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Section D1

Unit H, ‘Magnetic fields and a.c.’

Unit I, ‘Linear electronics, feedback and
control’

Unit J, ‘Electromagnetic waves’

REABING
Quartz and atomic clocks (page 237)

‘Buildings, bridges, and wind’ in the
Reader Physics in engineering and
technology

SUMMARY OF THE UNIT

INTRODUCTION

This Unit deals with oscillations in mechanical systems and the waves
they set up. Engineers are especially concerned with such mechanical
vibrations, which have important implications for the stability and even
the safety of the structures they build. For example, the designer of a
new car must consider how the parts of the vehicle might oscillate and
the effect such oscillations would have on passenger comfort, road-
holding, and so on.

The study of mechanical oscillations and waves is important too as a
preparation for understanding electrical oscillations (Unit H, ‘Magnetic
fields and a.c.’) and electromagnetic waves (Unit J, ‘Electromagnetic
waves’). Analogies between mechanical and electrical oscillations and
waves are easy to draw, and the mathematical models developed in this
Unit to describe mechanical situations transfer directly to equivalent
electrical situations. |

You will use several of the ideas developed in Unit A, ‘Materials and
mechanics’, including those of interatomic forces and spacings, the
Young modulus, and the spring constant. And it will be helpful if you
can recall some of the important features of wave behaviour from
earlier science courses.

INTRODUCTION TO OSCILLATIONS
What are oscillators and why study them?

Anything that exhibits a rhythmic, repetitive, or to-and-fro motion may
be considered as an oscillator. Although the cause of the oscillations and
the nature of the oscillator differ from example to example, we can
describe common properties.

Almost every object in the universe, large or small, can oscillate in
some way or another; and if oscillating electric and magnetic fields,
currents, and potential differences are considered, then the study of
oscillations is a major theme in physics, as the list below indicates.
Quartz crystals as used in clocks and watches.

Atoms oscillating in solids.

Metal structures oscillating (leading to fatigue) as, for example, bridges,
aircraft wings.

A car bouncing on its suspension.

An oil platform oscillating in rough seas.

A boat pitching and rolling.

The Earth’s atmosphere after an explosion such as that of Krakatoa.
The larynx in the human voice-box. '
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EXPERIMENT D1
How do oscillators move?

You should be familiar with the words:
displacement

amplitude

period

frequency

QUESTION 1

Figure D1

HOME EXPERIMENT DH1
Making a chronometer

READING
Quartz and atomic clocks (page 237)

Any real system, electrical or mechanical, subject to a sudden
change will begin to oscillate, unless damping (for example, by friction)
is very large.

As well as the fact that oscillations can occur in so many different
systems, as the list above suggests, there are four particular reasons why
they are worth studying:

i some oscillators have a constant period and so can be used for
timekeeping;

ii some oscillations can be destructive if uncontrolled;

iii mechanical waves may originate from an oscillating body if the body
can cause particles or other objects within the surrounding medium to
oscillate and so transmit the wave;

iv electromagnetic waves are radiated into free space by oscillating
charged particles; the same oscillators are also able to absorb
electromagnetic radiation.

Time traces of oscillators

Some oscillators are isochronous; that is, the period of the oscillation is
constant (from the Greek iso=equal, khronos=time). Some are not.
Some have smooth graphs of displacement against time and some have
not.

A typical near-isochronous time trace is given by the loaded lath
oscillator (see figure D1). Note that:
i one cycle of the graph resembles a cosine graph;
ii the amplitude dies away due to damping — the oscillator loses energy
to the surroundings;
iii the period is independent of the amplitude.

Displacement

e BT
AT

Oscillations and clocks

Isochronous oscillators from the pendulum to the precise oscillations of
caesium atoms in the atomic clock obviously have a use in measuring
time. But is our desire to measure time more and more accurately the
end of the story? Such questions arise as: “‘What is time?’, ‘Does time run
steadily?, ‘Could time run backwards?, and “Would we know if it was
doing so?. These questions are not just amusing, they have great
importance to physicists studying fundamental particles, and influenced
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QUESTIONS 3 to 5

DEMONSTRATION D2
Oscillators and circular motion

QUESTION 2

Figure D2

QUESTION 6

both Newton and Einstein. So it is well worth reading about time and
its measurement, the history of timekeeping, the use of timekeeping in
navigation, and the problems that have arisen with our ideas of time.

Oscillations and circular motion

If a swinging pendulum and an object rotating on a turntable are
viewed from the side, the two motions can appear identical. They seem
to have a great deal in common, and the relationship between them is a
very useful one. This demonstration leads to two important quantities
associated with oscillations: phase, ¢, and angular velocity, o

Phase (¢) 1If a pendulum is the right length for its natural frequency to
equal the frequency of rotation of the turntable, then the shadows cast
on a screen by the pendulum and the rotating object will move together
and be ‘in step’ (providing of course that the pendulum is released at the
right moment). We say that they are in phase — figure D2(a). If the
pendulum is released at some other instant, there will be a constant time
interval between one shadow reaching the outermost limit of its swing
and the other reaching that position. The fraction of a complete
oscillation by which one is ahead of the other is known as the phase
difference. It can be expressed as a fraction of a revolution or oscillation,
or, more usually, as an angle. See figure D2(b). Such an angle is usually
measured in radians (see below). If the pendulum is too long or too
short, the two movements will not stay in step, and the phase difference
will alter continuously.

____________ )

no phase difference phase difference
{a) (b) = Y, oscillation
=mw
Angular velocity (w) is the change in angle per unit time. It is usually
measured in radians per second, rather than degrees per second.

Definition of the radian

One radian is the angle at the centre of a circle of radius r subtended by

an arc of length r.
If an arc of length r subtends an angle of 1 radian, then the whole
circumference (length 27tr) will subtend an angle of 2z radians. That is,

2n radians are equivalent to 360°

o

360 =57.3°
7

therefore 1 radian =
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Figure D3
Radian measure of angles.

QUESTIONS 7, 8

Section D2

READING
Applications of ultrasonics (page 232)

DEMONSTRATION D3
Basic ideas about waves

HOME EXPERIMENT DH2
Make your own wave machine

\/
/a

In general for any angle 6, if 6 is measured in radians, then

. a
0 =arc/radius =—
=

For small enough angles tan§ =~ sin = a/r. So tanf=sinf =0 (in
radians) is quite a good approximation when 8 is small.

MECHANICAL WAVES AND SUPERPOSITION

All waves are produced by some sort of oscillator; the wave transfers
energy from the oscillator to other points. Sometimes this is useful, for
example the oscillations of a loudspeaker producing musical sound
waves; sometimes a nuisance, as when a loose oscillating panel in a bus
produces a non-musical rattle; and sometimes it can be dangerous — an
earthquake wave causing buildings to crack or collapse. The enormous
variety of waves means that they are of great practical importance: to
people trying to insulate buildings against noise; to designers of musical
instruments and hi-fi systems; to architects and builders of high-rise
flats and suspension bridges; to installers and designers of any equip-
ment that vibrates or rotates; to geophysicists and many others.

Since the same ideas apply to all types of wave, we can learn about
them all by studying a few simple systems.

Basic words and ideas about waves

The basic ideas can be demonstrated using mechanical waves along
strings or springs, ripples on water, or special wave machines. The
system carrying the waves is called the medium. A displacement against
distance graph, or wave profile, shows the displacement of points along
the medium at one instant of time.

In figure D4, waves on the spring are being started by oscillations of
the end P,. At the instant shown, P, has completed two oscillations. All
other points along the medium perform the same oscillations as P,
only later in time. P is just starting to oscillate; P; has performed one
complete oscillation; P, and P, are also oscillating, half a cycle (r) out
of phase with P,. The distance between any two adjacent points which
are in phase is one wavelength (2).
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QUESTIONS 9,12

EXPERIMENT D4
Properties of mechanical waves

travel

Displacement

+AT

P, 4

Distance

wavelength (A)

Figure D4
Wave profile: displacement—distance.

Another graph, of displacement against time, could be plotted for
any particular point along the medium. From this graph the period, T,
and frequency, f, could be obtained. Figure D5 shows a displacement
against time graph for the point P, assuming that figure D4 shows the
profile at t =0.

Displacement

Time

T S A
\/

Figure D5
Displacement-time for Ps.

The speed of travel of the wave, ¢, is given by c=fx A If P,
oscillates continuously, a continuous wave travels along the spring. If,
however, P, is just displaced once and then remains at its equilibrium
position, a single pulse travels along the spring.

Pulses on springs: experimental results

Experiments show that:

The shape of a pulse on a spring is determined by the nature of the flick
creating it: a quick flick gives a short pulse, whereas a slow flick gives a
long pulse.

Friction makes a pulse grow smaller in amplitude as it travels — its
energy spreads out to its surfoundings.
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The speed of a puise is not determined by its shape, nor on how you
flick the spring to create it.

The speed does depend on the spring — and on the tension with which it
is held. The speed increases as the tension is increased.

When pulses meet they superpose — the displacements that each pulse
alone would cause on the spring add together; but when the pulses pass
beyond each other they continue with their original shape (figure D6).

—s i £

M
VN

Figure D6 E
Superposition of pulses.

When a series of pulses is reflected, the returning pulses form a
stationary pattern as they superpose with those pulses still moving
QUESTIONS 10,11 outward (figure D7).

—_—

e VAVAVAVAVS

000,09

<
<

S VAVAVAVAVAY;

Figure D7
Stationary pattern produced when waves superpose.

EXPERIMENT D4c A pulse reflected at a ﬁxed end suffers a phase change of © — it turns
upside down. If reflected at an open end, it suffers no phase change.

How does a mechanical wave travel?

Section D3 considers the speeds of waves ~ When a wave travels along a trolley-and-spring mod'el each trolley
like this in more detail moves in turn, because of a force on it from the preceding spring. The

speed of the wave depends on how long it takes the trolley to acquire

enough displacement to exert force on the next spring. This depends on

the mass, m, of the trolley and the stiffness, k, of the springs, and it can

be shown that the speed, c, is proportional to ,/k/m for this wave.
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DEMONSTRATION D5
Longitudinal waves on a Slinky spring

DEMONSTRATION D6
What happens when waves meet?

QUESTION 16

Longitudinal waves

As a wave travels through a medium the individual particles of the
medium oscillate about their rest positions.

particle oscillation

I— > travel
(a)
particle oscillation
—>
4 > travel
(b}
Figure D8

In transverse waves the particles oscillate at right angles to the
direction of travel of the wave (figure D8(a)). In longitudinal waves the
particles oscillate along the direction of travel of the wave (figure D8(b)).
This can be demonstrated on a Slinky spring; each part of the spring
oscillates back and forth about its rest position as the wave passes.
Sound waves are also longitudinal: here pressure variations in the gas
cause the molecules to oscillate about their mean positions.

Longitudinal waves behave in much the same way as transverse
waves.

One difficulty arises in drawing the longitudinal wave: often it is
represented in the same way as a transverse wave, and this can be
misleading. Remember that the displacement is really in the direction of
travel of the wave (see figure D9).

undisplaced particles

IO LT el

wave travelling through

T T

graph showing longitudinal
displacement of the particles

Figure D9

Superposition of waves’

In figure D10, waves from both S; and S, are arriving at P. The
principle of superposition is that at any moment the displacement at P
is the sum of the separate displacements that the waves from S, and S,
would cause individually.
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There will be a maximum disturbance at P
if S,P—S;P=nA (providing S, and S, are
emitting in phase)

DEMONSTRATION D7
Path differences and phase difference

EXPERIMENTS D8
Superposition of waves

QUESTIONS 14, 15,17 to 19

Sz

Figure D10

On the ripple tank S, and S, vibrate in phase, with the same
amplitude. The amplitude of the oscillation at P then depends on the
phase difference between the two arriving waves; this in turn depends
on the path difference (S,P—S,P) and on A. The phase difference in
cycles is (S,P — S; P)/4; if this is an integer then we have oscillations of
maximum amplitude, or an antinode at P. That is the familiar condition
for a maximum (S,P —S,P)=nl.

If waves of identical frequency superpose, and if their sources have a
constant phase difference (or none), a stationary pattern of nodes and
antinodes (or maxima and minima) results. This is known as an
interference pattern and may be used to determine the wavelength of
the waves.

In the simplest case, a path difference of a whole number of
wavelengths means that the two waves arrive in phase, giving a
maximum, or antinode; but this only applies if the waves are emitted in
phase with each other and if no other factors, such as reflection, affect
the phase of either wave. Reflections in some cases result in the wave
changing phase by half a cycle, or . Such phase changes must be taken
into account in the calculation of wavelength. If the two waves are
exactly out of phase, a minimum, or node, results.

If either the frequency or the speed is already known, the other may
now be calculated using ¢ =fA.

Superposition at a point can occur with waves from two (or more)
different sources — though a stationary pattern will only result if they
have a fixed phase relationship; it can also occur with waves from a
single source which have travelled by different paths to the point.

As an example, the 3 ¢m radio receiver, R, in figure D11 will receive
minimum radiation if both T and R are very close to M. This is because
the difference in path between TMR (reflected path) and TR (direct
path) is almost zero; but the reflection at M changes the phase of the
reflected wave by : hence the waves arrive out of phase by m. To obtain
a phase difference of one cycle, M must be moved away from T and R
until the path difference is 1.5 cm (half a wavelength). See figure D12.

reflector, M . M

% %
= 3 s
o o d+075¢cm 7 S\ _d+0.75cm
- ~ s ~
l:% _________ —B‘j P L : R
U R g: 2d 7
T R

Figure D11 Figure D12
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Unit L,
‘Waves, particles, and atoms’

QUESTIONS 20 to 22

Section D3

EXPERIMENT D1
How do oscillators move?

DEMONSTRATION D2
Oscillators and circular motion

QUESTIONS 26, 27

k is the force which would displace the
mass m a distance of 1 m

Superposition effects demonstrate the wave nature of radiations
such as light, radio, and X-rays where the waves themselves cannot be
seen. Superposition effects also show that electrons (and other ‘par-
ticles’) have wave-like properties.

Examples and applications of superposition

Familiar examples include the colours seen in ‘rainbow bubbles’ and on
oily puddles, and the colours seen on the surface of a long-playing
record when it is tilted around in sunlight. The abrupt occurrence and
subsequent disappearance of gigantic ocean waves up to 30 metres high
are also due to superposition.

MECHANICAL OSCILLATIONS

This Section develops the link between oscillatory and circular motion,
and uses it to derive a mathematical description which can be applied,
more or less exactly, to many different oscillators. The reason why
many oscillators are isochronous is also dealt with.

Features common to all mechanical oscillators

Every mechanical oscillator, isochronous or not, has these features:

i itis displaced successively to one side then the other of an equilibrium
position;

i itis accelerated towards the equilibrium position by a force; the force
is related to its displacement in some way;

iii it has inertia, which means that it continues through the equilibrium
position, rather than coming to rest there;

iv it possesses kinetic energy as it passes through the equilibrium
position, potential energy at the extreme ends of its motion, and usually
a combination of both at points in between;

v there are resistive forces against which it must do work; as a result the
oscillator loses energy.

The mass and spring oscillator

The rest of this Section deals solely with one particular type of
oscillator; a mass, m, which oscillates horizontally or vertically, and is
attached to springs which provide the restoring force. By Hooke’s Law,
F= —ks, where F and s are force and displacement (positive when
measured to the right or downward), and k is the spring constant of the
whole assembly of springs. This is illustrated in figure D13.

This system is chosen for detailed study because many other systems
are analogous to it: if quantities corresponding to m and k can be
identified in another system, then the results obtained for the mass and
spring system can be used to describe this other system.
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EXPERIMENT D9
Factors affecting the period of an
oscillator

HOME EXPERIMENT DH3
A mechanical oscillator

QUESTIONS 23, 24

QUESTION 25

EXPERIMENT D10
Oscillation of a tethered trolley

F=—ksf|_:¢y_

] (b)
Figure D13

Mass and spring oscillators.

Damping is ignored, partly to simplify the mathematics, and partly
because it does not affect perhaps the most important property of the
oscillator, its period.

Periodic time, T

Experiments show that for this system
i T does not depend on A, the amplitude;
ii T is proportional to ﬁ;
iii T is proportional to \/1—/_15
A qualitative argument explaining why T does not depend on A4 runs
as follows:
Consider one quarter of an oscillation, first with one amplitude, then
with double that amplitude.
In the second case, the object starts with double the displacement;
=>twice the force acts on it
=it has twice as much acceleration
=>velocity it gains in a given short time doubles
=>it covers twice the distance in a given short time
=new amplitude is covered in the same time as the old amplitude.
Similar qualitative arguments can be used to explain the de-
pendence of Ton m and k.

Simple harmonic motion

Simple harmonic motion (S.H.M.) is the name given to the motion of
objects moving in such a way that:

restoring acceleration
acc displacement s or, with our sign convention,

aocc —s.
The mass in the mass-and-spring system obeys this rule, since

aoc F (Newton’s Second Law) and
Foc —s (Hooke’s Law)

As shown above, the resulting oscillation has a period independent of
its amplitude.
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Few, if any, oscillators obey this rule exactly; but many obey it
approximately, particularly if their amplitude of oscillation is small
relative to the dimensions of the system.

Analysis of the oscillation

A ticker-tape obtained from half an oscillation of a trolley tethered
between springs shows a time trace like the one in figure D14.

172

Ln]

tape

Figure D14
Time trace for a tethered trolley.

o=wt
if t =0 when oscillator is at P

QUESTION 28

Time

imaginary spot moving
round circle

Figure D15
Projection of time trace onto a semicircle.

The procedure illustrated in figure D15 shows that the motion can
be generated by the shadow (projection) of a spot moving round a circle
at constant speed. In the time interval between the ticker-tape dots
shown, the spot always moves through the same angle round the circle,
since measurements show that

¢1=¢2=¢3 (=A9)

2 : A
By definition, the angular velocity of the spot w = A_(f

Also,

2
w= _;c (if ¢ is in radians; T = period)
o can be measured from figure D15; if w is also calculated from the
directly measured 7, agreement should be good.
It can be seen from figure D16 that the displacement of the oscillator
s=Acos¢p=Acoswt.
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QUESTION 31

spot, angular
velocity w

harmonic oscillator

P
e s = Acos ¢
! ¢ = @t

Figure D16
Projection of circular motion onto diameter.

Thus A cos wt gives the complete detail of where the oscillator will
be at any given time ¢ after it starts from P.

An alternative definition of S.H.M. is to say that it is a motion which
is described by s = A cos wt.

Velocity and acceleration of the oscillator

Since velocity is the rate of change of displacement, the velocity at any
time is the gradient of the displacement against time curve. Similarly,
the ‘acceleration can be obtained from the graph of velocity against time
(see figure D17).

s

e

3

:
<

)

o

Time

<

<
“

Time

2T
Figure D17

Displacement, velocity, and acceleration of an oscillator.

This result can be obtained more formally by differentiation:
s=A cos wt

=p=ds/dt = — Aw sin wt

2

=a=dv/dt = — Aw’coswt = — w>s
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QUESTIGNS 32 to 39

The dynamics of the oscillator

If the oscillator is displaced distance s to the right, the unbalanced force
on it (to the left) is —ks.

a=F/m
=>a= —(k/m)s equation [1]
Now s =4 cos wt
=>a=—w?Acoswt and a= —w?s (see above) equation [2]

Equations [1] and [2] are the same, provided

w, previously calculated, should compare (within experimental error)
with the value of k/m measured during the experiment.

Note also that

2
T: —Tc = i

=
wnk

This ties up with earlier experiments and qualitative reasoning.
m ..
The formula T=2n T has many applications. For example, atoms

in solids vibrate as though they were masses held by springs (later in
this Section this idea is used to derive the speed of sound in a solid); and
the vibrations of buildings, bridges, and almost any mechanical
oscillator can be analysed by reference to this mass-and-spring model.

. " k
Numerical solution of a= ——s
m
This piece of work illustrates a method widely used in science and
engineering for solving difficult mathematical problems. The equation

k . . . . .
f= =8 i relatively simple, and can be solved exactly by integration:

A k .
we already know a solution, s= A cos [—t. So the numerical method of
m .

solution is not really necessary for this problem, but provides a good
illustration of how a more difficuit problem, impossible by integration,
could be solved. Such problems are common in more complex fields like
engineering. There is an example from physics in Unit L, ‘Waves,
particles, and atoms’.

The problem: To obtain a detailed graph of how s varies with ¢,
knowing the constants of the system (k and m), the initial values of s and

k
v, and that g = ——s.
m

The principle: The position of the oscillator is calculated at
successive moments, which are separated by short time intervals At.
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QUESTION 29

QUESTION 30

Figure D18
Energy of an oscillator.

The oscillator’s speed is assumed to remain constant during each of
these short intervals. Each calculation is approximate, but can be made
as accurate as we like by taking a small enough value for At.

The steps in calculating each successive displacement value, s, are as
follows:
Knowing the old value of displacement, s,

F= —kSO
k
=>a= _;SO

new velocity, v, =v, + alt
new displacement §; = s, + As =54+ v, At

The new value of s is now used to work out g at the new position, hence
the new v, etc.

This so-called iterative method, in which the same steps are
repeated (re-iterated) many times, is of course ideally suited for
programming on a digital computer. Furthermore, in a computer
program one could easily include other factors, such as damping, or a
regularly applied driving force.

Energy of an oscillator

The potential energy stored in the springs at any position is 3ks?>. When
the oscillator is at maximum displacement (and stationary), this is equal
to kA2, which must, therefore, be the total energy of the system. Note
particularly that the total energy is proportional to 42,

— — — total energy

|
: kinetic energy
|
|
|

Potential energy

potential energy

—A 0 +A
Displacement

(a)

———————— -— — — — total energy

Kinetic energy

|
I
I
|
|
I
I
I
|
I
I
I

+A
Displacement

(b)
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DEMONSTRATION D11
Longitudinal wave on a trolleys-and-
springs model

QUESTION 40

If no energy spreads from the oscillator to the surroundings,

total energy=P.E. + K.E.

‘=K.E.=1kA4? —1ks?

Thus P.E. and K.E. vary with s, as in figures D18(a) and D18(b).
P.E. and K.E. vary with time like this:

PE.=1ks* =1kA%cos? wt
K.E.=imv? =3imw?A?sin? wt

(See figure D19.)

Energy

0 74 T2 374 T Time

Figure D19
K.E,, P.E, and total E of a harmonic oscillator.

Oscillations and the speeds of waves

The passage of a mechanical wave involves energy passing through a
medium from one oscillator to the next. In demonstration D11, for
example, each trolley is a tethered-trolley oscillator; as a single pulse
moves along the line of trolleys, it sets each one into motion in turn.

Figure D20 shows the line of trolleys at three successive short time
intervals. In figure D20(b), trolley Q is just being set into motion. By the
instant of diagram D20(c), the pulse has advanced by one section-length
(x), and R is now in the same situation as Q was previously. The speed
of advance of the pulse is thus the distance x divided by the time
interval between diagrams D20(b) and D20(c).

I X :
K§—>

E&(((&@(&—{I}ﬂ@ﬂm {0~ R}

(a)

(b)

(c)
Figure D20

If Q is considered as a tethered-trolley oscillator, then in figure
D20(b) it is at the lefthand extreme of an oscillation; by figure D20(c) it
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c is the speed of the pulse

QUESTIONS 41, 42

A DEMONSTRATION D12
Speed of sound in a metal rod

Section D4

has reached its equilibrium position between trolleys P and R. This is
one-quarter of an oscillation; the time interval for the pulse to be
handed on to the next oscillator thus appears to be one-quarter of the
period of the oscillation. In fact, a more thorough analysis shows that

i 1 S
the fraction is not 4 but o of an oscillation.
T

L X . X
" time interval 1 « period
2n P
period T=2% %
X
=Cc=
X 27 iy
2n k
k
=X _—
m

The speed of sound in a solid

In Unit A, ‘Materials and mechanics’, a solid was pictured as consisting
of atoms connected by springy bonds. This model was used to calculate
the Young modulus for steel. Now it can be used to calculate the speed
of a wave in a solid. The atoms and bonds are modelled by trolleys
connected by springs. From Unit A, the Young modulus, E = k/x, where
k is the spring constant of the interatomic bonds.

So

\/E 1Ex L EX® | E
cC=X — =X —_——= —_— —3
m m m m/x

But x3 is the volume occupied by one atom; so m/x> = p, the density of
the material :

E
=>0= —

p

The same sort of argument applies to all mechanical waves. In each
case, the speed of the wave depends on the properties of the substance
through which the wave is travelling. Formulae for the speeds of many

- force constant .
mechanical waves have the form — e something

equivalent.

FORCED VIBRATIONS AND RESONANCE

Free and forced oscillations

A system which can oscillate may be set into oscillation in many ways.
Two of these are particularly important.

Section D4 Forced vibrations and resonance 225



DEMONSTRATION D13
Forced vibrations of a mass on a spring

‘Buildings, bridges, and wind’ in the
Reader Physics in engineering and
technology

Figure D21

READING
Spectroscopy (page 236)

EXPERIMENT D14
Investigations of resonance

DEMONSTRATION D15
Barton’s pendulums

Section D3 dealt with ‘free’ or natural oscillations. In this case the
oscillator is given an initial displacement or velocity, and then released.

The second important situation is when a periodic repetitive driving
force is applied to the oscillator in some way. This in general causes
‘forced’ oscillations. When the frequency of the driving force equals the
oscillator’s natural frequency, then the amplitude of the oscillations
may build up to a large value. This special situation is called resonance.

Resonance

Resonance has wide ranging practical applications. Any machine or
structure is likely to be subjected to periodic forces, either as a result of
its own operation (e.g., the motor in any vehicle imposes an oscillation
or vibration on every part of the vehicle) or through the action of some
external agent (e.g., wind exerts a periodic force on buildings and
structures through vortex shedding). If you keep your eyes and ears
open you will notice countless examples of forced oscillations.

Forced oscillations can prevent machines operating efficiently, as
when an unevenly loaded spin drier cannot achieve its normal working
speed because much of its energy is being diverted into a violent
wobbling. More seriously, forced oscillations can result in fatigue
failure of metal components at stresses well below the tensile strength of
the metal, simply as a result of repeated flexing (like breaking a piece of
wire by bending it to and fro). If resonance occurs, forced oscillations
can be violent and may have catastrophic results (as in the Tacoma
Narrows bridge collapse). An understanding of forced oscillations is
clearly essential to engineering.

Forced oscillations are not always destructive; sometimes engineers
and scientists can make positive use of them. Nor is the phenomenon
confined to mechanical oscillations. Microwave ovens heat food as a
result of a forced oscillation of the molecules within the food, particu-
larly water molecules, which are polar (they are permanently charged
positive at one end and negative at the other, see figure D21). Infra-red
absorption spectroscopy, which is an important technique for chemists,
involves the forced oscillation of atoms or groups of atoms within a
molecule. The conversion of radio waves to electric currents in an aerial
is an example of a forced oscillation, and the operation of a tuning
circuit in a radio relies on resonance.

Many more examples are given in the books recommended for this
Unit.

An investigation of a resonant system reveals the following points.

i When a driving force (driver) acts on something which can vibrate, the
initial transient oscillations are irregular, with varying amplitude.

ii These transient oscillations give way, in a time which depends on the
degree of damping, to a steady state, in which the driven oscillator
oscillates at the forcing frequency, regardiess of its own natural
frequency. (Damping is the result of friction-type forces which always
act against the motion of an oscillator.)

iii The amplitude of the driven oscillation depends on the forcing
frequency and rises to a maximum if the forcing frequency is equal to
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Figure D23

Photographs of Barton’s pendulums.
(a) Time exposure (damped).

(b) Time exposure (less damped).

(c) Instantaneous.

A. W. Trotter.

the natural frequency of the driven oscillator. These large amplitude
vibrations are called resonant oscillations. See figure D22.

resonance peak

Amplitude of
driven oscillator

|
|
|
|
|
|
|
amplitude of driver |
|
|
|

1
frorce = Frat Forcing frequency

Figure D22
Resonance.

iv At resonance the driver and the driven oscillator are not in phase.
The driver leads by one quarter of a cycle.

The photograph of Barton’s pendulums in figure D23(c) was taken
when the driver was at its maximum displacement to the left. The
resonating pendulum is just passing through the centre of its osciliation,
and moving to the left. It is one quarter of a cycle, or n/2, behind the
driver. The shorter pendulums at the top of the picture, with higher
natural frequency, are moving approximately in phase with the driver.
The long pendulums with lower natural frequencies, are approximately
in antiphase with the driver (phase difference of m). Notice how the
pendulums which have natural frequencies close to the forcing fre-
quency (that is, pendulums of similar length to the driver), oscillate with
larger amplitude than the others.

The amplitude of the forced vibrations also depends on the degree of
damping. The photographs in figures D23(a) and (b) illustrate how the
amplitude of resonant vibrations is reduced by damping.

(c)
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Resonance curves (figure D24) reveal the effects of damping in more
detail. Damping reduces the amplitude at all frequencies. It also makes
the resonance peak broader (reduces the sharpness of resonance).

"It very slightly reduces the resonant frequency of the driven
oscillator.

light damping

Amplitude of forced vibration

amplitude of driver heavy damping

0 Frat Forcing frequency

Figure D24
Resonance curves.

Energy in forced oscillation

The driver delivers energy to the forced oscillator during each cycle
of oscillation. This energy may be:
i stored in the oscillator, increasing the amplitude
(energy stored oc amplitude?);
ii used to overcome the resistive forces which cause damping;
iii returned to the driver, later in the cycle (but this does not happen at
resonance). : :

The amplitude of a forced oscillator goes on increasing until energy
loss per cycle = energy provided by driver per cycle.

QUESTIONS 43 to 53

The quality factor, 0

The quality factor, @, of an oscillator can be formally defined like this:

energy stored
energy lost per cycle

Q=2nx

However, there is a much more useful, though non-rigorous,
description of Q: it is approximately equal to the number of free
oscillations which occur before all the oscillator’s energy is gone.

228 Unit D Oscillations and waves



QUESTIONS 54, 55

0 is related to the degree of damping of the oscillator, and to the
sharpness of its resonance peak. Low values of Q are associated with
heavily damped oscillations which do not resonate violently and which
die away quickly if they are not forced. High values of Q are associated
with light damping and sharp resonance.

Some typical values of Q are:

Car suspension 1
Tethered trolley 10
Simple pendulum 1000
Guitar string 1000
Quartz crystal of watch 10°
Excited atom 107
Excited nucleus 10%2

Consider the guitar string, for example. The energy is emitted as sound
waves, with a fundamental frequency of, say, 512Hz (the C above
middle C). If @ =1000, then roughly 1000 oscillations occur before all
the energy is gone. Thus the plucked string will cease to oscillate after
1000/512 =~ 2 seconds: which agrees roughly with experience.

Standing waves and resonance

A standing wave is formed when identical waves travelling in opposite
directions superpose.

In figure D25, P and Q represent points along a rope. At the instant
shown, two wave trains travelling in opposite directions are just about
to overlap at point P. Points L; to L,, R, to R, represent peaks or
troughs along the wave train.

both waves: amplitude A

travelling right: wave R travelling left: wave L
> > | < =
.'. Ra-' . R1' . /7 L1\ / LS\
= e |/ \ / \
f \ , \ ,
P a / \ /
! N/ N 7
feys’ LI ~
R4 Rz LZ L4

Figure D25
Formation of a standing wave.

Superposition at point P causes P to oscillate with amplitude 24,
since peaks L, and R, arrive there simultaneously, followed half a cycle
later by troughs L, and R,, etc. Careful inspection shows that
superposition at Q will result in Q remaining stationary in space all the
time.
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DEMONSTRATION D16
Standing waves on a rubber cord

QUESTIONS 56, 59

Points such as P are called antinodes (A); points such as Q are called
nodes (N). Adjacent nodes are distance 1/2 apart. The motion of a
section of rope on which a standing wave is occurring can be
represented as in figure D26.

Figure D26
Representation of a standing wave.

All points between adjacent nodes oscillate in phase with each other;
they are in antiphase with all points in the next half-wavelength section.

Resonance of a string with both ends fixed

A wave in a stretched string cannot escape beyond either end; it must be
reflected.

If a string is made to vibrate near one end, waves travel to and fro
along the string, being reflected each time they reach an end. If the
length of the return trip for these waves is a whole number of
wavelengths, that is, 2L =nA, where L is the length of the string, they
will always pass the vibrator in phase with the wave which it is
producing, even after several return trips. A standing wave of large
amplitude therefore develops. Figure D27 illustrates some of the modes
of vibration of a string,

e RN —» i=2L f=of

LZE e 2 2
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Figure D27

Large amplitude standing waves only occur for these well-defined
wavelengths.

230 Unit D Oscillations and waves



DEMONSTRATIONS D17
More complicated standing waves

HOME EXPERIMENTS DH4 to DH6

QUESTIONS 57, 58

Unit L, ‘Waves, particles, and atoms’

Standing waves in bounded systems

The edges of any solid object act as boundaries to waves. Superposition
of waves travelling towards the boundary with those reflected from it
can lead to standing waves, if the object is vibrated at an appropriate
frequency (unless the vibrations are damped). In a similar way, standing
waves can be set up in fluids if they are contained (air in a trumpet,
water in the bath). The same ideas are used to explain the energy levels
of atoms.

These more complex standing waves have the following features in
common with waves on a string:
i There is a series of definite modes of oscillation, corresponding to
different frequencies, at each of which the response is large (resonance).
ii The patterns developed depend on the frequency, there being more
nodes at higher frequencies.
iii The standing waves must ‘fit’ into the system.
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READINGS

APPLICATIONS OF ULTRASONICS

Ultrasonic waves are compression waves travelling through a medium
with frequencies higher than those of audible sound waves. Their
existence may be demonstrated using an ordinary signal generator and
loudspeaker to create them, and a microphone and C.R.O. to detect
them. However, most practical ultrasonic systems use transducers
which depend on either the piezoelectric effect or the magnetostrictive
effect. (A “transducer’ converts energy, in this case from electrical energy
to ultrasonic wave energy, or vice versa.)

The piezoelectric effect occurs in certain crystals, such as natural
quartz. When a p.d. from an external supply is applied across it, the
crystal will alter its shape slightly; an alternating p.d. at high frequency
will thus cause it to act like a miniature tuning fork, generating
ultrasonic waves. Conversely, if the crystal is compressed or stretched
by a mechanical force, such as occurs repeatedly when an uitrasonic
compression wave arrives, a p.d. appears across it; hence it can also be
used to detect the waves.

Magnetostriction involves the change of shape of certain metal
alloys when they are magnetized, or the complementary effect of a
change in their magnetization when they are stressed.

A number of applications involve an echo-sounding technique. A
transducer sends out a pulse of ultrasonic wave energy; the same
transducer is then used to detect any returning energy reflected from
discontinuities in the medium. The time between transmission of the
pulse and its returning echo, together with a knowledge of the wave
speed in the medium, allows the distance to the discontinuity to be
computed.

Ultrasonic flaw detection This is an example of a non-destructive
testing method. Such methods are used where the material to be tested
must not be cut up, broken down chemically, or even removed from its
working position. A transducer using a frequency in the MHz range is
placed in contact with the material to be inspected. The pulses are
reflected from the rear surface of the material; they are also reflected
from any cracks or flaws within it, including any which may be invisible
from the outside. If the returning signals are displayed on a C.R.O., the
position of a flaw and its approximate size can be judged from the trace.
This technique is particularly valuable in the inspection of railway
tracks and welded pipes.

Ultrasonic foetal scanning Many expectant mothers now receive an
ultrasonic scan as part of their routine check-up on the progress of their
as-yet-unborn baby. Ultrasonic waves penetrate the mother’s skin, but
are reflected back selectively by discontinuities in the tissues beneath.
By examining the whole area of the foetus bit by bit, a complete ‘picture’
of it can be built up. (See figures D28(a) and (b).) This is another
example of non-destructive testing: ultrasonic waves-apparently cause
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Figure D28

Ultrasound scan of 18-week foetus and
explanatory diagram.

Department of Medical Illustration,

St. Bartholomew'’s Hospital, London.

no harm to mother or baby, whereas X-rays, which could be used to
obtain a similar picture, would harm them.

AMNIOTIC

SPINE BopY

Ultrasonic flow measurement 1If the pulse is projected into a stream of
liquid flowing in a pipe, then energy reflected back from minute
discontinuities in the liquid will show a Doppler frequency shift
depending on the flow rate. This is used as the basis of a ‘non-invasive’
flowmeter, so-called because a transducer can send and receive sound
through the wall of the pipe, and there is no need to obstruct the flow as
in many meters which, for instance, measure the rotation of a paddle-
wheel inserted in the pipe.

The last example, ultrasonic flow measurement, is quoted from B. Jolly

(Ed.) Hobsons Science Support Series, Waves and sound. CRAC
Publications, Hobsons Press (Cambridge) Ltd, 1982.
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Questions

An ultrasonic transducer converts alternating p.d.s into ultrasonic
wave energy (or vice versa). How might this be done using the
phenomenon of magnetostriction? (What would be the essential parts
of the transducer?)

The speed of compression waves in a metal is of the order of

5000ms . If your best laboratory C.R.O. is to be used for flaw-
detection in a metal sample, estimate the length of the smallest sample
that could satisfactorily be tested.

THE EFFECTS OF VIBRATION ON PEOPLE

We know that the slow oscillations of a rolling ship can produce sea-
sickness, although the origin of car-sickness is less clear. Machine
operators are subject to more rapid vibrations; the pneumatic road drill
is an extreme example.

Some effects of oscillations of various frequencies are shown in
figure D29.

Frequency/Hz
vibration 107 1 10 102 10®  10*  10%  10°
can be felt
giddiness and instability —

motion sickness |.._-—|

breathlessness, | |
pain in trunk [

disturbance of vision r

cell damage

Figure D29

Most serious effects are due to resonance — when the natural
frequency of oscillation of some part of the body is the same as the
frequency with which it is driven. This has been studied by sitting a
person on a vibrating platform. Figure D30 shows the motion of the
abdomen wall at various frequencies.
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Figure D30
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The tolerance of human beings to vibration varies with frequency.
You can see this in figure D31, which is a graph showing the results of a
study of human vibration tolerance. Such studies are of especial
importance in designing aircraft and space probes.

Acceleration/g

JE

JUEEY:

I {0 |y
101112131415 16

Frequency/Hz

Figure D31

Human vibration tolerance. The curves show the value, and the range, of the limit of
tolerable acceleration at various frequencies.

From MAGID, E. B.,, COERMANN, R. R., and ZIEGENRUECKER, G. H. (1960) Aerospace Medicine,
31, page 915.

Human vibration engineering is also important in designing hand-
operated machine tools. The use of such a tool for intricate work would
be very difficult if it vibrated at a resonant frequency of the hand—arm
system.

Questions

Estimate the natural frequencies at which various sections of your
hand—arm system might vibrate (try swinging or shaking the various
sections and the whole arm). Suggest ranges of frequencies which
should be avoided for hand-operated machines.

Figure D31 shows that humans are very intolerant of acceleration
when they are subjected to vibrations between 3 to 9 Hz. Use
information from figure D29 to suggest what discomforts might be
experienced under these conditions.

Figure D31 shows the maximum tolerable acceleration, during one
cycle of an oscillation, plotted against oscillation frequency. Using the
formula a,,,, = — w?A4, compute the maximum tolerable amplitudes of
oscillations at 1 Hz, 4 Hz, 8 Hz, and 15 Hz. Hence sketch a graph of
maximum tolerable amplitude of oscillation against frequency (use
logarithmic scales).

Comment on figure D30 (showing the movement of the abdomen wall
against frequency) in the light of your knowledge of resonance.
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SPECTROSCOPY

If one could see the atoms in a molecule vibrating, and time their
oscillations, one could obtain useful information about the stiffness, &,
of the bonds between them, using 2nf=./k/m. Although the vibrating
atoms cannot be seen, the frequency at which they absorb radiation can
be found. Spectroscopy is thus a valuable tool for studying the
vibrations of electrons, atoms, molecules, or ions.

>
Z
2
source of g
variable material £
frequency under test | ——>| detector
radiation
Frequency
Figure D32

At its simplest, a source sends radiation, at a range of controlled
frequencies, to a detector through the material under test (figure D32).
Such methods are appropriate if the frequency of vibration is relatively
slow, so that the wavelength of the electromagnetic radiation is more
than a few millimetres.

Many interesting vibrations are faster, but we cannot vary con-
tinuously the frequency of sources of infra-red or visible light.

device to split

; up radiation
~—>| test material |~—> according

to frequency

source producing
radiation of a
wide range of

frequencies

Figure D33

In figure D33, radiation of a wide range of frequencies is shone on
the test material, and a device (a grating or prism, for example) sends
the radiation of each frequency offin a different direction. Alternatively,
the detector could in principle be tuned to each frequency in succession,
although this is less useful in practice.

Uses of spectroscopic information

The stiffness of bonds in molecules, or in solids, may be found. For
example, the bond stiffness of H, is 5.2 x 10° Nm ..

The analysis of complex organic compounds is assisted by studying
their infra-red absorption spectra, for many types of bond tend to
absorb at much the same frequency even though the atoms form part of
different molecules. The spectrum can then be used as a means of
indicating which bonds are present. For instance, aliphatic C—C bonds
oscillate in an in-and-out (stretching) manner at a little below 10** Hz.
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Dyes, whose function is to colour, must absorb visible radiation
strongly at selected frequencies. It is possible to design molecules which
will absorb at a desired frequency.

At microwave frequencies, the spinning motion of molecules can be
studied, and information about the length of bonds and the masses of
the atoms obtained.

Questions

The frequencies which molecules absorb are the frequencies which the
same molecules emit when they return to their unexcited state. But
even though the absorbed radiation is re-emitted, there is a detectable
decrease in the intensity of the radiation reaching the detector at this
frequency. Why is this?

The frequencies which are characteristically absorbed by certain
groups are listed below:

Functional C-C C=C C=C C—-H
group

Approximate 4 x 10'* 53 x10'* 6.6x10'* 9.0x 10
frequency/Hz

i Compare the stiffnesses of the single, double, and triple bonds
between carbon atoms (i.e., calculate the ratios of the stiffnesses).

ii Why does the C—H group have the highest frequency of oscillation
among those tested?

QUARTZ AND ATOMIC CLOCKS
(from G. W. Dorling, Longman Physics Topics, Time. Longman, 1973,

The quartz clock

In the 1930s a new type of clock started to replace the most accurate
pendulum clocks as a standard for measuring time. This was the quartz
crystal clock. The time keeper in this case is a quartz crystal instead of a
pendulum. A quartz crystal will vibrate elastically with a natural period
of its own, just like a tuning fork. In this case, however, electrical
charges constantly build up and die away on its surface in time with the
vibrations. It is this effect, the piezoelectric effect, which makes it so easy
both to keep the crystal vibrating and to use the vibrations to control
the frequency of electrical oscillations in other circuits.

It is these electrical oscillations, accurately controiled by the
vibrations of the quartz crystal, -that drive the hands of the clock, or
control its dispiay.

The frequency of the quartz crystal vibrations is sharply defined by
the dimensions of the crystal. It is much less affected by variations in
external conditions than the pendulum.

Why do we believe that these clocks are so much more reliable than
pendulum clocks? There is an important test we can do. We can ask
how well these clocks keep time with each other. Suppose two quartz
clocks are adjusted to read exactly the same time and then left to run
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without adjustment. Comparisons of their time readings at various
times later have indicated a difference of no more than 0.0005 second
per day over a period of a week or so. This suggests that a quartz clock
will measure a time interval of 1 day, or 86 400 seconds, to within 0.0005
seconds; an accuracy of better than 1 in 108, This is ten times better than
that which could be obtained with the best pendulum clock.

Such comparisons are made continuously as quartz clocks are
usually run in groups of three. This is because the likeliest disturbance
to a quartz clock’s time keeping is a failure of one of the electronic
components. Simultaneous failure of all three clocks is most unlikely.

Quartz clocks were initially developed in response to the demand
from scientists and engineers for more and more precise time standards,
for the purposes of radio communication, navigation, and pure re-
search. It was also in response to this demand that the atomic clock was
developed in 1954.

The atomic clock

Atoms can emit and absorb energy only at very sharply defined
frequencies. Provided a suitable atom is chosen, they can be used to
control the frequency of radio waves from an electronic oscillator.

In 1958 a clock, based on a beam of caesium atoms, was successfully
constructed on this principle. The electronic oscillator is controlled by a
quartz crystal whose vibrations are in turn controlled by the effect on
the beam of caesium atoms of radio waves produced by the oscillator.
As in the case of the quartz clock, it is these accurately maintained
electrical oscillations which ultimately drive the clock.

Comparison of the timekeeping of two of these clocks showed that
they could be relied upon to an accuracy of 1 part in 10! over an
apparently indefinite period of time. To put this in a slightly different
way, this meant that they could be relied upon to within 1 second in
3000 years!

A new time-scale

The development of a clock of such high reliability highlighted the
strain that this increasing demand for precision had thrown on the
astronomical unit of time. Both quartz and now atomic clocks showed
greater consistency amongst themselves than they did with the sidereal
day. Again, appeal to the laws of physics showed good reason why the
Earth’s period of rotation should vary from day to day and year to year.
At first variations which could be calculated were incorporated into
adjustments of the astronomical time-scale to make it more uniform.
Atomic time showed, however, that there were some important ir-
regular variations in the Earth’s rotation as well.

In 1964 general agreement was reached for a new time-scale based
on the atomic clock. The frequency of the energy level transition of the
caesium atom involved in the atomic beam clock was determined as
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precisely as possible in terms of the then accepted value of the second
and was found to be

9192631770+ 20Hz

The + 20 Hz represented the uncertainty in the value of the astronomi-
cal second rather than the uncertainty in the value of the frequency.

The atomic second was then defined as exactly 9 192 631 770 periods
of the oscillation associated with the caesium atom for this particular
transition.

In this way the atomic second is the same time interval as the
previously defined second based on astronomical time. This is essential,
for we must still be able to use the new scale to tell the time of day.

Because the length of the mean solar day and the year vary by smail
amounts when viewed against the atomic time-scale, occasional adjust-
ments are made to the atomic scale to keep it in step with the year, in
much the same way that the number of days in the year is occasionally
adjusted to keep them in step with the year. Astronomical observations
must remain the basis for determining the time of day, and they are
constantly compared with the atomic time-scale. In this way the
demand for a time-scale of precisely repeated equal intervals is brought
into line with the need for a time-scale to tell the time of day and season
of the year.

Questions
Show that the frequency of the energy level transition of caesium used
to define the second is consistent with a radio wavelength. What is the

wavelength?

A similar redefinition to that which befell the second has occurred with
another fundamental unit, the metre. What is now the definition of one
metre?

i Explain the meaning of this sentence more fully: “The + 20 Hz
represented the uncertainty in the value of the astronomical second
rather than the uncertainty in the value of the frequency.’

ii Roughly what uncertainty, in Hz, would be attributable to
uncertainty in the value of the frequency? (Information which enables
you to answer this question is given in the text.)
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D1

Dia

LABORATORY NOTES

GROUP OF EXPERIMENTS
How do oscillators move?

You will be asked to find some method of showing how the displace-
ment of the oscillators listed below varies with time. A graph of
displacement against time is called a time trace. The basic equipment
for the oscillator will be available, but you may need to ask for other
equipment when you have decided how you are going to produce its
time trace.

Whichever oscillator you work with, consider these questions:
i Does the method of obtaining the time trace affect the period?
ii Does the method of obtaining the time trace affect the damping
(resistance to motion)?
iii If you are relying on several different ‘runs’ to take, for example, a
series of times, can you be sure that all runs are carried out under the
same conditions?
iv What assumptions are you making if you interpolate between the
points you have obtained (for example, by joining them to form a
continuous graph)?
v Is the oscillation isochronous?
vi Whether or not it is isochronous, on what factors does the period of
the oscillation depend? Try some experiments to confirm your ideas.
Can you find any quantitative rules?

Here are some suggestions for setting up the oscillators and
measuring the time traces.

Pendulum

There are many ways of producing its time trace, from a simple sand
pendulum to the electrical methods shown in figures D34(a) and (b). But
remember these are not the only possibilities.

conducting paper *] N
or tank with 5 to C.R.O. or plotter
electrolyte (e.g., brush made of extra
CuSO0, solution) flexible wire

very freely moving
potentiometer

pivot
|l | ‘ stiff
stitf pendulum
pendulum
Y
to C.R.O.

(a) E (b)
Figure D34

Obtaining the time trace of a pendulum.
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D1b

Dlc

Figure D35
Lath with load.

D1d

D1

[3-]

Figure D36
Ball rolling on curved tracks.

Torsion pendulum

string

2 retort stand bases

3 retort stand rods and bosses
G-clamp, large

Hang a retort stand rod horizontally on two parallel lengths of string.
The ends of the rod may be loaded with bosses. It might be possible to
adapt the potentiometer method illustrated in figure D34(b) to obtain
this time trace.

Lath with load

either
metre rule
or
long lath
2 G-clamps, large
clean smooth paper (e.g., computer print-out paper)
felt-tip pen or brush with ink
2 rubber bands
2 masses, 1 kg
Clamp the metre rule to a stool or table so that it oscillates in a
horizontal plane.
Figure D35 shows one possible way of obtaining the time trace.

=
aEm | lath cIampe(T to table legs f
e % Z
string to motor y strip of paperJ lsoﬂ paper

=
— P

Inertia balance (wig-wag)

inertia balance
2 G-clamps, small

Ball rolling on curved tracks

3 lengths of curtain rail
large ball-bearing, 1 or 2 cm diameter

Three curvatures to investigate are shown in figure D36.

X/

circular parabolic V-shaped
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Figure D37
D1h
D1i

Mass oscillating vertically on spring

expendable spring

retort stand base, rod, boss, and clamp
G-clamp, large

hanger with masses totalling 400 g

Undamped light beam galvanometer

light beam galvanometer
cell holder with one cell
switch

resistance substitution box
leads

Set up the circuit with the galvanometer on its least sensitive scale; then
increase the sensitivity until, with a resistance of over 500k, the spot
reaches almost a full-scale deflection with the switch closed. Then, with
the galvanometer on its ‘direct’ setting, open the switch: the spot will
oscillate about its central zero position.

Bar magnet suspended over another magnet

cylindrical magnet

horseshoe magnet

retort stand base, rod, boss, and clamp
nylon fishing line

Hang the bar magnet on nylon or cotton so that it is horizontal and lies
just over the poles of the horseshoe magnet resting on its back. You
might use a small piece of mirror attached to the suspension to observe
the oscillations by optical means.

Large-amplitude pendulum

turntable clamped vertically (or large gyroscope)
boss (or small G-clamp)
retort stand base, rod, and boss

With the boss or G-clamp on the edge of the turntable or gyroscope, the
system can be made to execute large-amplitude oscillations (see figure
D38).

boss or small
G-clamp

\

Figure D38
Large-amplitude pendulum.
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D1

D1k

D2

Air track vehicle running between elastic barriers

air track with rubber bands at both ends, and blower
air track vehicle

U-tube containing liquid

large U-tube filled with water or potassium manganate(vir) solution

DEMONSTRATION
Oscillators and circular motion

either
record-player turntable
or

fractional horsepower motor, with gearbox, turntable, and band
Lt. variable voltage supply

2 pendulum bobs

retort stand base, rod, boss, and clamp
compact light source

screen

pendulum

: bob bob
light source turntable ‘

Figure D39
Oscillator and circular motion.

screen

Observe the shadows of the two pendulum bobs as they move across the
screen (figure D39). What do you see on the screen if the pendulum is
exactly the right length to synchronize with the rotating bob, and the
pendulum is released just as the rotating bob passes it? Why do you
think this happens?

What happens if the pendulum is not released at the correct
moment? What happens if the pendulum is not of exactly the right
length? Use the words ‘phase difference’ in describing your
observations.
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D3

D4
D4a
D4b

DEMONSTRATION
Basic ideas ahout waves

either

ripple tank kit

or

long spring

or

large Slinky spring

or

any other wave machine

Figure D40
Wave profile.

Define the terms wavelength, frequency, and amplitude for a wave like
that shown in figure D40, What is meant by the undisturbed position
and the displacement of a point such as P? What determines the
frequency of the wave, and what unit is frequency measured in?

How are wave speed, wavelength, and frequency related? How does
P move as the wave travels along?

GROUP OF EXPERIMENTS
Properties of mechanical waves

Transverse waves on a long narrow spring
Transverse waves on a Slinky spring

long spring

Slinky spring

metre rule

optional

string

large curtain ring
retort stand base, rod

It is easier to see what is happening if you make single hump-like pulses

by giving the end of the spring or Slinky a single sideways flick.
Observe the pulse as it travels, with a view to answering questions

such as: '

Does the speed depend on the shape of the pulse — its height or length?

Does the speed depend on how rapidly you flick the end of the spring?

Does the speed depend on the spring — how could the speed be made

larger or smaller?

Does friction make any difference to the speed of the pulse? to its shape?

What decides the shape of a pulse?

What happens when pulses, starting from opposite ends of the spring,

meet? :
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What happens when the pulse reaches the far end of the spring, and that
end is not free to move?

If you have time, try the following;
i Attach a large nylon curtain ring to the end of the spring and slide the
ring onto a retort stand rod. When the pulse reaches this end, the end is
free to move. What happens to the pulse?
i Tie a piece of thick string or cord onto the end of the spring. What
happens to the pulse as it moves from the spring to the string or vice
versa? Can you explain this?

Transverse waves on a trolleys-and-springs model

12 dynamics trolleys

44 expendable steel springs

12 masses, 1 kg (or 12 more trolleys)
stopwatch or stopclock

Figure D41
Transverse wave model made of trolleys and springs.

The model is made of a row of trolleys linked by springs, as shown in

figure D41, with the trolleys spaced out so that the springs are in

tension. It is best to set the model up on the floor, or on a surface with

raised barriers along the edges to prevent the trolleys running off.
Make a transverse pulse travel along the model by moving the end

trolley sharply from side to side. You should be able to answer these

questions:

Does the speed of the pulse depend on its shape —its height or length?

Does the speed of the pulse depend on how quickly you move the end

trolley?

Does the speed depend on the spacing of the trolleys?

What happens to the speed if the mass of each trolley is doubled? (Do

this by adding loads, or stacking a second trolley on each one.)

What happens to the speed if the tension between the trolleys is

doubled? (Do this by putting an extra spring in paralle]l with each

existing spring.) :

What happens to the speed if both of these changes are made at the

same time?

By what factor does the speed change in each of these cases?

Explain why these changes affect the speed.
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Figure D42

D5

Longitudinal pulse on a Slinky.

D6

Dé6a

D6h

D7

DEMONSTRATION
Longitudinal waves on a Slinky spring

large Slinky spring

The Slinky should be on a smooth surface.
Make a longitudinal pulse by moving the end of the spring sharply
to and fro once only in the direction of the spring. (See figure D42.)
Look carefully at a pulse as it passes and see if you can answer the
questions:
What makes the pulse move along the spring?
Do compression and expansion pulses travel at the same speed?
How does the speed at which the individual coils of the spring move
compare with the speed at which the pulse moves along the spring?
Use this model to explain how sound, which is a longitudinal wave,
travels through a gas.
The pulse travels along the spring from one end to the other. How do
the individual coils of the spring move?

DEMONSTRATION/EXPERIMENT
What happens when waves meet?

Waves on a spring

long spring

What happens where transverse pulses meet? Does this meeting have
any permanent effect on the pulses?

What happens when two wave trains of equal frequency and similar
amplitude meet? (You can create this situation by sending a single wave
train from one end of the spring with the other end fixed: the second
wave train is caused by reflection of the first at the fixed end.)

Ripples on water

ripple tank kit

Waves of the same frequency spread from each dipper. Observe the
effects on the resulting pattern of adjusting the frequency of the waves
and of altering the separation of the two dippers. Explain these effects.

DEMONSTRATION
Path differences and phase difference

signal generator
loudspeaker

2 microphones

double beam oscilloscope
metre rule

leads
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ST

= l e J
signal loudspeaker microphones
generator
————
Figure D43

Path differences and phase difference.

The oscilloscope traces show the electrical oscillations produced in the
two microphones by the sound waves (see figure D43). The sound from
the single loudspeaker has to travel different distances to the two
microphones. Because of this, the two traces will probably not be in
phase. For what path differences will the oscillations be i in phase, ii in
antiphase (phase difference of half a cycle)? Use this to determine the
wavelength of the sound waves.

Some double beam oscilloscopes are able to display the resultant of
adding the two input signals. What resultant would you expect if you
add two vibrations which are i in phase, ii in antiphase? If you have
such an oscilloscope, then try this.

GROUP OF EXPERIMENTS
Superposition of waves and determination of wavelength

In each of these experiments you should be able to demonstrate that the
radiation you are using has wave properties; you should also try to
measure the wavelength. Then if you know the frequency you can
calculate the wave speed.

1 GHz radio waves

15 cm dipoles and oscillator

either

microammeter

or .

galvanometer (e.g., internal light beam)

or

general purpose amplifier and loudspeaker

2 metal screens

leads
metre rule
diode (incorporated in
receiving dipole)
microammeter
or other
transducer
1 GHz transmitting rgceiving
oscillator dipole (T) dipole (R)
Figure D44

Transmitting and receiving 1 GHz radio waves.
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Start with a simple investigation of the waves (figure D44). For example:
are they blocked by your arm, or by metal screens? Does their strength
diminish with distance? Does the orientation of the receiving dipole
(vertical, horizontal) affect the magnitude of the signal? Does the
position of the receiver (different positions around the transmitter; above
the level of the table) affect the signal received?

Now look for superposition. Use the metal screen to reflect
radiation to the receiving dipole so that waves can follow two different
paths to reach it: directly from the transmitter and indirectly via the
screen.

Figures D45 and D46 show two possible arrangements.

\H reflector /

receiver (R) reflector

Figure D45 Figure D46

Look for maxima and minima. Hence measure the wavelength of
the 1 GHz waves, and estimate the percentage uncertainty in your
result.

From your measurement calculate the speed of 1 GHz waves.

Microwaves

microwave transmitter

microwave receiver

2 metal reflectors

narrow metal plate

general purpose amplifier

loudspeaker

microammeter (may be incorporated in receiver)
diode probe receiver

metre rule

leads
I T to microammeter or
:q l O& amplifier/speaker

l diode (D)

transmitter (T)
2-slit arrangement

Figure D47
2-slit experiment with microwaves.
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Various arrangements for superposition are possible, one of which is
shown in figure D47. The slits should be a few centimetres wide, and a
similar distance apart.

Will the waves be in phase at the two slits?

At positions where the signal falls to a minimum the intensity is not
necessarily zero. Why not?

Microwaves from the transmitter must travel in different directions
to reach the two slits. If they continued in these directions they would
not overlap and no interference would result. Why do they interfere?
What must have happened? Can you use the equipment to check your
answer?

Other arrangerents to try are suggested in figures D48(a) and (b).

T
(a) reflector
reflector
- Loe=TT \\\\3\\\\
el i BT _).________._::.O

T diode
(b)
Figure D48

Simple superposition experiments with microwaves.

The apparatus you use may be labelled ‘3 cm wave equipment’, but
the actual wavelength is unlikely to be exactly 3cm. Make the best
measurement of the wavelength that you can (estimate the percentage
uncertainty in your result).

v.h.f. radio waves or u.h.f. television waves

portable radio capable of receiving v.h.f.
television set

television aerial

coaxial cable

metal reflector

metre rule

You will need to find out the direction to the radio or television
transmitter and then place a reflecting screen so that both direct and
reflected radiation arrives at the receiver (figure D49).

radio

direction of radio
<«—— waves from
transmitter

aerial

reflecting screen

Figure D49
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A similar arrangement may be used for u.h.f. television broadcasts,
but if the aerial is not rigidly connected to the television set then the set
itself need not be moved.

For the vhf radio the reflecting screen should be as large as
possible: say 1m x 1 m. For the television waves, the same screens as
were used in experiments D8a and D8b will do.

With the aerial very close to the reflector, is the signal received a
maximum or a minimum? Explain why.

Try to find evidence that radio/television radiations have wave
properties. Measure the wavelength(s), and estimate the percentage
uncertainty in the result. If you know or can find out the frequency,
calculate the wave speed.

Light waves

sodium lamp or sodium flame pencil

2 microscope slides

micrometer screw gauge

thin paper, e.g., cigarette paper

retort stand base, rod, boss, and clamp
glass plate

hand lens

glass plate

o sodium
= lamp
! o
thin paper C——f———————— microscope slides
7

dark surface

Figure D50
Superposition of light waves by reflection at a wedge.

Take care that your head, hair, or clothes do not get too close to the
Bunsen flame.

The microscope slides must be clean.

The light and dark fringes are caused by the superposition of light
waves and are clearer when viewed through a microscope.
Where do the two sets of waves come from?
In which direction do the fringes run? Why?
How would the appearance of the fringes differ if a different colour of
light were used? ,
What would you need to measure, or find out, in order to determine the
wavelength of the light from this arrangement? Make the necessary
measurements, calculate the wavelength, and estimate the percentage
uncertainty involved.
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D9
D9a

Sound waves

signal generator
2 loudspeakers
microphone
pre-amplifier
oscilloscope
metal reflector

metre rule
S
= microphone (M)
= S
signal
generator
loudspeakers
(a)
o] -0~ [
{b) S M S
::E@ -~
{c) S M
reflector
Figure D51

Superposition of sound waves.

Two sets of overlapping waves may be produced either by using two
loudspeakers, figure D51(a) and (b), or by using one loudspeaker and a
reflector, figure D51(c). Set up a demonstration of superposition and use
it to measure the wavelength of the sound. Try with a frequency of
about 3000 Hz; measure 4, calculate ¢, and estimate the percentage
uncertainty. Then halve the frequency, and repeat the experiment. Do
you arrive at the same value for ¢? Is this what you expect?

EXPERIMENT
Factors affecting the period of an oscillator

Mass on spring

4 expendable steel springs

hanger with 8 slotted masses, 100 g
retort stand base, rod, boss, and clamp
stopwatch or stopclock

stiff wire and pliers
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Figure D53

D10

Try the following investigations:
i How (for a given arrangement of masses and springs) does T, the time
for one oscillation, depend on the amplitude, A?

- ii How does T'depend on m (for a given arrangement of springs)?

iii. How (for a given mass, m) does T depend on k, the spring constant of
the arrangement? (What is the effective k of several springs arranged in
series and in parallel as in figure D527)

clamped AULAEG NG
wire

springs
in
parallel
springs
in
series

wire

(a)

(- gD - - D

mass
Figure D52 (b)

Simple pendulum (optional alternative)

string, 2m length

hanger with 8 slotted masses, 100 g
retort stand base, rod, boss, and clamp
2 metal strips (as jaws)

stopwatch or stopclock

metre rule

Try the following investigations:

i How (for a given mass m and length [) does T, the time for one
oscillation, depend on the amplitude, 4?

ii How does T depend on m (for a given length [)?

iii How does T'depend on [ (for a given mass m)?

EXPERIMENT
Oscillation of a tethered trolley

dynamics trolley

2 retort stand bases and rods
2 G-clamps, large

runway for trolley

6 expendable steel springs
newton spring balance, 10N

_ ticker-tape vibrator, carbon paper disc, gummed ticker-tape

transformer

leads

metre rule

masses, 100gand 10g
Plasticine
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wire linking
the two trolley
posts

displacement

Figure D54
Oscillation of a tethered trolley.

Find the effective k of the complete system of springs by measuring the
force needed to displace the trolley a suitable distance, with all the
springs connected as shown in figure D54.

Find the mass, m, of the trolley.

It is desirable to adjust the mass of the trolley so that k/m has a
simple value — your teacher may suggest a value for the whole class.
Since the trolley is only going to travel one way, you should friction-
compensate the slope. Obtain a tape for half an oscillation of the
trolley. You can use this to obtain a displacement against time graph
for the motion; or your teacher may have a different plan for it.

DEMONSTRATION
D11a Longitudinal wave on trolleys-and-springs model

11 dynamics trolleys

11 masses, 1kg (or 11 extra trolleys)
20 compression springs

20 spring holders

metre rule

newton spring balance, 10N

side view

top view

Figure D55
Trolleys linked by compression springs.
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Send longitudinal pulses down the line of trolleys shown in figure D53,
and observe the effect on the wave speed of increasing the mass of the
trolleys. Several kinds of pulse are possible; the one analysed later is
created by moving the end trolley at a steady speed towards the others,
generating compression in each successive spring. Do different kinds of
pulse all travel at the same speed? :

It is useful to measure the mass of a trolley, the spacing between
trolleys, and the spring constant of the sp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>