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SUMMARY OF THE UNIT
INTRODUCTION
This Unit deals with oscillations in mechanical systems and the waves 
they set up. Engineers are especially concerned with such mechanical 
vibrations, which have important implications for the stability and even 
the safety of the structures they build. For example, the designer of a 
new car must consider how the parts of the vehicle might oscillate and 
the effect such oscillations would have on passenger comfort, road- 
holding, and so on.

The study of mechanical oscillations and waves is important too as a 
preparation for understanding electrical oscillations (Unit H, 'Magnetic 
fields and a.c.') and electromagnetic waves (Unit J, 'Electromagnetic 
waves'). Analogies between mechanical and electrical oscillations and 
waves are easy to draw, and the mathematical models developed in this 
Unit to describe mechanical situations transfer directly to equivalent 
electrical situations.

You will use several of the ideas developed in Unit A, 'Materials and 
mechanics', including those of interatomic forces and spacings, the 
Young modulus, and the spring constant. And it will be helpful if you 
can recall some of the important features of wave behaviour from 
earlier science courses.

Unit H, 'Magnetic fields and a.c.'

Unit I, 'Linear electronics, feedback and
control'

Unit J, 'Electromagnetic waves'

READING 
Quartz and atomic clocks (page 237)

'Buildings, bridges, and wind' in the
Reader Physics in engineering and

technology

Section 01 INTRODUCTION TO OSCILLATIONS
What are oscillators and why study them?
Anything that exhibits a rhythmic, repetitive, or to-and-fro motion may 
be considered as an oscillator. Although the cause of the oscillations and 
the nature of the oscillator differ from example to example, we can 
describe common properties.

Almost every object in the universe, large or small, can oscillate in 
some way or another; and if oscillating electric and magnetic fields, 
currents, and potential differences are considered, then the study of 
oscillations is a major theme in physics, as the list below indicates. 
Quartz crystals as used in clocks and watches. 
Atoms oscillating in solids.
Metal structures oscillating (leading to fatigue) as, for example, bridges, 
aircraft wings.
A car bouncing on its suspension. 
An oil platform oscillating in rough seas. 
A boat pitching and rolling.
The Earth's atmosphere after an explosion such as that of Krakatoa. 
The larynx in the human voice-box.

210 UnitD Oscillations and waves



Any real system, electrical or mechanical, subject to a sudden 
change will begin to oscillate, unless damping (for example, by friction) 
is very large.

As well as the fact that oscillations can occur in so many different 
systems, as the list above suggests, there are four particular reasons why 
they are worth studying:
i some oscillators have a constant period and so can be used for 
timekeeping;
ii some oscillations can be destructive if uncontrolled; 
in mechanical waves may originate from an oscillating body if the body 
can cause particles or other objects within the surrounding medium to 
oscillate and so transmit the wave;
iv electromagnetic waves are radiated into free space by oscillating 
charged particles; the same oscillators are also able to absorb 
electromagnetic radiation.

EXPERIMENT D1 
How do oscillators move?

You should be familiar with the words:
displacement

amplitude
period

frequency

QUESTION 1

Figure Dl

HOME EXPERIMENT DH1 
Making a chronometer

READING 
Quartz and atomic clocks (page 237)

Time traces of oscillators

Some oscillators are isochronous; that is, the period of the oscillation is 
constant (from the Greek iso= equal, khronos = time). Some are not. 
Some have smooth graphs of displacement against time and some have 
not.

A typical near-isochronous time trace is given by the loaded lath 
oscillator (see figure Dl). Note that: 
i one cycle of the graph resembles a cosine graph; 
ii the amplitude dies away due to damping - the oscillator loses energy 
to the surroundings; 
Hi the period is independent of the amplitude.

Time

Oscillations and clocks

Isochronous oscillators from the pendulum to the precise oscillations of 
caesium atoms in the atomic clock obviously have a use in measuring 
time. But is our desire to measure time more and more accurately the 
end of the story? Such questions arise as: 'What is time?', 'Does time run 
steadily?', 'Could time run backwards?', and 'Would we know if it was 
doing so?'. These questions are not just amusing, they have great 
importance to physicists studying fundamental particles, and influenced
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QUESTIONS 3 to 5

DEMONSTRATION D2 
Oscillators and circular motion

QUESTION 2

both Newton and Einstein. So it is well worth reading about time and 
its measurement, the history of timekeeping, the use of timekeeping in 
navigation, and the problems that have arisen with our ideas of time.

Oscillations and circular motion

If a swinging pendulum and an object rotating on a turntable are 
viewed from the side, the two motions can appear identical. They seem 
to have a great deal in common, and the relationship between them is a 
very useful one. This demonstration leads to two important quantities 
associated with oscillations: phase, </>, and angular velocity, 00.

Phase (<p) If a pendulum is the right length for its natural frequency to 
equal the frequency of rotation of the turntable, then the shadows cast 
on a screen by the pendulum and the rotating object will move together 
and be 'in step' (providing of course that the pendulum is released at the 
right moment). We say that they are in phase - figure D2(a). If the 
pendulum is released at some other instant, there will be a constant time 
interval between one shadow reaching the outermost limit of its swing 
and the other reaching that position. The fraction of a complete 
oscillation by which one is ahead of the other is known as the phase 
difference. It can be expressed as a fraction of a revolution or oscillation, 
or, more usually, as an angle. See figure D2(b). Such an angle is usually 
measured in radians (see below). If the pendulum is too long or too 
short, the two movements will not stay in step, and the phase difference 
will alter continuously.

Figure D2 (a)
no phase difference phase difference 

(b) = i/2 oscillation

Angular velocity (co) is the change in angle per unit time. It is usually 
measured in radians per second, rather than degrees per second.

Definition of the radian

QUESTION 6 One radian is the angle at the centre of a circle of radius r subtended by 
an arc of length r.

If an arc of length r subtends an angle of 1 radian, then the whole 
circumference (length 2nr) will subtend an angle of 2n radians. That is,

2?r radians are equivalent to 360°

therefore 1 radian =
360°

= 513°
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Figure D3
Radian measure of angles.

In general for any angle 6, if 9 is measured in radians, then

9 = arc/radius = - r

QUESTIONS 7, 8 For small enough angles tan 6 x sin 9 x a/r. So tan 6 = sin 9 = 9 (in 
radians) is quite a good approximation when 9 is small.

Section D2 MECHANICAL WAVES AND SUPERPOSITION
READING 

Applications of ultrasonics (page 232)
All waves are produced by some sort of oscillator; the wave transfers 
energy from the oscillator to other points. Sometimes this is useful, for 
example the oscillations of a loudspeaker producing musical sound 
waves; sometimes a nuisance, as when a loose oscillating panel in a bus 
produces a non-musical rattle; and sometimes it can be dangerous - an 
earthquake wave causing buildings to crack or collapse. The enormous 
variety of waves means that they are of great practical importance: to 
people trying to insulate buildings against noise; to designers of musical 
instruments and hi-fi systems; to architects and builders of high-rise 
flats and suspension bridges; to installers and designers of any equip­ 
ment that vibrates or rotates; to geophysicists and many others.

Since the same ideas apply to all types of wave, we can learn about 
them all by studying a few simple systems.

DEMONSTRATION D3 
Basic ideas about waves

HOME EXPERIMENT DH2 
Make your own wave machine

Basic words and ideas about waves

The basic ideas can be demonstrated using mechanical waves along 
strings or springs, ripples on water, or special wave machines. The 
system carrying the waves is called the medium. A displacement against 
distance graph, or wave profile, shows the displacement of points along 
the medium at one instant of time.

In figure D4, waves on the spring are being started by oscillations of 
the end P t . At the instant shown, P t has completed two oscillations. All 
other points along the medium perform the same oscillations as P ls 
only later in time. P 5 is just starting to oscillate; P3 has performed one 
complete oscillation; P2 and P4 are also oscillating, half a cycle (n) out 
of phase with P,. The distance between any two adjacent points which 
are in phase is one wavelength (1).
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QUESTIONS 9.12

EXPERIMENT D4 
Properties of mechanical waves

travel

Distance

wavelength (A)

Figure D4
Wave profile: displacement-distance.

Another graph, of displacement against time, could be plotted for 
any particular point along the medium. From this graph the period, T, 
and frequency, /, could be obtained. Figure D5 shows a displacement 
against time graph for the point P5 , assuming that figure D4 shows the 
profile at t = 0.

I5,

-A

Time

Figure D5
Displacement-time for P5 .

The speed of travel of the wave, c, is given by c=/x/l. If Pt 
oscillates continuously, a continuous wave travels along the spring. If, 
however, P l is just displaced once and then remains at its equilibrium 
position, a single pulse travels along the spring.

Pulses on springs: experimental results
Experiments show that:

The shape of a pulse on a spring is determined by the nature of the flick 
creating it: a quick flick gives a short pulse, whereas a slow flick gives a 
long pulse.

Friction makes a pulse grow smaller in amplitude as it travels - its 
energy spreads out to its surroundings.
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The speed of a pulse is not determined by its shape, nor on how you 
flick the spring to create it.

The speed does depend on the spring - and on the tension with which it 
is held. The speed increases as the tension is increased.

When pulses meet they superpose - the displacements that each pulse 
alone would cause on the spring add together; but when the pulses pass 
beyond each other they continue with their original shape (figure D6).

QUESTIONS 10,11

EXPERIMENT D4c

Figure D6
Superposition of pulses.

When a series of pulses is reflected, the returning pulses form a 
stationary pattern as they superpose with those pulses still moving 
outward (figure D7).

000000

Figure D7
Stationary pattern produced when waves superpose.

A pulse reflected at a fixed end suffers a phase change of n - it turns 
upside down. If reflected at an open end, it suffers no phase change.

Section D3 considers the speeds of waves 
like this in more detail

How does a mechanical wave travel?
When a wave travels along a trolley-and-spring model each trolley 
moves in turn, because of a force on it from the preceding spring. The 
speed of the wave depends on how long it takes the trolley to acquire 
enough displacement to exert force on the next spring. This depends on 
the mass, m, of the trolley and the stiffness, k, of the springs, and it can 
be shown that the speed, c, is proportional to ^/k/m for this wave.

Section D2 Mechanical waves and superposition 215



Longitudinal waves

DEMONSTRATION D5 ^s a wave travels through a medium the individual particles of the 
Longitudinal waves on a Slinky spring medium oscillate about their rest positions.

particle oscillation-i travel

(a)

particle oscillation

travel

(b) 

Figure D8

In transverse waves the particles oscillate at right angles to the 
direction of travel of the wave (figure D8(a)). In longitudinal waves the 
particles oscillate along the direction of travel of the wave (figure D8(b)). 
This can be demonstrated on a Slinky spring; each part of the spring 
oscillates back and forth about its rest position as the wave passes. 
Sound waves are also longitudinal: here pressure variations in the gas 
cause the molecules to oscillate about their mean positions.

Longitudinal waves behave in much the same way as transverse 
waves.

One difficulty arises in drawing the longitudinal wave: often it is 
represented in the same way as a transverse wave, and this can be 
misleading. Remember that the displacement is really in the direction of 
travel of the wave (see figure D9).

11
undisplaced particles

wave travelling through

nirrr 11
graph showing longitudinal 
displacement of the particles

Figure D9

DEMONSTRATION D6 
What happens when waves meet?

QUESTION 16

Superposition of waves

In figure D10, waves from both S x and S2 are arriving at P. The 
principle of superposition is that at any moment the displacement at P 
is the sum of the separate displacements that the waves from Sj and S 2 
would cause individually.
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There will be a maximum disturbance at P
if S 2 P   S 1 P = n/l (providing S t and S2 are

emitting in phase)

DEMONSTRATION D7 
Path differences and phase difference

EXPERIMENTS D8 
Superposition of waves

QUESTIONS 14,15,17 to 19

Figure D10

On the ripple tank S 1 and S 2 vibrate in phase, with the same 
amplitude. The amplitude of the oscillation at P then depends on the 
phase difference between the two arriving waves; this in turn depends 
on the path difference (S 2 P   SjP) and on L The phase difference in 
cycles is (S 2P   SjPyA; if this is an integer then we have oscillations of 
maximum amplitude, or an antinode at P. That is the familiar condition 
for a maximum (S 2 P   S t P) = nL

If waves of identical frequency superpose, and if their sources have a 
constant phase difference (or none), a stationary pattern of nodes and 
antinodes (or maxima and minima) results. This is known as an 
interference pattern and may be used to determine the wavelength of 
the waves.

In the simplest case, a path difference of a whole number of 
wavelengths means that the two waves arrive in phase, giving a 
maximum, or antinode; but this only applies if the waves are emitted in 
phase with each other and if no other factors, such as reflection, affect 
the phase of either wave. Reflections in some cases result in the wave 
changing phase by half a cycle, or n. Such phase changes must be taken 
into account in the calculation of wavelength. If the two waves are 
exactly out of phase, a minimum, or node, results.

If either the frequency or the speed is already known, the other may 
now be calculated using c =fL

Superposition at a point can occur with waves from two (or more) 
different sources - though a stationary pattern will only result if they 
have a fixed phase relationship; it can also occur with waves from a 
single source which have travelled by different paths to the point.

As an example, the 3 cm radio receiver, R, in figure Dl 1 will receive 
minimum radiation if both T and R are very close to M. This is because 
the difference in path between TMR (reflected path) and TR (direct 
path) is almost zero; but the reflection at M changes the phase of the 
reflected wave by n: hence the waves arrive out of phase by n. To obtain 
a phase difference of one cycle, M must be moved away from T and R 
until the path difference is 1.5 cm (half a wavelength). See figure D12.

reflector, M M

d + 0.75 cm

Figure Dll
T 

Figure D12
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Superposition effects demonstrate the wave nature of radiations 
such as light, radio, and X-rays where the waves themselves cannot be 

Unit L, seen. Superposition effects also show that electrons (and other 'par- 
'Waves, particles, and atoms' tides') have wave-like properties.

QUESTIONS 20 to 22

Examples and applications of superposition
Familiar examples include the colours seen in 'rainbow bubbles' and on 
oily puddles, and the colours seen on the surface of a long-playing 
record when it is tilted around in sunlight. The abrupt occurrence and 
subsequent disappearance of gigantic ocean waves up to 30 metres high 
are also due to superposition.

Section D3 MECHANICAL OSCILLATIONS
EXPERIMENT D1 

How do oscillators move?

DEMONSTRATION D2 
Oscillators and circular motion

QUESTIONS 26, 27

This Section develops the link between oscillatory and circular motion, 
and uses it to derive a mathematical description which can be applied, 
more or less exactly, to many different oscillators. The reason why 
many oscillators are isochronous is also dealt with.

Features common to all mechanical oscillators

Every mechanical oscillator, isochronous or not, has these features:
z it is displaced successively to one side then the other of an equilibrium
position;
ii it is accelerated towards the equilibrium position by a force; the force
is related to its displacement in some way;
Hi it has inertia, which means that it continues through the equilibrium
position, rather than coming to rest there;
iv it possesses kinetic energy as it passes through the equilibrium
position, potential energy at the extreme ends of its motion, and usually
a combination of both at points in between;
v there are resistive forces against which it must do work; as a result the
oscillator loses energy.

k is the force which would displace the 
mass m a distance of 1 m

The mass and spring oscillator

The rest of this Section deals solely with one particular type of 
oscillator; a mass, m, which oscillates horizontally or vertically, and is 
attached to springs which provide the restoring force. By Hooke's Law, 
F = — ks, where F and s are force and displacement (positive when 
measured to the right or downward), and k is the spring constant of the 
whole assembly of springs. This is illustrated in figure D13.

This system is chosen for detailed study because many other systems 
are analogous to it: if quantities corresponding to m and k can be 
identified in another system, then the results obtained for the mass and 
spring system can be used to describe this other system.
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- F = -ks
F = -ks

-equilibrium position

Figure D13
Mass and spring oscillators.

(b)

Damping is ignored, partly to simplify the mathematics, and partly 
because it does not affect perhaps the most important property of the 
oscillator, its period.

EXPERIMENT D9
Factors affecting the period of an

oscillator

HOME EXPERIMENT DH3 
A mechanical oscillator

QUESTIONS 23, 24

Periodic time, T

Experiments show that for this system 
z T does not depend on A, the amplitude; 
ii T is proportional to v/m; 
Hi T is proportional to *J\Jk.

A qualitative argument explaining why T does not depend on A runs 
as follows:
Consider one quarter of an oscillation, first with one amplitude, then 
with double that amplitude.

In the second case, the object starts with double the displacement; 
=> twice the force acts on it 
=> it has twice as much acceleration 
=> velocity it gains in a given short time doubles 
=>it covers twice the distance in a given short time 
=>new amplitude is covered in the same time as the old amplitude.

Similar qualitative arguments can be used to explain the de­ 
pendence of Ton m and k.

QUESTION 25

Simple harmonic motion

Simple harmonic motion (S.H.M.) is the name given to the motion of 
objects moving in such a way that:

restoring acceleration

a oc displacement s or, with our sign convention,

ace   s.
The mass in the mass-and-spring system obeys this rule, since

a oc F (Newton's Second Law) and 

Fx — s (Hooke's Law)

EXPERIMENT D10 As shown above, the resulting oscillation has a period independent of 
Oscillation of a tethered trolley its amplitude.
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Few, if any, oscillators obey this rule exactly; but many obey it 
approximately, particularly if their amplitude of oscillation is small 
relative to the dimensions of the system.

Analysis of the oscillation

A ticker-tape obtained from half an oscillation of a trolley tethered 
between springs shows a time trace like the one in figure D14.

,R imaginary spot moving 
T\ \ round circle

Figure D14
Time trace for a tethered trolley.

I s

Figure D15
Projection of time trace onto a semicircle.

0=co( The procedure illustrated in figure D15 shows that the motion can 
if t = 0 when oscillator is at P be generated by the shadow (projection) of a spot moving round a circle

at constant speed. In the time interval between the ticker-tape dots 
shown, the spot always moves through the same angle round the circle, 
since measurements show that

By definition, the angular velocity of the spot to =   . 

Also,

271
to =   (if $ is in radians; T = period)

a> can be measured from figure D15; if a> is also calculated from the 
directly measured T, agreement should be good.

QUESTION 28 It can be seen from figure D16 that the displacement of the oscillator 
s = A cos (f) = A cos cot.
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spot, angular 
velocity 10

QUESTION 31

harmonic oscillator

Figure D16
Projection of circular motion onto diameter.

Thus A cos a>t gives the complete detail of where the oscillator will 
be at any given time t after it starts from P.

An alternative definition of S.H.M. is to say that it is a motion which 
is described by s = A cos cot.

Velocity and acceleration of the oscillator

Since velocity is the rate of change of displacement, the velocity at any 
time is the gradient of the displacement against time curve. Similarly, 
the acceleration can be obtained from the graph of velocity against time 
(see figure D17).

Figure D17
Displacement, velocity, and acceleration of an oscillator.

This result can be obtained more formally by differentiation: 

s = A cos (at
=>v = ds/dt — — Aco sin cot 
=> a = dv/dt = — Aco2 cos cot = — co 2s
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The dynamics of the oscillator

If the oscillator is displaced distance s to the right, the unbalanced force 
on it (to the left) is   ks.

QUESTIONS 32 to 39 _,.a = F/m

=>a=—(k/m)s equation [1] 

Now s = A cos cot
=> a =   co2A cos cot and a =   a> 2s (see above) equation [2] 

Equations [1] and [2] are the same, provided

2_A

m

co, previously calculated, should compare (within experimental error) 
with the value of k/m measured during the experiment. 

Note also that

r-^-2* £ j     * "  /,co \J k 
This ties up with earlier experiments and qualitative reasoning.

The formula T= 2n — has many applications. For example, atoms
V K 

in solids vibrate as though they were masses held by springs (later in
this Section this idea is used to derive the speed of sound in a solid); and 
the vibrations of buildings, bridges, and almost any mechanical 
oscillator can be analysed by reference to this mass-and-spring model.

Numerical solution of a= ——s
m

This piece of work illustrates a method widely used in science and 
engineering for solving difficult mathematical problems. The equation

k a = — — s is relatively simple, and can be solved exactly by integration:

[k
we already know a solution, s = A cos / t. So the numerical method of"V m
solution is not really necessary for this problem, but provides a good 
illustration of how a more difficult problem, impossible by integration, 
could be solved. Such problems are common in more complex fields like 
engineering. There is an example from physics in Unit L, 'Waves, 
particles, and atoms'.

The problem: To obtain a detailed graph of how s varies with t, 
knowing the constants of the system (k and m), the initial values of s and

kv, and that a = —— s. 
m

The principle: The position of the oscillator is calculated at 
successive moments, which are separated by short time intervals At.
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The oscillator's speed is assumed to remain constant during each of 
these short intervals. Each calculation is approximate, but can be made 
as accurate as we like by taking a small enough value for At.

The steps in calculating each successive displacement value, s, are as 
follows: 
Knowing the old value of displacement, s0

F = - ksn

new velocity, v 1 = v0 + aAt 

new displacement s^ = s0 + As = s0 + v l At

QUESTION 29 The new value of s is now used to work out a at the new position, hence 
the new v, etc.

This so-called iterative method, in which the same steps are 
repeated (re-iterated) many times, is of course ideally suited for 
programming on a digital computer. Furthermore, in a computer 
program one could easily include other factors, such as damping, or a

QUESTION 30 regularly applied driving force.

Energy of an oscillator

The potential energy stored in the springs at any position is %ks2 . When 
the oscillator is at maximum displacement (and stationary), this is equal 
to ^kA2, which must, therefore, be the total energy of the system. Note 
particularly that the total energy is proportional to A 2 .

total energy

(a)

-A

Figure D18
Energy of an oscillator. (b)

+A 
Displacement

total energy

+ A 
Displacement
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DEMONSTRATION D11
Longitudinal wave on a trolleys-and-

springs model

If no energy spreads from the oscillator to the surroundings, 

total energy = RE. + K.E.

Thus RE. and K.E. vary with s, as in figures D18(a) and D18(b). 
RE. and K.E. vary with time like this:

K.E. = \mv2 = ̂ mco2A 2 sin2 <ot 
(See figure D19.)

total £

774 772 3774 Time

Figure D19
K.E., P.E., and total E of a harmonic oscillator.

Oscillations and the speeds of waves

The passage of a mechanical wave involves energy passing through a 
medium from one oscillator to the next. In demonstration Dll, for 
example, each trolley is a tethered-trolley oscillator; as a single pulse 
moves along the line of trolleys, it sets each one into motion in turn.

Figure D20 shows the line of trolleys at three successive short time 
intervals. In figure D20(b), trolley Q is just being set into motion. By the 
instant of diagram D20(c), the pulse has advanced by one section-length 
(x), and R is now in the same situation as Q was previously. The speed 
of advance of the pulse is thus the distance x divided by the time 
interval between diagrams D20(b) and D20(c).

cn-
(a)

(b)

(c) 
Figure D20

DH——I

QUESTION 40 If Q is considered as a tethered-trolley oscillator, then in figure 
D20(b) it is at the lefthand extreme of an oscillation; by figure D20(c) it
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has reached its equilibrium position between trolleys P and R. This is 
one-quarter of an oscillation; the time interval for the pulse to be 
handed on to the next oscillator thus appears to be one-quarter of the 
period of the oscillation. In fact, a more thorough analysis shows that

the fraction is not i but   of an oscillation.

c is the speed of the pulse c =
time interval 1 .

  x period

period

=>c =

QUESTIONS 41,42

DEMONSTRATION 012 
Speed of sound in a metal rod

The speed of sound in a solid

In Unit A, 'Materials and mechanics', a solid was pictured as consisting 
of atoms connected by springy bonds. This model was used to calculate 
the Young modulus for steel. Now it can be used to calculate the speed 
of a wave in a solid. The atoms and bonds are modelled by trolleys 
connected by springs. From Unit A, the Young modulus, E = k/x, where 
k is the spring constant of the interatomic bonds.

But x3 is the volume occupied by one atom; so m/x = p, the density of 
the material

The same sort of argument applies to all mechanical waves. In each 
case, the speed of the wave depends on the properties of the substance 
through which the wave is travelling. Formulae for the speeds of many

mechanical waves have the form 
equivalent.

/force constant 
mass '

or something

Section D4 FORCED VIBRATIONS AND RESONANCE

Free and forced oscillations

A system which can oscillate may be set into oscillation in many ways. 
Two of these are particularly important.
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Section D3 dealt with 'free' or natural oscillations. In this case the 
oscillator is given an initial displacement or velocity, and then released.

The second important situation is when a periodic repetitive driving 
force is applied to the oscillator in some way. This in general causes 
'forced' oscillations. When the frequency of the driving force equals the 
oscillator's natural frequency, then the amplitude of the oscillations 
may build up to a large value. This special situation is called resonance.

DEMONSTRATION 013 
Forced vibrations of a mass on a spring

'Buildings, bridges, and wind' in the
Reader Physics in engineering and

technology

Figure D21

READING 
Spectroscopy (page 236)

EXPERIMENT D14 
Investigations of resonance

DEMONSTRATION D15 
Barton's pendulums

Resonance

Resonance has wide ranging practical applications. Any machine or 
structure is likely to be subjected to periodic forces, either as a result of 
its own operation (e.g., the motor in any vehicle imposes an oscillation 
or vibration on every part of the vehicle) or through the action of some 
external agent (e.g., wind exerts a periodic force on buildings and 
structures through vortex shedding). If you keep your eyes and ears 
open you will notice countless examples of forced oscillations.

Forced oscillations can prevent machines operating efficiently, as 
when an unevenly loaded spin drier cannot achieve its normal working 
speed because much of its energy is being diverted into a violent 
wobbling. More seriously, forced oscillations can result in fatigue 
failure of metal components at stresses well below the tensile strength of 
the metal, simply as a result of repeated flexing (like breaking a piece of 
wire by bending it to and fro). If resonance occurs, forced oscillations 
can be violent and may have catastrophic results (as in the Tacoma 
Narrows bridge collapse). An understanding of forced oscillations is 
clearly essential to engineering.

Forced oscillations are not always destructive; sometimes engineers 
and scientists can make positive use of them. Nor is the phenomenon 
confined to mechanical oscillations. Microwave ovens heat food as a 
result of a forced oscillation of the molecules within the food, particu­ 
larly water molecules, which are polar (they are permanently charged 
positive at one end and negative at the other, see figure D21). Infra-red 
absorption spectroscopy, which is an important technique for chemists, 
involves the forced oscillation of atoms or groups of atoms within a 
molecule. The conversion of radio waves to electric currents in an aerial 
is an example of a forced oscillation, and the operation of a tuning 
circuit in a radio relies on resonance.

Many more examples are given in the books recommended for this 
Unit.

An investigation of a resonant system reveals the following points. 
i When a driving force (driver) acts on something which can vibrate, the 
initial transient oscillations are irregular, with varying amplitude. 
ii These transient oscillations give way, in a time which depends on the 
degree of damping, to a steady state, in which the driven oscillator 
oscillates at the forcing frequency, regardless of its own natural 
frequency. (Damping is the result of friction-type forces which always 
act against the motion of an oscillator.)
in The amplitude of the driven oscillation depends on the forcing 
frequency and rises to a maximum if the forcing frequency is equal to
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the natural frequency of the driven oscillator. These large amplitude 
vibrations are called resonant oscillations. See figure D22.

resonance peak

amplitude of driver

Figure D22
Resonance.

Forcing frequency

Figure D23
Photographs of Barton's pendulums.

(a) Time exposure (damped).
(b) Time exposure (less damped).

(c) Instantaneous.
A. W. Trotter.

iv At resonance the driver and the driven oscillator are not in phase. 
The driver leads by one quarter of a cycle.

The photograph of Barton's pendulums in figure D23(c) was taken 
when the driver was at its maximum displacement to the left. The 
resonating pendulum is just passing through the centre of its oscillation, 
and moving to the left. It is one quarter of a cycle, or n/2, behind the 
driver. The shorter pendulums at the top of the picture, with higher 
natural frequency, are moving approximately in phase with the driver. 
The long pendulums with lower natural frequencies, are approximately 
in antiphase with the driver (phase difference of IT). Notice how the 
pendulums which have natural frequencies close to the forcing fre­ 
quency (that is, pendulums of similar length to the driver), oscillate with 
larger amplitude than the others.

The amplitude of the forced vibrations also depends on the degree of 
damping. The photographs in figures D23(a) and (b) illustrate how the 
amplitude of resonant vibrations is reduced by damping.
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Resonance curves (figure D24) reveal the effects of damping in more 
detail. Damping reduces the amplitude at all frequencies. It also makes 
the resonance peak broader (reduces the sharpness of resonance).

It very slightly reduces the resonant frequency of the driven 
oscillator.

amplitude of driver

Figure D24
Resonance curves.

light damping

Forcing frequency

QUESTIONS 43 to 53

Energy in forced oscillation

The driver delivers energy to the forced oscillator during each cycle
of oscillation. This energy may be:
i stored in the oscillator, increasing the amplitude
(energy stored oc amplitude2);
ii used to overcome the resistive forces which cause damping;
Hi returned to the driver, later in the cycle (but this does not happen at
resonance).

The amplitude of a forced oscillator goes on increasing until energy 
loss per cycle = energy provided by driver per cycle.

The quality factor, Q

The quality factor, Q, of an oscillator can be formally defined like this:

energy stored 
energy lost per cycle

However, there is a much more useful, though non-rigorous, 
description of Q: it is approximately equal to the number of free 
oscillations which occur before all the oscillator's energy is gone.
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Q is related to the degree of damping of the oscillator, and to the 
sharpness of its resonance peak. Low values of Q are associated with 
heavily damped oscillations which do not resonate violently and which 
die away quickly if they are not forced. High values of Q are associated 
with light damping and sharp resonance.

Some typical values of Q are:

Car suspension 1
Tethered trolley 10
Simple pendulum 1000
Guitar string 1000 
Quartz crystal of watch 10s
Excited atom 10 7
Excited nucleus 1012

QUESTIONS 54, 55 Consider the guitar string, for example. The energy is emitted as sound 
waves, with a fundamental frequency of, say, 512 Hz (the C above 
middle C). If Q — 1000, then roughly 1000 oscillations occur before all 
the energy is gone. Thus the plucked string will cease to oscillate after 
1000/512 x 2 seconds: which agrees roughly with experience.

Standing waves and resonance

A standing wave is formed when identical waves travelling in opposite 
directions superpose.

In figure D25, P and Q represent points along a rope. At the instant 
shown, two wave trains travelling in opposite directions are just about 
to overlap at point P. Points L : to L4, R! to R4 represent peaks or 
troughs along the wave train.

travelling right: wave R

.•R,'-.

both waves: amplitude A

travelling left: wave L

• \ \ / 
° V

R4 R2 L2 L,

Figure D25
Formation of a standing wave.

Superposition at point P causes P to oscillate with amplitude 2A, 
since peaks L1 and Rj arrive there simultaneously, followed half a cycle 
later by troughs L2 and R2, etc. Careful inspection shows that 
superposition at Q will result in Q remaining stationary in space all the 
time.
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DEMONSTRATION 016 
Standing waves on a rubber cord

QUESTIONS 56, 59

Points such as P are called antinod.es (A); points such as Q are called 
nodes (N). Adjacent nodes are distance A/2 apart. The motion of a 
section of rope on which a standing wave is occurring can be 
represented as in figure D26.

N A N A N A N

Figure D26
Representation of a standing wave.

All points between adjacent nodes oscillate in phase with each other; 
they are in antiphase with all points in the next half-wavelength section.

Resonance of a string with both ends fixed

A wave in a stretched string cannot escape beyond either end; it must be 
reflected.

If a string is made to vibrate near one end, waves travel to and fro 
along the string, being reflected each time they reach an end. If the 
length of the return trip for these waves is a whole number of 
wavelengths, that is, 2L = nA, where L is the length of the string, they 
will always pass the vibrator in phase with the wave which it is 
producing, even after several return trips. A standing wave of large 
amplitude therefore develops. Figure D27 illustrates some of the modes 
of vibration of a string.

Figure D27

Large amplitude standing waves only occur for these well-defined 
wavelengths.
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DEMONSTRATIONS D17 
More complicated standing waves

HOME EXPERIMENTS DH4 to DH6 

QUESTIONS 57, 58

Unit L, 'Waves, particles, and atoms'

Standing waves in bounded systems

The edges of any solid object act as boundaries to waves. Superposition 
of waves travelling towards the boundary with those reflected from it 
can lead to standing waves, if the object is vibrated at an appropriate 
frequency (unless the vibrations are damped). In a similar way, standing 
waves can be set up in fluids if they are contained (air in a trumpet, 
water in the bath). The same ideas are used to explain the energy levels 
of atoms.

These more complex standing waves have the following features in 
common with waves on a string:
i There is a series of definite modes of oscillation, corresponding to 
different frequencies, at each of which the response is large (resonance). 
ii The patterns developed depend on the frequency, there being more 
nodes at higher frequencies, 
in' The standing waves must 'fit' into the system.
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READINGS
APPLICATIONS OF ULTRASONICS

Ultrasonic waves are compression waves travelling through a medium 
with frequencies higher than those of audible sound waves. Their 
existence may be demonstrated using an ordinary signal generator and 
loudspeaker to create them, and a microphone and C.R.O. to detect 
them. However, most practical ultrasonic systems use transducers 
which depend on either the piezoelectric effect or the magnetostrictive 
effect. (A 'transducer' converts energy, in this case from electrical energy 
to ultrasonic wave energy, or vice versa.)

The piezoelectric effect occurs in certain crystals, such as natural 
quartz. When a p.d. from an external supply is applied across it, the 
crystal will alter its shape slightly; an alternating p.d. at high frequency 
will thus cause it to act like a miniature tuning fork, generating 
ultrasonic waves. Conversely, if the crystal is compressed or stretched 
by a mechanical force, such as occurs repeatedly when an ultrasonic 
compression wave arrives, a p.d. appears across it; hence it can also be 
used to detect the waves.

Magnetostriction involves the change of shape of certain metal 
alloys when they are magnetized, or the complementary effect of a 
change in their magnetization when they are stressed.

A number of applications involve an echo-sounding technique. A 
transducer sends out a pulse of ultrasonic wave energy; the same 
transducer is then used to detect any returning energy reflected from 
discontinuities in the medium. The time between transmission of the 
pulse and its returning echo, together with a knowledge of the wave 
speed in the medium, allows the distance to the discontinuity to be 
computed.

Ultrasonic flaw detection This is an example of a non-destructive 
testing method. Such methods are used where the material to be tested 
must not be cut up, broken down chemically, or even removed from its 
working position. A transducer using a frequency in the MHz range is 
placed in contact with the material to be inspected. The pulses are 
reflected from the rear surface of the material; they are also reflected 
from any cracks or flaws within it, including any which may be invisible 
from the outside. If the returning signals are displayed on a C.R.O., the 
position of a flaw and its approximate size can be judged from the trace. 
This technique is particularly valuable in the inspection of railway 
tracks and welded pipes.

Ultrasonic foetal scanning Many expectant mothers now receive an 
ultrasonic scan as part of their routine check-up on the progress of their 
as-yet-unborn baby. Ultrasonic waves penetrate the mother's skin, but 
are reflected back selectively by discontinuities in the tissues beneath. 
By examining the whole area of the foetus bit by bit, a complete 'picture' 
of it can be built up. (See figures D28(a) and (b).) This is another 
example of non-destructive testing: ultrasonic waves apparently cause
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no harm to mother or baby, whereas X-rays, which could be used to 
obtain a similar picture, would harm them.

Figure D28
Ultrasound scan of 18-week foetus and

explanatory diagram.
Department of Medical Illustration,

St. Bartholomew's Hospital, London.
FOOT

SPINE.

Ultrasonic flow measurement If the pulse is projected into a stream of 
liquid flowing in a pipe, then energy reflected back from minute 
discontinuities in the liquid will show a Doppler frequency shift 
depending on the flow rate. This is used as the basis of a 'non-invasive' 
flowmeter, so-called because a transducer can send and receive sound 
through the wall of the pipe, and there is no need to obstruct the flow as 
in many meters which, for instance, measure the rotation of a paddle- 
wheel inserted in the pipe.

The last example, ultrasonic flow measurement, is quoted from B. Jolly 
(Ed.) Hobsons Science Support Series, Waves and sound. CRAC 
Publications, Hobsons Press (Cambridge) Ltd, 1982.
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Questions
An ultrasonic transducer converts alternating p.d.s into ultrasonic 
wave energy (or vice versa). How might this be done using the 
phenomenon of magnetostriction? (What would be the essential parts 
of the transducer?)

The speed of compression waves in a metal is of the order of 
5000m s' 1 . If your best laboratory C.R.O. is to be used for flaw- 
detection in a metal sample, estimate the length of the smallest sample 
that could satisfactorily be tested.

THE EFFECTS OF VIBRATION ON PEOPLE
We know that the slow oscillations of a rolling ship can produce sea­ 
sickness, although the origin of car-sickness is less clear. Machine 
operators are subject to more rapid vibrations; the pneumatic road drill 
is an extreme example.

Some effects of oscillations of various frequencies are shown in 
figure D29.

Frequency/Hz

vibration 1

motion sickness [•

breath lessness, 
pain in trunk

disturbance of vision 

cell damage

D-' '

———

I

1 0 1

\

D 2 1 D3 1 0" 1 D 5 11

Figure D29

Most serious effects are due to resonance - when the natural 
frequency of oscillation of some part of the body is the same as the 
frequency with which it is driven. This has been studied by sitting a 
person on a vibrating platform. Figure D30 shows the motion of the 
abdomen wall at various frequencies.

11
o c

II
o

23456789 10
Frequency/Hz

Figure D30
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The tolerance of human beings to vibration varies with frequency. 
You can see this in figure D31, which is a graph showing the results of a 
study of human vibration tolerance. Such studies are of especial 
importance in designing aircraft and space probes.

123456 7 8 9 1011 12131415 16 
Frequency/Hz

Figure D31
Human vibration tolerance. The curves show the value, and the range, of the limit of 
tolerable acceleration at various frequencies.
From MAGID, E. a., COERMANN, R. R., and ZIEGENRUECKER, a. H. (1960) Aerospace Medicine, 
31, page 915.

Human vibration engineering is also important in designing hand- 
operated machine tools. The use of such a tool for intricate work would 
be very difficult if it vibrated at a resonant frequency of the hand-arm 
system.

Questions
Estimate the natural frequencies at which various sections of your 
hand-arm system might vibrate (try swinging or shaking the various 
sections and the whole arm). Suggest ranges of frequencies which 
should be avoided for hand-operated machines.

Figure D31 shows that humans are very intolerant of acceleration 
when they are subjected to vibrations between 3 to 9 Hz. Use 
information from figure D29 to suggest what discomforts might be 
experienced under these conditions.

Figure D31 shows the maximum tolerable acceleration, during one 
cycle of an oscillation, plotted against oscillation frequency. Using the 
formula amax =   u> 2A, compute the maximum tolerable amplitudes of 
oscillations at 1 Hz, 4 Hz, 8 Hz, and 15 Hz. Hence sketch a graph of 
maximum tolerable amplitude of oscillation against frequency (use 
logarithmic scales).

Comment on figure D30 (showing the movement of the abdomen wall 
against frequency) in the light of your knowledge of resonance.
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SPECTROSCOPY
If one could see the atoms in a molecule vibrating, and time their 
oscillations, one could obtain useful information about the stiffness, k, 
of the bonds between them, using 2nf= ^/k/m. Although the vibrating 
atoms cannot be seen, the frequency at which they absorb radiation can 
be found. Spectroscopy is thus a valuable tool for studying the 
vibrations of electrons, atoms, molecules, or ions.

Frequency

Figure D32

At its simplest, a source sends radiation, at a range of controlled 
frequencies, to a detector through the material under test (figure D32). 
Such methods are appropriate if the frequency of vibration is relatively 
slow, so that the wavelength of the electromagnetic radiation is more 
than a few millimetres.

Many interesting vibrations are faster, but we cannot vary con­ 
tinuously the frequency of sources of infra-red or visible light.

Figure D33

In figure D33, radiation of a wide range of frequencies is shone on 
the test material, and a device (a grating or prism, for example) sends 
the radiation of each frequency off in a different direction. Alternatively, 
the detector could in principle be tuned to each frequency in succession, 
although this is less useful in practice.

Uses of spectroscopic information

The stiffness of bonds in molecules, or in solids, may be found. For 
example, the bond stiffness of H2 is 5.2 x 102 Nm" 1 .

The analysis of complex organic compounds is assisted by studying 
their infra-red absorption spectra, for many types of bond tend to 
absorb at much the same frequency even though the atoms form part of 
different molecules. The spectrum can then be used as a means of 
indicating which bonds are present. For instance, aliphatic C C bonds 
oscillate in an in-and-out (stretching) manner at a little below 1014 Hz.
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Dyes, whose function is to colour, must absorb visible radiation 
strongly at selected frequencies. It is possible to design molecules which 
will absorb at a desired frequency.

At microwave frequencies, the spinning motion of molecules can be 
studied, and information about the length of bonds and the masses of 
the atoms obtained.

Questions
a The frequencies which molecules absorb are the frequencies which the 

same molecules emit when they return to their unexcited state. But 
even though the absorbed radiation is re-emitted, there is a detectable 
decrease in the intensity of the radiation reaching the detector at this 
frequency. Why is this?

b The frequencies which are characteristically absorbed by certain 
groups are listed below:

Functional C-C C = C C = C C-H 
group
Approximate 4xl014 5.3 x 10 14 6.6 x 10 14 9.0 xlO 14 
frequency/Hz

i Compare the stiffnesses of the single, double, and triple bonds 
between carbon atoms (i.e., calculate the ratios of the stiffnesses). 
ii Why does the C H group have the highest frequency of oscillation 
among those tested?

QUARTZ AND ATOMIC CLOCKS

(from G. W. Dorling, Longman Physics Topics, Time. Longman, 1973.

The quartz clock

In the 1930s a new type of clock started to replace the most accurate 
pendulum clocks as a standard for measuring time. This was the quartz 
crystal clock. The time keeper in this case is a quartz crystal instead of a 
pendulum. A quartz crystal will vibrate elastically with a natural period 
of its own, just like a tuning fork. In this case, however, electrical 
charges constantly build up and die away on its surface in time with the 
vibrations. It is this effect, the piezoelectric effect, which makes it so easy 
both to keep the crystal vibrating and to use the vibrations to control 
the frequency of electrical oscillations in other circuits.

It is these electrical oscillations, accurately controlled by the 
vibrations of the quartz crystal, that drive the hands of the clock, or 
control its display.

The frequency of the quartz crystal vibrations is sharply defined by 
the dimensions of the crystal. It is much less affected by variations in 
external conditions than the pendulum.

Why do we believe that these clocks are so much more reliable than 
pendulum clocks? There is an important test we can do. We can ask 
how well these clocks keep time with each other. Suppose two quartz 
clocks are adjusted to read exactly the same time and then left to run
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without adjustment. Comparisons of their time readings at various 
times later have indicated a difference of no more than 0.0005 second 
per day over a period of a week or so. This suggests that a quartz clock 
will measure a time interval of 1 day, or 86 400 seconds, to within 0.0005 
seconds; an accuracy of better than 1 in 10 8 . This is ten times better than 
that which could be obtained with the best pendulum clock.

Such comparisons are made continuously as quartz clocks are 
usually run in groups of three. This is because the likeliest disturbance 
to a quartz clock's time keeping is a failure of one of the electronic 
components. Simultaneous failure of all three clocks is most unlikely.

Quartz clocks were initially developed in response to the demand 
from scientists and engineers for more and more precise time standards, 
for the purposes of radio communication, navigation, and pure re­ 
search. It was also in response to this demand that the atomic clock was 
developed in 1954.

The atomic clock

Atoms can emit and absorb energy only at very sharply denned 
frequencies. Provided a suitable atom is chosen, they can be used to 
control the frequency of radio waves from an electronic oscillator.

In 1958 a clock, based on a beam of caesium atoms, was successfully 
constructed on this principle. The electronic oscillator is controlled by a 
quartz crystal whose vibrations are in turn controlled by the effect on 
the beam of caesium atoms of radio waves produced by the oscillator. 
As in the case of the quartz clock, it is these accurately maintained 
electrical oscillations which ultimately drive the clock.

Comparison of the timekeeping of two of these clocks showed that 
they could be relied upon to an accuracy of 1 part in 10 11 over an 
apparently indefinite period of time. To put this in a slightly different 
way, this meant that they could be relied upon to within 1 second in 
3 000 years!

A new time-scale

The development of a clock of such high reliability highlighted the 
strain that this increasing demand for precision had thrown on the 
astronomical unit of time. Both quartz and now atomic clocks showed 
greater consistency amongst themselves than they did with the sidereal 
day. Again, appeal to the laws of physics showed good reason why the 
Earth's period of rotation should vary from day to day and year to year. 
At first variations which could be calculated were incorporated into 
adjustments of the astronomical time-scale to make it more uniform. 
Atomic time showed, however, that there were some important ir­ 
regular variations in the Earth's rotation as well.

In 1964 general agreement was reached for a new time-scale based 
on the atomic clock. The frequency of the energy level transition of the 
caesium atom involved in the atomic beam clock was determined as
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precisely as possible in terms of the then accepted value of the second 
and was found to be

9 192 631 770+ 20 Hz

The + 20 Hz represented the uncertainty in the value of the astronomi­ 
cal second rather than the uncertainty in the value of the frequency.

The atomic second was then defined as exactly 9 192 631 770 periods 
of the oscillation associated with the caesium atom for this particular 
transition.

In this way the atomic second is the same time interval as the 
previously defined second based on astronomical time. This is essential, 
for we must still be able to use the new scale to tell the time of day.

Because the length of the mean solar day and the year vary by small 
amounts when viewed against the atomic time-scale, occasional adjust­ 
ments are made to the atomic scale to keep it in step with the year, in 
much the same way that the number of days in the year is occasionally 
adjusted to keep them in step with the year. Astronomical observations 
must remain the basis for determining the time of day, and they are 
constantly compared with the atomic time-scale. In this way the 
demand for a time-scale of precisely repeated equal intervals is brought 
into line with the need for a time-scale to tell the time of day and season 
of the year.

Questions
Show that the frequency of the energy level transition of caesium used 
to define the second is consistent with a radio wavelength. What is the 
wavelength?

A similar redefinition to that which befell the second has occurred with 
another fundamental unit, the metre. What is now the definition of one 
metre?

i Explain the meaning of this sentence more fully: The + 20 Hz 
represented the uncertainty in the value of the astronomical second 
rather than the uncertainty in the value of the frequency.' 
ii Roughly what uncertainty, in Hz, would be attributable to 
uncertainty in the value of the frequency? (Information which enables 
you to answer this question is given in the text.)
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LABORATORY NOTES
GROUP OF EXPERIMENTS 

D1 How do oscillators move?

You will be asked to find some method of showing how the displace­ 
ment of the oscillators listed below varies with time. A graph of 
displacement against time is called a time trace. The basic equipment 
for the oscillator will be available, but you may need to ask for other 
equipment when you have decided how you are going to produce its 
time trace.

Whichever oscillator you work with, consider these questions: 
i Does the method of obtaining the time trace affect the period? 
zz Does the method of obtaining the time trace affect the damping 
(resistance to motion)?
Hi If you are relying on several different 'runs' to take, for example, a 
series of times, can you be sure that all runs are carried out under the 
same conditions?
iv What assumptions are you making if you interpolate between the 
points you have obtained (for example, by joining them to form a 
continuous graph)? 
v Is the oscillation isochronous?
vi Whether or not it is isochronous, on what factors does the period of 
the oscillation depend? Try some experiments to confirm your ideas. 
Can you find any quantitative rules?

Here are some suggestions for setting up the oscillators and 
measuring the time traces.

D1a Pendulum

There are many ways of producing its time trace, from a simple sand 
pendulum to the electrical methods shown in figures D34(a) and (b). But 
remember these are not the only possibilities.

conducting paper
or tank with

electrolyte (e.g.,
CuSO4 solution)

brush made of extra 
flexible wire

pivot

stiff 
pendulum

(a)

Figure D34
Obtaining the time trace of a pendulum.

to C.R.O.

to C.R.O. or plotter

very freely moving 
potentiometer

stiff 
pendulum

(b)
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D1b Torsion pendulum

string
2 retort stand bases
3 retort stand rods and bosses 
G-clamp, large

Hang a retort stand rod horizontally on two parallel lengths of string. 
The ends of the rod may be loaded with bosses. It might be possible to 
adapt the potentiometer method illustrated in figure D34(b) to obtain 
this time trace.

Dk Lath with load

either 
metre rule 
or 
long lath

2 G-clamps, large
clean smooth paper (e.g., computer print-out paper)
felt-tip pen or brush with ink
2 rubber bands
2 masses, 1 kg

Clamp the metre rule to a stool or table so that it oscillates in a 
horizontal plane.

Figure D35 shows one possible way of obtaining the time trace.

Figure D35
Lath with load.

P lath clamped to table legs

1 "J^-
, strip of paper 

string to motor tf
C C~1——— n —————— --——- fy-- ^ --——

soft paper

——— jy-J

''v

"
;V

Did Inertia balance (wig-wag)

inertia balance 
2 G-clamps, small

Die Ball rolling on curved tracks

3 lengths of curtain rail
large ball-bearing, 1 or 2 cm diameter

Three curvatures to investigate are shown in figure D36.

Figure D36
Ball rolling on curved tracks. circular parabolic V-shaped
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D1f Mass oscillating vertically on spring

expendable spring
retort stand base, rod, boss, and clamp
G-clamp, large
hanger with masses totalling 400 g

Figure D37

Dig Undamped light beam galvanometer

light beam galvanometer
cell holder with one cell
switch
resistance substitution box
leads

Set up the circuit with the galvanometer on its least sensitive scale; then 
increase the sensitivity until, with a resistance of over 500 kQ, the spot 
reaches almost a full-scale deflection with the switch closed. Then, with 
the galvanometer on its 'direct' setting, open the switch: the spot will 
oscillate about its central zero position.

D1 h Bar magnet suspended over another magnet

cylindrical magnet
horseshoe magnet
retort stand base, rod, boss, and clamp
nylon fishing line

Hang the bar magnet on nylon or cotton so that it is horizontal and lies 
just over the poles of the horseshoe magnet resting on its back. You 
might use a small piece of mirror attached to the suspension to observe 
the oscillations by optical means.

D1i Large-amplitude pendulum

turntable clamped vertically (or large gyroscope) 
boss (or small G-clamp) 
retort stand base, rod, and boss

With the boss or G-clamp on the edge of the turntable or gyroscope, the 
system can be made to execute large-amplitude oscillations (see figure 
D38).

boss or small 
G-clamp

Figure D38
Large-amplitude pendulum.
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D1j Air track vehicle running between elastic barriers

air track with rubber bands at both ends, and blower 
air track vehicle

D1k U-tube containing liquid

large U-tube filled with water or potassium manganate(vn) solution

DEMONSTRATION 
02 Oscillators and circular motion

either
record-player turntable
or
fractional horsepower motor, with gearbox, turntable, and band
l.t. variable voltage supply

2 pendulum bobs
retort stand base, rod, boss, and clamp
compact light source
screen

pendulum

J

bob
f

bob

light source turntable

Figure D39
Oscillator and circular motion.

Observe the shadows of the two pendulum bobs as they move across the 
screen (figure D39). What do you see on the screen if the pendulum is 
exactly the right length to synchronize with the rotating bob, and the 
pendulum is released just as the rotating bob passes it? Why do you 
think this happens?

What happens if the pendulum is not released at the correct 
moment? What happens if the pendulum is not of exactly the right 
length? Use the words 'phase difference' in describing your 
observations.
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DEMONSTRATION 
D3 Basic ideas about waves

either
ripple tank kit
or
long spring
or
large Slinky spring
or
any other wave machine

Figure D40
Wave profile.

Define the terms wavelength, frequency, and amplitude for a wave like 
that shown in figure D40. What is meant by the undisturbed position 
and the displacement of a point such as P? What determines the 
frequency of the wave, and what unit is frequency measured in?

How are wave speed, wavelength, and frequency related? How does 
P move as the wave travels along?

GROUP OF EXPERIMENTS 
04 Properties of mechanical waves

D4a Transverse waves on a long narrow spring 

D4b Transverse waves on a Slinky spring

long spring
Slinky spring
metre rule
optional
string
large curtain ring
retort stand base, rod

It is easier to see what is happening if you make single hump-like pulses 
by giving the end of the spring or Slinky a single sideways flick.

Observe the pulse as it travels, with a view to answering questions 
such as:
Does the speed depend on the shape of the pulse - its height or length? 
Does the speed depend on how rapidly you flick the end of the spring? 
Does the speed depend on the spring - how could the speed be made 
larger or smaller?
Does friction make any difference to the speed of the pulse? to its shape? 
What decides the shape of a pulse?
What happens when pulses, starting from opposite ends of the spring, 
meet?
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What happens when the pulse reaches the far end of the spring, and that 
end is not free to move?

If you have time, try the following:
z Attach a large nylon curtain ring to the end of the spring and slide the 
ring onto a retort stand rod. When the pulse reaches this end, the end is 
free to move. What happens to the pulse?
ii Tie a piece of thick string or cord onto the end of the spring. What 
happens to the pulse as it moves from the spring to the string or vice 
versa? Can you explain this?

D4c Transverse waves on a trolleys-and-springs model

12 dynamics trolleys
44 expendable steel springs
12 masses, 1 kg (or 12 more trolleys)
stopwatch or stopclock

Figure D41
Transverse wave model made of trolleys and springs.

The model is made of a row of trolleys linked by springs, as shown in 
figure D41, with the trolleys spaced out so that the springs are in 
tension. It is best to set the model up on the floor, or on a surface with 
raised barriers along the edges to prevent the trolleys running off.

Make a transverse pulse travel along the model by moving the end 
trolley sharply from side to side. You should be able to answer these 
questions:
Does the speed of the pulse depend on its shape - its height or length? 
Does the speed of the pulse depend on how quickly you move the end 
trolley?
Does the speed depend on the spacing of the trolleys? 
What happens to the speed if the mass of each trolley is doubled? (Do 
this by adding loads, or stacking a second trolley on each one.) 
What happens to the speed if the tension between the trolleys is 
doubled? (Do this by putting an extra spring in parallel with each 
existing spring.)
What happens to the speed if both of these changes are made at the 
same time?
By what factor does the speed change in each of these cases? 
Explain why these changes affect the speed.
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DEMONSTRATION 
D5 Longitudinal waves on a Slinky spring

large Slinky spring

The Slinky should be on a smooth surface. 
Figure D42 Make a longitudinal pulse by moving the end of the spring sharply 

Longitudinal pulse on a Slinky, to and fro once only in the direction of the spring. (See figure D42.)
Look carefully at a pulse as it passes and see if you can answer the 

questions:
What makes the pulse move along the spring? 
Do compression and expansion pulses travel at the same speed? 
How does the speed at which the individual coils of the spring move 
compare with the speed at which the pulse moves along the spring? 
Use this model to explain how sound, which is a longitudinal wave, 
travels through a gas.
The pulse travels along the spring from one end to the other. How do 
the individual coils of the spring move?

DEMONSTRATION/EXPERIMENT 
D6 What happens when waves meet?

D6a Waves on a spring

long spring

What happens where transverse pulses meet? Does this meeting have 
any permanent effect on the pulses?
What happens when two wave trains of equal frequency and similar 
amplitude meet? (You can create this situation by sending a single wave 
train from one end of the spring with the other end fixed: the second 
wave train is caused by reflection of the first at the fixed end.)

D6b Ripples on water

ripple tank kit

Waves of the same frequency spread from each dipper. Observe the 
effects on the resulting pattern of adjusting the frequency of the waves 
and of altering the separation of the two dippers. Explain these effects.

DEMONSTRATION 
D7 Path differences and phase difference

signal generator
loudspeaker
2 microphones
double beam oscilloscope
metre rule
leads
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signal loudspeaker microphones
generator

*- — — — —-*
Figure D43
Path differences and phase difference.

The oscilloscope traces show the electrical oscillations produced in the 
two microphones by the sound waves (see figure D43). The sound from 
the single loudspeaker has to travel different distances to the two 
microphones. Because of this, the two traces will probably not be in 
phase. For what path differences will the oscillations be i in phase, ii in 
antiphase (phase difference of half a cycle)? Use this to determine the 
wavelength of the sound waves.

Some double beam oscilloscopes are able to display the resultant of 
adding the two input signals. What resultant would you expect if you 
add two vibrations which are i in phase, ii in antiphase? If you have 
such an oscilloscope, then try this.

GROUP OF EXPERIMENTS 
D8 Superposition of waves and determination of wavelength

In each of these experiments you should be able to demonstrate that the 
radiation you are using has wave properties; you should also try to 
measure the wavelength. Then if you know the frequency you can 
calculate the wave speed.

D8a 1 GHz radio waves

15 cm dipoles and oscillator

either
microammeter
or
galvanometer (e.g., internal light beam)
or
general purpose amplifier and loudspeaker

2 metal screens 
leads 
metre rule

diode (incorporated in 
receiving dipole)

microammeter 
or other 
transducer

transmitting 
dipole (T)

Figure D44
Transmitting and receiving 1 GHz radio waves.

receiving 
dipole (R)
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Start with a simple investigation of the waves (figure D44). For example: 
are they blocked by your arm, or by metal screens? Does their strength 
diminish with distance? Does the orientation of the receiving dipole 
(vertical, horizontal) affect the magnitude of the signal? Does the 
position of the receiver (different positions around the transmitter; above 
the level of the table) affect the signal received?

Now look for superposition. Use the metal screen to reflect 
radiation to the receiving dipole so that waves can follow two different 
paths to reach it: directly from the transmitter and indirectly via the 
screen.

Figures D45 and D46 show two possible arrangements.

-J reflector

transmitter (T) n -1______»__ 
-X^Lr-— ^-jl

\r !
k
h
R

receiver (R) reflector

Figure D45 Figure D46

Look for maxima and minima. Hence measure the wavelength of 
the 1 GHz waves, and estimate the percentage uncertainty in your 
result.

From your measurement calculate the speed of 1 GHz waves.

D8b Microwaves
microwave transmitter
microwave receiver
2 metal reflectors
narrow metal plate
general purpose amplifier
loudspeaker
microammeter (may be incorporated in receiver)
diode probe receiver
metre rule
leads

to microammeter or 
amplifier/speaker

diode (D)
transmitter (T)

2-slit arrangement

Figure D47
2-slit experiment with microwaves.
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Various arrangements for superposition are possible, one of which is
shown in figure D47. The slits should be a few centimetres wide, and a
similar distance apart.
Will the waves be in phase at the two slits?
At positions where the signal falls to a minimum the intensity is not
necessarily zero. Why not?

Microwaves from the transmitter must travel in different directions 
to reach the two slits. If they continued in these directions they would 
not overlap and no interference would result. Why do they interfere? 
What must have happened? Can you use the equipment to check your 
answer?

Other arrangements to try are suggested in figures D48(a) and (b).

-^ — — ^_ — _

diode

(a)

reflector

reflector

diode

(b)

Figure D48
Simple superposition experiments with microwaves.

The apparatus you use may be labelled '3 cm wave equipment', but 
the actual wavelength is unlikely to be exactly 3cm. Make the best 
measurement of the wavelength that you can (estimate the percentage 
uncertainty in your result).

D8c v.h.f. radio waves or u.h.f. television waves

portable radio capable of receiving v.h.f.
television set
television aerial
coaxial cable
metal reflector
metre rule

You will need to find out the direction to the radio or television 
transmitter and then place a reflecting screen so that both direct and 
reflected radiation arrives at the receiver (figure D49).

radio

direction of radio 
• waves from 
transmitter

reflecting screen 

Figure D49
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A similar arrangement may be used for u.h.f. television broadcasts, 
but if the aerial is not rigidly connected to the television set then the set 
itself need not be moved.

For the v.h.f. radio the reflecting screen should be as large as 
possible: say 1 m x 1m. For the television waves, the same screens as 
were used in experiments D8a and D8b will do.

With the aerial very close to the reflector, is the signal received a 
maximum or a minimum? Explain why.

Try to find evidence that radio/television radiations have wave 
properties. Measure the wavelength(s), and estimate the percentage 
uncertainty in the result. If you know or can find out the frequency, 
calculate the wave speed.

D8d Light waves

sodium lamp or sodium flame pencil
2 microscope slides
micrometer screw gauge
thin paper, e.g., cigarette paper
retort stand base, rod, boss, and clamp
glass plate
hand lens

hand lens

glass plate

/45° \ _ _ _ _ y~^\ sodium 
*~ \_J lamp

thin paper ' 3 microscope slides

dark surface 

Figure D50
Superposition of light waves by reflection at a wedge.

Take care that your head, hair, or clothes do not get too close to the 
Bunsen flame.

The microscope slides must be clean.
The light and dark fringes are caused by the superposition of light 

waves and are clearer when viewed through a microscope. 
Where do the two sets of waves come from? 
In which direction do the fringes run? Why?
How would the appearance of the fringes differ if a different colour of 
light were used?
What would you need to measure, or find out, in order to determine the 
wavelength of the light from this arrangement? Make the necessary 
measurements, calculate the wavelength, and estimate the percentage 
uncertainty involved.
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D8e Sound waves

signal generator 
2 loudspeakers 
microphone 
pre-amplifier 
oscilloscope 
metal reflector 
metre rule

microphone (M) D==
signal 

generator

loudspeakers
la)

(b)

IO
M

M

reflector

(c) S

Figure D51
Superposition of sound waves.

Two sets of overlapping waves may be produced either by using two 
loudspeakers, figure D51(a) and (b), or by using one loudspeaker and a 
reflector, figure D51(c). Set up a demonstration of superposition and use 
it to measure the wavelength of the sound. Try with a frequency of 
about 3000 Hz; measure A, calculate c, and estimate the percentage 
uncertainty. Then halve the frequency, and repeat the experiment. Do 
you arrive at the same value for c? Is this what you expect?

EXPERIMENT 
D9 Factors affecting the period of an oscillator

D9a Mass on spring

4 expendable steel springs 
hanger with 8 slotted masses, lOOg 
retort stand base, rod, boss, and clamp 
stopwatch or stopclock 
stiff wire and pliers
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Try the following investigations:
i How (for a given arrangement of masses and springs) does T, the time
for one oscillation, depend on the amplitude, A!.
ii How does Tdepend on m (for a given arrangement of springs)?
in How (for a given mass, m) does T depend on k, the spring constant of
the arrangement? (What is the effective k of several springs arranged in
series and in parallel as in figure D52?)

springs
in
series

(a)

Figure D52 (b)

D9b Simple pendulum (optional alternative)

string, 2 m length
hanger with 8 slotted masses, 100 g
retort stand base, rod, boss, and clamp
2 metal strips (as jaws)
stopwatch or stopclock
metre rule

Try the following investigations:
i How (for a given mass m and length /) does T, the time for one
oscillation, depend on the amplitude, A1
ii How does T depend on m (for a given length /)?
iii How does T depend on / (for a given mass m)?

Figure D53

EXPERIMENT 
D10 Oscillation of a tethered trolley

dynamics trolley
2 retort stand bases and rods
2 G-clamps, large
runway for trolley
6 expendable steel springs
newton spring balance, ION
ticker-tape vibrator, carbon paper disc, gummed ticker-tape
transformer
leads
metre rule
masses, 100 g and 10 g
Plasticine

252 Unit D Oscillations and waves



wire linking 
the two trolley 
posts

Figure D54
Oscillation of a tethered trolley.

Find the effective k of the complete system of springs by measuring the 
force needed to displace the trolley a suitable distance, with all the 
springs connected as shown in figure D54.

Find the mass, m, of the trolley.
It is desirable to adjust the mass of the trolley so that k/m has a 

simple value - your teacher may suggest a value for the whole class. 
Since the trolley is only going to travel one way, you should friction- 
compensate the slope. Obtain a tape for half an oscillation of the 
trolley. You can use this to obtain a displacement against time graph 
for the motion; or your teacher may have a different plan for it.

DEMONSTRATION 
D11 a Longitudinal wave on trolleys-and-springs model

11 dynamics trolleys
11 masses, 1 kg (or 11 extra trolleys)
20 compression springs
20 spring holders
metre rule
newton spring balance, ION

side view

top view

Figure D55
Trolleys linked by compression springs.
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Send longitudinal pulses down the line of trolleys shown in figure D55, 
and observe the effect on the wave speed of increasing the mass of the 
trolleys. Several kinds of pulse are possible; the one analysed later is 
created by moving the end trolley at a steady speed towards the others, 
generating compression in each successive spring. Do different kinds of 
pulse all travel at the same speed?

It is useful to measure the mass of a trolley, the spacing between 
trolleys, and the spring constant of the springs now, as they will be used 
later to calculate the speed of the wave theoretically.

The trolley spacing (x) must be measured with the trolleys in 
equilibrium (see figure D55).

force needed to extend one pair of springs
The spring constant (fc)=-

extension produced by force

DEMONSTRATION 
D11 b Measuring the speed of the wave

Apparatus as for experiment Dlla with:
aluminium block
timer, resolution 10ms
insulated copper wire
2 crocodile clips
leads

laluminiun 
block

Figure D56
Timing a pulse up and down a row of trolleys.

The four trolleys are moved together towards the block. When the first 
spring makes contact with the block, a compression pulse sets out down 
the line of trolleys; it reflects off the open end as a rarefaction pulse, 
which travels back, finally pulling the end spring away from the block. 
The timer measures the total contact time.

Some points to think about:
Why is it important that all four trolleys move at the same speed 
towards the barrier? What time is the timer measuring? 
How far does the wave travel in this time? Hence what is the wave 
speed?
What will be the major source of uncertainty in this experiment? 
How would you expect the time recorded to change if the trolleys were 
more massive? If the springs were stiffer?
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DEMONSTRATION 
D12 Speed of sound in a metal rod

oscilloscope
signal generator
2 retort stand rods, 1 m long
retort stand base, rod, and boss
2 rubber bands, about 10 cm long

either
crocodile clip 
or 
adhesive tape

hammer, club or claw head, at least 0.5 kg 
leads

Figure D57
Speed of sound in a metal rod.

Compare the situation shown in figure D57 with the one in dem­ 
onstration Dllb. The steel rod replaces the row of trolleys, and the 
hammer acts as the aluminium block. What determines how long the 
rod remains in contact with the hammer? (Remember what happened 
when the row of trolleys hit the block.) Does it matter that the hammer 
moves towards the rod, rather than vice versa?

The contact time is very small, which is why the timer has been 
replaced by a signal generator and oscilloscope. When the hammer and 
rod are in contact the high frequency signal from the signal generator is 
fed to the oscilloscope. A frequency of about 25kHz is used, so the time 
for one oscillation is 1/25 ms. So if four cycles of the signal appear on the 
screen, then the hammer and rod have been in contact for 4 x 1/25 ms. 
Measure the contact time, and the distance the wave has travelled in 
this time. Hence calculate the speed of the wave, and estimate the 
percentage uncertainty involved. Suggest reasons why the percentage 
uncertainty in this experiment is high. How could the experiment be 
improved?
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D13

D14

DEMONSTRATION
Forced vibration of a mass on a spring

2 expendable springs 
slotted masses and hanger 
Perspex tube or wide glass tube 
light string

either
vibrator and signal generator
or
wheel with pin offset about 1 cm
fractional horse power motor
variable voltage supply
single pulley

leads
vibrator

pulley

~~ Perspex tube —

(b)

Figure D58
Forced vibration.

How does the mass on a spring behave when it is subjected to a periodic 
force? How does its behaviour depend on the frequency of the driving 
force? Why is the tube necessary?

EXPERIMENTS 
Investigations of resonance

Find out what you can about forced oscillations. Devise your own 
experiment(s) using one of the two sets of equipment shown below. 
Make observations and measurements which reveal in detail some 
aspect(s) of the relationship between the motion of the forced oscillator 
and the driver. Investigate the effect of damping (energy loss).

D14a Resonance of a pendulum

resonance kit
metre rule
retort stand base, rod, boss, and clamp
stopclock
card
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pivot (clamp jaws}

~ mm scale 
on bench

Figure D59
Resonance of a pendulum.

pulley

wheel

metre rule

The solder pendulum is the driven oscillator; the horizontal strip 
provides the driving force. The driving frequency can be varied by 
moving the adjustable mass.

D14b Resonance of a mass on a spring

2 expendable springs
mass, 50 g
thread
single pulley with suitable support
large beaker or measuring cylinder
metre rule

either
signal generator
vibrator
or
wheel with pin offset about 1 cm
motor
power supply for motor

drinking straws

"0 The mass on the spring is the driven oscillator. The thread supplies the 
amplitudes) driving force. Try the experiment with and without damping.

damping fluid 
(e.g. water)

Figure D60
Resonance of a mass on a spring.
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D15
DEMONSTRATION 
Barton's pendulums

observe in 
this direction

driver pendulum ———(TV

nylon

A A A

A A A
« Z_i paper cones

Figure D61
Barton's pendulums.

This demonstration provides the opportunity to observe and compare 
the motion of several forced oscillators with differing natural 
frequencies.

The driver swings in a direction in and out of the paper. Relative 
damping can be varied by adding extra mass to the paper cones, e.g., 
using plastic curtain rings. What factors control the amplitude, phase, 
and frequency of the forced vibrations of the paper cones?

EXPERIMENT 
D16 Standing waves on a rubber cord

signal generator
vibrator
xenon flasher
rubber cord (0.5 m long, 3 mm square cross-section)
2 retort stand bases, rods, bosses, and clamps
4 metal strips (as jaws)
2 G-clamps, large
leads

n cord 1 ——— 1—————— ~H— '
clamp 1 3^\ clamp signal 

generator

Figure D62
Standing waves on a rubber cord.

Why does the cord show a large response at certain frequencies, but not
at other frequencies?
How are the resonant frequencies related to each other and to the
length of the cord?
When the vibrator is first switched on a wave travels along the cord.
How does this develop into a standing wave?
What factors affect the amplitude of vibration at the antinodes?
Is there an optimum position for the vibrator? Is the vibrator always at
a node or an antinode?
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DEMONSTRATIONS 
D17 More complicated standing waves

Many types of standing wave can be demonstrated. There will generally 
be more than one resonant frequency, and in some cases these 
frequencies will have a simple relationship. At each resonant frequency 
(for each mode of vibration) you should try to understand how the 
system is vibrating. You should be able to make an estimate of 
wavelength, and possibly wave speed.

017a The Kundt dust tube

signal generator
small loudspeaker, about 60 mm diameter
measuring cylinder
cork dust
paper

i measuring cylinder

Plasticine supports

Figure D63

paper coneI

loudspeaker

A thin layer of cork dust on the bottom of the glass tube shows the 
position of nodes and antinodes.

wood blocks

017b Longitudinal standing waves in rods

glass, steel, or brass rod, about 10mm diameter and about 1.5m long
G-clamp
wooden blocks
cloth
rosin (for metals)
alcohol (for glass)

Rub the rod with the rosined or dampened cloth. If you can find a way 
of estimating the frequency of the sound emitted, then you can go on to 
estimate the speed of sound in the rod. What is the wavelength of the 

Figure D64 standing wave being produced?

017c Vibrations of circular wire rings

signal generator
vibrator
xenon flasher
copper wire, 0.9mm diameter, or thinner steel wire
leads
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Figure D65

To get standing waves on the wire loop, it must be vibrated at specific 
frequencies. How are these frequencies related to each other? To the 
number of nodes on the loop?

to signal 
generator

D17d Longitudinal standing waves

signal generator 
vibrator 
xenon flasher 
long spring 
metre rule 
leads

The spring should be stretched. What frequencies give standing waves? 
How are these frequencies related to each other? To the wavelengths?

metre rule

Figure D66

017e Vibrations in a rubber sheet

signal generator
large loudspeaker
xenon flasher
sheet of rubber
2 retort stand bases and rods
big metal ring (e.g., embroidery ring)
leads

A rubber diaphragm stretched over a ring can be excited by placing it 
over a loudspeaker. Lines drawn on the rubber help to show up the 
vibration patterns. You should be able to see several modes of 
vibration. Is there a simple relationship between the resonant fre­ 
quencies? Between the patterns obtained?
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D17f Chladni figures

signal generator
vibrator
square or round metal plate
sand
leads

The metal plate is attached centrally to the vibrator. Sand is used to 
reveal the vibration pattern. Many modes of vibration exist. Measure 
the resonant frequencies. Are they simply related?

D17g Vibrations of a loudspeaker cone

signal generator 
large loudspeaker 
xenon flasher 
leads

Watch the resonance of a loudspeaker cone under stroboscopic 
illumination.

D17h Standing waves in a round bowl

signal generator
vibrator with dipper attached
Petri dish
large plastic bowl
wooden block

Arrange a dipper to generate circular ripples at the centre of the bowl or 
dish. You may be able to see stationary ring patterns on the water 
surface at various frequencies.

D17i Standing waves - musical instruments
oscilloscope 
microphone 
assorted musical instruments

Standing waves are set up when musical instruments are either plucked, 
blown, struck, or stroked. Usually the standing wave pattern is a 
complex one, and waves of several different frequencies are present. You 
can see the different waveforms of the sounds produced by different 
instruments on the oscilloscope.
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HOME EXPERIMENTS
DH1 Making a chronometer

Throughout the history of science and technology one of the most 
difficult problems has been the development of an accurate, robust 
chronometer. The task is to make a device which can measure, accurate 
to 1 second, any time interval between 0 and 3 minutes. Compare your 
design with others in the class and see who can produce the most 
accurate device.

DH2 Make your own wave machine

Fix drinking straws at intervals along a piece of sewing tape, as shown 
in figure D67.

straws

_ _ _ tape

Figure D67
Simple wave machine.

You can add mass to each straw by putting small screws into the 
ends. Suspend the system vertically from one end of the tape; or clamp 
each end of the tape so that it is horizontal. You are now ready to do 
experiments with the wave machine; try, for example, sharply twisting 
one of the straws around the tape at an angle of about 45°.

DH3 A mechanical oscillator

Using either a home-made spring or combinations of springs that you 
can find in the laboratory, make a mechanical oscillator that vibrates, 
say, at 5 Hz. You should not approach this problem on a Trial and 
error' basis, but rather from detailed knowledge of the spring constant 
of your device. You must also try to think of accurate ways to measure 
the frequency of your oscillator. Maybe you might use a strobe, or 
perhaps some voltage-inducing device coupled with an oscilloscope.
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DH4 Standing waves in a rectangular tank

plunger

Figure D68

It is easy to excite water into a 'slopping' mode, which is why it is hard to 
carry pans of water. What can you say about the Q (quality factor) of this 
system? You may be able to excite other modes of oscillation using the 
plunger, for example, by moving it up and down in the middle of a large 
tank of water, and in other positions.

DH5 Standing waves under a running tap

streamline flow

Figure D69

Hold a knife-blade about 2 cm below a smoothly running tap. Look for 
standing waves in the water flow. How does the pattern depend on the 
speed of water flow? On the separation of knife and tap?

DH6 Step waves under a running tap
Water flowing down from a tap onto a flat surface, like the under- 
surface of a baking tray, shows a strange discontinuity: as the water 
flows away from the impact point, there is a step-like increase in its 
depth, at a distance r all round the impact point. (This is nothing to do 
with standing waves, but is a nice piece of physics relevant to this Unit!) 
Find out what factors affect r and try to explain this phenomenon.
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QUESTIONS
The motion of oscillators

1 (l)a A car body oscillating vertically gives a time trace as shown in figure 
D70. Why is it almost certain that the lefthand side of the graph is 
earlier in time than the righthand side?

Time

Figure D70

b Sketch time traces of these motions:
i a tennis-ball's displacement measured from the net during a rally; 
ii a yo-yo moving vertically;
in a pendulum hanging against a wall, after it is pulled away from the 
wall and released (it loses a fraction of its energy on each collision with 
the wall).

2(P) The graph in figure D71 shows the time trace of a pendulum (about 
10 m long) during one complete oscillation.

1 
£
5

1.0

0.5

0
-0.5

-1.0

5 6 
Time/s

Figure D71 

a What is the amplitude of this oscillation?
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b Consider another identical pendulum oscillating with the same 
amplitude as the first one, but with a phase lag of Ji/2 radians. 
i What is this phase difference as a fraction of one cycle? 
ii What would be the displacement of this second pendulum after 3 s? 
And after 4.5 s?

C The second identical pendulum is now stopped, and released again in 
phase with the first and with an amplitude of 0.5 m. 
i What is its displacement at t = 3 s? 
ii At what time(s) will the two pendulums have the same displacement?

Time and its measurement

3(E) In 1761, the Board of Longitude, which had been set up to consider 
claims for a government prize of £20000 for a clock which could keep 
accurate time at sea, arranged a test of a clock made by John Harrison. 
This clock was more accurate and reliable than any other mechanical 
clock that had ever been made (except pendulum clocks, which will not 
work well on a rolling ship). Harrison and his clock were sent on a sea 
voyage to Jamaica, to test the clock. How could a test possibly be 
made, if there were no better clocks to compare it with?

4(E) Suppose that an inventor brings to a standards laboratory a clock that 
he claims will keep very accurate time. His clock punches dots onto a 
roll of moving paper tape, and he claims:
1 That it does so at very regular intervals.
2 That these intervals are accurately  £ second.

The laboratory has a standard clock of its own which produces an 
audible 'pip' once every half second.

a How would the laboratory set about testing the two claims made by 
the inventor?

b Is it possible that claim / can be true, but claim 2 not true? Is the 
reverse possible?

C The laboratory finds that claim 1 is not true; it judges that the time- 
dots come irregularly. The inventor replies that it is the laboratory 
clock that is irregular, not his. Can the conflict of opinion be resolved?

5(E) Until 1964, a time interval of one second was defined as      
.Z4 X OU X oU

of a 'mean solar day'. To-day one second is the time for 9 192 631 770 
oscillations of a particular radiation from a caesium atom. 
Discuss:

a whether one of these definitions is more 'correct' than the other;

b whether one definition is more practical and useful than the other;

C why the change was made.
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Angles

6(P) A circle has a radius of 2 m. What angle is subtended at the centre of 
the circle by an arc of length 4m? Give your answer in radians and 
also to the nearest degree.

Angle approximations

7(L)a In terms of 9 (in radians) and r, what is the length (in figure D72) of: 
x i the arc AQ

ii the straight line AP?

b If 9 is very small, it can be seen from the diagram that arc length AQ 
and straight line AP are approximately equal. From your answer to a, 
what does this suggest about sin 9 and 9, if 9 is small?

Figure D72
8(L) Use a calculator to make a table of 9 (in radians) and sin 9, cos 9, and 

tan B for B = 20°, 10°, 5°, 2°, 1°, 0.5°, 0.1°.

a What is the percentage error made in assuming sin 9 = 9 (radians) for: 
i 0 = 10° 
ii 0 = 1° 
iii 0=0.1°?

b As 8 becomes small, what are suitable approximations for 
i cos8,ii tan0?

The behaviour of waves

9(P) Two fishing floats on a lake are 20 m apart. Waves travel along the 
water surface from a point in line with the floats, so that each float 
bobs up and down 30 times per minute. Someone notices that when 
one of the floats is on a wave crest, the other is in a trough, and there is 
one crest between them. Calculate the speed of the wave.

10{P) A wave pulse travels along a Slinky. An instant in the process is 
sketched in figure D73. Q, R, and S are points on the Slinky.

wave pulse travelling to the right 

Q

Figure D73

Describe the states of motion (velocity and acceleration) of the points 
Q5 R, and S at this instant.

What two physical factors affect the speed of the wave along the 
Slinky? Explain qualitatively why each factor affects the speed.
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11 (E) A compression pulse travelling along a Slinky spring carries energy. Is 
it kinetic energy (because the coils of the spring are moving) or 
potential energy (because the spring is squashed by the pulse) or both? 

What happens to the energy when a compression pulse going one 
way coincides with an expansion pulse going the opposite way, and the 
two superpose to give no net compression or expansion?

12(P) Figure D74 shows three hypothetical graphs of displacement, 5, against 
distance for three different travelling waves at time t — 0. In each 
case, draw a graph of displacement, s, against time, t, for the point 
marked P, for the range t = 0 to t — 6 seconds. Show as much numerical 
information on the graphs as you can.

s/m
+ 1

-1

(a)

(b)

speed 2ms 

P
6 Distance/m

speed 2 m s~

Distance/m

Distance/m

13(R) This question is about the behaviour of water waves.
Figure D75 shows a wave in water deep enough for the wavelength 

to be much less than the depth. As the wave moves to the right, the 
water at P acquires in succession the velocities vt , v2, v3 , v4, and v s 
(v s = vj and it can be shown that it moves in a circle with constant 
speed, where the radius of the circle is equal to the wave amplitude, A.

wave speed, c

Figure D75
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a z How would you find the time it takes for a water particle to go once 
round in a circle?
ii If the water particles are moving in circles, how would you find the 
magnitudes, and what are the directions, of their accelerations at P, 
and at Q?

b The speed, c, of deep water waves is given by c 2 = Ag/2n.
Sketch graphs of z' speed, c, and ii frequency, against wavelength, 

A, for deep water waves in the range A = 1 m to A = 100 m. Indicate on 
your sketch the orders of magnitude of speed and frequency for 
wavelengths 1 m and 100m. What would you plot in order to obtain 
straight line graphs relating wavelength, A, to i speed, ii frequency?

C i Suppose a storm at sea generates waves of wavelengths in the range 
1 m to 100m. What wavelengths of waves from the storm will be felt by 
a ship 100 km from the storm during the 24 hours following the onset 
of the storm?
ii A small boat at sea has to ride such waves. What will be the speed of 
the water around circles in waves of wavelengths 100m and amplitude 
10m? Describe the motion of such a boat (short compared to the 
wavelength) which rides such waves and also travels forward in the 
direction of travel of the waves at a mean speed of about 2ms" 1 . 
Hi What will be the maximum vertical acceleration of the water in 
such waves? How will the maximum force on the yacht causing this 
acceleration compare with the weight of the yacht?

d If the wavelength, A, is larger than the depth, d, the water no longer 
moves in circles and the wave speed for such shallow water waves is 
given by c 2 =gd.

Calculate the wave speed for waves of wavelengths 1 m and 1000m 
in a sea of depth 100m.

(Long answer paper, 1981)

Superposition of waves

14(P) In figure D76, Si and S 2 are two water wave sources in a ripple tank. 
They are vibrating at the same frequency and amplitude. There is a 
maximum disturbance at A, a minimum at B, another maximum at C, 
and so on.

a Write an expression for the wavelength of the ripples.

b How will the pattern of maxima and minima change if: 
» D z the two sources are moved closer to each other?

ii the frequency of vibration is increased?
  c iii the velocity of the ripples is decreased (by reducing the depth of the 

S] 9 , B water in the tank)?

CL.
i

iv Sj and S 2 vibrate in antiphase?
v (Harder) the frequency of Si is slightly greater than that of S 2?

s2 i C Why is the amplitude unlikely to fall to zero at the minima?

Figure D76
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15(P) With the arrangement of wave transmitter, T, receiver, R, and reflector 
shown in figure D77(a), the signal strength received at R is a 
maximum. When the reflector is removed to the position shown in 
figure D77(b), the signal reaches a minimum. Why? Suggest a value for 
the wavelength of the radiation. Why can you not be sure of the value? 
What are some other possible values?

Figure D78

reflector

reflector

3.5 m 3.5m
4 m 4 m

5 m 5m

Figure D77 (a) (b)

16(P) Figure D78 shows three hypothetical graphs of displacement, s, against 
distance at time t = 0 for wave pulses on a stretched spring. Use the 
principle of superposition to draw the displacement against distance 
graphs for each spring at time t = 1 s.

s/m —> 3.0 m s

I I 1 I 1

Distance/m

(a)

s/m 3.0ms' 1

3.0ms-' 

3.0 ms-'-S-

Distance/m

(b)

s/m 4.0 m s 4.0 m s

Distance/m

(0
The markings on the distance axes are 1.0 m apart

17(E) How would a researcher who wants to measure wavelengths in a the 
visible region, b the microwave region, c the X-ray region, and d the 
v.h.f. radio region set about the task? In your answer be sure to give 
some idea of the order of size of the vital parts of the apparatus.

18(P) A transmitter, T, emits radiation, some of which is reflected from a 
partially reflecting screen, S^ and some of which carries on to be 
reflected from a second screen, S 2 (figure D79). The radiation reflected
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s,
Figure D79

back from S x and S2 is detected by a receiver, R, placed alongside T. At 
a certain separation of Si and S 2 the receiver records zero signal. S 2 is 
then moved away from Sj. As S 2 is being moved, the detector records a 
signal minimum and S 2 is moved on until the detector again records a 
minimum signal, a total movement of 120mm.

a What is the wavelength of the radiation?

b At the original separation the signal detected was very nearly zero; but 
after S 2 had moved 120mm the minimum signal was quite perceptible. 
Why?

19(R) In figure D80, a wave reaching surface 1 is partly reflected at P, but 
part of it passes to a second parallel surface where it is reflected at Q, 
There are no phase changes on reflection or transmission. The waves 
from P and Q are in step at JK if

A A = 2PT B A = PQ C A = PS 
D A = PQ + QR-PS E /l = PS-QR

20(P)

Figure D80

Applications of superposition

(Coded answer paper, 1979)

In designing a camera lens, it is desirable that as little light as possible 
is reflected from the front of the lens, so that as much light as possible 
is transmitted. This can be achieved by 'blooming', coating the outer 
surface of the lens with transparent material one-quarter of a 
wavelength thick (see figure D81)   as the following questions will 
illustrate. (If light strikes either boundary from above and is reflected 
back upwards, its phase is changed by n; if it strikes either boundary 
from below and is reflected back downwards, its phase is unchanged.) 
Possible routes for light are shown in figure D82.

light of 
wavelength

-j- thickness of 'bloom'- magnesium fluoride

lens glass

bloom

glass

B Dl
Figure D81 Figure D82

a Is the light following path A in phase or out of phase with the light 
following path C?

b Compare similarly light following paths B and D.

C Explain why the A/4 bloom reduces the light reflected by the lens 
surface, but increases the light transmitted.

d The thickness of the bloom can only be exactly A/4 for one particular 
value of A. The chosen value of A for cameras is usually in the middle of
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the visible band (4x10 7 m to 7x10 7 m)- that is about 5.5 x 10 7 m. 
Explain why the lenses of good cameras usually look purple.

21 (P) In the medium wave radio band, waves may reach a receiver by two 
routes: the ground wave travels direct, while the sky wave is reflected 
off the ionosphere - see figure D83.
ionosphere

sky wave /'

ground wave

Figure D83 a

Thus superposition may occur. At night the sky wave is 
particularly strong; its amplitude is comparable with that of the 
ground wave. The receiver may receive a strong signal, or almost none 
at all, depending on the effective height, h, of the ionosphere at that 
moment. Since h varies over a few seconds, the signal rises and falls - 
an irritating phenomenon called 'fading'.

Suppose that 2. = 250 m, d = 120 km, and h at one moment is 
effectively 80 km. If, at that moment, the receiver is receiving a 
maximum signal, then by what distance would h have to change in 
order for this signal to become a minimum?

22(E) Why do soap films and oily patches on roads appear brightly 
coloured? (Look this up if you don't know the answer.)

Qualitative motion of oscillators
23(L) Figure D84 illustrates a simple kind of oscillator, for which the 

restoring force is proportional to the displacement.

double displacement

restoring force 
acceleration

F 

a

-> 

7

Figure D84

Suppose the trolley is given a small displacement and released. It 
oscillates, taking a certain time to go from the extreme position to the 
centre of the motion (one-quarter of an oscillation).
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Now suppose it is given twice that initial displacement. 

a How has the average restoring force on it been changed? 

b How must its average acceleration have changed?

C In the same time, how will the speed acquired compare with the first 
trial?

d How long will the trolley take to cover the double distance to the 
centre of the motion, by comparison with the first trial?

24(L) Figure D85(a) shows a trolley tied by two springs, and its
displacement-time graph. Figure D85(b) shows the same trolley, 
with different springs. It oscillates twice as rapidly as before.

(b)

Figure D85

Are the springs in figure D85(b) stiffer or weaker than those in figure 
D85(a)?

In figure D85(b), the oscillation time is halved. For comparable 
positions, how does the speed of this second oscillator compare with 
that of the first oscillator?

The speed of the second oscillator must be attained in half the time 
taken by the first oscillator. How do the accelerations of the two 
oscillators compare?

F = ma, F= —ks where F is the force, m the mass, a the acceleration, 
k the spring constant, and s the displacement.

If the masses of the two trolleys are the same, how do the spring 
stiffnesses k compare?

If Tis the oscillation time, which relationship below agrees with the 
answer to d?

Tack2; T2 ack; Toc-j-; T2 oc-. 
k k
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f To decrease the oscillation time, by changing the mass of the trolley, 
would one increase or decrease the mass?

Q The answers to a to c above show that halving the oscillation time 
means quadrupling the acceleration, or that doubling the time means 
having one-quarter the acceleration. How would the mass have to be 
changed to achieve one quarter the acceleration (and so twice the 
oscillation time)?

h Which of the following relationships agrees with the answer to g?

T2 ocm; Tocm2; T2 oc-; Toe 5-. 
m m

25(P) The graphs in figure D86 indicate how the force, F, necessary to
displace a mass varied with displacement, s, from the rest position for 
different cases. Each mass oscillates when it is released.

(a)

(a)

(b)

Figure D86

(0

The second set of graphs (figure D87) shows the displacement-time 
traces for the above cases. Which trace corresponds with which 
force-displacement graph?
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26(P) Figure D88 shows the displacement-time graph of an oscillator.

a Consider the speed of the oscillator at the four times labelled A, B, C, D. 
Arrange the times A, B, C, D in order of decreasing speed.

b 
c 
d 
e

(a)

Time

Figure D88

How does the velocity at time B compare with that at time E? 

How does the velocity at time D compare with that at time F? 

At which of the times 0 to F is the acceleration at its largest value?

At which of the times 0 to F is the displacement equal in size to the 
amplitude of the motion?

Consider the time intervals OB, OD, OF, BE, DF. If the periodic time of 
the oscillator is T, write down each interval in terms of T. ('OF = 3T' is 
the sort of answer expected, though this particular answer would be 
wrong.)

27(E) Figure D89 shows three things which would oscillate in a laboratory 
on Earth. Which, if any, would oscillate in a spacecraft going at steady 
speed a long way from the Earth and from any planet or star?

piston

(b) 

Figure D89

(c)

Analysis of a simple harmonic oscillation

28(L) Figure D90 represents a multiflash photograph of the motion of a
trolley held between two springs. The distances from the mean position 
are given in table Dl.

01234 5 6 7 8 7 6 5 43210

Figure D90
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Point Time/s Displacement/cm
0
1
2
3
4
5
6
7
8

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

5.0
4.9
4.6
4.1
3.5
2.7
1.8
0.9
0Table Dl

a What is the value of T for the motion? 

b What is the value of co for the motion?

C Draw a semicircle of radius 5 cm. Mark the points 0 to 8 on to the 
diameter (8 is the centre of the circle), then project them vertically 
upwards onto the semicircle, as illustrated in figure D91.

Figure D91

Measure the angles (/> 1; c£2, etc. They should be equal, showing that 
a) is constant. Hence the position of the trolley at any moment is the 
projection of P onto the diameter of the circle. P moves round the 
imaginary circle at constant angular rate co. Calculate co 
i in degrees s ~ 1 
ii in rad s" 1 .

d In the experiment, the mass of the trolley was 0.1 kg, and the spring 
constant was 40 Nm" 1 . Show that this gives a value of co 
corresponding to the results of the experiment.

29(L) This question leads to a numerical solution of the harmonic oscillator
k

equation a =     s. It shows how, if you know the values of k and m m
and also the initial position and velocity, you can calculate values of 
position, s, at different times. The method is quite general and can be 
used to find how a body controlled by a more complicated force law 
moves. The essence of the numerical method is to calculate what 
happens during each of a series of short time intervals. (The shorter the 
intervals the more accurate the result.) The body is assumed to move 
with constant velocity during each of these short time intervals. 

The acceleration of the harmonic oscillator, a, depends on its
k

position s (a =     s). From the acceleration we can find the change in 
m

velocity during a short time interval At:
At> = aAf
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If we know the velocity at the beginning of this time interval, we can 
calculate the velocity at the end:

We can use the velocity to find how far the object moves in one time 
interval:

And hence the new position from:

^new — ^old

One step is now complete. We have a new s from which we can get 
a new a, and we can repeat the whole process for the next time interval. 
The accuracy of the calculation is improved if we work out the velocity 
at times midway between the times at which we want to calculate 
displacement and acceleration.

We know the displacement, s, at t = 0, and hence can work out the 
acceleration, a, at t = 0. We will use this value of a to work out the 
speed, v, in the middle of the first interval At, that is, at t = ̂ At. Later 
values of v will be calculated for t = l^At, 2%At, etc.

Consider a specific case:
fe=10Nm" 1 

m= 1kg

initial values s = 0.1 m 
y = 0ms~ 1

att = 0s

a What is the acceleration at t = 0 s? 

Take time increments At = 0.1 s.

b What is the change in velocity in the first /ja//interval, that is, between 
£ = 0sandt=0.05s?

The oscillator is at rest at t = 0 s. 

C What therefore is the velocity at t = 0.05 s?

d Use this value to work out the distance travelled, As, between t = 0 s 
and t = 0.1s.

The displacement at t = 0 s was 0.1 m. 

6 What is the displacement at t = 0.1 s? 

f What is the acceleration at t = 0.1 s?

Q From the acceleration at t = 0.1 s, work out the change in velocity 
between t = 0.05 and t = 0.15 s.

h What therefore is the velocity at t = 0.15 s?

The calculations now become routine, repeating steps c to h for 
each successive time step.
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It is convenient to record your values in a table. The starting values 
and the velocity at 0.05 s have been entered. Other values you need to 
calculate are shown

t/s s/m fl/ms" 2 v/ms" 1 As/m
0 0.1 -1 0
0.05 ____ .,,,,, ,,,.,,, -0.05 -0.005

0.25 ,;,w:,.:,:,;.ij, s,,.,,,,,,,,,, '

Continue in this way at least until s becomes zero, preferably until 
it reaches its greatest negative value.

i Use your results to sketch graphs of s against t, v against t, and a 
against t.

] Estimate the period of oscillation from your results, and compare this 
estimate with the value calculated from

^ o A"T=2n — 
V k

k Suppose k were twice as great, 20 N m ~ 1 . How would the answers to a, 
b, c, and d change? Would the period of this oscillator be greater or 
smaller?

I If m were 2 kg (but k still 10 N m ~ : ) how would the answers to a, b, c, 
and d change? What would be the effect on the period of the oscillator?

30(E) The routine for solving the problem of the harmonic oscillator in 
question 29 can easily be made into a computer program.

Write a program that will print out values of v at t = At/2, 3 At/2, 
5At/2 ..., and values of 5 and a at t = 0, At, 2At....

Some investigations you can make with the program:

a Does it show that the oscillator is isochronous, that is that the period 
does not depend on the initial displacement?

b Explore the effect on period T of changing k and m. 

C How sensitive is the program to the value of All
d Add a line to your program so that it represents a damped oscillator. 

Explore the effect of a constant frictional force, friction proportional to 
velocity, or friction proportional to (velocity)2 .

31 (R) 'Figure D92 is a stroboscopic photograph of the motion of a harmonic 
oscillator, released from rest at the extreme left of the photograph. It is, 
however, detached from its restoring force when it reaches its central 
position, and as a result continues on at constant velocity.'
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Check, by drawing a graph of velocity against time, whether the 
above description is plausible.

'.I '.I . • I -,l -il M M «.! \i \l M \> vt

Mllllllllllllllllllliri

Figure D92

32(R)

33(R)

Further examples of oscillations and S.H.M.

Figure D93 shows a liquid in a U-tube of uniform cross-section. In 
figure D93(b) the liquid is displaced as shown.

(a) ^^^ (b)

liquid density, p 
tube cross-section, A 
total length of liquid, / 
gravitational field strength, g

Figure D93

In figure D93(b), what is the value of the force tending to return the 
liquid to its equilibrium position?

Explain how this situation fulfils the necessary condition for simple 
harmonic motion.

Find expressions, in terms of the symbols given, for
i the acceleration, a, of the liquid;
H the angular velocity, (o, of the S.H.M.;
in the periodic time, T, of the S.H.M.

Figure D94 shows a cylindrical buoy floating in water. In equilibrium, 
figure D94(a), the buoy floats so that a length L, of its total height, h, is 
below the water surface. The buoy is displaced a further depth, x, then 
released, figure D94(b). Find an expression for the periodic time of the 
oscillations, in terms of the symbols given, and show that it has the 
dimensions of time.
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L+x 
(a) (b)

density of water, p 
density of buoy, d 
gravitational field strength, g

Figure D94

34(P) An object oscillates on the end of a spring. If the mass of the object is 
multiplied by four, what change must be made in the amplitude of the 
oscillations for the maximum speed of the object to be unaltered?

35(P) In a small harbour, the depth of water at high tide is 10m, and at low 
tide is exactly zero. The depth of water follows approximate S.H.M., 
with amplitude 5m and periodic time 12 hours. (Really about 
Yl\ hours, but use 12 hours for this question.) Fishing boats can only 
leave the harbour when the depth of water is 9 m or more. On one day, 
high tide is at noon.

a What is the value of ca (in radians per hour)?

b If d is the depth of water above the mean depth (5 m), write an equation 
of the form d = A cos cot, substituting the appropriate values for A 
and co.

C Calculate the latest time in the afternoon at which boats can leave the 
harbour.

36(L) At room temperature the atoms of a particular solid vibrate with
S.H.M. of frequency 1013 Hz and amplitude 12 x 10~ 12 m. (This is a 
much simplified model of a solid, but it is a useful starting point.) The 
mass of each atom is 10" 2S kg.

a About what fraction of a typical atomic separation is this amplitude?

b Calculate the approximate value of the force constant, k, between two 
atoms.

C What is the total energy of vibration of one atom 
i in joules, 
« ineV?

37(P) A baby in a 'baby-bouncer' is a real-life example of a mass-on-spring 
oscillator. The baby sits in a sling suspended from a stout rubber cord, 
and can bounce himself up and down if his feet are just in contact with 
the ground (an example of resonance). If suspended out of contact with 
the ground, he oscillates if displaced and released. Suppose a baby of 
mass 5kg is suspended from a cord with spring constant 500Mm" 1 .

a What is the initial (equilibrium) extension of the cord?

b The baby is pulled down a further distance, 0.1 m and released. What is 
the value of co?
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stylus

Figure D95

C How long after his release does he pass through his equilibrium 
position?

d With what speed does he pass through his equilibrium position?

38,39(R) Figure D95 shows the tip of a stereo record-player stylus resting in the 
right-angled groove of a record. It rests on the lefthand and righthand 
walls of the groove, labelled L and R.

As the record turns, the stylus is moved by either wall moving at 
right angles to itself, as indicated by the broken lines. Suppose that 
both walls move with simple harmonic motion. Here are five possible 
combinations of wall motions, of the same frequency, and except 
where specified, the same amplitude. 
A L and R move up and down in phase. 
B L and R move up and down out of phase (180° difference). 
C L oscillates, but R has zero amplitude of motion. 
D The upward displacement of L is a maximum when that of R passes 
through zero going downwards.
E The upward displacement of R is a maximum when that of L passes 
through zero going downwards.

38 In which one of the above does the stylus move only in the vertical 
direction?

39 In which one of the above does the stylus move only in the horizontal 
direction?

(Coded answer paper, 1979)

The speed of compression waves
40(R) Figure D96(a) shows a snapshot of a row of identical trolleys joined to 

each other by identical springs. The trolleys here are at rest and their 
positions are shown by the scale above the trolleys. Figure D96(b) 
shows the same trolleys at a later instant. Trolley A has been pushed in 
such a way that, at this instant, each of the trolleys A, B, and C is 
moving at a steady speed to the right. Figure D97(a) shows the 
displacement of each trolley from its original position, at this instant.

0.5 1.0
I

1.5 2.0 2.5 metres
A * +

(a)

0.5
i

1.0 1.5 2.0 2.5 metres

Figure D96 (b)

Figure D97(b) will show the speed (in arbitary units) of each trolley 
at this same instant. The speed of trolley A has been plotted as a cross 
(X) on this graph.
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5 0.3- 

g 0.2

•M 0.11

(a)

OL.,. 
A

x. 
G

41 (L)

Trolleys and springs
x 0.35m 
m 0.95kg 
c 2.5ms' 1

Table D2

Atoms in steel
2.5xlO~ 10 m 
9.3xlO~ 26 kg

bitrary unit

CO1
C/J 0

/

1 >

1 !_.__4__ —
j ]
• 1
1 j
; j
• !

^ B C D E F G
(b)

Figure D97

Mark crosses on a copy of figure D97(b) to indicate approximately the 
speeds of all the other trolleys at this instant.

State what factors affect the speed with which the initial displacement 
of the first trolley passes along the line of trolleys.

It is suggested that a row of spring-connected trolleys might be a 
model which would help us to understand the way in which a 
compression pulse travels along a metal bar.

Give one reason why you consider that such a row of trolleys would be 
a good model for this purpose.

Suggest a way in which you think the model is unlike a metal bar.

(Short answer paper, 1974)

This question shows how the wave speed for a row of trolleys, 
discussed in question 40, can be applied to discussing the speed of 
sound in a solid.

The speed, c in a compression wave travelling along a row of 
trolleys linked by springs is given by:

c = x^/k/m
where x is the distance between the centres of successive undisturbed 
trolleys, m is the mass of a trolley, and k the constant relating the force 
causing the compression of a spring and the amount of compression. 
Trolleys linked by springs might be compared to the atoms in a solid 
linked by interatomic forces. Table D2 gives some comparative values 
of x and m.
k is roughly 50 Mm" 1 both for the spring linking a pair of trolleys and 
for the bond between a pair of atoms in steel.

Questions 281



a Suppose that, without changing anything else, the mass of a trolley 
were reduced by a factor of 10 ~ 25 (to about the mass of an atom in 
steel). What would be the speed of a compression wave in such an 
arrangement?

b Suppose, with this new arrangement, that the distance between trolleys 
is reduced by a factor of 7 x 10~ 10 (or 10~ 9 if you don't mind a 
rougher answer). What would be the speed of a compression pulse in 
such an arrangement?

C As the value of k is much the same for both steel and spring, the 
answer to b should be the speed of a compression wave in steel if it is 
permissible to scale down from the trolleys to atoms, and if the scaling 
has been done correctly. The measured speed of sound in steel is about 
5100ms" 1 . How does your estimate compare?

42(L) This question shows how the speed of sound in a metal can be written 
down in terms of the Young modulus, E, and the density, p.

The speed, c, of a compression pulse travelling along a row of 
trolleys linked by springs is given by:

where x is the distance between the centres of successive undisturbed 
trolleys, m is the mass of a trolley, and k is the spring constant in the 
equation

force = k x change in length

Unit A, 'Materials and mechanics', question 30 showed, for a 
specially simplified case, that if E is the Young modulus and x the 
spacing between atom centres, the atomic bond spring constant, k, is 
given by k = Ex if the atoms are in a simple cubic array. Consult that 
question again to see why.

Suppose the density of the material is p, and that each atom occupies a 
volume x 3 . What is the mass, m, of each atom?

Find a new expression for the speed, c, of compression waves (or sound 
waves) in a solid in terms of £ and p, by substituting for k and for m.
What is the speed of sound in an aluminium rod? 

Young modulus = 7.0 xl010 Nm~ 2 

density = 2700 kg m"" 3

Note: The atoms in aluminium are not arranged in a simple cubic 
array, but the answer to b does give a correct expression for the speed 
of sound in an aluminium rod. For arrays more complicated than 
cubical arrays, the relations between k and E and between m and p are 
both more complicated than above, but the spacing, x, still cancels out 
as it did in b, together with all the extra geometrical factors which 
allow for the more complex atomic arrangement.
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d The speed of sound in aluminium is very nearly the same as its speed 
in steel, but steel is several times more dense than aluminium. What 
must be true of their Young moduli?

Resonance

These questions have to do with various practical problems involving

vibration and resonance. You will need to use T=2n — or 2nf= ̂ /k/m,
V k 

and to know that the total energy of a harmonic oscillator is equal

43(E) Estimate the spring constant of the suspension of a car. Imagine a man 
sitting over one wheel: how much might the suspension deflect? What 
frequency of oscillation might a wheel have, considered as a mass on 
the end of this spring? What sort of repeated ruts on a road would give 
trouble at, say, 50 kilometres an hour? Why does the car body move 
with smaller amplitude than the wheels?

44(R) This question is about explaining to non-scientists some applications 
of scientific ideas which they find confusing. Give an explanation, 
suitable for a non-scientist, which explains the ideas involved and clears 
up any errors or confusions in the statement below. Assume that your 
explanation will include experimental demonstrations and describe 
these in detail.

'People take it for granted that a car needs to be "well sprung" so 
that the ride is comfortable. It is not so obvious how to get the 
suspension right: it can be too hard or stiff, so that the car jolts on 
every bump; it can be too soft so that the suspension sags when the car 
is loaded and the car sways about over the wheels. It must certainly 
not make the car body oscillate up and down after the wheels hit a 
bump, and there could be a danger that the suspension will resonate if 
the car travels over a regular series of bumps.'

What does need to be taken into account in choosing a suspension, 
and how are these difficulties avoided?

(Long answer paper, 1981, part question)

45(P) Diatomic molecules such as HF or HC1 can vibrate by extension and 
compression of the bond between the atoms. They behave like a pair of 
masses held by a spring. For these two molecules, the H atom is much 
less massive than the F atom or the Cl atom to which it is bonded, and 
so, roughly, it will be good enough to imagine the H atom vibrating at 
the end of its bond. (Compare a small mass linked with a spring to a 
large mass - will the large mass move much?)

Now HF absorbs infra-red radiation very strongly at a wavelength 
of 2.4 x 10 " 6 m. The corresponding wavelength for HC1 is 3.3 x 10~ 6 m.
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Why can you say straight away that the HF bond is probably 
rather stiffer (larger force for the same extension) than the HC1 bond? 

Show that the bond stiffnesses are roughly:

1000 N m' 1 for HF 

SOONrrr'forHCl

The mass of a hydrogen atom is nearly 1.7xlO~ 27 kg. The velocity 
of light is axioms' 1 .

46(L) The model of sodium chloride illustrated in figure D98 shows just one 
line of ions in a crystal.

Cl YNa\ Cl KM Cl INal Cl )---

Figure D99

Figure D98

a If an electric field, E, is switched on in the direction shown, what would 
be its effect on 
i theNa + ions, 
ii theCl" ions?

b Calculate an approximate value for the mass of each Na ion. (Atomic 
mass of Na = 23u; the Avogadro constant = 6 x 1023 mol" 1 .)

C The 'spring constant' between each pair of ions is roughly 100 N m ~ 1 . 
Calculate a rough value for the frequency (in Hz) at which a Na + ion 
would oscillate. (Treat each ion as a mass tethered between two 
springs.)

d If the electric field oscillates at this frequency, resonance can occur. 
This can be achieved by directing electromagnetic radiation of the 
right frequency at the crystal.
i What would be the wavelength of the radiation corresponding to the 
required frequency?
ii To what part of the electromagnetic spectrum do these waves 
belong?

47(P) The ammonia molecule, NH 3 , can vibrate with the nitrogen atom 
passing to and fro 'between' the three hydrogen atoms (figure D99). 
The frequency happens to be 23 870 MHz. This vibration has been 
used as the basis of the 'atomic clock'.

Would the rate of vibration be affected by using molecules of ND3 , 
with deuterium (heavy hydrogen, 2H) atoms in place of the hydrogen 
atoms? (A deuterium atom has a nucleus with one neutron and one 
proton, whereas the hydrogen nucleus is just one proton.)

48(E) Stand on one foot and allow your other leg to swing freely and easily 
like a pendulum. What connection do you think there is between the 
time of these swings and the speed at which you usually walk?
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49(E) A car accelerates away from traffic lights, and the driver notices that as 
the car accelerates past a certain speed, his view in the driving mirror 
goes 'blurred' and then becomes sharp again. Suggest a reason for this, 
and a practical way of reducing or eliminating the effect.

50(E) Ultrasonic vibrations may be used to kill bacteria in liquids. How big 
are bacteria? Discuss the choice of a suitable frequency.

51 (E)
pick-up arm and head

Istylus 

(groove 

Figure D100

52(E)a

loudspeaker

port

Figure D101

53(R)
mass, m scale

-casing

springs

Figure D102

A record-player pick-up has a stylus or needle that runs in the record 
groove and is oscillated sideways by the wavy walls of the groove (see 
figure D100). The performance of a pick-up is often specified by giving 
the effective tip mass of the stylus and the compliance or flexibility of 
the stylus when it is pushed sideways. The compliance is the reciprocal 
of the stiffness, k, which is measured in newtons per metre. The 
compliance is thus measured in metres per newton (deflection for a 
given force).

A suggested standard for high fidelity equipment is:

effective tip mass < 2 mg 
compliance > 4 x 10~ 3 mN~ 1

If the mass and compliance have these values, at what frequency 
will the stylus resonate? Would you regard this as satisfactory? You 
might go on to consider whether it would be desirable to have low or 
high values of tip mass and compliance.

Some high fidelity sound systems have the loudspeaker mounted in a 
'bass reflex cabinet'. The cabinet in figure D101 is sealed except for a 
port, and the air in the port (shaded) behaves like a mass acted on by 
the springiness of the air in the cabinet. Suppose you made such a 
cabinet and found that it 'boomed' whenever notes of about 300 Hz 
were reproduced. How might it be improved? Can you suggest any 
reason why the speaker is not just used on its own, without a cabinet?

A violin, or a guitar, has its strings held taut over a hollow wooden 
box which contains air and has holes in it (or a hole). Air in such a box 
can vibrate, the air near the hole acting as a mass driven in or out by 
the springiness of the air in the box.

What will be the effect on the sound produced when a string is 
sounded at a frequency near to the resonant frequency of the air in the 
body of the instrument? What other parts of a violin or guitar can 
resonate to notes from the strings?

This question is about measuring the acceleration, and so the velocity 
and displacement, of a moving vehicle, by making observations on 
masses carried within the vehicle.

Figure D102 shows the principle of one sort of accelerometer 
(a device for measuring acceleration). A mass, m, is free to move 
horizontally within a case, but is restrained by springs fixed to the case. 
A pointer on the mass can move over a scale fixed to the case. When 
the case and mass are at rest, the pointer is opposite the zero mark on
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the scale. When the pointer shows a displacement, x, from zero, the net 
force exerted by the springs is kx.

a Explain why, when the mass and case are moving at constant velocity 
in the horizontal direction, the pointer still reads zero. Assume that the 
velocity has been constant for a long time.

b If the casing is in a state of steady acceleration a to the left, explain 
carefully in words why the pointer now has a fixed displacement, 
saying whether the displacement is to the left or to the right and 
explaining why. Assume that the acceleration has been constant for a 
long time.

C Give an expression for the magnitude of the displacement in b.

d If the casing were to be suddenly displaced from rest by a sharp blow 
from a hammer, for example, and then held at rest, describe the 
subsequent motion of the mass if there is a small amount of friction 
between it and the casing.

6 It is suggested that, in use to measure varying accelerations, it would 
be good to have zero friction between the mass and the casing. Argue 
briefly for or against this idea.

f Suppose that, in use, appreciable changes of acceleration are expected 
to occur over times not exceeding time t. Give an argument to help 
decide whether the period, T, of natural oscillation of the mass and 
springs should be large, or should be small, compared with t.

g In designing an accelerometer for use in a car, a period, T, of
TC/5 seconds was chosen and it was assumed that accelerations up to 
2ms~ 2 should be measured. What would be the displacement at an 
acceleration of 2 m s ~ 2? (The values of m and k are not needed.)

h Suppose that it is decided that an accelerometer for use in a car 
accelerating at up to 2ms" 2 should have a period of 2n seconds. 
What problems would arise in designing this accelerometer?

(Long answer paper, 1979) 

Quality factor, Q
54(L) When an excited atom emits its excess energy, this is equivalent to an 

oscillating electron losing energy by damping. The energy is emitted as 
light or other electromagnetic wave radiation, each cycle of the wave 
corresponding to one oscillation of the electron. Suppose that one 
particular atom returns to its unexcited (ground) state, emitting a burst 
of radiation with /l = 5xlO~ 7 m; and that Q for the oscillating electron 
is 10 7.

a Roughly how many complete cycles of the radiation occur?

b The speed of the electromagnetic wave is3xl08 ms~ 1 . What is its 
frequency?

C How long does it take for the atom to lose its excess energy? 

d What length in space does the burst of radiation occupy?
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55(E)

Notice that this burst of radiation takes a finite time to be emitted 
(part c). During this time the atom itself (if gaseous) will have moved a 
significant distance. This causes a change in A for the radiation, due to 
the Doppler effect. This is one reason why spectral lines, even using the 
best possible optical equipment, are not perfectly sharp.

Each of the following objects oscillates, possibly in resonance, during 
its normal operation. Discuss whether each should be designed with a 
value of Q which is high (> 100), intermediate, or low (<2).

a The platform of a suspension bridge.

b The mountings for a machine like a lathe.

C A. car-body on its suspension.

d The balance wheel of a mechanical watch.

6 The tuning circuit of a radio.

f The moving arm of a ticker-timer.

56(P)
Standing waves

An elastic string is clamped at both ends as shown in figure D103. 
Near one end a vibrator is loosely attached to it. The vibrator 
oscillates with fixed amplitude and variable frequency. A graph of 
maximum oscillatory amplitude along the string against frequency of 
the vibrator looks like figure D104.

vibrator signal generator 

Figure D103

0 15 30 45 60 75
Frequency of vibration /Hz

Figure D104

a Sketch the instantaneous appearance of the string at 
i 15 Hz, 
ii 30 Hz, and 
iii 45 Hz
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top support of spring 
oscillates with fixed 
A but varying f

b What is the wavelength of the waves on the string at 
i 15 Hz, 
ii 30 Hz, and 
Hi 45 Hz?

spring

Figure D105

Figure D106

Figure D107

C What is the speed of travel of the waves along the string?

d How is the above situation 
i similar to, 
ii different from the case in figure D105.

57(P) An organ pipe (or any wind instrument) closed at one end can allow 
standing waves which have a node (N) at that end and an antinode (A) 
at the other (neglecting a small 'end-correction'); see figure D106. One 
such pipe has a fundamental note of 64 Hz. Consider what other 
wavelengths are possible for standing waves in this pipe, and calculate 
the frequencies of the pipe's second and third harmonics (the next two 
higher frequencies at which the pipe resonates).

58(R) Figure D107 represents a hanging chain of constant mass per unit
length. The support at S is gently oscillated from side to side sending 
transverse waves down the chain. These are reflected at the free 
bottom end and a stationary mode of oscillation (a standing wave) is 
set up.

Which one of the following statements is correct?

A The tension at all points of the chain is the same. 
B The speed of a wave at all points along the chain is constant. 
C The frequency of oscillation of each part of the chain is constant. 
D The wavelength of a wave travelling along the chain is constant. 
E Every point on the chain oscillates with the same amplitude.

(Coded answer paper, 1974)

59(R) In this question you are required to estimate the tension in a violin 
string which vibrates at a natural frequency of 650 Hz. The string is 
made of steel. The speed of transverse waves along a stretched wire is 
given by c = ^/T/n, where T is the tension in the wire, and /j, is its mass 
per unit length.

Starting from the formulae c =/A and c = ^/T/n, obtain an expression 
for the frequency (/) in terms of the tension (T), the length (L), the 
cross-sectional area (A), and the density (p) of the string.

Estimate values for the quantities you will need to know in order to 
calculate the tension using the above expression.

Combine your estimates in order to obtain a value for the tension in 
the string.

Say in a few words how you decide on the appropriate number of 
significant figures to give in the answer.

(Short answer paper, 1981)
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SUMMARY OF THE UNIT
INTRODUCTION

This Unit is about electric and gravitational fields and potential. You 
have probably used the word 'field' before to describe effects due to 
magnetism, electricity, or gravity, but here we develop further what is 
meant by the term and explore the relationships between fields, forces, 
energy, and potential for both charges and masses. Electricity and 
gravity have much in common - their inverse-square force laws, for 
example, and the mathematics that describe them. They also have 
enormous differences: gravity only becomes noticeable when huge 
masses are involved but its effect is felt over astronomical distances. By 
contrast, electrical forces dominate the behaviour of atoms and 
molecules on the microscopic scale.

Although this area of physics can be treated in a rather abstract 
mathematical way, the emphasis in this course is on understanding the 
physics and being able to apply fundamental ideas to a variety of 
situations. These range from space travel and satellites to the structure 
of atoms, molecules, and crystals; from printing, painting, and photo­ 
copying to sparks, 'static', and thunderstorms.

The Unit uses ideas about capacitors, charge, and potential dif­ 
ference from Unit B, 'Currents, circuits, and charge'; vectors and 
dimensions, introduced in Unit A, 'Materials and mechanics'; and 
Newton's Laws of Motion. Ideas from this Unit are used later in Unit F, 
'Radioactivity and the nuclear atom', Unit J, 'Electromagnetic waves', 
and Unit L, 'Waves, particles, and atoms'.

Section El THE UNIFORM ELECTRIC FIELD

Fundamental ideas

New ideas: 
E, K.AK/Ax

Parallel plates: 
V, d, A, Q, B O, £r

The fundamental ideas developed here are the concept of field strength, 
electric potential, equipotentials, and potential gradient. There is a 
detailed study of the field between charged parallel plates and how it 
relates to the p.d. between the plates, their separation and their area, the 
charge stored, and the medium which separates them. Applications of 
these ideas cover a range of situations from industrial processes to 
domestic problems.

DEMONSTRATION E1 
The 'shuttling ball'

DEMONSTRATION E2 
Charged foil strip as a field detector

Observing a uniform electric field

Experiments on a charged ball between charged parallel plates show 
that the force, F, on the ball depends on the p.d. between the plates, V, 
and on their separation, d (figure El). A charged foil 'detector' shows 
that the force is uniform over most of the region between the plates, and 
that its size and direction depend on the size and sign of the charge, Q, 
on the foil as well as on Fand d (figure E2).
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Figure El Figure E2

QUESTIONS 1 and 2

Definition of electric field strength, £

The strength of a gravitational field is the force per unit mass; by 
analogy electric field strength is defined as the force per unit charge,

units of £ areNCT 1 

QUESTION 3

Millikan's experiment, Unit B 

energy = force x distance

F-

d -

p.d.=
energy 

charge

Figure E3
'-f

for a uniform field only

Alternative units of E = V m ~' 
(equivalent to NCT 1 )

QUESTIONS 4 and 6

If, then, we could measure the charge on the foil and the electric 
force exerted on it, we could calculate the field strength. But both of 
these measurements prove impracticable: a small charge has too small a 
force on it, but a larger charge disturbs the field and gives a misleading 
result. This problem is solved by considering the links between F, Q, V, 
and d.

A charged drop is moved across the space between two charged 
plates. If a constant force, F, is exerted over distance d, then the energy 
transformed = Fd. But charge Q is then moved through a p.d. V, so the 
electrical energy transformed is QV.

Hence

and

-=- Q~d

F 
But   is equal to the electric field strength E.

Note that this is only the case when the force, F, is uniform over all 
the region - in other words, for a uniform field. However, it is extremely 
useful since the field strength can be measured simply using a voltmeter 
and a ruler, and expressed in Vm" 1 .

V F E-— is true only for a uniform field, but E=— is true in every 
d Q

situation: it is quite general, though in practice less useful.
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Patterns of electric field
DEMONSTRATION E3 
Electric field patterns

QUESTION 5

DEMONSTRATION E4
Measuring potentials in a uniform field

using a flame probe

QUESTION 7

Semolina particles floating on an organic liquid orientate themselves in 
the presence of an electric field to reveal its shape, rather as iron filings 
do in a magnetic field. Parallel, point, and circular electrodes may be 
used to show different shapes of field (figures E4 and E5).

Figure E4

Using a flame probe

The field strength between charged parallel plates, then, is uniform over 
the region between them and at all points is equal to the potential 
difference per metre in that region. The p.d. between the plates can be 
measured with a voltmeter or oscilloscope; the p.d. between one of the 
plates and a point in space between them can be measured with the 
flame probe.

The flame prevents any charge building up on the probe and 
disturbing the field. If one of the plates (usually the earthed one) is

(a)

Figure E5 (part)
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Figure E5 (part)
Electric field patterns. (Note that there is no field inside the ring in (d).)
Colin Price

referred to as our zero of potential, then we can define the potential at 
any point in the space as being equal to the potential difference between 
that point and the reference plate (figure E6).

Field and potential gradient

Moving the probe steadily from one plate to the other reveals a steady 
change in potential. A graph of potential, V, against distance, x, from the

AK 
reference plate is a straight line; its gradient   is equal in magnitude to'Ax

V
 , the field strength. So the potential gradient at any point gives the

Flame probe strength of the field: the uniform field has uniform potential gradient 
(figure E7). Since V increases towards the positive plate, and E is

Figure E7
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V increasing Figure E8

E is a vector

QUESTION i

QUESTION 9

directed toward the negative plate (the direction of the force on a 
positive charge, see figure E8), we must insert a negative sign to show the 
direction in which E, a vector, acts:

E=- AV

Now since we can consider any bit of any field to be uniform over an 
infinitesimally small distance Ax, this relationship can be applied to any 
shape of field, not just the uniform field, provided we speak of the 
potential gradient at a point only. This is very useful later in Sections 2 
and 3 of this Unit when we deal with fields which vary with distance.

EXPERIMENT E5 
Plotting equipotentials

QUESTIONS 10 and 11

Equipotentials

Moving the flame probe along surfaces parallel to the plates reveals no 
change in potential. Such surfaces are called equipotentials. Equipoten­ 
tials appear as lines when the field is two dimensional, between 
electrodes drawn or placed on conducting paper. They can be plotted at 
given intervals to reveal the variation in potential between the 
electrodes and are analogous to contours drawn on a map. The 
direction of the electric field is always at right angles to the equipoten­ 
tials; the field has no component along the equipotential (figure E9).

Figure E9

EXPERIMENTS E6, E7
Charge on parallel plates

(coulombmeter, reed switch)

Factors affecting the strength of the field between parallel plates

Charged parallel plates form a capacitor, storing a certain charge Q 
when a p.d. V is applied. For a capacitor, Q oc V. Other factors which 
affect the charge stored are the area of the plates, A, their separation, d,

Figure E10 coulombmeter
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Figure Ell

and the medium which separates them. These can be varied in turn and 
the charge Q measured using a coulombmeter or reed switch circuit 

QUESTION 13 (figures E10, Ell).

Results show that Q is proportional to V, to A, and to  :
a

VA 
d
VA 
d

where £0 is a constant.
This relationship can be arranged in two useful ways:

Q_ V1 ~7 = e°T A d

Q— is the charge per unit area, or surface charge density usually denoted
jT.

V
QUESTION 12 by a. The quantity   is of course the field strength E.a

KKT^Fm" 1 So ff = 80E

e0 is called the 'permittivity of free space' and is a fundamental constant 
linking field strength and charge density.

" ~ = B0-

Q.— is the capacitance C so

The presence of a medium other than air (or a vacuum) increases the
charge Q by some factor er called the 'relative permittivity', which is

QUESTIONS 14 to 18 different for each material but, being purely a factor, has no units. For
air er «1, for paper er is 2 to 3, for water er x 80. The modified equations
are then

Aa — £_£ £ and C = ers0 —-a
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HOME EXPERIMENT EH1 
The capacitor

The second equation is used in the design of capacitors: one can be 
made from household materials.

READING 
Applications of electrostatics (page 305)

Applications

Many industrial processes make use of electric fields, while 'static' can 
be a big problem in industry and in the home.

Section E2 GRAVITATIONAL FIELD AND POTENTIAL
This Section is concerned with gravitational fields - in particular that of 
the Earth. The fundamental ideas and the way they are linked are very 
similar to those in the last Section - except that, whereas electric fields 
act on charges, gravity acts on masses.

A uniform gravitational field

P g=— The gravitational field strength, g, is defined as the force on unit mass.
  ~ 9 81 N kg ~' Measurements show this to be virtually uniform near the surface of the 

on Earth's surface Earth, and certainly so in the laboratory.

A(g.p.e.) =

A(g.p.e.) =
mass 

in uniform field

A (g.p.e.) = AVg x mass 

QUESTIONS 19 to 21

Gravitational potential difference

In the uniform field, changes in gravitational potential energy (g.p.e.) 
are given by mgAh, where A/i indicates a change in height. It is useful to 
know the change in potential energy per kilogram; this is called 
gravitational potential difference (AP^). In this context it is simply gA/i.

Contours on a map join points at the same height above sea level. 
The energy involved in moving from one contour to another can be 
calculated from the gravitational potential difference (AJ-Q between the 
two contours. Movement along a contour involves no change in g.p.e.: 
contours can be called gravitational equipotentials.

G«6.67xl(T u Nm2 kg- 2

The inverse-square law for gravitational fields

Newton first deduced that the gravitational force obeys an inverse- 
square law. The force, F , between two masses m t and m2 separated by 
distance r is

QUESTIONS 22 to 24

G is a universal constant, which applies to all masses everywhere. 
The '-' sign is used to indicate that the force, F, is inwards, that is, 
attractive.

Because gravitational forces between laboratory sized objects are so 
small, very sensitive equipment is needed to measure G.
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Testing the inverse-square law

Since field strength is defined as force per unit mass, the field strength, g, 
due to a mass M is given by

The inverse-square law can be tested over large distances by 
analysing spaceflight data. Indeed it is used to plan the trajectories of 

Figure E13 spacecraft with great accuracy.
Sir Isaac Newton (1642-1727). 

The Mansell Collection
Calculating energy changes from force-distance graphs

Energy changes can be calculated by computing areas under a 
force-distance graph as shown in figure E14(a). Since field strength is 
force per unit mass, the area under a graph of field strength against 
distance indicates the energy change per unit mass, or the gravitational 
potential difference, AFg, shown in figure E14(b).

change in 
energy

change in energy 
per unit mass

(a) 

Figure £14

(b)
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Figure E15
Approximate method of finding area.

QUESTION 25 Calculating areas is a tedious process: approximate results can be 
obtained by adding up strips under the graph (figure El5). A computer 

Computer program 'GFIELD' can do the job quickly and accurately.

QUESTION 26

QUESTION 27

Calculating Al/ff from field-distance graphs

The amount of energy required to move unit mass from the Earth's 
surface to various distances r2 from the centre of the Earth increases 
with r2, but approaches a finite limit, even if r2 is very large (figure E16). 
Conversely, the energy required to move unit mass from a point 
distance r t from the Earth's centre, to some larger distance r2 decreases 
as r t is increased (figure El 7). Measurements from graphs show that 
this value of AVg is given by

Earth's surface

Figure E16
Energy needed to reach different 
distances r2, starting from Earth's 
surface.

Figure El7
Energy needed to reach distance r2 
depends on starting position r t .

QUESTION 28

Potential is negative for all 
attractive fields

Gravitational potential Vg
If we make r2 'infinity'' or 'as far away as we like' we can easily calculate 
the energy required to pull one kilogram completely free of the Earth's 
gravity. It seems sensible to agree on some reference point to use as our 
zero of gravitational potential energy. This 'point' is agreed to be 'at 
infinity', or 'as far away from any mass as you like'. There the 
gravitational potential energy of any object is zero. But since it loses 
potential energy and gains kinetic energy by 'falling' towards the Earth 
(or any other planet), then we must consider the potential energy at
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QUESTIONS 29 and 30

points nearer the Earth to be negative. (This is so for all attractive 
fields.) The formula for gravitational potential at distance r from mass 
Mis

QUESTION 31

g field is 'conservative'

Equipotentials, lines joining points at equal potential, can be drawn 
around the Earth (figure El8). From these the energy required to move 
a mass, m, between various points can be calculated (AVg between the 
points x mass). For example, the energy for complete escape from the

Earth's surface is    , where rE = radius of the Earth. Such energy
rE

changes do not depend on the route taken between the points. This 
means that any energy 'stored up' on an outward journey can be 
regained on the return.

-50 -40 -30 -20 -10

Figure £18
Equipotentials around the Earth 

(at intervals of 10 x 106 Jkg- 1 ).

Figure E19

- profile potential well or rubber sheet 
r
model.

for gravity:

for electricity:
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dr 
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for both: - potential  «    field r r2

QUESTION 32

Field and potential gradient

Potential can be found from the area under a field strength-distance 
graph. Field strength can be found from a potential-distance graph by 
measuring the gradient. As in the electrical case 'field strength = 
  potential gradient'. It is easy to show by measuring gradients that if

V, varies as -, then g varies as -=-. This connection will be used in the 
g r r

next Section, for electric fields.

- (slope) gives g
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Formulae and relationships for gravity

FORCE F GMm

FIELD STRENGTH g = -

POTENTIAL Va = - GM
•~~,

P.E. = potential x mass
s*

POTENTIAL ENERGY = -

force = - gradient 
of P.E. against 
distance graph

GMm

Figure E21
Formulae and relationships for gravity.

You do not need to remember the formulae, but you do need to 
understand the connections between them.

field strength 
inside Earth

Figure E22
Field strength outside and inside a 

uniform sphere.

QUESTIONS 33 to 35

Field outside and inside a sphere

The inverse-square law, defined for 'point' masses, works outside a solid 
sphere of uniform density (which the Earth is, very approximately), or a 
hollow sphere, as if all the mass were concentrated at the centre. This is 
an invaluable simplification, enabling field and potential to be cal­ 
culated even quite close to the surface of a large sphere. It will be of even 
greater use later as it applies also to electric fields around a charged 
sphere.

The value of g falls to zero at the centre of a sphere of uniform 
density (figure E22) with some interesting, if theoretical, consequences.

Inside a hollow sphere there is no field.

QUESTIONS 36 and 37

Figure E23
Centripetal force acts inwards.

QUESTIONS 38 to 40

Circular motion

An object moving in a circle at constant speed changes direction and 
therefore velocity. Its acceleration is towards the centre or 'centripetal' 
(figure E23), and must be caused by an overall centripetal force if 
circular motion is to be maintained.

For an object of mass m to move at speed v in a circle of radius r, a

centripetal force of size    must be provided towards the centre.

For planets and satellites this force is provided by gravity. We can 
make quite accurate calculations of the positions and energies of 
satellites, assuming circular orbits, though we know that satellite and 
planetary orbits are in fact elliptical, with varying degrees of 
eccentricity.

300 Unit E Field and potential



Section E3 THE ELECTRICAL INVERSE-SQUARE LAW

Unit F, 'Radioactivity and the nuclear Many applications of electrostatics can be understood using the
atom' uniform field alone. However, if we want to delve into the structure of

atoms, which are in essence made up of charged particles, we must 
Unit L, 'Waves, particles, and atoms , . i_   i j   A i 11know how spherical and point charges behave.

Potential near a charged sphere

DEMONSTRATION E8a 
Investigating the variation of potential

The field of a spherical mass varies as -j and the associated potential as 

-. The electric potential around a charged sphere is found to vary as -

(figures E24 and E25). By analogy with gravity we deduce that the 

around a charged sphere electric field varies as -j.

Figure E24 Figure E25

DEMONSTRATION E8b The potential, V, depends also on the charge, Q, on the sphere 

Measuring the value of k in V=  

lombmeter

Figure E26
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If Q is positive, the potential is positive: a positive charge nearby has 
positive potential energy and will be repelled. Conversely a negatively 
charged sphere has negative potential and would attract a nearby 
positive charge (figure E27).

By contrast all gravitational potentials are negative because all 
gravitational forces are attractive.

Ms 
+ve

Vis 
-ve

Figure E27

Analogy between electricity and gravity

Gravity

Electricity

Force

m 1 m2 
r2

,6182
r2

Field

GM
r2

kQ
r2

Potential

GM

r

kQ

r

Potential Energy

m l m2
(j

r

,6162
r

Comparing the expressions for potential which have been es­ 

tablished we can deduce the other expressions above for the -j electric

dV 
EXPERIMENT E9 field. E= — — of course applies here and we can deduce the field

Experiments to test the inverse-square r .
law for electric forces strengtn fr°m tne gradient of a graph of potential against distance. The 

force expression may be tested experimentally with some care (figure

Compare Newton's Law for Gravity 

QUESTIONS 41 to 44

E28). Coulomb first established it as a fundamental law of nature in 
1785.

Figure E28

QUESTION 45

QUESTIONS 46 to 51

Computer program 
'EFIELD'

The radial field and the uniform field

Single charges have a -j field: yet many charges together on a large flat

plate give a uniform field (Section El). This is because of the way in 
which contributions from each bit of charge add up to give an overall 
effect (figure E29). The mathematics of this adding up process show that

the constant, k, is in fact   .
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Figure E29

E variable

E approximately 
iform

G«7xlO~ u Nm2 kg~ 
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QUESTIONS 52 and 53

Sizes of electrical and gravitational forces

The electrical and gravitational force constants are very different in size. 
Comparison of the two forces between an electron and a proton within 
an atom shows that the electrical forces are bigger by a factor of nearly 
1040. For the charged spheres of the Coulomb's Law experiment the 
ratio is less, but still about 1010 . This means that very few of the atoms 
of the ball carry charge.

Although very large forces exist between neighbouring ions within a 
crystal, say, the almost perfect balance of + and   charges ensures that 
the whole crystal is neutral and exerts no electrical force on other 
crystals. More massive objects experience gravitational forces which are 
much greater than the electrical forces between them.

QUESTIONS 54 and 55

'Forces and particles' in the Reader 
Particles, imaging, and nuclei

The four known interactions

Although they both obey inverse-square laws, electric and gravitational 
forces are quite distinct, acting as they do on charges and masses 
respectively. All other 'everyday' forces, (friction, surface tension, 
'contact' forces between objects and even magnetism) are due to the 
interactions of charged particles surrounding atoms at rest or in 
motion. However, two other apparently distinct kinds offeree do exist - 
the 'strong' and the 'weak' nuclear forces. Their range is limited to 
nuclear dimensions (<10~ 15 m) within which they are capable of 
holding together nuclei with enormous energy.

Figure E30
Intermolecular energy.
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Unit F, 'Radioactivity and the nuclear The structure and behaviour of materials resulting from inter- 
atom' molecular electric forces has been studied in Unit A, 'Materials and 

mechanics' (figure E30). Knowledge of the fields and potentials around 
Unit L, 'Waves, particles, and atoms' charges is used in constructing models of the atoms themselves.
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READING
APPLICATIONS OF ELECTROSTATICS
In part adapted from an article by Dr Jean Cross in Physics in 
technology 12, 1981, pages 54-59.

Introduction

Electrostatic forces are generally weak compared with gravitational 
effects and have little influence on macroscopic bodies. However, for 
small particles (1-100 um), electrostatic forces can exceed gravitational 
and aerodynamic effects and this has led to the development of a wide 
range of industrial processes which rely upon electrostatic phenomena.

Charging small particles
In the macroscopic world electrostatic forces have little impact. Sparks 
may be observed which demonstrate the high potential which can be 
achieved when insulating materials are rubbed, but the energy stored is 
low and although the sparks may be a hazard in a flammable 
atmosphere, their energy cannot be usefully harnessed to control large 
bodies. However, the electrostatic charge stored (and hence the force 
experienced in an electric field) depends on surface area. The gravi­ 
tational force, on the other hand, depends on mass or volume, so, as 
size decreases, electrostatic forces become gradually more important 
and can dominate the motion of particles less than a few hundred 
micrometres in diameter.

This principle has been used in a wide range of applications in which 
the motion of small charged particles is controlled with considerable 
accuracy by an electric field. Particles and droplets are nearly always 
naturally charged but for most applications charge is added artificially 
both to maximize the magnitude and to achieve uniformity. Particles 
can be given a charge by a number of different techniques of which 
friction is the simplest and best known.

This phenomenon was first observed more than 2500 years ago by 
Thales, who noticed that small particles were attracted to amber which 
had been rubbed with silk. It is now known that charge is transferred 
when any two materials are brought into contact as electrons move to 
more favourable energy levels. If both materials are conducting and 
earthed, charges flow away instantaneously when the surfaces are 
separated, but, if an insulating material is involved, the charge cannot 
disperse and rapidly accumulates until the electric field above the 
surface reaches the level where the air ionizes and charge can build up 
no further. Powdered materials easily acquire charge by friction in 
passing through a tube and even most metals are sufficiently insulating 
in powdered form for charge to accumulate if the particles move 
rapidly.

Frictional charging is not easy to control and may vary consider­ 
ably from day to day, therefore many industrial applications of
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negative electrode

positive electrode

Figure E32 
Induction charging.

electrostatics rely on corona charging. In this process a high voltage is 
applied to a sharp point, causing the air to ionize in the high field region 
around the point. Ions of the opposite polarity are attracted by the 
point but those of the same polarity are repelled, forming a stream of 
unipolar ions. These ions will be attracted to any powder or dust 
particles present because the difference in relative permittivity between 
the powder and air causes a distortion in the electric field (figure E31) 
and thus ions are pulled in to the particle. Charging stops when the 
repulsion due to the charges on the particle balances the attraction due 
to the field distortion.

Figure E31
Distortion of field by a dust particle.

A third method of applying charge - induction - can be used only 
for conducting particles and is most often used in practice to charge 
liquid droplets. The principle is illustrated in figure E32. A particle on a 
positive electrode in an electric field will acquire a positive charge, 
simply because the charge is attracted towards the negative electrode. 
The force of attraction may be sufficient to detach the particles from the 
electrode, creating a free charged particle. A liquid surface is distorted 
in an electric field and is pulled up into a cone. The induced charge on 
this cone can cause droplets to break off - the process of electrostatic 
atomization. The resistivity of the liquid is critical for the formation of 
uniformly charged droplets. If it is too conducting, a corona discharge 
may form or the cone break up erratically. If it is too insulating, charge 
cannot flow to help form the cone.

Electrostatic generators

One of the earliest applications was the design of electrostatic gen­ 
erators which use mechanical energy to build up a high voltage. Most
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are high voltage, low current devices. The Van de Graaif machine is 
probably the best known and is still used today for the production of 
voltages exceeding 1 M V for the acceleration of elementary particles in 
nuclear research.

high-voltage 
sphere

insulating 
belt

motor driven 
pulley

— spray 
voltage

Figure E33
Van de Graaff generator.

A Van de Graaff generator is shown schematically in figure E33. 
Charge is sprayed onto the bottom of a conveyor belt by corona from a 
sharp point. (This charge may also be produced by friction.) As the belt 
moves round, charge is transferred to the large sphere by ionization 
from collector points. Resistors maintain a voltage between the sphere 
and the upper pulley so as to allow a negative discharge from the 
collector points, leaving a positive charge on the sphere. The larger the 
sphere, the higher the voltage which can build up without discharge. 
The leakage from the sphere limits the voltage which is produced. 
Mechanical belt generators have been produced for high voltage 
laboratory supplies of 50-200 kV, although at these levels conventional 
multipliers are more commonly used.

Electrogasdynamic generators also produce voltages of this level 
and have been used in electrostatic paint and powder spray guns. In this 
device ions are created, usually by a corona discharge between a point 
and an attractor, and then forced down a tube by a high velocity air 
stream. Usually a vapour or a powder is introduced to collect ions and 
reduce their mobility so they are not collected at the attractor but are 
swept on to the collector. It can be seen from figure E34 that this results
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air + powder 
or vapour MM

needle attractor

LU-J
MH»~

m
~-^

collector

1

4^ 1,0 /3 A

power 
supply

Figure E34
Electrogasdynamic generator: l l needle current; I2 attractor current; /3 collector current.

in a current flow through the load which is higher than the current 
drawn from the attractor power supply. The voltage on the collector is 
several times higher than that applied to the attractor and the extra 
energy is supplied by the gas stream motion.

Electrostatic coating techniques

Commercially the most useful applications of electrostatics involve the 
control of fine particles. The earliest device to be put into industrial use 
was an electrostatic precipitator built in 1890 and powered by a 
Wimshurst machine. In its simplest form an electrostatic precipitator is 
an earthed cylinder with a fine wire along its axis which gives a corona 
discharge. As dusty air is passed through the cylinder, the particles are 
charged by the corona ions and repelled by the wire to be deposited on 
the cylinder walls. Commercial precipitators are now generally two- 
stage devices with separate charging and collecting zones. The dis­ 
charge electrodes are wires suspended between plates (figure E35) and 
the planar collecting region can be cleaned without disturbing the 
electrodes. Efficiencies of over 99 per cent can be achieved down to 
particle sizes of a few micrometres. Precipitators were first developed 
for large scale industrial processes such as steel works, but small devices

path of charged 
dust particle

p | at ,s 
(earthed)

Figure ESS
Electrostatic precipitation.
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have also been developed for collecting cigarette smoke from public 
rooms.

In the electrostatic powder coating process shown diagrammatically 
in figure E36, a thermoplastic or thermosetting resin powder is blown 
out of a spray gun past a high voltage needle at which a corona 
discharge forms. The powder cloud is charged by the ions from the 
corona and carried by the electric field to the earthed workpiece. Since 
the powder is highly insulating it retains its charge and adheres even 
when the electric field is removed. The workpiece can then be trans­ 
ported to an oven where the resin is fused to give continuous paint film. 
The most important advantage of this technique over conventional wet 
paint spraying is that the wasteful use of flammable and toxic solvents is 
eliminated. Since there is no need to evaporate a solvent, better cross- 
linking resin formulations can be used and high scratch and chip 
resistance is obtained. Unlike wet paints, dry powders can be collected 
and re-used, giving a high overall efficiency which often compensates 
for the higher cost of materials.

Figure E36
Electrostatic powder coating.

Electrostatic deposition may also be used with wet paints. The paint 
is atomized by an air jet, by a rapidly spinning disc or bell, or 
occasionally simply by electrostatic forces which tend to break up large 
drops until the electrostatic repulsion is counteracted by the surface 
tension of the drop. As with any electrostatic process, the paint travels 
along the electric field lines to areas not directly within the field of view 
of the gun - a phenomenon known as wrap round. Recently the 
techniques developed in the 1960s for electrostatic paint spraying have 
also been applied to crop spraying. Efficiencies have been increased 
considerably and there is a great improvement in deposition on the 
underside of leaves, which is particularly important for fungicides.

The ink-jet printer - printing without pressing

One of the problems with modern computers and data processing is 
that whilst a computer can happily churn out 106 numbers per second,
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a printer which can produce only 100-200 characters per second is 
obviously slowing down production somewhat. The development of a 
printer capable of dealing with over 1000 characters per second with a 
resolution of over thirty points per centimetre is clearly an 'order of 
magnitude' improvement.

There are several types of ink-jet printers being developed or in use. 
In the 'deflect-to-print' type, which is shown in figure E37, ink from a 
reservoir is pushed through a narrow jet (about 35 um in diameter) 
which is modulated ultrasonically at a frequency of about 500 kHz and 
breaks up into a fine stream of droplets. A charging cylinder through 
which they pass induces on each drop a charge which varies according 
to the p.d. applied to the cylinder. This p.d. is determined directly by the 
computer so that each drop can be given a unique charge. The drops 
now pass between deflector plates, rather as in an oscilloscope, across 
which there is a steady p.d. so that the deflection depends on the charge 
of the drop. As the jet moves over the paper (or vice versa), characters 
can be built up at extremely high speed and with great precision. 
Uncharged droplets (representing spaces) are collected in a gutter and 
may be returned to the reservoir. Since no contact is made, the jet may 
be used to print on very delicate surfaces - even butterfly wings!

output from computer 
varies charging p.d.

charging

asonic 
llator

cylinder

C

rr

deflection plates 
at steady p.d.

gunl
pump

gutterl

ink reservoir paper(or 
other substrate)

Figure E37
Ink-jet printer. Deflect-to-print type.

This 'continuous flow' method has some advantages over the 
simpler and cheaper 'drop-on-demand' printer where the ink jet is held 
back by surface tension and switched on at low pressure only when 
required. The drop-on-demand printer shown in figure E38 has been 
designed for use with personal computers. Considerable research and 
development has gone into producing an ink which does not dry in the 
jet, blocking it up, but which does dry quickly on paper. A third method 
charges the drops not required for printing and deflects them away to 
an earthed plate. With the use of three coloured inks a large full-colour 
page can be printed to a high degree of resolution in a few minutes. This
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(a)

Nozzles

Bladder 
(ink supply)

Paper
Vaporized 
ink bubble

Nozzle

(c)

Figure E38
ThinkJet', a drop-on-demand type ink-jet printer. The printer is small and portable 
and is used here with an office microcomputer. It also has the advantage of operating 
below 50 dB. Diagrams (b) and (c) show how the printer works. 
Hewlett-Packard Ltd.

opens up potential applications in cartography and the production of 
hard copies of aerial and satellite images.

Xerography

This is the process used in almost all copying machines. In the U.K. one 
leading firm's machines alone produce 12 billion copies a year; typical 
office machines handle up to 120 copies per minute.

The name derives from two Greek words meaning 'dry writing', and 
it was indeed a great step forward when copies of documents could be 
made almost at once on ordinary dry paper without the messiness of 
earlier methods of printing. The basic process has about six main stages: 
charging, exposure, development, transfer, fusion and cleaning. 
Charging The plate or rotating drum on which the image of the
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selenium (photoconductor) 
aluminium oxide (insulator)

aluminium (conductor)

Figure E39
The photoreceptor plate.

document is to be formed is made of a thin (60 urn) layer of selenium on 
an aluminium substrate separated by a thin layer of oxide (figure E39). 

Selenium is photoconductive, that is, it is effectively an insulator in 
darkness but conducts well when exposed to light. The plate or drum 
surface is first coated with positive charge by being traversed by a 
corotron, or fine wire at high positive potential (typically 850V), 
surrounded by an earthed metal shield. Since the plate is also earthed, 
positive ions in the air formed by corona discharge are forced onto its 
surface (figure E40).

photoreceptor 
plate

Figure E40
Charging the photoreceptor plate.

Exposure Now the document to be copied is illuminated. A lens, and 
usually also mirrors, to reduce the physical size of the device, focus a 
real image (laterally inverted) onto the photoreceptor plate. Where light 
falls on the selenium it conducts and the charge drains away through 
the earthed aluminium substrate (the oxide layer is thin enough to allow 
this). However, dark areas (for example writing) on the document cause

latent image on 
photoreceptor plate

lens

back of mirror

Figure E41
Exposure.
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dark areas on the image so the charge remains at these points. So a 
'latent image' is formed on the plate (figure E41).

The selenium is most sensitive to blue light, whose photon energy is 
greatest (see Unit L, 'Waves, particles, and atoms') and least to red, so 
that red areas on a photograph will behave like black, but light blue 
areas, like white, will be difficult to reproduce.
Development A dry black thermoplastic powder called toner is used to 
develop this latent image. The toner powder is mixed with carrier beads 
(metal shot or glass); the carrier and toner obtain opposite charge by 
frictional contact and the now negative powder adheres lightly to the 
positive carrier. When this mixture is sprinkled over the latent image, 
most of the toner powder sticks to the positive image and the carrier 
falls off to be re-used (figure E42).

toner powder

latent image

carrier bead

Figure E42
Development using toner.

Transfer A sheet of paper is given a positive charge by a separate 
corona wire and placed carefully in contact with the photoreceptor 
plate. A good deal of the toner powder is attracted to the paper forming 
on it an image which is now like the original, that is, not inverted.

plate

Figure E43
Transfer onto paper.

Fusion The paper is transported underneath a radiant heater or 
between hot rollers to melt the plastic toner (at about 140 °C) giving a 
firm, permanent coating to the paper (figure E44). Alternatively, the 
fusing may be done using a chemical vapour which breaks down the 
plastic in a similar way to melting.
Cleaning Some toner remains sticking to the plate or drum. This 
'residual image' must be cleaned off before the next copy is taken. First 
the plate or drum is neutralized, generally by a corona discharge from 
an alternating current source, to loosen the powder. Next the powder is
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radiant heater

(a)

heat roller

(b)
Figure E44

Fusing to make a permanent copy. pressure roller

scraped, wiped, or brushed off. Since this process may charge up the 
plate again, it is finally exposed to light to render the selenium surface 
free of charge and ready to be used again (figure E45).

carrier beads and 
toner powder

paper paper-charging 
feed rollers corotron

Figure E45
The complete process for a rotating drum copier. In this case a slit traverses the
document forming an image on the drum as it rotates.
(Information courtesy of Rank Xerox (U.K.) Limited, who may supply further details on
request.)
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Questions
a i The article states that 'charge stored depends on surface area'. This 

implies a limit on the charge density on a surface. Why is this limited? 
(Think about the field strength at the surface and support your 
argument with relevant formulae.) 
ii Why do electrostatic forces have more effect on small particles?

b Describe the three most common methods by which particles are given 
an electric charge, explaining the limitations of each method.

C Discuss the effect on the potential attained by a Van de Graaff 
generator of each of the following (separately): 
i increasing the radius of the sphere;
ii increasing the resistance between the sphere and the upper pulley; 
in increasing the speed of the belt; 
iv increasing the spray voltage.

d In an electrogasdynamic generator, why is the current flowing through 
the load greater than that flowing between the needle and the 
attractor?

How will the gas stream be affected by giving energy to the 
generator?

6 What are the advantages of electrostatic dry powder paint spraying 
over conventional liquid paint spraying? Are there any disadvantages? 
Explain how the technique could be applied to crop spraying.

f The article states that 'paint travels along the electric field lines'. 
Sketch some equipotentials and lines of electric field between a paint 
nozzle and a spherical earthed object.

g In the diagram of the deflect-to-print ink-jet printer (figure E37) the 
drops do not appear to be travelling along field lines between the 
deflecting plates but at right angles to them. Why is this and what is 
the shape of the path of a drop whilst it is between the plates?

h Some photocopiers are poor at reproducing large black areas. 
i Sketch the 'latent image' of a large black circle. 
ii Considering the mutual repulsion of the charge on this image, 
suggest why the central area may not come out fully black.

i Describe what happens during one complete rotation of the drum in 
figure E45.

j 'Static' can be a hindrance, indeed a hazard, as well as being of use in 
commerce and industry. Find out about some problems of static, for 
example, on plastic-hulled ships, in pumping liquids in oil tankers, in 
the manufacture of semiconductor devices.
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LABORATORY NOTES
DEMONSTRATION
Forces on a charged ball between charged plates - the
'shuttling ball'

e.h.t. power supply
2 metal plates with insulating handles
table tennis ball coated with colloidal graphite
nylon sewing thread
galvanometer (e.g., internal light beam)
polythene strip
2 retort stand bases, rods, bosses, and clamps
leads

"long nylon 
suspension

cJ>

1 ———— metal plate 

{insulating handle

—————— © ———

_!

-t 

e.h.t. 

" 1
1

50 MQ limiting 
resistor

Figure E46
The 'shuttling' ball.

What causes the ball to move from one plate to the other?
Why does it keep changing direction?
What sign of charge is being 'ferried' across the gap by the ball? Why
does the galvanometer not show pulses of current in both directions?
What factors affect the force on the charged ball? How do they affect
it?

DEMONSTRATION
Using a charged foil strip as a field detector

pair of capacitor plates
2 slotted bases
2 square polythene tiles
polythene strip
foil
adhesive tape
razor blade or scissors
e.h.t. power supply
leads
means of projection (optional)
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Figure E47
Charged strip field detector.

How can you judge the size of the electric force acting on the foil? How
does this force vary from place to place
a between the plates,
b outside the plates?
How are the direction and size of the force on the foil affected by
a the p.d. between the plates,
b the distance between them, and
c the charge on the foil itself?
How might you set about measuring both the charge and the force on
the foil? Explain whether or not these would be easy tasks.

E3

Figure E48
Apparatus for demonstrating 

electric field patterns.

DEMONSTRATION
Patterns of electric field for different geometries (using
semolina)
either
e.h.t. power supply
or
Van de Graaff generator

electric field apparatus
1,1,1-trichloroethane
castor oil
semolina
bare copper wire, about 2 mm diameter, for electrodes
leads

You should be familiar with the pattern produced between two parallel 
electrodes, two point electrodes, one point and one straight electrode, 
and a point in the centre of a circular electrode. 
What might happen if the liquid conducted electricity? Would you still 
obtain a field pattern? Explain your answer.

DEMONSTRATION 
E4 Measuring potentials in a uniform field using a flame probe

The electroscope, calibrated as a voltmeter, measures the potential 
difference between the tip of the probe, connected to the cap, and the

Laboratory notes 317



gas

Figure E49
Using a flame probe to measure the potential between parallel plates.

case, which is earthed. The flame ionizes the air around the tip,
neutralizing any charge on it, so that there is no p.d. between it and its
surroundings. In effect, then, the electroscope measures the potential
difference between a point in the space between the plates and earth. We
call this the 'potential' at that point. The potential at different points is
found by moving the probe around.
Does the potential change when the probe is moved parallel to the
plates?
How does it change along a line perpendicular to the plates?
Draw a graph of potential, V, against distance, x, from one plate.

EXPERIMENT
E5 Plotting equipotentials in two dimensions for various 

shapes of field
4 cells in holder or l.t. variable voltage supply and smoothing unit
oscilloscope or voltmeter
pencil or ball point pen adapted as probe
copper or aluminium sheet, 0.1-0.5 mm thick
conducting paper (e.g. 'teledeltos' type) cut to A5 or A6 sheets
conducting putty
stapler and staples
carbon paper and white paper
drawing board or hardboard
bulldog clips
silver conducting paint (optional)
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Use the probe connected to the oscilloscope or voltmeter to find a series 
of points at the same potential, and use the carbon paper to mark these 
points on the plain paper underneath the conducting paper. (Do not 
mark the conducting paper itself.) Try various shapes of electrodes.

For 'point' electrodes, there may be difficulty in obtaining reliable 
equipotentials close to the point. In practice a slightly larger electrode 
such as the head of a drawing pin works better than just a point. You 
might like to think why this is so: why are equipotentials closer together 
near such points - what is this telling you about the strength of the field 
there? In all your patterns, look for areas where the equipotentials are 
equally spaced: how does the field strength vary in these regions?

6VI
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_ •
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• ———
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bulldog cli 
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r^\ i — i i ir
copper 
electrode

Figure E50
Plotting equipotentials on conducting paper.

Consider also the effect of the shape of the electrodes. How do sharp 
curves and corners affect the spacing of the equipotentials nearby?

Further investigations could include modelling some 'real' situ­ 
ations such as plotting equipotentials between different shapes of 
electrode in a cathode ray tube, say, or between the base of a 
thundercloud and the roofs of buildings beneath it. If silver paint is 
available such shapes can be easily created, though they can also be 
achieved using copper strip.

An alternative method for plotting equipotentials uses copper 
electrodes in copper sulphate solution. Teachers will be able to provide 
details.

EXPERIMENT
E6 Investigating factors affecting the charge on parallel plates 

using a coulombmeter
coulombmeter with probe rod
2 metal plates with insulating handles
e.h.t. power supply
polythene strip for use as insulating handle
2 retort stand bases, rods, and bosses
metre rule
leads

Laboratory notes 319



Figure E51
Using a coulombmeter to measure Q.

The unearthed plate is charged by a flying lead from the positive of the 
e.h.t. supply (with limiting resistor). The lead is held by an insulating 
handle. Other earthed conductors (the bench, hands, etc.) should be 
kept well away.

flying lead held on insulating rod

metal plate on 
insulating handle

-probe rod 
or stiff wire

coulombmeter

Caution: The flying lead must be removed from the plate before the 
charge is measured. The coulombmeter is then brought up so that the 
probe rod touches the plate; the charge can be deduced from the 
resulting reading.

Experiments to test whether 2<x- and QocFare possible. QccAd
would require a set of plates of various sizes. The effect of a plastic sheet
or paper between the plates can also be explored.
Does the coulombmeter reading return reliably to zero when shorted,
or does it suffer from zero drift?
How accurately repeatable is any given reading?
Is any charge left on the plate? How could you check this?

Plot a graph for Q against -. What significance has the Q intercept?

EXPERIMENT
E7 Investigating factors affecting the charge on parallel plates 

using a reed switch
reed switch
signal generator
1 pair capacitor plates with 16 polythene spacers, 10 x 10 x 1.5 mm
polythene sheet, 1.5 mm thickness, and paper sheets

either
l.t. variable voltage supply and smoothing unit
or
3 cell holders with four cells
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voltmeter, 100 V and 10 V
galvanometer (e.g. internal light beam)
resistance substitution box
class oscilloscope
metre rule
mass, 1 kg
leads

E8a

-o /o-
reed switch

±

X

protective 
resistor R

) mA or

capacitor 
under test

Figure E52
Using a reed switch to measure Q.

Caution: The signal generator output p.d. should be raised until the 
switch is heard to vibrate cleanly, and not increased further. Nor should 
the switch's stated operating p.d. be exceeded. The capacitor plates 
should never touch whilst the switch is working; turn off the signal 
generator if you are not taking readings, and disconnect the power 
supply before adjusting the plates. Keep hands and earthed objects well 
away from the plates when taking readings.

Use an oscilloscope across the protective resistor R to check that 
discharge of the capacitor is complete for each cycle. Use R = lOOkQ 
and/= 400 Hz; try raising R or/ observing what happens. 
Q oc Fcan be easily tested for p.d.s up to 25 V.

Qcc- can be tested by spacing the plates at different separations using a
spacers.
Q oc A can be tested by allowing different amounts of overlap between
the plates.

Estimate the percentage uncertainties in your readings and draw

error bars in your graphs. Are graphs of Q against A and Q against  

straight lines, within the limits of uncertainty? What significance has the 
Q intercept of each?

DEMONSTRATION
Investigating the variation of potential around a charged sphere
using a flame probe
The flame probe is constructed and the electroscope calibrated as in 
demonstration E4. A triple suspension of nylon thread keeps the ball
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triple suspension 
of nylon thread

football with 
conducting surface

A

Figure E53
Using a flame probe to explore potential near a charged sphere.

stable. The ball should be as far as possible from walls, benches, and
other conducting surfaces.
What changes of potential are indicated as the probe is kept a constant
distance r from the centre of the sphere (i.e., moved around a spherical
surface concentric with the ball)? Explain this result.
How does the potential vary as the distance r is varied? Explain. In
particular, note what happens when r is doubled (or halved). Do this for
two values of r, one of which is equal to the radius of the sphere.
Measure the potential Fat different distances r and plot a graph which
you think will yield a straight line. Deduce what you can about the
relationship between Fand r.

DEMONSTRATION 

E8b Measuring the value of k in V = k—

A potential of rather less than 1000V is suitable, say 500V. The sphere
is charged by touching with a flying lead from the e.h.t. positive
terminal held, as shown, on an insulating handle. This flying lead is then
removed. To measure the charge it is transferred to the coulombmeter
by touching the probe rod to the sphere.
If an earthed hand were nearby whilst the sphere was being charged,
how might this affect the amount of charge stored on it?
Why should the flying lead always be removed before the probe rod
touches the sphere?
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Measure the charge, Q, stored for one or more values of Vand deduce a 
value for the constant k.

This experiment depends on all (or very nearly all) of the charge on 
the sphere being transferred to the coulombmeter. Should the 
coulombmeter's capacitance be large or small compared with that of 
the sphere?

Estimate what percentage of the original charge stays on the sphere 
if the coulombmeter has a capacitance of 10~ 2 uF. (Use C = Q/Vto 
deduce the capacitance of the sphere.)

flying lead held on 
insulating rod

football with 
conducting surface

probe rod

coulombmeter

Figure E54
Measuring the value of k.

EXPERIMENT 
E9 Experiments to test the inverse-square law for electric forces

small proof plane, or ball point pen barrel (to act as insulating handle)
2 metallized polystyrene balls
nylon thread for suspension
lamp, holder, and stand
transformer

either
e.h.t. power supply
or
Van de Graaff generator
or
electrophorus plate, 'rubber', and polythene tile

retort stand base, rod, boss, and clamp
graph paper
glue (Durafix or Evo-Stik 863)
adhesive tape
leads
hair dryer (if air is humid)
balance (optional)
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insulating rod

(a)

ball on 
insulating rod

Figure E55
Testing Coulomb's Law.

1 n n n 1 •-' '-' '-' \

1=3

top pan 
balance

(b)

One ball should be fixed to the nylon suspension using a dab of quick- 
drying glue, the other attached to the insulating handle. Both the nylon 
and the insulating rods should be clean and free of finger grease and 
well dried before, and if necessary during, the experiment using the hair 
dryer. Shadows of the balls cast onto a screen allow the magnified 
movements to be measured without touching the balls.

A pendulum performs simple harmonic motion when displaced. 
How does the sideways (i.e., restoring) force vary with displacement of 
the ball?

Is Foe-3? Use the sideways displacement, d, of the suspended ball to

investigate the force exerted at different separations, r. 
Is FacQi, Q 2? Alter the charge on one ball (how?) to investigate this 
relationship. Knowing the angle at which the ball hangs and its weight, 
how could you find the actual force exerted on it? How could you 
measure the charge on each ball?

It is difficult, but not impossible, to make these measurements and

thus deduce a value for k in F = k—l-^.
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HOME EXPERIMENTS
EH1 The capacitor

Using only household materials, make a capacitor with the biggest 
capacitance to volume ratio that you can contrive. For safety reasons 
your capacitor volume must not be larger than that of a small match 
box.

In order to help you in your design, consider the capacitance 
equation

6,80/1

Consider each variable in turn and decide what must be done to it to 
make the capacitance big whilst the volume of the device is kept small. 
You may recall that er represents the relative permittivity of the material 
that separates the capacitor plates. Use data books to help you to 
determine the best material to use.

Having made your capacitor you will need to find its actual 
capacitance. You might consider using a 'time constant' method - either 
charging or discharging the capacitor through a known resistance, 
plotting charge against time, and using the equation

time constant = CR

Compare your results with others in the class - perhaps on a 
competition basis.

EH2 The potential hill/well
In dealing with certain physical phenomena or events it is very often 
helpful to try to visualize these things in concrete terms that we can 
readily appreciate. The Rutherford model of the atom, for example, 
provides us with an 'image' of the atom which is extremely helpful 
though often incomplete or limiting.

In this task a three-dimensional model of a -5- field may be createdr
and you may find it very helpful. 

On a large piece of graph paper draw a - curve - maybe the graph of

gravitational potential against r.
Put this graph on eleven other sheets of paper and cut out the graph 

- cutting along both axes and the line of the graph so that you have 
twelve graph 'envelopes'.

Stick the vertical axes of the graphs together, and arrange the 
graphs to radiate outwards. This is the skeleton of your potential hill or 
well. Put the skeleton on its wide base and clad the shape in strips of 
paper to make a detachable funnel shape.

When it is placed on its wide base, you see a potential or 'coulomb' 
hill. Holding it with its wide base up you see a potential well.
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Figure E56

80 mm

5000V

Figure E57

+ F-
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Figure E58

QUESTIONS
Uniform electric fields

1 (L) A table tennis ball covered in conducting paint is suspended between 
two metal plates, A and B, which are connected via a galvanometer to 
an e.h.t. power supply. The ball is initially given a positive charge.

a Which way does it move? Why?

b How is the charge on the ball affected when it touches plate B? How 
does it move as a result?

C As the ball continues to 'shuttle' back and forth, what sign of charge 
does plate B lose?

d What sign of charge does plate A gain?

6 In which direction do electrons flow in the circuit (clockwise or 
anticlockwise)?

f In which direction does conventional current flow? 

g Why does the surface of the ball have to be conducting?

h What two factors affect the frequency at which the ball shuttles 
backwards and forwards? How is the frequency altered by changing 
each factor?

i (Harder) Describe and explain what happens if the ball is initially 
uncharged but very near to one of the plates.

2(L) A small charged strip of foil on an insulating handle is held between 
two large charged plates which are connected to a 5000 V supply. The 
plates are 80 mm apart; the angle at which the strip hangs is noted.

The plates are now moved until they are only 40 mm apart, leaving 
them connected to the supply at the same p.d. Will the strip hang at a 
larger angle to the vertical (showing more force on its test charge) or a 
smaller angle (showing less force)?

How strong are the electric fields in the two cases?
To what value must the p.d. be changed to get the same force as at 

first on the charged test strip at the new, smaller spacing?

3(L) This question introduces the volt per metre as an alternative unit for E.
A ball carrying charge Q is moved a distance d by an electrical 

force, F. The force arises from a field created by a p.d. V between the 
plates; the force is the same everywhere between the plates as the field 
is uniform.

a Write down an expression for the energy transformed by the force F in 
moving the ball a distance d.

b Write down the energy transformed when a charge Q crosses a p.d. V.
C Use your answers to a and b to obtain an expression for the force per 

unit charge on the ball.
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d Instead of N C 1 , what other units could be used for field strength?

6 i Express volts in terms of joules and coulombs. 
ii Express joules in terms of newtons and metres. 
in Hence show that V m ~ 1 can be written N C ~~ *.

f i What is the strength of the electric field in experiment E2, where 
1500 V is applied across plates 0.15 m apart? 
if If the force on the foil is about equal to the weight of a 1 mg fly, 
what is its charge? 
iff What would be the force on 1 coulomb?

4(P)a

0.67 mm;

Figure E59
5(P)

6(P)

In the sparking plug of a motor car engine there are two electrodes 
separated by a spacing of about 0.67 mm (figure E59). If air begins to 
ionize when the electric field is about 3 x 106 volts per metre (at 
atmospheric pressure), roughly what p.d. must be applied across the 
electrodes to cause a spark in the air?

The p.d. needed to cause a spark will depend on the gas pressure. 
Explain what effect you think a change of pressure will have on this 
p.d. Is the gas pressure in a motor car engine greater or less than 
atmospheric pressure when the spark is needed?

Some examples of non-uniform fields

Copy the diagrams of different electrodes and on them sketch lines to 
illustrate the shape of the electric fields between them. Draw arrows to 
indicate the direction of the field. Some you may already know; others 
you will have to guess.

0-
(a) (b) (c) (d)

(e) 

Figure E60

(f)

A small, charged ball weighing 10 ~ 3 N is attracted to a charged plate 
as shown in figure E61, and hangs at 45° to the vertical.

a Draw a diagram showing all the forces acting on the ball. 

b Deduce the size of the electric force on the ball.

C If the electric field strength near the plate is 10 5 Vm" 1 , calculate the 
size and sign of the charge on the ball.

Figure E61
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Figure E62

Electric potential

7(E) A 'flame probe' is used to measure potentials between parallel plates 
connected to an e.h.t. supply. The potential is indicated by an electro­ 
scope, whose case is connected to the earthed negative terminal of the 
e.h.t. supply.

a Why is it not practicable to measure an electric field strength by 
placing a charged object between the plates and measuring the force 
on it?

b Why is the flame necessary? What does the electroscope indicate if 
there is no flame?

C No gas supply is available. What could be used in place of the flame?

d What sign of charge does the electroscope acquire during the 
experiment?

6 In which direction does current flow in the wire leading from the probe 
to the electroscope cap?

f Is this current steady?

8(L) A small object carrying charge, + Q, is placed at X between parallel 
plates as shown, a distance x from the lefthand plate (figure E62). In 
this question, vectors to the right will be considered positive, those to 
the left, negative.

What sign has the vector, x, indicating the displacement of the charge 
from O?

In what direction is the force, F, on the charge, and the electric field 
strength, E, at X?

What sign is therefore given to the field E?

As one moves in the direction of increasing x, does the potential 
increase or decrease?

Sketch a rough graph of Fagainst x.
AV

What sign has the potential gradient  -?Ax
Refer to your answers to c and f. Write a correct expression relating

AV 
the field strength, £, to the potential gradient,  .

9(P) Figure E63 shows a scale drawing of the electrodes inside a gas filled 
tube. Gj and G2 are of thin wire gauze and are externally connected.

a Draw a graph showing how the potential varies along the line joining 
C and A.

b What is the strength of the electric field in the three regions CG1; 
GjG;,, and G2A?

C

d

e
f
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Figure E63

C Describe the motion of an electron through these three regions, stating 
its energy (in eV) at C, Gt , G2 , and A. Assume it starts at rest at 
C and does not hit either Gj or G2 .

d (Harder) Suppose another electron ionizes a gas atom in the GjGj 
region and loses 35 eV of energy in so doing. Describe and explain its 
subsequent behaviour.

10(P) The figure shows a full-scale section of equipotentials at 1V intervals 
between two conductors.

On a tracing of figure E64, starting from A on the upper conductor, 
construct a field line until it terminates on the lower conductor. By 
taking measurements, plot a graph of the variation of electric potential 
with distance from A along this line. How can the electric field strength 
at a point be deduced from this graph?

2V

-1 V

70V

Figure E64

11 (E) Figure E65 shows equipotentials drawn on a two-dimensional model 
representing a thundercloud over a churchyard. Assuming the charge 
is evenly spread over the base of the cloud, sketch lines of electric field 
between the cloud and earth on a copy of this diagram.

Comment on the safety of the following locations during a 
thunderstorm:

a On top of the church spire.
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Figure E65

b Inside the church.

C Leaning against the tree.

d In a car.

6 On a bicycle.

f On horseback.

12(L)
ov + 1 kV

Parallel plates and capacitance

Two circular metal plates of radius 0.15 m are placed parallel to one 
another, 50 mm apart. A p.d. of 1 kV is established between them by 
momentary connection to an e.h.t. supply. A high resistance voltmeter 
is to be used to measure the charge on one of the plates, the other 
being earthed.

This is done by transferring its charge, via a thick wire, to a 
capacitor connected across the voltmeter, and measuring the resulting 
p.d.

Estimate the capacitance of the parallel plates.

The experimenter has several capacitors available in the range 10" u F 
to 10~ 8 F. He first chooses the 10" 8 F capacitor.

What is the effective capacitance of the parallel plates and the 10~ 8 F 
capacitor (think whether they are in series or parallel)?

What percentage of the original charge on the plate is retained, not 
transferred?

d Answer b and c if the 10" 11 F capacitor is used and comment on any 
problems or hazards which may arise as a result.

13(E)a Check the accuracy of the following statement. 'If a reed switch is used 
to discharge a 1 uF capacitor through an ammeter 50 times a second, a 
1 mA meter can be used safely if the capacitor is charged to 10 V.'

b What order of magnitude of capacitance can be used in a similar 
experiment, again using 10 V, if the reed switch discharges it 100 times 
a second through a meter which gives a measurable deflection for a 
steady current of 1 uA?

14(P) A pair of horizontal parallel plates, each measuring 0.1 m x 0.1 m, 
0.01 m apart, is connected to a 10 V battery as shown in figure E67.
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0.01 m
I,

-10V

f
15(E)

Figure E67

a What is the electric field strength between the plates?

b Estimate the charge density on the plates.

C How many excess electrons are there on the negative plate?

d Estimate the upward force on a water drop bearing one excess electron 
positioned midway between the plates.

8 Treating the drop as a cube, estimate its 'diameter' if it is held 
stationary.

Approximately how many atoms would it contain?

A 1 uF capacitor is to be made as follows. Long, 50mm wide strips of 
thin metal foil, B and D, and of insulating paper 0.1 mm thick, A and C, 
are arranged in a sandwich as shown (figure E68), and then rolled up to 
make a cylinder. The relative permittivity of the paper is 2.

Figure E69

d 
e

foil—
paper

Figure E6S

At what point in the manufacture does the need for the top sheet of 
paper, A, become obvious?

About how long a sandwich would be needed to get a final capacitance 
of 1 u.F?

Figure E69 shows a small area of the rolled up cylinder in cross- 
section. Now as well as capacitance between 'plates' E 1 and Dj of the 
same layer, there is also capacitance between 'plates' Dj and B2 of 
adjacent layers, allowing extra charge to be stored on the foils for the 
same p.d.

By roughly what factor will the charge stored increase when the 
cylinder is completely rolled up?

How does this affect your answer to b - the total length needed?

Estimate roughly the diameter of the rolled up cylinder. You might 
then compare its size with that of a commercial 'paper' capacitor of 
about the same value.

16(P) Two conducting plates a distance d apart are connected to a battery of 
p.d. V. In figure E70(b) the separation is increased to 2d while the 
battery is still connected; in figure E70(c) the battery is disconnected 
before separation.
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(a)

2d

a In (b) what changes occur in:
i the capacitance, ii the p.d., in the charge stored, iv the energy 
stored, v the electric field in the space.

b In (c) what changes occur in:
i the capacitance, ii the charge stored, in the p.d., iv the energy 
stored, v the electric field.

C Account for the changes in energy in each case.

(b) 17(R)

2d

(0 

Figure E70

A plate of area 2x10 3 m2 is held by a very well insulated support 
50mm above the bench, which conducts well (figure E71). It is charged 
to 4 kV, but its potential drops to 3 kV over 10 minutes. Estimate the 
conductivity of air, assuming that a uniform conduction across the 
plate area is the cause of the leakage. (You may be able to show that 
the question has given you two pieces of data that you need not use.)

"insulating 
handle

bench
-plate

Figure E71

18(R) Figure E72 shows a section through a capacitor microphone; figure 
E73 shows a circuit with which the microphone is used.

I
I
I
I
I
I

ctl cavity

——— protective gauze

——— flexible metal 
diaphcagm

——— fixed metal
plate with holes

——— insulating case

Figure E72

300 V d.c.

Figure E73

The switch is initially closed. If it is opened, and the diaphragm pushed 
slightly inwards, explain what would happen to: 
i the capacitance of the microphone, 
ii the p.d. between B and C.

Explain what would happen if, with the diaphragm still pushed in, the 
switch were closed.

Why is the instrument constructed so that the diaphragm is as close to 
the first plate as possible?
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d What is the time constant of the circuit in figure E73?

e Assuming that the switch is closed, state the changes of p.d. between B 
and C that you would expect to occur if a compression wave moved 
the diaphragm inwards in a time which was: 
i short compared with the time constant of the circuit - say about 
10" 5 s. 

ii long compared with the time constant of the circuit - say about 1 s.

f Two sources of sound, one of frequency 10 kHz, the other 50 Hz, are 
each found to produce the same amplitude of mechanical vibration in 
the diaphragm.
i Why is the amplitude of the resulting variations of p.d. across BC 
smaller for the 50 Hz vibrations than for the 10 kHz? 
ii Explain what change you could make in the circuit to bring the 
amplitude of the electrical output from the microphone, when 
responding to the 50 Hz note, nearer to that produced by the 10 kHz 
note.

(Long answer paper, 1970)

Uniform gravitational field

19(l)a A child of mass 40 kg on a swing loses 0.8 m in height in swinging from 
A to B as shown. What is the child's speed at B? (Takeg = ION kg" 1 in 
this question.)

Figure E74

Repeat a for an adult, in place of the child.
You may have found b more difficult than a if you tried to first 

work out the potential energy of the adult since you were not given the 
adult's mass. However, since in the equation mgh=jtnv 2, the m cancels 
out, it was not required, even for a.

i What is the extra P.E. of each kilogram of the child at A compared
with B?
ii What is the extra P.E. of each kilogram of the adult at A?
in What is the extra P.E. of the adult if his or her mass is 80kg?

Suppose you had to paint on the wall of the playground marks to 
show the P.E. gained by 1 kg at different heights. If you put a mark
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each time the P.E. increased by 10 J how far apart vertically would 
they be? How far apart for 1000 J intervals of energy? (You might need 
a rather high wall!)

6 Suppose you continued painting lines at these vertical intervals all 
over the surface of the countryside. What would the overall pattern 
look like and what would it represent?

20(1) Figure E75 shows several cars parked in a multi-storey car park. The 
floors rise in 5m steps. (Take g = 10Nkg~ 1 .)

|G | ground

Figure E75
B basement

21 (P)

A 'Sierra' has a mass of 1 tonne (1000kg). How much potential energy
does it gain in moving from the ground floor to
i the first floor, ii the fourth floor, Hi the basement?

What is the gain in energy of each kilogram of the car in i, ii, and Hi 
above?

What is the gravitational potential difference between the ground floor 
and i the first floor, ii the fourth floor, Hi the basement?

Write down the gravitational p.d. between i the first and the fourth 
floors, ii the first floor and the basement.

How much potential energy does a 'Fiesta' of mass 800kg lose in 
coming down from the fourth to the first floor?

Figure E76 shows part of the gravitational field near the surface of the 
Earth where g = ION kg" 1 , and is uniform over this small region.

Figure E76

equipotential 
surfaces

300 J kg' 1

—— -
200 J kg" 1 

100 J kg" 1 '

zero

A

r-^"^

Ns

*" line showing 
_ _ direction of 

Earth's 
qravitationat
field

//////////////////////// ///7 /////A
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a How far apart are successive equipotential surfaces drawn in the figure?

b What is the gravitational force on a mass of 5 kg 
i at A, ii atB?

C What is the gravitational P.E. of a mass of 5 kg 
i at A, ii atB?

d How much energy must be supplied to move the mass from B to A?

6 A cannonball of mass 5 kg follows the path ABC shown. At A its speed 
is 20ms" 1 . What is its speed 
i at B, ii at C?

The gravitational inverse-square law

22(P) Figure E77 shows the two lead spheres used by Cavendish in 1798 to 
measure G.

152mm | ------ | a How far apart would the centres of the spheres be to give the
maximum force of attraction between them?

b Calculate a value for G if this force was measured as 6.76 x 10 ~ 6 N.

The next two questions use data from the spaceflight of Apollo 11. 
^—^ This made the first manned landing on the Moon in July 1969. You 

51 mm (mass j can use the data to test whether the Earth's gravitational field strength 
V_x obeys the inverse-square law at quite large distances.
6.22 kg

Figure E77 23(L) On a section of its outward flight, Apollo 11 was coasting on a path
almost directly away from the Earth and well outside its atmosphere. 
Over a period of 6 hours and 13 minutes its distance from the Earth's 
centre changed from 209 x 106 m to 241 x 106 m, and its velocity fell 
from 1527ms" 1 to 1356ms" 1 . The thrust motors were not used 
during this time.

a Why did the velocity decrease, even though the rocket motors were 
not used for forward or reverse thrust?

b What was the average acceleration of the spacecraft over the 22 380 s 
period?

C Without performing any further calculation, write down the average 
value of g (the Earth's gravitational field strength) over this period.

d Newton's Law of Gravitation gives the value of g as    ^~, where

GM x 4.0 x 10 14 N m2 kg " J for the Earth. What value does g have if 
r is taken as the average distance of the spacecraft from Earth 
(225 x 106 m) during the period being considered?

8 The Moon also pulls on the spacecraft. GM for the Moon is
4.9 x 10 12 Nm2 kg" 1 . Calculate its contribution to the field strength

   — ), at the same point (about 150 x 106 m from the Moon). Does
r2 / 

it have a significant effect?
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24(L) Table El gives four other similar pairs of points between which the 
Earth's gravitational pull was the only significant force acting.

Time from
launch

h

03
04

05
06

09
10

19
20

min

58
08

58
08

58
08

58
08

s

00
00

00
00

00
00

00
00

Distance from
Earth's centre
r/106 m

26.3
29.0

54.4
56.4

95.7
97.2

169.9
170.9

Velocity
v/m s ~ '

5374
5102

3633
3560

2619
2594

1796
1788

Mean distance Mean acceleration
r/W6 m g/ms~ 2

Table El

During the whole period covered by the table the spacecraft was 
travelling almost directly away from the Earth with its motors shut 
down.

a Calculate the average acceleration between each pair of points.

b Without further calculation deduce an estimate for the gravitational 
field strength at the mid-point of each interval.

C Plot a graph which enables you to check whether g does vary as  . 

(Think which graph will most easily reveal this.)

Gravitational potential difference, A.Vg, and potential, Vg

Questions 25 to 29 are based on a computer program which calculates 
values of gravitational potential difference from a graph of field 
strength against distance by adding up the areas of strips under the 
graph. It is not absolutely necessary to have seen the computer 
program, for all the data you will need are given with each question.

25(L) Table E2 shows various calculations of the energy required to
transport one kilogram (i.e., the gravitational potential difference, AFg) 
between the surface of the Earth and a distance of 50 x 10 6 m from its 
centre. These have been computed using the number of steps shown to 
calculate the area under a field-distance graph by adding the 
rectangular strips 'under' the graph. The time taken for each 
calculation to be performed by the computer is also shown.

The computer program assumes the field strength g to be constant 
over the full distance given by the step size.

a For which number of steps is this least true? Explain why this leads to 
a poor estimate of A J^,.

b For which number of steps is this most nearly true? Which number of 
steps yields the most accurate estimate of AFg?

C What could be done to obtain an even better estimate
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43.6
21.8
8.73
4.36
2.18
0.873
0.436
0.218
0.087
0.044

218
120
70.3
59.2
55.8
54.8
54.7
54.7
54.6
54.6

<1
<1
"" 1
x2
«3

5
14
26
74
144

Number of steps Step size/106 m gpd(AKg)MJ kg~ J Timetaken/s

1
2
5

10
20
50

100
200
500

1000

Table E2

d What would be the disadvantage in doing this?

6 A precise calculation (or use of a very small step size) leads to a value 
for AVg of 54.52 M J kg" 1 . What is the percentage error in the estimate 
of AVg if just 20 steps are used?

f Which part of the graph - nearest the Earth or furthest away - makes 
the greatest contribution to the error? Why?

26(L) Rocket physicists need to know the amount of energy required to raise 
one kilogram from the Earth's surface to various heights. They might 
use the program to calculate values of AVg between R (the Earth's 
surface) and various distances r2 (from the centre of the Earth). The 
results are shown in table E3. (.R = 6.37 x 106 m; 200 steps are used in 
each calculation.)

r2/106 m

6.371
7

10
14
18
22
30
40
50

0.01
5.64

22.7
34.1
40.5
44.5
49.3
52.7
54.7

Table E3

a Plot a graph of A Vg against r2 .

b Use the graph to estimate the amount of energy required to lift
i a 1000 kg probe from the Earth's surface to a distance of 20 x 106 m
from the Earth's centre;
ii a 200kg satellite from the Earth's surface to a height of 36 x 106 m
above the Earth's surface;
Hi a 1 kg mass from 40 x 106 m to 50 x 106 m from the centre of the
Earth.

C The graph seems to be approaching a limit - it does not continue to 
rise indefinitely. The extra energy required to transport 1 kg from 
50 x 106 m to a very great distance can be worked out. It comes to

Questions 337



about 7.8 MJ. What then is the total energy needed to lift 1 kg from the 
Earth's surface to as great a distance as one would wish?

d Describe what will happen to a 1 kg space probe launched with an 
energy of 
i 50 MJ 
ii 70 MJ 
in an amount equal to your answer to c.

27(L) An interplanetary space convention is being held on a satellite
50 x 106 m from the centre of the Earth. Delegates from Earth are at 
present situated at the distances given in table E4 (r 1 values). The 
amount of energy needed to transport 1 kg from these positions to the 
destination, at 50 x 106 m, has been calculated by computer. These 
values represent the gravitational potential difference, AFg, between the 
two points. (200 steps are used in each calculation.)

6.37 54.7
7 49.0

10 31.9
14 20.5
18 14.2
22 10.2
30 5.3
40 2.0

Table E4

j Plot a graph of AFj, against rt (or use a computer to do this for you). 
ii Why does AVg decrease as r i increases?
in Can you suggest a mathematical form for the way AVg varies with 
T!? (You may be able to test your suggestion by having the computer 
plot a suitable graph.)

f Now plot A Vg ( y-axis) against   (x-axis).
r i

ii Calculate the gradient of this graph (it should be a straight line). 
Hi Measure the intercept on the horizontal axis and compare its value

with   where r, = 50 x 106 m.r2 
iv Suggest an expression for AV in terms of r l and r2 .
(Optional) i Finally plot AVg against I    -I where r2 = 50 x 106 m.

\ r i r2/ 
ii Confirm that this graph has the same gradient as that in b.

d Suppose r2 had been much larger than 50 x 106 m. What effect would 
this have had on the graph in b?

28(L) This question discusses a zero for potential energy.
Suppose the venue of the interplanetary conference was moved to a 

very much larger distance from the Earth. From the original &Vg 
against r2 graph (question 26a), you can see that not much extra
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energy would be needed to go beyond 50 x 106 m to any distance one 
would wish. Suppose that, in question 27, instead of making 
r2 = 50 x 106 m we made r2 'as far away as one could wish'. The 
shorthand for this is oo, infinity.

a What would be the value of ?

b Would there be any difference between the graphs of AFg against l/r1 

and AFg against I      I?

C Express in words what is now represented by AFg.

Delegates from other planets would, of course, have different graphs as 
they would have come different distances through different strengths of 
field. Therefore they would have required different amounts of energy 
per kilogram to reach the same point from their own planets. Yet it 
seems sensible to regard each of them as now having the same amount 
of potential energy per kilogram, or in other words potential. Indeed 
they agree to accept a convention on this: that as far away from all 
their planets as possible any object will be considered to have zero 
potential. Exchanging interplanetary pleasantries, they return to 
their respective homes. Ideally, each need only set off in the right direc­ 
tion: the gravitational pull of the home planet will do the rest. No fuel 
need be used; indeed, kinetic energy is gained on the homeward journey.

d If kinetic energy is gained then what form of energy is lost?

6 If the original potential energy of 1 kg at 'infinity' is agreed to be zero, 
what then is the sign of the potential energy per kilogram (or 
'potential') nearer a planet?

f If AFg between the surface of the Earth and 'infinity' is 62.5 x 106 Jkg" 1 , 
what is the potential at the Earth's surface?

g Look at your graph for question 27a and sketch a graph of
gravitational potential, Fg (with reference to a zero at infinity), against r x .

29(L) This question relates the graph of Fg against r l to a mathematical
expression for Vg which can be found by integrating the expression for 
gravitational field strength:

, , GMyg- ~

Previous work with graphs suggests that AFg varies with distance 
from the Earth according to:

AF«4xl014 |    

a If r2 is infinity, rewrite the expression for A Vg .

b From question 28, the gravitational potential, Vg, at a point is equal to 
AFg but negative. Write down an expression for Vt in terms of r t .
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C Mathematical integration yields the expression      for Vg. Calculate
r i j 

the value of GM for the Earth and compare the two expressions for Vg . \
]

d Calculate the minimum energy which must be supplied per kilogram I
of a spacecraft on the Earth's surface to enable it just to escape from >
the Earth's influence. ]

Potential and energy changes near the Earth

30(L) (Optional) This question uses data from the Apollo 11 spaceflight to
compute changes in energy and see how such changes vary with position. 
The rocket motors were not used over the period for which data 
are given.

Distance from 
centre of Earth 
r/106 m

11.0
26.3
54.4
95.7

169.9
209.2
240.6

1

r

9.09
3.80
1.84
1.04
0.59
0.48
0.42

Velocity 
v/ms" 1

8406
5374
3653
2619
1796
1532
1356

Kinetic energy 
per kilogram 
iv2/106 J kg" '

35.33
14.44
6.60
3.43
1.61
1.17
0.92

Table E5

a We cannot easily measure the change in potential energy per kilogram 
of the spacecraft, so we measure the change in kinetic energy per 
kilogram. How are the two related and what assumption is made in 
thus relating them?

b What is the change in kinetic energy per kilogram between the first 
and last points in table E5?

C What is the corresponding change in potential energy per kilogram? 
(That is, the gravitational potential difference AJ^ between the two 
points.)

d On this 'outward' flight the spacecraft is clearly slowing down. It may 
stop at a distance r0 from the Earth's centre. How much kinetic energy 
would it have then?

6 What would be the change in potential energy per kilogram (AJ/,) 
between the first point in the table and r0?

f Deduce values of AVg between all the points in the table and r0, and 

plot a graph of AVg against  .

Q Find the gradient of the graph and compare its value with GMB 
(ME = mass of Earth).

h Find the intercept on the - axis and from it deduce the distance r0 .
r
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i If r0 had been much larger, say 'as far away as you like', what would 
the intercept have been?

j Suggest an equation which describes the way AVg would vary with r in 
that case.

31 (P) This question uses values of the gravitational potential at different
distances from the centre of the Earth to calculate energies required to 
escape from the Earth. A few values of Vg and r are already given.

GMr/106 m ———/106 Jkg-'
r

6.37 (Earth's surface) -62.5
6.38 -62.4

10 -40
400 (distance of Moon)   1

oo (as far as you like) 0

Table E6

a How much energy is needed to raise 1 kg to a height of 10 km? (Use the 
above data.)

b What force acting on 1 kg would transform this amount of energy if it 
were uniform over the 10 km? Comment.

C How much energy is needed to transport 1 kg from the Earth to a 
distance equal to that of the Moon?

d Why is the energy not equal to the product of 10 N and this distance?

6 How much energy is needed for a mass of one kilogram to escape 
completely from the Earth's influence?

f What velocity would the one kilogram object have to have at its 
launch to achieve this?

g Why would a mass of any size need this same launch velocity?

h Use the - variation of potential to deduce values of V, at distances of r
20 x 106 m, 40 x 106 m, and 80 x 106 m. Hence plot a graph of Fg 
against r from r = 10 x 106 m to 80 x 106 m.

I Find the gradients of tangents at r = 20 x 106 m and 40 x 106 m.

j What is represented by these gradients?

k Find the ratio of the gradients and comment on the result.

32(P) This question asks you to calculate the total potential at various points 
near the Earth and Moon by summing the potentials due to each 
body. Take the mass of the Earth as 6.0 x 1024 kg and its radius as 
6.40 x 106 m. Other data can be found on page 493.

a Calculate first the separate potentials at the surfaces of the Earth and 
the Moon.

b What is the gravitational potential difference between the two?
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C Deduce the difference in gravitational potential energy of a 10 tonne 
(1 tonne = 103 kg) spacecraft on the Moon and on the Earth.

d Calculate the total potential due to the Earth-Moon system at the 
following distances from the centre of the Earth on a line towards the 
Moon:
i The Earth's surface (6.40 x 106 m) 
ii 1.00xl08 m 
in 3.00xl08 m 
iv 3.40xl08 m 
v 3.60xl08 m 
vi The Moon's surface (3.78 x 10 8 m).

6 Using these draw a graph of total potential against distance from 
Earth from 1.0 x 108 m outwards.

f On the same diagram sketch a dotted curve which would represent the 
potential if the Moon were not there.

Q Mark a point X where the overall field strength of the Earth and 
Moon is zero.

h From the graph deduce the minimum energy needed to send the 
10 tonne spacecraft from the Earth to X.

i This is greater than your answer to c. Nevertheless a 10 tonne
spacecraft must be provided with still more energy than this if it is to 
land on the Moon's surface (never mind returning!). Suggest reasons 
for this.

j Use the potential at the Moon's surface to calculate the 'escape 
velocity' for the 10 tonne spacecraft. Why need it be launched with a 
rather smaller velocity in order to return to and make a crash landing 
on the Earth?

k The temperature on the Moon's surface reaches up to 400 K, at which 
temperature oxygen molecules have an average speed of 560ms" 1 . 
Use your answer to part j of this question to explain why the Moon 
has no atmosphere.

The gravitational field inside the earth
33(L) This question shows why there cannot be a field inside a hollow 

sphere. Consider a hollow shell which has a mass per unit area of 
surface (or surface density) of a. The field at P can be deduced by 
adding up contributions from a whole series of pairs of cones (in three 
dimensions) like those shown in figure E78. Let us consider one such 
pair of cones subtending a solid angle 29 at P, whose bases are circles 
on the surface of the shell (figure E79).

a What is the radius of circle Als in terms of r l and 0?

b Deduce an expression for the area of Aj.

C The mass per unit area is a. What is the mass of the disc A.J
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I area of A,

Figure E78 Figure E79

Figure E80

d What is the magnitude of the gravitational field strength at P due to 
this mass?

e Verify that this simplifies to Go-710 2 .

f Repeat a to e for the disc A2 to find its contribution to the field 
strength at P.

Q What is the total contribution of the two discs Aj and A2 to the field 
strength at P? Explain.

h What is the total contribution of all such pairs of discs to the field at 
P?

i Would the same be true if the field were not inverse-square? (Look at 
parts d and e again.)

34(P) This question explores the gravitational field inside the Earth, which is 
assumed to be uniformly dense.

Take a point, P, at distance r from the centre O. The shaded area 
represents parts of the Earth further from the centre than P. See figure 
E80.

This can be thought of as being made up of many thin shells 
centred on O.

a What is the total field strength at P due to all these shells outside P?

b One consequence of the inverse-square law is that the field outside a 
solid or hollow sphere is the same as that produced if all the mass of 
the sphere were concentrated at its centre.

Write an expression for the contribution of the unshaded part of 
the sphere which has mass M, to the field strength g at P.

C Express M in terms of the density p (assumed to be uniform) and 
radius r of the unshaded region.

d Combine your answers to b and c to obtain an expression for g in 
terms of r.

e Sketch a graph showing the variation of g with distance both inside 
and outside the Earth (assuming, as above, that the Earth is of uniform
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Britain

Figure E81

density). Sketch how the graph would change to more truly represent g 
for the Earth where the inner core, mainly of molten iron, has greater 
density than the outer mantle, the crust being the least dense.

35(R) This rather impracticable question ignores the fact that it is rather hot 
deep inside the Earth but imagines a tunnel drilled right through the 
Earth from Britain to Australia (or thereabouts).

a Using the answer to part d of question 34, write an expression for the 
acceleration of an object in the tunnel at different distances r from its 
centre (assuming spherical symmetry and uniform density).

b Deduce that an object dropped down the tunnel will perform simple 
harmonic motion about the centre.

C If the tunnel were pumped free of air, how much energy would be 
required to post a letter to Australia?

d Would more or less energy be required to send a rocket to the Moon 
from the centre of the Earth than from its surface?

Australia 6 How does the gravitational potential at the centre compare with that 
on the surface? How could it be calculated (you need not do the 
calculation)?

f (Harder) Imagine a second tunnel cut as a chord rather than a
diameter from Britain to, say, France. By considering components of 
gravity acting on a train in this tunnel, try to show that it should also 
perform simple harmonic motion.

g How much energy would be needed, in the absence of friction, for such 
a train to go from Britain to France?

h Imagine this (straight) track viewed from the apparently flat surface of 
the Earth. What shape would it appear to be? (Consider the variation 
of depth with distance round the curved surface and sketch what the 
shape of the tunnel would look like. You are not asked to derive a 
precise mathematical expression for the curve.) Comment.

Circular motion 

36(1) Figure E82 shows a ball on a string being rotated in a horizontal circle.

Figure E82

a If the string breaks when the ball is at P, use Newton's First Law of 
Motion to describe the subsequent behaviour of the ball.
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Figure E84

Figure ESS

b If the string does not break, use Newton's Second Law of Motion to 
explain the behaviour of the ball.

C Write a paragraph explaining the operation of a spin-drier without 
using the notion of 'centrifugal' force or without reference to the 
erroneous idea of water being 'flung outwards'. Diagrams will be a 
great help to your explanation.

37(L) This question considers an object moving in a circle of radius r at 
velocity v. The magnitude of its acceleration is calculated by 
considering the (vector) change in v after various decreasing time 
intervals leading to an expression for the acceleration of the object at 
any moment.

Figure E86

(d)

First we consider half a circle, figure E83(a), where the velocity vector 
has simply reversed direction, as shown in figure E84. 
i What is At, the time interval, in terms of the period T? 
ii What is the size of Av, the change in velocity in terms of i>?

Av Hi Since acceleration a=—, derive an expression for a in terms of

velocity, v, and time, T.
iv Since speed is distance travelled divided by time taken, write an
expression for T in terms of r and v.
v Substitute for T in your answer to Hi and deduce that the

,     4 v2 n , A v2
acceleration is  -  or 0.64 2n r . r
Now consider a quarter of a circle, figure E83(b), and the vector
diagram in figure E85.
i What is At now, in terms of 7?
ii From the vector diagram, use Pythagoras' Theorem to deduce Av in
terms of v.
Hi Hence deduce an expression for a and, by substituting for Tas

v 2 
above express it in terms of .

Repeat b for figure E83(c) (a 60° or ;r/3 revolution). The vector 
diagram, figure E86, forms an equilateral triangle.

Now consider movement through a small angle d, figure E83(d). 
i Express At in terms of Tand 8.
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ii On the vector diagram (figure E87) express the arc length PQ in
terms of v and 9. For a small angle 6 this will be nearly equal to the
straight length At;.
in Deduce an expression for the acceleration and simplify it as before.
iv In what direction is the acceleration, relative to the object's
velocity?

6 Look at the expressions for a as the time interval has decreased. They 
should approach a limiting value. Write down an expression for the 
centripetal acceleration of the object at any moment in its motion.

f If it has mass m, write down the centripetal force, F, acting on it.

Q Considering the force as a vector, what addition to this formula 
expresses the fact that the force is inwards?

Satellites and orbits

38(R) Two physicists want to launch a satellite which orbits the Earth with a 
period of exactly one day. (Both realize that the most useful orbit will 
lie above the Equator.) One says it will have to be placed at a 
particular height, the other believes it can go to any height as long as 
its orbital speed is adjusted. They proceed to make calculations ....

a Considering the orbit to be circular, express the speed v in terms of the 
radius r and period T.

b What is the centripetal acceleration required to keep an object orbiting 
at speed v and radius r?

C Express this in terms of r and T.
d Now this acceleration will have to be provided by the Earth's

gravitational field at whatever height the orbit is. Write an expression 
for the acceleration, g, at distance r from the centre of the Earth.

6 Using your answers to c and d deduce an expression for r. Is any value 
of r possible, given the required period?

f Calculate the height to which the satellite must be raised and the 
amount of energy per kilogram required to get it up there.

Q If you wanted the satellite to remain vertically over the same point on 
the Earth's surface, why would this point have to be on the Equator?

h Would a lower orbit mean a longer or shorter period? (Look at your 
answer to e.)

.   v 2 GM
I Rearrange the equation     =   ^~ to express v in terms of r.

Would a lower orbit mean faster or slower motion?

j (Harder) Explain why the action of air resistance or the impact of a 
shower of meteorites will speed up rather than slow down the satellite.

k Discuss the pros and cons of equatorial and non-equatorial orbits, 
thinking of some of the uses to which the satellite might be put.
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39(P) This question shows that a satellite in orbit always has half the total 
energy it would need to escape completely from its orbit.

a Write down an expression for the potential energy of a satellite of mass 
m at a distance r from the centre of the Earth, whose mass is M.

b Write down the centripetal force required to keep the satellite in orbit 
at this radius with velocity v.

C Write down an expression for the Earth's gravitational pull which 
provides this force.

d Using your answers to b and c obtain an expression for the kinetic 
energy (\mv2 ) of the satellite in terms of G, M, m, and r.

6 Compare your answers to a and d and deduce the total energy of the 
satellite. What is the significance of the fact that this energy is 
negative?

f By what factor would the speed have to be increased to allow the craft 
to escape completely from the Earth? Explain.

40(E) Some historians credit Robert Hooke, who was Secretary of the Royal 
Society, with the discovery of the inverse-square law of gravitation. 
Hooke certainly had suggested to Newton in a letter in 1679 that the

centripetal force attracting a planet to the Sun varied as -j , although 

he could not explain why. Hooke then assumed a circular orbit: 

Newton subsequently proved that the orbit of an object under a -j

force would in fact be elliptical, although he 'sat on' the proof for 
twenty years until Halley (of comet fame) questioned him on the 
matter.

This question shows how anyone equipped with a rudimentary 
knowledge of algebra and who knew Kepler's Third Law, already 
published by that time, could have deduced the inverse-square law for 
a circular orbit. r3 

a Kepler's Third Law states that   ̂ is a constant. What do r and T

represent?

b What is the size of the centripetal acceleration of a planet moving in a 
circle at radius r from the Sun with velocity vl

C What is the planet's velocity in terms of r and T?

d By substitution deduce that its centripetal acceleration can be
4n2 r

J expressed as
T

-

/r3 \ 1 
e This can be expressed as 4n2 1  j )  

Use Kepler's Law to show that the acceleration is proportional to -j.
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f If acceleration is inverse-square, how does the force on a planet vary 
with distance?

g Try to find out about the events leading up to Newton's discovery of 
the laws of universal gravitation as outlined in his Principia 
Mathematica.

The inverse-square law

41 (L) This question seeks to throw some light on the inverse-square law.
Imagine a candle illuminating room A (figure E88). Light falling on 

the window leaves the candle as a pyramid (a square-based 'cone') of 
rays. Room B (figure E89) is identical to A, except that everything 
apart from the candle has been scaled up in linear dimensions by a 
factor of 2.

Room A Room B

Figure £88 Figure E89

b 
c

How does the distance, r, of the window from the candle in room B 
compare with the candle-to-window distance in room A?

How does the height of the window compare in B? 

How does the angle 6 of the cone compare?

d How does the amount of light passing through this cone compare?

6 How does the area of the window in B compare with the area of the 
window in A?

f What is the intensity of light from the candle at the window in B 
compared with A?

Q If room C is 3 times the size of A, how will the intensity of the light 
hitting its window compare with that in A?

h What can you deduce about the product (intensity of light) x (area 
through which it passes)?

i Would the same be true if the light intensity did not obey an inverse- 
square law?
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The electrical inverse-square law

42(L) Photographs in figure E92 show the position in which a small charged 
polystyrene ball, suspended like a pendulum as in figure E90, hangs 
when a second charged ball on an insulating rod, seen in figure 
E92(a)-(g), is pushed up close to it. The fine nylon thread used to 
suspend the first ball is not visible.

The pictures were taken with the apparatus in figure E90.

insulating rod

double suspension 
of nylon thread

hanging charged ball

charged ball 
on rod

force, F

Figure E90
Taking photographs of charged balls.

Figure E91
Sideways deflection of the ball.

When the charged ball on the rod is a long way away, the 
suspended ball hangs vertically, in the position shown in figure E92(a). 
As the second ball is brought closer, the suspended ball is pushed to 
the right until there is a big enough sideways force on it to balance the 
repulsive force due to the second ball (figure E91).

a If the sideways force on the suspended ball is doubled, how will its 
deflection, d, change (approximately)? How are d and the force F 
related?

b Measure the deflection, d, and the separation, r, between the centres of 
the balls, for photographs (b) to (g) in figure E92. Plot a graph to test 
whether the sideways force, F, on the suspended balls varies as 1/r2 .

C The balls were given equal charges, each about 5 x 10 ~ 9 coulomb, 
from a high-voltage source. The charging was repeated for each picture 
and the charge was measured by sharing the charge on a ball with a 
0.01 uF capacitor, which was then found, using a high resistance 
voltmeter, to have a potential difference of 0.5 volt across it. Check 
that the charge stated above is correct. The measurements of charge 
indicated that the charge varies by a few per cent on different 
occasions. Would such fluctuations explain any feature of your graph?
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(a)

c

€>

(b)

C

(d)
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(e)

(f)

(g)

Figure E92

Estimate the order of magnitude of the force constant in the equation: 
force between balls

(force constant) (charge on one ball) (charge on other ball) 
(distance between balls)2

The suspended ball weighed 1.1 x 10 ~ 3 newton.
The charge on each ball almost certainly lies between 4 and 6 x 10 ~ 9 
coulomb. Between what limits does this suggest that the force constant 
lies? The usual value is 9 x 109 N m2 C ~ 2 .
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0.1 rad~

43(L) This question suggests why it is often hard to make tests of Coulomb's 
Law work well.

In a test of Coulomb's Law, equal charges were placed on two 
small suspended expanded polystyrene spheres each weighing about 
10 ~ 3 N, which pushed each other aside at an angle of the order of 0.1 
radian (say 5 to 10 degrees), as shown in figure E93.

Coulomb's Law says that:

1CT 2 m 

Figure E93
a 
b

c 
d

44(P)

Also, potential, V= 9 x 10 9 —
r

All the following questions require order of magnitude answers 
only.
What was the electrical force on each sphere?

If the spheres were of the order 10 ~ 2 m apart, what charge did they 
each carry?
What steady current would carry this charge away in 102 seconds?
What was the potential close to one sphere (say 10" 2 m from the 
centre)?
Use your answers to c and d to deduce the resistance which would 
allow the charge to leak away in about 100 seconds.
It follows that if the suspension has a resistance of less than 10 14 ohms, 
which may well be so if the suspension is at all damp, the experiment 
can easily fail.

Two small conducting spheres, each of mass lOmg, are suspended 
from a point by insulating threads 10 cm in length. The spheres are 
given equal charges and repel one another, settling in the position 
shown (figure E94).
Draw a diagram showing the forces acting on sphere A. 

Deduce the size of the electrical repulsion of A by B. 
Deduce the charge on each sphere.

Radial and uniform fields

45(L) This question helps to explain why a collection of charges each having 

a -j field gives a uniform field when made into a flat sheet. Imagine a

carpet of charge made up of small tiles, each carrying charge Q. An 
observer at P, at height h above the sheet, is concerned with the field 
contributed by one tile at the base of a cone a distance r away, figure 
E95(a). The total field strength at P can be obtained by adding the 
contributions of all such cones.
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Figure E96

(a)

Figure E97
Variation of field with distance.

(b)

b 
c 
d

(a) (b)

Figure E95
Field effect from a carpet of charge.

Write an expression for the field strength at P due to the charge on the 
tile at distance r.

P now rises to twice the height, figure E95(b), keeping the cone 
pointing at the same angle.

How far is P now from the patch of tiles at the base of the cone?
What charge is now carried by this patch?

What is the field strength at P (height 2h) due to this patch?
The contribution is the same, whatever the height. Therefore the total 
field at P will be the same, as it is just the sum of the effects of all the 
cones. This assumes that the carpet is big enough for some of the cones 
not to 'miss' it where the height is increased (as does happen in figure 
E96).
In figure E97(a) P is close to a large sheet so that only a few cones, at
wide angles, will 'miss' the sheet if the height is doubled.
i What is the direction of the overall field strength vector at P (figure
E98)?
ii Would the contributions from the missing cones have been large or
small?
in How, approximately, would the field vary close to the sheet?

(c)

Figure E98
Contribution to the field from 
two cones at P.

Questions 353



f In figure E97(c), P is a long way from a small sheet so that many cones 
'miss' the sheet, and the field strength at P is considerably less than it is 
closer in. Guess the way the field strength varies with distance in this 
case.

46(P) The sphere of a Van de Graaff generator 15 cm in radius is maintained 
at a high potential by a moving belt which carries charge to the sphere 
at a rate of 0.5 uA. The Perspex column which supports the sphere has 
a resistance of 3 x 10 11 Q.

a What is the potential of the sphere?
b What is the charge on it?

C What is the electric field close to its surface?

d Estimate how close an earthed hand could be brought to the sphere 
before a spark crosses the gap. (Air conducts in a field strength of 
aboutSxK^Vnr 1 .)

sphere at 
potential V

current I"

-column of 
resistance R

Figure E99

Electrical potential and energy in inverse-square fields

47(R) A simplified model of a uranium nucleus is a sphere containing
92 protons and rather more neutrons, and having a radius of about 
2 x 10" 14 m. If the nucleus releases an a-particle (of charge +2e) 
at its 'surface', estimate:

a the strength of the electric field experienced by the a-particle;
b the size of the repulsive force on it;
C the electrical potential at the surface;
d the electrical potential energy of the a-particle;
8 the kinetic energy of the a-particle when it is a long way from the 

nucleus (express this in MeV where 1 MeV = 1.6 x 1(T 13 J). What
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assumption must you make to deduce this? 
(Charge on proton = 1.6 x 10~ 19 C.)

48(R) This question makes estimates concerning the structure of the
hydrogen atom. Let us suppose that an electron is separated from a 
proton by a distance rQ =0.5 x 10~ 10 m. Calculate

a the electric field strength of the proton at this distance;
b the attractive force on the electron;

C the potential due to the proton at this distance;

d the electrical potential energy of the system in electon volts (eV). 
(leV = 1.6xl(T 19 J.)

0.5 x 1CT 10 m 0.5 x 10~ lo m 
O ——————————— »•< ——————————— »Q

Figure E100 proton electron proton

Now suppose another proton is brought up an equal distance from the 
electron, on the opposite side of it as shown in figure El 00. Deduce:

6 the electric field where the electron is;
f the force on it;

g the potential at this point due to both protons;
h the electrical potential energy of the electron.
i What would the electrical potential energy of the system be if the 

electron were removed?
j What is the total potential energy of this ion (2 protons plus 1 

electron)?
k Comment on the role played by the electron in binding the ion 

together.

49(L) Figure E101 shows equipotentials drawn at 1 V intervals around two 
point charges. The object of this question is to deduce the overall equi- 
potential pattern by adding together the potentials due to each charge.

a On a copy of Figure E101, first identify the contours by lightly 
labelling them 10, 9, 8, ... etc. (The smallest circle represents 10 V in 
each case.) Find the place where the two 4 V equipotentials meet and 
at this place mark a small figure 8 (representing 8 V, the total potential 
at this point). Mark a figure 8 also at all the positions where 5 V 
crosses 3 V, 6 V crosses 2 V, etc. Now, by using symmetry and the fact 
that the equipotentials will be smooth and continuous, try to draw in a 
complete curve joining all the points at which the potential is 8 V. (Use 
felt tip pen, or soft pencil.) In the same way, plot equipotentials at 7 V, 
6 V, etc., as far as you can go, and also for 9 V and 10 V to reveal the 
overall equipotential pattern. What you have drawn is very similar to 
the potential experienced by an electron in the plane of the two 
protons in an H^ ion, with the values scaled down.
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Figure E101

b Now regard one charge as positive and the other negative. On a fresh 
copy relabel the equipotentials +10, + 9, etc. from one charge and 
—10, — 9, etc., from the other. Using the same method as before, 
deduce the overall equipotential pattern. This would represent, for 
example, the potential between two parallel conductors carrying 
currents in opposite directions.

C Remembering that field is always perpendicular to the equipotentials, 
deduce the direction of the electric field in different places and sketch 
in some lines to show its overall shape. (Recall experiments E3 and E5.)
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50(R) A metal sphere, A, is connected by a long fine wire to a source of
potential of 900 V. An insulated stand supports the sphere sufficiently 
far above the bench for the effect of the latter to be negligible.

a The potential 300 mm from the centre of the sphere is 450 V. Find the 
following, showing in each case the steps in your calculation: 
i the potential 500 mm from the centre of the sphere; 
ii the radius of the sphere; 
in the charge on the sphere.

b Another identical sphere, B, connected to the same source, is similarly 
supported with its centre 600 mm from that of the first sphere, A, as 
shown in figure El02.

600 mm 

Figure E102

Would you expect the potential at O, a point midway between A 
and B, to be equal to, greater than, or less than 900 V? Explain why.

(Short answer paper, 1981)

51 (R) (Hard) This question begins to explore the differences between
conducting and insulating surfaces and the usefulness of adding up 
potentials to determine whether there is a field or not.

Suppose the metal spheres in question 50 were replaced by 
insulating spheres which separately had been given a uniform surface 
charge so that the potential on the surface of each was 900 V. These 
spheres are no longer connected to any source of charge.

a What would now be the potential at O in figure E102?
b What would be the potential at X and Y on the nearer and far surface 

of sphere B? How do you obtain these values?
C Would any electric field exist in the sphere B? Why?
d What would happen if B's surface were suddenly coated with 

conducting paint?
6 Would there now be any differences in potential across the sphere B?
f What can you say about the potential at all points on the surface of a 

conductor? What if the conductor carries some charge?

Electrical and gravitational forces

52(E) In question 48b, you calculated the electric force between a proton and 
an electron. It was assumed that this was responsible for holding the 
hydrogen atom together. Could not gravity be a factor here too?
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a Estimate the gravitational force at separation, r0 =0.5 x 10 10 m,
between a proton (mass x 10~ 27 kg) and an electron (mass x 10~ 30 kg).

b What is the ratio of the electric force to the gravitational force at this 
distance?

C Why is the ratio of these two forces the same even if the proton and 
electron were one light-year apart?
The enormous size of this ratio has seemed to be of fundamental 
significance to physicists although no one has yet been able to exploit 
it. Clearly gravity does not hold the atom together. However, could it 
have effect in the nucleus where electric forces between protons are 
repulsive?

d What would be the ratio of electric force to gravitational force between 
two protons'?

e A helium nucleus has two protons and two neutrons. Assuming the 
neutrons are about as massive as the protons, would gravitational 
attraction between the nucleons overcome the electric repulsion?

f The force which does hold the nucleus together must be over 1036 
times stronger than gravity at separations of about 10~ 15 m. Since no 
such force seems to dominate affairs at an astronomical, or even an 
atomic level, what can we say about the way it varies with distance?

53(P) If, as question 52 suggests, electrical forces are so much greater than 
gravitational ones, why do we not experience them much in everyday 
life? This question starts out to answer this problem.

Let us consider a dipole, that is two equal and opposite charges A 
and B, separated by a short distance. (The distribution of charges in 
many molecules leads effectively to this arrangement. An ion pair, for 
example Na + and Cl~, will also show similar properties.) Assuming 
charges of +e and — e, 2xlO~ 10 m apart, we shall consider how the 
electric field strength varies with distance from the dipole, and 
compare this with the corresponding variation for a single charge.

2 x 1CT lo m

Figure E103 10 x i(r 10 m

a First consider B alone, A being removed. Calculate the electric field 
strength at C due to B and call this 1 'unit'.

b D is ten times further from B than C is. Using the inverse-square law, 
write down the field strength in units at D, due to B alone.

C Similarly, work out the contribution to the field strength, in units, 
made by A (remembering the sign of its charge) at C and D.

d Work out the total field strength, in units, of the dipole at C and D. 
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e Calculate the ratio now of the field strength at D to that at C.
f Does the field of the dipole fall off foil owing an inverse-square law, or 

more rapidly? Suggest a reason for this.

g Now imagine many dipoles forming an array of positive and negative 
charges in equal numbers (as for instance in an ionic crystal). Explain 
why the very large electric forces within the array are not experienced 
by charges at some distance from it.

54(R) This question is about gravity and the similarities between gravity and 
electric and magnetic effects.

The passage below sets out three sets of ideas about gravity. For 
each of the sections a to c you are asked to write a more complete 
explanation of the ideas: your explanations may include 
i quantitative calculations to illustrate the ideas, 
ii fuller explanations of the theoretical ideas, 
in discussion of possible experiments.

You should pay particular attention to the words and phrases that 
are in italics in each section.

a There is something peculiar about gravity: it is such a small force that if 
we didn't live on a big lump of matter called the Earth we might not 
notice that it affected human-size objects at all. In fact the simplest 
calculations can show that it is very hard to demonstrate that the effect 
exists between all pieces of matter.

b There is a close analogy between the theoretical ideas involved in 
electricity and in gravity, and this can be of great value in discussing 
such abstract ideas as field and potential. Thus problems such as the 
scattering of alpha-particles by a nucleus and the path of a spaceship 
round the Moon have many similarities though there are also 
important differences.

C However, electrical and magnetic effects are so much bigger, for 
human-size experiments, that they swamp all effects of gravity. The 
fact that when we come to matter on an astronomical scale, gravity is 
by far the most important force is then hard to explain - it must be due 
to electrical neutrality of big objects.

(Long answer paper, 1979)

55(R) Gravity Electricity

Fg=-G^i Force F.-J- g r 4ne0 r

M 1 Qg=-G-^ Field strength E = - —— -j6 r2 4ro0 r2

M 1 QV = -G— Potential V. = - —— -g r 47t£0 r

Potential energy
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This question revises the links between the estimated quantities above 
and some of the differences between electricity and gravity.

a Using the words mass or charge where relevant write down two 
sentences defining electrical and gravitational field strength.

b How can one obtain the gravitational or electrical field strength from a 
graph of the appropriate potential against distance?

C How is the potential difference between two points obtained from a 
graph of field strength against distance?

d How is the potential energy of a mass or charge at a point in a field 
obtained from the potential at the point?

6 What would the gradient of a graph of potential energy against 
distance indicate?

f What does it mean to say that all gravitational forces are negative?
Q Why is there no negative sign in the corresponding electrical

expression, though electric force vectors may sometimes be negative?
h Why is gravitational potential (and potential energy) always negative?

i In a place where the electrical potential is positive (for example, near a 
proton), how could one object have a positive potential energy and yet 
another have a negative potential energy?
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