

General editor.
Revised Nuffield
Advanced Physics
John Harris

Consultant editor
E. J. Wenham

Author of this book
Colin Price

PHYSICS
MICROCOMPUTER
CIRCUITS AND
PROCESSES

REVISED NUFFIElD ADVANCED SCIENCE
Pu1:'11c;:hpnfnr thp Nllffipln-rhplc;:p~ Curriculum Trust

by 1 Im~~~I~llilil
N12435

Longman Group Limited
Longman House, Burnt Mill, Harlow, Essex CM20 2JE, England
and Associated Companies throughout the World

Copyright © 1985 The Nuffield-Chelsea Curriculum Trust

Design and art direction by Ivan Dodd
Illustrations by Oxford Illustrators Limited

Filmset in Times Roman and Univers and made and printed in Great
Britain at The Bath Press, Avon

ISBN 0 582 35423 4

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means - electronic, mechanical, photocopying, or otherwise - without
the prior written permission of the Publishers.

Cover

The photograph on the back cover shows individual gates of a microchip made visible by EBIC (electron beam induced current)
inside a scanning electron microscope. A defective gate (no glow) shows up amongst operating cells (fluorescent glow).

The photograph on the front cover shows the defective cell of the microchip analysed by an elemental analyser built into the
electron microscope. The material distribution at the defective emitter of the cell is mapped by computer on a colour monitor screen
in colours representing relative material thickness.

The width between adjoining tracks in each case is 10 !-Lm.

Courtesy ERA Technology + Micro Consultants/Link Systems

Photographs: Paul Brierley

CONTENTS
PROLOGUE page iv

Chapter 1 A HISTORY OF THE MICROPROCESSOR 1

Chapter 2 THE ELECTRONICS OF A MICROCOMPUTER 8

Chapter 3 RUNNING A SIMPLE PROGRAM 26

Chapter 4 MEMORIES, INTERFACES, AND APPLICATIONS 44

EPILOGUE 75

BIBLIOGRAPHY 75

INDEX 76

.1.

PROLOGUE
This Reader explains how microcomputers work. It does not refer to
anyone computer, but all ideas discussed are relevant to any computer.
It begins with ...

CHAPTER 1 where the history of the microprocessor is traced out from ancient to
modern times. It continues with ...

CHAPTER 2 which looks at the electronics of a microcomputer, building up a simple
machine from scratch.

CHAPTER 3 describes how a small program stored in memory actually gets all the
electronics working, to carry out the programmer's desires.

CHAPTER 4 is about how microcomputers can be used to make measurements and
display results of computations. There are also some notes on computer
memory.

Although no reference is made to any commercial microcomputer, all
the circuits drawn in this Reader were tested by building a small
computer. Any differences between the text and reality are small, and
intended to make everything a little clearer for you. If you know
nothing about these things, I hope you learn something. If you are
already a microprocessor boffin, there will still be some pieces of
interest.

I must thank the Intel Corporation of Santa Clara, California, for
supplying photographs and numerous other data for use in this Reader.
And they make good microprocessors too. Thanks to David Chantrey
for help in correcting the original text, any remaining mistake is my
own.

Colin Price

iv

CHAPTER 1

A HISTORY OF THE
MICROPROCESSOR
SOWING THE SEEDS
The revolution now shaking every aspect of life from banking and
medicine to education and home life began in 1947 in the Bell
Laboratories with the invention of the transistor by Brattain, Bardeen,
and Shockley. This small amplifier (which now in modern memory
circuits can be made very small- 6 Ilm x 6 Ilm) quickly replaced the
large power-consuming vacuum tube. The evolution of the micropro-
cessor from the humble transistor illustrates the relationship between
technology and economics, and also how the technology of electronic
device production is related to the desired applications of electronics at
any time.

For example, it is difficult to build a practical computer which needs
a large number of switching circuits using vacuum tubes. But when the
transistor was invented, the situation at once changed. In the 1950s the
transistor did replace vacuum tubes in many applications, but as far as
building computers was concerned, there still remained the problem of
the myriad of connections which had to be made between individual
transistors. That meant time and materials. Also, studies made in the
early 1950s suggested that only 20 computers would be needed to
satisfy the World's needs. The market did not exist, and technology was
then unable to stimulate it. The solution to the interconnection problem
was the integrated circuit, invented by Jack Kilby of Texas Instruments
in 1958, and Bob Noyce, at Fairchild in 1959.

THE INTEGRATED CIRCUIT INDUSTRY
Manufacturing an integrated circuit (IC) involves the 'printing' of many
transistors, with a sprinkling of resistors and capacitors, on to a wafer of
silicon. Those in the trade call this printing process photolithography
and solid-state diffusion. Using this technology, hundreds of very small,
identical circuits can be made simultaneously on one wafer of silicon.
These circuits are bound to be cheap. But most important is the ability
to print the interconnections between the individual transitors on to the
silicon chip, removing the need for manually wiring the circuit together.
So costs were"again reduced. As reliability of the circuits improved
dramatically, so maintenance costs fell too.

Such economic trends inspired manufacturers to research into
further miniaturization, and in 1965, Gordon Moore, later chairman of
Intel Corporation, predicted that during the next decade the number of
transistors per integrated circuit would double every year. This ex-
ponential 'law' held good, and remained good into the 1980s.The graph
in figure 1.1shows this law, from the first IC of 1959containing just one

1

transistor, through the logic circuits of 1965 and the 4096-transistor
memory of 1971, to the 4 million-bit 'bubble' memory introduced in
1982. Of course the rate of doubling has slowed recently, but there is
still anticipation of further miniaturization.

,,,
~ 4194 304:::Ie
'y 1048576•l:Le 262144
01;;

65536.;;
c
t!.. 16384'0
j 4096
E:::I
Z 1024

256

64

16

4

63 65 67 69 71 73 75 77 79 81
Year

Figure 1.1
Graph showing 'Moore's Law' - the doubling of number of transistors per Ie per year.
The 4-megabit bubble memory introduced in 1982 does not use transistor technology.

As any industry grows and gains experience its production costs fall,
but the IC industry has been unique in achieving a constant doubling in
component density coupled with falling costs. How has this been
achieved? It is due to the IC concept, replacing transistor-based circuits
in traditional equipment, producing smaller, more reliable, easily
assembled devices. Much of the success of the IC industry has come
from stimulating new markets. A good example is computer memory.
Up to the end of the 1960s, computer memory was made from small
rings of magnetic material sewn together by electrical wires. It worked,
but compared with the component densities being achieved in the IC,
the package was bulky. People in the semiconductor industry realized
this, and understood that the requirements of computer memory - a
large number of storage cells connected with a small number of leads -
could be met by specially designed IC chips. Companies were founded
with the sole purpose of memory manufacture, and as miniaturization
continued and prices fell, semiconductor memory became established as
the standard. Thanks to these devices, the large, room-sized computers
of the 1950s and 1960s, with their hundreds of kilometres of wiring,
could be made smaller and more powerful. The mainframe and
minicomputers were born.

2

BIRTH OF THE MICROPROCESSOR
- A SOLUTION TO A PROBLEM
The electronic systems manufacturers of the late 1960s were able to
produce quite interesting products by engineering custom-designed
ICs, each doing a specific job. Several tens or even hundreds of chips
and other components were connected together by soldering them onto
printed circuit boards. As the complexity of designs increased, this
method of production became very expensive, and could only be
employed when large production runs were involved, or else for
government or military applications. A radically different approach to
construction was needed.

In 1969, Intel, one of today's leading producers of microprocessors,
was commissioned to design some dedicated IC chips for a Japanese
high-performance calculator. Their engineers decided that, using the
traditional approach, they would need to design about 12 chips of
around 4000 transistors per chip. That was pushing the current
technology a bit (see figure 1.1) and would still leave a nasty inter-
connection problem. Intel's engineers were familiar with minicomputers
and realized that a computer could be programmed to do all the clever
functions needed for this calculator. Of course, a minicomputer was
expensive and certainly not hand-held. But they also realized that they
had, by then, sufficient technology to put some of the computer's
functions onto a single chip and connect this to memory chips already
on the market. The first microprocessor, the Intel 4004, was born.

But how exactly did this solve the calculator design problem? It was
all a question of how to approach a problem. Instead of the 12
calculator chips, each performing a specific job, one microprocessor
chip would be made which could carry out a few very simple tasks. The
different complex functions needed for the calculator could be produced
by the microprocessor being made to carry out its simple tasks in a
repeating but Jrdered fashion. The instructions needed by the micro-
processor to do this would be stored in memory chips, sent to the
microprocessor, and implemented. Seemingly a long-winded procedure
it could be made to work since ICs can be coaxed along at very high
speeds, needing only microseconds to do a single task.

The implications of this alternative approach were very profound.
The same microprocessor as designed for the calculator could be used
in endless other devices - watches, thermostats, cash registers. No new
custom-designed ICs would be needed, the 'hardware' would remain
intact; only the program put into memory, the 'software', would need to
be changed to suit the new application. Manufacturers would have a
high-volume product on their hands, and soon would have smiles as
wide as a television screen.

Such innovation did not catch on overnight. Intel's 4004, which was
heralded as the device that would make instruments and machines
'intelligent', did not achieve that status. A great improvement came in
1974with the 8080 microprocessor, designed by Masatoshi Shima (who
later designed the Z80 for Zilog, the now famous hobby micropro-
cessor). The 8080 had the ability to carry out an enormous range of

3

tasks (large computing 'power'), was fast, and had the ability to control
a wide range of other devices. The modern version of the 8080, the 8085
(which you can buy for a few pounds) is firmly established as one of the
standard 8-bit processors of the decade. No bigger than a baby's
fingernail, it comes packaged in a few grams of plastic with 40 terminals
tapping its enormous potential (figure 1.2).

Figure 1.2
The birth of the 8085 microprocessor chip.
Intel Corporation (UK) Ltd

RESPONSE TO THE FIRST MICROPROCESSOR
In mechanics, momentum must be conserved; but in the electronics
industry it seems to increase! It had taken only three years since the
introduction of the 4004 for.the total number of microprocessors in use
to exceed the combined numbers of all minicomputers and mainframes.
In 1974 there were 19processors on the market, and one year later there
were 40. Different manufacturers aimed at different markets: RCA
developed a CMOS (Complementary Metal Oxide Semiconductor)
processor, using practically no current; Texas Instruments developed a
4-bit processor for games applications. Advances in design included
putting the memory, input/output circuits, and even analogue-to-
digital converters on the processor chip, resulting in single-chip

4

microcontrollers. Figure 1.3 outlines the development of the industry
reminding us of the reducing size of the elements thereby increasing
chip density.

l) 106

Xl

2a.
2
u
'E
,5
r.!
0
ti
'iiic
~
'0
j
E~z

Year of introduction

(I)

"iQc:uo
C/l'-ee
:lCl

.- (I)" •..
(I) c:E'-

Figure 1.3
Evolution of the technology of making les is shown by the increasingly large transistor
densities being obtained.

By the 1970s between 1000 and 10000 transistors could be put on a
single chip. This medium-scale integration (MSI) was used to make the
4004, 8080, and 8085 processors. Large-scale integration (LSI), 10000 to
100000 transistors on a chip, dominated the market in the late 1970s
and early 1980s. It was used in the production of processors such as the
16-bit 8086 and 8088 used by IBM in their personal computer launched
in 1984. Large-scale integration will be followed by very large-scale
integration (VLSi) as more than 100000 transistors are put on to a chip.
The iAPX 432 contains 225000 transistors and is the product of 20
million dollars and 100 worker-years of development. This processor,
on a single chip, has all the power of a minicomputer which would fill a
wardrobe-sized cabinet. It can execute 2 million instructions per
second.

APPLICATIONS - THE CREATION OF NEW MARKETS
When the initial 4004 development was under way, marketing depart-
ments envisaged the microprocessor as being sold only as minicom-
puter replacements, and made sales estimates of only a few thousand
per year. In 1981 sales of the latest 16-bit processors rose above the

5

800000 mark. Such high sales resulted from the creation of new
markets as microprocessors appeared. The great boom in digital
watches, pocket calculators, and electronic games of the late 1970s is a
good example of such a market. In electronic instrumentation (oscill-
oscopes, chromatographs, and surveying instruments, for example)
which had been a stable, mature market, the microprocessor brought
along a rebirth; instruments not only would make measurements but
analyse the data as well.

It is now impossible to escape from the processor. This is perhaps
most evident in the consumer area: games, inside television sets, hi~fi
sets, and video recorders, and of course personal computers all depend
on them. In medicine the microprocessor directs life-saving and life-
support equipment, and has enabled the modern science of genetic
engineering to develop. In commerce, word processing, telephone
exchanges, and banking systems rely on the microprocessor; indeed,
future developments lie in this area. Complete office units will be
microprocessor based, where dictation, passing interdepartmental
memos, and so on, will all be managed by microcomputers. The
cashless society, where the familiar 'cash..;card' will contain a memory
chip containing details of your accounts, is almost upon us. Super-
markets will no longer have tills but will automatically debit you via
such a card.

Towards the more academic pursuits, Artifical Intelligence is being
seriously researched. Microprocessor-controlled voice-synthesis chips
are on the hobby market and voice recognition and visual shape
recognition are being investigated.

TODAY'S PROBLEMS ARE TOMORROW'S DEVELOPMENTS
Little has been said so far of the software side of the microprocessor
industry. Remember that when the microprocessor was born, so also
was the need to program it, to make it work. The history of the chip, as
described above, is one of increasing complexity and power while
reducing cost. But as the processor became more powerful, so the
complexity of the programs increased. Software became very expensive,
as you will know if you have ever bought games for your own computer.
Different manufacturers have different strategies, but there are two very
obvious ones at the time of writing. Firstly, when a manufacturer has
just marketed a microprocessor, he knows that the programmers will be
busily writing operating systems, compilers, business packages, and the
like; and the research and development departments will already be
busy on the next generation of hardware. Now all of this activity must
be co-ordinated so that programs written on today's machine will be
more-or-Iess compatible with tomorrow's machine, so they can run
with the minimum of change. Such a philosophy will be welcomed by
the buyer of a particular microprocessor system who does not want to
throw out his computer every five years. Of all the manufacturers of
microprocessors around, those who are most successful are the ones
that pursue a policy of open-planned development.

6

The second strategy chosen by some manufacturers is a subtle move
away from software by replacing some programs by special chips
designed to carry out certain functions. In the light of what has been
said, you may think this sounds like going into reverse gear, but I did
say it was a subtle move. A good example is the 8087 Numeric Data
Processor, marketed by Intel. This chip, a microprocessor in its own
right, sits inside a system quite close to the central microprocessor,
which could be an 8086. The 8087 hangs around until a mathematical
job is to be done, anything from adding to computing a trigonometric
function. Then it springs into action, doing the mathematics about 100
times faster than a software program stored in memory.

The microprocessor revolution has touched all of us, from the
company executive who has everything programmable to the farmer in
India who depends on satellite weather pictures. In about a decade, it
has become possible for you to buy, for several pounds, a micropro-
cessor chip as powerful as a room-sized machine; and all of this by
return of post. I hope you will try it out one day.

7

CHAPTER 2

THE ELECTRONICS OF A
MICROCOMPUTER
If you spend a few thousand pounds on buying a minicomputer - a
wardrobe-sized cabinet where the processing is done by several boards
full of medium-scale integrated circuits - or if you spend a few hundred
pounds or less on a microcomputer, where the processing is done by"an
LSI microprocessor like the 8085, then your computer will always have
three types of circuit:

a central processing unit (CPU);
some memory;
input and output devices - keyboard, television screen, printer, etc.

This chapter is about how these three types of circuit are connected
together. We shall think about a small microcomputer, where the CPU
is a microprocessor, just like the one in the laboratory or even in your
home.

GETTING IT TOGETHER - THE BUS CONCEPT
The three circuit types must be connected together; figure 2.1 suggests
two ways of doing this. The first suggestion involves wires between each
device. This may work, but would be clumsy. In the second suggestion,
each device is connected in parallel to a set of wires called a bus.

The bus is drawn on circuit diagrams as a wide channel and, in
reality, consists of many parallel wires carrying signals. Each device -
CPU, memory, keyboard, television screen - is connected to or 'hangs
on' the bus.

(a) television
screen

D
printer

cPU

Figure 2.1(a)
Interconnecting computer devices: wires connect each device.

8

D II
CPU

(b)

_____ ~----- w;'es althe bus

Figure 2.1(b)
Interconnecting computer devices: the efficient bus connection.

It saves a lot of wires, but there isjust one problem. What happens if
two devices put their signals onto the bus simultaneously? This is
shown in figure 2.2, where just one wire of the bus is shown, and two
logic inverters are shown connected. The output of one is high and the
output of the second is low. What happens?

The bus wire cannot be both low and high

Figure 2.2
There is a problem when two devices put different signal levels on to the bus. This
situation must be avoided.

Almost certainly, something will get very hot and be damaged; at
the very least the system will not work. This is called bus contention, and
steps must be taken to ensure that no two devices put their signals on
the bus together. In technical jargon, no two devices may 'talk' to the
bus simultaneously. This is achieved using a type oflogic gate called the
'Tri-State' gate (which is a trademark of National Semiconductor
Corporation). A tristate gate does not have three different logic states,
but is like a normal logic gate in se'rieswith a switch. Look at figure 2.3
which shows a tristate inverter gate. The idea is that a control signal is
able to connect the gate to its output. This is called 'enabling' the gate. If
the enable is low, then there is no output from the gate, neither high nor
low. The gate is in a 'high-impedance' state, meaning that anything
connected to its output does not know it is there. When the gate is

9

enabled, as the truth table in figure 2.3 shows, it behaves just like a
normal inverter.

normal
inverter

input __ -+----1 o------lf---e output

Circuit symbol

enable

input enable output

0 0 Z

1 0 Z

0 1 1

1 1 0

Z means 'high impedance',
i.e., not connected

Figure 2.3
The Tn-State buffer. (Tri-State is a trademark of the National Semiconductor
Corporation.)

To solve our problem of bus contention, tristate buffers are used.
You can think of these simply as switches, many ~fthem controlled by a
common enable. Figure 2.4 shows the beginnings of the computer
system, with the CPU, a printer, and a television screen connected to
the bus. The printer and television screen hang on via tristate buffers.
The CPU contains its own buffers and can hang on the bus when it
wants to.

D
television

screen

control

CPU

printer

control

Figure 2.4
Connecting to the bus via tristate buffers.

10

Look again at figure 2.4. You will see that the buffers' enable
terminals are connected to wires labelled 'control', which must ult-
imately be connected to the CPU. The CPU will decide when either
device will be enabled on to the bus. As you continue reading this
chapter, you will realize that the CPU has a lot of controlling to do, and
its control connections to the various devices on the bus are therefore
sent down the control bus. You will meet the control signals on this bus
one by one.

The situation so far is shown in figure 2.5. We have not given a name
to the top bus; think of it for the moment as an 'information' bus used to
shunt numbers to and fro. So how many wires should be used in this
bus, or put another way, how 'wide' should it be? Well, you know from
binary arithmetic that to write the numbers 0 to 10 in binary, you need
four binary digits or bits. For example 210 =00102 and 910 is 10012.* So
if we only wanted to send numbers from 0 to 10 down the bus, 4 wires
would do. So it was in the days of the 4-bit 4004. But if you want to send
English characters and words down the bus then you need a wider bus.
Taking 8 bits gives at once 28 =256 possible symbols. That sounds a bit
more like it, but there is a bit more to it than that, as we will now see
when we look at computer memory.

information bus,...--------,

CPU

D
television

screen
printer

control bus

Figure 2.5
Addition of control bus provides signals to enable the buffers.

A FIRST LOOK AT MEMORY

The basic requirement of memory is to be able to write some
information into it, leave it there, and come back later to read it. This
can be done with floppy disks, tape, or pencil and paper, but here we are
concerned with the type of memory all computers have, semiconductor
memory. The basic unit of memory is a single storage cell which may
hold binary 0 or binary 1. We will not worry about what electronics
could be in the cell just yet - you probably know one arrangement of
gates or flip-flops that could do the job. It must be possible to read and

* 210 (read as 'two base ten') means 2 in our common base-IO counting system. 00102 (read
as 'one zero base two') = (l X 21) + (0 x 2°) = 210• And 10012 is (1 X 23) + (0 X 22) +
(Ox21)+(l X 2°)=910•

11

D
memory

cell
storing
binary 0

storing
binary 1

Figure 2.6
Cells of RAM (random access memory).

R
o
W

S
E
L
E
C
T

I COLUMN SELECT I
Figure 2.7
Structure of a 256-cell memory chip.

f 3.:
Figure 2.8
Addressing one cell of a 256-cell
memory chip.

12

write from and to these cells, and to choose which cells you are
interested in. These cells, one of which is shown in figure 2.6, form
random access memory (RAM).

To make up a useful memory chip, these cells are packed into a
square array. We shall think about a 16 by 16 cell array (256 cells in
total) for simplicity; a modern 2164 memory chip contains 4 groups of
128 by 128 cells, giving 65536 cells in all! A rather smaller memory
array is shown in figure 2.7.

Controlling the memory cells are two blocks of logic circuits: a set of
row selectors on the side and the column select at the bottom. These
circuits pick out one particular cell from the 256 by specifying on which
one of the 16 rows the cell lives and on which one of the 16 columns it
lives. So, both row and column select have 16 outputs. Now 16 is 24, so
only 4 bits of information are needed to address any of the 16 rows or
columns. That is why each select block is driven by a 4-bit binary
number, as shown in figure 2.8.

Here, the row select is being driven by binary 0100 (410) and the
column select is being driven by binary 0011 (310), so the cell being
addressed is row 4, column 3. (When looking at the diagram, do not
overlook the existence of row 0 and column 0.) In this way, each
memory cell may be specified by two 4-bit binary numbers, and this is
called the address of the memory cell, in this case 0100 001l.

Now that we are able to address memory, we must look at how data
is got in and out of the cells. One way of doing this on the memory chip
is to put some in-out circuits next to the column selects, as in figure 2.9.
This block has a data-in wire and a data-out wire. If data in = 1 and a
write into memory is performed, then the 1 is stored in the cell defined
by the two 4-bit address numbers. Similarly, if the contents of cell 0111
1101 are needed, this address is sent to the select logic, and the contents
of this cell are read out via data out.

data in (0 or 1) data out (0 or 1)

RD WR
control lines

address

Figure 2.9
Additional circuitry to get data in and out of 256-bit memory.

RD
WR

8·bit address

row/column select

in/ 256 cells
out memory

data in/out
(one bit)

iigure 2.10
~epresentation of 256-bit memory as it
lay appear in a manufacturer's
>atabook. Note address lines, data line,
nd read (RD) and write (WR) lines.

To perform reads and writes, the in-out circuits must receive some
control signals, defining READ or WRITE. These come from the CPU
and are put on to the wires labelled RD (read) and WR (write). The
READ and WRITE signals form part of the control bus signals.

The whole memory chip is complete, and is shown again in figure
2.10. Note how the two 4-bit address numbers have been written as a
single 8-bit address. This memory chip will be able to store 256 different
numbers, but each number may be only 0 or 1. As before, to be able to
store numbers and letters we would like to store 8 bits at a time. To do
this we need 8 of these memory chips, as shown in figure 2.11. Each chip
is responsible for storing one bit of an 8-bit word. For example, if we
wanted to store the word 01011011, then the first chip would hold 0, the
second 1, the third 0, and so on. If all the address lines of the chips are
bussed in parallel, then each chip will store its own bit of the 8-bit word
at the same address. That makes life easy. To store an 8-bit number in
memory, you first give an 8-bit address (which each memory chip splits
into two 4-bit row--eolumn selects) and then send the 8-bit data word
whose bits each go to a memory chip.
8·bit address
bus

read/write RD
control WR

8 data wires
form
8-bit data bus

Figure 2.11
Joining 8 of the 256-bit memory chips to make a 256-byte memory boar~. Note how the
data bus is born.

We have rediscovered the bus. The address wires can be taken to the
CPU as an address bus and the data wires as a data bus. If you look
back at the bus mentioned in figure 2.5, which we called an 'inform-
ation' bus, you will now understand that it is really an address bus plus
a data bus. Before we increase the size of the memory one step further,
look again at figure 2.11. Note that the read (RD) and write (WR) wires
are all connected to common, respective, RD and WR lines. That is
because we want all the chips to respond simultaneously to a read or a
write operation. The whole 256-byte memory package can be redrawn.
In figure 2.12 it is shown connect~d to the address bus and, via a tristate
buffer, to the data bus of the computer system. Actually, manufacturers
put the tristate buffer in the data lines on to the chip to make life easy
for constructors. At this point, make sure you understand why there are
no buffers needed on the address lines for the memory joining the
address bus.

13

address busr-----

WR._-1-...,---).... __ --1

256 x 8 bits
memory

AND gates
RD .--...,---)...-----t

enable •..•• ---..l. ~

Figure 2.12
256-byte memory from figure 2.11 shown as a single board with buffer, and control lines,
and logic.

Note also how the enable connection, which controls the tristate
buffer hanging on the data bus as usual, is also ANDed with the read
(RD) and write (WR) connections. If the enable is high, then RD and
WR may perform their functions, but if the enable is low, RD and WR
have no effect and the memory cells remain unchanged. This is useful
when larger memory systems are designed, as you will find out.

MORE MEMORY - DEVICE SELECTION
We have put together 256 bytes of memory quite quickly, but that is not
an awful lot, especially when you consider that a Sinclair ZX home
computer comes with 16 or 48 kilobytes. Before we see how to wire up
larger amounts of memory, there is the vocabulary to be sorted out.
First, an 8-bit number like 01110100 is called a byte. Our 256-byte
memory size is often called a page of memory, and four pages make up
1 kilobyte (or lK, pronounced 'kay' as in 'OK'). Although 4 x 256
= 1024, this is what computer people mean when they talk about lK.
So 64K of memory means 64 x 1024= 65 536 bytes. It may sound like
feet and inches, but at least everyone, including you, knows what it
means.

To make up lK of memory all we need is four 256-byte boards. But
we are only able to address one of these with our 8-bit address bus. To
address the other boards, the address bus has to be expanded. If we
doubled the size of the address bus to 16-bits wide, then we would have
more potential. You may think we would use each of the extra eight
wires on the bus to select a 256-byte memory board. This is shown in
figure 2.13, and would give us a maximum of 8 x 256 = 2048 (2K) bytes
of memory. Each of the extra address lines is connected to the enable
input on a memory board. This would work, but is not normally done,
for two reasons. Firstly, the memory addresses will not be continuous as
you go from one page to another. For example, the second board would

14

have addresses from 001000000000 (51210) to 0010 11111111 (76710),

and the third from 010000000000 (102410) to 0100 11111111 (127910),

There is a nasty gap between 767 and 1024.Secondly, this arrangement
is wasteful of power. There are 28 = 256 possible combinations of 8 bits,
and if these were decoded properly, they could control 256 pages of
memory, i.e. 256 x 256 bytes, the magic 65536 (64K) bytes.
16-bit
address
bus

8 bits
8 bits

I
Figure 2.13
Selecting each memory board using extra address lines. 4 boards from a maximum of 8
are shown. Note that each board shown here, and in all following diagrams, has its own
gates and buffers, as in figure 2.12. E is the enable input connection.

Most computers will employ special decoding chips which will
allow this full use of the 16-bit address bus. The resulting memory
addresses run continuously from 0 to 65536. To apply this technique to
the memory, let us just decode four of the extra eight address bits, giving
us 24 = 16 signals which we can use to select the memory boards. The
chip which does the job is called a 1-of16 decoder, and contains some
sixteen, 4-input NAND gates and a sprinkling of inverters. It has 4
input wires and 16 outputs. Each output will go high for one
combination of inputs on the 4 input wires. Each 4-bit binary code will
cause one output to go high. Figure 2.14 shows the decoder and its truth
table.,

0, E
4-bit 1 C 16 outputs

input 2 0 - only one goes high
0 at any time3 E
R

15

4-BIT OUTPUTS
INPUT

" 1
2 345 6 7 8 9101112131415

0000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0010 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
001 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0100 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0101 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0110 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
01 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1001 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1010 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1011 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1100 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 01 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 2.14
Circuit diagram for a decoder,
and its rather large truth table.

15

If you get the chance, look up 74154 IC in a databook and check the
logic inside it. The decoder's 4 inputs are connected to 4 bits of the extra
address bus, and. the outputs to the memory board enables, only the
first 4 being used here to get our lK of memory.

Figure 2.15 shows these connections. Remember we also had to
decide how to connect the read (RD) and write (WR) control signals.
That is simple, since each memory board only responds to RD and WR
when it is selected by its enable via the decoder. The decoder only
selects one board at a time, so the RD and WR signals only reach one
board at any time. Stated simply, the enable signal overrides both RD
and WR signals.

8 bits16-bit
address
bus

4 bits

o
E
Co
o
E
R

t--------+--t-l~ E

Figure 2.15
Use of a decoder to address memory boards. Here, 4 extra memory lines are decoded,
giving a total of 16 addressable memory boards.

The use of a decoder to select the correct memory board is just one
example of decoding addresses. The same technique can be used in
selecting input and output chips, as you will see. Some commercial
equipment uses this technique for selecting whole subsystems, such as
data acquisition systems, measurement modules, robot control boards,
advanced graphics boards, and the like.

TIMING DIAGRAMS

We have seen how a microprocessor interacts with some memory via
the address and the .data buses and via the RD and WR signals of the
control bus. For the microprocessor to work properly things must
happen at the right time: for example, it is no good sending data along
the data bus to memory, then some time later sending the address where
the data was to be stored. Obviously the correct sequence is first to send
out the address on the address bus, and then send out the data. Finally,
a pulse has to be sent out on WR to actually write the data into the
memory. This is an example of timing.

It is the job of the CPU to do the timing. That is why there is a clock
on the CPU chip producing a square wave of frequency around 2 MHz.
These clock pulses drive complex logic circuits inside the CPU which
decide when to output address, data, RD, WR, and other signals onto
the correct bus. Connecting an oscilloscope with several traces to the
CPU signals is the next best thing to stripping down a CPU and
dissecting its logic. Figure 2.16 shows the format of the display.

16

1 clock period

IE)1
CPU clock signal (3 periods shown)

=>< x= address bus 16-bit

-v \/ data bus a-bit-/' A-

RD (read)

WR (write)

Figure 2.16
The format of a timing diagram. The standard way of drawing various signals is shown;
the lines are the 'axes' of working timing diagrams. RD, WR, and clock signals are
drawn as single lines, since these signals travel along single wires. The buses are drawn as
full bars since these involve up to 16 wires.

The top trace shows the CPU clock ticking away. The next two
traces show what is on the address and data buses respectively. Since
these buses are 16 and 8 bits wide, they are shown as full bars not lines
on the diagram. The crossings at either end show that the bits on the
bus change at that time. At the bottom are the read and write control
lines. In figure 2.16 the CPU is not doing anything, so most traces are
not changing. Here is an example of the CPU being asked to send some
data to memory and write it there. Figure 2.17 shows what the
oscilloscope would reveal as the CPU performed its task. It can be
followed period by period for the three clock periods.

2 3 clock periods

clock

=><'-- a_d_dr_es_s_b_it_s X= address bus

=:)}---~(,-__ da_t_a_bi_ts__ X= data bus

RD

WR

Figure 2.17
Timing diagram for a WRITE cycle. This is easily seen as the WR signal goes high.

Period 1 The address is put on the bus straight away. The data bus is tristated
and disconnected (shown by the,Jine). RD and WR are both low. Eight
of the sixteen address bits reach the memory and another four have
been decoded, selecting the correct memory board. The correct memory
cells are now addressed.

17

Period 2 The data bits are put on to the data bus and the write (WR) line goes
high. The data bits reach the memory chip, where they are written into
memory as WR is high. They are written in the memory location set up
during Period 1.

Period 3 By this time, the data has been written into memory and so the WR
pulse can go low. That is the end of the operation.

Note how, throughout the entire operation, the address bits were
always there on the bus. That made sure the data went into the correct
memory cell.

Perhaps just one more example may help you appreciate the beauty
of the system. Figure 2.18 shows a READ operation, taking data out of
a certain memory address and loading it into the CPU.

2 3 clock periods

clock

=>< ad_d_re_ss •..••><= address bus

=>)-----~(data from memorvC data bus

RD

WR

Figure 2.18
Quite similar to the WRITE cycle shown in figure 2.17, this is a READ cycle, getting
data from memory to CPU. Note how the RD signal goes high.

Period 1 Again, the address is first to be put on. to the address bus. This goes
down the bus, selects the appropriate memory board, enables it, and
selects the cells which contain the desired data. The data bus is tristated.

Period 2 The CPU now issues a READ signal, raising RD to high. Soon after, the
memory responds by putting the byte from the addressed cells on to the
data bus. These pass along the bus into the CPU.

Period 3 The data is now stable inside the CPU and so the RD line is brought
low, completing the operation.

A WORKING COMPUTER
It is worth pausing just a while and assembling all of the work so far
onto one circuit diagram (see figure 2.19). Check that you understand
the functions of the RD and WR signals, and the memory enable
signals. Check that you know why the data bus is 8 bits wide, and the
address bus 16, and check you know how the decoder works.

The final task is to add circuits that will control the input and
output devices: keyboards, television screens, etc. This is described in
the final se9tion of this chapter. The next section is about some more
advanced memory and bus techniques. You could skip this on your first
reading.

18

address bus a

16 =l~II ./
0 board select ..•. I
E IC I0
0 256-byteCPU E
R

In
memory

readlwrite board

RD I /~
IWR

~~ "',,)"
data bus

Figure 2.19
Pausing for breath, here is the state of our computer so far. Check that you understand
how all the control signals work.

BUS MULTIPLEXING - AN INCREASE IN EFFICIENCY

In building up the computer the need for more and more connections to
the CPU is discovered. There are 16 address lines, 8 data lines, and 2
control lines so far. The CPU needs power, giving 2 more lines; a clock
crystal, that is another 2. We are already up to 30 lines, and the
standard Ie package has only 40 pins. If the memory capacity of the
computer is to be increased, that means more address lines. We are
running out of pins. So we have to think about sharing one of the buses.
If we use the data bus to carry both 8 bits of data and 8 bits of the
address, then we need only have an 8-bit address bus. We save 8 pins.
Figure 2.20 shows this arrangement.

16·bit
address bus

CPU

a·bit address

cPU

a pins saved by sharing

Figure 2.20
Sharing the bus. On the left is our bus system as described previously. On the right is
shown how the lower bus can be shared between data and address information.

Of course the data bits and address bits cannot be haphazardly
mixed; the sharing has to be organized. This careful sharing is called
multiplexing.

To see how it is done, look again at the timing diagram for a
WRITE operation, reproduced in figure 2.21. The 16-bit address bus

19

transfers the full 16 bits of address throughout the operation, but the
8-bit data is only needed later on, after the address bits are stable.

So what about putting 8 of the address bits onto the data bus during
the first clock cycle, before the data is put onto the data bus? Then the
16-bit address bus may be shrunk to 8 bits. This multiplexing will work,
and is used in commercial processors.

-v 16-bit address >C..../'----- -v 8-bit address >C-..f\~ -

=:)~-----« 8-bit data >C =x address XI....- __ 8-_b_it_da_ta >C
Figure 2.21
Timing diagrams for WRITE operations; on the left the standard WRITE cycle, showing
a gap on the data bus. On the right is shown how address information is put into this
gap, thus multiplexing the bus.

Of course, another control signal will be needed to say when the
multiplexed address-data bus is carrying address bits, and when it is
carrying data bits. This signal is called ALE. The timing diagram for the
WRITE operation now looks like figure 2.22.

clock

=x'-- 8_-b_it_a_dd_r_es_s >C 8-bit address bus

=x address XI- d_at_a >C 8-bit address-data bus

RD

L- WR

JI ALE

Figure 2.22
Timing diagram for a WRITE operation for a multiplexed bus system. Note how the
ALE pulse identifies when the address-data bus contains address information.

Note how the ALE control line goes high when the address-data
bus contains address bits, and goes low before data bits appear on the
bus. Now, how does memory respond to a multiplexed bus? Not very
well, until it is de-multiplexed at the memory end. Remember that the
memory needs 16 bits of address information throughout the whole
operation. On the multiplexed address-data bus 8 of the address
appear for a moment, then vanish. They must be held on to. This is a
job for a latch circuit.

A typical latch has 8 inputs and outputs and an enable connection.
When the enable is high, the outputs are equal to the inputs; they
'follow' the inputs. But the instant the enable control goes low, the

20

outputs do not change any more, even though the inputs do. This is
illustrated in figure 2.23.

T' our
6~__ ___6
1 E 1

enable
1

(

(00... 1) latched
as enable goes low

)

:=fl=: ~*~:*~~*~,-y-' ,-y-, ,-y-, ,-y-,
1 1-+0 0 0

~
Time going on ...

Figure 2.23
The latch. Going from left to right, the diagrams indicate a few nanoseconds in the life of
a latch: the data input is shown continuously changing. The latch output follows the
input, or is held stable, depending on the enable signal.

If an 8-bit latch is fed with the multiplexed address-data bus,
enabled to let through the address information which appears first on
the bus, then de-enabled, it will hold the address information thereafter.
What is needed is a signal to do this which is high when the address is
on the shared bus. The ALE pulse is the right signal. ALE stands for
address latch enable. See figure 2.24.

to memory
addressing

o

address-data bus

Figure 2.24
How the ALE signal latches the address information, so that it is available to the
memory throughout the complete cycle.

The latched address information is then fed to the memory in the
normal way. That is fine for the address, but the address bits are still on
the address-data bus during the first CPU clock cycle, and so will get
into memory and be taken as clata. Fortunately there is no problem
since data is only written into memory when WR goes high. A glance at
the timing diagram in figure 2.22 will convince you that WR goes high
only after the address bits have disappeared from the address-data bus.

A lot of trouble you may say, but a total of7 pins and a lot of wiring
have been saved, and the speed of transfer has not been reduced.

21

Figure 2.26
Selecting an output device by

decoding one memory address.
The output device looks like a

memory cell to the CPU.

22

INPUT AND OUTPUT

Devices that input bits of information into the computer are vital: to get
the program loaded into memory in the first place, to input users'
commands 'via the keyboard, and to make measurements on the
external (real, no~-computer bussed) world. Similarly, output devices
are needed to drive television screens, printers, and circuits which
control robots making cars.

Many input and output devices transfer their information in whole
bytes, like the keyboard and television shown in figure 2.25. These need
to be hung on the data bus, via the usual tristate buffer. In the case of an
ouput the CPU must select the correct device by pulsing the enable high
while sending out data, on the bus, which is then picked up by the
device.

keyboard select

D
television select

data bus

Figure 2.25
How input and output devices are hung onto the bus via tristate buffers. This implies the
need for more control signals to select the devices.

The only connection to be made is a signal to enable the output
buffer. One way of doing this is to think of the output device as a
location in memory which may be written to by a normal WRITE
operation. In that case, the output buffer can be enabled by a decoded
memory address. Of course, no real memory must live at this address -
that would cause bus contention. The method is shown in figure 2.26. It
has the disadvantage of using up memory space, and needs a large

4

address bus

television
screen

816

D
o
E
Co
o
E
R

CPU

amount of decoding in big systems. It has the advantage of looking like
memory to the CPU. Now the CPU spends most of its time shoving
bytes between itself and memory. So it does that well: it has many
memory-oriented operations which the user may use in a program. If
input-output looks like memory, then these operations can be applied
also to input-output. Input-output devices which are enabled in this
way are called memory-mapped devices.

Most processors are designed with special input and output
facilities so that the input-output circuits are quite separate from
memory. It adds an extra dimension to the computer - ?ften people in
computer laboratories talk about 'memory space' and 'input-output
space', referring to that particular region in the high-speed bussed
dimensions of electrical pulses, where memory or in-out signals rule,
respectively. The special input-output facilities involve another control
line. We shall call this line MilO, meaning memory or input-output.
Note the bar above 10; this is consistent with the following definition of
MilO:

MilO = 1 (high)
MilO = 0 (low)

implies a memory type operation
implies an input-output type operation.

For example, if the number 01011110 is put on to the data bus by the
CPU, then it gets sent to memory if MilO = 1, or else to an output
device if MilO =O.

How can this new line be used to control one single output device, a
television screen as shown in figure 2.27? The television screen is
buffered as usual on to the data bus. Now, remember that the buffer
must be enabled when there is valid data on the bus coming from the
CPU. This is true when the write signal WR goes high. So this is the
signal that must be used. Also, 'this is input-output, not memory, so
MilO must be low. It is easy to see that the enable pulse must be made
from MilO inverted and then ANDed with the WR signal.

CPU
RD t----+----~

WR t----+-----tl....-~

from
address
decoder

D
television

screen

Figure 2.27

Using the memory/input-output control signal (MjIO) to select output device or
memory.

23

M/ra RD WR
type of
operation

0 0 , output
0 1 0 input, 0 , memory write, , 0 memory read

Figure 2.29
Operation types for the allowed

combinations ofRD, WR, and MilO.

24

A glance at the timing diagram in figure 2.28 will confirm that this
will work. The whole diagram refers to an output cycle, so M/IO is low,
and no memory is involved. The data bits to be sent to the television
screen appear on the address-data bus late on in the cycle, at the same
time as WR goes high.

clock

=x"'"-- a_d_d_re_ss >c address bus

=x address X data to TV screen >c. address-data bus

RD

L-- WR high means output

JI'--- _
--, I MjTO low, i.e. input-output

1-1 ----', operation

ALE

Figure 2.28

Addition of the MilO signal to the timing diagram. Here, the MilO signal is low,
implying an input-output instruction. Also, the WR signal is high, implying a write, here
an output instruction.

You can work out how input instructions are carried out using the
read (RD) line to open the buffer on the input device. The table in figure
2.29 summarizes the states of RD, WR, and M/IO for all types of CPU
operation, memory and in-out.

Although thiJ method of using M/IO will give one input and one
output device, rather more power than that is required. The 8086
processor can control 64000 input/output devices! The M/IO line gives
us that potential. Glance again at the timing in figure 2.28. Note that
there is an address on the address bus during the entire operation. Why
is this address not decoded and used to select an input-output device,
just as it was used earlier to select a memory card? That is in fact how it
works. When the CPU executes an OUT or IN instruction, it will send
an address which the programmer can write into the program, thus
selecting the input-output device. This select pulse is combined with
M/IO and RD or WR to enable the device's buffer. The hook-up is
shown in figure 2.30.

One input and one output device are shown. As before, the output
device is enabled by ANDing WR and M/IO inverted, but now it is also
ANDed with the device select signal coming from the 4-bit, 1-of-16
decoder. The input device is enabled by ANDing RD with M/IO
inverted and the device selection pulse. Other input-output devices
would use other selection signals, ANDing with RD, WR, and M/IO
inverted in the same way. With full decoding of an 8-bit address bus, the
system could control 28 = 256 input and 256 output devices. Already
our simple computer has enormous power.

address bus

television
screen

CPU

Figure 2.30
How to drive many input-output devices. Control signals are combined with a decoder
output to select memory, or any input-output device from a large menu.

There are other ways of achieving input-output, notably 'serial'
communication and DMA 'direct memory access'. These will be
described briefly in Chapter 4.

To collect all of this chapter's work together, the fully developed
microcomputer system is shown in figure 2.31, complete with 1K of
memory, in-out, and decoding circuits.

address bus

RD1---------4--1-------41
WR ~-------4--+----'_1_ .•...-"'7"o::::--'

'--__...M....;,VlO-10-l""- .•... -------J

CPU

D
E
C
o
D
E
R

television
screen

Dmemory

Figure 2.31
All the ideas so far assembled to produce this small computer system. Such a system has
been built, and worked first time!

25

CHAPTER 3

RUNNING A SIMPLE
PROGRAM
In Chapter 2 we saWhow a CPU, memory, and input-output devices
communicated with each other using bussed data and address signals,
RD, WR, and ALE signals, all of which did the right thing at the right
time to make the system work. Now these data movements and their
controlling signals do not happen by magic; it is the job of the computer
program, written by you. In this chapter we shall see how a simple
program, stored in memory, is able to make a simple computer run. The
computer is a hypothetical4-bit machine called SAM (Simple Although
Meaningful). SAM employs most of the ideas discussed in Chapter 2,
although it is a bit simpler.

SAM'S HARDWARE

SAM has a 4-bit multiplexed (shared) address-data bus, and the usual
RD, WR, and ALE signals. It is connected to memory only, there is no
input-output device in use at the moment, so we can forget about the
MilO signal. The memory is also simple, just one board, so we do not
have to worry about decoding. SAM is shown in figure 3.1.

RD
WR ,

ALE

CPU memory

"K 4-bit shared bus)
" v

Figure 3.1
SAM.

What is inside the CPU? This is shown in figure 3.2. You can see a
number of registers, which are simple 4-bit memories used to hold
4-bit binary numbers. These communicate with the 4-bit bus via the
usual tristate buffers. The registers are: reg A, reg B, the accumulator, the
program counter, and the instruction register. They all have very specific
jobs to do; for example, the accumulator holds all results of maths-type
operations. The purposes of the other registers will be revealed as you
read on. There are two other important units on the CPU chip; the
AL U or arithmetic logic unit, which does what it says: arithmetic and
logic jobs, like adding, subtracting, ANDing, and ORing. Then there
are the clock and timing, and the instruction register circuits. These
circuits provide the RD, WR, ALE signals and also signals to enable the
register buffers.

26

'-------------t----t-------------i 4·bit bus

tristate buffers

Figure 3.2
SAM's CPU laid bare.

SAM's memory board is shown in figure 3.3. Since SAM is a 4-bit
machine, it has 24 = 16 possible addresses. Eight of these are shown.
Since the address-data bus is multiplexed, there must be an address
latch, driven by the ALE signal, and also a tristate buffer between the
memory data lines and the bus. These are shown in figure 3.3.

address line

4-bit memory

MEM

-

1
ALE .-j I

RD g~ -+--
~l

internal
data bus

address latch

data buffer

4·bit bus

Figure 3.3
SAM's memory laid bare.

THE PROGRAM LIVES IN MEMORY
On any computer when you type in a line of BASIC like A = A + 1, the
program is stored as a series of bits at particular memory locations.
SAM stores everything as 4-bit numbers, for example the operation of

27

adding is represented by 1111. Figure 3.4 shows this instruction stored
somewhere in SAM's memory. A whole program, made up of more
instructions plus some data, is stored in memory as a long list of 4-bit
numbers.

other instructions
or data

-
--0 1 1 0

1 1 1 1-- -- 0 1 0 1-- 0 1 1 1

4-bit memory

instruction ADD

Figure 3.4
A section of memory, showing the instruction for addition in one memory location.

How does the CPU actually execute a program? First, it must fetch
the instruction from the memory, by READing memory. But how does
it know which memory location to read next? This is the job of the
program counter register in the CPU, which holds a 4-bit number - the
address of the instruction to be dealt with next. When SAM is switched
on, the program counter (PC) is reset to 0000. As the program runs, so
the PC is incremented, usually fairly steadily, as shown in figure 3.5.

PC~
1------1

points to zero
at power-up

PC~
1-------1

~

addresses
(in binary)

~
0000
0001
0010
001 1

... later ...

PC

... later .. ,

Figure 3.5
Showing how the program counter points to memory locations. Low memory addresses
are near the top.

Some instructions like JUMP or CALL SUBROUTINE may send
the PC bouncing around anywhere within memory. Wherever the
instruction comes from, the CPU now has to interpret it, and execute it.

28

INTERPRETING THE INSTRUCTIONS

The instruction 1111 (addition) is fetched from memory and is loaded
into the instruction register. Instructions always go into this register.
From here, they pass into the instruction decode logic. The number
1111 is interpreted as an addition, so an enable signal is sent, for
example, to the ALU to tell it to do an addition. The actual guts, the
logic circuits inside the instruction decoder and inside the ALU, are too
complex to describe here, but if you are keen, get hold of data sheets for
the CD40181 or CD4057 circuits, made by RCA, and have a look at
these.

A SELECTION FROM SAM'S INSTRUCTION SET

Here is how to write a small program for SAM to add two numbers.
This program will be made up of a few simple instructions. We must use
the 1111 addition instruction, but also we will need other instructions
to move data in and out of memory. Begin by looking at a MOVE
instruction, represented by 0010.

move immediate data
to reg A

MVIA 0010

i
what the

instruction does

1
mnemonic

i
op-code

The 4-bit number 0010, which the instruction decoder interprets as
a 'move', is called the operation-code or op-code. The abbreviation for
the move, MVI A, is called the mnemonic. But what does this particular
MOVE instruction do?

When the CPU fetches 0010 from memory, the instruction decoder
tells it that it must look at the immediately following memory location.
There, it will find a 4-bit number, say 1100, which it must move into
CPU register A. This is illustrated in figure 3.6.

PC ~ 0 0 1 0 MVI A instruction

0 0 data
reg A

1 1 :;-1 1 011 0

Figure 3.6
MVI A instruction. The instruction 0010 causes the next number, 1100, to be moved into
register A.

29

The number moved into register A immediately follows the MOVE
instruction in memory. That is why 0010 is a MOVE IMMEDIATE
instruction, represented by the mnemonic MVI A. Care has to be taken
in preparing for the next instruction in memory. The PC started out
pointing to the MVI A instruction. If the PC were incremented by one,
it would then point to 'the data, the number 1100. If that happened, the
CPU would think 1100 were another instruction and things would go
wrong. So the PC must be incremented twice, to skip over the data
number. See figure 3.7.

(

PC
PC must
skip

~ 0 0 1 0

1 1 0 0
---7 0 0 0 0

instruction MVI A

data

next instruction (STOP)

Figure 3.7
The program counter must be incremented twice in all 'immediate' instructions, to skip
over the data number.

There is a second 'immediate' -type instruction, which is SAM's
addition, 1111.

add immediate data to ADI data 1111
the accumulator

When the CPU fetches 1111 from memory, the instruction decoder
knows it must perform an addition. It also knows the number to be
added to the accumulator is contained in memory immediately after the
1111 instruction. Figure 3.8 shows the situation. Again, the PC must be
incremented twice to skip over the data number, here 0001. This
double-increment is true of any 'immediate' -type instruction.

PC 1 1 1

000
data

11 0 0 0 I accumulator ... before

11 0 0 1 I···and after

Figure 3.8
AD! instruction. The number 0001, following the AD! instruction, is added to the
accumulator, and the result is stored in the accumulator.

30

The accumulator is a very useful register, since it has access to the
ALU, and any data put into the accumulator can then be subjected to
arithmetic and logic operations. So instructions to move data in and
out of SAM's accumulator are vital. First, how to get data into the
accumulator from memory.

move memory data into Mav M-+Acc 0110
accumulator, via reg A

In the same way as the ADI instruction, the accumulator is expected to
receive data. But, unlike the immediate instruction, the data is not in the
following memory location. So where is it? The address of the data to be
moved into the accumulator is contained in register A. In figure 3.9,
register A has previously been loaded with the number 0111. When the
CPU executes an Mav M -+Acc instruction, it first looks at register A
to find out which memory location contains the data. The CPU then
gets the data, here 0001, from that location, and puts it into the
accumulator. This way of moving data is quite useful, since data may be
got from any memory location using just the one Mav M -+Acc
instruction, by changing the address stored in register A.

PC 0 1 1 0 1 instruction MOV M-Acc found

accumulator
0101

011 0
0111 000 1

l' 3 data moved into
accumulatormemory

addresses

Figure 3.9
The instruction MOV M-+Acc. Note how register A must be interrogated, to get the
address from where the data is to be obtained.

Perhaps a second example of this way of doing things will help you
see what is going on. This is the reverse instruction to the above, moving
data out of the accumulator into memory.

move accumulator data MaV Acc-+M 0111
into memory, via reg A

Here the number stored in the accumulator, which could be the
result of an arithmetic operation, is to be put into memory somewhere.
The destination of the data is an address stored in register A. Look at
figure 3.10. Here the number 0011 in the accumulator has to be moved
into memory. The address where it is to go, 0101, has been previously

31

Table 3.1

loaded into register A. So the CPU looks first at reg A, gets the address
0101, and stores the data 0011 there, by a WRITE operation.

PC 0 1 1 1 1 MOV Acc --+ M instruction found

accumulator
0101 0 0 1 1

3 data moved

Figure 3.10
MOV Acc- M instruction. Again, note how register A must be interrogated for an
address; this time the address is where the data is to be written.

That completes the instructions we shall need for our program in
the next section, with the exception of one final instruction, which in
fulfilling itself, needs no explanation.

stop STOP 0000

A SIMPLE PROGRAM TO ADD TWO NUMBERS

In rough outline, a program to add a number 610 in memory to another
number 510 somewhere else in memory, and put the result 1110 back
into memory would look like this:

1 Get the number 610 and put it into the accumulator.
2 Get the number 510 and then add it, putting the result back into the

accumulator.
3 Put the accumulator contents back into memory.

This program is shown nicely assembled in memory in Table 3.1.
The two columns of 4-bit numbers show the instructions/data and the
addresses where they are stored.

EXECUTE cycle number
(These numbers correspond
to those in the titles of
figures 3.15 to 3.25) Mnemonic

Op-code
or data

(*indicates
data) Effect of instructionAddress

2
3&4

5
6

MVIA 0000
0001
0010
0011
0100
0101
0110
0111

Move the number 0111 into register A, ready to be used as
an address.
Move memory contents into accumulator.
Add the number 0101 (510) to the accumulator, and put
result in accumulator.
Move accumulator contents into memory.
Stop.
Data 0110 (610) to be added.

MOV M-Acc
ADI

0010
0111*
0110
1111
0101*
0111
0000
0110*

MOV Acc-M
STOP

32

The program in detail looks like this:

Execute cycle number

The number 0111 is put into reg A, where it will be used as an address in
the MOV M -+ Acc instruction in EXECUTE cycle 2, and the
MOV Acc -+ M instruction in EXECUTE cycle 5.

2 The contents of memory whose address 0111 is in reg A is moved into
the accumulator. So 0110 (610) ends up in the accumulator.

3 and 4 The number immediately following the ADI instruction, the number
0101 (510), is added to the accumulator, and the results stored in the
accumulator.

5 The accumulator contents 1011 (1110) are moved to memory whose
address (0111) is in reg A.

6 Stop. The computer comes to a halt.

The memory location referred to by reg A which initially held the
number 610, ends up receiving the result (1110).

RUNNING THE PROGRAM
Now you are familiar with SAM's instructions, and have seen the
assembled program, we come to the real task of this chapter: looking in
detail at data flows and signal changes as the program is run.
Remember from Chapter 2 that the CPU contains a clock, and three
clock periods are needed to carry out either a READ or a WRITE
operation. These two operations are all that is needed to run the
program. Remember that the instructions live in memory, so each
instruction has to be FETCHed before it can be EXECUTEd. This
gives us two cycle types, FETCH and EXECUTE, which run in
sequence as shown in figure 3.11.

1 clock
period

~
CPU clock

FETCH I EXECUTE FETCH I EXECUTE FETCH

1st instruction)!< 2nd instruction '3rd instruction

Figure 3.11
Showing how each instruction is made up of FETCH and EXECUTE cycles, which in
turn are made up of three CPU clock periods.

What actually goes on during the EXECUTE cycle depends on
what instruction is being executed. But the FETCH cycles are always
the same for any instruction; so begin by looking at a fetch cycle.

33

The FETCH cycles

FETCH cycles, which get instructions from memory, are each made up
of three clock periods. Preceding EXECUTE cycles, FETCH cycles
always involve the same movements of data and changes in control
signals, so we need to look at only one FETCH cycle. Figures 3.12 to
3.14 show what happens during each of the three clock periods making
up one FETCH cycle. In each of figures 3.12 to 3.25 shading shows
where data is being transferred, and where changes in registers are
happening.

FETCH cycle, clock period 1
When the computer is switched on, the program counter points to
memory location 0000. This is the place where the first instruction of
the program lives, in this case instruction 0010, which is a MOVE
IMMEDIATE instruction. So during clock period 1, the contents of the
program counter are put on to the bus by a signal from the clock and
timing circuits. These circuits also send an address latch enable (ALE)
signal to the address latch, which latches the address 0000 from the bus.
The address latch then points to address 0000.

CPU MEM

, 0 0 1 0
o 1 1 1
o 1 1 0
1 1 1 1
o 1 0 1
o 1 1 1
o 0 0 0
o 1 1 0

Figure 3.12

34

FETCH cycle, clock period 2
During the second clock period of each FETCH cycle, the program
counter is incremented. This is a sort of forward-planning; it gets ready
for a future data transfer, or for the fetching of the next instruction.
Note how ALE remains low and how the program counter buffer is not
enabled, so the new value in the program counter is not on the bus, and

Figure 3.13 the address latch still points to the memory location 0000.

CPU MEM

001 0
o 1 1 1
o 1 1 0
1 1 1 1
o 1 0 1
o 1 1 1
o 0 0 0
o 1 1 0

FETCH cycle, clock period 3
Here the instruction is fetched from memory. The clock and timing
circuits send a READ signal to memory. Since the address latch points
to memory location 0000, this READ signal puts the contents of this
location, the instruction 0010, on to the bus. The clock and timing
circuits also enable the instruction register buffer, allowing the instruc-
tion 0010 into the instruction register.

That is the end of the first FETCH cycle. The instruction 0010
Figure 3.14 (MVI A) is now in the instruction register waiting to be executed.

CPU MEM

35

The EXECUTE cycles

During EXECUTE cycles, the instruction which has been fetched into
.the instruction register causes various buffers to open and close, RD
and WR signals to be generated, and data to be shunted around. These
signals, and their timing, are controlled by the instruction decoder
working with the clock and timing circuits. We will not be concerned
with how these signals are produced, but will simply observe the effect
they have on buffers and registers as our program runs.

As you study the following diagrams, refer constantly to the
program outline, table 3.1. (There is a copy of table 3.1 on the last page
of this book.) On a first reading, take them fairly quickly, leaving a
detailed study for a second pass. Also, remember that between each
EXECUTE cycle there is a FETCH cycle, but this has not been drawn.

First EXECUTE cycle MV} A, clock period 1
The number immediately following is to be loaded into register A. To
do this, the address of this number must be loaded into the address
latch. The instruction decoder enables the program counter buffer,
putting the contents of the program counter (0001) on to the bus. The
address latch is enabled, via the ALE signal, and the address 0001 is
loaded into the address latch. The address latch now points to the
immediate memory location, containing 0111.

CPU MEM

o

o

Figure 3.15

36

First EXECUTE cycle MVI A, clock period 2
During the second clock period of this EXECUTE cycle, the program
counter is incremented. Nothing else is done. This is in preparation for
the next FETCH cycle, which will fetch the instruction 0110 which lives

Figure 3.16 at address 0010.

CPU MEM

001 0
o 1 1 1
o 1 1 0
1 1 1 1
o 1 0 1
o 1 1 1
o 0 0 0
o 1 1 0

First EXECUTE cycle MVI A, clock period 3
Now the execution actually happens, the number 0111 is moved into
register A. To do this, the instruction decoder sends a read (RD) signal
to memory which puts the data 0111 on to the bus. Remember, the
address of the memory location which is read was set up during clock
period 1 of this cycle. The instruction decoder also enables register Ns
buffer, loading the data 0111 into register A. This completes the first

Figure 3.17 EXECUTE cycle.

CPU MEM

o

o

37

Second EXECUTE cycle MOV M--+Acc, clock period 1
The instruction 'Move the contents of memory into the accumulator'
has been fetched into the instruction register. This has code 0110. Now
this instruction must be executed. Remember that the address from
where the data must be read is held by register A. So this address must
first be loaded into the address latch. To do this, the instruction decoder
enables register Ns buffer, thus putting the address DIllon to the bus.
The instruction decoder also sends out an ALE signal which loads this
new address into the address latch. Memory location 0111 is thus

Figure 3.18 addressed.

CPU MEM

001 0
o 1 1 1
o 1 1 0
1 1 1 1
o 1 0 1
o 1 1 1
o 0 0 0
o 1 1 0

Second EXECUTE cycle MOV M--+Acc, clock periods 2 and 3
Here, in two clock periods, the contents of memory location 0111,
which is the number 0110 (610), is moved· into the accumulator. The
instruction decoder sends a read (RD) signal to memory putting the
number 0110 on to the bus, and then it enables the accumulator's buffer,
allowing the number 0110 to pass into the accumulator. This is the end
of the second EXECUTE cycle, which has loaded 0110 into the

Figure 3.19 accumulator, as directed by register A.

CPU MEM

38

o

o

Third EXECUTE cycle AD I, clock period 1
The instruction which has now been fetched into the instruction
decoder has code 1111. This is an ADD IMMEDIATE (ADI) instruc-
tion. Note how the program counter has been incremented, as usual,
during a FETCH, and now holds number 0100. Now the program
counter is enabled on to the bus, by the instruction decoder, which also
sends out an ALE signal to enter the contents of the program counter,
0100, into the address latch. The immediate number (after the ADI
instruction), 0101, which lives at address 0100, is now addressed, ready

Figure 3.20 for the addition.

CPU MEM

o

o

Third EXECUTE cycle ADI, clock period 2
Since this instruction is an 'immediate' type, the program counter must
be incremented to skip over the data number 0101, ready for the next

Figure 3.21 instruction.

CPU MEM

39

Third EXECUTE cycle ADI, clock period 3
If you look at the structure of SAM's CPU, you will see that the arith-
metic logic unit (ALU), which is about to perform the addition, works
on two numbers, one in the accumulator and the other in register B.
That number must get into register B, and that is what happens during
this clock period. The instruction decoder sends a read (RD) signal to
memory, reading number 0101 on to the bus. It also enables register B's

Figure 3.22 buffer, letting the number 0101 off the bus and into register B.

CPU MEM

a
a

The program is now ready for the addition, but all three clock periods
of this EXECUTE cycle are used up. The instruction decoder knows
this (it knew it as soon as the instruction was fetched), and so it enters a
new EXECUTE cycle.

Fourth EXECUTE cycle ADI, clock periods 1, 2, and 3
In this second EXECUTE cycle for the instruction ADI, the instruction
decoder, together with clocK and timing circuits, move the numbers
from register B and the accumulator, ask the ALU to add them and put
their sum into the accumulator. The accumulator now contains 0110
+0101 which is 1011. Note that in SAM there is no provision for
overflows such as you would get if you instructed SAM to add 1111

Figure 3.23 +0001. Real microprocessors do have such a provision.

CPU MEM

40

Fifth EXECUTE cycle MOV Acc-+M, clock period 1
The result of the addition, now in the accumulator, must be written
back into memory at address 0111. The 'Move accumulator into
memory' instruction achieves this. Remember that the address of the
memory location where the number is to be written is contained in
register A. So, during clock period 1 of this instruction, the instruction
decoder enables register Ns buffer which puts the number 0111 on to
the bus. The instruction decoder also sends an ALE signal to memory
which latches 0111 into the address latch. Memory location 0111 is now
being addressed. This is the location that will receive the result of the

Figure 3.24 addition.

o

CPU MEM

o
1 1
o 1

Fifth EXECUTE cycle MOV Acc-+M, clock periods 2 and 3
During these last two clock periods of this EXECUTE cycle, the data in
the accumulator is moved into memory location 0111. The instruction
decoder enables the accumulator's buffer, so putting the accumulator's
contents, 1011,on to the bus. Also the instruction decoder sends a write
(WR) pulse to memory which writes the data 1011 into memory
location 0111, this address being stored in the address latch. Note that
the number 1011 is written over the previous occupant of this address,

Figure 3.25 the number 0110, without first having to clear out the memory location.

CPU MEM

41

That is the end of the program, except for the STOP cycles. This
instruction, which has code 0000 lives at memory address 0110. A
glance at the program counter in figure 3.25 should convince you that
the program counter holds this address.

As described in Chapter 2, computer engineers work extensively with
timing diagrams, showing data transfers and control signal changes all
on one diagram. To draw a complete timing diagram for the program
we have just run through would take a very long piece of paper, but
figure 3.26 shows the first three machine cycles for this program. The
FETCH and EXECUTE cycles for the first instruction MVI A are
drawn, and then the FETCH cycle for the second instruction
MOV M~Acc is drawn. This diagram corresponds to figures 3.12 to
3.17, plus a second FETCH cycle.

You see how the bus first transfers an address to memory, the
contents. of the program counter, which is 0000. Note how the ALE
signal goes high to latch this number into the address latch. Then,
during the second period the bus is floated - there is nothing on it. This
is when the program counter is being incremented. In the third clock
period, there is data on the bus, and since the read (RD) line is high, the
CPU is reading this data from memory. This data is of course the
instruction which is being fetched, 0010, which is an MVI A instruction.

FETCH cycle # 1 EXECUTE cycle # 1 FETCH cycle # 2

clock

bus

RD --IIlL.. ----JIlL- IlL- _

WR ----------------------------------

ALE -rlL..- --<IlL.. --JIlL.. _

Figure 3.26
The state of the bus and control signals during the first three machine cycles of our
program ..Note how RD and ALE signals form a regular pattern.

There then follows an EXECUTE cycle. The CPU puts an address
on the bus, latched into the address latch by ALE going high (this
corresponds to figure 3.15). During the second clock period, the bus is
again floated while the program counter is incremented (figure 3.16).In
the third clock period of the EXECUTE cycle, data are again present on
the bus, and since RD is high, this is being read from memory by the
CPU. This corresponds to figure 3.17, where this data, the number
0111, is being read into register A.

42

The second FETCH cycle runs just like the first. Note the new value
of the address on the bus (0010) since the program counter was
incremented during the EXECUTE cycle.

You should be able to see already a nice, organized pattern of data
or address transfer and control signal variation. If you are feeling brave,
why not complete a timing diagram for the entire program? If you do
decide to have a go at completing the timing diagram, the following
hints will be useful:

a Keep the ALE pulses appearing at regular intervals. Also keep RD (or
WR) pulses appearing at regular intervals.

b During EXECUTE cycles 2 and 5, there is no increment in the program
counter. Program counter increments are performed during clock
period 2 of both FETCH and EXECUTE cycles, so EXECUTE cycles 2
and 5 must look like any other EXECUTE cycle, except that clock
period 2 is a 'dummy', and the actual executing takes place, as usual,
during the third clock period.

I hope you have got an impression of a lot of organized timings and
efficiency behind this simple program. An integrated-circuit micropro-
cessor system is certainly integrated in more ways than one! Just how
real is SAM? Quite real: it is possible to build a machine that will work
just as described. The CPU 'architecture', how many registers, and how
they are connected on the CPU chip, is probably underdeveloped in
SAM; a typical 8-bit CPU chip will have seven or eight 16-bit registers,
and a 16-bit CPU has to have a very sophisticated architecture. In their
instruction sets, these processors may have tens of instructions dedi-
cated to moving data between registers. And of course we have not
talked about input-output. Different manufacturers have various
philosophies of CPU architecture, but the notions we have been
discussing, such as RD, WR, ALE, and the work in this chapter are
common to most.

The CPU has executed a STOP

Working through these diagrams of data shunting to and fro along a
bus, you may have noticed a similarity to a certain type of puzzle. Have
a go at one: the two black cars (figure 3.27) want to go to the right and
the three white cars want to go left. There is a passing place big enough
for just one car. What should the cars do? Yes, cars do have reverse
gears don't they?

____ I.--- .--- ,---
~~~

Figure 3.27
Five cars on a data bus. Work out how they must move on the bus and into the 'parking'
register, so they may pass in the directions shown.

43



CHAPTER 4

MEMORIES, INTERFACES,
AND APPLICATIONS
This chapter contains some short notes about some specific parts of a
microcomputer system, such as memory technologies, and also some
applications information suitable for a small physics or engineering
laboratory.

MEMORY TYPES

Read only memory (ROM)

Read only memory (ROM) is the simplest type to understand. ROM
cells can be read only by the application of RD signals; the user of the
computer cannot store data or a program in them. They are manu-
factured containing the program - each cell is set to 1 or 0 by the
manufacturer according to the customers' wishes. It is not a very cheap
system.

Figure 4.1 shows how you could make ROM using diodes, wires,
and a soldering iron. There are eight memory locations, each of four
bits, shown.

The locations are shown selected by a simple switch, but you could
design some address decoding logic yourself, using eight 3-input AND
gates and three inverters.

You do not find many ROMs being used in small machines these
days, because of cost. A much better type of read only memory is the
programmable read only memory (PROM). Here the user 'burns in' his
own program into a PROM chip, which arrives with all cells set to logic
1. In the cells where the user wants a 0, he must burn open the links to
those cells using a 'PROM-programmer'. Of course, once the program
is loaded, it cannot be changed.

The next development .came with the eraseable programmable read
only memory (EPROM). In order to appreciate the construction of this
type of memory, one needs a detailed understanding of solid-state
physics. But with EPROM, the user can insert a program not by
burning open links, but as stored charges. To change the program, these
stored charges, the Is and Os,may be removed by exposing the memory
to ultra-violet light, making the memory components temporarily
conductive, allowing the charges to escape. Depending on the strength
of the light, the erasing time may be up to 30 minutes.

The latest development in read only memory has been the electri-
cally eraseable programmable read only memory (EEPROM or
E2pROM) where the erasing is done electrically, and takes 20ms per
chip (2Kbytes). This relies on a quantum-mechanical process called
'tunnelling' to make the chip temporarily conducting, to allow the
stored charges to run out.

44



+5V

address
selector

address

o

2

3

4

5

6

7

3
2 data
1

"

OV

Figure 4.1
Hard-wiring a ROM using diodes. Address 2 is shown selected, the data contained here
being 1101.

Whether you use PROM, EPROM, or E2pROM, this memory type
is 'non-volatile', meaning that when you turn the power off, the chip will
hold the program it contains. This is in contrast to the memory type
RAM to be described next. Non-volatile memory is used for storing the
system programs. For example, the BASIC language in a home
computer is stored in PROM or EPROM. The instructions in a small
data-collecting microcomputer in an aircraft are also stored in PROM
or EPROM.

RAM - data storage

When your program needs memory to store numbers, the results of
computations, the patterns to be displayed on a television screen, or the

45



measurements made from a microprocessor-controlled instrument,
then random access memory (RAM) is needed. Remember that, as
explained in Chapter 2, RAM is made up of a number of cells. Each
individual cell is selected by row select and column select signals,
generated from the address sent to the memory chip. This is shown
again in figure 4.2.

address

data out (0 or 1)data in (0 or 1)--4f" __-:-:-:::-:==::I

RD WR
control lines

address

Figure 4.2
RAM cells shown with their support circuitry. Selection of each cell is determined by the
address sent to the row and column select logic. Input and output are done in
conjunction with the column select logic.

Here, we are interested in what actually makes up an individual
memory cell, able to store a binary 0 or 1.The simplest type of RAM to
use is called static RAM, where each cell is a simple flip-flop. This is
shown in figure 4.3.

(a)

R B
R B

(b)

0-- - - - to other
cells

C C

data~ J I
in

~data
out

Figure 4.3
Static RAM. (a) The switches C and R used to select the column and row of a cell are in
reality transistors. (b) The detail shows a single cell flip-flop shown as two cross-coupled
inverters.

The flip-flop is represented here as two cross-coupled
inverters - figure 4.3(b). In commercial chips, like the 2147, four

46



transistors would do this job. Note that there is a common input and
output connection to the flip-flop; check for yourself that this works by
putting a logic level 1 at this connection, and work out the logic states
at the inputs and outputs of both inverters. Repeat for input logical O.
Figure 4.3(a) shows how four of these cells are connected with switches.
In reality, these switches are also transistors on an integrated chip and
are controlled by the row and column select logic. Data is written and
read via the line at the bottom of the diagram.

You will realize that in a flip-flop one halfis on while the other is oft
So two transistors are always at work. This type of memory needs a lot

~ of current, but is fast. A 2147 chip needs about 55 ns (nanoseconds) to
storage read or write a cell. More common RAM needs about 200 ns.

I capacitor
c 0 V The second type of RAM memory cell is the dynamic RAM shown in

_______ figure 4.4. Here the bit stored, 0 or 1,is stored as no charge, or charge on
a capacitor. A single transistor, shown on the diagram as a switch, is
needed to control the charging of this capacitor. At once you can se~
that these dynamic cells are much simpler and smaller than static cells.
Since they store information by storing charge, they do not need large
operating currents. They score over static RAM, but there is a small
problem: the charge on the capacitor leaks away, so special control
circuitry has to be installed, to continually top-up the capacitors, or
'refresh' them. This must happen every 20 ms or so. Refresh circuitry is
complex to build, and dynamic RAM controllers, chips dedicated to
topping up the dynamic RAM capacitors, are not cheap. The expense of
this extra circuitry is only recovered when large memory systems of
hundreds of K are being built.

) refresh
nd
utput-input
ircuits

Figure 4.4
A dynamic RAM cell is

basically a capacitor whose
charging is controlled by
a single transistor switch.

Figure 4.5
Ferrite slice with weak perpendicular

magnetic field showing domains.

Bubble memory - mega storage

Bubble memory units with capacities of up to 4 megabits are the subject
of research today. They are not semiconductor devices, but employ
magnetic materials in their technology. This is not as hard to under-
stand as semiconductor technology, so here is an outline of how a
bubble memory works. It illustrates how physics has been applied in a
high-engineering situation.

You are probably familiar with the idea of magnetic domains found
in all sorts of magnetic materials. When unmagnetized, the domains in
the material are randomly arranged in three dimensions, but as the
material is slowly magnetized, the domain walls move so that most of
the domains align to a common direction. When the material used is a
thin film (0.01mm thick) of ferrite (a magnetic oxide of iron, with other
metals), then the domains become two-dimensional, as shown in figure
4.5.

When the slice is immersed in a perpendicular magnetic field, the
domains oriented oppositely to the field shrink in size. As the 'bias field'
is increased, the few remaining domains become small cylinders, called
'bubbles', as shown in figure 4.6.

These bubbles are a few micrometres in size. If, in addition to the
bias field, there is a small field which is weak in one place and strong in

47



\
5

48

(al (bl

Figure 4.6
(a) Same as in figure 4.5, but with bias field increased. Domains aligned opposite to the
bias field direction begin to shrink.
(b) Bias field increased enough to shrink oppositely aligned domains into small magnetic
bubbles.

another, the bubbles will move to the place of greater field strength, in
the same way as iron filings are attracted to the end of a bar magnet.

In a bubble memory, a bubble or absence of a bubble represent a
logical 1 or a 0 respectively, and these bits are made to hop around in a
cyclic fashion from one memory cell to another. Since the bits are
magnetic, the memory cellsmust be made ofmagnetic material. Figure 4.7
shows two cells out of a long line of cells. The progress of one bubble
from the first cell to the second is also shown.

2 3

I

I
6 7 8

Figure 4.7
The history of a bubble and two memory cells, or 'chevrons'. As the field is slowly
rotated, the bubble follows, then jumps across the cell gap. The arrows show directions
of the magnetic field as it rotates.



This movement is accomplished by a rotating magnetic field which
drags the bubble around the chevrons and makes it jump across at the
appropriate time.

This rotating field is obtained by controlled currents passing
through two coils~aligned at right angles to each other, surrounding the
bubble-slice. The bias field is obtained by two permanent magnets
which maintain the bubbles in existence; so this is non-volatile memory.
The structure of the device is sketched in figure 4.8.

permanent
magnet

permanent
magnet

Figure 4.8
Structure of a megabit bubble memory device, showing permanent magnets producing
the bias field, orthogonal coils producing the rotating field. ('Exploded view'.)

To understand how this system of moving bubbles can be used as a
computer memory, we must look at how the loops of rotating bubbles
are arranged. This is shown in figure 4.9. data out

~

~( IOO~300 )~
~( : )~
~( : )~

! oulpul
track

;npUI!
track

~( : )~
~( IO~O )~

Figure 4.9
Architecture of a bubble memory,
showing bubble loops and ~
input and output tracks. data in

49



Figure 4.11
Single digit display, arranged as

output port of our simple computer.

50

A typical bubble unit contains 300 loops, each with 4096 cells,
around which bubbles circulate. Two tracks communicate with the
loops: the input track which carries bubbles from a generator - a loop
of conductor carrying the input current pulse which locally reverses the
bias field and creates a bubble - and the output track. The latter leads
to a bubble detector, a magnetoresistive. device. When a magnetic
bubble passes by this device the change in magnetic field strength
causes the resistance of the device to change, which in turn changes a
current passing through the device. To complete the memory, a bit of
control is needed to synchronize bubble production and loading, or
unloading and detecting. Then, with the magnetic field rotating at
50kHz, data may be got from the memory in about 0.1ms. So bubble
memory is not particularly slow, it can store vast amounts of data, and,
unlike disk storage, has no moving mechanical parts to fail. It is non-
volatile and so saves its contents when the computer is switched off or if
power fails.

APPLICATION NOTE - SEVEN-SEGMENT DISPLAY

How does a calculator-type display work? There may be up to ten~digits
used to display a large number. How can such a display be hooked up
to the computer? Begin with a single digit. A typical display is made of
seven light-emitting diodes arranged in a pattern of a figure '8'. This is
called a seven-segment display. It is normally driven by a special chip
that takes in a 4-bit number and produces numbers 0 to 9 and also a
decimal point on the display. The arrangement is shown in figure 4.10.

4-bit
input

driver display

each of the segments is a
light-emitting diode8

Figure 4.10
The seven-segment LED display shown connected to a driver-decoder chip which is fed
by a 4-bit number 0000 (0) to 1001 (910).

We obviously have to connect this to an output buffer of our system
to supply a 4-bit number for the display, and must then decide which
CPU signal to use to enable the buffer. The best choice is the com-
bination ofM/IO, WR, and in-out decode, and is shown in figure 4.11.

buffer driver display

4 lines of
data bus ~8

Part of computer board I
(see figure 2.31) I

I
I

from decoder I
WR 1--+-----4....----.....1

inverted M/IO

E latch



Now this signal goes high only when the CPU executes an OUTput
instruction to this device, and only then will the data be allowed
through the buffer. This signal is also connected to the display driver
'latch' terminal. When the signal is high, the data is allowed into the
display, but when it goes low, after the OUTput instruction is finished,
the data is latched into the display and the number will be displayed. If
this were not done, then you would never see any numbers, since the
output instruction takes, say, a millisecond to be executed. The latch
holds the data firm until the next output instruction is performed, when
the displayed number must be updated.

Extending this to 4, 8, or 10 digits is easy. You could use a display-
driver chip plus output buffer for each digit, which would then appear
to the CPU as separate output ports. Outputting a number to port 1
would set up that number in the first digit, outputting to the second
port would set up the second digit, and so on. It would work, but uses a
lot of chips. There is a simpler way. To understand how this works, we
must take a look inside the display (figure 4.12).

anode
connections

common
cathode

Figure 4.12
Details of a seven-segment display unit, showing how each segment, a light-emitting
diode, is selected by the anodes. All cathodes are connected together.

Each segm~nt is a light-emitting diode, and all the cathodes of the
diodes are connected together. In the use described above, the driver
chip would supply current (10-20 rnA) to each anode, and the common
cathode would be connected to 0 V to complete the circuit. Now look at
the circuit in figure 4.13. Two display chips are shown being driven by
one driver circuit, each output of this circuit now being connected to
two anodes, one from each display.

51



(al (bl

driver displays

0 1 91 0
1 0
0 1

ov
Figure 4.13
Driving two displays with just one driver chip. Switches in the cathode lines of each
display turn that display on when its own 4-bit number is being input. (a) The number
0110 (610) is sent to the lefthand display by closing its cathode switch. (b) The number
1001 (910) is sent to the righthand display by closing its cathode switch.

Note the switches connected to the cathodes. For the dual display to
show the number 69, first the cathode switch on the first digit is closed
and 0110 (610) put into the driver-figure 4.13(a). This causes the
number 6 to be displayed on the first digit. Then this switch is opened
and the switch on the second digit closed-figure 4.13(b). Sending out
1001 will cause the displayed number 9 to shine on the second digit.
This process is repeated a few thousand times per second. The actual
switches are contained inside a special Ie package. Figure 4.14 shows
the final design.

segment
driver display...---...., .-----,buffer

data bus

3

segment
latch

digit driver
buffer

4
data bus

7

digit latch

Figure 4.14
How to connect two or more displays to our microcomputer. One output port of 4-bits
wide selects the segments which shine, and the second 4-bit port determines which digit
these shine on.

Two output ports are needed, one 4-bit number passing to the digit-
driver circuits, and the other passing into the decoder which determines
which digit is shining. Note how the display driver latch is still used.
This holds the digit stable while a different 4-bit number is being output

52



to the digit select. A very short program has to be written to scan across
all of the digits in the display, making sure each gets its correct number.
But that is cheaper than the previous suggestion.

APPLICATION NOTE - KEYBOARD SCANNING AND INTERFACE

A keyboard may be a typewriter-type board just like the one on a
personal computer, it could be a music synthesizer's 4- or 5-octave
keyboard, or it could be a small 16-key pad. To take this last example, it
will have 16 switches and need the computer to determine the keys
pressed. Each key is given a number, here 0 to 15, and when a key is
pressed, say 3, the computer has to save the number 3 in one of its
registers or in memory.

The arrangement is shown in figure 4.15. The computer sends a 4-bit
number (0 to 15) via an output buffer to a decoder, just like the ones
discussed in Chapter 2.

4-bit numbers
from output

port

ey WI C es

- 0 - -
-- 1 - -~•.

2 - ~
DECODER

3 '-'

·• 1-- •••·
15 ~~ ~

-;.

k s't h

common line
to CPU

signals any key
is pressed

Figure 4.15
A decoder chip is used to scan a keyboard made of 16 key switches.

Remember, a decoder receives a 4-bit number, and then makes one
of its 16 output lines go high. If the processor has output 0011 (310),

then the decoder makes its output 3 high, which is connected to key
switch 3. Notice that all the key switch outputs are connected together.
If key 3 is pressed then the high gets through to this common line. If 4 is
pressed the high does not get through. A high on the common line
means number 3. The common line is connected directly to the
microprocessor, so that the microprocessor knows that a key has been
pressed, and stops. Now the microprocessor has been programmed to
output not just 3, but all numbers 0 to 15 in order, over and over. So if
key 3 is pressed continually then the common line will remain low until
the processor has got round to outputting 0011. Then it will go high,
and the microprocessor will be stopped. Its last output, 0011, will be in
some register which can be got at and so used in another part of the
program to implement whatever pressing key 3 is meant to do.

53



Where exactly is this common line connected to the processor? An
obvious place would be one of the input lines. The program would
instruct the processor to look at this line from time to time. If it is low,
then no key is pressed. If it is high, then some key has been pressed. The
key number is the last number the processor has outputted.

Most processors have a special sort of input called an
INTERRUPT, which could have been used to hook up to the common
line. When the interrupt goes high, the program jumps to another
subprogram which 'services' the interrupt. Here the servicing would
involve getting the last number outputted from the register.

APPLICATION NOTE - DIGITAL-TO-ANALOGUE CONVERSION
You may wish to set up the computer so that it can control smoothly
the speed of a motor, the brightness of a light, or the position of a
drawing pen. In all of these applications, a smoothly varying voltage,
say between 0 and 10, is needed from a computer that has been designed
to work on logic levels 0 and 1 of 0 V and 5 V respectively. Some sort of
conversion is needed. Consider a digital-to-analogue converter which
takes in a 4-bit digital number and gives an output voltage between 0
and 15. You will need to know how an operational amplifier works,
adding up voltages at its input. Look at figure 4.16. Here an op-amp is
shown adding three input voltages.

ov

Figure 4.16
A reminder of how op-amps can add several voltages. Note how the resistances Ra to Rc

determine by how much each voltage is multiplied before the addition.

Note how the values of the resistors in each input determine by what
amount that input voltage is multiplied. If resistors are used to form a
binary sequence R, 2R, 4R, 8R and connected to, say, a 1V supply via
switches, then closing the switches in binary sequence will give an
output voltage that will rise by equal increments. Figure 4.17 shows the
circuit and a table of the output voltages for each binary ipput from
0000 to 1111.

Of course, the switching-is done by logic circuits which could be put
together with the resistors and op-amp on a single chip and which could

54



Switch Output
positions voltage

3210

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
01 1 1 7
1000 8
1001 9
1010 10
1011 11
1100 12
1 1 01 13
1 1 1 0 14
1 1 1 1 15

-1V

R

OV

Figure 4.17
A digital-to-analogue converter. The table shows the voltage output for all combinations
of switches, open or closed.

then be marketed as an 'integrated D-to-A converter'. Although you
could certainly .make this circuit work in the laboratory, commercial
digital-to-analogue converters, like the DAC 08 8-bit converter, use a
slightly different technique called the R-2R ladder technique. This
method needs only two different resistor values, and so is much more
easy to integrate on a chip than the method of resistors in a binary
sequence. Eight resistors in a binary sequence would imply using
resistors with a wide range of values, 1 kn to 128 kn for example, and
this is hard to achieve.

The R-2R ladder technique is based on the remarkable behaviour of
the R-2R ladder, like the one shown in figure 4.18.

point A

R R

2R R

P 0------41......-.1 '----_.--I

Qo------4II------ .•...---'-------e-----.----- .
Figure 4.18
The R-2R ladder. The resistance measured between P and Q turns out to be R.

The first feature of this ladder is that its input resistance (measured
between P and Q) is just R. Check this for yourself by working back
from the other end of the ladder. There, two Rs in series give 2R, but this
is in parallel with the vertical2R, giving R equivalent resistance. Then

55



this R is in series with the next horizontal R, and so on. For a ladder of
any length, the input resistance is just R.

The second feature is to do with currents in the vertical resistors.
Assume 16mA flows in through P and out of Q. Look at the resistors
around point A, shown in figure 4.19.

point A

16mA 8 mA R

2R R

Qo--- ......•--------'
Figure 4.19
Showing how currents split at nodes. The value of the rightmost resistor R is the
equivalent resistance ofthe circuit to the right of point A in figure 4.18.

The vertical resistance, R, at A is of course the equivalent resistance
of all resistors to the right of A, according to the first feature mentioned.
You can see at once that the 16 rnA must divide into two 8 rnA currents
at point P, since the resistance of both branches from P to Q is the same.
The point is that the current is halved at each of the nodes, where
vertical and horizontal resistors join together. So, as shown in figure
4.20, the currents flowing in the vertical resistors form a binary
sequence.

16

2R R

Qo---E:---4"'---~--"----E--- --*""--'--~--""'"
16 8 4 2

Figure 4.20
All currents shown in this '4-bit' R-2R ladder are in rnA. The ladder has the property of
dividing the input current of 16mA into a binary sequence.

This resistor ladder can be used very easily to make a precision
digital-to-analogue converter. The circuit is shown in figure 4.21.

The operational amplifier in this circuit is connected as a current-to-
voltage converter. (If you have not studied op-amps in detail, if the
current into the' -' or 'inverting' input is 1 rnA, then the output voltage
is -1 rnA x 1 kQ = -1 V.) In figure 4.21, the switches So to S3 lead their
currents to the I -to- V converter, which receives 8 + 4 + 2 + 1= 15 rnA,

56



16 rnA

8 rnA

2R

R

2R R2R

S,

2R

R

current-to-voltage
converter

Figure 4.21
The R-2R ladder D-to-A converter. Switches So to S3 switch currents either into the
current-to-voltage converter, or else down to 0 V.These could be high-speed transistor
switches. If R= 1kn, then the I-to-V converter produces 1V output per rnA of input
current.

and so produces an output voltage of -15 V. If only So and S3 had led
their currents to the I-to- V converter, and S1 and S2 had been
connected to 0 V, then 8+ 1=9 rnA would have arrived at the I-to- V
converter and been converted to - 9 V.So you see that any 4-bit binary
number from 0000 to 1111is converted into its equivalent voltage, from
o to -15 V. Figure 4.22 gives a table of all outputs.

Switch positions Output voltage
S3 S2 S, So (V)
0 0 0 0 0
0 0 0 1 -1
0 0 1 0 -2
0 0 1 1 -3
0 1 0 0 -4
0 1 0 1 -5
0 1 1 0 -6
0 1 1 1 -7
1 0 0 0 -8
1 0 0 1 -9
1 0 1 0 -10
1 0 1 1 -11
1 i 0 0 -12
1 1 0 1 -13
1 1 1 0 -14
1 1 1 1 -15

Figure 4.22
Table of output voltages obtainable from the converter shown in figure 4.21.

57



That is the principle of the converter. The commercial DAC 08 chip
from Precision Monolithics incorporates transistors as switches. Cur-
rents can be switched faster than voltages (the DAC 08 takes only 85 ns
to respond to a change in binary number), which is another reason why
the R-2R ladder technique is popular.

Interfacing a digital-to-analogue converter with a microprocessor is
very easy; it can simply be hung on the data bus via a latch which is
enabled by the usual output signal. A binary number to be converted is
put on to the databus, then the latch is enabled and the data allowed in
and passed to the converter. When the enable signal is removed, the
binary data is of course held in the latch. This has the purpose of
holding the D-to-A output volt~ge steady while other information is on
the data bus. This is shown in figure 4.23.

digital-to-analogue ~---oVout

latch--~
enable 1--_---,.,,__ .....•

Figure 4.23
Connecting a D-to-A converter to a microprocessor is simple. A single latch is required;
the latch enable signal is an output signal generated by the microprocessor.

A rather nice use ofthe digital-to-analogue converter you might like
to try involves graphics: draw~ng pictures on an x-y plotter, or on an
oscilloscope screen using the x-plates and y-plates. Two converters are
needed, one for the x-direction, and the other for the y-direction. As
shown in figure 4.24, each latch is controlled by its own output signal.

It works like this: data destined for the x-position are put on the bus,
and the x-output signal latches this into the x-latch, and the data are
converted by the x digital-to-analogue converter. The x-output signal
returns low, and the x-data is latched safe. The y-position data is then
put on the bus, and latched into the y converter via the y-output signal,
and converted. The plotter pen is now at point (x, y). Then the new x
position is obtained, then the new y position. The plotter pen thus steps
from point to point, first along the x-axis, then up the y-axis. Lines
drawn this way are in reality made up of small steps.

The theory of D-to-A conversion sounds nice and simple. When you
get around to building a converter, you will learn a lot about
electronics, solving many problems. One of the problems involves
'glitches'. These are unwanted spikes which appear at the output of a
D-to-A converter when the input number changes. They are due to
circuit imbalances when the transistors actually switch the currents.
This explanation is incomplete, but the headaches you get trying to de-
glitch are quite real.

58



digital-to-analogue

x-output --~

v-output --~

digital-to-analogue

x-v plotter or
oscilloscope

Figure 4.24
Two D-to-A converters, each with its own latch, are able to drive an x-y plotter or an
oscilloscope. This is a cheap and easy way of producing excellent graphics.

APPLICATION NOTE - ANALOGUE-TO-DIGITAL CONVERSION

Perhaps one of the most interesting applications of microprocessors for
the scientist and engineer is the A-to-D converter. This device will
convert a continuously variable signal into digital bits which may be
digested by the computer bus. The signal could be a p.d. measured in
some experimental circuit, or it could be the output of a transducer - a
device that measures pressure, temperature, magnetic field, pH, or light
intensity, for example, and converts these to a voltage. Using an A-to-D
converter, an experimenter can build automatic, programmable
measuring instruments. Commercial 8 to 16 bit A-to-D converters can
be easily obtained fairly cheaply, although price here is usually an
indication of speed. How do they work?

There are three well-tried methods of making an A-to-D converter,
and each of these involves making a comparison. Figure 4.25 shows the
first method, the linear ramp technique.

Here, the input voltage Vin is compared with the output of a digital-
to-analogue converter, using a chip called a 'comparator'. This chip
compares its two inputs and produces a logical high output if V+ is
greater than V_. If, on the other hand, V_ is greater than V+, then the
output is logical low. (If both inputs are equal, the comparator could
flip either way, but it is biased to flip one way according to its particular
use.) Its action is summarized in figure 4.26.

In the linear ramp circuit, the comparator receives the input voltage
Vin' on one input; the other comparator input receives a voltage from
the D-to-A converter which is driven by a counter. Now suppose that
the voltage to be converted, Vin' has binary value 0101. The counter,
which has been reset to binary 0000, starts counting upwards, 0001,
0010, and so on. After each count up, the D-to-A converts the binary

59



data
bus

enable

comparator

digital-to-analogue

stop/continue
o 1

binary counter

J1.f"UL start
clock conversion

Figure 4.25
Components of a linear ramp converter. A D-to-A converter is driven by the binary
counter. The voltage produced, which is a staircase waveform, is compared with the
input voltage. When the two are equal, the counter stops, and then holds the binary
value of the input voltage.

number to a voltage which is compared with Jlin. Assume the counter
has reached 0011.The comparator receivesvoltage 0011 from the D-to-A
converter, and compares it with Jlin' 0101. It sees that the D-to-A
converter's voltage is too low, and so outputs a logical high. This is fed
back to the counter, which commands it to continue counting. It
continues from 0011 to 0100,to 0101. At this point the comparator
receives Jlin' 0101, and also 0101 from the D-to-A converter. The inputs
are equal, and the comparator's output goes logical low (it has been

v+=t>-inputs output
V_ -

•••••--- logical high

IIm
~o
>
'S 5 VDo
'S
o

o L..-.__ ••••••L-. _

Input voltages

V+ < V_ I V+ > V_ I

Figure 4.26
Action of a comparator chip. The graph shows the output is 5 V (logical high) when the
voltage V+ is greater than V_. When V+ is less than V_, the output is OV (logical low).

60



biased that way). This low, when fed back to the counter, tells it to stop
counting. The counter now holds 0101, the binary value of the input
voltage. The conversion is complete, and the 4-bit number can be
enabled on to the computer's data bus and read into memory.

Figure 4.27 shows this conversion; the step output of the D-to-A
converter as the counter increments until the D-to-A voltage equals Jlin'

Vin--------

I
I
I
1
I
I
I

D-to-A output voltage

Time

I Comp ••• ", output

I conversion done

Figure 4.27
The technique oflinear ramp conversion. The D-to-A output increases in equal steps
until it is equal to the input voltage. Then, the comparator signals that the conversion is
done. The counter, which had been driving the D-to-A converter, is stopped, and holds
the binary value of the input voltage.

The comparator's output is also shown dropping low at this point.
In a working circuit, a little more logic is needed, to reset the counter
before each conversion is started and to signal the CPU when the
conversion is done, so the result can be enabled on to the bus.

It is quite a straightforward procedure, but rather slow. For a large
input voltage, the counter may need to count up to a large number. An
8-bit converter would need a maximum of 255 counts. A typical clock
driving the converter may run at 1MHz, needing 1 JlS per count, or up
to 255 JlS for a single conversion. Such pedestrian behaviour may be fine
if you want to measure the height of water in a river once per hour, but
totally inadequate to record the behaviour of a millisecond pulsar.

Microprocessor-controlled measuring systems are usually used in
the two extremes of either very infrequent (once per hour, day ... ) or
very frequent (thousands or millions per second). These are areas where
humans would not perform very well. The problem with quick or
transient measurements is illustrated in figure 4.28.

You know that a certain signal has a large initial peak and then
decays down. You start the ramp converter at the instant the signal
appears (you cannot anticipate), but by the time the counter has
counted a hundred or so pulses, the input voltage has long since

61



II
CI

l!
~L--~---- desired measurement

trahsient input signal. Vin

.x---actual result

Time

start
conversion

conversion
done

Figure 4.28
What happens when a ramp converter tries to capture a transient signal. By the time the
conversion is complete, the desired voltage has passed. Ramp converters are useful only
for slowly changing signals.

changed, and the output number is nowhere near the peak value you
wanted. It is a big problem: a faster conversion method is needed.

The second method of conversion is called successive approximation,
and does rather better. Here the input voltage, ~n, to be converted is
again compared with the output of a D-to-A converter. Instead of being
driven by a counter, the D-to-A converter is driven by a special logic
circuit called a 'successive approximation register' (SAR). A comparator
is used, and its output is fed back to the SAR, telling it what to do. The
circuit is shown in figure 4.29, and the process is best illustrated by an
example. Think of the SAR as a 4-bit register with an input coming
from the comparator:

Assume the analogue input voltage ~n has binary value 0010. The
following sequence occurs:

1 The SAR outputs 0111, bit 3 being set to zero, all the others to 1. The D-
to-A converts this and sends the equivalent voltage to the comparator,
which receives ~m 0010, onits other input. The comparator says 0111 is
too big, and so outputs a logical 0 to the SAR. The SAR latches this 0
into bit-3 position.

2 The SAR now makes bit 2 zero. This, with the previous latched zero,
makes the output 0011. The D-to-A converts this to a voltage which the
comparator says is too big, and so outputs a logical 0 to the SAR. The
SAR latches this into bit-2 position. The SAR now holds 0011.

3 The SAR now makes bit 1 zero, and so outputs 0001, bits 2 and 3
remaining latched at zero. The D-to-A converts, and the comparator

62



says that this voltage, 0001, is smaller than 0011, Vin. So the comparator
outputs a logical 1 which is latched into the SAR. The SAR holds 0011,
bits 3, 2, and 1 being latched at 0, 0, and 1 respectively.

4 Finally, the SAR makes bit 0 go low, outputting 0010, bits 1 to 3
remaining latched. The D-to-A converts, and now the comparator sees
two equal voltages and outputs a logical 0 which is latched into the
SAR (note that the comparator is biased).

comparator

data
bus

digital-to-analogue

\.,..----------,i
SAR

control

enable

Jl..Jl...n.. start
clock conversion

Figure 4.29
Components of a successive approximation converter. The successive approximation
register (SAR) drives the D-to-A converter, which passes on the equivalent voltage to the
comparator. This compares the approximation voltage with JIIn> the input voltage. The
outcome of this comparison tells the SAR what to do next.

The conversion is done, and the SAR's output, 0010, can be enabled on
to the data bus and read into memory. Commercial SARs have a
'conversion done' signal to tell the CPU it may transfer the digital
information. Figure 4.30 shows the comparator's input for the above
four stages of conversion and the logic signal sent back to the SAR with
its meaning.

Note also that the output of the comparator is 0, then 0, then 1, then
0, as the conversion proceeds. This is the correct binary value for Vi",

comparator

1 r> 1
D-to-A input control
output voltage to SAR

1 0111 0010 0 too high
2 0011 0010 0 too high
3 0001 0010 1 too low
4 0010 0010 0 just right - both voltages

equal
Figure 4.30
The input to and output of the comparator for the four steps of successive approximation.

63



except that it is sent out bit after bit. This is an example of a serial
format of data which you will meet in the next section.

It took just four comparisons to convert the input signal into a 4-bit
binary number. For a standard 8-bit conversion, only 8 comparisons
are needed. That is much faster than the maximum of 255 comparisons
for the linear ramp technique. The AD571 SAR-type converter comes
with the D-to-A converter, SAR, comparator, and buffer on an 18-pin
chip taking just 25 JlS for a conversion. For several thousand US dollars,
you can even buy a SAR-type converter which will manage 10 million
conversions per second.

I!~r~ ~_~__~~~ _!Q.~~R converter handles the transient sig~al.

Gl
Cl
III~
o>

desired measurement

-'------ actual result

Time

start
conversion

conversion
complete

Figure 4.31
Successive approximation conversion technique. Note how each D-to-A output
increment is half of the previous increment. Here an 8-bit converter makes its eight
comparisons, but only the first four are able to home in on the input voltage.

It gets much closer to the desired value, but there is an error of
another sort. Unlike the ramp converter which stops when it has
reached the correct code, the 8-bit SAR must always execute its 8
comparisons. In this example, the converter fails to work properly after
the fourth approximation. Its final result is a little too low. This
problem is not major - in the example here, the converter was not given
a fair chance. The engineer needs only to remember that this may
happen, and to avoid it. In any case, the SAR technique is the most
popular today, and for most laboratory uses represents the best trade-
off in terms of price versus speed.

64



The real winner for speed is the flash converter, which takes only
nanoseconds to convert; the Plessey SP9754 is a 4-bit flash converter
which can convert at 100 million conversions per second. That is fast
enough to digitize video signals, and that is the area where you will find
flash conversion at work. Perhaps you would expect such fantastic
performance to require complex circuitry. It turns out that these are the
simplest of all converters to understand. It is the actual manufacture
which is difficult, and expensive. Figure 4.32 shows the line-up. It is
literally a line of resistors of equal values which divide, here, a 10V
reference into equal intervals.

10.0v------.

1 kll

8.0V-------<4I~----;

1 kll

6.0 v----..~--+---l

1 kll

4.0 V-----oI~--+---l

1 kll

2.0 v----..---t---1
V;n -+---+----..----j +

1 kll

ov

o

1---- binary output
1--__ to data bus

comparators

priority
encoder

Figure 4.32
Structure of the flash converter. A line of resistors and comparators does the conversion. A
priority encoder produces a binary-coded decimal output.

65



These equally spaced voltages are fed to a line of comparators. The
second input to each comparator is connected to a common point, and
~O' the signal to be converted, is fed in here. Now, if ~n is zero, all the
comparators give output logic low, as may be seen from the comparator
characteristics shown in figure 4.26. If ~n increases to, say, 2.7 V, then
comparator 0 will go high, the others remaining low. And if ~n lies
between 4 and 6 V then both comparators 0 and 1will go high. So as the
input voltage rises, each comparator will, in turn, go logical high.
Figure 4.33 shows the possible comparator outputs for any ~n.

Input voltage range
(V)

Comparator outputs
321 0

Output from
priority encoder

o to 1.9
2 to 3.9
4to 5.9
6to 7.9
above 8

o 0 0 0
000 1
001 1
o 1 1 1
1 1 1 1

000
001
010
011
lOO
I'overflow' bit

Figure 4.33
Flash conversion of any positive input voltage. The comparator outputs don't form a
particularly nice binary series, but the priority encoder puts this right, as shown by its
outputs. Note that the last line in the table is the 'overflow' condition, where the only
information provided by the circuit is that Vln is more than 8 V.

The only difficulty is that each comparator does not respond to a
range of voltages, but is always on if ~n is bigger than its own turn-on
voltage. That means the four comparator outputs do not form a very
nice pattern. This is cleared up by the final part of the flash converter,
the 'priority encoder'. When two inputs are high, for example, it chooses
the one that came from the comparator with the bigger turn-on voltage.
It then produces a regular binary output as shown in figure 4.33. This is
then enabled on to the data bus and stored in memory.

Flash conversion involves making comparisons in parallel, and for
each ~n just one of these comparisons is used in making the output
binary number. There is no counting or approximating.

This example using four comparators could classify any input
voltage into one of four intervals. Its resolution is pretty poor. The 8-bit
resolution which is a standard minimum resolution for most work
would require 28 = 256 intervals and hence 256 comparators and some
257 resistors all carefully matched. Even with the use of laser-trimmed
integrated resistors, resistor matching and making good comparators is
not easy. Hence the high cost of flash conversion.

You may have thought that in the above example with four
comparators, there were five intervals of voltage, the last being 8 to
10 V. That is not true, since any signal greater than 7.9 V will turn on the
last comparator; 55 V would do equally well. The last comparator
(number 3) only tells you if the input signal is outside the interval
6-7.9 V, and in this way it is an overflow indication.

Finally, what about the speed of conversion? This is simply the sum
of the time it takes the comparator to respond (25 ns for the NE529) and

66



the time it takes for the encoder to work (10ns for a 74S148), which
comes to around 35ns. That is why it is a fast method.

The three conversion techniques described in this section all have their
uses. The SAR method seems about the most widely used today (1985).
If you want to make an A-to-D converter you can build any of the
circuits described here and they will work. If you want to work at 8 bits,
do not build, buy as it is cheap. For 10 or 12 bits you should build an
SAR 'converter. Use an LM311 comparator, a 74C905 or DM2504
SAR, and a DAC 100 or DAC 10 digital-to-analogue converter for 10
bits. The choice of D-to-A converter is important, but the ones~
suggested (marketed by Precision Monolithics Incorporated) work well
and are not that expensive. Then you will have a 15~s A-to-D converter
accurate to 100mV in 10V.

SERIAL COMMUNICATION
The CPU is often transferring large amounts of data to other devices,
such as printers, disk drives, cassette tape recorders, often down a
telephone line or by a satellite link. You have seen how a CPU can
output data in 'lumps' of 4 or 8 bits to D-to-A converters and the like,
and this method of communication will also work well for most
printers, where the data bus is carried over by a long stretch of 8-or-
more-conductor 'ribbon' cable. But it is no good for cassette recorders,
which only have one wire for 'record' and another for 'playback' -
unless they are stereo. So 4 or 8 bits cannot be sent at once.

The serial method of communication sends, for example, 8-bit data
over a single wire, not eight wires. Instead of sending all the bits
simultaneously, they are sent one after the other, in a series, hence the
name. The two modes of communication are shown in figure 4.34', in
which the data byte 01001101 is being sent. There are a few ways in use
to transmit serial data, but in the interests of uniformity, assume the
existence of just one, ASCI I (American Standard Code for Information
Interchange). Every key of a typewriter, plus the control keys of a
teletypewriter, have been given a unique 7-bit code which is transmitted
over a serial line. In this code, our data 01001101 is the letter 'D'.

0----

0----

1~

1~

0----

1~

(a)

JLJLJL
01001101

serial transmission

~ one
wire

(b)

Figure 4.34
A comparison of (a) byte and (b) serial transmission of the same 8-bit number 01001101.

67



Figure 4.35 shows how the letter 'D' would be sent on a serial line.
First a 'start' bit is sent out, and then the 7 bits of the data, starting with
the least significant bit. Finally, a 'stop' bit is sent.

I
Figure 4.35 •....------. r----, II I

Sending a letter 'D' on a single line. The -.J L-.J L....-_---I L...__ .....J

ASCII code for D is combined with serial I start I 1 0 0 0 0 I stop I
control bits, start and stop. bit bit

You cannot stick this signal straight into a cassette recorder, since it
does not have enough bandwidth to cope with the square edges of the
pulses. The best thing to do is to pass the pulse train through a
modulator (a modem). When a logical 1 goes in to the modem, it may
produce a burst of sound at frequency 2400 Hz. And when a logical 0 is
picked up by the modem, it may produce a 1200Hz tone burst. These
sounds are easily recorded by a typical cassette recorder.

It is quite interesting to see how the CPU converts an 8-bit lump of
data into a serial string. The 8-bit data is loaded into the accumulator
with a MOV M-+Acc instruction. Then a SHR ('shift accumulator
right') instruction is performed. This is shown in figure 4.36.

accumulator carry

after shift L...-L...-L...-L...-L...-L...-.L--.L......J

Figure 4.36
How a 'shift accumulator right' (SHR) instruction shifts the lowest bit of the 8-bit
number out of the accumulator and into the carry cell.

You can see that all the bits are shifted one place to the right. The
rightmost bit is placed into the carry cell. Now the CPU looks at the
carry cell, and it makes its serial output line (SOD-line) equal to the
carry bit, in this case a 1. If the CPU repeats this another seven times,
the 8-bit data will come out of the SOD pin in serial format. This is
shown in figure 4.37.

The reverse question, how to convert incoming serial data into 8-bit
data, is a little more complex, at least from the point of view of writing
the software. Most CPUs will have a SID connection, a serial input line,
and the rest is programming.

DIRECT MEMORY ACCESS (DMA)

Have you ever thought about writing programs to make those beautiful
animated pictures or coloured processed pictures you normally as-
sociate with NASA? Before you start, think about this calculation. To
make a medium-resolution picture of 256 by 256 dots needs 256 x 256
=65 536 bits of information which is 65536/8 =8192 bytes. (If you
wanted colour, you would need 8192 x 3= 24 K.) To make a flicker-free

68



accumulator carry

o
L

carry generates
serial output

~
10110010

Figure 4.37
Successive shift right operations send each bit of the 8-bit number through the carry cell,
where they may be used to produce the serial output via the SOD pin of the CPU.

television picture, it needs to be scanned 50 times a second which is
(1/50)s =20ms per picture, and is equivalent to (20/8192)ms, or around
2.5 J.lS per byte. Now an advanced processor like the 8086 or 8088 takes
3.5 J.lS to move a byte around, using MOV-type instructions. Clearly the
processor cannot cope with even medium-resolution graphics, it is too
slow, and anyway it is no good having the CPU totally committed to
the picture on the screen when other things need doing, like keyboard
scanning, data calculations, and so on.

The DMA controller could be used to solve this problem. It hangs
on the bus, and when activated forces the CPU to relinquish the bus.
The DMA controller then transfers data completely on its own, without
any programming need. A transfer time of one byte in 0.6 J.lS can be
achieved. DMA transfers are used to communicate with floppy disk
drives, fast magnetic tape units, and some television screens. However,
for the latter, even DMA is too slow, and the usual solution is to build
special CRT interfaces using memory coupled with discrete logic ICs
which can transfer data in tens of nanoseconds.

All of these applications are compatible with the computer described in
Chapter 2.

69



A CONTROL AND DATA AQUISITION COMPUTER

Most of the ideas of this chapter can be put to use in building up
CONDAC. CONDAC's purpose is Control and Data Aquisition.
Before we see how CONDAC could be used in the laboratory, let's look
at its circuitry. Don't be put off if it looks complicated, it's not; it's
simply a combination of some of the circuits you have just studied.

Here is a description of CONDAC, shown in figure 4.38. To the
bottom left of the CPU are the memory boards, and to the bottom right is
the keyboard with its sixteen keys. Next to this is the display. This is an
eight-digit, seven-segment display. At the top right of the circuit
diagram, there are two D-to-A converters, labelled x and y. To the right
of these is the A-to-D converter, a successive approximation type.
Finally, in the bottom right of the circuit there is an input buffer which
can read the states of eight logical inputs, and also an output latch
which can output eight logical signals.

Now for a closer look at some features of the circuit. Firstly, the
decoding. In Chapter 2 you learned how different memory boards were
selected using a decoder. In the last section of the same chapter, you saw
how input and output devices can be selected by using a decoder.
CONDAC has two decoders, one reserved for memory, and the other
for input-output. The decoders both have 'enable' connections; if
enable is low, the decoders' outputs are all low. If enable is high, then
the correct output of the decoder will go high. Notice that the MilO
signal is used to enable the memory decoder, and the inverse of this
signal is used to enable the input-output decoder. So either memory or
input-output decoder is selected at any time. It turns out that this use of
two decoders saves a handful of gates elsewhere in the circuit.

Two outputs from the memory decoder are used. One selects a
RAM board, which also receives both RD and WR signals, and the
other output selects the ROM board, which, being read only, needs
only the RD signal to work. The ROM in CONDAC contains the
operating system. This is a chunk of program which actually gets the
machine running; scanning the keyboard, allowing you to enter and run
programs. It also looks after the multiplexing of the display, allowing
you to read results, check memory contents, and the like. In addition, it
makes the cassette interface function, and may even contain sub-
routines to make the D-to-A and A-to-D converters function. (On larger
machines, the operating system would run disk drives, and enable you
to edit programs shown on a television screen.)

Next, take a look at the D-to-A ports. These are selected by outputs
1and 2 of the input-output decoder. The x-channel is selected by 1,and
the y-channel by 2. Since these channels are OUTputting data, they are
controlled by the WR signal, which is ANDed with the decoder outputs
using the two AND gates shown.

The A-to-D converter is selected by decoder output number 7. Two
commands must be sent to the A-to-D converter. First, a 'start
conversion', which is an OUTput command. The signal is thus gen-
erated by ANDing decoder output number 7 with WR. When the con-
version is done, the A-to-D converter must inform the CPU of this fact.

70



iij •.• iij:;

lAR~;till .~ ::J :~5OlCo
Q) :0 .!: "00
::J

999 ...9 999 ...9Ol
0 •.•

~~ao-
ltl.!: ~ (/) ~

(jj .s;;~r~ ~ ~
::J

~
~

~.0 •..
:; ::J-0: Co

IID:::>u.u.wo:l~
•...•1-- Co :;

.!: 0
I/i

b ~ [5

0-- s ~[~ .s;; I-- ~ <r: I-- .s;;

~ B 0 ~~ I-- g I-- ~
6 6q "--- - - r-- r--

"11= ~ ~ ~ VA 1//t..n~ 'i:: ::J K
i

~"O~.o ..•

I t::)'--'--

~

• to-- Q) Q).~ .~ :s ..ii iiiI :
• "0 .0"a......-

II.-- \~ r-- IiUC Wu. ~ "0 •.•

t= "'Q)

~ ~IIMCO enID ltl"O I-~ 00
NLt'l 00& F= .00

I- ::J ~F >Q) .0,...~ ~"O•.•-t t=
1=

R
'i'-----

•.•N M'<t Lt'lCO ,...oor Ii•. ~:;~
w~~58.. .- o~ :r-r

1
i

••••N co:
E

1< )
...... 0:3: ~ •...Q) :::> ~~"0 a..

0 U IQ ...

1E -
iiIII

~

I: ~ A J\.
V~

~ 0:
~CIl'" iI
o~~
E'" 0 Wi'"Q)"O 0
E -g ~

Ol

666 .~ ~~ ..
.)...

l:: ~ti~
.Q ~ Co~CIlO 0
~E

~

CoQ)
~ E

I

71



It does this by outputting a signal from the SAR to the CPU's
interrupt pin, here labelled 'INT 1'.As mentioned earlier, this causes the
CPU to jump to a subroutine to input the result of the conversion. The
'interrupt' will interrupt any other task the CPU may be busy with, like
scanning the keyboard, or writing a number into the display. Finally,
when the conversion is complete, the binary number must be enabled
on to the bus, and read, by the CPU. So an INput signal must be
generated, which is a read; this is done by ANDing decoder output
number 7 with RD, and this signal is used to enable the buffer.

You can now think out the remaining chunks of the circuit for
yourself, guided by the idea that to switch on, or enable, any chunk of
the circuit, you must AND a decoder output with an RD if the chunk is
an INput, or AND a decoder output with a WR if the chunk is an
OUTput.

Here are a couple of applications of CONDAC in the laboratory.
The first, shown in figure 4.39, is a study of animal behaviour. Variables
to be measured are temperature, level of food in the trough, and level of
water in the bottle. The computer has to control the heating of the cage
and the level of light in the cage. The last two are easily arranged: a
D-to-A port is used to drive a heater and a second D-to-A to drive a
lamp. Power amplifiers will be needed to drive lamp and heater, since
both will need more current than a pure D-to-A converter can provide.

r-----------------<: from D-to-A
r-------'1f------------------< convertor

w
atl-+-~------~
~ to A-to-D

convertor

food I-I-_~....,....J

Figure 4.39
Behaviour study of an animal in a cage. Measurements are food level, water level, and
temperature. The microprocessor system controls heating and lighting of the cage, as
programmed by the experimenter.

Making the measurements: temperature is easy, a transistor or zener
diode (LM334 or LM335) are very good, a thermistor not bad.
Designing water or food-level detectors is up to the ingenuity of the
experimenter. Owen Bishop, in his book Interfacing to microprocessors
and microcomputers, offers some starting ideas for measurements. But
the idea is to convert the level to a voltage which may be measured

72



using the A-to-D converter. Since CONDAC only has one A-to-D
input and two are needed, the input must be switched from one signal to
the other. A mechanical switch could be used, but there are chips which
can do this job very well (CD 4052 or MUX 08). These chips can switch
very quickly, and can be driven by CONDAC's digital output port.
(a) anemometer

thermometer

9 baro9_eter ---+l :to A-to-D converters

to digital input port

from digital output
port

siren

(b)

disk

light source

photodetector

Side view of disk
square wave to
digital input
port

Plan view of disk

Figure 4.40
(a) A small weather station. Temperature and pressure measurements are made using
A-to-D converters. The detailed drawing (b) shows how the speed of the rotating wind-
speed shaft is converted to a square wave using a light source and photodetector.
This square wave is fed into a digital input of the microcomputer.

73



The second application, shown in figure 4.40(a), is a small weather
station. The measurements are temperature, pressure, and wind-speed,
and CONDAC must switch on an alarm siren if the combined
measurements indicate a serious storm. Temperature and pressure are
analogue signals; converted to voltage, they are both read and recorded
using a switched A-to-D converter. It is wind-speed that offers a chance
to think. You could connect the anemometer vanes to a dynamo, and
measure the output voltage, or current, with an A-to-D converter. But
their relation to speed is not simple. A better way is to attach a disk to
the vanes. This disk should be made of transparent plastic with opaque,
black stripes painted on - figure 4.40(b). Light is passed through the
disk and received by a photodetector device. If an opaque strip lies
between light and detector, the detector's output is zero. If a transparent
strip is in that position, the detector output is high, 5V. As the vanes
and the disk rotate, the output of the detector is a square wave, as
alternate opaque and transparent strips cross the light path. The
frequency of this square wave must increase as the disk rotates faster,
and the increase is linear. So what do you do with the square wave?
feed it to a digital input of CONDAC, and write a program to
determine the frequency of the. square wave. The instrument is
calibrated by recording the frequency at one known wind speed. This is
a general method that can be used to measure the speed of rotating
shafts, motors, lathes, robot wheels, and so on.

The alarm signal is easy to generate, once the computer has
measured the three variables and been programmed to decide that a
serious storm exists. CONDAC outputs a binary number to the output
port, which then switches on the alarm siren.

In both of these examples the microprocessor is an ideal solution to the
how-to-make-the-measurement problem. In both cases measurements
have to be made infrequently over long periods of time. Also, the
system's response may have to be altered. The animal psychologist may
like to study how switching on light and heat with different time periods
affects the animal's behaviour, or to have a time lag between heat on
and light on. If the control circuit had been made using discrete logic
chips, many of the desired changes would have called for massive
rebuilding of the electronic circuit boards. With a microprocessor, a
simple change in software is all that is needed and the experimenter can
do this himself. A microprocessor is not always the best choice; simpler
or faster circuits can be made with discrete logic. But in applications
where the precise working of the circuit may need to be changed in the
future, the microprocessor is the natural choice.

74



EPILOGUE
Putting microprocessors in their place

You have heard of the enormous power of microprocessors in control
functions. You now realize how seriously electronic-component manu-
facturers take the microprocessor. You may even have experienced the
feelings of fun and even satisfaction which come from the creation of
your own programs. Now you have read about how microprocessors
work you should have, at least, some feelings of awe at the clever
designs of controlling signals involved in the machine's architecture. It
is all a projection of the power of the human mind. And the parallels
between mind and computer are being rapidly researched. The brain is
not the most convenient organ to research. Yet thanks to the work of
physiologists on cats' and monkeys' brains, brain-eomputer parallels
are becoming quite believable, from the 'and-gate-is-like-a-neuron' level
to the 'thought-is-like-a-program' level. Some of the engineers who
developed dynamic RAM say they still do not believe that it works.
How can dynamic memory be memory when it forgets and has to be
reminded? Yet that is also a view held by modern psychologists of the
human mind. It does forget, and it has to be refreshed. And this sounds
like a fascinating rebirth of real natural science, a beautiful study of
mathematics, physics, and psychology.

BIBLIOGRAPHY
BISHOP, O. Interfacing to microprocessors and microcomputers. Newnes
Technical, 1982. This gives some easy interface units to build for any
microcomputer, with full constructional details.

CARR, J. J. Microcomputer interfacing handbook: A-D and D-A. Foul-
sham, 1980. This is one of the American 'TAB' series, good for the
hobbyist.

HOFSTADTER, D. R. Godel, Escher, Bach: An Eternal Golden Braid.
Penguin, 1980. This book makes a synthesis of physics, mathematics,
art, psychology, religion, and computing. It draws parallels between all
of these fields, and moves towards Artificial Intelligence.

HOROWITZ, P. and fiLL, w. The art of electronics. Cambridge University
Press, 1980. This is an excellent text on electronic engineering, from
gates to microprocessors, for anyone heading towards the profession.

75



INDEX
This Index will direct you to explanations
of the terms you may look up.

Address, 12
Address bus, 13
Address Latch Enable (ALE), 20
Analogue-to-digital conversion (A-to-D),

59

Bits, 11
Bytes, 14
Bubble memory, 47
Bus, 8 .
Bus contention, 9

Data bus, 13
Decoder and decoding, 15
Digital-to-analogue conversion (D-to-A),

54
Digitizing video pictures, 68
Direct Memory Access (DMA), 68
Dynamic memory, 47

Electrically Eraseable Programmable
Read Only Memory (E2pROM), 44

76

Enable and enabling, 9
Eraseable Programmable Read Only

Memory (EPROM), 44
Execute cycles, 33

Fetch cycles, 33
Flash conversion, 65

Input and output, 22, 70
Instruction register, 26

Keyboard interface, 53
Kilobyte (IK), 14

Latch and latching, 20
Linear ramp A-to-D convertor, 59
Large-scale integration (LSI), 5

Memory, 11, 44
Memory-mapped input and output, 22
M/I 0 signal, 23
Mnemonics, 29
Modem, 68
Medium-scale integration (MSI), 5
Multiplexing, 19

Op-code,29
Output and input, 22, 70

Program counter, 26, 28
Programmable Read Only Memory

(PROM),44

Random Access Memory (RAM), 45
Read (RD) signal, 13
Registers, 26
Read Only Memory (ROM), 44

Serial communication, 67
Seven-segment displays, 50
Successive approximation A-to-D, 62

Timing, 16
Timing diagrams:

introduction, 16; output, 42

Very large-scale integration (VLSI), 5

Write (WR) signal, 13



EXECUTE cycle number
(These numbers correspond
to those in the titles of
figures 3.15 to 3.25) Mnemonic

Opwcode
or data
(*indicates
data) Address Effect of instruction

2
3&4

5
6

MVI A

MOV M~Acc
ADI

MOV Acc~M
STOP

0010
0111 *
0110
1111
0101 *
0111
0000
0110*

0000
0001
0010
0011
0100
0101
0110
0111

Move the number 0111 into register A, ready to be used as
an address.
Move memory contents into accumulator.
Add the number 0101 (510) to the accumulator, and put
result in accumulator.
Move accumulator contents into memory.
Stop.
Data 0110 (610) to be added.

(This page may be photocopied for use with the work on pages 34 to 42.)




