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FOREWORD

This volume is one of the first to be produced by the Nuffield
Science Teaching Project, whose work began early in 1962. At that
time many individual schoolteachers and a number of organizations
in Britain (among whom the Scottish Education Department and
the Association for Science Education, as it now is, were conspicu-
ous) had drawn attention to the need for a renewal of the science
curriculum and for a wider study of imaginative ways of teaching
scientific subjects. The Trustees of the Nuffield Foundation con-
sidered that there were great opportunities here. They therefore
set up a science teaching project and allocated large resources to
its work.

The first problems to be tackled were concerned with the teaching
of O-Level physics, chemistry, and biology in secondary schools.
The programme has since been extended to the teaching of science
in sixth forms, in primary schools, and in secondary school classes
which are not studying for O-Level examinations. In all these pro-
grammes the principal aim is to develop materials that will help
teachers to present science in a lively, exciting, and intelligible
way. Since the work has been done by teachers, this volume and
its companions belong to the teaching profession as a whole,

The production of the materials would not have been possible with-
out the wholehearted and unstinting collaboration of the team mem-
bers (mostly teachers on secondment from schools); the consulta-
tive committees who helped to give the work direction and purpose;
the teachers in the 170 schools who participated in the trials of these
and other materials ; the headmasters, local authorities, and boards
of governors who agreed that their schools should accept extra
burdens in order to further the work of the project; and the many
other people and organizations that have contributed good advice,
practical assistance, or generous gifts of material and money.

To the extent that this initiative in curriculum development is
already the common property of the science teaching profession, it
is important that the current volumes should be thought of as con-
tributions to a continuing process. The revision and renewal that
will be necessary in the future, will be greatly helped by the interest
and the comments of those who use the full Nuffield programme
and of those who follow only some of its suggestions. By their



interest in the project, the trustees of the Nuffield Foundation have
sought to demonstrate that the continuing renewal of the curricu-
lum - in all subjects — should be a major educational objective.

Brian Young
Director of the Nuffield Foundation
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ESTIMATED ALLOCATION OF TIME

YEAR V

If it is assumed that a school year includes 30 weeks and that each
week includes 3 physics periods, each of which lasts 40 minutes,
then a very rough estimate of the number of periods suggested for
each section of this Year would be:

Chapter1 9
Chapter 2 15
Chapter 3 21
Chapter 4 12
Chapter 5 12
Chapter 6 12
Chapter 7 9

90

Although these estimates are rough they will, nevertheless, provide
some guidance as to weight to be placed on the various parts of the
programme. It should be noted that the relative amounts of print-
ing are not proportional to the teaching time required. Where sub-
ject matter is new and unfamiliar, it has been dealt with at length in
order to help any teacher who may wish to experiment with it. On
the other hand, more familiar subject matter has often been dealt
with briefly.



KEY TO MARGIN REFERENCES

C = Class Experiment

D = Demonstration Experiment

T = Teaching of material (lectures, discussions with pupils, etc.)
F = Film

H = Suggestions for optional experiments at home

*

* = Commentary (notes on methods, aims, etc., offered to
*  teachers)

The experiments are numbered serially through the Year, irrespec-
tive of the classification C, D, F or H. The same numbers will be
found for each experiment in the Teachers’ Guide to Experiments
and Apparatus. Where (a), (b) ... are added, these refer in some
cases to separate parts of the same group of experiments, in other
cases to alternative versions of an experiment.



PREFACE TO YEAR V

PLANS AND HOPES
Before describing the structure of this Year, let us take stock of our

position.

In Year V most pupils will be preparing for a public examination
and this will inevitably influence the work to some extent. But we
hope that examinations will not dominate the teaching. For a large
fraction of our pupils this will be the last year of formal instruction
in science. About one half of those dropping the subject will be
leaving school: the remainder will go on to pursue non-scientific
disciplines. What sort of scientific background do these people
need?

Consider the school leavers first. Apart from those who enter
engineering apprenticeships, they will not make direct use of their
scientific knowledge, so that facility in experimental techniques is
not of high priority ; but they should know what it is like to conduct
an experiment and something of the difficulties of interpreting the
results. The ability to solve numerical problems is not a skill which
is likely to survive the passage of years (dearly though one would
like to think that the future householder could make a quantitative
assessment of say the relative costs of using gas or electricity to heat
his home). But the realization that physics is a quantitative science,
in which it is possible to compute correctly from known data what
will happen in a hypothetical situation, is of first-rate importance.
As a citizen in a scientific world, he should neither be afraid of
science nor be overawed by it. He should realize that natural
phenomena usually have a rational explanation and that scientific
methods can be powerful tools in understanding and controlling
man’s environment. In other words, he should have an educated
person’s knowledge of what science is. This is the end to which our
scheme is directed. The details of which topics are included are
relatively unimportant — we teach a representative sample of
physics, not the whole of it —but it is important to remember that
at the age of fifteen, most pupils will grasp concrete examples more
readily than abstract principles.



In addition, there are certain key ideas that are so important, both
in physics and in the world as a whole, that they should become
second nature to everyone. These are:

The conservation of energy and the dominant role that energy plays
in scientific theory and in the economy.

Heat as a mode of molecular motion; and the statistical nature of
thermal laws.

The properties of electric currents (conceived as a stream of electrons);
‘electronics’ as powerful practical knowledge.

The nature of light and the properties of the electromagnetic spec-
trum.

The atomic nature of matter and existence of fundamental particles.

The nature of radioactivity and nuclear changes and the possibilities
and dangers of these.

The growth of atomic theory from early pictures to modern models.

Anyone with this background should be able to listen to a scientist
talking in general terms and follow at least the gist of his argument.
That is an ability which should make life more interesting and
meaningful for the average citizen and we hope that some pupils, at
least, will be impelled to find out more for themselves. In addition,
many people — businessmen, lawyers, shop stewards, nurses — may
have to carry on a discussion with technologists in the course of
their careers, while parents and teachers will have to answer the
questions of young children. A scientific background is, if not
essential, at least highly desirable in every walk of life.

There is nothing in the discussion above that does not apply
equally to the future arts student and the future scientist — good
science for citizens is also good science for specialists — but the
latter require something more. Nowadays, the student of almost
any of the humanities needs some knowledge of science. The his-
torian must be aware of the impact of scientific knowledge on the
thought and economy of the period he studies. The archaeologist
uses scientific tools in his work. The economist is concerned with
science as an economic force — also he aims at using scientific tools
and analogies. The philosopher is increasingly concerned with
scientific matters. To cater for these, it is important to include
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something of the history of science, more especially since new and
improved methods of teaching tend to obscure the original
approach. It is probable, too, that the future arts student will
appreciate a panoramic view of modern science (though the
potential science specialist might be content with traditional treat-
ment), and he will certainly want to look closely at the way in which
physical arguments are justified and how they hang together. We
hope that these things will be taken up again, at a greater level of
maturity, in general sixth-form studies; but the basis should be laid
now and the relevance of science to humanities made plain.

These aspects too will be valuable as part of the general education
of the school leavers, although some of the topics are more academic
and theoretical than would be chosen for that group alone.

Lastly, the course must make some provision for the needs of the
future science specialists — the future physicists, chemists, mathe-
maticians, engineers, doctors et al. In some ways this is the most
important group, since the economic well-being of the Country will
largely depend on their skill. It could be argued that the whole
syllabus should be designed for specialists and the others left to
make what they can of it. But that is not our policy. We believe that,
up to O level, education should be general and not vocational and
that the needs of ordinary people, as citizens and individuals,
should predominate — even over strong economic demands.

Nevertheless, it is important that the syllabus provided lay a broad
and firm foundation upon which later specialization may be built
and that nothing be done to turn the potential scientist from his
path. One hopes also to attract some of the waverers into a scienti-
fic career.

One hopes that the future scientist will be interested above all in
the 7deas of science — he will be a poor scientist if he is not. It must
be recognized, however, that many will be more attracted by the
power over the environment that science places in their hands. So
our teaching should include topics catering for this and giving some
facility in experimental techniques. And the proper place of for-
mulae — as servants, not as masters — should be taught. The em-
ployers of school leavers entering engineering apprenticeships will
expect such preparation. And for the very bright pupils, we need to
include some quite difficult problems to stretch their intellect, to
show that science is worthy of their mettle.



Thus our syllabus must cater for many needs: inevitably some
compromise is necessary. It is hoped that examinations will allow
the teacher to emphasize the aspects which are best suited to the
interests of his class. Some aspects will be treated mainly in
laboratory work or in homework problems, where the emphasis can
be changed to suit the class.

We have made no explicit mention of applied science topics. This
programme does not base its teaching on them directly. Yet pupils
should be aware of the way in which physics interacts with engineer-
ing and we should show them something of the nature of the latter
—one of the prime needs of the Country is that young people should
not despise applied science. We therefore recommend that the
topics in the syllabus be illustrated, wherever possible, by examples
of their application.

THE WORK OF THIS YEAR

This is a Year of important experiments and ideas, in which we
draw upon the work of previous Years but expect more imaginative
thinking, more reasoning, and new experimenting. We want to
develop some taste for theory and to explore further in ‘atomic
physics’, in both experiment and theory.

Newton’s Laws of Motion - so far treated as great principles and
tested in simple class experiments — are now put to the use that
Newton himself set forth: to form a grand theory of the planetary
system. For that we must have a quantitative treatment of circular
motion — to be done by an experimental approach if pupils find the
geometrical discussion too hard.

Then, armed with some understanding of orbital motion, we can
continue previous work on electron streams by bending their path
with a magnetic field. To analyse measurements, pupils must use
some knowledge of the force exerted by a magnetic field on a stream
of charged particles. That is difficult, but we shall not evade it (thus
losing our chance of clear knowledge of electrons) or spoil it by
announcing an unexpected ‘formula’. Instead we shall make a
direct experimental approach and measure the strength of the
magnetic field that we use by putting a simple current-balance in
it. For pupils who find this work too hard, we might offer a shorter
qualitative treafment that would leave more time for the other
topics of this year.

Essentially, however, this is a programme of reasonable intellectual
standards, for average O-level candidates. If one topic in this Year
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seems too hard, others are likely to appear hard too. If pupils find
the topics too hard, the proper solution is a change to a different
programme. If teachers consider the topics too hard, at a first
glance, we hope they will try teaching it — as they are experimental
scientists — fwice: a first round to see its possibilities, a second
round to see how their own version runs.

A simple study of waves and oscillations will be resumed from
earlier years. That will lead, on the one hand, to a discussion of
interference by waves — for use in building atomic models ~ and
on the other hand to experiments with alternating currents — for
use in ordinary life. And pupils will take a short, informal look at
simple harmonic motion.

Then while simple atomic models are being discussed, experiments
on radioactivity will be carried out. This work will open up new
knowledge and help to encourage the imaginative thinking by
which scientists formulate a ‘model’.

As the discussion of atomic structure continues, films and demon-
strations will carry pupils as far as the ability and knowledge of each
class will allow.

Class Experiments

The class experiments that are necessary for the teaching of this
Year will not take up all the available time. Some class experiments
with a.c. should be postponed from Year IV till now so that pupils
can enjoy working at them carefully: experiments with the electro-
magnetic kit; and experiments with slow a.c. — all with plenty of
use of oscilloscopes. Now is the time for a few pupils to make a
careful measurement of ‘J’; which would have taken up too much
time in Year IV - and might have been misinterpreted then.

Able pupils who have time and interest may want to do their own
Millikan experiment now; or some may even want to measure the
speed of light. Either of those experiments will take much time;
but the experimenters would gain so much experience of experi-
mental physics that they could well afford to miss other experiments.

Thus the class experiments this Year should have all pupils making
an estimate of e/m: and some pupils measuring ¢ or ¢ (or perhaps A
or even G). One such ‘great experiment’ can make a tremendous
contribution to a young person’s education. It need not make
great demands on the teacher’s time once the apparatus is pro-
vided — in fact it should not do so, since the point of the experiment
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is not to train the pupil in advanced experimenting but to give him
the experience of independent work. Teachers with heavy time-
tables and crowded laboratories may think this an unrealistic
dream; but we believe that pupils who have followed our pro-
gramme in spirit as well as in content will be ready to undertake
such work in a trustworthy and skilful and resourceful way that will
make that dream come true.

Aim

All through, the important thing for teachers to keep in mind is the
overall view that they are giving to pupils who will end physics
now: the knowledge of physics that those young ‘scientists for a
day’ are gaining, and their picture of nature, explored and well-
understood up to a point, then bounded by new regions of un-
finished knowledge. Here at the end, as in the earlier Years, we
hope pupils will conclude that ‘science makes sense’.



NOTES ON THE TEACHING OF THE ASTRONOMY
SECTION

Minimum Programme

With some groups, teachers will feel that the time available for
astronomy is short. So the treatment must be held to a minimum,
though it must be full enough to reach the principal aim: to show
pupils the development of Newton’s theory.

We suggest the following programme as a minimum:

1. Brief description of observed facts: motions of stars, Sun, Moon,
planets.

2. Brief description of early man’s use of astronomy for clock,
calendar, and compass. Mention astrology. Importance of heavenly
events promoted speculation about gods or demons as ‘explana-
tions’.

3. Describe, chiefly by pictures, a few Greek geometrical schemes
as reasonable machinery to explain heavenly motions. Suggested
examples:

Simple revolving sphere (Thales)
Concentric spheres with round Earth at centre (Pythagoras)

Many spheres, revolving about different axes to imitate observed
motions closely (Eudoxus)

Circles and sub-circles (with Earth short distance off the centre
of main circle); and elaboration of that (Ptolemy)

(If time permits and interest encourages, short descriptions of
Greek methods of estimating size of Earth, distances of Moon

and Sun)

4, Descriptions of Copernican system, demonstrating how it
accounted for observed motion of planets in orbits with loops.
Example of Copernicus’s calculation of orbit sizes. (With faster
group, Copernicus’ simple story for precession.)

5. Mention of Tycho Brahe as fantastically precise observer.

6. Kepler’s Laws described, possibly with brief account of his
work in extracting them.



7. Mention of Galileo contributing to development of astronomy
by teaching Copernican view clearly and by devising a telescope
and using it, among other things, to show Jupiter’s moons as a
model solar system. (For our teaching of astronomy only a brief
mention of these contributions is necessary. It is tempting to give
a much fuller account of his life and work; but, although that is of
great interest, it is not essential here.)

8. Description of Newton’s theory and its fruits: assumptions;
predictions or explanations of Kepler’s Laws, motion of comets,
shape of Earth, tides, precession of equinoxes and perturbations of
planetary motion ~ which led to the discovery of Neptune. We hope
teachers will be able to show this unrolling of great theory by
pointing to its fruits on a large chart.

Warning about Models for Greek Schemes

Ingenious Models: misleading here. We shall show Greek
schemes on the way to our farget, Newtonian theory. It is very
tempting to make mechanical models to illustrate the schemes;
but showing models is likely to take too much time and to divert
attention of both teacher and class from the main advance to the
target. The teacher who finds himself busy devising models would
be wise to pause and ask himself whether he is in danger of losing
the point of this teaching. We offer the following comments to
teachers who are considering mechanical models:

1. In this suggested programme of teaching astronomy for the
development of theory, mechanical models of Greek schemes are
not necessary. We recommend avoiding them, because they will
divert attention from ideas to machinery, from intellectual grasp to
interest in mechanical ingenuity.

2. Where a laboratory already has models, they might profitably
be shown, #f they can be introduced Zghtly and shown very briefly.

3. We positively advise schools #of to buy any mechanical models
however tempting the description.

4. Where a teacher has devised his own model, we should not dis-
courage him: the delight of making one’s own gadget to demon-
strate a new idea will often shine through the dangers of delay and
diversion and illuminate one’s own teaching. (But that does not
transfer to other teachers.) Even so, we offer him three warnings:



a. In making the great profusion of models in the past, inventors
have found that devices which involve spins about several axes
have to be more complicated than one would expect.

b. A ‘partial’ model, such as an umbrella, which shows only a
patch of the picture, helps the teaching quickly onward. A com-
plete’ model which shows the whole picture is very likely to mis-
lead pupils in the matter of ideas/gears. (We have seen  Meccano’
models which are testimonials to the ingenuity and skill of their
makers; yet we should not use them here.)

¢. Having made a model, one meets a further temptation: to put it
on film. That will make the dangers worse.

However, we shall suggest a few very simple models.

Models of Greek Schemes for Slower Groups?

Teachers who have slower groups may feel specially tempted to
substitute the making of some models for the studies of theoretical
schemes which promise to be too highbrow. That might seem wise
at the moment; but there the study of astronomy would end.
Newtonian Theory, our real target, would be none the easier for the
move into model-making. Instead, teachers faced with a real diffi-
culty, arising from a slower group’s different tastes and interests,
should consider making a major change of programme.

Theories for Slower Groups?

As this course has proceeded from Year III to Year IV to Year V,
the demands on intellectual skill and interest — of an academic kind
- have grown, we hope, in consonance with general growth in these
years. That has been intentional, in carrying out our plans for an
O-level programme of teaching science for understanding. Where a
slower group finds these later stages unfruitful or unsuitable in
demands, we should want the teaching to seek our aims (or corre-
sponding aims) in ways that are fruitful, and not to try to force
a standard shoe on every foot. We should not advocate half-
measures: keeping our ‘syllabus’ but just watering-down each
topic to a simpler form; or just changing the target from thought-
out knowledge to some more practical result; or just giving out the
results without basis or explanation. Any of these will lead to poor
science — neither confident understanding nor knowledge gained
with delight.

Nor would a patchwork treatment be good: teachers who enjoy the
sequence of topics in these later years may forgetfully take for
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granted the aims and connected scheme that underlie our teaching.
They may be tempted to select a few topics to make a programme
for a slower group. That might be a good programme; but it is
unlikely to be, because the interconnections of our teaching will be
lost in the selection process, and a new attempt to build-in corre-
sponding aims will be needed. A fresh start would be far better; not
saying, ‘Which items are nice ones for a simpler course?’, but
asking, ‘What are our aims in science teaching for this slower
group? What items (from anywhere) could be chained together well
to show how science makes sense? And what treatment of those will
be most fruitful?’ Those questions may lead to a programme with
little in common, as regards syllabus or equipment, with our present
one; yet, if it is fruitful, we shall be very glad.

Theories for Average Groups?

Returning to our present programme, for average O-level groups:
we earnestly hope that teachers who feel doubtful whether an
average group can follow our treatment of astronomy with fruitful
enjoyment will give it a full trial. (Remember the question to the
visiting explorer, ‘But how do you know you won’t like boiled
missionary?”)

This is a special topic and a special kind of teaching for teacher and
class to explore together: yet it deals with one of the greatest intel-
lectual developments in the scientific world. As A. N. Whitehead

putit,

‘... The moral of the tale is the power of reason, its decisive
influence on the life of humanity. The great conquerors, from
Alexander to Caesar, and from Caesar to Napoleon, influenced
profoundly the lives of subsequent generations. But the total
effect of this influence shrinks to insignificance, if compared to
the entire transformation of human habits and human mentality
produced by the long line of men of thought from Thales to the
present day, men individually powerless, but ultimately the
rulers of the world.’}

So, for an average group, we advocate neither half-measures nor
patchwork treatment, but rather ‘thin’ treatment: quick, confident,
rapid travel to the main target. With a slower group, the choice
should be either (1) the same ‘thin’ treatment — but running a bit

} Science and the Modern World by Alfred North Whitehead. Cambridge Univer-
sity Press, 1926, pp. 299-300.
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slower, or (2) omit this whole section. In the latter case, one
should either treat the other topics of the Year extra carefully, or
consider remaking the programme.

Much of the value of this part of the programme depends on our
own approach in teaching. So we urge teachers to give this a con-
fident trial, even if they have provisional doubts for their class. We
venture to guarantee that a teacher’s enthusiasm and skill will be
greatly rewarded in this.

TOO FULL A YEAR? ‘
Before they are half-way through the year, teachers will wonder
whether the year is too full. Can they reach ‘ matter waves’ and other
exciting topics in modern physics in time? If Year III has prepared
for Year IV and Year IV has had its full time, pupils and teachers
will cover Year V, happily. Just at the middle of the year in any
good teaching programme there is a stage of depression when
teachers feel things are running too slowly. The early topics have
proved more interesting or more difficult than one expected; and
the later topics loom ahead too forbiddingly.

Suppose we stand and survey our course from the vantage point of
the end of the first term:

Survey: Looking Backward and Looking Forward

In the suggested programme for this Year, we began with central
acceleration for motion in a circle, to be used for making measure-
ments on electron streams and used again to show how good theory
is developed in Newton’s explanation of the solar system. The
measurement for electrons also remains as a useful background that
we can refer to if we mention similar measurements for ions in a
mass spectrograph, alpha particles and beta particles from radio-
active material, etc.

We then looked at simple harmonic motion qualitatively, and con-
tinued the study of waves, started in Year III, on into interference
effects with light, estimates of wavelength, and a look at gratings
and spectra. That was intended to do three things:

1. Give factual knowledge of waves and interference, which is an
important part of one’s general knowledge of physics. (And it is a
beginning for some A-level physics.)

2. Let pupils see for themselves why we think light consists of
waves, and enable them to make their own estimate of the wave-

length of light.
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3. Provide a necessary background for introducing a topic of really
modern physics: matter waves. If we have any time to mention this
phenomenon and discuss it briefly and gently, we must prepare
pupils beforehand by making them familiar with the behaviour of
waves with gratings.

Teachers may feel tempted to continue from the discussion of inter-
ference and gratings to a further study of waves and spectra,
theories of light, and the contrasting behaviour of quanta or
photons of light. That lies ahead, and we hope pupils will hear
some of it, because it is an essential part of our modern view. Yet,
before we proceed to that we have two other things to consider:

(1) We must continue our building of atomic models, from the stage
of hard, round molecules or atoms that sufficed in kinetic theory, to
a picture of a Rutherford nuclear atom. We may feel tempted to go
farther still, but progress after that is likely to be difficult for pupils
at the present stage.

(ii) Pupils will need time for revision.

Revision will, of course, be a problem for each teacher to judge in
terms of his class and their work. We certainly do not suggest that
the Year should go right up to the examination without revision,
just because the atomic physics now at the end is so important. Yet
we do believe that many teachers will find, when they get to this
Year, that the kind of examinations suggested to fit our programme
do not need the same type of revision as the traditional ones.

True, our suggested examinations will dip back into the work of
Year IV and Year III; but in doing so they will look for under-
standing, in the sense discussed in the General Introduction.

There we gave a general account of our aims in teaching for under-
standing, to let pupils learn by doing their own experiments,
arguing things out (with help) and by answering problems and
questions that ask for thinking. We suggested that taking more
time for a topic to gain a sense of mastery might give lasting under-
standing.

However, such general descriptions of teaching are not very helpful
when we are thinking about the actual examinations. The com-
parison that was offered in terms of the French verbs, savoir, con-
naftre, comprendre, was again at best a helpful admonition. But we
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also gave a relevant and useful definition: we reminded readers that
most of us say, at one time or another, ‘I never really understood .
that part of physics until I came to teach it’, and we suggested that
in the same sense but on a much simpler scale, the test of a pupil’s
understanding can be whether he can teach it. We elicit his teaching
by asking him to explain something to someone else — his younger
brother or his non-scientist uncle, rather than to a mysterious,
fierce examiner who requires the knowledge to take on a formal
polish. We have been using that device for problems all through
our programme, both for current teaching and as preparation for
questions like those in examinations. If, as we hope, O-level exam-
inations for our programme are slanted in the direction of asking the
candidate to teach things to someone in his answer, they will have a
good chance of testing understanding. Of course, such questions
have always been used by good examiners: our suggestion here is
that the questions should take a less formal style and that the
answers should be read by examiners with this requirement of
understanding still more actively in mind.

In marking the answers for that, examiners will find they have to
make subjective judgments, since they are looking for the under-
standing that they see in the answer, and for the feeling of mastery,
rather than memory of facts. In doing that, examiners will be
doing great good on behalf of our teaching in particular and science
education in general. They may find that marking schemes of very
precise form are unsuitable for some questions; but they will
be able to judge whether the pupil understands in much the same
way that many of us judge in an interview whether the applicant
understands the work he is to do. With such hopes in mind, we urge
teachers towards careful teaching and good experimenting by
pupils, and away-from a great deal of revision of factual material
which might not be so useful in examinations as pupils’ demon-
strations of understanding. As with so many things in our suggested
programme, this is a matter where the first time of teaching will be
difficult and uncertain, and teachers will find that they know far
better what to do when they come to a second round.

Whatever revision seems necessary, in the view of both pupils and
teachers, must of course be done. But we hope that there will be
time to carry the teaching at least far enough to include the Ruther-
ford atom, and perhaps as far as matter waves.

This Guide is Very Long. This guide is long and discursive.
That is intentional, because these notes are offered to many different
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teachers with varied interests and experience, for guidance in
following a new programme of teaching.

Where one teacher wants to know our reason for suggesting a topic,
another may want to know why we advocate some crude apparatus
instead of a modern machine; and, elsewhere, why we recommend a
strange modern machine instead of simpler traditional apparatus.

Some teachers may welcome detailed instructions for running an
experiment. Others in turn will be distressed by the lengthy dis-
cussions of details; and they will ask for a short list of topics, such
as the following:

Motion in a circle: central acceleration

Measurement of e/m for electron streams

Planetary astronomy and gravitational theory

S.H.M. ; waves, alternating currents

Interference of light: Young’s fringes

Diffraction grating; spectra

Radioactivity ~ properties of rays with electroscope and counter

Alpha-particle scattering and Rutherford atom model

Photo-electric effect

Theories of light: waves and photons

Matter waves: particle and wave behaviour

Newer atomic models ... uncertainty? ...

Appendix on electromagnetic spectrum

Appendix discussing theories of light

Given like that in a dozen lines, our list can hardly satisfy any
teacher planning a new programme with changes of aims and atti-
tudes ~ in examinations as well as in teaching — such as we are
suggesting. At most it tells an external critic our topics, without
telling him our intentions.

Because our suggested programme is a new one and the format of
treatment of this final year is unfamiliar, we shall enter into long
discussions and give considerable details at some points.

We trust that teachers who would prefer a quicker summary will
bear with that profusion and will extract whatever they need.

A Fable. We have tried to make our course include some of the
modern physics of today. Rather than emphasize the atomic physics
of half a century ago, we suggest bringing the teaching nearer to
the present day, even with O-level pupils.
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Imagine a Conference on the teaching of physics, convened. in
A.D. 1700. A resolution might well be passed to the effect that .
teaching of Aristotelian mechanics is in good order, and should
continue; teachers in schools have good apparatus and are skilfully
expounding the dynamical principle that motion requires a force
proportional to velocity. The new ideas of Newton would be
recommended for advanced seminars in universities.

Now imagine a Conference in the early 1800s: the teaching of
Caloric would be endorsed and the unorthodox view of heat as
connected with motion — with the new name energy about to
appear — would be viewed with suspicion and restricted to graduate
discussion.

Now shift our imaginary Conference on teaching physics to the
early 1900s. Newtonian dynamics, energy and its conservation,
atoms, molecules and kinetic theory, are all being taught clearly and
well; but measurements of electron streams are regarded as very
difficult to teach and the rumours of a quantum restriction are
pushed away to professional studies.

The lag is natural enough: in each generation the older material
seems to be secure knowledge and easy to teach well; and the
newest material is not only strange but, as yet, difficult to teach.
Of course that is partly due to the different way in which teachers
have learned it. In many cases, the older material was taught them
in their own student days with firm authority - and if they were
given some of that material at a sufficiently early age by a strong
capable expounder they may have accepted it quite uncritically.
Whether we like it or not, we must accept that as one general
characteristic of education — we who are teaching now must be
giving strong dogmatic force to some of the physics we are teaching,
without knowing it.

On the other hand material that a teacher did not learn in student
days is apt to remain a little strange and not seem so strong a part of
the syllabus. For example, many an older physicist today regards
Relativity as somewhat uncomfortable ~ however well he now
understands it and, perhaps, teaches it. When he first met the new
ideas of Relativity they struck him as almost a misfortune: well-
assured geometry was being attacked and could be shown to be
‘wrong’. But, to the next generation of physicists, Relativity will be
a commonplace, heard about at school, used as a normal part of
student physics.
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Thus, the lag is there and forgivable; and in past ages it has been
harmless. There has been time for each generation to catch up.
Now with science growing and changing so rapidly, and ideas
travelling so fast around the world, is it any longer safe to let
teaching lag in a comfortable way? Trying to make the teaching
catch up and lessen the lag would be uncomfortable and even
dangerous, if done carelessly. Yet when we move our imaginary
Conference on teaching physics to the year 2000 we may feel uneasy
about the prospect. Will so much of today’s newest physics still
seem too strange to teach?

With that question in mind, we offer suggestions of teaching some
new physics in this Year.

The Newest Physics. In dealing with new, recent, physics ~ the
physics-in-the-making of the last quarter century — we can only
suggest topics and give some notes on teaching in this Guide.
Many teachers would like to read fuller accounts of such topics.
Yet when they look at books on modern physics they are dis-
appointed. There are up-to-date advanced texts for university
teaching or professional use; and there are some popular accounts
of the latest physics, written for laymen. Many a book that gives
the careful exposition of modern physics that one would like to
have as background for O-level teaching seems to stop short at the
state of physics fifty years ago, or at least treats later topics too
briefly. With that need in mind, we suggest the following books
which might be useful:

The New Age in Physics by Sir Harrie Massey (Harpers, 1960).
(This is a remarkable book, likely to be of great help in the
present matter. The author largely neglects the physics that was
‘new’ fifty years ago — the first magnificent measuring of e/ for
electrons, the early mass spectrograph with difficult geometry,
laborious sorting out of radiations by absorption characteristics —
and proceeds at once to the really new physics. The book is a
popular account and we must not expect it to provide detailed
training — yet it gives the right perspective.)

Turning Points in Physics by R. J. Blin-Stoyle and others (North-
Holland Publishing Company, Amsterdam, 1959).
(Six very useful lectures, on Fields, Quanta, Probability,
Relativity, Causality, and Elementary Particles.)
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Knowledge and Wonder by Victor F. Weisskopf (paperback,
Heinemann Science Study Series, 1964).
(A set of essays, which do not lose as much as most by being
short, because the author is a very powerful modern scientist.)

Accelerators, Machines of Nuclear Physics by Robert R. Wilson and

Raphael Littauer (paperback, Heinemann Science Study Series).
(This gives accounts of early machines, cyclotrons, linear
accelerators, etc. It gives solid physics and yet is elementary.
Without using mathematics, it nevertheless explains fully how a
cyclotron works, discussing difficulties of focusing; extends the
stories to synchrotrons, and even reaches the new story of clash-
ing beams of electrons.)

The Nature of Solids by Alan Holden (Columbia University Press,
1965).

(This is an excellent, simple, introduction to solid-state physics
and transistors.)

One, Two, Three ... Infinity by George Gamow (Macmillan, 1947).
(This is more light-hearted and scrappy but stimulating. Some
pupils would enjoy reading it.)

In addition, among the flood of new paperback books a series called
‘Momentum Books’ is appearing. We urge teachers to watch for
these because they are written by good physicists, with the aim of
helping the teaching of serious modern physics.
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¢ Scientific knowledge is knowledge, not fact — a gallery of pictures
painted by men to portray in some simplified, comprehensible
way the seemingly infinite complexity of nature. The pictures
are put up and taken down, cleaned, replaced, and destroyed.
Any account of scientific knowledge is therefore a “progress
report™ - an account of unfinished business.

‘... Indeed, in the eyes of those who have made them, all these
pictures are only fragments of a single picture. It is a picture of
nature that is always incomplete, but must always hang together
with the consistency contributed by the single palette used in
painting it: the mind of man.’

Alan Holden

in the Foreword to Conductors and Semiconductors
Bell Telephone Laboratories, Inc., 1964
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NOTE TO TEACHERS ON "CENTRIFUGAL FORCE’

In elementary teaching we must make a clear decision between
centripetal force and centrifugal force. A mixture of both is fatally
muddling for beginners.

Centripetal force, used with Newton’s second law will of course
yield the right answers, and forces will always be in the right direc-
tion — strings will pull and never push: lorries rounding a corner
will skid or fall outwards, . . . but the method will seem artificial to
pupils, who have all heard of centrifugal force. The following dis-
cussion with an imaginary pupil may be helpful to teachers dealing
with this question.

Motion in a circle needs a real inward force, provided by real
external agents. This view of centripetal force will help you to deal
with all real problems of circular motion. Then what is centrifugal
force? You often hear of it, may find yourself speaking of it when
you whirl something around, and will find books using it to
explain things in physics. Here are a variety of opinions on it. You
may choose according to your taste.

OPINION I: “Centrifugal force is a phomy force, imagined through a
misinterpretation of evidence confusing agent and victim.’

If you whirl a stone on a string, the string-tension pulls your hand
outwards (just as it pulls the stone inwards). This is a real centri-
fugal force on your stationary hand, not on the whirling stone. You
feel your hand being pulled outwards, so you say, ‘I feel the stone
and string pulling my hand outwards. That tells me the stone is
being pulled outwards, by some centrifugal force, and the string is

just transmitting that force.” That is where you are mistaken. There
is no outward force on the stone. Really the string, in a state of ten-
sion, pulls at both its ends. While it pulls your hand outwards it
pulls the stone inwards. The only real force on the stone is inward,
- centripetal.
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Bird’s-eye view

Again, suppose two boys, A and B, visit one of those amusements
in which people sit on a floor that rotates. Suppose A and B enter
the room while the floor is at rest, and sit on the polished floor.
Knowing the trick of the performance, A glues himself to the floor.
When the floor begins to spin A notes that a mysterious force
seems to pull him outward; and, but for the glue, it would make
A side slide out to the wall. B, without glue, slides out to the wall if
A does not hold on to him, exerting an inward pull on him. Each
feels he is struggling against ‘centrifugal force’. But now let a
stationary observer take a bird’s-eye view from above. Seen from
outside the spinning room, A and B are both moving in a circular
orbit, and both need real znward forces to keep them in orbit. For
B, the force is the inward pull A provides: for A it is the pull of the
sticky floor on him. Once again, A merely imagined an outward
force on B because he had to apply a real inward force to him. As
the outsider sees, these inward forces are not neutralizing a
mysterious outward force, they are making an inward acceleration;
they are making A and B move in a curve. The outside observer
offers a further comment. When A lets go B then continues along a
tangent (if there is no friction). B’s successive positions along that
tangent are farther and farther out from the centre of the circle; so,
as seen by A (spinning with the floor) B seems to be sliding out
along a radius. But really B is just continuing a straight (tangent)
path, a simple example of Newton’s First Law.
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OPINION 11: ¢ Centrifugal force is a delusion arising from living in the
rotating system and trying to forget it

The rotating-floor discussion leads straight to this view. To people
sitting on the table in a concealing fog — and ignoring its motion ~
there is an outward field of force, endowing every mass M with an
outward force Mv?/R. Unless some real agent applies an inward
force to balance this, any object left alone will seem to slide out-
ward with acceleration v2/R. Preferring to take a sober view from
outside, we say that both the outward field of force and the out~
ward sliding are delusions due to living in a rotating framework
and not allowing for its motion.

OPINION II1: The Novice’s Headache-Cure

Here is a good use for centrifugal force. Let us be rude and say,
with some truth, that some beginners prefer ‘ Statics’, the physics
of things at rest (in equilibrium), to the physics of motion. Prob-
lems involving acceleration and rotation make his head ache; and
the novice wishes they could be reduced to simple statics and prob-
lems that he is so good at — forces in bridges and cranes. And they
can. Consider, for example, the problem of a pendulum whirling
around in a conical motion. The two real forces acting on the bob
are its weight and the string tension. These two real forces must
add up to a resultant force Mv? R inward — otherwise the bob
could not continue around the orbit. Here then are two forces W
and T which have horizontal resultant Mv?/R inward. Let us turn
this into a statics problem with equilibrium (resultant zero) by

|
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adding an extra fictitious force. What fictitious force must we add to
W and T to make zero? The third force would have to be — Mv?/R,
or Mv?|R outward. So some teachers say this to the novice: ‘Yes,
you can turn any problem with circular motion into a statics prob-
lem if you fake all the real forces acting on the moving body and ADD
a fictitious centrifugal force, Mv2|R outward, and then write an
equation stating that these forces (including the fictitious one) have
resultant zero. Solving the equation will give you the same infor-
mation as the method of making the real forces combine to produce
inward acceleration v%/R.’

g F
SYI—<—0 THE HEADACHE

The spring (= agent) pirovides the real force, F,
10 make acceleration. v*/R

THE CURE
Inmgbwyfom--"%ﬁ + real force F

On this view, centrifugal force is a fictitious force, but a useful one,
to cure the novice’s headache, It is also used thus in advanced
physics, to save trouble — but then it is a sophisticated trick in the
hands of skilled craftsmen. As used by most students, it gives the
right answer but makes some of the theory harder to understand -
how can it help that when it reduces obvious motion to fictitious
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rest? The trustful user, with his right answer, is confused about the
forces: he is not sure which are real or which way they pull. If you
value your understanding of physics, avoid this headache-cure at all
costs. Of course, a mixture of this centrifugal headache-cure with
centripetal forces will produce utter confusion!

OPINION IV: Relativity

(This opinion sketches some comments from sophisticated
relativity theory. Read it for amusement or for a good moral
warning, but do not let it convert you to the headache-cure method
for novices. This relativity-view is true, but only within the frame-
work of definitions constructed for it.)

Can nothing better be said of centrifugal force? Returning to
Opinion I, some scientists ask, ¢ Why is it so wicked to view things
from a rotating framework? After all, we live on a spinning Earth.
Are the ‘centrifugal forces’ that arise from our rotating-framework
viewpoint really different from other forces, and less real? Who are
we to say which is really rotating, ourselves or everything else?’
(We are back to Copernicus vs. Ptolemy.) This last question is like
the problem of testing Newton’s laws in an accelerating railway
train. By building a tilted room in the train we could still find the
same laws, though we should find ‘gravity’ changed in size and
direction. We suspect that we cannot distinguish between the effect
of acceleration and a real change of gravity — Einstein built General
‘Relativity theory on an elaboration of that ‘cannot’.

Relativity theory starts with an axiomatic statement, that we can-
not tell which is moving, ourselves or ‘the other fellow’, that there
is no such thing as absolute motion. If that is so, ‘absolute space’
is meaningless; it should not be used, and cannot be needed, in
science. In that case, the working geometry of ‘space’ must be
such that we discover the same physics whether we think we are
moving or ‘the other fellow’ is. And that makes us modify the
simple geometry of space and motion that Euclid assumed and
Galileo and Newton used. For constant velocities, we have many
experimental failures to distinguish absolute motion even with the
help of light-signals, so we feel justified in accepting the Relativity
principle and its modified geometry. In practical life, the modifica-
tions are not noticeable, and they only affect experiments notice-
ably when very high speeds are involved, as they are in atomic
physics and perhaps in astronomy.
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Extending the Relativity attitude to accelerated motion we assume
that a local observer will find the effects of acceleration indis-
tinguishable from a local change of gravity; and thus we decide that
gravitational fields can be treated as local changes of geometry in
space-time. This is Einstein’s Principle of Equivalence. Though
the viewpoint is entirely new, its practical form shows only small
deviations from Newton’s law of gravitation.

Extending this idea to rotation, we suggest that a local observer
cannot distinguish between the effects of a rotating framework and
a local change of gravity, if he is moving with that frame. In that
case centrifugal force tugging outward would be just as real to him
on his spinning floor as an extra, horizontal pull of gravity. Then,
to a tiny creature in a centrifuge, centrifugal force-fields should
appear just like real gravitational fields, only some thousands of
times as strong as ordinary gravity and gravity would take on a new
direction — he would quite forget about its old direction. This
General Relativity view has proved useful in co-ordinating think-
ing; and so far we have not observed anything inconsistent with it.
In this way, centrifugal force has grown to be respectable. When
we want to test the effects of large gravitational fields, unattainable
on Earth, we think we may use a centrifuge instead.

The general principle of equivalence forbids us to call the motions
of the Earth absolute. It therefore leads to a new mechanics and
geometry that will predict the same effects whether the Earth spins
and moves around the Sun, or the stars and Sun move around us.
On General Relativity theory, a rotating universe would produce
‘centrifugal forces’ at a stationary Earth; so tests of a spinning
Earth, with a Foucault pendulum or equatorial changes of ‘g’,
could not distinguish between the two causes: Earth spinning or
everything-else-spinning. Faced with the old question, ‘Is Coper-
nicus right and Ptolemy wrong?’ we must demur at Galileo’s
cocksure insistence and say, ‘Both views may well be equally true,
though one is a simpler description for practical thinking and work-

ing’.
OPINION ON THE FOUR OPINIONS?

Make your own choice. However, for problems and experiments
in this course, you are advised to use only centripetal force.
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YEAR V

SYNOPSIS OF PROGRAMME FOR THE WHOLE YEAR
As explained in the Preface, this is a Year of putting physics to
work to build stronger knowledge, principally in understanding of
theory and in atomic physics.

We do not intend to provide new topics compactly taught for
examinations or to spend a major part of the time revising old
topics. The earlier Years will have taught many regions of physics
on which examinations can draw with questions that ask for con-
structive thinking. This Year should give pupils practice in such
thinking at a more mature level, but should not aim at packing in
new content where that is solely of use as examination material.
However, we shall survey a good deal of new atomic physics.

The attitude this Year should be: ‘Now we can extend and use
earlier knowledge to tackle great problems of the structure of the
world.’

Essentially, this programme introduces six new tools and uses
them together to develop five areas of physics:

1. We discuss motion in a circle and arrive at ¢ = v%R and
F = mv?*R.

2. We obtain from experiment a quantitative measure of the force
exerted by a given magnetic field on a current in a wire; and we
extend that, by argument, to a charged particle moving in a stream
across a magnetic field.

3. The idea of an inverse-square law, introduced for gravitational
fields, but applicable with the same geometry to electric fields, the
spreading of light, etc.

4. Devices using ions to exhibit ‘atomic’ events: cloud chambers,
geiger counters, scintillation counters, etc.

5. The use of alpha particles from radioactive substances (or
protons or electrons from accelerators) as projectiles with which to
explore atomic structure more deeply.

6. Studies of water ripples and light are combined to provide new
criteria for waves.
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With those tools, we develop:

A. Quantitative knowledge of electrons, positive ions, and nuclei
as parts of atoms.

B. An example of physical theory — seen in stages of construction.
We describe the history of man’s knowledge of the stars, Sun,
Moon and planets, from early observations through successive
stages of building a ‘theory’, to the age of Kepler and Galileo,
when man had a great body of empirical information, organized in
rules that were verified with precision but still disconnected pieces
of knowledge. Then we unroll Newton’s great gravitational theory
to show the use of good theory in science.

C. Knowledge of radioactivity.

D. The wave-particle idea. We touch briefly on the modern picture
of both radiation and matter having particle aspects and wave
aspects — the behaviour which we observe and measure being
determined by our choice of experiment.

We cannot, with pupils at this age, pursue this duality far; but we
should introduce our modern view, both for the sake of non-
scientists who will read about such things later and to set the stage
for further studies by physics specialists.

E. Atomic models. We develop successive models of atoms, from
hard billiard balls of kinetic theory to a hollow Rutherford model.
We may give a survey of later developments of atom models. We
owe some modern knowledge to our pupils, but the experiments
and reasoning that led to such knowledge (even if we show modern
simplified forms) are too complex for our teaching. All we can offer
at this stage is a survey of results, descriptions of models. However,
in this region of modern developments we feel justified in breaking
our resolution to offer supporting experiments so we suggest giving
only short descriptions. We can give occasional support and
elucidation by films, but there we must beware of two dangers:

1. A film which shows the real apparatus and working of a funda-
mental experiment may be merely confusing, owing to the pro-
fusion of auxiliary apparatus.

2. A film which describes either ideas or experiments by animation
may be very misleading in another direction. It can sketch the
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story we think or hope is true and fail to give real teaching of
science. However tempting such a film looks as a clarifier, we
should be unwise to show it.

Pupils should hear about:

A nuclear model with stable and unstable nuclei.

The photo-electric effect and its strong suggestion of quanta; the
idea of photons of light and their behaviour, possibly a mention of
specific heats and their suggestion of quanta; use of wave-particle
views to sketch an atom model. Perhaps even a comment on un-
certainty.

It is doubtful whether we can give more than a passing, brief
description of any of these; though we hope that, with a fast group,
teachers will be able to select some aspects of present-day physics
for expansion.

Experiments
Links with Earlier Years: the following experiments are essen-
tial, if they have not been done fully in previous years:

Millikan’s experiment: discussion and film (and possibly de-

monstration).
This should be done in two parts: first, a clear proof that electric
charges come in multiples of a single universal basic charge;
second, a measurement of the size of that charge. The first part
is both more important (for our present teaching), and easier to
show, though even that will have to be shown by film. The
measurement of the value of ¢ will have to be taught by assertion.

Young’s Fringes by ripple tank (class experiment)
Young’s Fringes for light (qualitative class experiment)
Young’s Fringes for light, rough measurement (class experiment)

Cathode rays: demonstrations of properties (except effect of
magnetic field, which will be studied this Year).

It will not be necessary to do experiments on Force, Mass and
Motion, even if pupils missed them. However, pupils must not only
know F = ma and Ft = change of (9) but have an understanding
of the nature of mass, force, weight, gravitational field strength and
kinetic energy. They must know that K.E.= {mo?

27

L R R N I Y R R e A S

LI I BN K B AR B R B EE R N N R N B )



Pupils need not do or see experiments with electric fields even if
they missed them, provided they know the pattern of the field
between parallel plates and are ready to accept the idea that field
strength X/? is given by P.D./distance between the plates.

Experiments this Year. The teaching of this Year involves some
important experiments: a test of F= mv%/R; measurement of
wavelength of light with a grating ; measurement of ¢/m for electrons;
and some radioactive experiments. These should be class experi-
ments as far as possible. Even so, they will not occupy the full
amount of time the laboratory has and deserves.

We suggest four categories of experiment that might be offered at
any suitable places:

a. Demonstrations and class experiments with alternating cur-
rents, including experiments with ‘slow a.c.’” (These should be
class experiments for everybody.)

b. A transistor eiperiment (instead of in Year IV).

c. A careful measurement of ‘J°. If pupils are at a stage where they
can see that this is at the same time very important and necessarily
inaccurate but yet worth doing, then they should do it.

Pupils embarking on this should take time to learn the ways of the
apparatus and discuss its troubles.

They should work in small groups, pairs if possible. This is an
experiment that should be done in an atmosphere of strong personal
involvement, with the odds against the experimenters.

This should not be treated as a measurement to ‘get the right
answer’. There s no accurate J-apparatus for student use that can
possibly yield the right answer except by a happy coincidence of
cancelling errors. An experiment done carefully with a detailed
series of cooling corrections can yield a result fairly close to the
accepted value — but those corrections are tedious and would be
puzzling to pupils at this stage: they would spoil the experiment.

If we look at the huge task of the experimenters who made the most
trusted measurements of J we shall suspect many difficulties; and if
we consider the nature of heat losses and the conditions of pupils’
thermometry, difficulties come to the forefront.
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With apparatus carefully devised to minimize errors, we shall still
be giving pupils an inaccurate experiment. It is good for them to
know that; and then it is good for them to do the experiment.

d. Difficult measurements for able groups or pupils with special
interests:

Millikan’s experiment done by a small team of pupils;
possibly a measurement of the speed of light;
measurement of e/m done by a small team.

These may seem to impose a great burden on organization of
apparatus and teaching — we only suggest them for those cases
where teachers find that they have a group that they can set to
work on some individual experiments. Needless to say, such
experiments should be given considerable time. For slower groups,
some of the experiments suggested for this Year, such as work with
electroscopes or investigations of pendulums, could be spread out
into longer experiments done by pupils on their own.
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Chapter 1
MOTION IN AN ORBIT

Central Acceleration and Satellites



Introduction to Circular Motion
Experiments and Questions about Motion in a Circle. We
start with three demonstrations and a class experiment.

1. A carbon dioxide puck on a smooth table travels in a straight
line at constant speed (a ring with cardboard lid and solid CO,).

We ask whether this is natural motion and whether any forces are
needed to keep it going.

2. We refer to the motion of the Moon round the Earth. We ask
whether that is natural motion and whether any force is needed
to keep it going — and leave the question unanswered.

3. The Leybold fine beam tube first without, then with, magnetic
field. We ask the same questions.

4. Then, feeling our way towards the need for a force, we ask
pupils to tie a small massive object (a ring or a hex nut) to a
string and whirl it round their heads and decide which way the
force must be on the object.

We ask pupils which way the force does act on them if they sit
on a smooth seat in a car that rounds a sharp corner. Which
way do they slide? Which side of the car then pushes on them?

(We might discuss the banking of a bicycle rounding a corner,
but this often leads to more confusion than help, because the
problem is better discussed by taking moments than by considering
a single force.)

‘Flying Off at a Tangent.” Now or later the teacher should give
a very important demonstration and discussion: the motion of an
object released from its orbit. He whirls a light block of wood on a
string, in a horizontal circle round his head. Each time the block
is in front of him, nearest the class, he says ‘Now’. He threatens
to let go of the string at that stage, when he says ‘Now’. He does
that. Some pupils will flinch, because they expect centrifugal
force to make the block rush out towards them. All will see that the
block does not travel towards them but simply continues its motion
out to one side of the room, along the tangent. The teacher should
also point out that the block does not fly off along the tangent in
an aggressive way, but just continues along the tangent — an example
of Newton’s First Law.
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Centrifugal Force?: Centripetal Force? We find ourselves
immersed at once in questions of centrifugal force versus centripetal
force.f We must be sympathetic and firm: we ask the direction of
the force on a stone being whirled round one’s head, and remind
the pupils that ‘strings pull, never push’.

We ask again which side of the car pushes on the passenger on the
smooth seat. We may ask, quite unfairly, What do you think the
Earth does to the Moon, repels it or attracts it?’

We agree with our critics that the same string which pulls the
stone inward also pulls our hand outward; and that the sliding
passenger in the car will push the side of the car and smash it
outward if it is weak enough. And we agree that the Moon must
pull the Earth outward, towards the Moon. That will not convince
our critics that there is not a centrifugal force acting on the stone,
the passenger, the Moon. And we ourselves would certainly infer
the presence of such an outward force if we were in a rotating
frame of reference, riding on the stone, or in the car, or on the
Moon. (In case of a rider on the Moon, where gravity is the con-
trolling force, the evidence for a centrifugal force would be sup-
pressed, because the observer himself would be pulled by a force
proportional to his mass.)

¥ Note to teachers on choice of policy. The choice between rival treatments -
centrifugal and centripetal — has advocates on both sides.

In advanced physics, we ourselves call on centrifugal force. We reduce a problem
of orbital motion to a statement of equilibrium by adding an outward, centrifugal
force to the forces applied by strings, gravitation, etc. And when we explain the
action of a centrifuge (or a merry-go-round) in detail we all want to resort to
centrifugal force — though of course a logical centripetal explanation can be
given,

For an elementary beginning, some teachers prefer to use centrifugal force
because it draws on pupils’ common belief. Others hold that this start will lead to
difficulties. They maintain that, having started with the view that acceleration a
needs force F in the same direction (F = ma), we should continue to take that
view for the acceleration v2/R, which is certainly centripetal, not centrifugal.

One thing is sure: in elementary teaching at any rate, a mixture of the two
approaches is fatally confusing.

In planning our suggested course, the Nuffield Physics group decided to set forth
the teaching in terms of centripetal force.

There are some comments on the matter in the next few pages; and a separate
note discusses the choice at length.
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We shall have to say that centrifugal force is one way of looking at
the problem; but not our way.

Experiment to illustrate Centripetal Force. We give one
more illustration of our centripetal view: we ask pupils to put a
penny on a rotating gramophone table, and let it spin faster and
faster until the penny cannot command enough friction to anchor
it and slides off at a tangent. We ask pupils to watch very carefully
what happens from the point of view of an outside observer at rest;
and then to speculate what that would look like to an observer
standing on the turntable. We ask where a drawing pin should be
stuck in the turntable to keep the penny from sliding away.
(Answer: Just beyond the outside edge of the penny.)

We shall use Centripetal Force. We insist that we shall treat
the problems ahead of us by the clumsy, unrealistic-looking method
of saying that anything moving in a circle must be acted on by an
inward, centripetal force that pulls it in from a straight-line path.
A real inward pull is needed. ‘No force, no orbit.” Before this has
time to build up irritation or boredom, we proceed to a satellite.

Satellite
‘Throw a cricket ball out horizontally. It falls to the ground some
yards away. A rifle bullet, fired faster but also horizontally,
reaches the ground after a mile or so.

“Try a thought experiment: fire a bullet so fast that it covers an
appreciable part of the Earth’s circumference before it reaches
the ground. What effect has the Earth’s curvature on the bullet’s
fate? Fire it even faster and it “falls over the edge of the Earth”.
The Earth falls away from the buller’s original direction just as
fast as the bullet does.

To the bullet all parts of the world are the same, and it soon
forgets where it started from. Such a bullet with just the right
speed will always be falling over the edge, and so it will go on
and on round the world - keeping just above the ground — until
it arrives back at the starting point and hits us from behind.’

In practice air resistance (heat barrier) absorbs energy, and down
comes the bullet. So we must start outside the atmosphere.

Here is a simplified story for a typical satellite that we may give a
class that is interested:
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1. Rocket starts off nearly vertically. The exhaust gases exert an
upward push, greater than the rocket’s weight; so the rocket
accelerates upward;

2. Fuel exhausted, motor cuts out and the first stage separates;

3. Parabolic (free fall) trajectory until the path is horizontal at
maximum altitude;

4. Final stage ignites and accelerates its relatively small mass to
high velocity before unlatching the satellite proper and leaving it in
orbit;

5. Exhausted final stage is also in ofbit, but, in the course of time,
a small relative velocity puts a big distance between them;

6. There is some air resistance even at 100 miles up, so energy is
used up slowly and satellite descends. In the course of that, its
time to circle the Earth grows smaller. Pupils should try letting a
string carrying a whirling stone wind up round their finger. They
will see it speed up.

Questions about satellites and rockets will flourish now, whether
we want them yet or not. We should welcome them and perhaps
use some of them to lead to the topics ahead.

We ask about the energy necessary to raise a satellite 100 miles.
Would it be better to burn fuel slowly, giving thrust for a long
time, or burn it rapidly and then have a long rise time under free
fall conditions? The answer lies in the cost of raising the first
stage fuel load. If the fuel-burning continues during most of the
rise, we have to raise a good deal of fuel. We have to compromise
between saving that cost by a rapid initial acceleration} and the
stresses on man and machine involved by acceleration being too
great. At the final stage, we must provide 3mv? energy for the
motion in orbit. All the latter — in fact, all the energy released by
the fuel - is dissipated as heat on re-entry.

Teachers will find a very useful discussion of rockets and satellites,
with some data for satellites that have been fired, in a Penguin book
by Michael Ovenden, Satellites.

% Only if the acceleration is infinitely large can we avoid wasting fuel on raising
fuel for the later stages of that acceleration. An infinite acceleration would bring
the rocket to a suitable final speed in an infinitely short rise-distance. But that
would be infinitely dangerous,
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‘Centrifugal Force’ Again., Even now the question of centri-
fugal force will crop up with strong advocates. We make two new
attacks on it:

1. We ask pupils to think about a boy running along a straight
path, with a larger, stronger boy running beside him and pushing
him sideways. What would be the effect of that continuous side-
ways push? Suppose, as the smaller boy changes his path, the
large boy continues to push sideways, perpendicular to the new
path. What kind of a path would the smaller boy take? A circle
seems reasonable. In this case the force is clearly inward.

2. We point out that there is always a visible (or, if invisible, well-
known) agent applying a force towards the centre; the string that
pulls inward, the pull of gravity on a satellite. (But if we like we
may imagine there is an outward centrifugal force as well; and then
acted on by those two forces, the visible inward one and the
imaginary outward one, the moving object might be treated as in
equilibrium - we forget its motion and imagine it remaining at
rest. Then we have a case of balanced forces on an object at rest -
a standard problem with engineers, who have long favoured
building bridges at rest. On that view centrifugal force is a trick
to reduce complicated problems in motion to problems that look
simpler because they are concerned with equilibrium.)
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Demonstration with Loop-the-Loop. If the laboratory has a
sloping runway for a steel ball, ending in a vertical circle, the
teacher should use this for a valuable discussion. He releases the
ball high enough up the slope to make it ‘loop the loop’. Then he
asks:

‘What makes the ball go round a circle? What pushes or pulls the
ball with a real force to make it do that? It must be some inward
force towards the centre of the loop.

‘What provides that force here, at the side, half-way up the

loop? ... Yes, the rails push inward. (Does gravity also act on the - :

ball when it is there? ... Yes, of course gravity always acts.
But it pulls vertically; and its only effect is to make the ball
slow down a bit.)

‘What provides the inward force here, at the top of the loop? ...
Yes, the rails may push downwards; but what other force helps?
... Yes, gravity helps — and what is more, it insists on helping
fully, whether it is wanted or not! Look what happens when we
have the ball moving more slowly, needing less force for its orbit.
Gravity is too strong, and makes it fall away from the rails.’

1 1

The teacher shows the notion with various speeds, and finds the
speed at which the ball just follows the loop, with the rails exerting
no force at the top of the loop, because gravity suffices. Then he
asks what would happen if the rail were cut out just at the top of
the loop. If possible, the top section of rail should then be removed,
and the experiment tried.
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Though this experiment is worth showing just for fun, the main
point of it is the discussion of inward forces that it facilitates.

Simple Treatment of Satellite Orbit
Before we embark on a formal treatment of satellite orbits, pupils
should try the following simple, graphical approach.

*We are going to make a scale drawing of an Earth satellite’s
orbit. See if we can use that to find how long a satellite takes to
go round the Earth, if it is controlled by ordinary gravity.

‘ Suppose we launch an Earth satellite 100 miles or so above the
Earth. Then, since the radius of the Earth is some 4,000 miles,
it is not really much farther away from the Earth than a stone or
cricket ball thrown in the air. We know that for a falling stone
the pull of the Earth produces an acceleration 32 ft/second per
second. So a stone dropped from rest falls 16 feet in the first
second. Any projectile does the same: instead of continuing
along a straight line in the direction in which it is fired, it drops
16 feet from that straight line in the first second. (Remember the
‘monkey and hunter’ demonstration last Year).

‘Now think of an Earth satellite travelling round the Earth in a
circle, about 100 miles up. Instead of travelling along a straight
tangent to that circle the projectile falls in from the tangent
again and again — continually - to keep in a circular orbit. In
one second it must fall 16 feet from its straight line tangent to
its circular orbit. If you could draw a large-scale drawing of the
satellite orbit and mark the 16-foot fall you could read off some
more information from your drawing. However, 16 feet would
hardly show on any drawing small enough to get into this room.
So we had better imagine letting the satellite fall from its
tangent path for a longer time: say 2 minutes or 120 seconds
instead of one second.

‘In 120 seconds instead of 1 second a freely falling body falls
16 feet x (120)2. We are using the “formula” that you met
before: s = }at®. Work out that fall in miles. Then we can put
that on a large-scale drawing to find out how far the satellite goes
in 2 minutes. And from that we can predict how long an Earth
satellite will take to go round the whole Earth.’

Then pupils calculate the fall, about 44 miles. The teacher should
arrange to draw arcs of a circle on large sheets of brown paper for
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pupils to make a graphical prediction for satellites. We suggest a
scale on which one millimetre represents one mile.§

} Careful drawing, or calculation, shows that, in fact, such a satellite travels
about 590 miles in 2 minutes. That would need an arc 59 cm long on the brown
paper; but pupils’ estimates will vary considerably, so the arc should be drawn at
least 80 cm long.

In drawing the arc, the teacher should also mark a radius near one end, to help
the pupil to draw a tangent there,

Better still: draw an arc twice as long, with the specimen radius near its mid-

point, Then, although ‘draw a tangent” is still the official instruction, pupils can
draw a symmetrical chord 4-4 cm in from the circumference there. That is more
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The radius of the circle corresponding to a satellite orbit of radius
4,100 (4,000-+100) miles should therefore be 4-1 metres.

A thin wire of length 4-1 metres anchored at one end with a pencil
at the other end would enable the teacher to draw arcs on sheets of
paper distributed among pupils for a class experiment. An error
of 3inches in that radius will make only a 1 per cent error in the final
answer, so we should aim at ease rather than accuracy.

Pupils draw a tangent and find where the distance of fall is 44
millimetres from the tangent to the circle. Then, given that the
travel from the tangent point to the point they have found is a
2 minute trip for the satellite, pupils to work out the time taken for
the satellite to go once round the Earth. We should then give them
a table of actual times for satellites from Ovenden’s book. They
should find that their estimate is close to the 90-minute one for
satellites close to the Earth.

Does Gravity extend to the Moon? (Optional)

Some teachers will want to extend the satellite test to the Moon, -

without mentioning inverse-square gravity. The same 4-1-metre
arc will serve for a piece of the Moon’s orbit ¢f we change the scale.

We tell pupils that the Moon’s distance from the Earth is about
60 Earth-radii. Then, for the Moon’s orbit, instead of a scale of
one millimetre to a mile we now have one millimetre to 60 miles.

We first try imagining that gravity extends undiminished out to
the Moon. We calculate the fall in 2 minutes: 44 miles as before.
With our new scale, one millimetre to 60 miles, that fall would be
only %2 millimetres — too small to work with. So we suggest
letting the Moon travel the same arc on the diagram as we found
for the Earth satellite falling for 2 minutes. (That was somewhere
between 40 and 80 centimetres, according to each pupil’s success
in making the drawing.)

But now the fall of 44 millimetres from the tangent to that place
on the diagram no longer represents 44 miles. It represents a fall of
44 x 60 miles. How much time would a falling body need for that,
under full gravity? Look at s = £az2. If we make s 60 times as big,

easily done with some precision. For that, paper must be long enough to take an
arc at least 150 cm long, but need not be wider than 20 or 30 cm. (There is no
need for the centre of the circle to be on the paper.) So a long strip from a roll of
wrapping paper will suffice.

It is unwise to change to a less simple scale in order to fit a smaller piece of paper.
The arithmetic will bring enough troubles without that.
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with the same a, #> must be 60 times as big. Then ¢ must be 4/60
times as big: that is, 72 times as big.} Then the Moon would travel
the arc in 74 X2 minutes; and it would travel the whole circle in
7% X the 90 minutes that pupils obtained for the satellite; that is,
between 11 and 12 hours.

INVESTIGATING THE MOTION OF
2 / A SATELLITE NEAR THE EARTH

Sketech the orbit to scale

? {I-OOK. FoR,
'ruﬁ 30 4 mm
DRAW  wiTh
RADIVG 4., meties
OR, TO CENTRE

BETTEQ—

F

e e TS TR oo O

DRAW THis I ; \ i

CHORD “THE f
CALLULATED '
DISTANCE 44 mm DpDowld FRoM Are, MzASURE ARC,

MOON'S ORBIM Same arc on sketeh, radius 4°1 metres.
= [60[ BEarth Radil N
P———
.*. new scale 1s 1 millimetre for [_62[ miles.
Suppose "g" is still the same as near Earth's surface.

i ' { 4% millimetres as before
Mnow represents_
4% x 160f miles

time taken for this arec

must now be " ?
2 minutes x | 4 601 (vecause, in s = tat?,

or 2 minutes x 7% 4y x ( 60@ = (same g)t*
And time for whole orbit therefore t*= [;L{LT};QX ]60]
3
would be 90 min x 773 ' therefore t = 2 min x‘ f

which is much %too small.

} Since this is a difficult discussion, teachers who Propose to try it with their class
are advised to make sure that a rough value for 4/60 is known beforehand. 73 will

serve well. -
(7D = (33)? = %34 and 582 = 60 .". 4760 — 73 within 0-06%.
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Even if pupils’ answers for the satellite varied far from 90 minutes,
this new answer is clearly wrong for the Moon, which takes a
month.

Therefore, if the Moon is constantly pulled from tangent to orbit
by the Earth’s gravity, there must be a greatly diluted strength of
gravity out of the Moon,

Then we might take the Moon’s month of 27-3 days for granted
and calculate the amount of dilution. But the answer would not
look clear and simple to beginners; so it is probably better to
suggest an inverse-squaref dilution and try that in the calculation
from the drawing as follows:

‘If it is the pull of gravity that holds the Moon in its orbit,
making it fall from the tangent to the orbit again and again and
again, it must be a much weaker gravity. The acceleration must
be much less than 32 feet/second per second out at the Moon.

‘When astronomers started puzzling about this, several people
suggested that gravity may “thin out” according to an inverse-
square law. According to that, if gravity is so much at a certain
distance, it is 1 at double distance, # as much at treble dis-
tance ... T3y as much at 10 times as far away from the attracting
body.

¢ An apple near the Earth is pulled so strongly that it falls with
acceleration 32 ft/sec per sec. The Earth attracts an apple as if
all the Earth were concentrated at the centre, 4,000 miles below
the surface, a whole Earth-radius from the apple. But we know
that the Moon is about 60 Earth-radii away from us, 60 times as
far from the Earth’s centre as an apple. So, if gravity follows an
inverse-square law, it must thin out by a factor &2 when we
change from apple to Moon. If so, free fall under gravity at the
Moon would not have an acceleration 32 ft/sec per sec; but
it would have acceleration
32/602 or 32/3,600 ft/sec per sec.

‘How would that change affect your calculation for the Moon?
Look at s = at2. If we make a 3,600 times smaller, then, for the
same s, ¢ must be 3,600 times bigger: and # must be 60 times
longer. As a result of our diluting gravity, we should expect the
Moon to take 60 times our previous estimate for the whole orbit.

} See page 179 for suggestions concerning teaching the idea of an inverse-square
law.
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‘That is 60 x (7% X 90) minutes or 60 X (72 x 90)/(60 x 24) days:
very close to 28 days.

‘It looks as if the Moon may be “falling”, to keep its orbit, with
inverse-square-diluted gravity.’

To arrive at that result, we must use the inverse-square law -
otherwise all we can say is that undiluted gravity is much too
strong. We shall describe and discuss the inverse-square law and
use it in our Newtonian prediction of Kepler’s Third Law. How-
ever, to bring it in at this introductory stage may well be dis-
couraging; so we suggest that this extension of the brown-paper
diagram experiment to the Moon should be offered only to a very
fast group. We should tell pupils what the inverse-square law is,
but we should not give a long lesson on it; and we should certainly
not say that the inverse-square law is right and that they ought to
know that already. Instead, our pupils should follow Newton in
using this discussion to see whether gravity does ‘thin out’ in
that particular way.

How Big is the Force Needed to Maintain Orbit? We explain
that to deal satisfactorily with satellites or electrons, we must know
just how much force is needed to hold something in a circular orbit.
We say the force is given by F = ma as usual and we state that a
point moving round a circle does have an inward acceleration. We
ask pupils to feel the force. The higher the speed, , the bigger the
force needed to hold the objects in orbit, so the bigger the central
acceleration must be. And, for the same speed, the smaller the
radius, or the sharper the curve, the bigger the force, and therefore
the bigger the acceleration must be. So we expect the central
acceleration to go up with » and go down with increasing radius. In
fact a = v?/R. We shall offer a geometrical proof of this for those
pupils who can learn it easily. And we shall ask all pupils to give it
an experimental test.

Motion in a Circle

Necessity for mo?/R. If we restrict ourselves to a qualitative
description of motion in a circle, and the forces it involves, we
can talk generally about satellites but we cannot account for
Kepler’s Laws and we certainly cannot show Newton’s great
synthesis for the solar system in any clear light; we can describe
what is shown by demonstrations with electron streams but we
cannot make any measurements and so must stop short at a very
general picture of atoms. Measurements of beta rays and the
working of a mass spectrometer would remain equally vague.
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So we must arrive at ¢ = %R and F = mv? R because we want that
for several uses. If we proposed to show that simply as a piece of
physics to be used for examinations, we should certainly find-it
difficult for many O-level pupils ~ and it would seem to them an
odd piece of geometry rather than an essential piece of knowledge.
As we use it here, it is an essential piece of knowledge and we must
face the difficulty of providing it.

We suggest that teachers should try the geometrical derivation of
a = v%[R, with any group that does not find it too hard, starting by
showing clearly why it is needed — introducing the problem through
satellites or through the electron stream in a magnetic field — then
spending plenty of time on the geometry and algebra so that the
derivation becomes familiar by repetition. Then pupils should put
it to such uses that it seems worth while in retrospect.

It is easy enough to propose that for specially able groups; but
what about the average group for whom the derivation will remain
puzzling? Even for them, we suggest that this is something to see,
something to try once, or at least to see done.

Few of us intend to climb Mount Everest, but we can all appreciate
an account of the expedition and join in it by reading or by seeing
a film, at Ieast to the extent of understanding some of its hardships
and enjoying some of the successes. If, at the start, we remove the
bogey of ‘being examined’ and assure pupils that this is something
they should see, and even try doing for themselves, but not some-
thing that we propose to hammer into a compact shape that can be
reproduced in examinations, our pupils should be old enough by
now to appreciate this as valuable experience.

The Nuffield Physics group hopes that teachers will experiment
with this approach - this method of talking about what one is
going to teach and the aim and method of its teaching before one
embarks on the teaching itself. In this, we are doing little more
than following the good practice that any teacher adopts when he
is explaining something to adults. He does not try to drive home
every stage of his story until his adult listener could reproduce it;
nor, on the other hand, does he pare away the essentials of the
story so that the adult says it makes no sense. Like such adult
listeners, our pupils should be able to say ‘I have seen that. It was
difficult but it was sensible and from now on I can take it on trust -
trust vouched for by what I have seen myself.’
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Then there are slower groups for whom teachers feel convinced
any geometrical or algebraic derivation would prove much too
puzzling. Even in such cases, we hope that teachers will first
try the geometrical derivation to see whether, released from the
examination bogey, the class can appreciate it after all. (We know
no way of ﬁndmg out whether that is feasible with a g1ven class

except by trying it.)

Where the derivation must be avoided, we have three choices: (1)
give up most of the physics of satellites and planetary systems, and
atomic particles ; (2) treat those things, but take out all quantitative
discussions, so that physics seems to lose its backbone; (3) justify
F = mv*R by experimental tests. We hope that teachers who have
slow groups will experiment with the last method. We can provide
apparatus and suggestions for its use — though we wonder whether
a slow pupil will not have as much difficulty in following the argu-
ment of the test as in following through a carefully taught deriva-
tion. :

Derivation of v%/R

We suggest two methods below. Whatever method the teacher
tries, he should preface it by considerable discussion of the general
idea and a reassuring statement about watching and seeing it done,
so that science is not a mystery. (In fact, if we ask pupils to watch
this done and then later ask them to write it out for homework:
then still later on ask them to watch it done again, we shall find
that, given in repeated lighthearted doses, the story will both make
sense and be remembered.)

There are several good ways of showing that an object moving
round a circle of radius R at constant speed v has an inward
acceleration »2/R. Our choice should depend upon the skills and
mathematical training of the class. Two versions are suggested
below:

1. The ‘Crossed Chords’ Method. For pupils who know that
when two chords of a circle intersect the products of the segments
of the two chords are equal, this method is probably best. It
follows almost directly from the brown-paper experiment. It is,
in fact, Newton’s own method.

We draw a circle to represent the orbit and suppose the object,
moving with speed v, proceeds from A to B. It may be helpful to
continue the previous story and call the moving object the Moon.
We draw the tangent to the circle at A and show the fall of the
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Moon from K to B, where K is where it would have got to if there
had been no force (Newton’s Law I). We add construction lines,
etc., as in the sketch here, marking the fall KB, equal to %, and
labelling the same distance % on the diameter that runs down from
A. Then, appealing to the ‘crossed chords’ property, we say,

M2R —h) = x?,
then, h = x*|(2R—h).
A K A

..-_}- - = -b't

h_ - i B

9

RR-h

L

We persuade pupils to neglect % in (2R —£). ‘When you are weigh-
ing a haystack, don’t worry about losing one needle. But when you
have a needle all by itself and are trying to find how much it weighs,
you must not throw the needle away. You must keep the % on the
left; but you may throw away the # that is subtracted from 2R.’

Then, % =x*2R.

x, which is equal to AK, is practically equal to the arc AB. If the ~

Moon travels from A to B in time ¢ with speed v, x = vt}
o h = @)*2R = ¥v?/R)t?

but % is the vertical fall (with no initial velocity in that direction),
with some acceleration, in time ¢. We use s = }at?, so k1 = }at?.

Then, the Moon’s acceleration, a, must be v?/R.
The same holds for the motion at all places round the circle, but
with vertical always taken to mean the direction from Moon to

centre.
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2. The Similar—Triangles Method. We draw a circular orbit
with a Moon moving from A to B with speed v in time £. We draw a
long vector AP to represent the velocity of the Moon at A. This
must be along the tangent at A. We draw another vector of the
same length, BQ, to represent the velocity at B (it is helpful to draw
these much longer than the radius of the circle, to lessen confusion).
We redraw these vectors in another place nearby, both starting
from the same point D. (As experienced physicists, we are tempted
to do this drawing on top of the main picture, producing the second
tangent backward to cut the first and making that intersection the
common point D. But, with beginners, that will make the story
much more confusing. It is important to emphasize the distinction
between lengths, such as R, and AB, and velocities such as ».

In the second diagram we draw two vectors from D, each of length
o and label them

‘Old velocity: velocity at A’ New velocity: velocity at B’

We ask: ¢ What must be added as a vector to the old velocity to get
the new velocity?’> We draw that in (shown as a broken line in the
sketch here) and label it ‘change of velocity’. (We do not need to
give a special lesson here on subtracting vectors. We simply ask,
‘When the velocity changes direction, what must we add to this
earlier velocity to get this later one?”)

Then we join A and B to the centre of the circle and point out that
we have two similar triangles because each velocity vector is per-
pendicular to the corresponding radius. Then we argue from the
property of similar triangles as follows:

[Change of velocity]  AB
P " R

.. [Change of velocity] = A}; 4
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Suppose this kind of change of velocity, which is perpendicular to
the actual motion, is related to an acceleration just like any other
acceleration — a surprising supposition which must be tested. If so,
we can calculate that acceleration as usual:

[Change of velocity] AB.v
[time taken, A to B]  R[time A to B]
2
Acceleration = — —éB——— AR

R tmetaken R R

Proceeding to Limit. In either of the methods above, we have
the problem of proceeding to the limit as B approaches A. If we do
not proceed to the limit, we are left with an approximation, essen-
tially that of calling the arc AB approximately equal to the chord
AB. We really want the acceleration ‘at an instant’ when the Moon
is at a point A and B combined; so we really want the limit. To
keep our calculation in good form, we should put in, at an appro-
priate place, a factor (arc AB)/(chord AB); and then we should
show carefully that this factor tends to 1 in the limit. However,
taking that care would be the last straw for our young pupils -
except for those who are natural mathematicians. So we should
avoid labouring, or even referring to, the need to proceed to a
limit, or the method of doing so. If a pupil objects, we should
just point out that the jump we have made becomes more and more
trivial as we move B closer to A.

Calculus. There are some quick methods that use calculus. In

this case, such a method is likely to be too obscure, however quick. -

It should be avoided. We should also avoid methods that use
trigonometry: either the sine that is used cancels out — and similar
triangles would have been clearer ~ or it involves differentiation.

The similar triangle method is closely related to the hodograph
method, but we do not advocate the latter because it seems more
sophisticated to pupils.

Putting a = v* R to use. As soon as we arrive at ¢ = 2%/R we
should put it to use. The simplest use that looks real — and not
artificial, like problems that ask for tension in the string of a whirl-
ing stone experiment - is the calculation of the orbital time of an
Earth satellite. As in the graphical method, we point out that the
acceleration of the satellite is much the same as that for a projectile
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slightly nearer the Earth’s surface. So the acceleration is g. We
write 9%/R = g and take R just over 4,000 miles or 6-4 million
metres, and ask pupils to calculate the time of going once round the
Earth.

Here again we need a large poster of the periods of the satellites
that have been launched.

Experimental Test of F = mv?2/R as the Force needed for
Motion in a Circle

We should give the new expression an experimental test. Even if
they find the geometry and algebra easy, pupils do not feel quite
happy about applying F = ma to this motion where the accelera-
tion is ‘across the motion’ never changing the speed but only the
direction of motion. So we should make a test of the prediction
that motion in a circle needs a force mv?/R.

Comment to Teachers on Apparatus for Test. Ingenious
physicists have devised many forms of apparatus for carrying out
such a test. It is a tempting problem for all of us; there is a strong
need for a test and there are intriguing opportunities for ingenuity
and skill; so we devise apparatus for the test and then make it more
and more complex by adding improvements. But when pupils try
such apparatus the intrinsic difficulty of the essential idea at stake
makes the complexity most unwelcome. So we should try to keep
the apparatus as simple as possible, provided it can yield some kind
of quantitative tests. We need a simple device in which a known
mass is held in an orbit of measured radius with measured speed
by an inward force which pupils can measure directly and com-
pare with the calculated force F = mo?/R.

Several simple forms of apparatus for this test are suggested
below. Where a teacher has already devised and made good ap-
paratus of his own for this test, he should certainly use it instead of
the suggestions here. The enthusiasm and confident knowledge of
the man who made the apparatus are very valuable in this case:
they help to carry the pupil through the experiment with enjoy-
ment. However, where the teacher decides to make use of one of
the suggestions below, we urge him to resist the temptation to add
improvements because this experiment is so easily obscured by its
own machinery.

Even with simple apparatus, pupils are easily confused about the
nature of the test. We have to explain clearly that the measured
force (provided by some spring or weight) is the real force that
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pulls the moving body inward. The calculated force mv?/R is not
the real force, but is the theoretical prediction, which is under test.
To young pupils who have just been carried through the derivation,
mv?[R seems so important that they are apt to insist that it is the
real force and the measured value only a blundering attempt to
approximate to what they know is really true. Unless we can
straighten out that confusion, gently but firmly, the experiment
may do more harm than good.

Experimental Tests of F = mv?/R

These serve as tests of the rule obtained by geometry, a = v?*/R,
combined with F = ma, and applied to this strange form of accelera-
tion perpendicular to the path.

These tests might take the form of empirical investigations to
enable pupils to arrive at the rule a = v?/R if they do not do the
geometry. However, we must be careful not to make the investiga-
tion too Jong or complicated. A single test, with the rule already
given, is probably better for a slow group. If an empirical investi-
gation is carried out, we should be careful to distinguish between

the form of the rule (such as its containing v?) and the absolute -

value of the force. It is much easier to demonstrate proportionality
to o2 than to show that F is actually equal to mo?/R.

In choosing among these alternative methods, and in teaching
them, we should remember that this is strange new territory for
pupils; so that clear statements and simplicity of apparatus and
emphasis on the nature of the test are far more important than
ingenuity of design in devices to ensure accuracy. Complex designs
are almost certain to succeed for mature physicists and to fail for
these young pupils.
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A. Whirling Object, Pulled by Gravity Load. The pupil

whirls a small metal ball round his head im a horizontal circle by a
string which passes through a glass tube held in his hand and carries
a weight hung on its end below the tube. The weight can be
replaced by a spring balance anchored to the floor and read by
another pupil squatting beside it; that avoids bringing gravity into
the discussion at this point.

Although this simple experiment needs several pupils to co-
operate in making measurements, we should be careful to make
sure that each pupil takes his turn in doing the actual swinging.
To a young person, participation makes the test much more real.

The ‘team’ (two to four pupils) measure the time for a counted
number of revolutions. The radius of the orbit is measured from
the ‘Moon’ to a mark on the string which was kept just at the mouth
of the glass tube during swinging. The force actually needed to
hold the ‘Moon’ in orbit is the weight of the load hung on the
lower end of the string. That force is compared with the theoretical
force mv?/R.

A single set of measurements, repeated by different pupils and
averaged, will give the ‘formula’ one overall test; and that might
suffice for pupils who have done the geometry.

For pupils who are using this as an empirical approach to the
formula, it is useful to try several different forces for the same
radius of orbit, and look for a relationship between v and force.
And they should try at least two different masses of ‘Moon’.
Then they might change to a different radius; but this is a more
complicated test, since the radius is involved in deriving v from
their measurements.

With the encouragement of interest in satellites and electrons,
slower pupils may get through this investigation with success; but
we must prepare for it carefully and maintain interest throughout
the experiment, restricting it to a single test if necessary.

B. Toy Railway on a Turntable. This is perhaps the easiest of
all models for pupils to understand. The turntable is a horizontal
disc of hardboard two or three feet in diameter, driven by a small
electric motor, or by hand if necessary. A section of model railway
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line extends from the centre to the edge along a radius; and a
small toy wagon runs on it. The wagon is pulled towards the
centre by a spiral spring of steel wire. (It is important to make
this spring of a wire that is easily available, because it will get
damaged and will have to be replaced frequently.)

The turntable is kept rotating steadily and the position of the
wagon is marked while the rotations are timed. A small flag will
serve as marker for the wagon’s position, or an electric contact
can be arranged — but even that welcome help will make a dis-
tracting side issue for slower pupils.

Then, in a separate experiment with the turntable at rest, pupils
measure the force which the spring applies when stretched to the
mark in which the force is measured by a separate statical experi-
ment. This is with a spring balance (or a load hung over a pulley).

Pupils could make a series of measurements as in A. This arrange-
ment is unfortunately sensitive to levelling of the turntable,
Unless the turntable is held firmly level and the whole device well
constructed it will afford only a rough test.

This turntable experiment should be shown as an additional
demonstration if method A is used as a class experiment. But if this
turntable experiment replaces A, it should be given as a class
experiment.

There are many variants of B in which a moving wagon or
sliding bob is held by a horizontal spring while the whole con-
traption is rotated faster and faster until some device shows that
an agreed radius is reached. We fear that these do not look like an
obvious Moon in orbit to the eye of a beginner. He sees them as
ingenious devices for testing something; and he can follow instruc-
tions and carry out the test, but he does not understand clearly
what that ‘something’ is. So we do not recommend them.

C. Object Whirled on String, with Spring Inserted to
Measure Force. This is somewhat like A, but the string is
attached to a ring held by the experimenter, instead of passing
through a tube to a load. The tension in the string is measured by
inserting a length of spiral spring of steel wire with a simple device
to show when the spring is stretched by a standard amount.
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The experimenter whirls a metal ball (mass 50 to 100 grams)
round his head in a horizontal circle, as in method A. Part of the
thread between hand and revolving ball is replaced by a stretched
spiral spring of light steel wire (Fig. i).

The spring serves both to produce a variable force — so that the
motion is stable} — and to measure that force.

To prevent accidental overstretching of the spring, its ends are
connected by a loose thread (Fig. ii).

In whirling, the experimenter tries to keep the spring stretched
enough to pull the thread almost, but not quite, taut. We may call
that the ‘standard stretch’. (See Fig. iii.)

—eeiim ' Not foaded *Standard,
«* To0 JW 2

ermgﬁ Stretoh
Not stretched
enoughe .
(i)
-
’ M

To prevent that thread from getting tangled, it is carried through
the coils of the spring (Fig. iv).

—-\—W;o/n,czmv————d"'
(7o)
1 If the revolving radius consisted of spring all the way out, and no thread, and if
the spring had negligible length when unloaded, the motion would not be stable.
The frequency of revolution would be independent of radius and the experiment

would be confusing and perhaps impossible. But, with the proportions suggested,
it works well.
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As Fig. iv shows, the thread ends with a tiny, weak spring. That
‘sub-spring’ is only used as a signal. It does not contribute signi-
ficantly to the central force. Some signal is needed when the
device is being whirled to tell the experimenter how much the
main spring is stretched. Then he can perform a subsidiary
experiment to measure the tension of the spring, and the length
of the orbit radius for exactly that stretch.

/4

cese A =eee=d>

Ve o)

In the subsidiary experiment (shown in Fig. v) the spring is hung
vertically and stretched by added loads till the signal (the sub-
spring) shows the stretch is the same as in the main whirling
experiment. Then the weight of the total load (including the ball
if it is kept there) gives the actual force the spring must exert
during whirling. And the length from the ball up to the ring that
is held in whirling, gives the orbit radius.

P
L ij’a. .

(vid)

z% Jé observer

Grid)

The sub-spring is a tiny, weak coil of very thin wire — steel from
an old wire recorder, or very thin manganin from a high resistance,
wound on a pencil. It is easily damaged and should be easy to
replace. It is attached to the thread through the main spring, as in
Fig. iv. Since that sub-spring would easily get overstretched, it too
is given a loose safeguarding ‘sub-thread’ joining its ends, as in
Fig. vi.
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Then, when the device is whirled faster and faster the spring
stretches more and more until it begins to pull its main safe-
guarding thread taut. The sub-spring remains unstretched, with
its sub-thread loose, until the safeguarding thread is just taut.
Then, at that speed, the sub-spring acts as a signal.

So the experimenter should speed up his whirling until he sees the
sub-spring partially stretched, its sub-thread almost taut. Then he
tries to maintain the device at that radius, and make his measure-
ments (Fig. vii).

The device is attached to a ring which slips loosely on a wooden
dowel held in the experimenter’s hand (Fig. viii).

(oit7)

During the whirling, the radius, from ring to ball, is not horizontal:
it moves round a shallow cone. This would appear to introduce a
cosine factor. However, (a) the cosine is very close to 1; and (b)
further examination of the geometry will show it occurs at two
places and cancels out!

This device sounds complicated. It is not as simple as A but some
teachers consider it behaves more consistently. If actual force and
theoretical force disagree by less than 2%, we must thank good luck;
between 29, and 79, skilful manipulation; above 79, careless
experimenting or arithmetic can be blamed.

A number of physicists have devised modifications — ranging from
a small piece of red tape at the sub-spring to a set of traffic lights ~
but the form described seems the simplest that works well. Even
so it has the severe disadvantage of being a gadget, ‘special’
apparatus to test a general piece of natural behaviour; so it is not
recommended strongly.

D. CO, Puck making circular Orbit on Glass Table. Use
the device suggested for D59 (page 197) and pull the thread up
with a spring balance to measure the force.
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Comments on Tests of F = mv?*/R

What is being Tested? Again and again in every discussion
with pupils, we need to emphasize the order of reasoning in the
test, to avoid letting the logic be reversed:

“The actual force is the pull of the string or the pull of the spring,
the pull that you measure. The force that you calculate by work-
ing out the value of mv?|R is the theoretical force, the force that
you hope will be a good prediction of the actual force. You are
doing the experiment to find whether your hope is reliable. It is
mv?/R that is under question, not the actual pull which you
know is true.’

A Plea for Simplicity., Whatever device is used, we hope that
it will be simple and cheap. An expensive device would have
only limited use as a class experiment and a complicated one will
obscure the real nature of the test. Even if the simple cheap one
is too rough in its behaviour to afford an accurate test, pupils are
now at the stage when they can distinguish between an experi-
mental result that is ‘wrong’ —i.e. contrary to expectation—and one
that is right but clumsy.

In carrying out these tests as a class experiment and perhaps illus-
trating them by a further demonstration, we must be careful not to
let the test grow too heavy so that it seems to pupils more impor-
tant than the uses of mv?/R to deal with electrons, satellites and the
whole solar system. A systematic investigation in which the force is
measured for a series of different orbit-radii, all at the same speed,
then for different speeds, and so on, may seem tempting to well-
trained physicists, but it would lead our young beginners into dis-
couragement rather than keen understanding.

It may even be better to go ahead to uses of m2?/R and fit the test in
later when there is a good opportunity. Pupils should now be at an
age when they understand that the intermediate stages between the
general idea of an object moving round a circular orbit and the
final result that the acceleration is ©%/R inwards are not mysterious
pieces of abstruse science or mathematics but consist of ordinary
geometry and algebra. Even if the whole story of that connection is
kept in a black box, they should know that the box contains only
the ordinary gears and levers of algebra and geometry that they
have met before. If they have gone through some earlier derivations
(like Galileo’s geometrical derivation of s = u¢+-$at?) those should
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serve as assurance to enable them to take the new derivation for
granted. We should not have to assure pupils that we are honest;
but we do have to assure them that they are not muddled.

Uses of mv?/R

We shall use our ability to calculate the inward force (necessary
to maintain an orbit) for electrons, etc., and for satellites and for
our Newtonian study of the solar system. In each case, we need
some new knowledge before we can put the central force expression
to use: the force on charges moving across a magnetic field; the
inverse-square law of gravitation; and some historical knowledge of
planets, etc.

Since none of the uses can be shown at once without such extra
knowledge, we choose electrons first because we can continue the
work of Year IV with them. :

Note to Teachers: Uses of Magnetic Fields in High-energy
Physics. When we come to teach the effect of a magnetic field ona
stream of electrons and use it to measure e/m for the particles in the
stream, we may feel discouraged and say, ‘Why do we bother to
derive 92/R just to make this difficult measurement? Why do we
carry pupils through this business of using magnetic fields to bend
the stream to an orbit, just to find ¢/m?* Then it may be wise for our
own encouragement to keep in mind the great importance of
magnetic field deflections in modern physics.

In high-energy physics, we accelerate particles such as protons to
huge energies - thousands of millions of electron.volts — then
direct them on to a target, then do experiments with the sub-
atomic particles that splash out from the bombarded target. In
such work, magnetic fields are used for four purposes.

a. Holding the original protons (or electrons) in orbit so that
they can be accelerated again and again, each time they go round
a circular accelerator

b. Sorting out the products of bombardment. Even if the
products are all sub-atomic particles of the same mass, say
mesons, they may have charge ¢ or —e or 0. In the stream
from the target in a big machine to the experimental area, we
find an electromagnet sorting the stream into three beams,
positive, negative and uncharged, which fly on out through
different portholes to different experiments
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¢. Measuring a particle’s momentum. Deflection by a magnetic

- field involves a particle’s mo as well as its charge. Cloud-chambers,
bubble-chambers and other apparatus are often crossed by a
magnetic field to make momentum measurements that help dis-
tinguish particles — as in our own class experiment to measure
e/m for electrons

d. Focusing a stream of particles. When a beam of charged
particles emerges from a slit or gun muzzle, it is seldom a thin,
threadlike stream (as it is in the fine beam tube): it is usually a
fan of diverging streams. A specially shaped magnetic field can
be used to focus these streams by bending them so that they do
not diverge more, or even bending them so that they converge
to a sharp spot on a target or recording film.

With all these uses, magnets in many forms are to be found in use
everywhere in high-energy research laboratories.

These uses of magnets in research are not things to teach our

pupils now. But it may be useful to remember them when we are
teaching.
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Chapter 2
ELECTRONS IN ORBITS

Electron Streams and Magnetic -

Fields; Measurement of e/m;

Atom Models .



Demonstrations of Electron Streams
We show the following demonstrations of electron streams
(cathode rays) from hot cathode tubes:

Straight line streams (cathode rays through a slit splashed on to
a screen that glows when bombarded)

Fine beam tube
Casting shadows (Maltese cross)

An ‘Electron Gun’, If it is available, we show the large diode
tube again, not as in Year IV for a study of its characteristic
current-p.d. graph, but to point out that if we punch a hole in
the anode (plate) we have an electron gun.

Discussion of Electron Gun

Weaskwhatchanges occurinthespeedof electronsas theyboil off the
glowing cathode. Theyleave the filamentwith verysmall speeds, but
we apply an electric field that accelerates them towards the plate.

Suppose each electron has a charge e coulombs, and suppose a
voltmeter connected between filament and plate shows we have
applied a p.d. of V volts. Then the battery we have connected there
gives V joules to each coulomb passing from filament to plate. (We
must make it clear that this is nothing to do with the battery used
to heat up the filament - we could use a Bunsen burner for that, but
for practical difficulties.) Then eachelectron gains energy eV joules.

But, unlike electrons in a wire, these electrons have nothing to hit,
nothing to give energy to, as they travel across towards the plate.
All the energy they gain must be retained as K.E., until they hit the
plate. Those that hit solid metal are brought to a stop, and share
out their K.E. as heat among the atoms of the metal. (Any X-rays?
At most, only a very tiny fraction of the collisions produce X-rays,
even in the best of X-ray tubes.)

Those electrons that arrive at the hole we have drilled in the plate,
the ¢ gun muzzle’, keep their K.E.and go on through the hole. After
that (unless we add a further battery) there is no more acceleration:
they keep a constant speed until they hit some barrier.

Pupils will soon need to have a clear idea of such an electron gun,
from which electrons emerge in a stream, and thereafter continue
with unchanging speed. And they need to understand why we say
the K.E. of each such electron is equal to its charge times the gun
voltage: 4mo? = eV,
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We might then show a crude model of a herd of marbles running
down a sloping board to crash into a wall - except for those that
hit an opening in the wall and continue along the table. The slope
corresponds to the electric field we apply inside the gun.

More Demonstrations of Electron Streams
Deflection by electric fields (fine beam tube or other e/m tube)

Effect of magnetic field: fine beam tube with magnetic field

The last demonstration shows a circular orbit and therefore tells us
that the magnetic field must exert a force sideways on the stream of
electrons. We therefore go back to the electro-magnetic kit and ask
pupils to repeat the experiment with a wire carrying a current
placed in a magnetic field. However clearly they seem to remember
this from earlier Years, they should certainly try it again at this
stage (see Guide to Experiments IIT).

It is not necessary for pupils to continue from that to make a
model electric motor all over again; but we may profitably show
a large motor to emphasize the fact that this force on a current is
not trivial but is a very important one which can be very large and
which forms the basis of much modern machinery.

Discussion of Force on Moving Charged Particles

Pupils now know that there is a force on a wire carrying a current
across a magnetic field; that the force is proportional to the current,
and, presumably, proportional to the length of wire. A moving-coil
ammeter, with visible works, shows that force in action; and its
uniform scale shows the force is proportional to current, if we trust
Hooke’s Law for the hairsprings.§ We express this knowledge in
the form:

i If one wishes to take the modern definition of current-measurement by mag-
netic effects, this proportionality of force and current is implied by the definition
itself, and no experiment could be needed to ‘prove’ it. Even so, the ammeter
illustrates it well.
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force F = (B) (current, C) (length of wire, L), F = B.C.L
where B is a measure of the magnetic field (or rather induction)
combined with a constant that is determined by our choice of
units. (In our present course, we need not discuss the value of
that constant or the units for magnetic field, because we only use
one magnetic field. We use it to deflect a stream of electrons in
our measurement of ¢/m; then we estimate the value of B for the
same field by a direct measurement of the force it exerts on a
known current in a wire.)

We need to transfer that knowledge from the case of a current in a
wire to the case of a stream of charged particles. That is a very big
and difficult step for pupils; and we should comfort them by telling
them it was a very big and difficult step for all scientists when the
well-developed theory of electric circuits and forces had to be
extended to electrons, etc., late in the last century.
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The Argument. We draw a section of wire AB of length L
containing N electrons each of charge e and we suppose that when
there is a current C, the electrons drift along with speed » from A to
B. We post an imaginary observer at the ‘outgoing’ end B and ask
him to count electrons like a small boy counting the cars as they go
by. He starts counting when an electron emerges at B. The electron
that is at A at that instant arrives at B some time, £, later having
travelled distance L with speed v. In that time ¢, all the N electrons
in the wire between A and B arrive at B. Therefore in time ¢ the
observer counts a total charge Ne and says the current is Ne/t. But
length L is vt.

*. CL = (Net) (vf) or Nev
We assume that the force on current C through a length of wire L
is BCL, where B is a constant, involving the strength of the mag-
netic field. Then the force is also BNev.

Therefore the force on a single moving charge is Bev
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Like the derivation of 22/R this is a difficult sophisticated argument
which will not succeed with young pupils unless we preface it with
two encouragements: (1) We show pupils that we and they need the
result badly; (2) we assure them that this is not a rigmarole that
they must learn for reproduction in examinations. This is some-
thing high up that they can only just reach to touch: not inaccessible,
but not to be fully grasped. They should enjoy the privilege of
touching it; but then need only remember that what they saw did
make sense and was not mysterious nonsense.

This is a place in our teaching where a short animated film would
be helpful. There is a danger that animated films will show what
we think ‘ought to happen’ ~ in some simplified scheme that we
imagine — rather than what does happen. But here we need to show
an unfamiliar piece of ‘geometrical’ reasoning rather than an un-
familiar phenomenon.

Current Balance to Measure Force due to Magnetic Field.
In all this, the constant B remains unknown. It contains the strength
of the magnetic field. Its value also depends, of course, on our
choice of units and of ‘system of units’, which in electricity and
magnetism often contains natural constants relating to the proper-
ties of materials and even the properties of vacuum. Here, we shall
not go further with the nature or value of B but shall measure its
value by a direct experiment on a known sample of current in
whatever magnetic field we use for electrons, etc. For that we must
use a simple current balance.

We suggest a simple design that will weigh the force on a short
section of straight wire in the magnetic field of the Helmholtz
coils used for the electron stream.
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(For example, suppose the ‘current balance’ has a test wire of
length 20 centimetres, 0-20 metre, that carries a current 20 amps.
Suppose when placed in the magnetic field of the Helmholtz coils
the test wire needs a load of 0-5 gram hung on it to restore balance.
Then the force is 0-005 newton. Then B has the value 0-00125 for
the Helmholtz coils carrying whatever current they are carrying.
The force on a charge ¢ coulombs moving with speed v metres/sec
across that magnetic field is 0-00125 ev newton.)

That needs demonstration and careful explanation; and then it will
be used for a measurement of e/m.

Measurement of e/m

Pupils should use the fine beam tube, taking it in turns. This is a
very important ‘atomic’ measurement and it should if possible be
treated as a class experiment.

Tt f

SAME CURRENT

AS WIUTH. X
CURRENT TALANGE

Although this should be a class experiment, the teacher may want
to run a demonstration of it right through first. With any except a
fast group, we should go through the calculation completely in that
demonstration but ask the pupils not to make any record of it and
then leave them to carry out their own calculation when they do the
experiment as a class experiment.

This is a grand experiment, perhaps the most impressive one in the
whole course in which pupils participate. There is a serious danger
of both the doing of the experiment and its result being swamped
by the amount of earlier teaching to be remembered - ideas,
definitions, relationships. To avoid such a disappointing fate, we
need to start with a clear reminder of the aim of the experiment
and an offer of considerable revision.

We should review the meanings of electric charge and p.d.; the
definitions of newton, joule, coulomb, volt; the idea of electric
field; the name “electron-gun’ and its meaning; the idea of electrons

64

C24



accelerating in an electric field in a vacuum, and of their continuing
with constant velocity after that. Of course, we should not go to the
other extreme of over-tedious preparation. This is a matter for
wise judgment in offering revision just when it is needed.

Electric Measurement: Gun Voltage. In a hot - cathode tube,
such as the fine beam tube, all the electrons that emerge from the
muzzle of the gun have the same kinetic energy, equal to the
electron charge times the gun voltage. Therefore we can write

eV =34mo?...()

This provides one of the two pieces of experimental information
that we need. The effect of a magnetic field provides the other.

Note to Teachers: Schemes of Measurement for e/m. In
making measurements on electron streams (or streams of any other
charged particles, such as positive ions) there are two quantities
that we do not know: ¢/m and v, the speed of the particles; so we
need two separate measurements. Any measurement of the effect
of an electric field yields e/mv® Any measurement of the effect of a
magnetic field yields e/mo. If we make a measurement of each of
those two kinds, we can extract e/m and v; but it is no good making
two measurements of one kind instead. For example, if we measure
the gun voltage used to accelerate the electrons (which gives them
kinetic energy) and measure the deflection of the stream by an
electric field, we have two measurements of the same kind; and
each will tell us only e/mv2.

The reason why early experimenters, such as J. J. Thomson,
used electric field deflections instead of the gun voltage was because
they could not command streams of particles which all had the
same kinetic energy: their particles were manufactured in the
plasma-like mess in a discharge tube and ranged in energy from
the full applied voltage downwards. Even that applied voltage
was often quite uncertain in value. No wonder they used electric
field deflections and had to look at the sharp edge made by the
particles with maximum energy. No wonder J. J. Thomson spread
the positive rays of varying energies over a parabola, in his brilliant
experiment that proved the existence of isotopes and led to modern
mass spectrographs.
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However, those are now historical methods, dating back more than
half a century in the rapid history of atomic physics; and with
our pupils we should not treat them as part of modern knowledge
but should relegate them to special studies in the history of science.
Moreover, they were conducted by master physicists to whom the
geometry of electric field patterns and fringe effects were child’s
play, in contrast with our pupils for whom every simplification
of mathematics adds greatly to the chances of understanding.

Even for sixth-form physics specialists, some critics wonder
whether the historical methods deserve attention when newer
methods and further knowledge are pressing for inclusion. If
we could listen to colleagues in another science discussing great
experiments in their history, such as a brilliant investigation of
nitric oxide in a mixture with air - in an age when even names of
gases were confusing — we may share those colleagues’ doubts about
use of historical teaching; and we should turn those doubts upon
the teaching of our own modern science.

The early experimenters had one useful trick. While one of their
measurements was made with a single applied field (usually mag-
netic) the other was made with electric and magnetic fields, applied
simultaneously, adjusted to produce no deflection — and that gave
9. That might seem to offer a very simple way of making measure-
ments ourselves with a hot cathode tube containing large plates for
electric field deflections. Then the forces exerted by the two fields
must be equal and opposite; and we can state that as an equation
without having to measure any deflection. But for any simple use
of this method, the two fields must be ‘co-terminous’, they must
extend over the sane region of the path of the stream. We cannot
secure that in any available apparatus. So we could only use this
method for very rough measurements. And, having obtained v by
this null method, we should still have to measure a deflection to
obtain e/m as well.
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Instead of making two measurements (one with the electric field,
one with magnetic field), we could make one of those and do a
separate direct experiment to measure ». The latter is done by
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some form of ‘chopper’: the stream passes through two slits in
screens far apart, with synchronized ¢ valves’ to interrupt the stream
just before each of the slits. The ‘valves’ are usually electromagnets
carrying rapidly alternating current, whose field swings the stream
off the slit, so that it can only pass through the slits in periodic
bursts. If the succession of bursts gets through both slits we know
the time of travel between one slit and the next in terms of the
frequency of the oscillating deflecting field. Although this chopper
method has been used for electrons (and for positive ions) it is
much too difficult for a teaching demonstration. (We might show
it by film.)

Measurements. So, in our experiment, we must make measure-
ments with an electric field and with a magnetic field. We suggest
that the electric field measurement should be that of a gun voltage,
used as in equation (I) above.

Magnetic Measurement. The magnetic field should bend the
path of the stream into a circle whose diameter pupils can measure.
We first remove the tube and place the current balance in the same
region of the magnetic field and measure the force on a known
current in a known length of wire.

Then we know B in F = BCL = Bev
Then, for orbit Bev =mw*R . . . (II)
and R, or rather the diameter 2R, must be measured.

Measuring the Orbit. The orbit is seen as a faintly glowing
circle in a glass bulb in an almost dark room. How can the teacher,
let alone the pupils, measure the orbit-radius quickly and easily? By
holding a ruler up in front and making a guess at the orbit diameter.
That will yield rough estimates of v and ¢/m; and, in our exploration
of the micro-world of atoms, rough estimates are good science. We
might expect to be correct within 10%,. Such a guess at 2R should
be correct within 10%, certainly within 20 %, We ask pupils:

‘Hold a ruler up in front of your neighbour’s face and guess the
distance between his ears. Yes, you may hold the ruler above his
head if you prefer. Can you guarantee your estimate within 10 %?
209%? A 209, error would be more than one inch.’

The fine beam tube has been used for teaching in many laboratories.
The measurement of orbit diameter is difficult; and it has a compli-
cated history of attempts to make it easier. Teachers have devised
skilful schemes for measuring it with some precision — illuminated
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scales, double scales to avoid parallax, special callipers, special
image projectors, observing telescopes, etc. These do facilitate
fairly precise measurements; but they also make the experiment
more complicated and difficult for pupils to see and remember.
Even when handled by the teacher with considerable practice,
any such special device adds weight to an experiment that is already
almost too heavy for many a pupil.

Furthermore, if we emphasize measures to improve accuracy we
are missing the point of the experiment: at this stage it is to bring
pupils into contact with a real measurement of electrons. The im-
portance lies in their seeing and doing, in the principle of the
experiment and its general success. Accurate measurements can
come at other times and places. For average pupils, a successful
dive into the micro-world to make a real measurement should be a
great achievement. Emphasis on accuracy might make the whole
business too hard; or, just as bad, it might turn the experiment
into an anxious game to ‘get the right answer’. Even with very able
pupils the idea that it is good science to make a rough estimate first
we should emphasize and make a rough measurement. Then if
those pupils want to devise refinements for accurate measurements,
well and good: they should repeat the experiment as they wish.
(Even then, we hope teachers will point out the contrast between
making an estimate of a fundamental quantity and trying to get the
right answer.)

Therefore we suggest that both teacher and pupils should estimate
the orbit diameter simply by holding a ruler outside the tube.
Since the room must be dark, it is easier to use an illuminated
transparent ruler. We suggest a Perspex ruler with a small electric
lamp taped on at one end, the bulb itself covered with black tape
to cut off direct light. If the ruler graduations are not bright

enough, stripes a centimetre wide should be painted on alternate

centimetres with red nail polish.

The best modification so far produced forms a wvirtual image of
an illuminated scale inside the tube, in the plane of the electron
stream. A vertical sheet of clean plate glass is placed just in front of
the tube. An illuminated scale is placed in front of the sheet at such
a distance that the image of the scale, behind the sheet, is in the
middle of the tube. This does make measurements easier; but we
do not recommend adding this complication except with a very fast

group.
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Calculating Electrons’ Speed and e/ from the Experiment.
The orbit-diameter 2R is estimated and the gun voltage V is read.
Keeping the magnetic field unchanged (same current through the
coils), we put the current balance in the place of the tube and
measure the force on a known length of wire carrying some
measured current. Substituting in F = BCL gives us B for use in
F = Bev. (Since we are going to use the latter for F in F=mv?/R,
we must express the force measured with the current balance in

newtons.) :
Then we have all the measurements we need for use in

@ eV =4%mv* and (II) Bev = mv*R
to find v, the electrons’ speed, and e/m their charge/mass ratio.

But in this new elaborate experiment, even the algebra and arith-
metic can become confusing. It is not that the algebra is too difficult
for pupils, but it delays their secing the physics. Therefore we
should ask for v first, not e/m. There are several advantages:

a. The speed, v, is a simple, clear property, easily visualized. Pupils
can have little doubt about the kind of thing they are working out.
(On the other hand, e/m is a strange quantity, nof necessarily
appealing to beginners - though we ourselves know its importance
in the historical development.)

b. v emerges directly when we divide equation (II) by equation (I).
(To obtain e/m directly we must square one equation before
dividing: a trivial extra burden, but just enough to lose some

pupils.)

¢. The huge valuefor v is astounding to beginners: the value of ¢/m
is not.
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Teachers, familiar with the history of electron measurements,
knowing that we must proceed to ¢/m for an essential comparison
with protons, are tempted to carry the algebra through to ¢/m and
obtain a value of that first — and of course their pupils can follow
that.

We urge teachers, for reasons given above, to proceed to v first.
Then we argue thus:

2

Im$ Bev=mv2/R} . Bev  mv:/R
0 S . E

By
@O eV =imo? eV Imr TV

*. v = 2V[BR and we calculate v from that.

Results. The estimate of v is affected by errors in the current
balance experiment as well as those in the electron stream measure-
ments. However, teachers may find it a help to keep some values of
2 in mind for use as rough checks. The following are correct
within 1 per cent:

For gun voltage 100 volts electrons have speed 6 % 10® metres/sec

Then for 140 volts 7 x 108 metres/sec
180 volts 8 % 10® metres/sec
230 volts 9 % 10% metres/sec
285 volts 10 x 10® metres/sec

We should pause there, and comment on the huge value of v for
quite a small gun voltage, one or two hundred volts. Speaking in a
sloppy, qualitative way, we might say that this means that e is
enormous compared with m. (Of course, we cannot, as good
scientists, compare the numerical values of two utterly different
quantities like that. We mean that in comparison with the charges
we can place on large masses, the electron’s charge is enormously
bigger than we would expect for something of its mass. More
definitely still, when we know the constants in Coulomb’s Law and
the Law of Gravitation, we find that the electrical repulsion
between two electrons is so enormously greater than the gravita-
tional attraction between them, that the latter would be negligible.)

We may point out that a ‘chopper’ experiment somewhat like the

one used to measure gas molecule speeds can be used to measure v
directly. It gives values that agree with this less direct measurement.
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Then we substitute the value we have calculated for v in Equation
(1), and calculate e/m.

Results. The value for ¢fm is 1-76 x 10! coulombs per kilogram.
The most difficult measurements to make accurately are the orbit
diameter and the current balance force. (Even if we replaced the
latter by magnetic field strength calculated from current and coil
dimensions, we should still expect an uncertainty of several per
cent.) So we should not claim this as a very precise measurement in
any case.

A Rough but Very Important Measurement. Here, with our
rough measurements, errors up to 409% may well be expected.
A large error ¢s disappointing. To avoid spoiling the success of the
experiment by that disappointment, teachers are urged to discuss
the matter with the class beforehand.

‘This will be a rough measurement. It will not be accurate
because we cannot get inside the bulb and measure the circle
precisely: and our current balance will make a rather rough
measurement. But the result will be real knowledge of electrons.
You will find out how fast they move from this gun, also the
proportion of electric charge to mass for each single electron.
The experiment will be rough, but worth doing.

¢ Suppose the speed for 100 volts on the gun is really 10 miles a
second, and our rough measurements give 7 miles/second in one
experiment, 13 in another, and even 20. You would still have a
very useful idea of the electrons’ speed. Do you want to try it,
knowing it is rough?’

Importance of e/m Measurement. While the value of ¢/m is to
us an intensely interesting piece of atomic information, it may
seem to pupils a dull thing for us to work out unless we advertise
its importance by pointing out two things:

1. This is a piece of information about extremely small things,
individual electrons, information that we obtained from large-
scale measurements. We never applied a microscope to our experi-
ments. We never counted some vast number of electrons or alpha
particles or anything else. We made ordinary-sized measurements
and obtained atomic information.
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2. We can compare this measurement of e/m with e/M measure-
ments for other ‘atomic’ particles: the ions that carry currents in
solutions. (And we should assure pupils that ions in gases have
similar values of e/M.)

If our group of pupils did not see water electrolysed and the
products measured in Year IV we should at once do that experi-
ment. An ammeter and stopclock tell us how many coulombs pass
through the electrolysis apparatus. From the measured volume of
hydrogen produced, we calculate its mass. (We have to use the
density of hydrogen but even if we do not make a separate measure-
ment, pupils should accept that as a piece of data similar to the
result of the measurement for air which they have seen and done.)

We point out that it seems very likely that the current in ‘water’
(= water+acid) is carried by particles of hydrogen, each of them
carrying the same size of + charge. In Year IV, we suggested a
demonstration experiment, to show that the quantity of hydrogen
liberated is directly proportional to current and to time and
therefore to the total electric charge carried across. This does not
prove that the hydrogen is travelling across as atoms all alike or that
those atoms, if they exist, all carry electric charges of the same size;
but those are the easiest assumptions to make. Measurements with
hydrogen show that: One kilogram of hydrogen is liberated when
06 million coulombs pass across.} If this has not been shown in
Year IV or in Chemistry, it should be done now.

(Pupils can see oxygen being liberated at the other electrode; and

-they have probably heard about negative ions travelling in electro-
lysis as well as positive ions, though in the opposite direction. So
they may object to our saying that all the current is carried by
positive hydrogen ions alone. Unfortunately that is both true and
untrue, and the detailed story would divert attention from the
essential discussion here. In the middle region between the elec-
trodes, the current is carried by positive and negative ions moving
in opposite directions with different speeds. But very near an
electrode ions of one kind are driven away when electrolysis starts,
and the current is then carried wholly by ions of the other kind,
which therefore have to move faster in that region, just before they
arrive at the electrode.)

} More precisely 96-5 million coulombs for 1:008 kg of hydrogen. This makes
e/M 95-7 million coulombs for 1-000 kg of hydrogen.
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If the carriers (ions) all have the same charge and mass, ¢/M for a
hydrogen ion must be 96 million coulombs/kilogram. We compare
that with the value obtained for the electrons in our experiment.

about 108 coulombs/kg about 2 x 10! coulombs/kg
for H ions for electrons

The value for electrons is nearly two thousand times greater. Elec-
trons must have two thousand times bigger charge or two thousand
times smaller mass, or some combination of those disproportions.
We cannot give pupils clear experimental evidence that the charges
are the same in size: but we can assure them that a number of
different types of experiment converge to indicate the same size;
and Millikan’s experiment suggests that all charges on ions are one
electron charge or a multiple of it. And we point out that if a hydro-
gen ion is made by knocking one electron off a neutral atom, the
charges must be equal and opposite. All that is a mixture of re-
assurance and plausible assertion, which is well vouched for in our
own experience but not in what we can show to pupils.

If we agree that the charges are the same size, electrons- must be
very much lighter than atoms. In fact the electron has a mass only
1/2000, or more accurately 1/1840, of the mass of a hydrogen
atom.

Incidentally, at this point we should give the hydrogen atom which
has lost an electron a name, a ‘proton’.

Mass of Electron; Mass of Proton; Avogadro Number
Since pupils have heard about Millikan’s experiment in Year IV
and have been told the result, ¢ = 1-:60 x 10~*° coulomb, they can
now calculate the mass of a single electron.

e
Mass electron m = (mfe).e = Hi—n
1:6 x 10-2® coulomb

= == —31 kil
1-8 X101 coulomb/kg e R

We can also work out the proton’s mass though that may well
have been done in Year IV, as soon as Millikan’s experiment was

done.
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Mass of proton (from Millikan’s experiment and electrolysis)

_ 16x 10 coulomb
"~ 96 x10° coulomb/kg

= 1-67 x 10-*7 kilogram

And thence the ¢ Avogadro number’, the number of molecules in
a mole. The mass of a molecule of hydrogen, H,, is

2x1-67 x10-%*7 kg or 2 X 1-67 X 10~2¢ grams
So the number of molecules in 1 mole of hydrogen, 2 grams, is:
(2 grams)/(2 x1-67 x10—2* grams) or 6 x 102® molecules.

600000000000000000000000 molecules in a roomful of hydrogen,
air, or any other gas.

We are beginning to find our bearings in our exploration of the
micro-physical world.

Positive Rays: Atomic lons

We should treat positive rays briefly, since we cannot give a
convincing demonstration of their deflection by electric or magnetic
fields, and we certainly cannot make any measurements.

The production of positive rays in discharge tubes is a very
complicated business in which bombardment by ions, electrons and
X-rays all play a part, and we suggest that that should be left to
the historians of science. A discharge tube should at most be shown
as a pretty sight. Instead we should describe modern methods to
pupils briefly.

We ask how we might obtain a ‘positive ion’, an atom or molecule
that had lost one electron.

‘What would you use if you wanted to knock an electron off an
atom?} What size of cannonball would be best if you wanted to

4 The real story is much more complicated. An ion, of atomic mass, moves far
slower than an electron with the same K.E. A slow-moving ion merely pushes the
whole target out of shape temporarily, making an elastic collision. To be as
effective as an electron the ijon must have a comparable speed — consider what the
target atom experiences: the electromagnetic field of a charged particle sweeping
by. However since the moving ion is s0 much more massive than the moving
electron, there are differences in the amount of receil produced, All told: an ion
must have comparable v and therefore much larger imo? to be as effective in
jonizing & target atom.
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knock the head off a man? A ping-pong ball> An elephant?
Put a large glass marble on the table and fire another marble at
it. What happens if the missile marble is a very, very light one?
The missile just bounces off. What happens if the missile marble
is a huge heavy one? It pushes the target ahead.

“What size of missile marble do you want if you wish to have it
come to a stop and give all its kinetic energy to the victim that
it hits? What would you suggest- hitting an atom with, if you
wanted to knock a loose electron off? Yes, bombard it with
electrons. You will see that being done in an experiment later
on though the experiment is a complicated one to interpret.

‘When the bombarding electron ~ from the small electron gun
like those in the cathode-ray tubes you have seen — has only a
little energy, it makes elastic collisions. The electrons of the
atom that it hits are too strongly attached to be knocked out of
place by the missile, so the missile considers it is hitting a huge
massive atom as a complete structure and it just bounces away
like a tennis ball from a massive wall.

‘But if we increase the energy of the missile enough - by
increasing the gun voltage — we reach a stage in which the
bombarding electrons are energetic enough to knock an electron
off an atom or molecule of gas. Then we are left with a positively
charged particle, a positive ion. That in turn can be accelerated
by a voltage between a plate (positive) and a “muzzle”, another
plate with a hole in it (negative).

‘Thus, we can make an “ion gun”. A little gas is fed into the
region between two plates in a vacuum. The gas is ionized by
electron bombardment. A battery or power-pack connected to
the two plates makes an electric field between them, which
drives the positive ions to the negative plate, There is a hole in
that plate — the “muzzle” of the ion gun - and ions arriving
there pass through and emerge moving straight ahead. Those
ions have various energies according to where in the region
between the plates they were manufactured and started accelera-
ting.

‘However we can arrange to give all the ions that emerge from
the gun muzzle the same K.E. If they all have the same mass,
they all emerge with the same speed.
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‘If we apply a strong magnetic field (across the stream) it bends
the stream into a circular orbit. We make measurements just like
the ones you made for the electron stream, except that these,
being positive ions of much greater mass, need a far bigger mag-
netic field.’

!~Tl'l']'l" [y
=

e »
Y I
BIR < L
\_.!W._ur D
1

ELECTRoV
GON T vacunt

We should describe a simple modern mass spectrometer (Dempster
or Nier model): A small sample of gas is fed into the ‘ion gun’
region of the apparatus — and excess gas is continually pumped
away. The sample is bombarded by electrons from a small electron
gun at one side, so that ions of the sample gas are manufactured.
A weak electric field is applied to the region where the ions are
made. That field drives them gently through a grid. They therefore
arrive the other side of that grid with very little energy. There,
however, they are accelerated through a much larger voltage, to
emerge from the ‘muzzle’ of this ‘ion gun’ with kinetic energy
which is essentially given by that main gun voltage. All the ions
emerge with the same kinetic energy, so all ions of any one mass
will all be bent into the same circular orbit by the strong uniform
magnetic field applied perpendicular to the stream.

Even with a fine hole or slit at the muzzle, that emerging stream
splays out through a small angle, but the circular orbits of that
collection will focus sharply after a half circle, and a photographic
film (or a collector for an amplifier and electrometer) will record
a strong focused stream of ions of each mass at an appropriate
place in that region.
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At this stage we should not bother pupils with the refinement
of focusing streams of ions — though that has always been a very
important problem in designing machines, from earliest mass
spectrographs to modern accelerators,
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The simpler modern instruments use ‘60° focusing’ but ‘180° T
focusing’ is still easier to see. So we might show ‘semicircular
focusing’ to pupils who ask; because they can see it for themselves
with a delightful pencil-and-paper experiment:

‘Place a round object, such as a penny, on a sheet of paper. (Any
round object will do. A larger one, such as a beaker or a saucer,
is better.) Draw a circle by running a pencil or ball-point pen
around the coin. Mark one point on the circle, to show the
“starting point for a stream of ions”. Shift the coin a little,
making sure its edge still passes through that starting point, and
draw another circle. Draw several more circles, all passing
through the starting point, to show several streams of jons all
splaying out from the starting point. If you have not taken too
wide a splay, you will see the streams meeting again, focusing
roughly, after travelling almost half a circle.’

SPLAY
TOO
GREAT

SEMICIRCULAR FOCUSSING
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In more modern forms, the magnet has a special shape and the
deflection from source to focus is only 60° as in the sketch.

If we sketch a simplified picture of the general arrangement of this
apparatus (nowadays called a Nier spectrometer)} pupils should
find it easy to understand.

(Note that with our doubts about historical treatment in this
matter, we have omitted all mention of J. J. Thomson’s work
and Aston’s very complicated but successful improvement of it.)

We point out that physics thus provides chemistry with the
ultimate analyst of atoms. With X-ray spectra and mass-spectra
together there can be no doubt whether some substance is an
element or not, whether an element is a single isotope or a mixture.
Any material can be sorted out into component atoms and their
(relative) masses measured.

(Yet, with electron bombardment, compounds need not be
broken up into elements: we can obtain many kinds of compounds
and semi-compounds (radicals) whose masses are measured by the
mass spectrograph.)

Furthermore, modern instruments offer such precision that we can
measure the tiny differences of mass involved when nuclear changes
convert one element into another. And from those differences we
can predict the energy released or absorbed in those changes. In
reverse, a study of those tiny mass-differences in cases where the
energy-release has been measured enables us to confirm E = mc®: a
quantity E of energy, in any form, has mass m given by E = mc?.

As an example, we might quote one of the early measurements of
nuclear reactions used to test E = mc?:

Protons, hydrogen nuclei driven by a p.d. of 150,000 volts from
a Cockcroft-Walton accelerator, bombarded a target of lithium.
In some collisions two helium nuclei (alpha particles) emerged with
considerable kinetic energy, about 8-5 million electron. volts each.
Cloud-chamber pictures confirmed the description ¢ proton enters
lithium: two alpha particles produced with huge kinetic energies’.

} Small Nier spectrometers are now being sent up in rockets to study the upper
atmosphere. At a height of, say, 100 miles the lid of the apparatus is blown off by
a small explosive charge and asample of the local ‘ vacuum’ is let in and analysed.
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0:15 million
electron. volts

17 million

1Hy +,Li; + electron. volts

] =,He,+ ,He,+ [

Mass spectrograph measurements gave the following masses for
nuclei without accompanying electrons:

hydrogen (proton) ,H,; 1-0076 (on a relative scale that
lithjum GLi, 7-0165 takes mass of oxygen'®
helium (alpha particle) ;He, 4-0028 | isotope as 16-0000)

Then using E = mc? and the measured mass of a proton (167 x
1027 kg) we can make up a balance sheet for mass, including the
mass of the K.E. of each particle.

1-00764-7-01654-(0-0002) —?= 4-0028+-4-0028+(0-0183)
Total 80243 compared with total 8:0239

Here there is a loss of mass of matter of 0-0185 and an estimated
gain of mass of K.E. of 0-0181, accounting for 98 per cent of the loss
of mass of matter. (The 2 per cent discrepancy is smaller-than the
admitted experimental error of estimates of thealpha~particles’ K.E.)

Masses of Atoms: Isotopes

We can measure ¢/M for positive ions by using electric and mag-
netic fields to deflect a stream of them. We obtain just the same
value for jons made from hydrogen gas that we found for hydrogen
ions in electrolysis. For oxygen ions the value of e/M is 16 times
smaller still, suggesting that the ions (oxygen atoms with one elec-
tron missing) are 16 times as massive as protons. Nowadays with
delicate detectors we also find record of a few ions of which several
have e/M 17 times smaller, telling us that there is a rare ‘twin
brother” of oxygen of mass 17 times the hydrogen atom mass.

“What would you expect when chlorine gas is used? Look at its
atomic mass, 35-45 compared with hydrogen. You might expect
to find e/M for its ions 35} times smaller than the value for
hydrogen ions because the atomic weight of chlorine, obtained in
chemical measurements, is 35-45 compared with hydrogen
1-008. But no such value appears. Instead, we find two streams
of ions; two circles made by the streams of jons in the magnetic
field, one corresponding to ¢/M a value of 35 times smaller
than hydrogen ¢/M the other 37 times. This tells us clearly
that chlorine atoms come in two sizes, a lighter kind with
atomic weight 35 and a heavier kind with atomic weight 37. But
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the “35” stream is nearly 5 times as plentiful as the “37”
stream — that is why together they average 35-45. These, which
we call isotopes, are inseparable chemically — to any chemical

" experiments they look as closely alike as identical twins — but one
is 5 per cent more massive than the other.

‘When it was discussed half a century ago, the fact that a
chemical element does not have all its atoms exactly the same
came as a great surprise. It was discovered by experiments like
these, with positive ions; though the details of the apparatus
were much more complicated in the early days of these atomic
discoveries.

¢ And we now know that every element has two or three or many
“isotopes . All the isotopes of an element have the same chemical
properties — but in some cases one isotope shows quite different
properties from another when we dig deep enough into the atom
and try to make nuclear changes take place. In fact, that is why
we do such complicated things to separate the isotopes of
uranium: the lighter of the two common isotopes can split its}
nucleus fairly easily into almost equal pieces — fission which
releases an enormous store of energy — while the heavier isotope
does not normally do that.

- *Furthermore the heavier isotope threatens to get in the way of a
fission chain reaction with a sample of the lighter isotope. So it is
necessary to separate the lighter isotope from the heavier one
before a fission bomb or a small-scale nuclear reactor can be
made.

“That separation was mentioned when we discussed diffusion
of gasesin Year IV. Now you can invent another way of separating
the light isotope of uranium from the heavy one. Make a guess:
what could you do, if you were provided with any amount of

I Strictly speaking it is [the isotope - one neutron], i.e. an isotope one unit
heavier, U228 not U235, that shows fission easily.

A U235 nucleus absorbs a neutron easily (if it manages to come very close).
When a neutron is absorbed, the energy of the new arrangement “falling together’
is sufficient to disrupt — unlatch ~ the U28¢ nucleus.

The more common isotope U238 absorbs neutrons much less easily; and when

it captures a neutron it still needs a further supply of energy to bring about
fission.
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apparatus and a sample of mixed isotopes of uranium, to make
arrangements to catch the heavy isotope in one small metal
can and the light isotope in another small metal can? You could
of course have anything you wanted, such as vacuum pumps,
magnets, etc.’

Atomic Models

We explain to pupils that we always find the same value of ¢/m for
electrons whatever source we use — hot filaments of one metal or
another; photoelectric effect; bombardment of gases by other
electrons; enormous electric fields tearing electrons out of cold
metal and even radioactive nuclei emitting beta rays.

(This is not the moment to mention the smaller values of e/m that
we obtain with electrons at very high speeds. That can come as a
welcome modification that does not disturb the main story. There
is every evidence that the electrons which have abnormally high
mass when we see them moving very fast return to normal when
we have slowed them down relative to the observer.)

So we think of electrons as universal ingredients of matter, all alike,
tiny chips of atoms, all of the same mass, and the same negative
charge. Positive ions seem to be the ‘rest of the atom’ carrying
most of its mass and having, therefore, different masses for atoms of
different chemical elements. Mass spectrograph records of positive
ions show a great array of different marks, for atoms of different
elements and for isotopes of the same element ; but electrons make a
single mark, they are universally identical.

So we picture an atom as a round blob out of which an electron can
be chipped. Therefore since matter is normally electrically neutral

the rest of the blob is positive — whether a diffuse body of positive -

electricity like a pudding or made of knobs of positive electricity,
we cannot yet tell. However we can knock more than one electron
off an atom. Analysis of positive ions made by bombarding gases
with electrons - ‘positive rays’ to use the antique word — shows
that some ions have twice, three times, ... etc., the normal e/M
suggesting they have multiples of the basic electron charge. Very
early experiments in streams of positive ions showed that oxygen
ions can have several charges and mercury ions as many as eight
positive charges.

So scientists pictured atoms as a sort of pudding of positive
electricity with negative electrons as plums in it. This picture was
never intended to be a description of reality but just a way of
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remembering how atoms behave under electrical attack. An atomic
model is more like a form of words, a part of our vocabulary for
talking with other scientists about the behaviour we observe and
the experiments we plan.

(Presently when pupils look at the fantastic scheme of spheres
within spheres imagined by Greek geometers to describe the
motions of the heavenly system, they may laugh at the silly ideas
of medieval philosophers who thought that those ‘crystal spheres’
were so real that a comet passing through must smash them. If
pupils laugh, we should laugh with them at the medieval philo-
sophers who had tangled reality with their dogmatic arguments;
but we should remind them that the Greeks who conceived
‘theories’ were exceedingly able, imaginative, thinkers who knew
quite well that they were describing effective machinery — a scheme
that could describe and predict successfully — and not an impossible
reality. The same warning should be applied to atomic models
today.)

Further Models: Nuclei? When pupils ask ‘but what about
the nucleus?’ we should say clearly that nothing seen in experi-
ments described so far conflicts with our picture of an atom as
a pudding. As good scientists, we shall not build further details
into our picture, such as the idea of a small massive nucleus, until
new evidence forces us to do so.

New Theory by Necessity. That is a very important thing that
we must teach all our pupils; non-scientists and scientists alike;
that the great advances of theory, as in our pictures of atoms, are
not just made by imaginative flights of fancy - the scientist’s paint

brush twirled at random - but are forced upon us by the growth of

surrounding knowledge. True, our models always contain an
imaginative element; but we try now — as scientists have tried for
the last 300 years - to avoid unnecessary imaginative frills. Young
people would like the frills; they would like to think of electrons
crawling about metal surfaces like beetles — they would almost let
us tell them how many legs those beetles have. They would like to
think of electrons whirling round on sharply cut elliptical orbits
in atoms. Young nuclear enthusiasts would like to say a neutron
contains a proton and an electron inside it. They are not pleased
when we express doubts and ask whether a half-crown contains
two shillings and a sixpence inside. They do not welcome our
scientific caution. In setting forth that caution, we should make it
clear that we thereby aim at greater wisdom and fuller knowledge
and are not just expressing an insecure agnosticism.
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Programme

We shall return to atoms and atom-models when we have studied
radioactivity. However, pupils can continue with the measurement of
e/m for electrons in their practical work, and after that they may
embark on preliminary work for the radioactivity experiments. (See
instructions for Electrostatics and Radioactivity.)

We proceed to another use for F = mv?[R: Newton’s development of
planetary theory. If we just announced what Newton did, this topic
would lose its main value as an example of the growth of theory; so we
shall have to go back a long way in time and give some account of
astronomical knowledge and its development. (Since this is not a usual
part of an O-level syllabus, we shall provide a more detailed outline in
a Pupils’ Guide that will go into considerable detail.) The following
account 1s only a brief summary, too brief to show the essential quality
of developing knowledge.
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Chapter 3
THE GRAND THEORY

Planetary Astronomy and the
Development of Theory .



Each star makes an arc of 360°4-1° more in 24 hours of our solar

time. More precisely, each star makes just one revolution more
than the Sun in the course of one year.

We should illustrate that with a small celestial sphere if the labora-
tory has one. (It is not worth while to buy one specially since we
shall not spend long with this aspect of astronomy.) We spin the
sphere to show what is observed — and we avoid a spinning-Earth
interpretation at this stage. An ordinary umbrella, with a few stars
marked with chalk, is useful here as a simple celestial sphere.
Needless to say, the real sky is best of all, however long one has to
wait.

Pupils should look at the starry sky one evening, and then again
later in the same evening. We should show a photo of the sky,
taken with the camera shutter open for several hours. On that each
star makes an arc of a circle, with the pole star almost at the centre.

Pupils who are interested should be encouraged to try making a
photograph like that for themselves. They do not need an ex-
pensive camera with a large aperture. They must experiment to
find the stop to use. Successful photographs should be placed on
exhibit - if the picture includes the silhouette of the school
building or of well-known trees nearby, it is much more impressive
than a lantern slide of a photograph taken elsewhere.

Moon. We ask pupils about the Moon:

‘On some nights you see the Moon among the stars. On other
nights the stars are there but there is no Moon. The Moon must
travel across the star pattern. Have you watched it do that?

‘Look at the Moon one night when it is there and see where it is
among the stars. Look again an hour later; and then later still.
The Moon sweeps across the sky from east to west during the
night with the stars, but not quite as fast as the stars. If you
watch carefully, you will see the Moon lags behind the stars
(like a lazy child on a walk), 90° in a week; all the way round in a
month. You can see the full Moon one night (when the Sun is
down below the Earth in just the opposite direction), then no
Moon at all a fortnight later; and full Moon another fortnight
later. Even in a single hour, the Moon moves by its own diameter,
relative to the stars.
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‘If you watch the Moon carefully and mark its lagging path  H28b
from night to night throughout the month, you will find that

path is a slanting one. It does not just drift backward along the

same direction as its east-to-west forward motion during the

night. It drifts along a slanting line through the star patterns,

close to a line that we call the “ecliptic”.’

Sun. Atnoon the Sun is always due south (or north). It makesone T
revolution from noon to noon (except for some minor deviations
which are connected with the changing speeds of the Earth’s
orbital motion). But the stars make about 1° more than one revolu-

tion, so the Sun does not move quite so fast. Like the Moon, the

Sun lags and does not quite keep up with the star pattern. The
lagging motion of the Moon carries it right round the ecliptic circle
through the star pattern in a month, but the lagging motion of the

Sun is slower: 1° in a day, all the way round in a year.

TrE ECLIPTIC, the Sun’s track through the star pattern in the course of a year
" Here the daily motion is imagined ‘frozen’.

Ecliptic. The Sun’s lagging path through the star pattern is a
slanting circle (not far from the Moon’s path) and we call that

circle the ecliptic.
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THE ZODIAG, a belt of the celestial sphere tilted 23}° from the equator. The Sun’s
yearly path (the ecliptic) runs along the middle line of this belt. The paths of
Moon and planets lie within this belt, The Zodiac was divided into twelve sec~
tions named after prominent star groups or constellations. (Zodiac patterns after
H. A. Rey, The Stars.)

Zodiac. In fact, Sun, Moon and planets (which will be important
objects in our study) all follow lagging paths through the star
pattern that are fairly close together. All those paths fall within
a band about 15° wide, running round the whole sky with the
ecliptic as its centre line. We call that band the ¢ Zodiac’.

Celestial Sphere. Pupils should see sketches of the celestial
sphere; or, much better, an actual model if the school already has
one. It is not worth while to buy one specially. Any ball, painted
black, with a few lines chalked on it will suffice — since we are not
trying to teach descriptive astronomy and locate constellations.
The pole star should be marked and a few others added to show the
general scheme - and those need not be real stars in real positions.
The celestial equator should be marked. The line through the
sphere from Earth (at the centre of the sphere) to pole star should
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be pointed out. To us, it is the axis round which the Earth spins.

But to early astronomers it was just an important fixed direction

from Earth to pole star, around which they saw all the stars, in

fact the whole celestial sphere, revolving. Like Tycho Brahein his  H29
youth, a keen pupil might make his own celestial sphere on a small

ball, even an ordinary orange.

The ecliptic path of the Sun’s yearly lagging motion will be shown = D29b
on that sphere; but we should add, by using tape or paint, a
broader band to show the Zodiac.

‘Freezing’ the Daily Motion. Once we have seen the daily T
motion which carries every star in a circle round the pole star

and found that it repeats regularly, night after night, with no
change in the star pattern, it seems rather dull. The exciting D29c
things are the motions of Sun, Moon and planets; and the
exciting part of the motion of each of those is its strange lagging,

or wandering, through the star pattern rather than its rapid motion
across the sky each day or night, trying to keep up with the rest of

the stars. So, astronomers, at a very early stage of the science,
started leaving out that daily motion, ‘subtracting” it. In other
words, they imagined the daily motion stopped, or ‘frozen’, and

ZODIAC BELT WITH POSITIONS OF MOON, IN VARIOUS
PrasEs, IN THE COURSE OF A MONTH
The daily motion of the celestial sphere is ‘frozen’ here.
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catalogued the strange motion of Sun, Moon and planets through a
stationary star pattern. That was an enormous step forward, a
difficult intellectual jump, made by astronomers in early c1v1llza-
tions.

Sun’s Yearly Motion along Ecliptic. With the daily motion
frozen, we see the Sun crawling slowly backwards from west to

east on a slanting circle through the star pattern, completing the .
circle in a year. That ecliptic circle is inclined at 231° to the celestial

equator: and in terms of present-day knowledge, it represents the
Earth’s orbit round the Sun. The Sun does not travel uniformly
round the ecliptic. Its speed varies a little, so that the four seasons
are not exactly equal in length.

Pupils should watch the Sun and stars for themselves, and think
about the changes in height of the Sun’s daily arc.}

These geometrical matters should not be laboured, or astronomy
will take on a puzzling air before we are started.

Planets. Just a few ‘stars’ show entirely diﬁ"erent behaviour. -

Those are the ones singled out by some of the earliest observers
to be watched with care and awe. We call them ‘planets’, using
the Greek name, which means ‘wanderers’. Like the Sun, the
planets sweep round with the star pattern in a daily motion. Freezing
out that daily motion, we find that each planet slips slowly ‘back-
ward’ from west to east through the star pattern in the course of
years, along a path in the Zodiac belt.

But, unlike the almost steady motion of the Sun round the ecliptic
(or the Moon round its orbit in the Zodiac), each planet has a much
more irregular motion through the star pattern. It slides backward
for some time, comes to a stop, then moves forward, then continues
backward again, and so on.

f Pupils with a strong interest will find Lancelot Hogben s Science for the Citizen
offers a good account. .
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THE PATH OF A PLANET

All the planets wander through the star pattern in a belt near the ecliptic - the
Zodiac belt.

a. General region of a planet’s path ~ the Zodiac belt.

b. In detail, a planet’s path has loops — an epicycloid seen almost edge-on.

hsiw ) :

Julyls o
; “ July 1

i e e L T
60° 40’
CELESTIAL EQUATOR

PATHS OF PLANETS THROUGH THE STAR PATTERN

a. Venus (January-July 1953)

b, Mars (June-December 1956)

The ecliptic is the Sun’s apparent path. The planets® orbits run close to the
ecliptic, because the planes of those orbits are close to the plane of the Earth’s
orbit (or the Sun’s apparent orbit, the ecliptic.)
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Zopiac BELT WITH PATHS OF SUN (in one year), MOON (in one month), and a
specimen PLANET (in planet’s “year’). The daily motion of the celestial sphere is
‘frozen’ here.

The backward motion from west to east in the star pattern pre-
dominates, carrying the planet Jupiter, for example, all the way
round the Zodiac in a dozen years. The short forward motions,
in which the planet makes a loop (seen almost sideways on), occur
about once in every year,

MACHINE FOR DRAWING EPICYCLOIDS
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PATHS OF PLANETS IN THE SKY
This sketch shows the apparent paths of Jupiter and Saturn, plotted for many
years, as they would appear to an observer attached to the Earth but viewing them
from far out from the Earth, so that the epicycles are seen face-on, without the
foreshortening really observed. The apparent orbit of the Sun is also shown.
The Earth is at the centre. When the astronomer Cassini constructed this
diagram in 1709 he used Copernican measurements of orbit sizes.

Note to Teachers. Professional astronomers think of the general
backward sliding of the planets round the Zodiac as the main,
normal motion, and they call the reversed motion in the loops
‘retrograde’. We have used opposite wording here, only because
it seems simpler teaching for pupils familiar with the nightly
motion. Here we call:

The daily motion of stars, Sun, Moon, planets, ¢ Forward’

The yearly motion of the Sun round the ecliptic, ‘ Backward’
The monthly motion of the Moon round its orbit, ¢ Backward’
The general motion of each planet round the Zodiac, ‘ Backward’
The “retrograde’ motion of a planet in each loop, ‘ Forward’.

These ‘wandering stars® — the planets — are the chief object of our
present study. It was their motion that presented the greatest
problem to astronomers who wanted to explain the heavens or
‘save the phenomena’, as the Greeks described their attempts to
make theories that fitted the facts.
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Looking at Planets: the Two Brightest. The brightest planets,
Venus and Jupiter, should be pointed out. Pupils should watch
them and see that they do move through the star pattern. However,
the planets’ movements are too slow to give a clear picture in a
short time; so we shall have to describe the wandering motion.

Venus never moves far from the Sun, swinging out 46° to one side
of the Sun and then back, disappearing when we are dazzled by
the Sun nearby, and out 46° on the other side. Watching Venus,
as the evening star and then as morning star, will show some of
that story.

Jupiter moves through the star pattern on a path not far from
the ecliptic but with a much slower creeping motion than the
Sun’s, in fact 11 or 12 times slower. In crawling backward through
the star pattern once in a dozen years, Jupiter makes a strange loop
once a year. That is, while he usually moves from west-to-east, he
presently slows down, comes to a stop, speeds up in an east-to-
west direction then slows down again, comes to a stop, and
continues with his west-to-east motion.

Table of Planets. We want pupils to be familiar with the planets
and their names. It would be good to post a large table, like this:

NAME (judged against a background of the stars)
TIME FOR COMPLETE ORBITZ:

Mercury 87 days

Venus 225 days

Mars 687 days

Jupiter 12 years
Saturn 30 years
Sun 365-3 days
Moon 27-3 days

} The period of a planet’s motion, ‘its time to get round its orbit’, depends
somewhat on our viewpoint. The value given here is the ‘zrue’ period, or
‘planetary year’, as an observer on the Sun would see them. (contd. on page 97)
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To the early astronomers the Earth was not a planet. They were -

sure that it does not wander but remains at the centre of the
universe, However, they included the Sun and Moon as wanderers,
making seven planets in all. In our table above, we left a space
for the Earth, but it should not be placed there yet — we should
include Sun and Moon.

Planetary Paths. To show pupils the shape of planetary path,
we should sketch it on a blackboard. It is also helpful to show the
pattern as an epicycloid, looked at very obliquely. We draw an
epicycloid freehand on a large sheet of paper. To do that, we
move a pencil round in a small circle, say of diameter 4 inches,
and sweep our whole hand round more slowly in a large circle, of
radius say 15 inches, using our forearm. Then we tear off a patch
of the paper with a few loops of the epicycloid on it and hold that
patch obliquely so that pupils see it almost edge-on. We explain
that that edge-on view is what we see of planetary motion against
the background of the starry pattern.

A toy electric motor carrying a lamp, placed near the edge of a slow
record-player turntable, provides a useful model.

As we now picture the solar system, we might draw a radius from the Sun to each
planet and on out to the stars, to mark its position in its orbit. As that radius
turns through 360° the planet goes once round the orbit and returns to the same
place, as it would be by an observer on the Sun, against the star pattern.

However, in that ‘true period’ of the planet’s motion round its orbit, the Earth
moves to a different position, and an observer on the Earth would not see the
planet back at the same place ‘among the stars’. The planet’s apparent period,
recorded by an observer on the Earth, is a modified compound value derived
from the planet’s ‘true’ orbital motion and the Earth’s orbital motion. If we
were giving a proper account of the planetary picture seen by early observers, we
should give the ‘apparent’ periods. Then we should have to disentangle the
‘true’ periods from them when we came to the Copernican picture of the
solar system.

In our present teaching we want to give a simple, clear picture of the problems

that led to theory rather than explore such special details. So, we suggest giving
only the “true’ periods, as we have done in the table here.
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Pictures of Planets’ Paths. We may show lantern slides or
posters of the paths of one or two planets, plotted from tables of
observations. However, those careful diagrams are likely to look
confusing and dull to pupils who do not yet see any particular point
in worrying about the motion of the planets. So we urge teachers to
start by showing simple pictures, sketched by hand, as suggested
above.

(If we were teaching Astronomy for its own sake, we could, of
course, ask pupils to plot planetary motions in considerable detail.
Here, however, we only wish to provide a simple, clear story as a
basis for developing theory.) Again, if we were teaching Astronomy
itself, from an experimental viewpoint, we should certainly give
pupils the delightful experiment of plotting an orbit from photo-
graphs of the Sun, taken at intervals through a year, all with the
same camera. If the diameter of the Sun’s picture is d, 1/d gives a
measure of the distance of the Sun from the Earth. Given a set of
photographs, pupils measure d, take the direction of the Sun
among the stars from the date of each photograph — using tables or
common sense — and plot a yearly orbit to scale. This is the Sun’s
orbit, as early astronomers considered it, or the Earth’s orbit as we
now think. However, the time and interest spent on this will lead
the class away from our main target; so we do not suggest it as an
experiment. However we mention it in case some have special
interests.

Photographs of Planets. At some stage, pupils should see good
photographs of planets taken through a modern telescope. Some
teachers prefer to show these straight away, especially if pupils
are going out to look at planets with telescopes themselves. Others
prefer to keep this close-up view of planets until they reach the
story of Galileo and the telescope.

Eclipses. Eclipses deserve a brief mention, and explanation, but
not with the usual diagrams of umbra and penumbra. Those
diagrams give names to be learnt without being true enough to
scale to give good knowledge.

How many capable scientists realize that the shadow of the Moon
is a cone of angle only 1°, whose very tip only just reaches the
Earth? How many realize that the shadow of the Earth, which
must itself have narrowed by one Moon-diameter out at the dis-
tance of the Moon, just covers 2} Moon-diameters as the Moon

98

D32

* % K X K X X X X K % X X XX ® X

D33

D34



*Iesu 001 pue Siq
001 SI UOOW OY3 pue ‘Ieau 001 YONUW UMOYS ST UNG O J, *3[eds 03 10U UDINS
HINVH ‘NOOW ‘Nng

[ypv3 puv] % : °
2910 SMOOW, ung

‘(e PUE UOOIN JO SOU0D MOpeys o} Jurmoys o[eds 03 Yo3axg

\\ | . / ERLely

\M SIHL NO

¥ AVMY
h —>

LE . 1334
b g0 / Soﬁm

LT AREL /  NAS

passes through it in an eclipse? From that, and the 3° angle, sub-
tended by the Moon, we can at once show that the Moon must be

about 60 Earth-radii away, some 240,000 miles.
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SKETCH TO SCALE SHOWING THE SHADOW CONES OF MOON AND EARTH,
Sketch to scale. Here the scale has been reduced so that Sun, Moon and Earth
are in the picture. The small circle is the Moon’s orbit. The Earth, at the centre
of that circle, is too small toshow. On this scale itis a dot 1/1,000 inch in diameter.
The Moon is much too small to show.

Eclipses have always excited interest, and sometimes fear. They
have helped to make astronomy seem interesting and important.

At a very early stage astronomers concluded from eclipses that the
Moon shines only by reflected sunlight and that the Earth is round.

Precession of the Equinoxes. At some time in the teaching of
our factual story, we must mention precession of the equinoxes.
As described by early astronomers, from an Earth-centred point of

Equinox et
g
__\f, ’ 26,000 3 m\j\\/m@
Daily snokion motion,
of wholk iaktern., of Sun ™~
One revolution. in 24 firs.

PRECESSION OF THE EQUINOXES
In addition to () the daily motion of the whole heavens around the N-S axis
fixed in the fixed Earth and (b) the yearly motion of the Sun around its ecliptic
path in the Zodiac band of stars, Hipparchus discovered (c) a slow rotation of the
whole pattern of stars around a different axis, the ecliptic axis (perpendicular to
the Zodiac belt). :
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view, that was a very obscure creeping motion of the whole system
of stars around a special axis (the axis of the ecliptic); in that form
it is much too difficult for pupils to understand. The sketch here is
offered only in case teachers are interested in seeing the ancient
description. As described by Copernicus, it is much simpler and
we should describe it when we get to his model, so that Newton’s
‘explanation’ may be enjoyed.

If the laboratory has a celestial sphere, this motion might be
demonstrated with it, but it is not worth while buying a sphere
for this. Use thumbs or small suction caps to establish an axis
perpendicular to the ecliptic (234° from the axis through pole
star). Ask a pupil to make the sphere revolve very slowly round
that new axis. At the same time, the sphere must be imagined to
be spinning ten million times faster about the pole star axis.

Summary
To appreciate the story we are going to unroll, pupils must know
that:

There is an unchanging pattern of stars, revolving daily round an
axis through the pole star,

Sun, Moon and planets share that daily motion, except that they
drift slowly ‘backward’ through the star pattern.

The paths of all those ‘backward’ motions fall in a narrow band
of the star pattern, called the Zodiac.

‘Freezing out’ the daily motion, we find the Sun travels round the
ecliptic, the central line of the Zodiac, in a year.

The Moon travels round an orbit in the Zodiac (tilted at some 5°
to the ecliptic) in a month.

The planets travel round orbits in the Zodiac, making reverse loops
" (one for each of our years) as they do so.

Jupiter completes an orbit in a dozen years, Saturn in 30 years,
Venus in a fraction of our year.
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Models, Planetarium
In describing the heavenly system, teachers will want to show
some kind of model.

Planetarium. A visit to a planetarium, if that can be arranged,
provides a very good model, the second best in all the world. (The
best, of course, would be watching the real sky for months and
years.) That will show the motions as they are observed.

As a rule, planetarium authorities like to show a sample picture
of the heavens for some particular date, with Moon and planets
making only small motions during the performance. They hesitate
to run their planetary machinery very fast and show several years’
motion in a short time. That will necessitate stopping (‘freezing
out’) the daily motion, and it asks for unusual speed. Therefore
they hesitate because they know how easily an audience forms mis-
conceptions. However, if the teacher explains to the planetarium
authorities the special need for an important part of our teaching
programme, to show planetary motions through the stars, he
should find that such a demonstration can be arranged.

A visit to a planetarium makes a strong contribution to our
teaching. We hope that teachers will explain to school authorities
that such a visit would not be just an amusing trip but a very
important part of our physics teaching.

Toy Planetarium. Instead, or in addition, we might show a
toy planetarium. If that is just a spherical shell, with holes pricked
in it for stars and a lamp shining through it to make star spots on
the ceiling, it will show only the simple daily motion. (Arranging
other spots of light to imitate the motion of a planet round the
ecliptic with yearly loops is a delightful problem for special in-
genuity. But we do not recommend spending time or money on
that. It is too easy to let such a model take charge and divert
interest from our main objective. Sketches on the blackboard,
and perhaps lantern slides of plotted paths, should suffice.)

Orrery. The teacher will also want to show a model of the solar
system, often called an orrery. However, that represents a jump
ahead in our story, to an entirely different pattern — Copernicus’
scheme, with the Sun at the centre. Showing an orrery at this stage
would add confusion and raise the objection, ‘But we know the
Earth is not at the centre ...°, all the more strongly. So, although
teachers naturally think of an orrery as an easy illustration when
they are first talking about planets, we urge them to keep it hidden

and postpone showing it until they get to Copernicus.
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EARLY HISTORY

A Quick Survey. We should not spend very much time on the
early history of astronomy; and yet if we pass it over pupils will
miss the sense of primitive wonder and fear, and the important
practical needs, that were driving forces behind the priest astrono-
mers and made astronomy the first physical science. We should
point out that astronomy provided three things that were needed
for man’s progress from savage life to village life and from village
life to urban civilizations: calendar, clock and compass.

Earliest Man. Very early man, living by hunting and chance
cropping, may have looked at the stars and wondered. He may have
used stars as guides at night. He may have welcomed the Moon’s
light for hunting. We do not know. He probably used Sun and
stars unconsciously as rough clocks; but it is very unlikely that
earliest man used Moon or stars for reckoning days or weeks, or
even the Sun for reckoning hours; because he lived at a simple
level and such things were not needed.

The First Revolution: Food Producing. When man gathered
into villages and developed agriculture and domesticated animals
— the first great revolution, from a food-collecting life to a food-
producing culture — a calendar became very important. Man needed
some way of predicting seasons, both for sowing wheat, one of the
earliest crops, and for the seasonal breeding of sheep — or at
least village life profited from a calendar to organize the work in
advance.

The calendar made the priests who administered it powerful and
important; and, whether they liked it or not, made it easy for
their knowledge to become invested with mystery. Things that
happened in the sky assumed obvious importance. Even to simplest
man, the Sun seemed very important for warmth and growing life;
a worship of the Sun developed. The Moon and stars had magical
values for hunting and journeys by night. No wonder primitive
people speculated about these lamps in the sky; and no wonder
they worried about the few lamps which wandered, the planets.

(Teachers will find some interesting discussion of early man and
astronomy in Lancelot Hogben’s Science for the Citizen (4th edn.,
Allen and Unwin, 1956), and some more romantic comments in
H. G. Wells’s Qutline of History (1920). It is both easy and tempting
to speculate on the way in which primitive man thought about
things as he developed. But anthropologists warn us that such
commonsense speculation is very risky. Nor should we try to infer
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things about primitive man from observations of savages today,
because almost all savage communities have lived close to civiliza-
tion for a long time. Contemporary savages may be primitive in
technology, yet maintain a complex of customs or religion de-
veloped over millennia. It would be safer to base surmises on the
behaviour of children today.)

Early Civilizations. By the time the early civilizations, such as
those in Babylon and Egypt, had grown up systematic rules had
been extracted from watching and astronomical observations.
The calendar priests could predict the motions of Sun and Moon,
predict the seasons and even Moon eclipses, quite accurately.

In the later ages of those civilizations men had a good knowledge of
the lengths of the seasons, the length of the year, etc., good weights
and measures, knowledge of algebra and geometry (including
Pythagoras’ theorem long before his name was put to it).

Their astronomers had schemes for predicting the slightly irregular
motions of the Sun and Moon along their paths through the stars.
Those schemes, in the hands of the Babylonians, amounted to zig-
zag empirical graphs that were used for calendar making. The
astronomers who used them seemed to have no idea of giving any
reason for the patterns or imagining any mechanism responsible
for them. They were just working graphs, such as an engineer might
sketch for the detailed running of a piece of machinery.

Astrology. With this astronomical knowlege there grew up a
body of superstitious belief in astrology. People thought that the
positions of Sun and planets at the time of someone’s birth could
determine his character and fate. That belief, still alive today,
provided a driving force for much astronomical observing ~ and a
source of financing for astronomers for many centuries.

Superstition; and our Duty in Teaching. We might ask our
pupils, ¢ What is superstition? Can you explain in a short sentence
what that word means?’ There seems to be no compact answer to
that question, except some dogmatic statements that lead to hot

arguments.

Some teachers find this question and its discussion helps a dis-
cussion of theory. Others consider it an unfortunate diversion.
One should be guided by taste.
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Even today many educated people look to astrology for some
guidance, if only with half-hearted belief. Why should non-
scientists prefer a physicist’s Newtonian treatment of the planetary
system to the more romantic view embodied in astrology? If, as
scientists, we believe the preference should go towards Newtonian
theory, this throws light on our duty in the present suggestion of
teaching of astronomy.

GREEK THEORIES AS AN INTRODUCTION TO FORM
AND USE OF THEORY

It is easy enough to tell pupils what we see happening in the sky
and encourage them to check some of those observations them-~
selves. They accept the factual picture. Most pupils accept a
factual picture in great detail and like to collect more facts because
that gives them a sense of growing knowledge. While we should
not discourage that, we should encourage a growing interest in
imagining patterns, machinery, models, schemes to hold the
knowledge together. That is our present objective ~ to look at
the development of theory.

In teaching this history of astronomy as basis for Newtonian
theory, teachers should describe some samples of Greek theories.
And we hope they will describe them with love and admiration.
Those theories were works of genius that need careful study to
master the details of the machinery so that both teachers and
pupils appreciate their success. However, teachers may meet a
difficulty: ‘But, sir, we know this isn’t true. We know that the
Earth ...

But, sir . . . When we start speculating on schemes, or describing
schemes that have been suggested, we meet that difficulty. Pupils
have been told, much earlier, some things about the Earth and
heavens. They know that the Earth moves, and not the Sun. They
know quite well that the Earth spins and travels round the Sun in
a year. Many of them also know that the planets go round the
Sun in a circular orbit, and do not swoop back and forth in loops
as they travel round the Zodiac. The teacher needs to anticipate
the objections that run: ‘But, sir, we know the Earth goes round
the Sun.’

So a very clear explanation of our programme must be given at

the outset — and it may have to be repeated — that this is a tricky
problem in thinking and understanding, to see how people could
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build a picture that would fit the facts, and then go farther to
link the facts with other knowledge, then even farther and predict
some new things to look for. In a sense, we have to say to pupils:

‘If you really want to understand, you must try making explana-
tions yourselves; you must see how some simple explanations
can be made, and then how those can be improved. So you need
to be very clever and imagine that you have taken a jump back-~
ward in time to the days of the early astronomers. You see what
they saw; but imagine that you have not been told explanations
made up by other people since then. Think about the stories that
you could tell - say, to your younger brother ~ if both you and
he knew nothing but the things you see.”

In some such way the teacher needs to emphasize repeatedly the
cleverness of imagining good schemes and not the stupidity of
going back to something of which pupils say, ‘We know that’s
wrong.’ This advertising of a teaching aim can be done: its
success depends on the skill the teacher brings to it and on his
own enjoyment as a constructive explorer in the making of science.

In describing successive attempts at making a model of the
heavens (i.e. a theory), the teacher should select examples to
suit his own taste and try to set them forth quickly as well as
attractively, without giving a discouraging wealth of detail. A
mature physicist exploring the history of science soon becomes
involved with great interest in the details of the development.
It is satisfying to him to see how skilfully some theory was devised
and then modified to a better one. But pupils involved in a much
more rapid survey are not likely to have time or interest for the
details. So teachers setting forth this development of theory in
astronomy are urged to describe the stages clearly but briefly,
choosing their treatment to fit their own enjoyment but not
allowing the latter to prolong discussion beyond pupils’ interests.

The Main Target of this Teaching. Our most important advice
to teachers at this stage is, ‘Keep your eye on the main target:
Newton’s gravitational theory and its rich variety of explanations.’
The sooner we get there, the better, as long as pupils have on the
way seen enough of the earlier stages to be ready to welcome a
general theory.
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The Growth of Greek Theory. As Greek civilization grew up,
philosophers gathered astronomical knowledge from Egypt and
from their own observations, and constructed an entirely different
- treatment. Instead of just stating rules for practical calendar-
making and superstitious power, the Greeks imagined simple
machinery that would make the whole system of the heavens seem
reasonable — seem to behave sensibly, and not to be controlled by
demons or spirits. These simplifying schemes, dreams of wise
philosophers, were in a way the first scientific theories.

The Greeks linked heavenly motions to pictures of earthly wheels,
The early Greeks did not worry much about fitting their theory
exactly to the facts; they sought the general satisfaction of having a
scheme to fit the facts reasonably ~ to make nature seem reason-
able. (They said their aim was ‘to save the phenomena’, and that
meant ‘to fit the facts’.)

Teaching Greek Theories. The notes that follow are suggestions
to teachers. Some teachers will wish to go into greater detail -
though there is a risk of that taking too much time. We suggestas a
minimum description of the models made by: '

Thales,

Pythagoras and his school,

Eudoxus,

and an amalgamation of the simpler eccentric schemes of Hip-
parchus and others with the scheme devised by Ptolemy.

(We are aiming for the moment at Ptolemy’s scheme to show it
as successful but complicated, as a prelude to Copernicus’s sim-
plification.)

Note on Models to lllustrate Greek Schemes

It is tempting to devise ingenious models to illustrate Greek
schemes. If one thinks of those schemes as machinery, it seems
natural to make mechanical models to show them. But our whole
aim here is to show Greek schemes as clever geometry ~ intellectual
machinery — and go quickly on towards our main target of New-
tonian theory.

Showing models would take time and divert attention from ideas
to machinery, from intellectual grasp to interest in mechanical
ingenuity. For a very fast group, models would probably be harm-
less, though unnecessary. For average groups, any but a few simple
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models would mislead and do considerable harm by diversion. To
advocate models would be to miss the point of this teaching
entirely. (See the Note, in the Preface to this Year, which gives a
warning about models.)

On no account should a school buy any models. We do not advise
schools to construct any but the very simple models described
at appropriate places below.

Until the stage of Greek astronomy, positions of planets, eic.

had been recorded and predicted simply as marks on the pattern-of -

stars. There were no measurements, or even guesses, of distances.
By the time the Greeks had established their great university at
Alexandria, astronomers were making estimates of the size of the
Earth, the distance of the Moon, and even the distance of the Sun
from the Earth. The planets were thought of as being at inter-
mediate distances between the Earth and the stars; but that idea
was suggested by the theoretical machinery they chose to adopt
and not by any measurements. It will do serious harm to our
teaching scheme, with Newtonian theory as its main target, if we
do not teach something about the Greek measurements. Yet the
methods used by those early astronomers were fairly simple, and a
short description of them may delight many a young scientist. So
we shall give an account of them, in case teachers wish to use them.
Incidentally, they offer some good examination material.

In describing theories, we should show lantern slides or blackboard
sketches: or pupils should see diagrams in a guide for their own
reading.

We should show a few very simple models. Complicated models,
which have to be bought, or take time and ingenuity to construct,
are not recommended - see the Note, in the Preface to this Year,
which gives a warning about models.

Earliest Greek Theory. Thales (600 B.c.) described a simple
model: a small, flat Earth, surrounded by a great sheet of water,
with a vast sphere carrying the stars and revolving daily round an
axis through the pole star} that did account for the daily motion.

% In Thales’ day there was no real pole star such as we see today. Look at a star
map marked to show the precession motion of the Earth’s spin axis. Nowadays,
the Earth’s spin axis meets the celestial sphere of the star pattern very close
to a bright star which we call our pole star. About 3000 B.C. the Barth’s axis
cut the celestial sphere very close to another bright star, alpha in the Dragon
(contd. on page 110)
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It left the extra motions of Sun, Moon and planets with no
explanation except that they must crawl backward on the inner
surface of that sphere.

THE UNIVERSE ACCORDING TO THALES

EARLY GREEK VIEW
The Sun’s yearly path through the star.patterns was mapped. This is the tilted
band called the ecliptic. The Sun is shown in one position (near midsummer)
and other positions are sketched. Here the celestial sphere is not spinning, but
‘frozen” with one star pattern overhead.
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Simple Models of Early Greek Scheme. It is important to
show the general idea with a concrete model; a fixed pattern of
stars carried round on a sphere. An ordinary umbrella, preferably
with stars chalked on it, represents the sphere of the heavens. A’
saucer may be held near the crook of the handle to represent a
flat Earth. (For a later model a small Earth-globe might be held
there — but by the round-Earth stage Greek theories had become
more elaborate.) This use of an old umbrella has two advantages
over a fuller model that has to be bought: (1) it avoids giving the
impression that science always has to be done with special devices
to prove a point or illustrate a scientific idea; (2) it enables pupils
to repeat the story at home, where we hope that they too will
emphasize ideas rather than gadgets.

EARLIEST GREER SCHEME
(A) Umbrella model.
(B) Luxury model. Not worth buying.

constellation. But at intermediate times, such as the period of the great growth
of Greek astronomy, there was no bright star to serve as pole star near the place
where the Earth’s axis cuts the celestial sphere. In teaching beginners, it is
easier to describe the heavens as we see things today, with a real pole star very
close to the right place. Then, in describing early theories, we have these choices:

Speak glibly of the ‘pole star’ (meaning a fictitious one but not saying it is
fictitious) to make the picture simple.

Speak of the ‘pole star® and encounter some confusion.

Use a longer description involving the Earth’s axis — then some pupils will
lose track.

Explain very carefully that there was no real pole star in those days, and say
that when we speak of ‘the pole star’ we mean a fictitious one.

In the notes given in this Guide we have chosen the first of those methods.
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A fuller model that uses a round-bottomed flask should also be
shown. The flask is half-filled with water and closed with a cork
that carries a knitting needle which extends through the flask inside.
The flask is supported on a ring-stand with its neck slanting down-
ward. A loose ring or washer of wood threaded on the knitting
needle floats on the water inside, representing a flat Earth at the
centre. Stars are marked with a chinagraph pencil on the outside of
the flask. The neck is turned by hand to simulate the daily motion.
After a first demonstration, the ecliptic should be marked on the
outside. The Sun, represented by a small bright sticky label,
should be placed on the ecliptic. Turning the neck will show the
Sun’s daily motion. Then the Sun is moved to successive positions
on the ecliptic, the daily motion being shown for each.

(A large transparent spherical shell with stars marked on it and a
flat Earth at the centre might be shown if the school already has
one. We do not recommend buying one, since it would teach no
more than the simpler models, and it might divert attention from
ideas to ingenious machinery. See the Note, in the Preface to this
Year, which gives a warning about models.)

(A sphere with an internal lamp and pinpricks for stars is not a
model of this scheme: it is a planetarium to illustrate what we
observe rather than show the Greek idea. Nor is an opaque celestial
sphere or a celestial frame (“astrolabe’) suitable here. They are not
so much models of schemes as mapping devices for recording or
teaching what we see.)

A Beginning in Natural Philosophy. Thales also made a
general statement about the nature of the universe. He said that
water is the ‘first principle’, a basic material of everything. He
assumed that the whole universe could be explained by ordinary
knowledge and reasoning; so we should not laugh at simplicity
of his heavenly model or of his general principle — they were bold
beginnings in natural philosophy.
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PYTHAGOREAN VIEW
The Pythagorean school adopted spherical Earth; and separated the general
daily motion of stars, Sun, Moon, and planets, from the slow, backward motion
of Sun, etc., through the star pattern. )

Pythagoras and his School. Pythagoras (about 530 B.C.), and
others who followed him, imagined a scheme of concentric spheres

EARLY GREEK SYSTEM OF CRYSTAL SPHERES
A ‘“section’ of the whole system in the ecliptic plane.
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- like shells of an onion. The outermost spheres carried the stars with
the daily motion. Inside that were other spheres, each carrying a
planet. (Remember, the Greeks counted the Sun and Moon as
planets as well as Mercury, Mars, Jupiter, Venus and Saturn.)

In later stages this model of celestial spheres had all the inner
spheres attached to the outermost one which carried them round
with the 24-hour motion. Then the Sun’s sphere revolved back-
ward, once round in a year, about an axis perpendicular to the
ecliptic (233° from the pole star axis). The spheres for Moon and
other planets all revolved slowly backward about the same axis,
with appropriate speeds: one revolution in a month for the Moon,
one revolution in 12 years for Jupiter, This model imitated the
observed motion of the Sun and Moon fairly well, but gave only the
general motions of the planets without their retrograde loops.
This was the next approximation after the single sphere of Thales
to a description of the facts. '

EARLY GREEK SYSTEM OF CRYSTAL SPHERES (Pythagoras)
Part of the system, showing the rotating spheres of the Sun and two planets,
carried around by the outer sphere of stars which spins daily.
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Simple Models of Pythagorean Scheme. The umbrella model
should be shown again, with a second umbrella added, to carry
the Sun in a yearly motion backward relative to the daily spin.
One umbrella is held inside the other with its axis (handle) tilted
to show the 234° difference. The inner one carries the Sun (or one
planet) on its rim, revolving slowly from west to east round the
ecliptic. The outer umbrella may have its handle transferred from
inside to outside where it will continue the spike. It carries the
stars and carries the inner umbrella with it in its daily spin. (By
the time this point is made clear, the model becomes impossibly
difficult to manipulate — so much the better: thinking then takes
charge.)

|}
fp‘b‘ \

PYTHAGOREAN SCHEME
Ilustration with two umbrellas. The inner umbrella has its spike cut off short,
and a hole cut in its fabric for the handle of the outer one, which carries a planet.,

The flask model suggested for the simple Greek scheme should
also be shown now, with the flat wooden washer replaced by a
bead or ball to represent a round Earth. As before, one position of
the Sun in the ecliptic is marked by affixing a small bright sticky
label and the daily motion shown by turning the neck of the flask.
Then the Sun is moved to a neighbouring position in the ecliptic
and the daily motion shown again; and so on.

(Models with two or more hoops instead of spheres fail to make the
motions clearer: they should not be shown.)

(More professional models are, of course, possible, such as a large
transparent sphere (stars), with a smaller sphere inside having its
axle embedded in the large sphere, at 233° to the axle of the latter,
with a small spherical Earth at the centre. This requires an
electric motor or gears or both. If the school already has such a
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model it should be shown. But we recommend strongly against
buying one or constructing one. See the Note, in the Preface to-this
Year, which gives a warning about models.)

The Crystal Spheres. We should not laugh at this scheme of
crystal spheres. It was far from childish or stupid; it was a brave
attempt to give a simple scheme, to ‘ explain’ the heavens to ordinary
people. It was over-simple, in that it failed to show the retrograde
loops in the planets’ motion and it failed to show the irregularities
in the Sun’s motion from season to season.

This scheme of spheres was like a tale for children, saying, ‘It is all
reasonable; there is machinery which carries the stars and planets
round; it fits together and runs with simple rules; there is nothing
to fear.” But the scheme gave no hint of the way in which the
motions were started or maintained.

Outside the outermost starry sphere was the Primum Mobile,
the celestial powerhouse, which was also said to be the ‘abode
of the blessed’. The original astronomers may have just imagined
the outermost starry sphere as a theoretical device for describing
the motion; but it soon took on an air of solid reality. Heaven for
departed souls was clearly beyond that sphere. This picture of
heaven became so well established that the Copernican view,
which did not need a sphere for the stars, but placed them at all
kinds of distances in remote space, was met with violent dismay
and opposition.

Constancies: the Essence of Scientific Description. The
Greeks insisted on spheres for their machinery and made those
spheres revolve at constant speed. Those were not whimsical
assumptions made for artistic delight. Some such assumptions are
essential for a scientific description, which is what the Greeks were
aiming at.

When we want to describe some behaviour in nature in the
compact way that scientists like, we have to extract some constan-
cies. Each scientific law that we state (usually derived from
experiment) is really a statement about something that remains
constant, independent of some other changes or details. Thus, in
building science, we try to single out things that are constant.
(Pressure) times (volume) is constant in Boyle’s Law. (Stress)/
(strain) is constant in Hooke’s Law. If we could not make use of
such constancies in our descriptions, we should go mad with the
profusion of irregular details. One might almost claim that every

natural law can be stated with the word ¢ constant’ in it somehow.
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The Greeks had to express their knowledge of heavenly motionsin

statements that contain some constant elements. — otherwise they
might just as well have ascribed the motions to wayward gods or
demons. A sphere has constant radius, the same in all directions ; and
that gave it a great advantage in the Greek view, as part of the
machinery. And each sphere was given a constant speed of spinning
~ again, without that constancy, the description would hardly make
nature seem reasonable or easy to understand. As the descriptions
were elaborated to fit the facts more closely, the Greeks would add
more spheres within spheres, each with its own constant motion,
rather than lose that essential characteristic. Later, when the pro-
fusion of spheres itself lost the attractiveness of simplicity, Greek
astronomers modified their insistence on constant speed but in-
stalled other constancies instead.

Pythagoras and thé Rdund Earth. Pythagoras; pupils, if not. -

the great man himself, knew that the Earth is round. The time was
ripe for the idea of a round Earth. Travellers’ tales of ships and
stars suggested a curved Earth to an enquiring mind.

Aristotle, two centuries later, supported schemes of concentric
spinning spheres with a dogmatic reason: ‘The sphere is the per-
fect solid shape.’ By the same token, the Sun, Moon and planets
must be spherical in form; so that the heavens are regions of
perfection, or unchangeable order among spheres moving with
constant motions. To Aristotle, the space between Moon and Earth
was unsettled and changeable, with downward fall the natural
motion.

Aristotle made a strong case for the Earth itself being round. He
gave theoretical reasons:

1. Symmetry: a sphere is symmetrical, perfect.

2. Pressure: the Earth’s component pieces, falling naturally
- towards the centre, would press into a round form.

and experimental reasons:

- 3. Shadow: in an eclipse of the Moon, the Earth’s shadow is
always circular: a flat disc could cast an oval shadow.

4. Star heights: even in short travels northward or southward,
one sees a change in the elevation of the star pattern,
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This mixture of dogmatic ‘reasons’ and experimental common
sense was typical of him, and he did much to set science on its feet. -
His whole teaching was a remarkable life work of vast range and

enormous influence. At one extreme he catalogued scientific

information and listed stimulating questions; at the other extreme

he emphasized the basic problems of scientific philosophy, dis-

tinguishing between the true physical causes of things and

imaginary schemes to save the phenomena.

EVIDENCES FOR ROUND EARTH

ANCIENT
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Teachers may like to post up a large chart showing evidence for a
round Earth, like the diagram here. Soon, they may like to post
up a companion chart showing evidence for a spinning Earth.
These may promote discussion since they deal with things that
pupils take for granted.

It is not necessary to discuss the flat Earth-round Earth contro-
versy in teaching towards our main target; but that does offer a
good topic for questioning pupils’ assurance. We ask:

‘How do you know the Earth is round? How would you convince
your younger brother, or a savage, that the Earth is round, other
than using quotations from some book?’

In the hands of a teacher who likes running a discussion like that,
it can be of considerable use. A much harder discussion begins,
‘How do you know the Earth spins?”’ In other words, ‘ How do you
know the Copernican scheme is right, and these Greek schemes of
spheres round a stationary Earth are wrong?’ (This is a difficult and
dangerous question. Copernicus argued for his scheme on the
basis of simplicity. Scientists in the eighteenth and nineteenth cen-
turies argued on the basis of Newtonian mechanics. Some scientists
in the twentieth century are apt to claim that general relativity
would expect the same effects whether the Earth spins or the
stars whirl round the Earth.)

Eudoxus’ Scheme of many Concentric Spheres. The great
Greek mathematician, Eudoxus, devised a tremendous system of
spheres to match the facts very closely. The simple system of a few
spheres, one for each moving body, was obviously inadequate. A
planet does not move steadily along a circle among the stars. It
moves faster and slower, and even stops and moves backward at
intervals. The Sun and Moon move with varying speeds along their
yearly and monthly paths.

Eudoxus elaborated that scheme into a vast family of concentric
spheres, like the shells of an onion. Each planet was given several
adjacent spheres spinning about different axes, one within the next:
three each for Sun and Moon, four each for the planets; and the
usual outermost sphere of all for the stars. Each sphere was carried
on an axle that ran in a hole in the next sphere outside it, and the
axes of spin had different directions from one sphere to the next.
The combined motions, with suitably chosen spins, imitated the
observed facts. Here was a system that was simple in form (spheres)
with a simple principle (uniform spins), adjustable to fit the facts —
by introducing more spheres if necessary.
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Euboxus’ SCHEME OF MANY CONCENTRIC SPHERES
Each body, Sun, Moon or planet, had several spheres spinning steadily around
different axes. The combination of these motions succeeded in imitating the
actual motions of Sun, Moon and even planets across the star pattern.

Models of Eudoxus’ Scheme? No physical models should be
shown — except perhaps an onion to illustrate the structure.

Refer to the shells of an onion, and use pictures. Proceed quickly,
since appreciation of cleverness and complexity is sought rather
than knowledge of details.

In explaining the details of Eudoxus’ machinery (described in a
later paragraph below) anything more than a sketch of the four
spheres for one planet would defeat its own ends. The B.B.C.
constructed a brilliant model with four hoops for its ‘How and
Why’ programme. That even shows the inner pair of a planet’s
quartet of spheres producing the loops in the path. Teachers with
special interests might borrow the B.B.C. model, or a 20-second
film of it in action. We do not recommend constructing one; and
certainly not buying one.

Simplicity in Theory. To make a good theory, we must have
basic principles or assumptions that are simple; and we must be
able to derive from them a scheme that fits the facts reasonably
closely. Both the usefulness of a theory and our aesthetic delight
in it depend on the simplicity of the principles as well as on the
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close fitting to facts. We also expect fruitfulness in making pre-
dictions, but that often comes with these two virtues of simplicity
and accuracy. To the Greek mind, and to many a scientific mind
today, a good theory is a simple one that can save all the phenomena
with precision.

Nowadays we also expect a good theory to provide language to
facilitate interchange and growth of understanding.

Is the Theory True? Questions to ask, in judging a good theory,
are, ‘Is it as simple as possible?’ and ‘Does it save the phenomena
as closely as possible?’ If we also ask, ‘Is it true?’ that is not quite
the right requirement. We could give a remarkably true story of a
planet’s motion by just reciting its locations from day to day
through the last 100 years; our account would be true, but so far
from simple, and so spineless, that we should call it just a list, not
a theory.} The earlier Greek pictures with real crystal spheres had
been like myths or tales for children — simple teaching from wise
men for simple people. But Eudoxus tried to devise a successful
machine that would express the actual motions and predict their
future. He probably considered his spheres geometrical construc-
tions, not real globes, so he had no difficulty in imagining several
dozen of them spinning smoothly within each other. He gave no
mechanism for maintaining the spins — one might picture them as
driven by gods or merely imagined by mathematicians.

Unless teachers or pupils have special interests, we do not suggest
giving a detailed account of Eudoxus’ machinery, because it would
take some time and is quite difficult. For those who would like to
know about it, here is a short account.

Details of Eudoxus’ Scheme. Here is how Eudoxus accounted
for the motion of a planet, with four spheres. The planet itself is
carried by the innermost, embedded at some place on the equator.

The outermost of the four spins round a north-south axle once in
24 hours, to account for the planet’s daily motion in common with
the stars.

The next inner sphere spins with its axle pivoted in the outermost
sphere and tilted 234° from the N-S direction, so that its equator
is the ecliptic path of the Sun and planets. This sphere revolves in
the planet’s own ‘year’ (the time the planet takes to travel round

¥ Young scientists are urged, nowadays, not to be satisfied with just collecting
specimens, or facts or formulae, lest they get stuck at the pre-Greek stage.
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ParT OF EUDOXUS’ SCHEME : FOUR SPHERES TO IMITATE THE MOTION OF A PLANET
The sketch shows machinery for one planet. The outermost sphere spins once in
twenty-four hours. The next inner sphere rotates once in the planet’s ‘year’. The
two innermost spheres spin with equal and opposite motions, once in our year, to
produce the planet’s epicycloid loops.

the Zodiac), so its motion accounts for the planet’s general motion
through the star pattern.} These two spheres are equivalent to
two spheres of the simple system, the outermost sphere of stars
that carried all the inner ones with it, and the planet’s own sphere.

The third and fourth spheres have equal and opposite spins about
axes inclined at a small angle to each other. The third sphere has its
axle pivoted in the Zodiac of the second, and the fourth carries the
planet itself embedded in the equator. Their motions combine to
add the irregular motion of stopping and backing to make the
planet follow a looped path. The complete picture of this three-
dimensional motion is difficult to visualize.}

 In terms of our view today, the spin of the outermost sphere corresponds to the
Earth’s daily rotation; the spin of the next sphere corresponds to the planet’s
own motion along its orbit round the Sun; the spins of the other two spheres
combine to show the effect of viewing from the Earth which moves yearly around
the Sun.

¥ Pupils keen on horses may be amused to hear the Greeks’ description of the
motion given to the planet by the innermost pair of spheres: the figure-of-eight
motion of a pony weaving a ‘bending’ exercise round two posts.
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A Good Theory. With 27 spheres in all, Eudoxus had a system
that imitated the observed motions quite well: he could save the
phenomena. The basis of his scheme was simple: perfect spheres,
all with the same centre at the Earth, spinning with unchanging
speeds. The mathematical work was far from simple: a master-
piece of geometry to work out the effect of four spinning motions
for each planet and choose the speeds and axes so that the resultant
motion fitted the facts. In a sense, Eudoxus used harmonic analysis

—in a three-dimensional form! - two thousand years before Fourier.

It was a good theory.

An Entirely Different Scheme: -Sun-in-Centre. Aristarchus
and a few other astronomers suggested a radically different scheme
— a spinning Earth to account for the daily motion, and a stationary
Sun, with the planets and the Earth travelling round it in circular
orbits.
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STARS ON FIXED SPHERE
AT INFINITY

ARISTARCHUS’ SCHEME
Only two specimen planets are shown. P, might be Mars, Jupiter or Saturn.
P, might be Mercury or Venus. (a) View of spheres. (b) Skeleton scheme showing
planetary orbits.

Models of Aristarchus’ Scheme. The contrast may be shown
by a simple model with an umbrella marked with a few stars. A
tiny Earth-globe is held near the crook of the umbrella’s handle, at
the centre of that star sphere. Spinning the umbrella, with the
Earth held still, shows the earlier scheme. Spinning the Earth
instead shows one aspect of Aristarchus’ scheme: the daily motion
made by a spinning Earth.

ARISTARCHUS’ SCHEME
Umbrella with stars to show a spinning Earth equivalent to spinning star sphere.
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The other aspect — the Earth making a yearly orbit round a fixed
Sun ~ may be shown by placing a ball to represent the Sun at
the crook of the umbrella’s handle, holding the small spinning
Earth a small distance out from the Sun and carrying it slowly
round the Sun. That is easier if the teacher dispenses with the
umbrella and just holds Sun and Earth in his hands, or places them
on a table. He must move the Earth round the Sun with its spin-
axis always pointing in the same direction ~ always pointing to the
same pole star on the starry sphere which is now stationary.

(A more elaborate model of the solar system (an orrery) could
be shown; but we advise teachers to keep that for the teaching of
Copernicus.)

(We could show, now, the models that explain how Copernicus
(and Aristarchus) accounted for the loops of a planet’s observed
motion; but we urge teachers to postpone those too.)

(A small planetarium could be constructed — a W.C. float with a
small lamp inside and holes pricked for stars; or a small projection
lantern with a slide of stars, on a turntable or with a rotating
mirror. That could be used to show the contrast; but there is
danger of confusion since the planetarium simply shows what we
see, the same whatever the explanatory scheme.)

Aristarchus’ Scheme Unpopular. This simple scheme, which
we now teach as true, failed to attract support. To the Greeks it was
unacceptable because:

1. It would displace the Earth from its obvious, important
position, Man at the centre of the Universe.

2. It involved motions that seemed impossible. Objects would
be flung off a spinning Earth, or left behind — when the clouds
and everything else obviously stay with the Earth. An Earth
hurtling along a vast orbit round the Sun would certainly leave
things behind, in hopeless contradiction to the observed facts.

3. The Earth moving round such a yearly orbit would travel
nearer to some stars and then farther away in the course of a year;
so the starry patterns should change their apparent proportions
and shapes by foreshortening, or by parallax motions. The
teacher should illustrate this by walking across the room, looking
at the seated class as he goes, and commenting on the changes of
the pattern of pupils that he sees as he moves nearer or farther
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away from a group. No such changes in the starry patterns were
observed. (Nor were any observed until the last century when
tiny parallaxes were measured and told us that stars though not
infinitely far away are so remote in comparison with the size of
the Earth’s orbit that the Greeks had no chance of observing
anything but an ‘infinitely’ remote heaven.)

Simpler Earth-in-Centre Schemes: ‘Wheels within Wheels’
and an Off-centre Viewpoint. Although Eudoxus’ model was
successful in summing up past knowledge and predicting future
positions fairly well, it had developed the simple set of spheres into
a complex arrangement which lacked the full appeal of simplicity as
an explanation. By the time of Hipparchus (about 140 B.C.),
astronomers were using simpler machinery. We shall describe it
with circles instead of spheres, though the Greek delight in spheres
survived in the original descriptions.

For the motion of the stars, there was the usual outermost sphere
revolving daily. For the yearly motion of the Sun, a radial arm
carried the Sun round a circular orbit at constant speed. To imitate
the slight variations in the Sun’s motion, which make our seasons
uneven, the Earth was placed a little way off centre so that observers
on the Earth are nearer the Sun in our winter and therefore see it
moving faster along its ecliptic path than in summer. This eccentric
placing of the Earth was chosen to fit the facts. A similar scheme
did fairly well for the Moon, though the eccentric shift for the
Moon’s circle was not in the same direction as the shift for the
Sun’s circle.

The Earth remains fized
at the center of the main
~ cirdle (deferent).
<
N
December Sun P
Seems to move Fiikie
faster through
star patiem B
Tue EccENTRIC SCHEME FOR THE SUN EpicycLE ScHEME

The Sun is carried around.a circular path by 4 radius
that rotates at constant speed, as in the simplest
system of spheres. The observer, on the Earth, is

off-center, so that he sees the Sun move unevenly—
as it does—faster in December, slower in June.
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For a planet the machinery consisted of a big circle and a small
circle (epicycle) carried round the circumference of the big circle.
A radius of the big circle revolved at constant speed, making one
revolution in the planet’s own ‘year’, e.g. twelve of our years for
Jupiter. The end of that radius carried the small sub-circle, whose
radius revolved once in each of our years and carried the planet
at its end. Combining these two motions we obtain a looped epi-
cycloid. An observer looking at that motion from the Earth near the
centre of the main circle would see the epicycloid very obliquely
and the scheme would imitate the observed motion of a planet very
well.

AR A
4

(parasey
ll\q.l:.!»_.«ugg_;,}} ;

MARING THE PATH OF A PLANET BY THE EPICYCLE SCHEME
This sketch shows how the two circular motions combine to produce the
epicycloid pattern that is observed for a planet.

(That is the story for the outer planets, Mars, Jupiter and Saturn.
The story for Mercury and Venus is somewhat different but has the
same essence.)

The Earth was fixed at the centre of the main circle, or, to explain
further discrepancies, a short distance off centre.

Here was simpler machinery that imitated the observed motions

more closely, and preserved some essential constancies: circles of
constant radius, arms rotating at constant speed.
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Simple Models for Epicycle and Eccentric Scheme. This is
simpler machinery and should be demonstrated simply.

Simple model for epicycle scheme. ‘Planet’ held in hand moves fast round small
circle, while hand sweeps slowly round large arc whose centre is fixed ‘Earth’.
a. Hand simply revolves round wrist.

5. Hand carries electric motor, or clockwork, to make planet revolve.

Simple model for eccentric scheme for ‘Sun’. Hand carries Sun’ round large
arc. ‘Earth’ held fixed, a small distance off centre of arc. Elastic thread joining B
and S shows speed changing with seasons.

Mode! of epicycloid scheme using 2 ball on a record-player on large turntable.
The ball may be replaced by a small lamp lit by battery.

The teacher uses his own arms. He holds a large ball in one hand to
represent the fixed Earth. In the other hand he holds a small ball,
representing a planet, and sweeps his outstretched arm slowly
round an arc whose centre is at the fixed Earth. The small, fast,

circular motion (for the ‘epicycle’) is made by:
a. revolving the hand, flexibly, round the wrist, or

b. carrying an electric motor with the planet on an arm attached
to its axle, or

¢. carrying clockwork with an arm, as in (b) (e.g. an old clock
with the escapement removed).

Or the scheme for a planet’s motion can be shown by a ball (or
lamp) on a record-player placed on a large turntable. The record-
player should be tilted a little so that its axis makes a small angle

with the axis of the turntable.
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The motion of the Sun, as seen from an eccentric Earth, is demon-
strated by the teacher sweeping a ball representing the Sun round
with outstretched arm. He holds a large ball (Earth) a noticeable
distance away from the centre of the Sun’s arc. An elastic thread
may be tied between Earth and Sun. Watching the thread, pupils
can see how the Sun’s apparent speed must change through the
seasons if the Earth is off-centre.

(It would be easy to construct a professional model with two electric
motors and balanced arms and a sliding sight-line - an unwelcome
elaboration. Such complicated demonstration models should not
be bought; and they are not worth censtructing for teaching with
our present aims. See the Note, in the Preface to this Year, which
gives a warning about models.)

E = Earth (fixed)
C ~ Conter of circe
Q- Eagant

Qg = CE

THE PTOLEMAIC SCHEME
This system imitated the motions of Sun, Moon, and planets very accurately.

Ptolemy’s Successful Machinery. Ptolemy, about A.p. 120,
modified the scheme of circles and sub-circles into a tremendously
successful scheme, a brilliant mathematical machine. His great
book, the Almagest, remained the authority for describing and
predicting the motions of Sun, Moon and planets for fourteen
centuries.

If teachers or pupils are amused by the extra shifts that Ptolemy
had to make to produce his very successful machine, a short
description should be given. Otherwise, we should either leave the
machinery at the stage described above, or simply state very briefly
what Ptolemy did, saying that he devised his scheme to make it fit.
But in giving any description of Ptolemy’s scheme, however short,
we must emphasize his constancies. Like any good scientific theory,
it had essential constancies.
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Ptolemy used a main circle with the Earth fixed near its centre, but
he did not make the radius of that circle revolve at constant rate.
Instead, he made another arm, the arm from an ‘equant point’,
revolve at constant rate. The Earth was fixed a short distance from
the centre of the circle on one side. The equant point, Q, was
placed an equal distance off-centre on the opposite side. An arm
ran from equant to the centre of the sub-circle that was carried
round the main circle. (Since that arm changes length, we must, if
we wish to imagine detailed machinery, think of it as sliding through
some knob out there.)

The radius from the centre of the main circle was still there to
maintain constant distance to the circumference.

The arm of the small sub-circle revolved at constant rate carrying
the planet, as in the earlier scheme. The plane of the sub-circle was
tilted out from the plane of the main circle.

Thus, to fit the facts, Ptolemy had many variables that he could
choose: the ratio of radii sub-circle to main circle; the constant
speed at which the arm from the equant revolved; the constant
speed at which the radius of the sub-circle revolved; the tilt of the
sub-circle’s plane; the eccentric distance of the Earth (equal to the
eccentric distance of Q); and the direction of that shift of the Earth
out from the centre. Ptolemy had to choose the ratio of radii rather
than two separate radii, since his machine only predicted the
direction of a planet’s position seen among the stars. For that, his
machinery was remarkably successful.

The scheme preserved the characteristics of a good, working
theory; the main circle had constant radius, the arm from the
equant revolved with constant speed, the Earth was in a constant
position and a constant distance off-centre; the radius of the sub-
circle revolved with constant speed.

No ‘ultimate cause’ was given for this machinery or its motions.
Planetary motions were presumably started by gods and perhaps
maintained by gods; and there was no link between them and the
motions observed on Earth.

The planets were just bright stars moving in the starry pattern.
Their real distances were unknown and no one knew whether they
were much nearer to us than the stars, or even which ones were
nearer than others. Ptolemy’s system could place Jupiter nearer than
Mars, or Mars nearer than Jupiter, equally easily.
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However, since Jupiter moves backward through the star pattern
so much slower than Mars, astronomers guessed that Jupiter is
much farther away, just as we guess relative distances of cows,
trees, etc., seen from a moving train. In fact the order of planetary
distances guessed at by the Greeks agreed with what we know
today; but they had neither an experimental reason for it nor any
idea of the proportions within that order.

If teachers like to form a composite picture with overlays of trans-
parent sheets, they can easily convince pupils that even the clear,
clever Ptolemaic system was complicated enough to make a head-
ache. :

‘THE PTOLEMAIC SCHEME for the Sun, S, and two planets, P and P’.
THIS IS THE COMPOSITE PICTURE THAT THE SEPARATE SHEETS (SHOWN OPPOSITE) WILL
PRODUCE WHEN SUPERPOSED.
(The two small rings at the top show the locating holes in each transparent sheet.)
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(Apart from that flat picture, with its special purpose, Ptolemy’s
refinements are too difficult to show by a simple model. If pupils
have understood the previous stage — the epicycle and eccentric
scheme — a blackboard drawing will do best for the new modifica-
tion. A sound mechanical model could be manufactured, with two
electric motors and arms that revolve and slide — though there are
difficulties in arranging the supports so that they do not obstruct
each other. Such a model would be expensive and fascinating; but
it would 7ot be a good aid in our present teaching.)

Y%

it - v

These are successive diagrams, to be sketched on transparent sheets and hung
one in front of another on a translucent screen illuminated from behind. As these
stages are added, they build up the picture shown on the opposite page. The two
holes at the top fit on pegs in the frame of the screen, so that each stage is located
correctly on the rest: I, I41I, I+ X1+ 11T, I+ 114 III41IV.
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Thus, Ptolemy had a magnificent scheme of circles, arms, sub-
circles and arms, which could reproduce the heavenly motions so
accurately that it could be trusted to predict the positions of Sun,
Moon and planets for century after century. In fact it continued in
use, with occasional corrections, for more than a dozen centuries.
And for practical purposes, navigators and astronomers would use
a scheme of that form today. It was neither stupid nor clumsy, it
was very clever and accurate, a successful machine.

The only things we could say against it now are that it did not offer
to link the heavenly phenomena with anything else we know in
science; and that as machinery it seemed quite complicated.
Pupils learning about the Ptolemaic system should not be taught
to despise it but if they develop a headache over its complexity we
might consider that a good preparation for the simplification by
Copernicus.

Greek Measurements

Meanwhile, before Hipparchus and Ptolemy perfected the
machinery of rotating arms on eccentric circles, Greek astronomers
at the university at Alexandria made a great advance in scientific
knowledge by making real measurements of distances. They esti-
mated the size of the Earth — which was known in those days to be a
sphere. They estimated the distance, and therefore the size, of the
Moon by an ingenious method based on eclipse shadows. And
they attempted a rough estimate of the distance of the Sun. Such
measurements brought the purely pictorial mathematics of the sky
into the realm of measured science.

Those Greek measurements remained in use by astronomers for
centuries. They were simple; and we should teach them if time
permits, not just to add information about methods of measure-
ment, but because they show how mankind learnt the real size of
local space long ago.

The Size of the Earth. The first measurement to be made was

the size of the Earth itself, and the other measurements emerged in
terms of the Earth’s radius.
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S
How ERATOSTHENES ESTIMATED THE SIZE OF THE EARTH

Eratosthenes (about 240 B.C.) made one of the early estimates. He
compared the direction of the local vertical with parallel beams of
sunlight at two stations a measured distance apart. He assumed
that the Sun is so remote that all sunbeams reaching the Earth at
any instant are practically parallel.

He needed simultaneous observations at two stations far apart.
Good clocks that could be compared and transported were not
available. So he obtained simultaneity by choosing noon (highest
Sun) on the same day at stations in the same longitude. He used
observations at Alexandria, where he worked, and at Syene,} 500
miles farther south. The essential observation at Syene was this:
at noon on midsummer day, 22 June, sunbeams falling on a deep
well there reach the water and are reflected up again. Eratosthenes
knew this from library information. Therefore the noonday Sun
must be vertically overhead at Syene on that day. At noon on the
same day of the year, he measured the shadow of a tall obelisk at
Alexandria and found that the Sun’s rays made 7%° with the verti-
cal. He assumed that all sunbeams reaching the Earth are parallel.
So it was the vertical (the Earth’s radius) that had different direc-
tions. Therefore the Earth’s radii to Alexandria and Syene make
7%° at the centre. Then, if 500 miles of Earth’s circumference
subtended 73°, what length would subtend 360°?

Measuring the 500 miles separation was hard — probably a military
measurement done by professional pacers. There is doubt about
the units he used, but some say his error was less than 5 per cent -
a remarkable success for this early simple attempt. He also guessed
at the distances of Sun and Moon.

} Modern name: Aswan, where the great dam has been built on the Nile.
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If that measurement, carried out with such skill long ago, catches
pupils’ fancy, well and good. But, if a class merely finds it old and
dull, the teacher should not labour it. He should mention it and
then go straight on to other things.

A School Measurement., A demonstration that would bring this
to life is a measurement of the Earth’s radius today, conducted by
two schools far apart, more or less on a north-south line.

Suppose a school in London and a school in Newcastle arrange to
co-operate in observing the direction of sunlight at a particular
instant. They should agree on time and day. They should choose
noon, if possible, because shadows are at a minimum then so change
little in the course of a few minutes. (Also, with the Sun highest in
the heavens the subsequent calculations or drawings feel more
comfortable.) Each school sets up a pole of known height, say 10
feet. The pole must be vertical, as shown by a plumb line; or at
least the point on the ground vertically below must be clearly
marked. The shadow of that pole is measured. It is not necessary
to have the same height of pole at both stations. The shadow of a
building could be used instead, provided the height is known and
the shadow falls on horizontal ground. Then, having prearranged
the day, the schools communicate by telephone at noon:

‘Have you got bright sunlight there? Is the shadow sharp? ...
Is it on horizontal ground? ...

‘How tall is your pole? ... (the same questions in the other
direction) ...

‘It is nearly noon. Are you ready? ...

“The shadow of our 10-foot pole is 12 feet long. What’s yours?

‘Oh, our 10-foot pole casts a shadow 11 feet long.’
Of course, that can be done by postcard correspondence, but
a telephone call is much more romantic and may be well worth the
cost, because it emphasizes the necessary condition of simultaneous
observations. (On S.T.D. 34 will suffice to find out if the Sun is
shining at both stations.)
Then the class must know the north-south distance between the

stations, measured along the surface of the Earth. If we asked
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professional surveyors to find the distance between two stations
thousands of miles apart, we might find them nowadays reversing
Eratosthenes’ measurement and estimating it by Sun or star
heights and the known size of the Earth — and that could be un-
fortunate for the logic of this experiment.

The simplest source of this information is a map. If we use that,
we certainly must not find the distance from latitude angles from it.
Those are placed on a map from a knowledge of the Earth’s size -
we should be assuming what we want to measure! Pupils can
imagine the London-to-Newcastle distance being measured
directly by a road surveyor with his wheel, walking the distance, or
less precisely, a car driving the distance. To obtain the actual value
for use, they may take the distance in miles (but not in degrees)
from a map; but they will probably feel that it is more realistic
to take the distance from the ABC timetable, which gives the rail
distance and the fares.

In our (fictiious) example above, pupils and teacher would then
use trigonometry or a graphical method to find the radius of the
Earth.

To use trigonometry, we sketch the Earth as if we already knew its
size, then continue the line of the vertical pole at each station down
into the Earth, as a radius. On the sketch we see those radii meeting
at the centre of the Earth, making a small angle. The slanting lines
of sunlight are parallel (assuming the Sun infinitely distant). We
complete the observation-triangles on the sketch, making a right
angle at the base of the pole at each station. Then pupils who are
competent at geometry will find that the angle at the centre of the
Earth between the radii is equal to the difference of the angles at
the two stations between base line and sunlight. They calculate
those angles by saying,

tan [base angle] = [pole-height]/[shadow length]

They calculate the tangents, the angles, the difference of angle.
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Unless pupils are confident and clear with that method, it will be
better to do it by drawing two triangles to scale. We first show a
sketch of the Earth with the triangles at the two stations. We draw
those triangles larger. Then, pointing out that the Sun’s rays have
the same direction at both we place one triangle on the other, with
the tops of the poles coincident and the rays of sunlight through
them coincident. Pupils draw a scale picture of the two superposed
triangles and measure the angle between the two lines that repre-
sent the vertical poles.

The angle at the centre of the Earth will be small. For example, for
stations in London and Newcastle it will be about 31°. Then we
argue that the measured distance, say 250 miles, corresponds to
that angle, say 34°; and we ask the value of the circumference of the
Earth corresponding to 360°. Thence, we estimate the Earth’s
radius.

This is not an essential demonstration. If time is short, or pupils
do not show much interest, it should be omitted. But we hope that
many classes will find it exciting.

Size and Distance for Moon or Sun. We ask pupils how they
could tell the size of the Moon if they knew its distance. We
suggest each pupil should try holding a coin at arm’s length and
finding the distance at which it just blots out the full Moon. The
answer will be about 110 coin distances. Therefore, the Moon’s
distance is about 110 Moon-diameters.

136

*

c47



. g3y : 9seq
J0¥ QIT: 1 Inoqe jo uonsodoxd ' 2a18 $9[qel AX19WOUOSMIL I0 SIUIUIAINSBIW
‘yueg 18 ¢ noge pusigns UYOBd UOOW PUB UNS SY1 MOUS SIUIWSINSBIW
*2]D2s 0 UMP4p UOO PUEB UNS JO IZIS IgMBUB, 911 SMOYS (g) §OI9YS *9eds 03 70U SI
() yo193g *90UBISIP IO IZIS 9INJOSCE SN [[21 10U S0P SHJ ], "SOUEBISIP PIINSEBIW B
uroo panseswr Surp[oy Aq punoj 9q ued AONVISI(] ANV HZIS NAZMIAG NOILVTIEY

hurting eyes). The answer is almost exactly the same. That is

why the Moon can only just make total eclipses of the Sun.
We use this proportion, 110 to 1, in our estimate of the Moon’s

A similar estimate can be made for the Sun (with care to avoid
distance.
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Distance of Moon. This is not a measurement that pupils can
make, but we should tell them briefly how the Greeks carried it
out.

Later measurements have been made by standard surveying
methods, with telescopes sighting a point on the Moon from
stations a large distance apart; but the Greeks made an early
estimate by means of eclipses.

We show a diagram of the Earth’s shadow in an eclipse of the
Moon. The usual sketches in books exaggerate the size of Earth
and Moon and fail to show how unlikely an eclipse is. (See sketches
on page 99.)

(a)
bighr rays
upper '@‘J;‘TM

—_—

Lighe rays from
fower edge of Sun

EArRLY GREEK MEASUREMENT OF SIZE OF THE MOON
(AND THEREFORE ITS DISTANCE)

Observations of eclipses showed that the width of the Earth’s shadow at the Moon
is 2:5 Moon-diameters. However, the Earth’s shadow narrows as its distance
from Earth increases because the Sun is not a point-source, Since the Moon’s
shadow almost dies out in the Moon-Earth distance, the Earth’s shadow must
narrow by the same amount — one Moon-diameter — in the same distance. Then
Earth-diameter must be 3-5 Moon-diameters.

We point out that, since the Sun and Moon each have an apparent
diameter of about % a degree, the full shadow of the Moon only
just reaches the Earth. It tapers almost to a point at the Earth;
so we only just see total eclipses of the Sun. The Earth’s shadow
tapers with the same angle from Earth to Moon; therefore, it also
narrows by one Moon-diameter in that distance.

By watching the passage of the Moon through the Earth’s shadow
in an eclipse, astronomers estimated the width of that shadow in
Moon-diameters: about 2}. However, that does not give the full
diameter of the Earth because the shadow tapers, since it is cast
by the large Sun which is about 4° in diameter.
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So the shadow of the Earth must be 23 +1, or 3} Moon-diameters
wide. Therefore, the Earth’s diameter is 3} times the Moon’s
diameter. Therefore, the Moon’s diameter is 2 of the Earth’s
diameter, and the Moon’s distance is 110 x 2 Earth-diameters, or
just over 60 Earth’s radii, some 240,000 miles.

Pupils’ Estimate from Eclipse Photo. The cleverness of
estimating the Moon’s distance by the Earth’s shadow is not likely
to appeal to pupils unless they can do it themselves. From time to
time, there are announcements in the papers of an eclipse of the
Moon which give the time it starts and ends. But those will not
yield a good estimate unless they are the stages of a total eclipse.
(Also, the predicted times are calculated from a knowledge of the
distance we are trying to measure.)

However, a rough estimate could be made from a photograph of a
partial eclipse. Best of all, pupils take a photo themselves. Second
best, we supply a printed photograph and ask pupils to estimate
the proportion between the Moon’s radius and the radms of the
shadow-bite on the Moon.

ro_ Moon-diameter
R Earth-diameter —one Moon-diameter

Sun’s Distance. The earliest guesses placed the Sun absurdly
close to the Earth and therefore supposed it quite small. Greek
astronomers made a clever attempt, as follows, and its very
inaccurate result remained in use for a long time,
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Sun’s DISTANCE
Early Greek estimate of the Sun’s distance from the Earth, in terms of the
Moon’s known distance. Greek astronomers tried to measure the angle x (or
SEM), which is itself nearly 90°.

When the Moon seems to be exactly at half-moon to an observer
on the Earth, the directions from the Moon to Sun and to Earth
must, make 90°. If observers know the directions of the Sun and
Moon at that instant, they have data for a vast right-angled triangle
with a right angle at the Moon and an angle almost 90° at the Earth.

It is very difficult to fix that exact instant, so the Greek estimate of
87° was far from right. It yielded, by simple geometry, the result
that the Sun is 20 times as far away as the Moon. We now know the
ratio is about 400.

That was a valiant attempt. We shall meet the method again in
Copernicus’ estimate of the size of Venus’ orbit.

‘Dark Ages’

For a dozen centuries astronomy was taught with the authority of
books and careful adherence to the Ptolemaic system. It was part
of the general teaching of mathematics that was given to church
scholars; and it was kept alive by the need to train navigators and
by strong superstitious interest in astrology. The intellectual world
was occupied with other matters, and astronomy was largely
taught without question. From time to time the Ptolemaic
machinery was endowed with new radii and modified periods of
rotation to bring it into still better gear with observations.

THE COPERNICAN REVOLUTION: A SIMPLER SCHEME
Copernicus (1473-1543) was brought up by his uncle to be a
church administrator; but at an early stage he developed an intense
interest in bringing the heavenly system into a simpler scheme,
which he thought would be to the greater glory of God — the
Ptolemaic system with its artificial equants seemed to him too
clumsy to be God’s best choice. He believed that the planetary
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system, spheres and all, was a divine creation; but he believed God’s
arrangement would be a simple one, all the more splendid for
great simplicity. He collected together observations of the planets
in more reliable tables than had so far been available; and in
thinking about the planetary motions he was struck by the sim-
plicity that would come from changing to a system with the Sun
at the centre of the universe. This model had been suggested by a
few Greek philosophers but it was unpopular and soon forgotten.
Copernicus’ development was far more powerful because he built
into it a system of measurements. As a careful, quiet, contemplative
monk, with a great love of truth, he spent his lifetime perfecting
his scheme and was not willing to publish it - apart from talks with
visiting pupils — until near the end of his life. He believed that a
simpler scheme, such as he suggested, was all to the glory of God;
and he fervently believed that his scheme was true.

Copernicus assumed that the Earth spins daily, and that accounted
for the daily motion of stars, Sun, Moon and planets. He assumed
that the Earth travels round a central fixed Sun in a yearly orbit.
In making the change from the Ptolemaic system he moved the
Earth out of its grand central position and made it an ordinary
planet like the rest. That was a tremendous change of viewpoint
which horrified people when, later on, they came to understand it.

Copernicus pictured all the planets moving in circular orbits
around a fixed Sun. He made the Earth travel once around the Sun
in a year, spinning once in 24 hours as it goes. The “fixed stars’
and the Sun could then remain at rest in the sky.

This scheme replaced Ptolemy’s epicycles and equants with
simpler circular motions. The daily motion of the stars, carrying
Sun, Moon, and planets as well, could obviously be replaced by a
daily spinning Earth. That alternative had often been discussed,
but had been turned down because the critics did not understand
the mechanics of motion. (They claimed that there would be a
howling wind of air left behind, and that the ground would outstrip
a stone dropped from a high tower. On the other hand, the stars,
etc., could well be carried around by Prolemy’s spheres because
spheres and rotations were ‘natural’ in the heavenly region.)

The slower, irregular motions of Sun and planets through the
star pattern were simplified by a scheme of circular motions around
the Sun.

This was Copernicus’ main contribution: to stop the Sun and
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place it at the centre of the planetary system. Then the Sun’s
yearly motion around the ecliptic was only an apparent one due to
the Earth’s yearly motion around the Sun.

The complex epicycloid of a planet was simply a compound of
the planet’s own motion around a circle and the Earth’s yearly
motion. (On this view, the epicycloid picture is making us pay
for ignoring the Earth’s motion.)

CoPERNICUS’ EXPLANATION OF PLANETARY EPICYCLOIDS
The lines E,J;, E,J,, etc., are sight-lines from positions of the Earth every two
months through Jupiter’s position towards the stars.

(b) More stages sketched.
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= orbit of Jupiler

(¢) Many stages sketched. The sight-line EJ wags up and down in a complicated
way. :

COPERNICUS’ EXPLANATION
The apparent positions of Jupiter in the background of fixed stars. This shows
F1G. (c) redrawn on a much more condensed scale with the sight-lines from
Earth to Jupiter continued on out to the stars (e.g. the line to J,* here is con-
tinuation of EJ,). The specimen sight-lines are drawn parallel to the correspond-
ing ones in F16. (¢).
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Looped Paths of Planets. He explained that the looped pattern
of planetary motion through the stars is produced by combining
the simple motion of the planet in a circular orbit round the Sun
with Earth’s simple motion in its orbit around the Sun. The loops
are due to the Earth’s motion — we are observing a simple circular
motion from an Earth that is itself making circles.

His detailed explanation of a planet’s epicycloid ran like this.
Suppose the Earth travels around a circular orbit and Jupiter more
slowly around a bigger orbit, both with the Sun at the centre. The
fixed stars must be much farther away, because no parallax-shifts
are observed. Then in marking the position of Jupiter among the
fixed stars we look along a sight-line running from Earth to Jupiter
and on, far beyond, to the pattern of the stars. As the Earth sweeps
round and round its orbit and Jupiter crawls more slowly, this
sight-line wags to and fro as it goes around, marking an epicycloid
among the stars. When the Earth is at E,, Jupiter is at J,, and an
observer looking along the sight-line E,J, sees Jupiter among the

stars at J7. As the Earth travels from E, to E, to E;, E,; E;;, Eqs
etc., Jupiter travels steadily but slowly forward from J,; to J,to J5,

Ts Js» Je» etc. Then the observer on E sees J* in directions that
swing mostly forwards but sometimes backwards. To see this, look
at the sketch (d) condensed to a small scale with the sight-lines con-~
tinued out to a remote background of stars.

In thus ‘explaining’ the looped motion of planets, Copernicus
offered astronomers a tremendous simplification. Nevertheless,
people constructing tables for navigation are still dealing with the
planets as seen from the Earth, and are likely to use Ptolemaic
machinery and neglect the Copernican simplification.

Nor will our pupils welcome the simplification as tremendously
important, unless we have managed to convey the historical
development through Greek astronomy with special enthusiasm.
They will just think we are at last admitting the obvious story. So
we should not labour the explanation with the diagrams given here
— these are provided only for the interest of teachers. Instead, we
should show a simple model, run by student or teacher, as follows.

The demonstrator makes ‘a mark in the middle of his chest to
represent the central Sun. He moves his right hand rapidly round
that ‘Sun’ in a small circle of radius 8 or 10 inches. That hand
represents the Earth.
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He stretches his Jeft arm out fully, to represent the orbit radius of
another planet, say Jupiter. He moves his left hand, representing
Jupiter, more slowly round the larger circle with the Sun at centre.

34* /bjf%‘
s

To show where Jupiter will be seen among the stafs which are
much farther away, the demonstrator carries a light wooden pole as
‘sight-line’ from Earth to Jupiter. He holds one end of the pole
- in his right hand (Earth), letting the pole run loosely through a

ring made by finger and thumb of his left hand and on out beyond
to the ‘stars’ imagined to be on the walls and ceiling of the room.

As the “Earth’ goes quickly round its orbit and ‘ Jupiter’ moves
more slowly, the pole wags to and fro as well as making general
progress across the sky. Pupils will see how the epicycloid pattern
is produced.

(More elaborate models with an electric torch on the pole have
been tried; but they are apt to add confusion rather than clarity.
This is a demonstration in which intelligent imagination should
play a part. More elaborate models can be constructed with a
large turntable carrying a record-player turntable, but these require
considerable planning and construction to avoid their showing the
wrong thing. We do not recommend them for this.)

Copernicus accounted for the epicycloids of Mars, Jupiter, and
Saturn by making them move around large circular orbits outside
the Earth’s orbit. He made Venus and Mercury move around
smaller orbits, nearer the Sun than the Earth’s. This accounted for
their observed behaviour — they keep close to the Sun and swing

FOoK X X X ® K K X ¥ ¥ % ¥
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to and fro each side of it. Thus the same scheme served for both the
‘inner’ planets and the ‘outer’ ones.

Copernicus did not just offer an alternative that looked simpler;
he extracted new information from his scheme: the order and sizes
of the planetary orbits, a remarkable advance contributed by theory.
In the Ptolemaic scheme the main circles could be chosen with any
sizes — it did not even matter which planet was put outermost. In
fact, Ptolemy was just drawing patterns on the celestial sphere,
with a mathematical machine, to fit the observations. In the
Sun-in-centre scheme, the orbits must be in a definite order and
must have definite proportions. From the planets’ apparent motions
in the sky it was obvious to Copernicus whose orbits were largest
and whose least. The order must be as follows.

SUN, stationary at the centre

Mercury, nearest the Sun

Venus

Earth, with the Moon travellmg round it
Mars

Jupiter

Saturn, farthest of the planets then known.

A chart to be posted up would be useful.

— ——,

—
— ~
P Saturn ~
7~ N

/
\3’/ /
—

COPERNICUS’ PLANETARY SYSTEM
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Orrery? If the school has a mechanical model of the solar system,
an orrery, it should certainly be shown. But one should not be
bought. They are expensive toys that do not teach as much as one
expects. But making a simple one is profitable. If pupils or teacher
like to construct a model it will be worth while. Ingenious gears are
not necessary: here again it is the idea of the scheme that we are
trying to show. An informal model in which each planet is carried
round by a pupil can be a great success.

Sizes of Orbits. Treating the orbits as simple circles, Copernicus
calculated their relative radii from available observations; he could
thus plot a fairly accurate scale map of the system. To obtain the
actual radii from these relative values, he needed an absolute
measurement of any one of them, say the distance from Sun to
Earth. This was known only roughly, so the absolute size of his
scale model was unreliable.

Estimating Orbits. To see how he calculated relative radii,
suppose you are attacking the problem for an inner planet, say
Venus. Venus, nearer the Sun than the Earth, travels in a smail
orbit round the Sun. This circle is seen practically edge-on from
the Earth; so Venus seems to swing to and fro in front of the Sun
or behind it, travelling only a small way each side of the Sun before
it turns back. Thus it is seen only near the Sun as a morning or
evening ‘star’.

- \Oz O 1
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[ \\\:\”’/7 \e)\\\
\ ;//’///n\\\\\\: I 3;_/ ‘ 3
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view

PHASES OF VENUS, AS SEEN FROM THE EARTH

When Venus seems farthest to one side of the Sun, just about to
turn back, it must be at a point such as C lying on a tangent from
the Earth to its orbit. In positions A, B, D, ... etc., it would seem
nearer the Sun. This tangent is perpendicular to the radius, SC,
of the orbit. So the triangle ECS has a right angle at C and an angle
at E that can be measured by sighting from the Earth.
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EsTIMATING RELATIVE RADII OF ORBITS
Venus is shown farthest from the sun.

Copernicus knew the angle SEC from observations, about 46°,
Then he knew the proportion
SC _ Radius of Venus’ orbit
SE  Radius of Earth’s orbit

Pupils could be given the argument and the measured angle, 46°,
and asked to find that ratio by trigonometry or by drawing to scale.

was sin 46°, about 72/100.

Copernicus had measurements which gave him this angle, and he
performed this calculation for Venus and Mercury. For the outer
planets the argument and the geometry are rather more compli-
cated, but Copernicus calculated the relative sizes of their orbits in
much the same way. He could draw a scale diagram of the solar
system, placing the planets in the right order at the right relative
distances. In that way, Copernicus’ theory gave much fuller
knowledge of the heavenly system than the Ptolemaic machine,
which offered no such details. However, the new knowledge was
only yielded by the new theory in terms of the theory’s own assump-
tions. The same holds in modern models of atoms ; the information
we extract is only evolved in terms of the pattern we have chosen;
and we should remember that.

Copernicus could draw a scale map of the orbits and place the
planets correctly in them at some chosen starting time. To predict
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their positions at other times he needed to know each planet’s
‘year’, the time it takes to travel round its orbit. These ‘years’, or
times of revolution, he found from recorded obsérvations. Essen-
tially, he found how long the planet took to get back to the same
place among the stars.

Using recorded data, Copernicus- placed the planets on his scale
map and predicted their positions at other times, past and future.
He could check the past ones, and thus test his ¢ picture’, or ‘theory’
as we should now call it. These tests were encouraging, but there
were some disagreements which led, through long careful calcula-
tions, to modifications of the simple picture.

Copernicus had to introduce some sub-circles and eccentric
positions to make his solar system agree with the facts. Some
modern critics suggest that in the end Copernicus’ system was
almost as complicated as the Ptolemaic one: but they forget that
Copernicus’ extra circles were small additions, while the Ptolemaic
ones were essential parts of the machinery. Copernicus did make
a great simplification of thinking.

Copernicus gave other points in support of his theory: he showed
that the changes of brightness of planets and the placing of the
loops in their motion agreed with his model.

Precession. As a crowning virtue of s1mphc1ty, Copernicus gave
a new interpretation of the precession of the equinoxes. Precession,
as discovered by the Greeks, was described as the whole star
system (and the Sun) crawling slowly around the axis of the
ecliptic, while the Earth and its equator plane and N-S axis stayed
still. Copernicus reversed the description, saying the Sun and its
ecliptic plane stay fixed; that is, the plane of the Earth’s orbit stays
fizxed. And the Earth’s equator-plane (and celestial equator) swings
slowly around, always tilted 23}° to the ecliptic.

Then Copernicus could describe precession simply: the Earth’s
spin-axis has a slow conical movement; carrying the equator-plane,
it gyrates around a cone of angle 234° in 26,000 years.

Though Copernicus gave this clear picture of what happens in the
precession of the equinoxes, he had no idea what ‘caused’ it.
He gave no reason for that motion any more than he gave a reason
for the motions of the planets which he described so simply. That
problem had to wait for Newton, who showed that, like so many
astronomical phenomena, it is a result of universal gravitation.
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THE PRECESSION OF THE EQUINOXES

Sketch of a large patch of Northern sky (about 90° by 90°), showing the slow
movement of the celestial North Pole among the stars. The point where the
Earth’s spin-axis cuts the pattern of the stars moves slowly around a roughly
circular path making one revolution in about 26,000 years. (After Sir Robert
Ball.)
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We should show this picture of precession with the help of an
ordinary Earth globe. We place the globe on the table, with
its spm axis making about 234° with the vertical. Keeping the globe
spinning, we move it round a large circular orbit on the table, with
a fixed Sun in the centre, keeping the spin axis pointing in a con-
stant direction.

Then, having established that picture of the Earth’s yearly motion,
we show precession by making the spin axis revolve very slowly
round an axis perpendicular to the Earth’s orbit. To do that, we
simply turn the whole globe, stand and all, round a vertical axis,
by hand - and, doing that slowly, we keep the globe spinning fast
and move it at medium speed round the yearly orbit on the table.
That conical motion takes, in fact, 26,000 years.

Copernicus was at last persuaded to write his scheme in a great
book, and the book was published at the very end of his life.

(This is one of the few great books in the history of science of
which we have the original manuscript. A photographic copy of
Copernicus’ original writing, with ink blots and correcuons, has
been published recently.)

The Explosive Effect of Copernicus’ Book. When it first
appeared, the book was read by astronomers but in its formal Latin
it was not read by educated people in general, so the new scheme
did not have its full impact for some time. Galileo, born some years
after Copernicus’ death, expounded the scheme and put forth
winning arguments for it in popular, rolling Italian. That was a
bombshell, because educated readers far and wide enjoyed it,
understood it, and realized that the Copernican system had made
the Earth common and ordinary, ‘just a planet’, and had left the
stars fixed in space, at any assortment of great distances, with no
place for Heaven.

That was disturbing, both to man’s picture of Heaven and to
the teaching of Church authorities. No wonder Galileo got into
trouble for insisting so loudly and clearly that the Copernican
system is true.
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COMPARISON OF SIMPLE PTOLEMAIC SCHEME AND SIMPLE COPERNICAN SCHEME

ProLEMAIC SYSTEM, sketched without eccentricity or equants. Order and
proportions of orbits not determinate, Epicycle radii not ‘to scale’.

Satwmn

COPERNICAN SYSTEM, sketched without eccentricity or minor epicycles.
Orbit proportions, which are determinate, are roughly to scale.
(Moon’s orbit out of scale.)

TYCHO BRAHE, THE AMAZING OBSERVER

Tycho Brahe (1546-1601) was a Danish nobleman who, in his
early school days, developed a passion for accurate astronomical
observation. He was delighted by the way in which astronomers
could predict an eclipse. But then he was disappointed at the in-
accuracy of predictions for the close ‘conjunction’ of Jupiter and
Saturn - an important astrological event. He determined to spend
his life making such accurate and systematic observations that
astronomers could not only make good predictions but would also
know which model of the heavens fitted best. In that, he was to
provide the precise measurements of planetary motions which were
essential to Kepler.

At an early stage Tycho realized that the old practice of collecting
and using chance observations did not suffice. Systematic observa-
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tions and records were essential. He also realized that, to obtain
great precision, he must make robust instruments and then cali-
brate them, making tables of their errors, rather than strive for an
instrument that was ‘perfectly accurate’.

Using royal endowments and his own fortune, he built a magnifi-
~ cent palace as an observatory on an island off Copenhagen. He
spent 20 years there, building a tremendous record of accurate
observations, all made with naked eyes (telescopes had not been

invented), using instruments which he designed and constructed in -

the workshops of his palace. Students came from far across Europe
to work with him; and he drove them hard to make observations
and reduce them to records, cross-checking between one observer
and another and one instrument and another.

When he died Tycho left a magnificent record of the motions of the
planets and of Sun and Moon, recorded against the star pattern.
He was a magnificent observer but not a strong theorist. He left
to his pupil, Kepler, the making and testing of theories with those
records.

In our present teaching we need not go into the history of Tycho
Brahe and his work; but pupils should know that there was a great
observer who provided such good records that Kepler could
disentangle his laws of motion for the planets. Since the planetary
orbits are almost circles, and the motions of planets along them
almost uniform, Kepler’s achievement depended on very precise
measurements which he could trust.

KEPLER, ‘THE LAW-GIVER OF THE HEAVENS’

Kepler (1571-1630) was a brilliant mathematical speculator,
fascinated with the problems of astronomy, determined to extract
the laws which he believed God had hidden for him to discover.

Kepler and Tycho form a strange contrast. Tycho, ‘rich, noble,
vigorous, passionate, strong in mechanical ingenuity and experi-
mental skill, but not above the average in theoretical power and
mathematical skill’; and Kepler, ‘poor, sickly, devoid of experi-
‘mental gifts, and unfitted by nature for accurate observation, but
strong almost beyond competition in speculative subtlety and
innate mathematical perception’. Tycho’s work was well supported
by royalty, at one time magnificently endowed; Kepler’s material
life was largely one of poverty and misfortune. They had in com-
mon a profound interest in astronomy and a consuming determina-
tion in pursuing that interest.
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The story of Kepler’s life is interesting, showing a poor boy with
poor health, struggling as a Protestant in a largely Roman Catholic
world, emerging from the university with philosophy and religion
his chief interests. He was offered a post to teach mathematics and
astronomy and accepted it unwillingly, saying he should be pro-
vided for in some more brilliant profession. Once started, however,
he threw himself into a study of the planets and, as he said,
‘brooded with the whole energy of his mind on the subject’.

We do not need to give pupils even that much of an account of
Kepler’s life: they only need to know the laws he extracted and the
assurance that he had that the laws were true. Some teachers,
however, may want to describe Kepler’s life and work in detail.
The notes that follow are too short for that, but there are good
biographies.

Kepler’s Work. Kepler’s mind burned with questions: Why are
there only six planets? Why do their orbits have just the propor-
tions and sizes they do? Are the times of the planets’ ‘years’
related to their orbit sizes? The first question, ‘Why just six?’ is
characteristic of Kepler’s times — nowadays we should just hunt
for a seventh. But then there was a finality in facts and a magic in
numbers. The Ptolemaic system counted seven planets (including
Sun and Moon, excluding the Earth) and even had arguments to
prove seven must be right.

>
(@)

This shows the basis of Kepler’s final scheme. He chose the order of regular
solids that gave the best agreement with the known proportions of planetary
orbits.

He tried to find geometrical schemes that would ‘predict’ the
relative proportions of planetary orbits which he obtained from
Copernicus. Geometry was the fashion, so fitting a square between
two circles (or spheres) seemed a promising way of predicting two
orbits. Such schemes, however, failed to fit; and Kepler tells us he
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KEPLER’S SCHEME OF REGULAR SOLIDS, FROM HIS BOOK
The relative sizes of planetary orbits were shown by bowls separating one solid
from the next. The bowls were not thin shells but were just thick enough to
accommodate the eccentric orbits of the planets.

was suddenly inspired to use regular solids to separate spheres
instead of squares and other plane figures. Greek mathematicians
had shown that only five regular solids are possible. Therefore,
interposing one of each between spherical shells whose sizes
represented planetary orbits would provide six shells, thus account-
ing for the existence of six planets; and Kepler found he could
juggle the arrangement of solids to predict the known orbit pro-
portions fairly well.

As a young astronomer, he was fired with enthusiasm by this
discovery and determined to wrest other secrets from the great
record of observations he inherited from Tycho.

It is customary to laugh at Kepler’s mystical scheme of solids and
pass quickly on to his discovery of the three laws of planetary
motion that now bear his name. Yet, to Kepler, that ‘five solids’
rule was a wonderful discovery and good theory. It was a piece of
mathematical mysticism in keeping with the spirit of the times;
and, in a way, it was not unlike some rules that we now assume as
fundamental in modern atomic theory. We should not laugh at it
but we do now discredit it because:
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1. It could only provide for the six planets then known. It was
two centuries more before another planet was discovered, but then
that spoiled the scheme.

2. When, a century later, Newtonian theory developed it linked
Kepler’s other laws with our general knowledge of mechanics, but
it offered no link with Kepler’s five-solid law. Then a law left
isolated from general theory must seem little more than an em-
pirical rule or a special demon.

Those two objections could not operate until long after Kepler’s
time. The only objection then was that the measurements of
planetary orbits afforded by the Copernican scheme did not fit
the pattern of solids accurately — and many theories throughout the
ages have had to adopt minor modifications to escape such criticism.
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THE REGULAR SOLIDS. A geometrical intelligence test

How many different shapes of regular solid are possible?
To find out, follow argument (a); then try (b).

A regular solid is a geometrical solid with identical regular
plane faces; that is, a solid that has:

all its edges the same length

all its face angles the same

all its corners the same

and all its faces the same shape.

(See opposite for shapes that do not
meet the requirements.)

For example, a cube is a regular @

solid.
The faces of a regular solid might be:

all equilateral triangles & @
or all squares

or all- regular pentagons %

or...andsoon...

(a) Here is the argument for square
faces. Try to make a corner of a
regular solid by having several corners
of squares meeting there.

Fic. 18-2.

We already know that in a cube each
corner has three square faces meetifig
there, Take three squares of card-
board and place them on the table
like this, then try to pick up the place
where three corners of squares meet,
The squares will fold to make a cube:
corner,

Therefore we can make a regular solid

with three square faces meeting at

each of the solid’s cor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>