carbon and Lead. The last step is the inclusion of the nuclear shadowing, which is easily done by

the multiplication of the MCMC results by 0:76 (Carbon) and 0:75 (Lead). Table 6 presents our

results for A�
0

eff for Carbon and Lead using the MCMC and Glauber models in comparison with the

Cornell data.

A�
0

eff

Glauber

5.2 GeV

MCMC

5.2 GeV

MCMC (Shad.)

5.2 GeV

Cornell

4.6 GeV

Cornell

6.4 GeV

Carbon 7.22 7.64 7.64�0:76 = 5:82 5.83�0:30 5.73�0:29

Lead 60.14 60.01 60.01�0:75 = 44:65 41.6�2:4 44.7�2:6

Table 6: Aeff factors for �
0 photoproduction from Carbon and Lead obtained using the MCMC and Glauber

models in comparison with the Cornell measurements at selected energies.

As clearly observed, both the MCMC and Glauber models give similar results (within � 6%)

for A�
0

eff if we neglect shadowing. The inclusion of shadowing decreases A
�0

eff by approximately 25%

and the MCMC results reproduce the Cornell data within the error bars both for Carbon and Lead.

The values reported by the Cornell experiment do not present a strong energy dependence and we

can safely compare our predictions at k = 5:2 GeV, which is the average energy from PrimEx, with

the data obtained at Cornell in the range from 4.6 to 6.4 GeV.
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5 CONCLUSIONS AND FINAL REMARKS

A sophisticated intranuclear cascade Monte Carlo model was developed for the interpretation

of the incoherent �0 photoproduction from PrimEx experiment. The model, which is based on a

relativistic and time dependent multicollisional framework, incorporated important features and

improvements with respect to older versions, such as: i) an accurate elementary �0 photoproduc-

tion mechanism based on a Regge model and constrained by the available data to describe the

initial photo-nucleus interaction, ii) realistic momentum distributions for Carbon deduced from s

and p�shells one-nucleon removal experiments, iii) a completely new non-stochastic Pauli-blocking

approach for the initial photo-nucleus interaction, as well as in binary �0N scatterings during the

cascade, iv) the analysis of the shadowing e¤ect via the VMD model, and v) the implementation of

multiple �0N processes for the evaluation of the full FSI of the produced pions with the nucleus.

The model presented some special features in comparison with similar transport techniques,

since it accounted for the energy losses of the produced pions using relativistic kinematics. Also,

the contribution of the elastic �0N ! �0N channel at forward angles was evaluated using realistic

(di¤ractive) angular distributions. The e¤ect of the Pauli-blocking during secondary scatterings

- which is generally neglected in other transport models - is considered in our calculations. The

di¤ractive behavior of the process �0N ! �0N , which accounts for approximately 20% of the

total �0N cross section, changes the shape of the NI cross section (in comparison with the pre-

vious isotropic version) and increases the cross section by about 5 to 15 % both for Carbon and

Lead. These e¤ects come from the higher probability of forward scatterings and a stronger Pauli

suppression (�5%)

The calculation of the shadowing e¤ect in high energy photo-nucleus interactions is based on

the VMD model and incorporates the formation time concept. The nuclear transparencies to vector
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mesons are calculated in the MCMC routine and provide qualitative information regarding the

attenuation of the physical photon deep in the nuclei. The results for Carbon and Lead are very

consistent with previous estimates of other models. It is worth-mentioning, however, that the

predictions of the shadowing e¤ect presented in this note represent only crude estimates that are

likely to be superseded by the forthcoming PrimEx data. Fortunately, the �nal result of the �0 ! 



decay width is not sensitive to the normalization of the NI cross section; it depends only on the

accurate shape of the hadronic background which is carefully accounted for in this note.

The MCMC model have provided some important observables for future reference, such as: i)

the Pauli-blocking factors for �0 photoproduction from Carbon and Lead, ii) the time derivative of

the average number of �0N scatterings during the high energy cascade stage, iii) single di¤erential

cross section for incoherent �0 photoproduction from Carbon and Lead, iv) double di¤erential cross

section for incoherent �0 photoproduction from Carbon and Lead, v) �0 energy spectra due to

incoherent photoproduction, and vi) A�
0

eff factors both for Carbon and Lead. The single di¤erential

cross sections for Carbon and Lead at 5.2 GeV were �tted with polynomial functions for future

convenience. The precision of the �tting is 1% for Carbon and 2% for Lead.

The sensitivity of the NI cross section from Carbon due to the momentum distribution (MD)

parameterization was evaluated running the cascade model with di¤erent sets of parameterizations.

The results indicate that the relative di¤erence between the main run 1, which is based on the

PWIA for the MD, and the others is more relevant at forward angles due to the Pauli-blocking

e¤ect. Fortunately, the absolute di¤erences between these runs were always within 0.5 �b=rad up

to approximately 0.5 degrees, where the Primako¤ cross section is quite small.

A strong dependence of the NI cross section due to the pion elasticity was observed, suggesting

that a careful analysis combining the single and double di¤erential cross section would be useful to
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bring theory and experiment together.

In conclusion, a detailed calculation based on a Monte Carlo intranuclear cascade algorithm has

been proposed for the interpretation of the shape and magnitude of the �0 incoherent background

in the PrimEx experiment. The model provided a consistent method of extracting the A�
0

eff factors

both for Carbon and Lead, reproducing for the �rst time the Cornell�s data within the error bars.
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