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FOREWORD

This volume is one of the first to be produced by the Nuffield 
Science Teaching Project, whose work began early in 1962. At that 
time many individual schoolteachers and a number of organizations 
in Britain (among whom the Scottish Education Department and 
the Association for Science Education, as it now is, were conspicu 
ous) had drawn attention to the need for a renewal of the science 
curriculum and for a wider study of imaginative ways of teaching 
scientific subjects. The Trustees of the Nufiield Foundation con 
sidered that there were great opportunities here. They therefore 
set up a science teaching project and allocated large resources to 
its work.

The first problems to be tackled were concerned with the teaching 
of O-Level physics, chemistry, and biology in secondary schools. 
The programme has since been extended to the teaching of science 
in sixth forms, in primary schools, and in secondary school classes 
which are not studying for O-Level examinations. In all these pro 
grammes the principal aim is to develop materials that will help 
teachers to present science in a lively, exciting, and intelligible 
way. Since the work has been done by teachers, this volume and 
its companions belong to the teaching profession as a whole.

The production of the materials would not have been possible with 
out the wholehearted and unstinting collaboration of the team mem 
bers (mostly teachers on secondment from schools); the consulta 
tive committees who helped to give the work direction and purpose; 
the teachers in the 170 schools who participated in the trials of these 
and other materials; the headmasters, local authorities, and boards 
of governors who agreed that their schools should accept extra 
burdens in order to further the work of the project; and the many 
other people and organizations that have contributed good advice, 
practical assistance, or generous gifts of material and money.

To the extent that this initiative hi curriculum development is 
already the common property of the science teaching profession, it 
is important that the current volumes should be thought of as con 
tributions to a continuing process. The revision and renewal that 
will be necessary in the future, will be greatly helped by the interest 
and the comments of those who use the full Nufiield programme 
and of those who follow only some of its suggestions. By their



interest in the project, the trustees of the Nuffield Foundation have 
sought to demonstrate that the continuing renewal of the curricu 
lum - in all subjects - should be a major educational objective.

Brian Young
Director of the Nuffield Foundation
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ESTIMATED ALLOCATION OF TIME

YEAR V
If it is assumed that a school year includes 30 weeks and that each 
week includes 3 physics periods, each of which lasts 40 minutes, 
then a very rough estimate of the number of periods suggested for 
each section of this Year would be:

Chapter 1 
Chapter 2 
Chapter 3 
Chapter 4 
Chapter 5 
Chapter 6 
Chapter 7

9 
15 
21 
12 
12 
12 
9 

90

Although these estimates are rough they will, nevertheless, provide 
some guidance as to weight to be placed on the various parts of the 
programme. It should be noted that the relative amounts of print 
ing are not proportional to the teaching time required. Where sub 
ject matter is new and unfamiliar, it has been dealt with at length in 
order to help any teacher who may wish to experiment with it. On 
the other hand, more familiar subject matter has often been dealt 
with briefly.



KEY TO MARGIN REFERENCES

C = Class Experiment

D = Demonstration Experiment

T = Teaching of material (lectures, discussions with pupils, etc.)

F = Film

H = Suggestions for optional experiments at home

* = Commentary (notes on methods, aims, etc., offered to
* teachers)

The experiments are numbered serially through the Year, irrespec 
tive of the classification C, D, F or H. The same numbers will be 
found for each experiment in the Teachers' Guide to Experiments 
and Apparatus. Where (a), (b) ... are added, these refer in some 
cases to separate parts of the same group of experiments, in other 
cases to alternative versions of an experiment.



PREFACE TO YEAR V

PLANS AND HOPES
Before describing the structure of this Year, let us take stock of our 
position.

In Year V most pupils will be preparing for a public examination 
and this will inevitably influence the work to some extent. But we 
hope that examinations will not dominate the teaching. For a large 
fraction of our pupils this will be the last year of formal instruction 
in science. About one half of those dropping the subject will be 
leaving school: the remainder will go on to pursue non-scientific 
disciplines. What sort of scientific background do these people 
need?

Consider the school leavers first. Apart from those who enter 
engineering apprenticeships, they will not make direct use of their 
scientific knowledge, so that facility in experimental techniques is 
not of high priority; but they should know what it is like to conduct 
an experiment and something of the difficulties of interpreting the 
results. The ability to solve numerical problems is not a skill which 
is likely to survive the passage of years (dearly though one would 
like to think that the future householder could make a quantitative 
assessment of say the relative costs of using gas or electricity to heat 
his home). But the realization that physics is a quantitative science, 
in which it is possible to compute correctly from known data what 
will happen in a hypothetical situation, is of first-rate importance. 
As a citizen in a scientific world, he should neither be afraid of 
science nor be overawed by it. He should realize that natural 
phenomena usually have a rational explanation and that scientific 
methods can be powerful tools in understanding and controlling 
man's environment. In other words, he should have an educated 
person's knowledge of what science is. This is the end to which our 
scheme is directed. The details of which topics are included are 
relatively unimportant - we teach a representative sample of 
physics, not the whole of it - but it is important to remember that 
at the age of fifteen, most pupils will grasp concrete examples more 
readily than abstract principles.



In addition, there are certain key ideas that are so important, both 
in physics and in the world as a whole, that they should become 
second nature to everyone. These are:

The conservation of energy and the dominant role that energy plays 
in scientific theory and in the economy.

Heat as a mode of molecular motion; and the statistical nature of 
thermal laws.

The properties of electric currents (conceived as a stream of electrons); 
'electronics' as powerful practical knowledge.

The nature of light and the properties of the electromagnetic spec 
trum.

The atomic nature of matter and existence of 'fundamentalparticles.

The nature of radioactivity and nuclear changes and the possibilities 
and dangers of these.

The growth of atomic theory from early pictures to modern models.

Anyone with this background should be able to listen to a scientist 
talking in general terms and follow at least the gist of his argument. 
That is an ability which should make life more interesting and 
meaningful for the average citizen and we hope that some pupils, at 
least, will be impelled to find out more for themselves. In addition, 
many people - businessmen, lawyers, shop stewards, nurses - may 
have to carry on a discussion with technologists in the course of 
their careers, while parents and teachers will have to answer the 
questions of young children. A scientific background is, if not 
essential, at least highly desirable in every walk of life.

There is nothing in the discussion above that does not apply 
equally to the future arts student and the future scientist - good 
science for citizens is also good science for specialists - but the 
latter require something more. Nowadays, the student of almost 
any of the humanities needs some knowledge of science. The his 
torian must be aware of the impact of scientific knowledge on the 
thought and economy of the period he studies. The archaeologist 
uses scientific tools in his work. The economist is concerned with 
science as an economic force - also he aims at using scientific tools 
and analogies. The philosopher is increasingly concerned with 
scientific matters. To cater for these, it is important to include



something of the history of science, more especially since new and 
improved methods of teaching tend to obscure the original 
approach. It is probable, too, that the future arts student will 
appreciate a panoramic view of modern science (though the 
potential science specialist might be content with traditional treat 
ment), and he will certainly want to look closely at the way in which 
physical arguments are justified and how they hang together. We 
hope that these things will be taken up again, at a greater level of 
maturity, in general sixth-form studies; but the basis should be laid 
now and the relevance of science to humanities made plain.

These aspects too will be valuable as part of the general education 
of the school leavers, although some of the topics are more academic 
and theoretical than would be chosen for that group alone.

Lastly, the course must make some provision for the needs of the 
future science specialists - the future physicists, chemists, mathe 
maticians, engineers, doctors et al. In some ways this is the most 
important group, since the economic well-being of the Country will 
largely depend on their skill. It could be argued that the whole 
syllabus should be designed for specialists and the others left to 
make what they can of it. But that is not our policy. We believe that, 
up to O level, education should be general and not vocational and 
that the needs of ordinary people, as citizens and individuals, 
should predominate - even over strong economic demands.

Nevertheless, it is important that the syllabus provided lay a broad 
and firm foundation upon which later specialization may be built 
and that nothing be done to turn the potential scientist from his 
path. One hopes also to attract some of the waverers into a scienti 
fic career.

One hopes that the future scientist will be interested above all in 
the ideas of science- he will be a poor scientist if he is not. It must 
be recognized, however, that many will be more attracted by the 
power over the environment that science places in their hands. So 
our teaching should include topics catering for this and giving some 
facility in experimental techniques. And the proper place of for 
mulae - as servants, not as masters - should be taught. The em 
ployers of school leavers entering engineering apprenticeships will 
expect such preparation. And for the very bright pupils, we need to 
include some quite difficult problems to stretch their intellect, to 
show that science is worthy of their mettle.



Thus our syllabus must cater for many needs: inevitably some 
compromise is necessary. It is hoped that examinations will allow 
the teacher to emphasize the aspects which are best suited to the 
interests of his class. Some aspects will be treated mainly in 
laboratory work or in homework problems, where the emphasis can 
be changed to suit the class.

We have made no explicit mention of applied science topics. This 
programme does not base its teaching on them directly. Yet pupils 
should be aware of the way in which physics interacts with engineer 
ing and we should show them something of the nature of the latter 
- one of the prime needs of the Country is that young people should 
not despise applied science. We therefore recommend that the 
topics in the syllabus be illustrated, wherever possible, by examples 
of their application.

THE WORK OF THIS YEAR
This is a Year of important experiments and ideas, in which we 
draw upon the work of previous Years but expect more imaginative 
thinking, more reasoning, and new experimenting. We want to 
develop some taste for theory and to explore further in 'atomic 
physics', in both experiment and theory.

Newton's Laws of Motion - so far treated as great principles and 
tested in simple class experiments - are now put to the use that 
Newton himself set forth: to form a grand theory of the planetary 
system. For that we must have a quantitative treatment of circular 
motion - to be done by an experimental approach if pupils find the 
geometrical discussion too hard.

Then, armed with some understanding of orbital motion, we can 
continue previous work on electron streams by bending their path 
with a magnetic field. To analyse measurements, pupils must use 
some knowledge of the force exerted by a magnetic field on a stream 
of charged particles. That is difficult, but we shall not evade it (thus 
losing our chance of clear knowledge of electrons) or spoil it by 
announcing an unexpected 'formula'. Instead we shall make a 
direct experimental approach and measure the strength of the 
magnetic field that we use by putting a simple current-balance in 
it. For pupils who find this work too hard, we might offer a shorter 
qualitative treatment that would leave more time for the other 
topics of this year.

Essentially, however, this is a programme of reasonable intellectual 
standards, for average O-level candidates. If one topic in this Year



seems too hard, others are likely to appear hard too. If pupils find 
the topics too hard, the proper solution is a change to a different 
programme. If teachers consider the topics too hard, at a first 
glance, we hope they will try teaching it - as they are experimental 
scientists - twice: a first round to see its possibilities, a second 
round to see how their own version runs.

A simple study of waves and oscillations will be resumed from 
earlier years. That will lead, on the one hand, to a discussion of 
interference by waves - for use in building atomic models - and 
on the other hand to experiments with alternating currents - for 
use in ordinary life. And pupils will take a short, informal look at 
simple harmonic motion.

Then while simple atomic models are being discussed, experiments 
on radioactivity will be carried out. This work will open up new 
knowledge and help to encourage the imaginative thinking by 
which scientists formulate a 'model'.

As the discussion of atomic structure continues, films and demon 
strations will carry pupils as far as the ability and knowledge of each 
class will allow.

Class Experiments
The class experiments that are necessary for the teaching of this 
Year will not take up all the available time. Some class experiments 
with a.c. should be postponed from Year IV till now so that pupils 
can enjoy working at them carefully: experiments with the electro 
magnetic kit; and experiments with slow a.c. - all with plenty of 
use of oscilloscopes. Now is the time for a few pupils to make a 
careful measurement of' J'; which would have taken up too much 
time in Year IV - and might have been misinterpreted then.

Able pupils who have time and interest may want to do their own 
Millikan experiment now; or some may even want to measure the 
speed of light. Either of those experiments will take much time; 
but the experimenters would gain so much experience of experi 
mental physics that they could well afford to miss other experiments.

Thus the class experiments this Year should have all pupils making 
an estimate of elm: and some pupils measuring e or c (or perhaps h 
or even G). One such 'great experiment' can make a tremendous 
contribution to a young person's education. It need not make 
great demands on the teacher's time once the apparatus is pro 
vided - in fact it should not do so, since the point of the experiment



is not to train the pupil in advanced experimenting but to give him 
the experience of independent work. Teachers with heavy time 
tables and crowded laboratories may think this an unrealistic 
dream; but we believe that pupils who have followed our pro 
gramme in spkit as well as in content will be ready to undertake 
such work in a trustworthy and skilful and resourceful way that will 
make that dream come true.

Aim
All through, the important thing for teachers to keep in mind is the 
overall view that they are giving to pupils who will end physics 
now: the knowledge of physics that those young 'scientists for a 
day' are gaining, and their picture of nature, explored and well- 
understood up to a point, then bounded by new regions of un 
finished knowledge. Here at the end, as in the earlier Years, we 
hope pupils will conclude that 'science makes sense'.



NOTES ON THE TEACHING OF THE ASTRONOMY
SECTION
Minimum Programme
With some groups, teachers will feel that the time available for 
astronomy is short. So the treatment must be held to a minimum, 
though it must be full enough to reach the principal aim: to show 
pupils the development of Newton's theory.

We suggest the following programme as a minimum;

1. Brief description of observed facts: motions of stars, Sun, Moon, 
planets.

2. Brief description of early man's use of astronomy for clock, 
calendar, and compass. Mention astrology. Importance of heavenly 
events promoted speculation about gods or demons as 'explana 
tions'.

3. Describe, chiefly by pictures, a few Greek geometrical schemes 
as reasonable machinery to explain heavenly motions. Suggested 
examples:

Simple revolving sphere (Thales)

Concentric spheres with round Earth at centre (Pythagoras)

Many spheres, revolving about different axes to imitate observed 
motions closely (Eudoxus)

Circles and sub-circles (with Earth short distance off the centre 
of main circle); and elaboration of that (Ptolemy)

(If time permits and interest encourages, short descriptions of 
Greek methods of estimating size of Earth, distances of Moon 
and Sun)

4. Descriptions of Copernican system, demonstrating how it 
accounted for observed motion of planets in orbits with loops. 
Example of Copernicus's calculation of orbit sizes. (With faster 
group, Copernicus' simple story for precession.)

5. Mention of Tycho Brahe as fantastically precise observer.

6. Kepler's Laws described, possibly with brief account of his 
work in extracting them.



7. Mention of Galileo contributing to development of astronomy 
by teaching Copernican view clearly and by devising a telescope 
and using it, among other things, to show Jupiter's moons as a 
model solar system. (For our teaching of astronomy only a brief 
mention of these contributions is necessary. It is templing to give 
a much fuller account of his life and work; but, although that is of 
great interest, it is not essential here.)

8. Description of Newton's theory and its fruits: assumptions; 
predictions or explanations of Kepler's Laws, motion of comets, 
shape of Earth, tides, precession of equinoxes and perturbations of 
planetary motion - which led to the discovery of Neptune. We hope 
teachers will be able to show this unrolling of great theory by 
pointing to its fruits on a large chart.

Warning about Models for Greek Schemes 
Ingenious Models: misleading here. We shall show Greek 
schemes on the way to our target, Newtonian theory. It is very 
tempting to make mechanical models to illustrate the schemes; 
but showing models is likely to take too much time and to divert 
attention of both teacher and class from the main advance to the 
target. The teacher who finds himself busy devising models would 
be wise to pause and ask himself whether he is in danger of losing 
the point of this teaching. We offer the following comments to 
teachers who are considering mechanical models:

1. In this suggested programme of teaching astronomy for the 
development of theory, mechanical models of Greek schemes are 
not necessary. We recommend avoiding them, because they will 
divert attention from ideas to machinery, from intellectual grasp to 
interest in mechanical ingenuity.

2. Where a laboratory already has models, they might profitably 
be shown, if they can be introduced lightly and shown very briefly.

3. We positively advise schools not to buy any mechanical models 
however tempting the description.

4. Where a teacher has devised his own model, we should not dis 
courage him: the delight of making one's own gadget to demon 
strate a new idea will often shine through the dangers of delay and 
diversion and illuminate one's own teaching. (But that does not 
transfer to other teachers.) Even so, we offer him three warnings:
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a. In making the great profusion of models in the past, inventors 
have found that devices which involve spins about several axes 
have to be more complicated than one would expect.

b. A 'partial' model, such as an umbrella, which shows only a 
patch of the picture, helps the teaching quickly onward. A 'com 
plete' model which shows the whole picture is very likely to mis 
lead pupils in the matter of ideas/gears. (We have seen 'Meccano' 
models which are testimonials to the ingenuity and skill of their 
makers; yet we should not use them here.)

c. Having made a model, one meets a further temptation: to put it 
on film. That will make the dangers worse.

However, we shall suggest a few very simple models.

Models of Greek Schemes for Slower Groups?
Teachers who have slower groups may feel specially tempted to 
substitute the making of some models for the studies of theoretical 
schemes which promise to be too highbrow. That might seem wise 
at the moment; but there the study of astronomy would end. 
Newtonian Theory, our real target, would be none the easier for the 
move into model-making. Instead, teachers faced with a real diffi 
culty, arising from a slower group's different tastes and interests, 
should consider making a major change of programme.

Theories for Slower Groups?
As this course has proceeded from Year III to Year IV to Year V, 
the demands on intellectual skill and interest - of an academic kind 
- have grown, we hope, in consonance with general growth in these 
years. That has been intentional, in carrying out our plans for an 
O-level programme of teaching science for understanding. Where a 
slower group finds these later stages unfruitful or unsuitable in 
demands, we should want the teaching to seek our aims (or corre 
sponding aims) in ways that are fruitful, and not to try to force 
a standard shoe on every foot. We should not advocate half- 
measures: keeping our 'syllabus' but just watering-down each 
topic to a simpler form; or just changing the target from thought- 
out knowledge to some more practical result; or just giving out the 
results without basis or explanation. Any of these will lead to poor 
science - neither confident understanding nor knowledge gained 
with delight.

Nor would a patchwork treatment be good: teachers who enjoy the 
sequence of topics in these later years may forgetfully take for



granted the aims and connected scheme that underlie our teaching. 
They may be tempted to select a few topics to make a programme 
for a slower group. That might be a good programme; but it is 
unlikely to be, because the interconnections of our teaching will be 
lost in the selection process, and a new attempt to build-in corre 
sponding aims will be needed. A fresh start would be far better; not 
saying, 'Which items are nice ones for a simpler course?', but 
asking, 'What are our aims in science teaching for this slower 
group? What items (from anywhere) could be chained together well 
to show how science makes sense? And what treatment of those will 
be most fruitful?' Those questions may lead to a programme with 
little in common, as regards syllabus or equipment, with our present 
one; yet, if it is fruitful, we shall be very glad.

Theories for Average Groups?
Returning to our present programme, for average O-level groups: 
we earnestly hope that teachers who feel doubtful whether an 
average group can follow our treatment of astronomy with fruitful 
enjoyment will give it a full trial. (Remember the question to the 
visiting explorer, 'But how do you know you won't like boiled 
missionary?')

This is a special topic and a special kind of teaching for teacher and 
class to explore together: yet it deals with one of the greatest intel 
lectual developments in the scientific world. As A. N. Whitehead 
put it,

'... The moral of the tale is the power of reason, its decisive 
influence on the life of humanity. The great conquerors, from 
Alexander to Caesar, and from Caesar to Napoleon, influenced 
profoundly the lives of subsequent generations. But the total 
effect of this influence shrinks to insignificance, if compared to 
the entire transformation of human habits and human mentality 
produced by the long line of men of thought from Thales to the 
present day, men individually powerless, but ultimately the 
rulers of the world.':):

So, for an average group, we advocate neither half-measures nor 
patchwork treatment, but rather' thin' treatment: quick, confident, 
rapid travel to the main target. With a slower group, the choice 
should be either (1) the same 'thin' treatment - but running a bit

$ Science and the Modern World by Alfred North Whitehead. Cambridge Univer 
sity Press, 1926, pp. 299-300.
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slower, or (2) omit this whole section. In the latter case, one 
should either treat the other topics of the Year extra carefully, or 
consider remaking the programme.

Much of the value of this part of the programme depends on our 
own approach in teaching. So we urge teachers to give this a con 
fident trial, even if they have provisional doubts for their class. We 
venture to guarantee that a teacher's enthusiasm and skill will be 
greatly rewarded in this.

TOO FULL A YEAR?
Before they are half-way through the year, teachers will wonder 
whether the year is too full. Can they reach' matter waves' and other 
exciting topics in modern physics in time? If Year III has prepared 
for Year IV and Year IV has had its full time, pupils and teachers 
will cover Year V, happily. Just at the middle of the year in any 
good teaching programme there is a stage of depression when 
teachers feel things are running too slowly. The early topics have 
proved more interesting or more difficult than one expected; and 
the later topics loom ahead too forbiddingly.

Suppose we stand and survey our course from the vantage point of 
the end of the first term:

Survey: Looking Backward and Looking Forward
In the suggested programme for this Year, we began with central 
acceleration for motion in a circle, to be used for making measure 
ments on electron streams and used again to show how good theory 
is developed in Newton's explanation of the solar system. The 
measurement for electrons also remains as a useful background that 
we can refer to if we mention similar measurements for ions in a 
mass spectrograph, alpha particles and beta particles from radio 
active material, etc.

We then looked at simple harmonic motion qualitatively, and con 
tinued the study of waves, started in Year III, on into interference 
eifects with light, estimates of wavelength, and a look at gratings 
and spectra. That was intended to do three things:
1. Give factual knowledge of waves and interference, which is an 
important part of one's general knowledge of physics. (And it is a 
beginning for some A-level physics.)
2. Let pupils see for themselves why we think light consists of 
waves, and enable them to make their own estimate of the wave 
length of light.
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3, Provide a necessary background for introducing a topic of really 
modern physics: matter waves. If we have any time to mention this 
phenomenon and discuss it briefly and gently, we must prepare 
pupils beforehand by making them familiar with the behaviour of 
waves with gratings.

Teachers may feel tempted to continue from the discussion of inter 
ference and gratings to a further study of waves and spectra, 
theories of light, and the contrasting behaviour of quanta or 
photons of light. That lies ahead, and we hope pupils will hear 
some of it, because it is an essential part of our modern view. Yet, 
before we proceed to that we have two other things to consider:

(i) We must continue our building of atomic models, from the stage 
of hard, round molecules or atoms that sufficed in kinetic theory, to 
a picture of a Rutherford nuclear atom. We may feel tempted to go 
farther still, but progress after that is likely to be difficult for pupils 
at the present stage.

(ii) Pupils will need time for revision.

Revision will, of course, be a problem for each teacher to judge in 
terms of his class and thek work. We certainly do not suggest that 
the Year should go right up to the examination without revision, 
just because the atomic physics now at the end is so important. Yet 
we do believe that many teachers will find, when they get to this 
Year, that the kind of examinations suggested to fit our programme 
do not need the same type of revision as the traditional ones.

True, our suggested examinations will dip back into the work of 
Year IV and Year III; but in doing so they will look for under 
standing, in the sense discussed in the General Introduction.

There we gave a general account of our aims in teaching for under 
standing, to let pupils learn by doing thek own experiments, 
arguing things out (with help) and by answering problems and 
questions that ask for thinking. We suggested that taking more 
time for a topic to gain a sense of mastery might give lasting under 
standing.

However, such general descriptions of teaching are not very helpful 
when we are thinking about the actual examinations. The com 
parison that was offered in terms of the French verbs, savoir, con- 
naitre, comprendre, was again at best a helpful admonition. But we
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also gave a relevant and useful definition: we reminded readers that 
most of us say, at one time or another, 'I never really understood 
that part of physics until I came to teach it', and we suggested that 
in the same sense but on a much simpler scale, the test of a pupil's 
understanding can be whether he can teach it. We elicit his teaching 
by asking him to explain something to someone else - his younger 
brother or his non-scientist uncle, rather than to a mysterious, 
fierce examiner who requires the knowledge to take on a formal 
polish. We have been using that device for problems all through 
our programme, both for current teaching and as preparation for 
questions like those in examinations. If, as we hope, O-level exam 
inations for our programme are slanted in the direction of asking the 
candidate to teach things to someone in his answer, they will have a 
good chance of testing understanding. Of course, such questions 
have always been used by good examiners: our suggestion here is 
that the questions should take a less formal style and that the 
answers should be read by examiners with this requirement of 
understanding still more actively in mind.

In marking the answers for that, examiners will find they have to 
make subjective judgments, since they are looking for the under 
standing that they see in the answer, and for the feeling of mastery, 
rather than memory of facts. In doing that, examiners will be 
doing great good on behalf of our teaching in particular and science 
education in general. They may find that marking schemes of very 
precise form are unsuitable for some questions; but they will 
be able to judge whether the pupil understands in much the same 
way that many of us judge in an interview whether the applicant 
understands the work he is to do. With such hopes in mind, we urge 
teachers towards careful teaching and good experimenting by 
pupils, and away from a great deal of revision of factual material 
which might not be so useful in examinations as pupils' demon 
strations of understanding. As with so many things in our suggested 
programme, this is a matter where the first time of teaching will be 
difficult and uncertain, and teachers will find that they know far 
better what to do when they come to a second round.

Whatever revision seems necessary, in the view of both pupils and 
teachers, must of course be done. But we hope that there will be 
time to carry the teaching at least far enough to include the Ruther 
ford atom, and perhaps as far as matter waves.

This Guide is Very Long. This guide is long and discursive. 
That is intentional, because these notes are offered to many different
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teachers with varied interests and experience, for guidance in 
following a new programme of teaching.

Where one teacher wants to know our reason for suggesting a topic, 
another may want to know why we advocate some crude apparatus 
instead of a modern machine; and, elsewhere, why we recommend a 
strange modern machine instead of simpler traditional apparatus.

Some teachers may welcome detailed instructions for running an 
experiment. Others in turn will be distressed by the lengthy dis 
cussions of details; and they will ask for a short list of topics, such 
as the following:

Motion in a circle: central acceleration
Measurement of e/m for electron streams
Planetary astronomy and gravitational theory
S.H.M.; waves, alternating currents
Interference of light: Young's fringes
Diffraction grating; spectra
Radioactivity - properties of rays with electroscope and counter
Alpha-particle scattering and Rutherford atom model
Photo-electric effect
Theories of light: waves and photons
Matter waves: particle and wave behaviour
Newer atomic models ... uncertainty? ...
Appendix on electromagnetic spectrum
Appendix discussing theories of light

Given like that in a dozen lines, our list can hardly satisfy any 
teacher planning a new programme with changes of aims and atti 
tudes - in examinations as well as in teaching - such as we are 
suggesting. At most it tells an external critic our topics, without 
telling him our intentions.

Because our suggested programme is a new one and the format of 
treatment of this final year is unfamiliar, we shall enter into long 
discussions and give considerable details at some points.

We trust that teachers who would prefer a quicker summary will 
bear with that profusion and will extract whatever they need.

A Fable. We have tried to make our course include some of the 
modern physics of today. Rather than emphasize the atomic physics 
of half a century ago, we suggest bringing the teaching nearer to 
the present day, even with O-level pupils.
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Imagine a Conference on the teaching of physics, convened in 
A.D. 1700. A resolution might well be passed to the effect that 
teaching of Aristotelian mechanics is in good order, and should 
continue; teachers in schools have good apparatus and are skilfully 
expounding the dynamical principle that motion requires a force 
proportional to velocity. The new ideas of Newton would be 
recommended for advanced seminars in universities.

Now imagine a Conference in the early 1800s: the teaching of 
Caloric would be endorsed and the unorthodox view of heat as 
connected with motion - with the new name energy about to 
appear - would be viewed with suspicion and restricted to graduate 
discussion.

Now shift our imaginary Conference on teaching physics to the 
early 1900s. Newtonian dynamics, energy and its conservation, 
atoms, molecules and kinetic theory, are all being taught clearly and 
well; but measurements of electron streams are regarded as very 
difficult to teach and the rumours of a quantum restriction are 
pushed away to professional studies.

The lag is natural enough: in each generation the older material 
seems to be secure knowledge and easy to teach well; and the 
newest material is not only strange but, as yet, difficult to teach. 
Of course that is partly due to the different way in which teachers 
have learned it. In many cases, the older material was taught them 
in their own student days with firm authority - and if they were 
given some of that material at a sufficiently early age by a strong 
capable expounder they may have accepted it quite uncritically. 
Whether we like it or not, we must accept that as one general 
characteristic of education - we who are teaching now must be 
giving strong dogmatic force to some of the physics we are teaching, 
without knowing it.

On the other hand material that a teacher did not learn in student 
days is apt to remain a little strange and not seem so strong a part of 
the syllabus. For example, many an older physicist today regards 
Relativity as somewhat uncomfortable - however well he now 
understands it and, perhaps, teaches it. When he first met the new 
ideas of Relativity they struck him as almost a misfortune: well- 
assured geometry was being attacked and could be shown to be 
'wrong'. But, to the next generation of physicists, Relativity will be 
a commonplace, heard about at school, used as a normal part of 
student physics.
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Thus, the lag is there and forgivable; and in past ages it has been 
harmless. There has been time for each generation to catch up. 
Now with science growing and changing so rapidly, and ideas 
travelling so fast around the world, is it any longer safe to let 
teaching lag in a comfortable way? Trying to make the teaching 
catch up and lessen the lag would be uncomfortable and even 
dangerous, if done carelessly. Yet when we move our imaginary 
Conference on teaching physics to the year 2000 we may feel uneasy 
about the prospect. Will so much of today's newest physics still 
seem too strange to teach?

With that question in mind, we offer suggestions of teaching some 
new physics in this Year.

The Newest Physics. In dealing with new, recent, physics - the 
physics-in-the-making of the last quarter century - we can only 
suggest topics and give some notes on teaching in this Guide. 
Many teachers would like to read fuller accounts of such topics. 
Yet when they look at books on modern physics they are dis 
appointed. There are up-to-date advanced texts for university 
teaching or professional use; and there are some popular accounts 
of the latest physics, written for laymen. Many a book that gives 
the careful exposition of modern physics that one would like to 
have as background for O-level teaching seems to stop short at the 
state of physics fifty years ago, or at least treats later topics too 
briefly. With that need in mind, we suggest the following books 
which might be useful:

The New Age in Physics by Sir Harrie Massey (Harpers, 1960). 
(This is a remarkable book, likely to be of great help in the 
present matter. The author largely neglects the physics that was 
'new' fifty years ago - the first magnificent measuring ofejm for 
electrons, the early mass spectrograph with difficult geometry, 
laborious sorting out of radiations by absorption characteristics - 
and proceeds at once to the really new physics. The book is a 
popular account and we must not expect it to provide detailed 
training - yet it gives the right perspective.)

Turning Points in Physics by R. J. Blin-Stoyle and others (North- 
Holland Publishing Company, Amsterdam, 1959). 

(Six very useful lectures, on Fields, Quanta, Probability, 
Relativity, Causality, and Elementary Particles.)
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Knowledge and Wonder by Victor F. Weisskopf (paperback,
Heinemann Science Study Series, 1964). 

(A set of essays, which do not lose as much as most by being 
short, because the author is a very powerful modern scientist.)

Accelerators, Machines of Nuclear Physics by Robert R. Wilson and 
Raphael Littauer (paperback, Heinemann Science Study Series). 

(This gives accounts of early machines, cyclotrons, linear 
accelerators, etc. It gives solid physics and yet is elementary. 
Without using mathematics, it nevertheless explains fully how a 
cyclotron works, discussing difficulties of focusing; extends the 
stories to synchrotrons, and even reaches the new story of clash 
ing beams of electrons.)

The Nature of Solids by Alan Holden (Columbia University Press, 
1965).

(This is an excellent, simple, introduction to solid-state physics 
and transistors.)

One, Two, Three ... Infinity by George Gamow (Macmillan, 1947). 
(This is more light-hearted and scrappy but stimulating. Some 
pupils would enjoy reading it.)

In addition, among the flood of new paperback books a series called 
'Momentum Books' is appearing. We urge teachers to watch for 
these because they are written by good physicists, with the aim of 
helping the teaching of serious modern physics.
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' Scientific knowledge is knowledge, not fact - a gallery of pictures 
painted by men to portray in some simplified, comprehensible 
way the seemingly infinite complexity of nature. The pictures 
are put up and taken down, cleaned, replaced, and destroyed. 
Any account of scientific knowledge is therefore a "progress 
report" - an account of unfinished business.

'... Indeed, in the eyes of those who have made them, all these 
pictures are only fragments of a single picture. It is a picture of 
nature that is always incomplete, but must always hang together 
with the consistency contributed by the single palette used in 
painting it: the mind of man.'

Alan Holden
in the Foreword to Conductors and Semiconductors
Bell Telephone Laboratories, Inc., 1964
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NOTE TO TEACHERS ON 'CENTRIFUGAL FORCE'
In elementary teaching we must make a clear decision between 
centripetal force and centrifugal force. A mixture of both is fatally 
muddling for beginners.

Centripetal force, used with Newton's second law will of course 
yield the right answers, and forces will always be in the right direc 
tion - strings will pull and never push: lorries rounding a corner 
will skid or fall outwards,... but the method will seem artificial to 
pupils, who have all heard of centrifugal force. The following dis 
cussion with an imaginary pupil may be helpful to teachers dealing 
with this question.

Motion in a circle needs a real inward force, provided by real 
external agents. This view of centripetal force will help you to deal 
with all real problems of circular motion. Then what is centrifugal 
force? You often hear of it, may find yourself speaking of it when 
you whirl something around, and will find books using it to 
explain things in physics. Here are a variety of opinions on it. You 
may choose according to your taste.

OPINION I: ' Centrifugal force is a phony force., imagined through a 
misinterpretation of evidence confusing agent and victim.'

If you whirl a stone on a string, the string-tension pulls your hand 
outwards (just as it pulls the stone inwards). This is a real centri 
fugal force on your stationary hand, not on the whirling stone. You 
feel your hand being pulled outwards, so you say, 'I feel the stone 
and string pulling my hand outwards. That tells me the stone is 
being pulled outwards, by some centrifugal force, and the string is

just transmitting that force.' That is where you are mistaken. There 
is no outward force on the stone. Really the string, in a state of ten 
sion, pulls at both its ends. While it pulls your hand outwards it 
pulls the stone inwards. The only real force on the stone is inward, 
centripetal.

19



Bunf's-eye vwi

Cb 
I

Again, suppose two boys, A and B, visit one of those amusements 
in which people sit on a floor that rotates. Suppose A and B enter 
the room while the floor is at rest, and sit on the polished floor. 
Knowing the trick of the performance, A glues himself to the floor. 
When the floor begins to spin A notes that a mysterious force 
seems to pull him outward; and, but for the glue, it would make 
A side slide out to the wall. B, without glue, slides out to the wall if 
A does not hold on to him, exerting an inward pull on him. Each 
feels he is struggling against 'centrifugal force'. But now let a 
stationary observer take a bird's-eye view from above. Seen from 
outside the spinning room, A and B are both moving in a circular 
orbit, and both need real inward forces to keep them in orbit. For 
B, the force is the inward pull A provides: for A it is the pull of the 
sticky floor on him. Once again, A merely imagined an outward 
force on B because he had to apply a real inward force to him. As 
the outsider sees, these inward forces are not neutralizing a 
mysterious outward force, they are making an inward acceleration; 
they are making A and B move in a curve. The outside observer 
offers a further comment. When A lets go B then continues along a 
tangent (if there is no friction). B's successive positions along that 
tangent are farther and farther out from the centre of the circle; so, 
as seen by A (spinning with the floor) B seems to be sliding out 
along a radius. But really B is just continuing a straight (tangent} 
path, a simple example of Newton's First Law.
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OPINION II:' Centrifugal force is a delusion arising from living in the 
rotating system and trying to forget it.'

The rotating-floor discussion leads straight to this view. To people 
sitting on the table in a concealing fog - and ignoring its motion - 
there is an outward field of force, endowing every mass M with an 
outward force Mv 2/R. Unless some real agent applies an inward 
force to balance this, any object left alone will seem to slide out 
ward with acceleration v 2/R. Preferring to take a sober view from 
outside, we say that both the outward field of force and the out 
ward sliding are delusions due to living in a rotating framework 
and not allowing for its motion.

OPINION III: The Novice's Headache-Cure

Here is a good use for centrifugal force. Let us be rude and say, 
with some truth, that some beginners prefer ' Statics', the physics 
of things at rest (in equilibrium), to the physics of motion. Prob 
lems involving acceleration and rotation make his head ache; and 
the novice wishes they could be reduced to simple statics and prob 
lems that he is so good at - forces in bridges and cranes. And they 
can. Consider, for example, the problem of a pendulum whirling 
around in a conical motion. The two real forces acting on the bob 
are its weight and the string tension. These two real forces must 
add up to a resultant force Mv*/R inward - otherwise the bob 
could not continue around the orbit. Here then are two forces W 
and T which have horizontal resultant Mv zIR inward. Let us turn 
this into a statics problem with equilibrium (resultant zero) by
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adding an extra fictitious force. What fictitious force must we add to 
W and T to make zero? The third force would have to be - Mv2jR, 
or Mv zjR outward. So some teachers say this to the novice: 'Yes, 
you can turn any problem with circular motion into a statics prob 
lem if you take all the real forces acting on the moving body and ADD 
a fictitious centrifugal force, Mvz/R outward, and then write an 
equation stating that these forces (including the fictitious one) have 
resultant zero. Solving the equation will give you the same infor 
mation as the method of making the real forces combine to produce 
inward acceleration vz/R.'

THE HEADACHE

 rfic spring (* agent) jwwufes the. waljvm, Ff 
to make aueCemtion vz/K.

NO

THE CURE.

ImojttwwTfjwce -^TJ~- +reoLfow F
make t&Mt&rium

On this view, centrifugal force is a fictitious force, but a useful one, 
to cure the novice's headache. It is also used thus in advanced 
physics, to save trouble - but then it is a sophisticated trick in the 
hands of skilled craftsmen. As used by most students, it gives the 
right answer but makes some of the theory harder to understand - 
how can it help that when it reduces obvious motion to fictitious
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rest? The trustful user, with his right answer, is confused about the 
forces: he is not sure which are real or which way they pull. If you 
value your understanding of physics, avoid this headache-cure at all 
costs. Of course, a mixture of this centrifugal headache-cure with 
centripetal forces will produce utter confusion!

OPINION IV: Relativity

(This opinion sketches some comments from sophisticated 
relativity theory. Read it for amusement or for a good moral 
warning, but do not let it convert you to the headache-cure method 
for novices. This relativity-view is true, but only within the frame 
work of definitions constructed for it.)

Can nothing better be said of centrifugal force? Returning to 
Opinion II, some scientists ask, 'Why is it so wicked to view things 
from a rotating framework? After all, we live on a spinning Earth. 
Are the' centrifugal forces' that arise from our rotating-framework 
viewpoint really different from other forces, and less real? Who are 
we to say which is really rotating, ourselves or everything else?' 
(We are back to Copernicus vs. Ptolemy.) This last question is like 
the problem of testing Newton's laws in an accelerating railway 
train. By building a tilted room in the train we could still find the 
same laws, though we should find 'gravity' changed in size and 
direction. We suspect that we cannot distinguish between the effect 
of acceleration and a real change of gravity - Einstein built General 
Relativity theory on an elaboration of that 'cannot'.

Relativity theory starts with an axiomatic statement, that we can 
not tell which is moving, ourselves or 'the other fellow', that there 
is no such thing as absolute motion. If that is so, 'absolute space' 
is meaningless; it should not be used, and cannot be needed, in 
science. In that case, the working geometry of 'space' must be 
such that we discover the same physics whether we think we are 
moving or 'the other fellow' is. And that makes us modify the 
simple geometry of space and motion that Euclid assumed and 
Galileo and Newton used. For constant velocities, we have many 
experimental failures to distinguish absolute motion even with the 
help of light-signals, so we feel justified in accepting the Relativity 
principle and its modified geometry. In practical life, the modifica 
tions are not noticeable, and they only affect experiments notice 
ably when very high speeds are involved, as they are in atomic 
physics and perhaps in astronomy.
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Extending the Relativity attitude to accelerated motion we assume 
that a local observer will find the effects of acceleration indis 
tinguishable from a local change of gravity; and thus we decide that 
gravitational fields can be treated as local changes of geometry in 
space-time. This is Einstein's Principle of Equivalence. Though 
the viewpoint is entirely new, its practical form shows only small 
deviations from Newton's law of gravitation.

Extending this idea to rotation, we suggest that a local observer 
cannot distinguish between the effects of a rotating framework and 
a local change of gravity, if he is moving with that frame. In that 
case centrifugal force tugging outward would be just as real to him 
on his spinning floor as an extra, horizontal pull of gravity. Then, 
to a tiny creature in a centrifuge, centrifugal force-fields should 
appear just like real gravitational fields, only some thousands of 
times as strong as ordinary gravity and gravity would take on a new 
direction - he would quite forget about its old direction. This 
General Relativity view has proved useful in co-ordinating think 
ing; and so far we have not observed anything inconsistent with it. 
In this way, centrifugal force has grown to be respectable. When 
we want to test the effects of large gravitational fields, unattainable 
on Earth, we think we may use a centrifuge instead.

The general principle of equivalence forbids us to call the motions 
of the Earth absolute. It therefore leads to a new mechanics and 
geometry that will predict the same effects whether the Earth spins 
and moves around the Sun, or the stars and Sun move around us. 
On General Relativity theory, a rotating universe would produce 
'centrifugal forces' at a stationary Earth; so tests of a spinning 
Earth, with a Foucault pendulum or equatorial changes of 'g', 
could not distinguish between the two causes: Earth spinning or 
everything-else-spinning. Faced with the old question, 'Is Coper 
nicus right and Ptolemy wrong?' we must demur at Galileo's 
cocksure insistence and say, 'Both views may well be equally true, 
though one is a simpler description for practical thinking and work 
ing'.

OPINION ON THE FOUR OPINIONS?

Make your own choice. However, for problems and experiments 
in this course, you are advised to use only centripetal force.
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YEAR V
SYNOPSIS OF PROGRAMME FOR THE WHOLE YEAR
As explained in the Preface, this is a Year of putting physics to *
work to build stronger knowledge, principally in understanding of *
theory and in atomic physics. *

We do not intend to provide new topics compactly taught for *
examinations or to spend a major part of the time revising old *
topics. The earlier Years will have taught many regions of physics *
on which examinations can draw with questions that ask for con- *
structive thinking. This Year should give pupils practice in such *
thinking at a more mature level, but should not aim at packing in *
new content where that is solely of use as examination material. *
However, we shall survey a good deal of new atomic physics. *

	*
The attitude this Year should be: 'Now we can extend and use *
earlier knowledge to tackle great problems of the structure of the *
world.' *

Essentially, this programme introduces six new tools and uses *
them together to develop five areas of physics: *

1. We discuss motion in a circle and arrive at a = v 2/R and *
F = mv*IR. *

2. We obtain from experiment a quantitative measure of the force *
exerted by a given magnetic field on a current hi a wire; and we *
extend that, by argument, to a charged particle moving in a stream *
across a magnetic field. *

3. The idea of an inverse-square law, introduced for gravitational *
fields, but applicable with the same geometry to electric fields, the *
spreading of light, etc. *

4. Devices using ions to exhibit 'atomic' events: cloud chambers, *
geiger counters, scintillation counters, etc. *

	*
5. The use of alpha particles from radioactive substances (or *
protons or electrons from accelerators) as projectiles with which to *
explore atomic structure more deeply. *

6. Studies of water ripples and light are combined to provide new *
criteria for waves. *
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With those tools, we develop: *

A. Quantitative knowledge of electrons, positive ions, and nuclei * 
as parts of atoms. *

B. An example of physical theory - seen in stages of construction. *
We describe the history of man's knowledge of the stars, Sun, *
Moon and planets, from early observations through successive *
stages of building a 'theory', to the age of Kepler and Galileo, *
when man had a great body of empirical information, organized in *
rules that were verified with precision but still disconnected pieces *
of knowledge. Then we unroll Newton's great gravitational theory *
to show the use of good theory in science. *

C. Knowledge of radioactivity. *

D. The wave-particle idea. We touch briefly on the modern picture *
of both radiation and matter having particle aspects and wave *
aspects - the behaviour which we observe and measure being *
determined by our choice of experiment. *

*
We cannot, with pupils at this age, pursue this duality far j but we *
should introduce our modern view, both for the sake of non- *
scientists who will read about such things later and to set the stage *
for further studies by physics specialists. *

E. Atomic models. We develop successive models of atoms, from * 
hard billiard balls of kinetic theory to a hollow Rutherford model. * 
We may give a survey of later developments of atom models. We * 
owe some modern knowledge to our pupils, but the experiments * 
and reasoning that led to such knowledge (even if we show modern * 
simplified forms) are too complex for our teaching. All we can offer * 
at this stage is a survey of results, descriptions of models. However, * 
in this region of modern developments we feel justified in breaking 
our resolution to offer supporting experiments so we suggest giving 
only short descriptions. We can give occasional support and 
elucidation by films, but there we must beware of two dangers:

1. A film which shows the real apparatus and working of a funda 
mental experiment may be merely confusing, owing to the pro 
fusion of auxiliary apparatus.

2. A film which describes either ideas or experiments by animation 
may be very misleading in another direction. It can sketch the
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story we think or hope is true and fail to give real teaching of * 
science. However tempting such a film looks as a clarifier, we * 
should be unwise to show it. *

*
Pupils should hear about: * 
A nuclear model with stable and unstable nuclei. * 
The photo-electric effect and its strong suggestion of quanta; the * 
idea of photons of light and their behaviour, possibly a mention of * 
specific heats and their suggestion of quanta; use of wave-particle * 
views to sketch an atom model. Perhaps even a comment on un- * 
certainly. *

*
It is doubtful whether we can give more than a passing, brief *
description of any of these; though we hope that, with a fast group, *
teachers will be able to select some aspects of present-day physics *
for expansion. *

Experiments
Links with Earlier Years: the following experiments are essen- *
tial, if they have not been done fully in previous years: *

*
Millikan's experiment: discussion and film (and possibly de- *
monstration). *

This should be done in two parts: first, a clear proof that electric *
charges come in multiples of a single universal basic charge; *
second, a measurement of the size of that charge. The first part *
is both more important (for our present teaching), and easier to *
show, though even that will have to be shown by film. The * 
measurement of the value of e will have to be taught by assertion.

Young's Fringes by ripple tank (class experiment) 

Young's Fringes for light (qualitative class experiment) 

Young's Fringes for light, rough measurement (class experiment)

Cathode rays: demonstrations of properties (except effect of 
magnetic field, which will be studied this Year).

It will not be necessary to do experiments on Force, Mass and 
Motion, even if pupils missed them. However, pupils must not only 
know F — ma and Ft = change of (mo) but have an understanding 
of the nature of mass, force, weight, gravitational field strength and 
kinetic energy. They must know that K.E.= \mo z.
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Pupils need not do or see experiments with electric fields even if *
they missed them, provided they know the pattern of the field *
between parallel plates and are ready to accept the idea that field *
strength Xf> is given by P.D./distance between the plates. *

Experiments this Year. The teaching of this Year involves some *
important experiments: a test of F= mv^jR; measurement of *
wavelength of light with a grating; measurement of ejm for electrons; *
and some radioactive experiments. These should be class experi- *
ments as far as possible. Even so, they will not occupy the full *
amount of time the laboratory has and deserves. *

	 *
We suggest four categories of experiment that might be offered at *
any suitable places: *

*
a. Demonstrations and class experiments with alternating cur- * 
rents, including experiments with 'slow a.c.' (These should be * 
class experiments for everybody.) *

*
b. A transistor experiment (instead of in Year TV). *

*
c. A careful measurement of' J'. If pupils are at a stage where they * 
can see that this is at the same time very important and necessarily *
inaccurate but yet worth doing, then they should do it. *

*
Pupils embarking on this should take time to learn the ways of the *
apparatus and discuss its troubles. *

*
They should work in small groups, pairs if possible. This is an * 
experiment that should be done in an atmosphere of strong personal *
involvement, with the odds against the experimenters. *

*
This should not be treated as a measurement to 'get the right *
answer'. There is no accurate J-apparatus for student use that can *
possibly yield the right answer except by a happy coincidence of *
cancelling errors. An experiment done carefully with a detailed *
series of cooling corrections can yield a result fairly close to the *
accepted value - but those corrections are tedious and would be *
puzzling to pupils at this stage: they would spoil the experiment. *

If we look at the huge task of the experimenters who made the most *
trusted measurements of J we shall suspect many difficulties; and if *
we consider the nature of heat losses and the conditions of pupils' *
thermometry, difficulties come to the forefront. *
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With apparatus carefully devised to minimize errors, we shall still * 
be giving pupils an inaccurate experiment. It is good for them to * 
know that; and then it is good for them to do the experiment. *

*
d. Difficult measurements for able groups or pupils with special * 
interests: *

*
Mttlikan's experiment done by a small team of pupils; *

*
possibly a measurement of the speed of light; *

*
measurement of e/m done by a small team. *

*
These may seem to impose a great burden on organization of *
apparatus and teaching - we only suggest them for those cases *
where teachers find that they have a group that they can set to *
work on some individual experiments. Needless to say, such *
experiments should be given considerable time. For slower groups, *
some of the experiments suggested for this Year, such as work with *
electroscopes or investigations of pendulums, could be spread out *
into longer experiments done by pupils on their own. *
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Chapter 1

MOTION IN AN ORBIT
Central Acceleration and Satellites



Introduction to Circular Motion
Experiments and Questions about Motion in a Circle. We
start with three demonstrations and a class experiment.

1. A carbon dioxide puck on a smooth table travels in a straight D1 
line at constant speed (a ring with cardboard lid and solid CO 2).

We ask whether this is natural motion and whether any forces are 
needed to keep it going.

2. We refer to the motion of the Moon round the Earth. We ask D 2 
whether that is natural motion and whether any force is needed 
to keep it going - and leave the question unanswered.

3. The Leybold fine beam tube first without, then with, magnetic D3 
field. We ask the same questions.

4. Then, feeling our way towards the need for a force, we ask C4 
pupils to tie a small massive object (a ring or a hex nut) to a 
string and whirl it round their heads and decide which way the 
force must be on the object.

We ask pupils which way the force does act on them if they sit T 
on a smooth seat in a car that rounds a sharp corner. Which 
way do they slide? Which side of the car then pushes on them?

(We might discuss the banking of a bicycle rounding a corner, 
but this often leads to more confusion than help, because the 
problem is better discussed by taking moments than by considering 
a single force.)

'Flying Off at a Tangent.' Now or later the teacher should give D5 
a very important demonstration and discussion: the motion of an 
object released from its orbit. He whirls a light block of wood on a 
string, in a horizontal circle round his head. Each time the block 
is in front of him, nearest the class, he says 'Now'. He threatens 
to let go of the string at that stage, when he says 'Now'. He does 
that. Some pupils will flinch, because they expect centrifugal 
force to make the block rush out towards them. All will see that the 
block does not travel towards them but simply continues its motion 
out to one side of the room, along the tangent. The teacher should 
also point out that the block does not fly off along the tangent in 
an aggressive way, but just continues along the tangent - an example 
of Newton's First Law.

32



Centrifugal Force?: Centripetal Force? We find ourselves 
immersed at once in questions of centrifugal force versus centripetal 
force.:): We must be sympathetic and firm: we ask the direction of 
the force on a stone being whirled round one's head, and remind 
the pupils that'strings pull, never push'.

We ask again which side of the car pushes on the passenger on the 
smooth seat. We may ask, quite unfairly, 'What do you think the 
Earth does to the Moon, repels it or attracts it?'

We agree with our critics that the same string which pulls the 
stone inward also pulls our hand outward; and that the sliding 
passenger in the car will push the side of the car and smash it 
outward if it is weak enough. And we agree that the Moon must 
pull the Earth outward, towards the Moon. That will not convince 
our critics that there is not a centrifugal force acting on the stone, 
the passenger, the Moon. And we ourselves would certainly infer 
the presence of such an outward force if we were in a rotating 
frame of reference, riding on the stone, or in the car, or on the 
Moon. (In case of a rider on the Moon, where gravity is the con 
trolling force, the evidence for a centrifugal force would be sup 
pressed, because the observer himself would be pulled by a force 
proportional to his mass.)

$ Note to teachers on choice of policy. The choice between rival treatments - 
centrifugal and centripetal - has advocates on both sides.

In advanced physics, we ourselves call on centrifugal force. We reduce a problem 
of orbital motion to a statement of equilibrium by adding an outward, centrifugal 
force to the forces applied by strings, gravitation, etc. And when we explain the 
action of a centrifuge (or a merry-go-round) in detail we all want to resort to 
centrifugal force - though of course a logical centripetal explanation can be 
given.

For an elementary beginning, some teachers prefer to use centrifugal force 
because it draws on pupils' common belief. Others hold that this start will lead to 
difficulties. They maintain that, having started with the view that acceleration a 
needs force F in the same direction (F = ma), we should continue to take that 
view for the acceleration v*/R, which is certainly centripetal, not centrifugal.

One thing is sure: in elementary teaching at any rate, a mixture of the two 
approaches is fatally confusing.

In planning our suggested course, the Nuffield Physics group decided to set forth 
the teaching in terms of centripetal force.

There are some comments on the matter in the next few pages; and a separate 
note discusses the choice at length.
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We shall have to say that centrifugal force is one way of looking at 
the problem; but not our way.

Experiment to illustrate Centripetal Force. We give one D6 
more illustration of our centripetal view: we ask pupils to put a 
penny on a rotating gramophone table, and let it spin faster and 
faster until the penny cannot command enough friction to anchor H 6 
it and slides off at a tangent. We ask pupils to watch very carefully 
what happens from the point of view of an outside observer at rest; 
and then to speculate what that would look like to an observer 
standing on the turntable. We ask where a drawing phi should be 
stuck in the turntable to keep the penny from sliding away. 
(Answer: Just beyond the outside edge of tie penny.)

We shall use Centripetal Force. We insist that we shall treat *
the problems ahead of us by the clumsy, unrealistic-looking method *
of saying that anything moving in a circle must be acted on by an *
inward, centripetal force that pulls it in from a straight-line path. *
A real inward pull is needed. 'No force, no orbit.' Before this has *
time to build up irritation or boredom, we proceed to a satellite. *

Satellite
' Throw a cricket ball out horizontally. It falls to the ground some T 
yards away. A rifle bullet, fired faster but also horizontally, 
reaches the ground after a mile or so.

'Try a thought experiment: fire a bullet so fast that it covers an 
appreciable part of the Earth's circumference before it reaches 
the ground. What effect has the Earth's curvature on the bullet's 
fate? Fire it even faster and it "falls over the edge of the Earth". 
The Earth falls away from the buller's original direction just as 
fast as the bullet does.

To the bullet all parts of the world are the same, and it soon 
forgets where it started from. Such a bullet with just the right 
speed will always be falling over the edge, and so it will go on 
and on round the world - keeping just above the ground - until 
it arrives back at the starting point and hits us from behind.'

In practice air resistance (heat barrier) absorbs energy, and down 
comes the bullet. So we must start outside the atmosphere.

Here is a simplified story for a typical satellite that we may give a 
class that is interested:
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1. Rocket starts off nearly vertically. The exhaust gases exert an 
upward push, greater than the rocket's weight; so the rocket 
accelerates upward;

2. Fuel exhausted, motor cuts out and the first stage separates;

3. Parabolic (free fall) trajectory until the path is horizontal at 
maximum altitude;

4. Final stage ignites and accelerates its relatively small mass to 
high velocity before unlatching the satellite proper and leaving it in 
orbit;

5. Exhausted final stage is also in orbit, but, hi the course of time, 
a small relative velocity puts a big distance between them;

6. There is some air resistance even at 100 miles up, so energy is C7 
used up slowly and satellite descends. In the course of that, its 
time to circle the Earth grows smaller. Pupils should try letting a 
string carrying a whirling stone wind up round their ringer. They 
will see it speed up.

Questions about satellites and rockets will flourish now, whether *
we want them yet or not. We should welcome them and perhaps *
use some of them to lead to the topics ahead. *

We ask about the energy necessary to raise a satellite 100 miles. T 
Would it be better to burn fuel slowly, giving thrust for a long 
time, or burn it rapidly and then have a long rise time under free 
fall conditions? The answer lies in the cost of raising the first 
stage fuel load. If the fuel-burning continues during most of the 
rise, we have to raise a good deal of fuel. We have to compromise 
between saving that cost by a rapid initial acceleration^: and the 
stresses on man and machine involved by acceleration being too 
great. At the final stage, we must provide Jmc 2 energy for the 
motion in orbit. All the latter - in fact, all the energy released by 
the fuel - is dissipated as heat on re-entry.

Teachers will find a very useful discussion of rockets and satellites, *
with some data for satellites that have been fired, hi a Penguin book *
by Michael Ovenden, Satellites. *

$ Only if the acceleration is infinitely large can we avoid wasting fuel on raising 
fuel for the later stages of that acceleration. An infinite acceleration would bring 
the rocket to a suitable final speed in an infinitely short rise-distance. But that 
would be infinitely dangerous.
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'Centrifugal Force' Again. Even now the question of centri- T 
fugal force will crop up with strong advocates. We make two new 
attacks on it:

1. We ask pupils to think about a boy running along a straight 
path, with a larger, stronger boy running beside him and pushing 
him sideways. What would be the effect of that continuous side 
ways push? Suppose, as the smaller boy changes his path, the 
large boy continues to push sideways, perpendicular to the new 
path. What kind of a path would the smaller boy take? A circle 
seems reasonable. In this case the force is clearly inward.

2. We point out that there is always a visible (or, if invisible, well- 
known) agent applying a force towards the centre; the string that 
pulls inward, the pull of gravity on a satellite. (But if we like we * 
may imagine there is an outward centrifugal force as well; and then * 
acted on by those two forces, the visible inward one and the * 
imaginary outward one, the moving object might be treated as in * 
equilibrium - we forget its motion and imagine it remaining at * 
rest. Then we have a case of balanced forces on an object at rest - * 
a standard problem with engineers, who have long favoured * 
building bridges at rest. On that view centrifugal force is a trick * 
to reduce complicated problems in motion to problems that look * 
simpler because they are concerned with equilibrium.) *
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Demonstration with Loop-the-Loop. If the laboratory has a 
sloping runway for a steel ball, ending in a vertical circle, the 
teacher should use this for a valuable discussion. He releases the 
ball high enough up the slope to make it 'loop the loop'. Then he
asks:

'What makes the ball go round a circle? What pushes or pulls the 
ball with a real force to make it do that? It must be some inward 
force towards the centre of the loop.

'What provides that force here, at the side, half-way up the 
loop? ... Yes, the rails push inward. (Does gravity also act on the 
ball when it is there? ... Yes, of course gravity always acts. 
But it pulls vertically; and its only effect is to make the ball 
slow down a bit.)

'What provides the inward force here, at the top of the loop? ... 
Yes, the rails may push downwards; but what other force helps? 
... Yes, gravity helps - and what is more, it insists on helping 
fully, whether it is wanted or not! Look what happens when we 
have the ball moving more slowly, needing less force for its orbit. 
Gravity is too strong, and makes it fall away from the rails.'

D8

The teacher shows the notion with various speeds, and finds the 
speed at which the ball just follows the loop, with the rails exerting 
no force at the top of the loop, because gravity suffices. Then he 
asks what would happen if the rail were cut out just at the top of 
the loop. If possible, the top section of rail should then be removed, 
and the experiment tried.
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Though this experiment is worth showing just for fun, the main 
point of it is the discussion of inward forces that it facilitates.

Simple Treatment of Satellite Orbit
Before we embark on a formal treatment of satellite orbits, pupils 
should try the following simple, graphical approach.

'We are going to make a scale drawing of an Earth satellite's C9 
orbit. See if we can use that to find how long a satellite takes to 
go round the Earth, if it is controlled by ordinary gravity.

, ' Suppose we launch an Earth satellite 100 miles or so above the 
Earth. Then, since the radius of the Earth is some 4,000 miles, 
it is not really much farther away from the Earth than a stone or 
cricket ball thrown in the air. We know that for a falling stone 
the pull of the Earth produces an acceleration 32 ft/second per 
second. So a stone dropped from rest falls 16 feet in the first 
second. Any projectile does the same: instead of continuing 
along a straight line in the direction in which it is fired, it drops 
16 feet from that straight line in the first second. (Remember the 
'monkey and hunter' demonstration last Year).

'Now think of an Earth satellite travelling round the Earth in a 
circle, about 100 miles up. Instead of travelling along a straight 
tangent to that circle the projectile falls hi from the tangent 
again and again - continually - to keep in a circular orbit. In 
one second it must fall 16 feet from its straight line tangent to 
its circular orbit. If you could draw a large-scale drawing of the 
satellite orbit and mark the 16-foot fall you could read off some 
more information from your drawing. However, 16 feet would 
hardly show on any drawing small enough to get into this room. 
So we had better imagine letting the satellite fall from its 
tangent path for a longer time: say 2 minutes or 120 seconds 
instead of one second.

'In 120 seconds instead of 1 second a freely falling body falls 
16 feet x (120)2. We are using the "formula" that you met 
before: s = \atz. Work out that fall in miles. Then we can put 
that on a large-scale drawing to find out how far the satellite goes 
in 2 minutes. And from that we can predict how long an Earth 
satellite will take to go round the whole Earth.'

Then pupils calculate the fall, about 44 miles. The teacher should 
arrange to draw arcs of a circle on large sheets of brown paper for
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pupils to make a graphical prediction for satellites. We suggest a 
scale on which one millimetre represents one mile4

$ Careful drawing, or calculation, shows that, in fact, such a satellite travels 
about 590 miles in 2 minutes. That would need an arc 59 cm long on the brown 
paper; but pupils' estimates will vary considerably, so the arc should be drawn at 
least 80 cm long.

In drawing the arc, the teacher should also mark a radius near one end, to help 
the pupil to draw a tangent there.

Better still: draw an arc twice as long, with the specimen radius near its mid 
point. Then, although' draw a tangent' is still the official instruction, pupils can 
draw a symmetrical chord 4-4 cm in from the circumference there. That is more
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The radius of the circle corresponding to a satellite orbit of radius 
4,100 (4,000+100) miles should therefore be 4-1 metres.

A thin wire of length 4-1 metres anchored at one end with a pencil 
at the other end would enable the teacher to draw arcs on sheets of 
paper distributed among pupils for a class experiment. An error 
of 3 niches in that radius will make only a 1 per cent error in the final 
answer, so we should aim at ease rather than accuracy.

Pupils draw a tangent and find where the distance of fall is 44 
millimetres from the tangent to the circle. Then, given that the 
travel from the tangent point to the point they have found is a 
2 minute trip for the satellite, pupils to work out the time taken for 
the satellite to go once round the Earth. We should then give them 
a table of actual times for satellites from Ovenden's book. They 
should find that their estimate is close to the 90-minute one for 
satellites close to the Earth.

Does Gravity extend to the Moon? (Optional)
Some teachers will want to extend the satellite test to the Moon, 
without mentioning inverse-square gravity. The same 4-1-metre 
arc will serve for a piece of the Moon's orbit if we change the scale.

We tell pupils that the Moon's distance from the Earth is about 
60 Earth-radii. Then, for the Moon's orbit, instead of a scale of 
one millimetre to a mile we now have one millimetre to 60 miles.

We first try imagining that gravity extends undiminished out to 
the Moon. We calculate the fall in 2 minutes: 44 miles as before. 
With our new scale, one millimetre to 60 miles, that fall would be 
only ij millimetres - too small to work with. So we suggest 
letting the Moon travel the same arc on the diagram as we found 
for the Earth satellite falling for 2 minutes. (That was somewhere 
between 40 and 80 centimetres, according to each pupil's success 
in making the drawing.)

But now the fall of 44 millimetres from the tangent to that place 
on the diagram no longer represents 44 miles. It represents a fall of 
44 x 60 miles. How much time would a falling body need for that, 
under full gravity? Look at s = \atz. If we make s 60 times as big,

easily done with some precision. For that, paper must be long enough to take an 
arc at least 150 cm long, but need not be wider than 20 or 30 cm. (There is no 
need for the centre of the circle to be on the paper.) So a long strip from a roll of 
wrapping paper will suffice.

It is unwise to change to a less simple scale in order to fit a smaller piece of paper. 
The arithmetic will bring enough troubles without that.
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with the same a, t* must be 60 times as big. Then t must be <\/60 
times as big: that is, 7f times as big4 Then the Moon would travel 
the arc in 7| x2 minutes; and it would travel the whole circle in 
7| x the 90 minutes that pupils obtained for the satellite; that is, 
between 11 and 12 hours.

IKVESTIGATINO THE MOTION OP 
A SATELLITE HEAR TUB EARTH

Sketch the orbit to scale

MOON'S OKBIT- Same arc on sketch, radius 4'1 metres. 
R = [60] Earth Radii

.*. new scale is 1 millimetre for _6oj miles. 
Suppose "g" is still the same as near Earth's surface.

millimetres as before 
now represents: -,

44 x [60,1 miles
time taken for this arc _______
must now be f~prl f ~^~~~~ " TT————— 

2 minutes x | V60[ (because, in s = i.-at ,
or 2 minutes x '7^

And time for whole orbit 
would be 90 min x ̂ 4 
which is much too small.

x °] = (same

therefore 

therefore t = 2 min

$ Since this is a dfficult discussion, teachers whojHropose to try it with their class 
are advised to make sure that a rough value for -\/60 is known beforehand. 7J will 
serve well. _ 
(7J)a = (si)2 = ^ and ^ = 60 A -v/60 = 7f within 0-06%.
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Even if pupils' answers for the satellite varied far from 90 minutes, 
this new answer is clearly wrong for the Moon, which takes a 
month.

Therefore, if the Moon is constantly pulled from tangent to orbit 
by the Earth's gravity, there must be a greatly diluted strength of 
gravity out of the Moon.

Then we might take the Moon's month of 27-3 days for granted 
and calculate the amount of dilution. But the answer would not 
look clear and simple to beginners; so it is probably better to 
suggest an inverse-square^ dilution and try that in the calculation 
from the drawing as follows:

'If it is the pull of gravity that holds the Moon in its orbit, 
making it fall from the tangent to the orbit again and again and 
again, it must be a much weaker gravity. The acceleration must 
be much less than 32 feet/second per second out at the Moon.

'When astronomers started puzzling about this, several people 
suggested that gravity may "thin out" according to an inverse- 
square law. According to that, if gravity is so much at a certain 
distance, it is J at double distance, £ as much at treble dis 
tance ... i£tf as much at 10 times as far away from the attracting 
body.

'An apple near the Earth is pulled so strongly that it falls with 
acceleration 32 ft/sec per sec. The Earth attracts an apple as if 
all the Earth were concentrated at the centre, 4,000 miles below 
the surface, a whole Earth-radius from the apple. But we know 
that the Moon is about 60 Earth-radii away from us, 60 times as 
far from the Earth's centre as an apple. So, if gravity follows an 
inverse-square law, it must thin out by a factor ^2 when we 
change from apple to Moon. If so, free fall under gravity at the 
Moon would not have an acceleration 32 ft/sec per sec; but 
it would have acceleration 

32/60 2 or 32/3,600 ft/sec per sec.

'How would that change affect your calculation for the Moon? 
Look at 5 = \at*. If we make a 3,600 times smaller, then, for the 
same s, tz must be 3,600 times bigger: and t must be 60 times 
longer. As a result of our diluting gravity, we should expect the 
Moon to take 60 times our previous estimate for the whole orbit.

% See page 179 for suggestions concerning teaching the idea of an inverse-square 
law.
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c That is 60 x (7f x 90) minutes or 60 x (7| x 90)/(60 x 24) days: 
very close to 28 days.

'It looks as if the Moon may be "falling", to keep its orbit, with 
inverse-square-diluted gravity.'

To arrive at that result, we must use the inverse-square law - 
otherwise all we can say is that undiluted gravity is much too 
strong. We shall describe and discuss the inverse-square law and 
use it in our Newtonian prediction of Kepler's Third Law. How 
ever, to bring it in at this introductory stage may well be dis 
couraging; so we suggest that this extension of the brown-paper 
diagram experiment to the Moon should be offered only to a very 
fast group. We should tell pupils what the inverse-square law is, 
but we should not give a long lesson on it; and we should certainly 
not say that the inverse-square law is right and that they ought to 
know that already. Instead, our pupils should follow Newton in 
using this discussion to see whether gravity does 'thin out' in 
that particular way.

How Big is the Force Needed to Maintain Orbit? We explain T
that to deal satisfactorily with satellites or electrons, we must know
just how much force is needed to hold something in a circular orbit.
We say the force is given by F = ma as usual and we state that a
point moving round a circle does have an inward acceleration. We
ask pupils to feel the force. The higher the speed, v, the bigger the
force needed to hold the objects in orbit, so the bigger the central C/D4
acceleration must be. And, for the same speed, the smaller the again
radius, or the sharper the curve, the bigger the force, and therefore
the bigger the acceleration must be. So we expect the central
acceleration to go up with v and go down with increasing radius. In
fact a = v z[R. We shall offer a geometrical proof of this for those
pupils who can learn it easily. And we shall ask all pupils to give it
an experimental test.

Motion in a Circle
Necessity for mvzjR. If we restrict ourselves to a qualitative * 
description of motion in a circle, and the forces it involves, we * 
can talk generally about satellites but we cannot account for * 
Kepler's Laws and we certainly cannot show Newton's great 
synthesis for the solar system in any dear light; we can describe 
what is shown by demonstrations with electron streams but we 
cannot make any measurements and so must stop short at a very 
general picture of atoms. Measurements of beta rays and the 
working of a mass spectrometer would remain equally vague.
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So we must arrive at a = v2jR and F = mvzIR because we want that *
for several uses. If we proposed to show that simply as a piece of *
physics to be used for examinations, we should certainly find it *
difficult for many O-level pupils - and it would seem to them an *
odd piece of geometry rather than an essential piece of knowledge. *
As we use it here, it is an essential piece of knowledge and we must *
face the difficulty of providing it. *

	*
We suggest that teachers should try the geometrical derivation of *
a — vz/R, with any group that does not find it too hard, starting by *
showing clearly why it is needed - introducing the problem through *
satellites or through the electron stream in a magnetic field - then *
spending plenty of time on the geometry and algebra so that the *
derivation becomes familiar by repetition. Then pupils should put *
it to such uses that it seems worth while in retrospect. *

It is easy enough to propose that for specially able groups; but *
what about the average group for whom the derivation will remain *
puzzling? Even for them, we suggest that this is something to see, *
something to try once, or at least to see done. *

	*
Few of us intend to climb Mount Everest, but we can all appreciate *
an account of the expedition and join in it by reading or by seeing *
a film, at least to the extent of understanding some of its hardships *
and enjoying some of the successes. If, at the start, we remove the *
bogey of' being examined' and assure pupils that this is something *
they should see, and even try doing for themselves, but not some- *
thing that we propose to hammer into a compact shape that can be *
reproduced in examinations, our pupils should be old enough by *
now to appreciate this as valuable experience. *

	*
The Nuffield Physics group hopes that teachers will experiment *
with this approach - this method of talking about what one is *
going to teach and the aim and method of its teaching before one *
embarks on the teaching itself. In this, we are doing little more *
than following the good practice that any teacher adopts when he *
is explaining something to adults. He does not try to drive home *
every stage of his story until his adult listener could reproduce it; *
nor, on the other hand, does he pare away the essentials of the *
story so that the adult says it makes no sense. Like such adult *
listeners, our pupils should be able to say' I have seen that. It was *
difficult but it was sensible and from now on I can take it on trust - *
trust vouched for by what I have seen myself.' *
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Then there are slower groups for whom teachers feel convinced 
any geometrical or algebraic derivation would prove much too 
puzzling. Even in such cases, we hope that teachers will first 
try the geometrical derivation to see whether, released from the 
examination bogey, the class can appreciate it after all. (We know 
no way of finding out whether that is feasible with a given class 
except by trying it.)

Where the derivation must be avoided, we have three choices: (1) 
give up most of the physics of satellites and planetary systems, and 
atomic particles; (2) treat those things, but take out all quantitative 
discussions, so that physics seems to lose its backbone; (3) justify 
F = mvz/R by experimental tests. We hope that teachers who have 
slow groups will experiment with the last method. We can provide 
apparatus and suggestions for its use - though we wonder whether 
a slow pupil will not have as much difficulty in following the argu 
ment of the test as in following through a carefully taught deriva 
tion.

Derivation of v*/R
We suggest two methods below. Whatever method the teacher 
tries, he should preface it by considerable discussion of the general 
idea and a reassuring statement about watching and seeing it done, 
so that science is not a mystery. (In fact, if we ask pupils to watch 
this done and then later ask them to write it out for homework: 
then still later on ask them to watch it done again, we shall find 
that, given in repeated lighthearted doses, the story will both make 
sense and be remembered.)

There are several good ways of showing that an object moving 
round a circle of radius R at constant speed v has an inward 
acceleration v^jR. Our choice should depend upon the skills and 
mathematical training of the class. Two versions are suggested 
below:

1. The 'Crossed Chords' Method. For pupils who know that 
when two chords of a circle intersect the products of the segments 
of the two chords are equal, this method is probably best. It 
follows almost directly from the brown-paper experiment. It is, 
in fact, Newton's own method.

We draw a circle to represent the orbit and suppose the object, 
moving with speed v, proceeds from A to B. It may be helpful to 
continue the previous story and call the moving object the Moon. 
We draw the tangent to tie circle at A and show the fall of the
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Moon from K to B, where K is where it would have got to if there 
had been no force (Newton's Law I). We add construction lines, 
etc., as in the sketch here, marking the fall KB, equal to h, and 
labelling the same distance h on the diameter that runs down from 
A. Then, appealing to the 'crossed chords' property, we say,

then, h = x*l(2R-K).
A K

We persuade pupils to neglect h in (2R —h}. ' When you are weigh 
ing a haystack, don't worry about losing one needle. But when you 
have a needle all by itself and are trying to find how much it weighs, 
you must not throw the needle away. You must keep the h on the 
left; but you may throw away the h that is subtracted from 2R.'

Then, h = x*j2R.

x, which is equal to AK, is practically equal to the arc AB. If the 
Moon travels from A to B in time t with speed v, x = vt;

h =

but h is the vertical fall (with no initial velocity in that direction), 
with some acceleration, in time t. We use s — %atz, soh = \atz.

Then, the Moon's acceleration, a, must be v*jR.

The same holds for the motion at all places round the circle, but 
with vertical always taken to mean the direction from Moon to 
centre.
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2. The Similar—Triangles Method. We draw a circular orbit 
with a Moon moving from A to B with speed v in time t. We draw a 
long vector AP to represent the velocity of the Moon at A. This 
must be along the tangent at A. We draw another vector of the 
same length, BQ, to represent the velocity at B (it is helpful to draw 
these much longer than the radius of the circle, to lessen confusion). 
We redraw these vectors in another place nearby, both starting 
from the same point D. (As experienced physicists, we are tempted 
to do this drawing on top of the main picture, producing the second 
tangent backward to cut the first and making that intersection the 
common point D. But, with beginners, that will make the story 
much more confusing. It is important to emphasize the distinction 
between lengths, such as R, and AB, and velocities such as v.

In the second diagram we draw two vectors from D, each of length 
v and label them

' Old velocity: velocity at A' ' New velocity: velocity at B'

We ask: 'What must be added as a vector to the old velocity to get 
the new velocity?' We draw that in (shown as a broken line in the 
sketch here) and label it 'change of velocity'. (We do not need to 
give a special lesson here on subtracting vectors. We simply ask, 
'When the velocity changes direction, what must we add to this 
earlier velocity to get this later one?')

Then we join A and B to the centre of the circle and point out that 
we have two similar triangles because each velocity vector is per 
pendicular to the corresponding radius. Then we argue from the 
property of similar triangles as follows:

[Change of velocity]

[Change of velocity] =

AB 
R

AB.p 
R
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Suppose this kind of change of velocity, which is perpendicular to 
the actual motion, is related to an acceleration just like any other 
acceleration - a surprising supposition which must be tested. If so, 
we can calculate that acceleration as usual:

[Change of velocity] _ AB.p 
[time taken, A to B] ~ £[time A to B]

v AB v v zAcceleration = — ————:— = -5 .v = —
R time taken R R

Proceeding to Limit. In either of the methods above, we have *
the problem of proceeding to the limit as B approaches A. If we do *
not proceed to the limit, we are left with an approximation, essen- *
tially that of calling the arc AB approximately equal to the chord *
AB. We really want the acceleration' at an instant' when the Moon *
is at a point A and B combined; so we really want the limit. To *
keep our calculation in good form, we should put in, at an appro- *
priate place, a factor (arc AB)/(chord AB); and then we should *
show carefully that this factor tends to 1 in the limit. However, *
taking that care would be the last straw for our young pupils - *
except for those who are natural mathematicians. So we should *
avoid labouring, or even referring to, the need to proceed to a *
limit, or the method of doing so. If a pupil objects, we should *
just point out that the jump we have made becomes more and more *
trivial as we move B closer to A. *

Calculus. There are some quick methods that use calculus. In *
this case, such a method is likely to be too obscure, however quick. *
It should be avoided. We should also avoid methods that use *
trigonometry: either the sine that is used cancels out - and similar *
triangles would have been clearer - or it involves differentiation. *

*
The similar triangle method is closely related to the hodograph *
method, but we do not advocate the latter because it seems more *
sophisticated to pupils. *

Putting a = v 2/R to use. As soon as we arrive at a = v*/R we T 
should put it to use. The simplest use that looks real - and not 
artificial, like problems that ask for tension in the string of a whirl 
ing stone experiment - is the calculation of the orbital time of an 
Earth satellite. As in the graphical method, we point out that the 
acceleration of the satellite is much the same as that for a projectile
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slightly nearer the Earth's surface. So the acceleration is g. We 
write v z/R = g and take R just over 4,000 miles or 6-4 million 
metres, and ask pupils to calculate the time of going once round the 
Earth.

Here again we need a large poster of the periods of the satellites D11 
that have been launched.

Experimental Test of F = mv z/R as the Force needed for 
Motion in a Circle
We should give the new expression an experimental test. Even if * 
they find the geometry and algebra easy, pupils do not feel quite * 
happy about applying F = ma to this motion where the accelera- * 
tion is 'across the motion' never changing the speed but only the * 
direction of motion. So we should make a test of the prediction * 
that motion in a circle needs a force mv zIR. *

Comment to Teachers on Apparatus for Test. Ingenious *
physicists have devised many forms of apparatus for carrying out *
such a test. It is a tempting problem for all of us; there is a strong *
need for a test and there are intriguing opportunities for ingenuity *
and skill; so we devise apparatus for the test and then make it more *
and more complex by adding improvements. But when pupils try *
such apparatus the intrinsic difficulty of the essential idea at stake *
makes the complexity most unwelcome. So we should try to keep *
the apparatus as simple as possible, provided it can yield some kind *
of quantitative tests. We need a simple device in which a known *
mass is held in an orbit of measured radius with measured speed *
by an inward force which pupils can measure directly and com- *
pare with the calculated force F = mv z/R. *

*
Several simple forms of apparatus for this test are suggested *
below. Where a teacher has already devised and made good ap- *
paratus of his own for this test, he should certainly use it instead of *
the suggestions here. The enthusiasm and confident knowledge of *
the man who made the apparatus are very valuable in this case: *
they help to carry the pupil through the experiment with enjoy- *
ment. However, where the teacher decides to make use of one of *
the suggestions below, we urge him to resist the temptation to add *
improvements because this experiment is so easily obscured by its *
own machinery. *

Even with simple apparatus, pupils are easily confused about the T 
nature of the test. We have to explain clearly that the measured 
force (provided by some spring or weight) is the real force that
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pulls the moving body inward. The calculated force mv^jR is not 
the real force, but is the theoretical prediction, which is under test. 
To young pupils who have just been carried through the derivation, 
mv*jR seems so important that they are apt to insist that it is the 
real force and the measured value only a blundering attempt to 
approximate to what they know is really true. Unless we can 
straighten out that confusion, gently but firmly, the experiment 
may do more harm than good.

Experimental Tests of F = mv zIR
These serve as tests of the rule obtained by geometry, a = v*[R, 
combined with F — ma, and applied to this strange form of accelera 
tion perpendicular to the path.

These tests might take the form of empirical investigations to 
enable pupils to arrive at the rule a — vz/R if they do not do the 
geometry. However, we must be careful not to make the investiga 
tion too long or complicated. A single test, with the rule already 
given, is probably better for a slow group. If an empirical investi 
gation is carried out, we should be careful to distinguish between 
the form of the rule (such as its containing vz} and the absolute 
value of the force. It is much easier to demonstrate proportionality 
to v* than to show that F is actually equal to mv*IR,

In choosing among these alternative methods, and in teaching 
them, we should remember that this is strange new territory for 
pupils; so that clear statements and simplicity of apparatus and 
emphasis on the nature of the test are far more important than 
ingenuity of design in devices to ensure accuracy. Complex designs 
are almost certain to succeed for mature physicists and to fail for 
these young pupils.

^4 vo
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A. Whirling Object, Pulled by Gravity Load. The pupil C12 
whirls a small metal ball round his head in a horizontal circle by a 
string which passes through a glass tube held in his hand and carries 
a weight hung on its end below the tube. The weight can be 
replaced by a spring balance anchored to the floor and read by 
another pupil squatting beside it; that avoids bringing gravity into 
the discussion at this point.

Although this simple experiment needs several pupils to co- T 
operate in making measurements, we should be careful to make 
sure that each pupil takes his turn in doing the actual swinging. 
To a young person, participation makes the test much more real.

The 'team' (two to four pupils) measure the time for a counted 
number of revolutions. The radius of the orbit is measured from 
the 'Moon' to a mark on the string which was kept just at the mouth 
of the glass tube during swinging. The force actually needed to 
hold the 'Moon' in orbit is the weight of the load hung on the 
lower end of the string. That force is compared with the theoretical 
force mo*IR.

A single set of measurements, repeated by diiferent pupils and 
averaged, will give the 'formula' one overall test; and that might 
suffice for pupils who have done the geometry.

For pupils who are using this as an empirical approach to the *
formula, it is useful to try several diiferent forces for the same *
radius of orbit, and look for a relationship between v and force. *
And they should try at least two different masses of 'Moon'. *
Then they might change to a different radius; but this is a more *
complicated test, since the radius is involved in deriving v from *
their measurements. **
With the encouragement of interest in satellites and electrons, *
slower pupils may get through this investigation with success; but *
we must prepare for it carefully and maintain interest throughout *
the experiment, restricting it to a single test if necessary. *

B. Toy Railway on a Turntable. This is perhaps the easiest of C/D13 
all models for pupils to understand. The turntable is a horizontal 
disc of hardboard two or three feet in diameter, driven by a small 
electric motor, or by hand if necessary. A section of model railway
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line extends from the centre to the edge along a radius, and a 
small toy wagon runs on it. The wagon is pulled towards the 
centre by a spiral spring of steel wire. (It is important to make 
this spring of a wire that is easily available, because it will get 
damaged and will have to be replaced frequently.)

The turntable is kept rotating steadily and the position of the 
wagon is marked while the rotations are timed. A small flag will 
serve as marker for the wagon's position, or an electric contact 
can be arranged - but even that welcome help will make a dis 
tracting side issue for slower pupils.

Then, in a separate experiment with the turntable at rest, pupils 
measure the force which the spring applies when stretched to the 
mark in which the force is measured by a separate statical experi 
ment. This is with a spring balance (or a load hung over a pulley).

Pupils could make a series of measurements as in A. This arrange 
ment is unfortunately sensitive to levelling of the turntable. 
Unless the turntable is held firmly level and the whole device well 
constructed it will afford only a rough test.

This turntable experiment should be shown as an additional *
demonstration if method A is used as a class experiment. But if this *
turntable experiment replaces A, it should be given as a dass *
experiment. *

*
There are many variants of B in which a moving wagon or *
sliding bob is held by a horizontal spring while the whole con- *
traption is rotated faster and faster until some device shows that *
an agreed radius is reached. We fear that these do not look like an *
obvious Moon in orbit to the eye of a beginner. He sees them as *
ingenious devices for testing something; and he can follow instruc- *
tions and carry out the test, but he does not understand dearly *
what that' something' is. So we do not recommend them. *

C. Object Whirled on String, with Spring Inserted to C14 
Measure Force. This is somewhat like A, but the string is 
attached to a ring held by the experimenter, instead of passing 
through a tube to a load. The tension in the string is measured by 
inserting a length of spiral spring of steel wire with a simple device 
to show when the spring is stretched by a standard amount.
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The experimenter whirls a metal ball (mass 50 to 100 grams) 
round his head in a horizontal circle, as in method A. Part of the 
thread between hand and revolving ball is replaced by a stretched 
spiral spring of light steel wire (Fig. i).

//tit I i>7

The spring serves both to produce a variable force - so that the 
motion is stable:}: - and to measure that force.

To prevent accidental overstretching of the spring, its ends are 
connected by a loose thread (Fig. ii).

In whirling, the experimenter tries to keep the spring stretched 
enough to pull the thread almost, but not quite, taut. We may call 
that the 'standard stretch'. (See Fig. iii.)
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To prevent that thread from getting tangled, it is carried through 
the coils of the spring (Fig. iv).

$ If the revolving radius consisted of spring all the way out, and no thread, and if 
the spring had negligible length when unloaded, the motion would not be stable. 
The frequency of revolution would be independent of radius and the experiment 
would be confusing and perhaps impossible. But, with the proportions suggestedj 
it works well.
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As Fig. iv shows, the thread ends with a tiny, weak spring. That 
'sub-spring' is only used as a signal. It does not contribute signi 
ficantly to the central force. Some signal is needed when the 
device is being whirled to tell the experimenter how much the 
main spring is stretched. Then he can perform a subsidiary 
experiment to measure the tension of the spring, and the length 
of the orbit radius for exactly that stretch.

It llItn

In the subsidiary experiment (shown in Fig. v) the spring is hung 
vertically and stretched by added loads till the signal (the sub- 
spring) shows the stretch is the same as in the main whirling 
experiment. Then the weight of the total load (including the ball 
if it is kept there) gives the actual force the spring must exert 
during whirling. And the length from the ball up to the ring that 
is held in whirling, gives the orbit radius.

The sub-spring is a tiny, weak coil of very thin wire - steel from 
an old wire recorder, or very thin manganin from a high resistance, 
wound on a pencil. It is easily damaged and should be easy to 
replace. It is attached to the thread through the main spring, as in 
Fig. iv. Since that sub-spring would easily get overstretched, it too 
is given a loose safeguarding 'sub-thread' joining its ends, as in 
Fig. vi.
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Then, when the device is whirled faster and faster the spring 
stretches more and more until it begins to pull its main safe 
guarding thread taut. The sub-spring remains unstretched, with 
its sub-thread loose, until the safeguarding thread is just taut. 
Then, at that speed, the sub-spring acts as a signal.

So the experimenter should speed up his whirling until he sees the 
sub-spring partially stretched, its sub-thread almost taut. Then he 
tries to maintain the device at that radius, and make his measure 
ments (Fig. vii).

The device is attached to a ring which slips loosely on a wooden 
dowel held in the experimenter's hand (Fig. viii).

(viii)

During the whirling, the radius, from ring to ball, is not horizontal: 
it moves round a shallow cone. This would appear to introduce a 
cosine factor. However, (a) the cosine is very close to 1; and (&) 
further examination of the geometry will show it occurs at two 
places and cancels out!

This device sounds complicated. It is not as simple as A but some 
teachers consider it behaves more consistently. If actual force and 
theoretical force disagree by less than 2 % we must thank good luck; 
between 2% and 7% skilful manipulation; above 7% careless 
experimenting or arithmetic can be blamed.

A number of physicists have devised modifications - ranging from 
a small piece of red tape at the sub-spring to a set of traffic lights - 
but the form described seems the simplest that works well. Even 
so it has the severe disadvantage of being a gadget, 'special' 
apparatus to test a general piece of natural behaviour; so it is not 
recommended strongly.

D. CO2 Puck making circular Orbit on Glass Table. Use
the device suggested for D59 (page 197) and pull the thread up 
with a spring balance to measure the force.
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Comments on Tests of F = mv z/R
What is being Tested? Again and again in every discussion 
with pupils, we need to emphasize the order of reasoning in the 
test, to avoid letting the logic be reversed:

'The actual force is the pull of the string or the pull of the spring, 
the pull that you measure. The force that you calculate by work 
ing out the value ofmv*jR is the theoretical force, the force that 
you hope will be a good prediction of the actual force. You are 
doing the experiment to find whether your hope is reliable. It is 
mv*jR that is under question, not the actual pull which you 
know is true.'

A Plea for Simplicity. Whatever device is used, we hope that 
it will be simple and cheap. An expensive device would have 
only limited use as a class experiment and a complicated one will 
obscure the real nature of the test. Even if the simple cheap one 
is too rough in its behaviour to afford an accurate test, pupils are 
now at the stage when they can distinguish between an experi 
mental result that is c wrong' - i.e. contrary to expectation - and one 
that is right but clumsy.

In carrying out these tests as a class experiment and perhaps illus 
trating them by a further demonstration, we must be careful not to 
let the test grow too heavy so that it seems to pupils more impor 
tant than the uses ofmv^jR to deal with electrons, satellites and the 
whole solar system. A systematic investigation in which the force is 
measured for a series of different orbit-radii, all at the same speed, 
then for different speeds, and so on, may seem tempting to well- 
trained physicists, but it would lead our young beginners into dis 
couragement rather than keen understanding.

It may even be better to go ahead to uses ofrnv^/R and fit the test in 
later when there is a good opportunity. Pupils should now be at an 
age when they understand that the intermediate stages between the 
general idea of an object moving round a circular orbit and the 
final result that the acceleration is vz/R inwards are not mysterious 
pieces of abstruse science or mathematics but consist of ordinary 
geometry and algebra. Even if the whole story of that connection is 
kept in a black box, they should know that the box contains only 
the ordinary gears and levers of algebra and geometry that they 
have met before. If they have gone through some earlier derivations 
(like Galileo's geometrical derivation ofs = ut+^at2-) those should
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serve as assurance to enable them to take the new derivation for *
granted. We should not have to assure pupils that we are honest; *
but we do have to assure them that they are not muddled. *

Uses of mvz/R
We shall use our ability to calculate the inward force (necessary *
to maintain an orbit) for electrons, etc., and for satellites and for *
our Newtonian study of the solar system. In each case, we need *
some new knowledge before we can put the central force expression *
to use: the force on charges moving across a magnetic field; the *
inverse-square law of gravitation; and some historical knowledge of *
planets, etc. *

	*
Since none of the uses can be shown at once without such extra *
knowledge, we choose electrons first because we can continue the *
work of Year IV with them. *

Note to Teachers: Uses of Magnetic Fields in High-energy *
Physics. When we come to teach the effect of a magnetic field on a *
stream of electrons and use it to measure elm for the particles in the *
stream, we may feel discouraged and say, 'Why do we bother to *
derive v 2/R just to make this difficult measurement? Why do we *
carry pupils through this business of using magnetic fields to bend *
the stream to an orbit, just to find e\nfi' Then it may be wise for our *
own encouragement to keep in mind the great importance of *
magnetic field deflections in modern physics. *

	*
In high-energy physics, we accelerate particles such as protons to *
huge energies - thousands of millions of electron-volts - then *
direct them on to a target, then do experiments with the sub- *
atomic particles that splash out from the bombarded target. In *
such work, magnetic fields are used for four purposes. *

a. Holding the original protons (or electrons) in orbit so that *
they can be accelerated again and again, each time they go round *
a circular accelerator *

b. Sorting out the products of bombardment. Even if the *
products are all sub-atomic particles of the same mass, say *
mesons, they may have charge +e or — e or 0. In the stream *
from the target in a big machine to the experimental area, we *
find an electromagnet sorting the stream into three beams, *
positive, negative and uncharged, which fly on out through *
different portholes to different experiments *
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c. Measuring a particle's momentum. Deflection by a magnetic *
field involves a particle's mo as well as its charge. Cloud-chambers, *
bubble-chambers and other apparatus are often crossed by a *
magnetic field to make momentum measurements that help dis- *
tinguish particles - as in our own class experiment to measure *
ejm for electrons *

d. Focusing a stream of particles. When a beam of charged *
particles emerges from a slit or gun muzzle, it is seldom a thin, *
threadlike stream (as it is in the fine beam tube): it is usually a *
fan of diverging streams. A specially shaped magnetic field can *
be used to focus these streams by bending them so that they do *
not diverge more, or even bending them so that they converge *
to a sharp spot on a target or recording film. *

	 *
With all these uses, magnets in many forms are to be found in use *
everywhere in high-energy research laboratories. *

	*
These uses of magnets in research are not things to teach our *
pupils now. But it may be useful to remember them when we are *
teaching. *
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Chapter 2 

ELECTRONS IN ORBITS
Electron Streams and Magnetic

Fields; Measurement of e/m;
Atom Models



Demonstrations of Electron Streams
We show the following demonstrations of electron streams 
(cathode rays) from hot cathode tubes:

Straight line streams (cathode rays through a slit splashed on to D15 
a screen that glows when bombarded)

Fine beam tube D16 

Casting shadows (Maltese cross) D17

An 'Electron Gun'. If it is available, we show the large diode D18 
tube again, not as in Year IV for a study of its characteristic 
current-p.d. graph, but to point out that if we punch a hole in 
the anode (plate) we have an electron gun.

Discussion of Electron Gun
Weaskwhatchangesoccurinthespeedof electronsas they boil off the T 
glowing cathode. They leave the filamentwith very small speeds, but 
we apply an electric field that accelerates them towards the plate.

Suppose each electron has a charge e coulombs, and suppose a 
voltmeter connected between filament and plate shows we have 
applied a p.d. of V volts. Then the battery we have connected there 
gives V joules to each coulomb passing from filament to plate. (We 
must make it clear that this is nothing to do with the battery used 
to heat up the filament-we could use a Bunsen burner for that, but 
for practical difficulties.) Then each electron gains energy eV joules.

But, unlike electrons in a wire, these electrons have nothing to hit, 
nothing to give energy to, as they travel across towards the plate. 
All the energy they gain must be retained as K.E., until they hit the 
plate. Those that hit solid metal are brought to a stop, and share 
out their K.E. as heat among the atoms of the metal. (Any X-rays? 
At most, only a very tiny fraction of the collisions produce X-rays, 
even in the best of X-ray tubes.)

Those electrons that arrive at the hole we have drilled in the plate, 
the' gun muzzle', keep their K.E. and go on through the hole. After 
that (unless we add a further battery) there is no more acceleration: 
they keep a constant speed until they hit some barrier.

Pupils will soon need to have a clear idea of such an electron gun, 
from which electrons emerge in a stream, and thereafter continue 
with unchanging speed. And they need to understand why we say 
the K.E. of each such electron is equal to its charge times the gun 
voltage: \mvz = eV.
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We might then show a crude model of a herd of marbles running 
down a sloping board to crash into a wall - except for those that 
hit an opening in the wall and continue along the table. The slope 
corresponds to the electric field we apply inside the gun.

•u-

More Demonstrations of Electron Streams
Deflection by electric fields (fine beam tube or other e\m tube) D19

Effect of magnetic field: fine beam tube with magnetic field D 20

The last demonstration shows a circular orbit and therefore tells us 
that the magnetic field must exert a force sideways on the stream of 
electrons. We therefore go back to the electro-magnetic kit and ask C21 
pupils to repeat the experiment with a wire carrying a current 
placed hi a magnetic field. However clearly they seem to remember 
this from earlier Years, they should certainly try it again at this 
stage (see Guide to Experiments III}.

It is not necessary for pupils to continue from that to make a D22 
model electric motor all over again; but we may profitably show 
a large motor to emphasize the fact that this force on a current is 
not trivial but is a. very important one which can be very large and 
which forms the basis of much modern machinery.

Discussion of Force on Moving Charged Particles
Pupils now know that there is a force on a wire carrying a current T 
across a magnetic field; that the force is proportional to the current, 
and, presumably, proportional to the length of wire. A moving-coil 
ammeter, with visible works, shows that force in action; and its 
uniform scale shows the force is proportional to current, if we trust 
Hooke's Law for the hairsprings.rj: We express this knowledge in 
the form:
$ If one wishes to take the modern definition of current-measurement by mag 
netic effects, this proportionality offeree and current is implied by the definition 
itself, and no experiment could be needed to 'prove' it. Even so, the ammeter 
illustrates it well.
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force F = (B) (current, C) (length of wke, L), F = B.C.L 
where B is a measure of the magnetic field (or rather induction) 
combined with a constant that is determined by our choice of 
units. (In our present course, we need not discuss the value of 
that constant or the units for magnetic field, because we only use 
one magnetic field. We use it to deflect a stream of electrons in 
our measurement of elm; then we estimate the value of B for the 
same field by a direct measurement of the force it exerts on a 
known current in a wire.)

We need to transfer that knowledge from the case of a current in a 
wire to the case of a stream of charged particles. That is a very big 
and difficult step for pupils ; and we should comfort them by telling 
them it was a very big and difficult step for all scientists when the 
well-developed theory of electric circuits and forces had to be 
extended to electrons, etc., late in the last century.

•-

The Argument. We draw a section of wire AB of length L 
containing N electrons each of charge e and we suppose that when 
there is a current C, the electrons drift along with speed v from A to 
B. We post an imaginary observer at the 'outgoing' end B and ask 
him to count electrons like a small boy counting the cars as they go 
by. He starts counting when an electron emerges at B. The electron 
that is at A at that instant arrives at B some time, t, later having 
travelled distance L with speed v. In that time t, all the N electrons 
in the wke between A and B arrive at B. Therefore in time t the 
observer counts a total charge Ne and says the current is Nejt. But 
length L is vt.

.: CL = (Afe/0 (vf) or Nev

We assume that the force on current C through a length of wke L 
is BCL, where B is a constant, involving the strength of the mag 
netic field. Then the force is also BNev.

Therefore the force on a single moving charge is Bev

62



Like the derivation ofvzjR this is a difficult sophisticated argument 
which will not succeed with young pupils unless we preface it with 
two encouragements: (1) We show pupils that we and they need the 
result badly; (2) we assure them that this is not a rigmarole that 
they must learn for reproduction in examinations. This is some 
thing high up that they can only just reach to touch: not inaccessible, 
but not to be fully grasped. They should enjoy the privilege of 
touching it; but then need only remember that what they saw did 
make sense and was not mysterious nonsense.

This is a place in our teaching where a short animated film would 
be helpful. There is a danger that animated films will show what 
we think 'ought to happen' - in some simplified scheme that we 
imagine - rather than what does happen. But here we need to show 
an unfamiliar piece of 'geometrical' reasoning rather than an un 
familiar phenomenon.

Current Balance to Measure Force due to Magnetic Field.
In all this, the constant B remains unknown. It contains the strength 
of the magnetic field. Its value also depends, of course, on our 
choice of units and of 'system of units', which in electricity and 
magnetism often contains natural constants relating to the proper 
ties of materials and even the properties of vacuum. Here, we shall 
not go further with the nature or value of B but shall measure its 
value by a direct experiment on a known sample of current in 
whatever magnetic field we use for electrons, etc. For that we must 
use a simple current balance.

We suggest a simple design that will weigh the force on a short 
section of straight wire in the magnetic field of the Helmholtz 
coils used for the electron stream.

D23
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(For example, suppose the 'current balance' has a test wire of 
length 20 centimetres, 0-20 metre, that carries a current 20 amps. 
Suppose when placed in the magnetic field of the Helmholtz coils 
the test wire needs a load of 0-5 gram hung on it to restore balance. 
Then the force is 0-005 newton. Then B has the value 0-00125 for 
the Helmholtz coils carrying whatever current they are carrying. 
The force on a charge e coulombs moving with speed v metres/sec 
across that magnetic field is 0-00125 ev newton.)

That needs demonstration and careful explanation; and then it will * 
be used for a measurement of e/m. *

Measurement of elm
Pupils should use the fine beam tube, taking it in turns. This is a C24 
very important 'atomic' measurement and it should if possible be 
treated as a class experiment.

Although this should be a class experiment, the teacher may want 
to run a demonstration of it right through first. With any except a 
fast group, we should go through the calculation completely in that 
demonstration but ask the pupils not to make any record of it and 
then leave them to carry out their own calculation when they do the 
experiment as a class experiment.

This is a grand experiment, perhaps the most impressive one in the 
whole course in which pupils participate. There is a serious danger 
of both the doing of the experiment and its result being swamped 
by the amount of earlier teaching to be remembered - ideas, 
definitions, relationships. To avoid such a disappointing fate, we 
need to start with a clear reminder of the aim of the experiment 
and an offer of considerable revision.

We should review the meanings of electric charge and p.d.; the 
definitions of newton, joule, coulomb, volt; the idea of electric 
field; the name' electron-gun' and its meaning; the idea of electrons
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accelerating in an electric field in a vacuum, and of their continuing 
with constant velocity after that. Of course, we should not go to the 
other extreme of over-tedious preparation. This is a matter for 
wise judgment in offering revision just when it is needed.

Electric Measurement: Gun Voltage. In a hot - cathode tube, 
such as the fine beam tube, all the electrons that emerge from the 
muzzle of the gun have the same kinetic energy, equal to the 
electron charge times the gun voltage. Therefore we can write

eV = %mv z ... (I)

This provides one of the two pieces of experimental information 
that we need. The effect of a magnetic field provides the other.

Note to Teachers: Schemes of Measurement for ejm. In
making measurements on electron streams (or streams of any other 
charged particles, such as positive ions) there are two quantities 
that we do not know: ejm and v, the speed of the particles; so we 
need two separate measurements. Any measurement of the effect 
of an electric field yields e/mv 2. Any measurement of the effect of a 
magnetic field yields e/mv. If we make a measurement of each of 
those two kinds, we can extract ejm and v; but it is no good making 
two measurements of one kind instead. For example, if we measure 
the gun voltage used to accelerate the electrons (which gives them 
kinetic energy) and measure the deflection of the stream by an 
electric field, we have two measurements of the same kind; and 
each will tell us only ejmv2.

The reason why early experimenters, such as J. J. Thomson, 
used electric field deflections instead of the gun voltage was because 
they could not command streams of particles which all had the 
same kinetic energy: their particles were manufactured in the 
plasma-like mess in a discharge tube and ranged in energy from 
the full applied voltage downwards. Even that applied voltage 
was often quite uncertain in value. No wonder they used electric 
field deflections and had to look at the sharp edge made by the 
particles with maximum energy. No wonder J. J. Thomson spread 
the positive rays of varying energies over a parabola, in his brilliant 
experiment that proved the existence of isotopes and led to modem 
mass spectrographs.
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However, those are now historical methods, dating back more than 
half a century in the rapid history of atomic physics; and with 
our pupils we should not treat them as part of modern knowledge 
but should relegate them to special studies in the history of science. 
Moreover, they were conducted by master physicists to whom the 
geometry of electric field patterns and fringe effects were child's 
play, in contrast with our pupils for whom every simplification 
of mathematics adds greatly to the chances of understanding.

Even for sixth-form physics specialists, some critics wonder 
whether the historical methods deserve attention when newer 
methods and further knowledge are pressing for inclusion. If 
we could listen to colleagues in another science discussing great 
experiments in their history, such as a brilliant investigation of 
nitric oxide in a mixture with air - in an age when even names of 
gases were confusing - we may share those colleagues' doubts about 
use of historical teaching; and we should turn those doubts upon 
the teaching of our own modern science.

The early experimenters had one useful trick. While one of their 
measurements was made with a single applied field (usually mag 
netic) the other was made with electric and magnetic fields, applied 
simultaneously, adjusted to produce no deflection - and that gave 
•o. That might seem to offer a very simple way of making measure 
ments ourselves with a hot cathode tube containing large plates for 
electric field deflections. Then the forces exerted by the two fields 
must be equal and opposite; and we can state that as an equation 
without having to measure any deflection. But for any simple use 
of this method, the two fields must be 'co-terminous', they must 
extend over the same region of the path of the stream. We cannot 
secure that in any available apparatus. So we could only use this 
method for very rough measurements. And, having obtained v by 
this null method, we should still have to measure a deflection to 
obtain elm as well.

Instead of making two measurements (one with the electric field, 
one with magnetic field), we could make one of those and do a 
separate direct experiment to measure v. The latter is done by
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some form of 'chopper': the stream passes through two slits in *
screens far apart, with synchronized' valves' to interrupt the stream *
just before each of the slits. The' valves' are usually electromagnets *
carrying rapidly alternating current, whose field swings the stream *
off the slit, so that it can only pass through the slits in periodic *
bursts. If the succession of bursts gets through both slits we know *
the time of travel between one slit and the next in terms of the *
frequency of the oscillating deflecting field. Although this chopper *
method has been used for electrons (and for positive ions) it is *
much too difficult for a teaching demonstration. (We might show *
it by film.) *

Measurements. So, in our experiment, we must make measure- T 
ments with an electric field and with a magnetic field. We suggest 
that the electric field measurement should be that of a gun voltage, 
used as in equation (I) above.

Magnetic Measurement. The magnetic field should bend the 
path of the stream into a circle whose diameter pupils can measure. 
We first remove the tube and place the current balance in the same 
region of the magnetic field and measure the force on a known 
current in a known length of wire.

Then we know B in F = BCL = Bev
Then,fororbitBev = mv*IR . . . (II)
and /?, or rather the diameter 2R, must be measured.

Measuring the Orbit. The orbit is seen as a faintly glowing T 
circle in a glass bulb in an almost dark room. How can the teacher, 
let alone the pupils, measure the orbit-radius quickly and easily? By 
holding a ruler up in front and making a guess at the orbit diameter. 
That will yield rough estimates of v and e/m; and, in our exploration 
of the micro-world of atoms, rough estimates are good science. We 
might expect to be correct within 10%. Such a guess at 2R should 
be correct within 10%, certainly within 20%. We ask pupils:

' Hold a ruler up in front of your neighbour's face and guess the 
distance between his ears. Yes, you may hold the ruler above his 
head if you prefer. Can you guarantee your estimate within 10 %? 
20%? A 20% error would be more than one inch.'

The fine beam tube has been used for teaching in many kboratories. *
The measurement of orbit diameter is difficult; and it has a compli- *
cated history of attempts to make it easier. Teachers have devised *
skilful schemes for measuring it with some precision - illuminated *
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scales, double scales to avoid parallax, special callipers, special 
image projectors, observing telescopes, etc. These do facilitate 
fairly precise measurements; but they also make the experiment 
more complicated and difficult for pupils to see and remember. 
Even when handled by the teacher with considerable practice, 
any such special device adds weight to an experiment that is already 
almost too heavy for many a pupil.

Furthermore, if we emphasize measures to improve accuracy we 
are missing the point of the experiment: at this stage it is to bring 
pupils into contact with a real measurement of electrons. The im 
portance lies in their seeing and doing, in the principle of the 
experiment and its general success. Accurate measurements can 
come at other times and places. For average pupils, a successful 
dive into the micro-world to make a real measurement should be a 
great achievement. Emphasis on accuracy might make the whole 
business too hard; or, just as bad, it might turn the experiment 
into an anxious game to' get the right answer'. Even with very able 
pupils the idea that it is good science to make a rough estimate first 
we should emphasize and make a rough measurement. Then if 
those pupils want to devise refinements for accurate measurements, 
well and good: they should repeat the experiment as they wish. 
(Even then, we hope teachers will point out the contrast between 
making an estimate of a fundamental quantity and trying to get the 
right answer.)

Therefore we suggest that both teacher and pupils should estimate 
the orbit diameter simply by holding a ruler outside the tube. 
Since the room must be dark, it is easier to use an illuminated 
transparent ruler. We suggest a Perspex ruler with a small electric 
lamp taped on at one end, the bulb itself covered with black tape 
to cut off direct light. If the ruler graduations are not bright 
enough, stripes a centimetre wide should be painted on alternate 
centimetres with red nail polish.

The best modification so far produced forms a virtual image of 
an illuminated scale inside the tube, in the plane of the electron 
stream. A vertical sheet of clean plate glass is placed just in front of 
the tube. An illuminated scale is placed in front of the sheet at such 
a distance that the image of the scale, behind the sheet, is in the 
middle of the tube. This does make measurements easier; but we 
do not recommend adding this complication except with a very fast 
group.
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Calculating Electrons' Speed and e/m from the Experiment.
The orbit-diameter 2R is estimated and the gun voltage V is read. 
Keeping the magnetic field unchanged (same current through the 
coils), we put the current balance in the place of the tube and 
measure the force on a known length of wire carrying some 
measured current. Substituting in F = BCL gives us B for use in 
F = Bev. (Since we are going to use the latter for F in F= mvzjR, 
we must express the force measured with the current balance in 
newtons.) 
Then we have all the measurements we need for use in

(I) eV ' = \mv* and (II) 

to find v, the electrons' speed, and ejm their charge/mass ratio.

But hi this new elaborate experiment, even the algebra and arith 
metic can become confusing. It is not that the algebra is too difficult 
for pupils, but it delays their seeing the physics. Therefore we 
should ask for v first, not elm. There are several advantages:

a. The speed, v} is a simple, clear property, easily visualized. Pupils 
can have little doubt about the kind of thing they are working out. 
(On the other hand, e/m is a strange quantity, not necessarily 
appealing to beginners - though we ourselves know its importance 
in the historical development.)

b. v emerges directly when we divide equation (II) by equation (I). 
(To obtain elm directly we must square one equation before 
dividing: a trivial extra burden, but just enough to lose some 
pupils.)

c. The huge value for v is astounding to beginners : the value ofe/m 
is not.

C24

*
*
*
*
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Teachers, familiar with the history of electron measurements, 
knowing that we must proceed to elm for an essential comparison 
with protons, are tempted to carry the algebra through to e/m and 
obtain a value of that first - and of course their pupils can follow 
that.

We urge teachers, for reasons given above, to proceed to -o first. 
Then we argue thus:

(II) Bev = mv*IR \ Bev mv*/R . Bv 2
(I) eV = imz> 2 J ' eV %mv* V R 

:. v = 2VJBR and we calculate v from that.

Results. The estimate of v is affected by errors in the current 
balance experiment as well as those in the electron stream measure 
ments. However, teachers may find it a help to keep some values of 
v in mind for use as rough checks. The following are correct 
within 1 percent:

For gun voltage 100 volts electrons have speed 6 x 10 6 metres/sec
Then for 140 volts 7 x 106 metres/sec

180 volts 8 x 108 metres/sec
230 volts 9 x 106 metres/sec
285 volts 10 x 106 metres/sec

We should pause there, and comment on the huge value of v for 
quite a small gun voltage, one or two hundred volts. Speaking in a 
sloppy, qualitative way, we might say that this means that e is 
enormous compared with m. (Of course, we cannot, as good 
scientists, compare the numerical values of two utterly different 
quantities like that. We mean that in comparison with the charges 
we can place on large masses, the electron's charge is enormously 
bigger than we would expect for something of its mass. More 
definitely still, when we know the constants in Coulomb's Law and 
the Law of Gravitation, we find that the electrical repulsion 
between two electrons is so enormously greater than the gravita 
tional attraction between them, that the latter would be negligible.)

We may point out that a 'chopper' experiment somewhat like the 
one used to measure gas molecule speeds can be used to measure v 
directly. It gives values that agree with this less direct measurement.
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Then we substitute the value we have calculated for v in Equation C24 
(I), and calculate elm.

Results. The value for elm is 1-76 x 1011 coulombs per kilogram. 
The most difficult measurements to make accurately are the orbit 
diameter and the current balance force. (Even if we replaced the 
latter by magnetic field strength calculated from current and coil 
dimensions, we should still expect an uncertainty of several per 
cent.) So we should not claim this as a very precise measurement in 
any case.

A Rough but Very Important Measurement. Here, with our 
rough measurements, errors up to 40% may well be expected. 
A large error is disappointing. To avoid spoiling the success of the 
experiment by that disappointment, teachers are urged to discuss 
the matter with the class beforehand.

'This will be a rough measurement. It will not be accurate 
because we cannot get inside the bulb and measure the circle 
precisely: and our current balance will make a rather rough 
measurement. But the result will be real knowledge of electrons. 
You will find out how fast they move from this gun, also the 
proportion of electric charge to mass for each single electron. 
The experiment will be rough, but worth doing.

' Suppose the speed for 100 volts on the gun is really 10 miles a 
second, and our rough measurements give 7 miles/second in one 
experiment, 13 hi another, and even 20. You would still have a 
very useful idea of the electrons' speed. Do you want to try it, 
knowing it is rough?'

Importance of e/m Measurement. While the value of e\m is to T 
us an intensely interesting piece of atomic information, it may 
seem to pupils a dull thing for us to work out unless we advertise 
its importance by pointing out two things:

1. This is a piece of information about extremely small things, 
individual electrons, information that we obtained from large- 
scale measurements. We never applied a microscope to our experi 
ments. We never counted some vast number of electrons or alpha 
particles or anything else. We made ordinary-sized measurements 
and obtained atomic information.
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2. We can compare this measurement of ejm with e/M measure 
ments for other 'atomic' particles: the ions that carry currents in 
solutions. (And we should assure pupils that ions in gases have 
similar values ofe/M.~)

If our group of pupils did not see water electrolysed and the 
products measured in Year IV we should at once do that experi 
ment. An ammeter and stopclock tell us how many coulombs pass 
through the electrolysis apparatus. From the measured volume of 
hydrogen produced, we calculate its mass. (We have to use the 
density of hydrogen but even if we do not make a separate measure 
ment, pupils should accept that as a piece of data similar to the 
result of the measurement for air which they have seen and done.)

We point out that it seems very likely that the current in 'water' 
(= water+acid) is carried by particles of hydrogen, each of them 
carrying the same size of + charge. In Year IV, we suggested a 
demonstration experiment, to show that the quantity of hydrogen 
liberated is directly proportional to current and to time and 
therefore to the total electric charge carried across. This does not 
prove that the hydrogen is travelling across as atoms all alike or that 
those atoms, if they exist, all carry electric charges of the same size; 
but those are the easiest assumptions to make. Measurements with 
hydrogen show that: One kilogram of hydrogen is liberated when 
96 milh'on coulombs pass across.:}: If this has not been shown in 
Year IV or in Chemistry, it should be done now.

(Pupils can see oxygen being liberated at the other electrode; and 
they have probably heard about negative ions travelling in electro 
lysis as well as positive ions, though in the opposite direction. So 
they may object to our saying that all the current is carried by 
positive hydrogen ions alone. Unfortunately that is both true and 
untrue, and the detailed story would divert attention from the 
essential discussion here. In the middle region between the elec 
trodes, the current is carried by positive and negative ions moving 
in opposite directions with different speeds. But very near an 
electrode ions of one kind are driven away when electrolysis starts, 
and the current is then carried wholly by ions of the other kind, 
which therefore have to move faster in that region, just before they 
arrive at the electrode.)

$ More precisely 96-5 million coulombs for 1-008 kg of hydrogen. This makes 
ejM 95-7 million coulombs for 1-000 kg of hydrogen.

72



If the carriers (ions) all have the same charge and mass, eJM for a T 
hydrogen ion must be 96 million coulombs/kilogram. We compare 
that with the value obtained for the electrons in our experiment.

about 108 coulombs/kg about 2 x 1011 coulombs/kg 
for H ions for electrons

The value for electrons is nearly two thousand times greater. Elec 
trons must have two thousand times bigger charge or two thousand 
times smaller mass, or some combination of those disproportions. 
We cannot give pupils clear experimental evidence that the charges 
are the same in size: but we can assure them that a number of 
different types of experiment converge to indicate the same size; 
and Millikan's experiment suggests that all charges on ions are one 
electron charge or a multiple of it. And we point out that if a hydro 
gen ion is made by knocking one electron off a neutral atom, the 
charges must be equal and opposite. All that is a mixture of re 
assurance and plausible assertion, which is well vouched for in our 
own experience but not in what we can show to pupils.

If we agree that the charges are the same size, electrons must be 
very much lighter than atoms. In fact the electron has a mass only 
1/2000, or more accurately 1/1840, of the mass of a hydrogen 
atom.

Incidentally, at this point we should give the hydrogen atom which 
has lost an electron a name, a 'proton'.

Mass of Electron; Mass of Proton; Avogadro Number
Since pupils have heard about Millikan's experiment in Year IV T 
and have been told the result, e = 1-60 x 1Q-19 coulomb, they can 
now calculate the mass of a single electron.

&Mass electron m = (mle\.e = —elm

1-6 xlO-19 coulomb . ._,,,.,= 9 x 10-31 kilogram
1-SxlO-11 coulomb/kg

We can also work out the proton's mass though that may well 
have been done in Year IV, as soon as Millikan's experiment was 
done.
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Mass of proton (from Millikan's experiment and electrolysis) 

1 -6 xlO-19 coulomb
9-6 x 10 6 coulomb/kg = 1 -67xlO-27 kilogram

And thence the ' Avogadro number', the number of molecules in T 
a mole. The mass of a molecule of hydrogen, H 2, is

2 x 1-67 x 10~27 kg or 2 x 1-67 x 1Q- 2* grams

So the number of molecules in 1 mole of hydrogen, 2 grams, is:

(2 grams)/(2 x 1-67 x 1Q- 24 grams) or 6 x 10 23 molecules.

600000000000000000000000 molecules in a roomful of hydrogen, 
air, or any other gas.

We are beginning to find our bearings in our exploration of the 
micro-physical world.

Positive Rays: Atomic Ions
We should treat positive rays briefly, since we cannot give a * 
convincing demonstration of their deflection by electric or magnetic * 
fields, and we certainly cannot make any measurements. *

The production of positive rays in discharge tubes is a very D26 
complicated business in which bombardment by ions, electrons and 
X-rays all play a part, and we suggest that that should be left to 
the historians of science. A discharge tube should at most be shown 
as a pretty sight. Instead we should describe modern methods to 
pupils briefly.

We ask how we might obtain a ' positive ion', an atom or molecule T 
that had lost one electron.

'What would you use if you wanted to knock an electron off an 
atom?:f: What size of cannonball would be best if you wanted to

$ The real story is much, more complicated. An ion, of atomic mass, moves far 
slower than an election with the same JCJJ, A slow-moving ion merely pushes the 
whole target out of shape temporarily, making an elastic collision. To be as 
effective as an electron the ion must hare a comparable speed - consider what the 
target atom experiences: the electromagnetic field of & charged particle sweeping 
by. However since the moving ion is so much more massive than the moving 
electron, there are differences in the amount of recoil produced. All told: aa ion 
must have comparable v and therefore much larger Jm«2 to be as effective in 
ionizing a target atom,
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knock the head off a man? A ping-pong ball? An elephant? 
Put a large glass marble on the table and fire another marble at 
it. What happens if the missile marble is a very, very light one? 
The missile just bounces off. What happens if the missile marble 
is a huge heavy one? It pushes the target ahead.

' What size of missile marble do you want if you wish to have it 
come to a stop and give all its kinetic energy to the victim that 
it hits? What would you suggest hitting an atom with, if you 
wanted to knock a loose electron off? Yes, bombard it with 
electrons. You will see that being done in an experiment later 
on though the experiment is a complicated one to interpret.

'When the bombarding electron - from the small electron gun 
like those in the cathode-ray tubes you have seen - has only a 
little energy, it makes elastic collisions. The electrons of the 
atom that it hits are too strongly attached to be knocked out of 
place by the missile, so the missile considers it is hitting a huge 
massive atom as a complete structure and it just bounces away 
like a tennis ball from a massive wall.

'But if we increase the energy of the missile enough - by 
increasing the gun voltage - we reach a stage in which the 
bombarding electrons are energetic enough to knock an electron 
off an atom or molecule of gas. Then we are left with a positively 
charged particle, a positive ion. That in turn can be accelerated 
by a voltage between a plate (positive) and a "muzzle", another 
plate with a hole in it (negative).

'Thus, we can make an "ion gun". A little gas is fed into the 
region between two plates in a vacuum. The gas is ionized by 
electron bombardment. A battery or power-pack connected to 
the two plates makes an electric field between them, which 
drives the positive ions to the negative plate. There is a hole in 
that plate - the "muzzle" of the ion gun - and ions arriving 
there pass through and emerge moving straight ahead. Those 
ions have various energies according to where in the region 
between the plates they were manufactured and started accelera 
ting.

'However we can arrange to give all the ions that emerge from 
the gun muzzle the same K.E. If they all have the same mass, 
they all emerge with the same speed.
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'If we apply a strong magnetic field (across the stream) it bends 
the stream into a circular orbit. We make measurements just like 
the ones you made for the electron stream, except that these, 
being positive ions of much greater mass, need afar bigger mag 
netic field.'

toNf
GoN

I i - =* ~i- -jjws-1 ">Y- -"•/.• •*•

We should describe a simple modern mass spectrometer (Dempster 
or Nier model): A small sample of gas is fed into the 'ion gun' 
region of the apparatus - and excess gas is continually pumped 
away. The sample is bombarded by electrons from a small electron 
gun at one side, so that ions of the sample gas are manufactured. 
A weak electric field is applied to the region where the ions are 
made. That field drives them gently through a grid. They therefore 
arrive the other side of that grid with very little energy. There, 
however, they are accelerated through a much larger voltage, to 
emerge from the 'muzzle' of this 'ion gun' with kinetic energy 
which is essentially given by that main gun voltage. All the ions 
emerge with the same kinetic energy, so all ions of any one mass 
will all be bent into the same circular orbit by the strong uniform 
magnetic field applied perpendicular to the stream.

Even with a fine hole or slit at the muzzle, that emerging stream 
splays out through a small angle, but the circular orbits of that 
collection will focus sharply after a half circle, and a photographic 
film (or a collector for an amplifier and electrometer) will record 
a strong focused stream of ions of each mass at an appropriate 
place in that region.
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At this stage we should not bother pupils with the refinement 
of focusing streams of ions - though that has always been a very 
important problem in designing machines, from earliest mass 
spectrographs to modern accelerators.

The simpler modern instruments use '60° focusing' but '180° 
focusing' is still easier to see. So we might show 'semickcular 
focusing' to pupils who ask, because they can see it for themselves 
with a delightful pencil-and-paper experiment:

'Place a round object, such as a penny, on a sheet of paper. (Any 
round object will do. A larger one, such as a beaker or a saucer, 
is better.) Draw a circle by running a pencil or ball-point pen 
around the coin. Mark one point on the circle, to show the 
"starting point for a stream of ions". Shift the coin a little, 
making sure its edge still passes through that starting point, and 
draw another circle. Draw several more circles, all passing 
through the starting point, to show several streams of ions all 
splaying out from the starting point. If you have not taken too 
wide a splay, you will see the streams meeting again, focusing 
roughly, after travelling almost half a circle.'

SPLAY
TOO
GREAT

SEMICIRCULAR POCUSSING
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In more modern forms, the magnet has a special shape and the 
deflection from source to focus is only 60° as in the sketch.

If we sketch a simplified picture of the general arrangement of this 
apparatus (nowadays called a Nier spectrometer)! pupils should 
find it easy to understand.

(Note that with our doubts about historical treatment in this *
matter, we have omitted all mention of J. J. Thomson's work *
and Aston's very complicated but successful improvement of it.) *

We point out that physics thus provides chemistry with the T 
ultimate analyst of atoms. With X-ray spectra and mass-spectra 
together there can be no doubt whether some substance is an 
element or not, whether an element is a single isotope or a mixture. 
Any material can be sorted out into component atoms and their 
(relative) masses measured.

(Yet, with electron bombardment, compounds need not be * 
broken up into elements: we can obtain many kinds of compounds * 
and semi-compounds (radicals) whose masses are measured by the * 
mass spectrograph.)

Furthermore, modern instruments offer such precision that we can 
measure the tiny differences of mass involved when nuclear changes 
convert one element into another. And from those differences we T 
can predict the energy released or absorbed in those changes. In 
reverse, a study of those tiny mass-differences in cases where the 
energy-release has been measured enables us to confirm E = me 2 : a 
quantity E of energy, in any form, has mass m given by E = me2.

As an example, we might quote one of the early measurements of 
nuclear reactions used to test E = me 2 :

Protons, hydrogen nuclei driven by a p.d. of 150,000 volts from 
a Cockcroft-Walton accelerator, bombarded a target of lithium. 
In some collisions two helium nuclei (alpha particles) emerged with 
considerable kinetic energy, about 8-5 million electron-volts each. 
Cloud-chamber pictures confirmed the description 'proton enters 
lithium: two alpha particles produced with huge kinetic energies'.

| Small Nier spectrometers are now being sent up in rockets to study the upper 
atmosphere. At a height of, say, 100 miles the lid of the apparatus is blown off by 
a small explosive charge and asample of the local 'vacuum' is let in and analysed.
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Mass spectrograph measurements gave the following masses for 
nuclei without accompanying electrons:

hydrogen (proton) ^ 1-0076
lithium 3Li, 7-0165
helium (alpha particle) 2He4 4-0028

(on a relative scale that 
takes mass of oxygen18 
isotope as 16-0000)

Then using E = mcz and the measured mass of a proton (1-67 x 
10~27 kg) we can make up a balance sheet for mass, including the 
mass of the K.E. of each particle.

l-0076+7-0165+(0-0002) =?= 4-0028+4-0028+(0-0183) 

Total 8-0243 compared with total 8-0239

Here there is a loss of mass of matter of 0-0185 and an estimated 
gain of mass ofK.E. of 0-0181, accounting for 98 per cent of the loss 
of mass of matter. (The 2 per cent discrepancy is smaller than the 
admitted experimental error of estimates of the alpha-particles' K.E.)

Masses of Atoms: Isotopes
We can measure e\M for positive ions by using electric and mag 
netic fields to deflect a stream of them. We obtain just the same 
value for ions made from hydrogen gas that we found for hydrogen 
ions in electrolysis. For oxygen ions the value of e\M. is 16 times 
smaller still, suggesting that the ions (oxygen atoms with one elec 
tron missing) are 16 times as massive as protons. Nowadays with 
delicate detectors we also find record of a few ions of which several 
have e\M 17 times smaller, telling us that there is a rare 'twin 
brother' of oxygen of mass 17 times the hydrogen atom mass.

'What would you expect when chlorine gas is used? Look at its 
atomic mass, 35-45 compared with hydrogen. You might expect 
to find ejM for its ions 35| times smaller than the value for 
hydrogen ions because the atomic weight of chlorine, obtained in 
chemical measurements, is 35-45 compared with hydrogen 
1-008. But no such value appears. Instead, we find two streams 
of ions; two circles made by the streams of ions in the magnetic 
field, one corresponding to e/M a value of 35 times smaller 
than hydrogen e/M the other 37 times. This tells us clearly 
that chlorine atoms come in two sizes, a lighter kind with 
atomic weight 35 and a heavier kind with atomic weight 37. But
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the "35" stream is nearly 5 times as plentiful as the "37" 
stream - that is why together they average 35-45. These, which 
we call isotopes, are inseparable chemically - to any chemical 
experiments they look as closely alike as identical twins - but one 
is 5 per cent more massive than the other.

'When it was discussed half a century ago, the fact that a 
chemical element does not have all its atoms exactly the same 
came as a great surprise. It was discovered by experiments like 
these, with positive ions; though the details of the apparatus 
were much more complicated in the early days of these atomic 
discoveries.

'And we now know that every element has two or three or many 
"isotopes ". All the isotopes of an element have the same chemical 
properties - but in some cases one isotope shows quite different 
properties from another when we dig deep enough into the atom 
and try to make nuclear changes take place. In fact, that is why 
we do such complicated things to separate the isotopes of 
uranium: the lighter of the two common isotopes can split its:}: 
nucleus fairly easily into almost equal pieces - fission which 
releases an enormous store of energy - while the heavier isotope 
does not normally do that.

' Furthermore the heavier isotope threatens to get in the way of a 
fission chain reaction with a sample of the lighter isotope. So it is 
necessary to separate the lighter isotope from the heavier one 
before a fission bomb or a small-scale nuclear reactor can be 
made.

'That separation was mentioned when we discussed diffusion 
of gases in Year IV. Now you can invent another way of separating 
the light isotope of uranium from the heavy one. Make a guess: 
what could you do, if you were provided with any amount of

% Strictly speaking it is [the isotope + one neutron], i.e. an isotope one unit 
heavier, U238 not U236, that shows fission easily.

A U236 nucleus absorbs a neutron easily (if it manages to come very close). 
When a neutron is absorbed, the energy of the new arrangement' falling together' 
is sufficient to disrupt - unlatch - the U236 nucleus.

The more common isotope U238 absorbs neutrons much less easily; and when 
it captures a neutron it still needs a further supply of energy to bring about 
fission.
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apparatus and a sample of mixed isotopes of uranium, to make 
arrangements to catch the heavy isotope in one small metal 
can and the light isotope in another small metal can? You could 
of course have anything you wanted, such as vacuum pumps, 
magnets, etc.'

Atomic Models
We explain to pupils that we always find the same value of e/m for 
electrons whatever source we use - hot filaments of one metal or 
another; photoelectric effect; bombardment of gases by other 
electrons; enormous electric fields tearing electrons out of cold 
metal and even radioactive nuclei emitting beta rays.

(This is not the moment to mention the smaller values of e/m that 
we obtain with electrons at very high speeds. That can come as a 
welcome modification that does not disturb the main story. There 
is every evidence that the electrons which have abnormally high 
mass when we see them moving very fast return to normal when 
we have slowed them down relative to the observer.)

So we think of electrons as universal ingredients of matter, all alike, 
tiny chips of atoms, all of the same mass, and the same negative 
charge. Positive ions seem to be the 'rest of the atom' carrying 
most of its mass and having, therefore, different masses for atoms of 
different chemical elements. Mass spectrograph records of positive 
ions show a great array of different marks, for atoms of different 
elements and for isotopes of the same element; but electrons make a 
single mark, they are universally identical.

So we picture an atom as a round blob out of which an electron can 
be chipped. Therefore since matter is normally electrically neutral 
the rest of the blob is positive - whether a diffuse body of positive 
electricity like a pudding or made of knobs of positive electricity, 
we cannot yet tell. However we can knock more than one electron 
off an atom. Analysis of positive ions made by bombarding gases 
with electrons - 'positive rays' to use the antique word - shows 
that some ions have twice, three times, ... etc., the normal ejM 
suggesting they have multiples of the basic electron charge. Very 
early experiments in streams of positive ions showed that oxygen 
ions can have several charges and mercury ions as many as eight 
positive charges.

So scientists pictured atoms as a sort of pudding of positive 
electricity with negative electrons as plums in it. This picture was 
never intended to be a description of reality but just a way of

81



remembering how atoms behave under electrical attack. An atomic 
model is more like a form of words, a part of our vocabulary for 
talking with other scientists about the behaviour we observe and 
the experiments we plan.

(Presently when pupils look at the fantastic scheme of spheres 
within spheres imagined by Greek geometers to describe the 
motions of the heavenly system, they may laugh at the silly ideas 
of medieval philosophers who thought that those 'crystal spheres' 
were so real that a comet passing through must smash them. If 
pupils laugh, we should laugh with them at the medieval philo 
sophers who had tangled reality with their dogmatic arguments; 
but we should remind them that the Greeks who conceived 
'theories' were exceedingly able, imaginative, thinkers who knew 
quite well that they were describing effective machinery - a scheme 
that could describe and predict successfully - and not an impossible 
reality. The same warning should be applied to atomic models 
today.)

Further Models: Nuclei? When pupils ask 'but what about 
the nucleus?' we should say clearly that nothing seen in experi 
ments described so far conflicts with our picture of an atom as 
a pudding. As good scientists, we shall not build further details 
into our picture, such as the idea of a small massive nucleus, until 
new evidence forces us to do so.

New Theory by Necessity. That is a very important thing that 
we must teach all our pupils; non-scientists and scientists alike; 
that the great advances of theory, as in our pictures of atoms, are 
not just made by imaginative flights of fancy - the scientist's paint 
brush twirled at random - but are forced upon us by the growth of 
surrounding knowledge. True, our models always contain an 
imaginative element; but we try now - as scientists have tried for 
the last 300 years - to avoid unnecessary imaginative frills. Young 
people would Eke the frills; they would like to think of electrons 
crawling about metal surfaces like beetles - they would almost let 
us teU them how many legs those beetles have. They would like to 
think of electrons whirling round on sharply cut elliptical orbits 
in atoms. Young nuclear enthusiasts would like to say a neutron 
contains & proton and an electron inside it. They are not pleased 
when we express doubts and ask whether a half-crown contains 
two shillings and a sixpence inside. They do not welcome our 
scientific caution. In setting forth that caution, we should make it 
dear that we thereby aim at greater wisdom and fuller knowledge 
and are not just expressing an insecure agnosticism.
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Programme
We shall return to atoms and atom-models when we have studied * 
radioactivity. However, pupils can continue with the measurement of * 
ejm for electrons in their practical work, and after that they may * 
embark on preliminary work for the radioactivity experiments. (See * 
instructions for Electrostatics and Radioactivity.') *

*
We proceed to another use for F = mvzjR: Newton's development of * 
planetary theory. If we just announced what Newton did, this topic * 
would lose its main value as an example of the growth of theory; so we 
shall have to go back a long way in time and give some account of 
astronomical knowledge and its development. (Since this is not a usual 
part of an O-level syllabus, we shall provide a more detailed outline in 
a Pupils'1 Guide that will go into considerable detail.) The following 
account is only a brief summary, too brief to show the essential quality * 
of developing knowledge. *
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Chapter 3 

THE GRAND THEORY
Planetary Astronomy and the 

Development of Theory



Each star makes an arc of 360°+!° more in 24 hours of our solar 
time. More precisely, each star makes just one revolution more 
than the Sun in the course of one year.

We should illustrate that with a small celestial sphere if the labora- D 27a 
tory has one. (It is not worth while to buy one specially since we 
shall not spend long with this aspect of astronomy.) We spin the 
sphere to show what is observed - and we avoid a spinning-Earth 
interpretation at this stage. An ordinary umbrella, with a few stars 
marked with chalk, is useful here as a simple celestial sphere. 
Needless to say, the real sky is best of all, however long one has to 
wait.

Pupils should look at the starry sky one evening, and then again D 27b 
later in the same evening. We should show a photo of the sky, 
taken with the camera shutter open for several hours. On that each 
star makes an arc of a circle, with the pole star almost at the centre.

Pupils who are interested should be encouraged to try making a H27b 
photograph like that for themselves. They do not need an ex 
pensive camera with a large aperture. They must experiment to 
find the stop to use. Successful photographs should be placed on 
exhibit - if the picture includes the silhouette of the school 
building or of well-known trees nearby, it is much more impressive 
than a lantern slide of a photograph taken elsewhere.

Moon. We ask pupils about the Moon: T

' On some nights you see the Moon among the stars. On other 
nights the stars are there but there is no Moon. The Moon must 
travel across the star pattern. Have you watched it do that?

' Look at the Moon one night when it is there and see where it is H 28a 
among the stars. Look again an hour later; and then later still. 
The Moon sweeps across the sky from east to west during the 
night with the stars, but not quite as fast as the stars. If you 
watch carefully, you will see the Moon lags behind the stars 
(like a lazy child on a walk), 90° in a week; all the way round in a 
month. You can see the full Moon one night (when the Sun is 
down below the Earth in just the opposite direction), then no 
Moon at all a fortnight later; and full Moon another fortnight 
later. Even in a single hour, the Moon moves by its own diameter, 
relative to the stars.
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'If you watch the Moon carefully and mark its lagging path H28b 
from night to night throughout the month, you will find that 
path is a slanting one. It does not just drift backward along the 
same direction as its east-to-west forward motion during the 
night. It drifts along a slanting line through the star patterns, 
close to a line that we call the "ecliptic".'

Sun. At noon the Sun is always due south (or north). It makes one T 
revolution from noon to noon (except for some minor deviations 
which are connected with the changing speeds of the Earth's 
orbital motion). But the stars make about 1 ° more than one revolu 
tion, so the Sun does not move quite so fast. Like the Moon, the 
Sun lags and does not quite keep up with the star pattern. The 
lagging motion of the Moon carries it right round the ecliptic circle 
through the star pattern in a month, but the lagging motion of the 
Sun is slower: 1° in a day, all the way round in a year.

THE ECLIPTIC, the Sun's track through the star pattern in the course of a year. 
Here the daily motion is imagined'frozen'.

Ecliptic. The Sun's lagging path through the star pattern is a 
slanting circle (not far from the Moon's path) and we call that 
circle the ecliptic.
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THE ZODIAC, a belt of the celestial sphere tilted 23£° from the equator. The Sun's 
yearly path (the ecliptic) runs along the middle line of this belt. The paths of 
Moon and planets lie within this belt. The Zodiac was divided into twelve sec 
tions named after prominent star groups or constellations. (Zodiac patterns after 
H. A. Rey3 The Stars.)

Zodiac. In fact, Sun, Moon and planets (which will be important 
objects in our study) all follow lagging paths through the star 
pattern that are fairly close together. All those paths fall within 
a band about 15° wide, running round the whole sky with the 
ecliptic as its centre line. We call that band the 'Zodiac'.

Celestial Sphere. Pupils should see sketches of the celestial 
sphere; or, much better, an actual model if the school already has 
one. It is not worth while to buy one specially. Any ball, painted 
black, with a few lines chalked on it will suffice - since we are not 
trying to teach descriptive astronomy and locate constellations. 
The pole star should be marked and a few others added to show the 
general scheme - and those need not be real stars in real positions. 
The celestial equator should be marked. The line through the 
sphere from Earth (at the centre of the sphere) to pole star should
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be pointed out. To us, it is the axis round which the Earth spins.
But to early astronomers it was just an important fixed direction
from Earth to pole star, around which they saw all the stars, in
fact the whole celestial sphere, revolving. Like Tycho Brahe in his H 29
youth, a keen pupil might make his own celestial sphere on a small
ball, even an ordinary orange.

The ecliptic path of the Sun's yearly lagging motion will be shown D 29b 
on that sphere; but we should add, by using tape or paint, a 
broader band to show the Zodiac.

'Freezing' the Daily Motion. Once we have seen the daily T 
motion which carries every star in a circle round the pole star 
and found that it repeats regularly, night after night, with no 
change in the star pattern, it seems rather dull. The exciting D29c 
things are the motions of Sun, Moon and planets; and the 
exciting part of the motion of each of those is its strange lagging, 
or wandering, through the star pattern rather than its rapid motion 
across the sky each day or night, trying to keep up with the rest of 
the stars. So, astronomers, at a very early stage of the science, 
started leaving out that daily motion, 'subtracting' it. In other 
words, they imagined the daily motion stopped, or 'frozen', and

ZODIAC BELT WITH POSITIONS OF MOON, IN VARIOUS
PHASES, IN THE COURSE OF A MONTH 

The daily motion of the celestial sphere is 'frozen' here.
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catalogued the strange motion of Sun, Moon and planets through a 
stationary star pattern. That was an enormous step forward, a 
difficult intellectual jump, made by astronomers in early civiliza 
tions.

Sun's Yearly Motion along Ecliptic. With the daily motion T 
frozen, we see the Sun crawling slowly backwards from west to 
east on a slanting circle through the star pattern, completing the 
circle in a year. That ecliptic circle is inclined at 23J° to the celestial 
equator: and in terms of present-day knowledge, it represents the 
Earth's orbit round the Sun. The Sun does not travel uniformly 
round the ecliptic. Its speed varies a little, so that the four seasons 
are not exactly equal in length.

Pupils should watch the Sun and stars for themselves, and think H 28c 
about the changes in height of the Sun's daily arc.rj:

These geometrical matters should not be laboured, or astronomy * 
will take on a puzzling air before we are started. *

Planets. Just a few 'stars' show entirely different behaviour. T 
Those are the ones singled out by some of the earliest observers 
to be watched with care and awe. We call them 'planets', using 
the Greek name, which means 'wanderers'. Like the Sun, the 
planets sweep round with the star pattern in a daily motion. Freezing 
out that daily motion, we find that each planet slips slowly 'back 
ward' from west to east through the star pattern in the course of 
years, along a path in the Zodiac belt.

But, unlike the almost steady motion of the Sun round the ecliptic T 
(or the Moon round its orbit in the Zodiac), each planet has a much 
more irregular motion through the star pattern. It slides backward 
for some time, comes to a stop, then moves forward, then continues 
backward again, and so on.

$ Pupils with a strong interest will find Lancelot Hogben's Science for the Citizen 
offers a good account.
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THE PATH OF A PLANET
All the planets wander through the star pattern in a belt near the ecliptic - the 
Zodiac belt.
a. General region of a planet's path - the Zodiac belt. 
b. In detail, a planet's path has loops - an epicycloid seen almost edge-on.

VENUS

60 40 
CELESTIAL EQiWOR

34o°

MARS

PATHS OF PLANETS THROUGH THE STAR PATTERN 
a. Venus (January-July 1953) 
6. Mars (June-December 1956)
The ecliptic is the Sun's apparent path. The planets' orbits run close to the 
ecliptic, because the planes of those orbits are close to the plane of the Earth's 
orbit (or the Sun's apparent orbit, the ecliptic.)
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ZODIAC BELT WITH PATHS OF SUN (in one year), MOON (in one month)a and a 
specimen PLANET (in planet's 'year'). The daily motion of the celestial sphere is 
'frozen'here.

The backward motion from west to east in the star pattern pre 
dominates, carrying the planet Jupiter, for example, all the way 
round the Zodiac in a dozen years. The short forward motions, 
in which the planet makes a loop (seen almost sideways on), occur 
about once in every year.

MACHINE FOR DRAWING EPICYCLOIDS 

P

Motor

fMtor
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PATHS OF PLANETS IN THE SKY
This sketch shows the apparent paths of Jupiter and Saturn, plotted for many 
years, as they would appear to an observer attached to the Earth but viewing them 
from/ar out from the Earth, so that the epicycles are seen face-on, without the 
foreshortening really observed. The apparent orbit of the Sun is also shown. 
The Earth is at the centre. When the astronomer Cassini constructed this 
diagram in 1709 he used Copernican measurements of orbit sizes.

Note to Teachers. Professional astronomers think of the general 
backward sliding of the planets round the Zodiac as the main, 
normal motion, and they call the reversed motion in the loops 
'retrograde'. We have used opposite wording here, only because 
it seems simpler teaching for pupils familiar with the nightly 
motion. Here we call:

The daily motion of stars, Sun, Moon, planets, 'Forward' 
The yearly motion of the Sun round the ecliptic, 'Backward' 
The monthly motion of the Moon round its orbit, 'Backward' 
The general motion of each planet round the Zodiac, 'Backward' 
The 'retrograde' motion of a planet in each loop, 'Forward'.

*
*
*
*
*

These' wandering stars' - the planets - are the chief object of our *
present study. It was their motion that presented the greatest *
problem to astronomers who wanted to explain the heavens or *
'save the phenomena', as the Greeks described their attempts to *
make theories that fitted the facts. *
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Looking at Planets: the Two Brightest. The brightest planets, T 
Venus and Jupiter, should be pointed out. Pupils should watch 
them and see that they do move through the star pattern. However, H 28d 
the planets' movements are too slow to give a clear picture in a 
short time; so we shall have to describe the wandering motion.

Venus never moves far from the Sun, swinging out 46° to one side 
of the Sun and then back, disappearing when we are dazzled by 
the Sun nearby, and out 46° on the other side. Watching Venus, 
as the evening star and then as morning star, will show some of 
that story.

Jupiter moves through the star pattern on a path not far from 
the ecliptic but with a much slower creeping motion than the 
Sun's, in fact 11 or 12 times slower. In crawling backward through 
the star pattern once in a dozen years, Jupiter makes a strange loop 
once a year. That is, while he usually moves from west-to-east, he 
presently slows down, comes to a stop, speeds up in an east-to- 
west direction then slows down again, comes to a stop, and 
continues with his west-to-east motion.

Table of Planets. We want pupils to be familiar with the planets D 30 
and their names. It would be good to post a large table, like this:

NAME (judged against a background of the stars)
TIME FOR COMPLETE ORBIT^

Mercury 87 days 

Venus 225 days

Mars 687 days

Jupiter 12 years

Saturn 30 years

Sun 365-3 days

Moon 27-3 days

$ The period of a planet's motion, 'its time to get round its orbit', depends 
somewhat on our viewpoint. The value given here is the 'true' period, or 
'planetary year', as an observer on the Sun would see them, (contd. on page 97)
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To the early astronomers the Earth was not a planet. They were *
sure that it does not wander but remains at the centre of the *
universe. However, they included the Sun and Moon as wanderers, *
making seven planets in all. In our table above, we left a space *
for the Earth, but it should not be placed there yet - we should *
include Sun and Moon. *

Planetary Paths. To show pupils the shape of planetary path, D31a 
we should sketch it on a blackboard. It is also helpful to show the 
pattern as an epicycloid, looked at very obliquely. We draw an 
epicycloid freehand on a large sheet of paper. To do that, we 
move a pencil round in a small circle, say of diameter 4 inches, D31 b 
and sweep our whole hand round more slowly in a large circle, of 
radius say 15 inches, using our forearm. Then we tear off a patch 
of the paper with a few loops of the epicycloid on it and hold that 
patch obliquely so that pupils see it almost edge-on. We explain 
that that edge-on view is what we see of planetary motion against 
the background of the starry pattern.

A toy electric motor carrying a lamp, placed near the edge of a slow D 31 c 
record-player turntable, provides a useful model.

As we now picture the solar system, we might draw a radius from the Sun to each 
planet and on out to the stars, to mark its position in its orbit. As that radius 
turns through 360° the planet goes once round the orbit and returns to the same 
place, as it would be by an observer on the Sun, against the star pattern.

However, in that 'true period' of the planet's motion round its orbit, the Earth 
moves to a different position, and an observer on the Earth would not see the 
planet back at the same place 'among the stars'. The planet's apparent period, 
recorded by an observer on the Earth, is a modified compound value derived 
from the planet's 'true' orbital motion and the Earth's orbital motion. If we 
were giving a proper account of the planetary picture seen by early observers, we 
should give the 'apparent' periods. Then we should have to disentangle the 
'true' periods from them when we came to the Copernican picture of the 
solar system.

In our present teaching we want to give a simple, clear picture of the problems 
that led to theory rather than explore such special details. So, we suggest giving 
only the' true' periods, as we have done in the table here.
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Pictures of Planets' Paths. We may show lantern slides or D32 
posters of the paths of one or two planets, plotted from tables of 
observations. However, those careful diagrams are likely to look 
confusing and dull to pupils who do not yet see any particular point 
in worrying about the motion of the planets. So we urge teachers to 
start by showing simple pictures, sketched by hand, as suggested 
above.

(If we were teaching Astronomy for its own sake, we could, of *
course, ask pupils to plot planetary motions in considerable detail. *
Here, however, we only wish to provide a simple, clear story as a *
basis for developing theory.) Again, if we were teaching Astronomy *
itself, from an experimental viewpoint, we should certainly give *
pupils the delightful experiment of plotting an orbit from photo- *
graphs of the Sun, taken at intervals through a year, all with the *
same camera. If the diameter of the Sun's picture is d, 1/J gives a *
measure of the distance of the Sun from the Earth. Given a set of *
photographs, pupils measure d, take the direction of the Sun *
among the stars from the date of each photograph - using tables or *
common sense - and plot a yearly orbit to scale. This is the Sun's *
orbit, as early astronomers considered it, or the Earth's orbit as we *
now think. However, the time and interest spent on this will lead *
the class away from our main target; so we do not suggest it as an *
experiment. However we mention it in case some have special *
interests. *

Photographs of Planets. At some stage, pupils should see good D33 
photographs of planets taken through a modern telescope. Some 
teachers prefer to show these straight away, especially if pupils 
are going out to look at planets with telescopes themselves. Others 
prefer to keep this close-up view of planets until they reach the 
story of Galileo and the telescope.

Eclipses. Eclipses deserve a brief mention, and explanation, but 
not with the usual diagrams of umbra and penumbra. Those 
diagrams give names to be learnt without being true enough to 
scale to give good knowledge.

How many capable scientists realize that the shadow of the Moon D34 
is a cone of angle only |°, whose very tip only just reaches the 
Earth? How many realize that the shadow of the Earth, which 
must itself have narrowed by one Moon-diameter out at the dis 
tance of the Moon, just covers 2| Moon-diameters as the Moon
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passes through it in an eclipse? From that, and the |° angle, sub 
tended by the Moon, we can at once show that the Moon must be 
about 60 Earth-radii away, some 240,000 miles.
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SKETCH TO SCALE SHOWING THE SHADOW CONES OF MOON AND EARTH. 
Sketch to scale. Here the scale has been reduced so that Sun, Moon and Earth 
are in the picture. The small circle is the Moon's orbit. The Earth, at the centre 
of that circle, is too small to show. On this scale it is a dot 1 /1,000 inch in diameter. 
The Moon is much too small to show.

Eclipses have always excited interest, and sometimes fear. They 
have helped to make astronomy seem interesting and important.

At a very early stage astronomers concluded from eclipses that the 
Moon shines only by reflected sunlight and that the Earth is round.

Precession of the Equinoxes. At some time in the teaching of 
our factual story, we must mention precession of the equinoxes. 
As described by early astronomers, from an Earth-centred point of

Oatfy mctunt- ' molim, 
tf whok patttm. tfSun,*^, 

; One renCuticn. tn *t fcs.

PRECESSION OF THE EQUINOXES
In addition to (a) the daily motion of the whole heavens around the N-S axis 
fixed in the fixed Earth and (6) the yearly motion of the Sun around its ecliptic 
path in the Zodiac band of stars, Hipparchus discovered (c) a slow rotation of the 
whole pattern of stars around a different axis, the ecliptic axis (perpendicular to 
the Zodiac belt).
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view, that was a very obscure creeping motion of the whole system 
of stars around a special axis (the axis of the ecliptic); in that form 
it is much too difficult for pupils to understand. The sketch here is 
offered only in case teachers are interested in seeing the ancient 
description. As described by Copernicus, it is much simpler and 
we should describe it when we get to his model, so that Newton's 
'explanation' may be enjoyed.

If the laboratory has a celestial sphere, this motion might be 
demonstrated with it, but it is not worth while buying a sphere 
for this. Use thumbs or small suction caps to establish an axis 
perpendicular to the ecliptic (23|° from the axis through pole 
star). Ask a pupil to make the sphere revolve very slowly round 
that new axis. At the same time, the sphere must be imagined to 
be spinning ten million times faster about the pole star axis.

Summary
To appreciate the story we are going to unroll, pupils must know 
that:

There is an unchanging pattern of stars, revolving daily round an 
axis through the pole star.

Sun, Moon and planets share that daily motion, except that they 
drift slowly 'backward' through the star pattern.

The paths of all those 'backward' motions fall in a narrow band 
of the star pattern, called the Zodiac.

'Freezing out' the daily motion, we find the Sun travels round the 
ecliptic, the central line of the Zodiac, in a year.

The Moon travels round an orbit in the Zodiac (tilted at some 5° 
to the ecliptic) hi a month.

The planets travel round orbits in the Zodiac, making reverse loops 
(one for each of our years) as they do so.

Jupiter completes an orbit in a dozen years, Saturn in 30 years, 
Venus in a fraction of our year.
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Models, Planetarium
In describing the heavenly system, teachers will want to show 
some kind of model.

Planetarium. A visit to a planetarium, if that can be arranged, D36a 
provides a very good model, the second best in all the world. (The 
best, of course, would be watching the real sky for months and 
years.) That will show the motions as they are observed.

As a rule, planetarium authorities like to show a sample picture *
of the heavens for some particular date, with Moon and planets *
making only small motions during the performance. They hesitate *
to run their planetary machinery very fast and show several years' *
motion in a short time. That will necessitate stopping ('freezing *
out') the daily motion, and it asks for unusual speed. Therefore *
they hesitate because they know how easily an audience forms mis- *
conceptions. However, if the teacher explains to the planetarium *
authorities the special need for an important part of our teaching *
programme, to show planetary motions through the stars, he *
should find that such a demonstration can be arranged. . *

*
A visit to a planetarium makes a strong contribution to our *
teaching. We hope that teachers will explain to school authorities *
that such a visit would not be just an amusing trip but a very *
important part of our physics teaching. *

Toy Planetarium. Instead, or in addition, we might show a D36b 
toy planetarium. If that is just a spherical shell, with holes pricked 
in it for stars and a lamp shining through it to make star spots on 
the ceiling, it will show only the simple daily motion. (Arranging * 
other spots of light to imitate the motion of a planet round the * 
ecliptic with yearly loops is a delightful problem for special in- * 
genuity. But we do not recommend spending time or money on * 
that. It is too easy to let such a model take charge and divert * 
interest from our main objective. Sketches on the blackboard, * 
and perhaps lantern slides of plotted paths, should suffice.) *

Orrery. The teacher will also want to show a model of the solar D 36c 
system, often called an orrery. However, that represents a jump 
ahead in our story, to an entirely different pattern - Copernicus' 
scheme, with the Sun at the centre. Showing an orrery at this stage * 
would add confusion and raise the objection, 'But we know the * 
Earth is not at the centre ...', all the more strongly. So, although * 
teachers naturally think of an orrery as an easy illustration when * 
they are first talking about planets, we urge them to keep it hidden * 
and postpone showing it until they get to Copernicus. *
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EARLY HISTORY
A Quick Survey. We should not spend very much time on the *
early history of astronomy; and yet if we pass it over pupils will *
miss the sense of primitive wonder and fear, and the important *
practical needs, that were driving forces behind the priest astrono- *
mers and made astronomy the first physical science. We should *
point out that astronomy provided three things that were needed *
for man's progress from savage life to village life and from village *
life to urban civilizations: calendar, clock and compass. *

Earliest Man. Very early man, living by hunting and chance T 
cropping, may have looked at the stars and wondered. He may have 
used stars as guides at night. He may have welcomed the Moon's 
light for hunting. We do not know. He probably used Sun and 
stars unconsciously as rough clocks; but it is very unlikely that 
earliest man used Moon or stars for reckoning days or weeks, or 
even the Sun for reckoning hours; because he lived at a simple 
level and such things were not needed.

The First Revolution: Food Producing. When man gathered T 
into villages and developed agriculture and domesticated animals 
- the first great revolution, from a food-collecting life to a food- 
producing culture - a calendar became very important. Man needed 
some way of predicting seasons, both for sowing wheat, one of the 
earliest crops, and for the seasonal breeding of sheep - or at 
least village life profited from a calendar to organize the work in 
advance.

The calendar made the priests who administered it powerful and T 
important; and, whether they liked it or not, made it easy for 
their knowledge to become invested with mystery. Things that 
happened in the sky assumed obvious importance. Even to simplest 
man, the Sun seemed very important for warmth and growing life; 
a worship of the Sun developed. The Moon and stars had magical 
values for hunting and journeys by night. No wonder primitive 
people speculated about these lamps in the sky; and no wonder 
they worried about the few lamps which wandered, the planets.

(Teachers will find some interesting discussion of early man and 
astronomy in Lancelot Hogben's Science for the Citizen (4th edn., 
Alien and Unwin, 1956), and some more romantic comments in 
H. G. Wells's Outline of History (1920). It is both easy and tempting 
to speculate on the way in which primitive man thought about 
things as he developed. But anthropologists warn us that such 
commonsense speculation is very risky. Nor should we try to infer
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things about primitive man from observations of savages today, *
because almost all savage communities have lived close to civiliza- *
tion for a long time. Contemporary savages may be primitive hi *
technology, yet maintain a complex of customs or religion de- *
veloped over millennia. It would be safer to base surmises on the *
behaviour of children today.) *

Early Civilizations. By the time the early civilizations, such as T 
those in Babylon and Egypt, had grown up systematic rules had 
been extracted from watching and astronomical observations. 
The calendar priests could predict the motions of Sun and Moon, 
predict the seasons and even Moon eclipses, quite accurately.

In the later ages of those civilizations men had a good knowledge of 
the lengths of the seasons, the length of the year, etc., good weights 
and measures, knowledge of algebra and geometry (including 
Pythagoras' theorem long before his name was put to it).

Then- astronomers had schemes for predicting the slightly irregular 
motions of the Sun and Moon along their paths through the stars. 
Those schemes, in the hands of the Babylonians, amounted to zig 
zag empirical graphs that were used for calendar making. The 
astronomers who used them seemed to have no idea of giving any 
reason for the patterns or imagining any mechanism responsible 
for them. They were just working graphs, such as an engineer might 
sketch for the detailed running of a piece of machinery.

Astrology. With this astronomical knowlege there grew up a T 
body of superstitious belief in astrology. People thought that the 
positions of Sun and planets at the time of someone's birth could 
determine his character and fate. That belief, still alive today, 
provided a driving force for much astronomical observing - and a 
source of financing for astronomers for many centuries.

Superstition; and our Duty in Teaching. We might ask our T 
pupils, 'What is superstition? Can you explain in a short sentence 
what that word means?' There seems to be no compact answer to 
that question, except some dogmatic statements that lead to hot 
arguments.

Some teachers find this question and its discussion helps a dis- *
cussion of theory. Others consider it an unfortunate diversion. *
One should be guided by taste. *
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Even today many educated people look to astrology for some *
guidance, if only with half-hearted belief. Why should non- *
scientists prefer a physicist's Newtonian treatment of the planetary *
system to the more romantic view embodied in astrology? If, as *
scientists, we believe the preference should go towards Newtonian *
theory, this throws light on our duty in the present suggestion of *
teaching of astronomy. *

GREEK THEORIES AS AIM INTRODUCTION TO FORM 
AND USE OF THEORY
It is easy enough to tell pupils what we see happening in the sky *
and encourage them to check some of those observations them- *
selves. They accept the factual picture. Most pupils accept a *
factual picture in great detail and like to collect more facts because *
that gives them a sense of growing knowledge. While we should *
not discourage that, we should encourage a growing interest in *
imagining patterns, machinery, models, schemes to hold the *
knowledge together. That is our present objective - to look at *
the development of theory. *

	*
In teaching this history of astronomy as basis for Newtonian *
theory, teachers should describe some samples of Greek theories. *
And we hope they will describe them with love and admiration. *
Those theories were works of genius that need careful study to *
master the details of the machinery so that both teachers and *
pupils appreciate their success. However, teachers may meet a *
difficulty: 'But, sir, we know this isn't true. We know that the *
Earth ...' *

But, sir ... When we start speculating on schemes, or describing *
schemes that have been suggested, we meet that difficulty. Pupils *
have been told, much earlier, some things about the Earth and *
heavens. They know that the Earth moves, and not the Sun. They *
know quite well that the Earth spins and travels round the Sun in *
a year. Many of them also know that the planets go round the *
Sun in a circular orbit, and do not swoop back and forth in loops *
as they travel round the Zodiac. The teacher needs to anticipate *
the objections that run: 'But, sir, we know the Earth goes round *
tiie Sun.' *

So a very clear explanation of our programme must be given at T 
the outset - and it may have to be repeated - that this is a tricky 
problem in thinking and understanding, to see how people could
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build a picture that would fit the facts, and then go farther to 
link the facts with other knowledge, then even farther and predict 
some new things to look for. In a sense, we have to say to pupils:

' If you really want to understand, you must try making explana 
tions yourselves; you must see how some simple explanations 
can be made, and then how those can be improved. So you need 
to be very clever and imagine that you have taken a jump back 
ward in time to the days of the early astronomers. You see what 
they saw; but imagine that you have not been told explanations 
made up by other people since then. Think about the stories that 
you could tell - say, to your younger brother - if both you and 
he knew nothing but the things you see.'

In some such way the teacher needs to emphasize repeatedly the 
cleverness of imagining good schemes and not the stupidity of 
going back to something of which pupils say, 'We know that's 
wrong.' This advertising of a teaching aim can be done: its 
success depends on the skill the teacher brings to it and on his 
own enjoyment as a constructive explorer in the making of science.

In describing successive attempts at making a model of the *
heavens (i.e. a theory), the teacher should select examples to *
suit his own taste and try to set them forth quickly as well as *
attractively, without giving a discouraging wealth of detail. A *
mature physicist exploring the history of science soon becomes *
involved with great interest hi the details of the development. *
It is satisfying to him to see how skilfully some theory was devised *
and then modified to a better one. But pupils involved in a much *
more rapid survey are not likely to have time or interest for the *
details. So teachers setting forth this development of theory in *
astronomy are urged to describe the stages clearly but briefly, *
choosing their treatment to fit then: own enjoyment but not *
allowing the latter to prolong discussion beyond pupils' interests. *

The Main Target of this Teaching. Our most important advice *
to teachers at this stage is, 'Keep your eye on the main target: *
Newton's gravitational theory and its rich variety of explanations.' *
The sooner we get there, the better, as long as pupils have on the *
way seen enough of the earlier stages to be ready to welcome a *
general theory. *

106



The Growth of Greek Theory. As Greek civilization grew up, T 
philosophers gathered astronomical knowledge from Egypt and 
from their own observations, and constructed an entirely different 
treatment. Instead of just stating rules for practical calendar- 
making and superstitious power, the Greeks imagined simple 
machinery that would make the whole system of the heavens seem 
reasonable - seem to behave sensibly, and not to be controlled by 
demons or spirits. These simplifying schemes, dreams of wise 
philosophers, were in a way the first scientific theories.

The Greeks linked heavenly motions to pictures of earthly wheels. 
The early Greeks did not worry much about fitting their theory 
exactly to the facts; they sought the general satisfaction of having a 
scheme to fit the facts reasonably - to make nature seem reason 
able. (They said their aim was 'to save the phenomena', and that 
meant 'to fit the facts'.)

Teaching Greek Theories. The notes that follow are suggestions *
to teachers. Some teachers will wish to go into greater detail - *
though there is a risk of that taking too much time. We suggest as a *
minimum description of the models made by: *
Thales, *
Pythagoras and his school, *
Eudoxus, *
and an amalgamation of the simpler eccentric schemes of Hip- *
parchus and others with the scheme devised by Ptolemy. *
(We are aiming for the moment at Ptolemy's scheme to show it *
as successful but complicated, as a prelude to Copernicus's sim- *
plification.) *

Note on Models to Illustrate Greek Schemes
It is tempting to devise ingenious models to illustrate Greek * 
schemes. If one thinks of those schemes as machinery, it seems 
natural to make mechanical models to show them. But our whole 
aim here is to show Greek schemes as clever geometry - intellectual 
machinery - and go quickly on towards our main target of New 
tonian theory.

Showing models would take time and divert attention from ideas 
to machinery, from intellectual grasp to interest in mechanical 
ingenuity. For a very fast group, models would probably be harm 
less, though unnecessary. For average groups, any but a few simple
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models would mislead and do considerable harm by diversion. To *
advocate models would be to miss the point of this teaching *
entirely. (See the Note, in the Preface to this Year, which gives a *
warning about models.) •*

*
On no account should a school buy any models. We do not advise * 
schools to construct any but the very simple models described *
at appropriate places below. *

*
Until the stage of Greek astronomy, positions of planets, etc. *
had been recorded and predicted simply as marks on the pattern of *
stars. There were no measurements, or even guesses, of distances. *
By the time the Greeks had established their great university at *
Alexandria, astronomers were making estimates of the size of the *
Earth, the distance of the Moon, and even the distance of the Sun *
from the Earth. The planets were thought of as being at niter- *
mediate distances between the Earth and the stars; but that idea *
was suggested by the theoretical machinery they chose to adopt *
and not by any measurements. It will do serious harm to our *
teaching scheme, with Newtonian theory as its main target, if we *
do not teach something about the Greek measurements. Yet the *
methods used by those early astronomers were fairly simple, and a *
short description of them may delight many a young scientist. So *
we shall give an account of them, in case teachers wish to use them. *
Incidentally, they offer some good examination material. *

In describing theories, we should show lantern slides or blackboard D 37 
sketches: or pupils should see diagrams in a guide for their own 
reading.

We should show a few very simple models. Complicated models, *
which have to be bought, or take time and ingenuity to construct, *
are not recommended - see the Note, in the Preface to this Year, *
which gives a warning about models. *

Earliest Greek Theory. Thales (600 B.C.) described a simple T 
model: a small, flat Earth, surrounded by a great sheet of water, 
with a vast sphere carrying the stars and revolving daily round an 
axis through the pole starrj: that did account for the daily motion.

$ In Thales' day there was no real pole star such as we see today. Look at a star 
map marked to show the precession motion of the Earth's spin axis. Nowaday^ 
the Earth's spin axis meets the celestial sphere of the star pattern very close 
to a bright star which we call our pole star. About 3000 B.C. the Earth's axis 
cut the celestial sphere very close to another bright star, alpha in the Dragon 
(cohtd. on page 110)
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It left the extra motions of Sun, Moon and planets with no 
explanation except that they must crawl backward on the inner 
surface of that sphere.

THE UNIVERSE ACCORDING TO THALES

EARLY GREEK VIEW
The Sun's yearly path through the star patterns was mapped. This is the tilted 
band called the ecliptic. The Sun is shown in one position (near midsummer) 
and other positions are sketched. Here the celestial sphere is not spinning, but 
'frozen' with one star pattern overhead.
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Simple Models of Early Greek Scheme. It is important to 
show the general idea with a concrete model; a fixed pattern of 
stars carried round on a sphere. An ordinary umbrella, preferably 
with stars chalked on it, represents the sphere of the heavens. A 
saucer may be held near the crook of the handle to represent a 
flat Earth. (For a later model a small Earth-globe might be held 
there - but by the round-Earth stage Greek theories had become 
more elaborate.) This use of an old umbrella has two advantages 
over a fuller model that has to be bought: (1) it avoids giving the 
impression that science always has to be done with special devices 
to prove a point or illustrate a scientific idea; (2) it enables pupils 
to repeat the story at home, where we hope that they too will 
emphasize ideas rather than gadgets.

D38a

EARLIEST GREEK SCHEME
(A) Umbrella model.
(B) Luxury model. Not worth buying.

constellation. But at intermediate times, such as the period of the great growth 
of Greek astronomy, there was no bright star to serve as pole star near the place 
where the Earth's axis cuts the celestial sphere. In teaching beginners, it is 
easier to describe the heavens as we see things today, with a real pole star very 
close to the right pkce. Then, in describing early theories, we have these choices:

Speak glibly of the 'pole star' (meaning a fictitious one but not saying it is 
fictitious) to make the picture simple.

Speak of the 'pole star" and encounter some confusion.

Use a longer description involving the Earth's axis - then some pupils will 
lose track.

Explain very carefully that there was no real pole star in those days, and say 
that when we speak of 'the pole star' we mean a fictitious one.

In the notes given in this Guide we have chosen the first of those methods.
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A fuller model that uses a round-bottomed flask should also be D38b 
shown. The flask is half-filled with water and closed with a cork 
that carries a knitting needle which extends through the flask inside. 
The flask is supported on a ring-stand with its neck slanting down 
ward. A loose ring or washer of wood threaded on the knitting 
needle floats on the water inside, representing a flat Earth at the 
centre. Stars are marked with a chinagraph pencil on the outside of 
the flask. The neck is turned by hand to simulate the daily motion. 
After a first demonstration, the ecliptic should be marked on the 
outside. The Sun, represented by a small bright sticky label, 
should be placed on the ecliptic. Turning the neck will show the 
Sun's daily motion. Then the Sun is moved to successive positions 
on the ecliptic, the daily motion being shown for each.

(A large transparent spherical shell with stars marked on it and a *
flat Earth at the centre might be shown if the school already has *
one. We do not recommend buying one, since it would teach no *
more than the simpler models, and it might divert attention from *
ideas to ingenious machinery. See the Note, in the Preface to this *
Year, which gives a warning about models.) *

*
(A sphere with an internal lamp and pinpricks for stars is not a *
model of this scheme: it is a planetarium to illustrate what we *
observe rather than show the Greek idea. Nor is an opaque celestial *
sphere or a celestial frame ('astrolabe') suitable here. They are not *
so much models of schemes as mapping devices for recording or *
teaching what we see.) *

A Beginning in Natural Philosophy. Thales also made a T 
general statement about the nature of the universe. He said that 
water is the 'first principle', a basic material of everything. He 
assumed that the whole universe could be explained by ordinary 
knowledge and reasoning; so we should not laugh at simplicity 
of his heavenly model or of his general principle - they were bold 
beginnings in natural philosophy.
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PYTHAGOREAN VIEW
The Pjrthagorean school adopted spherical Earth; and separated the general 
daily motion of stars, Sun, Moon, and planets, from the slow, backward motion 
of Sun, etc., through the star pattern.

Pythagoras and his School. Pythagoras (about 530 B.C.), and T 
others who followed him, imagined a scheme of concentric spheres

BLESSED,

EARLY GREEK SYSTEM OF CRYSTAL SPHERES 
A 'section' of the whole system in the ecliptic plane.
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like shells of an onion. The outermost spheres carried the stars with 
the daily motion. Inside that were other spheres, each carrying a 
planet. (Remember, the Greeks counted the Sun and Moon as 
planets as well as Mercury, Mars, Jupiter, Venus and Saturn.)

In later stages this model of celestial spheres had all the inner T 
spheres attached to the outermost one which carried them round 
with the 24-hour motion. Then the Sun's sphere revolved back 
ward, once round in a year, about an axis perpendicular to the 
ecliptic (23^° from the pole star axis). The spheres for Moon and 
other planets all revolved slowly backward about the same axis, 
with appropriate speeds: one revolution in a month for the Moon, 
one revolution in 12 years for Jupiter. This model imitated the 
observed motion of the Sun and Moon fairly well, but gave only the 
general motions of the planets without their retrograde loops. 
This was the next approximation after the single sphere of Thales 
to a description of the facts.

EARLY GREEK SYSTEM OF CRYSTAL SPHERES (Pythagoras)
Part of the system, showing the rotating spheres of the Sun and two planets3 
carried around by the outer sphere of stars which spins dail>.
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Simple Models of Pythagorean Scheme. The umbrella model D 39a 
should be shown again, with a second umbrella added, to carry 
the Sun in a yearly motion backward relative to the daily spin. 
One umbrella is held inside the other with its axis (handle) tilted 
to show the 23£° difference. The inner one carries the Sun (or one 
planet) on its rim, revolving slowly from west to east round the 
ecliptic. The outer umbrella may have its handle transferred from 
inside to outside where it will continue the spike. It carries the 
stars and carries the inner umbrella with it in its daily spin. (By 
the time this point is made clear, the model becomes impossibly 
difficult to manipulate - so much the better: thinking then takes 
charge.)

PYTHAGOREAN SCHEME
Illustration with two umbrellas. The inner umbrella has its spike cut off short, 
and a hole cut in its fabric for the handle of the outer one3 which carries a planet.

The flask model suggested for the simple Greek scheme should D39b
also be shown now, with the flat wooden washer replaced by a
bead or ball to represent a round Earth. As before, one position of
the Sun in the ecliptic is marked by affixing a small bright sticky
label and the daily motion shown by turning the neck of the flask.
Then the Sun is moved to a neighbouring position in the ecliptic
and the daily motion shown again; and so on.

(Models with two or more hoops instead of spheres fail to make the * 
motions clearer: they should not be shown.) *

(More professional models are, of course, possible, such as a large *
transparent sphere (stars), with a smaller sphere inside having its *
axle embedded in the large sphere, at 23|° to the axle of the latter, *
with a small spherical Earth at the centre. This requires an *
electric motor or gears or both. If the school already has such a *
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model it should be shown. But we recommend strongly against *
buying one or constructing one. See the Note, in the Preface to this *
Year, which gives a warning about models.) *

The Crystal Spheres. We should not laugh at this scheme of T 
crystal spheres. It was far from childish or stupid; it was a brave 
attempt to give a simple scheme, to' explain' the heavens to ordinary 
people. It was over-simple, in that it failed to show the retrograde 
loops in the planets' motion and it failed to show the irregularities 
in the Sun's motion from season to season.

This scheme of spheres was like a tale for children, saying,' It is all *
reasonable; there is machinery which carries the stars and planets *
round; it fits together and runs with simple rules; there is nothing *
to fear.' But the scheme gave no hint of the way in which the *
motions were started or maintained. *

*
Outside the outermost starry sphere was the Primum Mobile, *
the celestial powerhouse, which was also said to be the 'abode *
of the blessed'. The original astronomers may have just imagined *
the outermost starry sphere as a theoretical device for describing *
the motion; but it soon took on an air of solid reality. Heaven for *
departed souls was clearly beyond that sphere. This picture of *
heaven became so well established that the Copernican view, *
which did not need a sphere for the stars, but placed them at all *
kinds of distances in remote space, was met with violent dismay *
and opposition. *

Constancies: the Essence of Scientific Description. The *
Greeks insisted on spheres for their machinery and made those *
spheres revolve at constant speed. Those were not whimsical *
assumptions made for artistic delight. Some such assumptions are *
essential for a scientific description, which is what the Greeks were *
aiming at. *

*
When we want to describe some behaviour in nature in the *
compact way that scientists like, we have to extract some constan- *
ties. Each scientific law that we state (usually derived from *
experiment) is really a statement about something that remains *
constant, independent of some other changes or details. Thus, in *
building science, we try to single out things that are constant. *
(Pressure) times (volume) is constant in Boyle's Law. (Stress)/ *
(strain) is constant in Hooke's Law. If we could not make use of *
such constancies in our descriptions, we should go mad with the *
profusion of irregular details. One might almost claim that every *
natural law can be stated with the word 'constant' in it somehow. *
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The Greeks had to express their knowledge of heavenly motions in 
statements that contain some constant elements - otherwise they 
might just as well have ascribed the motions to wayward gods or 
demons. A sphere has constant radius, the same in all directions; and 
that gave it a great advantage in the Greek view, as part of the 
machinery. And each sphere was given a constant speed of spinning 
- again, without that constancy, the description would hardly make 
nature seem reasonable or easy to understand. As the descriptions 
were elaborated to fit the facts more closely, the Greeks would add 
more spheres within spheres, each with its own constant motion, 
rather than lose that essential characteristic. Later, when the pro 
fusion of spheres itself lost the attractiveness of simplicity, Greek 
astronomers modified their insistence on constant speed but in 
stalled other constancies instead.

Pythagoras and the Round Earth. Pythagoras' pupils, if not 
the great man himself, knew that the Earth is round. The time was 
ripe for the idea of a round Earth. Travellers' tales of ships and 
stars suggested a curved Earth to an enquiring mind.

Aristotle, two centuries later, supported schemes of concentric 
spinning spheres with a dogmatic reason: 'The sphere is the per 
fect solid shape.' By the same token, the Sun, Moon and planets 
must be spherical in form; so that the heavens are regions of 
perfection, or unchangeable order among spheres moving with 
constant motions. To Aristotle, the space between Moon and Earth 
was unsettled and changeable, with downward fall the natural 
motion.

Aristotle made a strong case for the Earth itself being round. He 
gave theoretical reasons:

1. Symmetry: a sphere is symmetrical, perfect.

2. Pressure: the Earth's component pieces, falling naturally 
towards the centre, would press into a round form.

and experimental reasons:

3. Shadow: in an eclipse of the Moon, the Earth's shadow is 
always circular: a flat disc could cast an oval shadow.

4. Star heights: even in short travels northward or southward, 
one sees a change in the elevation of the star pattern.
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This mixture of dogmatic 'reasons' and experimental common 
sense was typical of him, and he did much to set science on its feet. 
His whole teaching was a remarkable life work of vast range and 
enormous influence. At one extreme he catalogued scientific 
information and listed stimulating questions; at the other extreme 
he emphasized the basic problems of scientific philosophy, dis 
tinguishing between the true physical causes of things and 
imaginary schemes to save the phenomena.
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Teachers may like to post up a large chart showing evidence for a 
round Earth, like the diagram here. Soon, they may like to post 
up a companion chart showing evidence for a spinning Earth. 
These may promote discussion since they deal with things that 
pupils take for granted.

It is not necessary to discuss the flat Earth-round Earth contro- * 
versy in teaching towards our main target; but that does offer a *
good topic for questioning pupils' assurance. We ask: *

*
' How do you know the Earth is round? How would you convince * 
your younger brother, or a savage, that the Earth is round, other *
than using quotations from some book?' *

*
In the hands of a teacher who likes running a discussion like that, *
it can be of considerable use. A much harder discussion begins, *
' How do you know the Earth spins?' In other words,' How do you *
know the Copernican scheme is right, and these Greek schemes of *
spheres round a stationary Earth are wrong?' (This is a difficult and *
dangerous question. Copernicus argued for his scheme on the *
basis of simplicity. Scientists in the eighteenth and nineteenth cen- *
turies argued on the basis of Newtonian mechanics. Some scientists *
in the twentieth century are apt to claim that general relativity *
would expect the same effects whether the Earth spins or the *
stars whirl round the Earth.) *

Eudoxus' Scheme of many Concentric Spheres. The great T 
Greek mathematician, Eudoxus, devised a tremendous system of 
spheres to match the facts very closely. The simple system of a few 
spheres, one for each moving body, was obviously inadequate. A 
planet does not move steadily along a circle among the stars. It 
moves faster and slower, and even stops and moves backward at 
intervals. The Sun and Moon move with varying speeds along their 
yearly and monthly paths.

Eudoxus elaborated that scheme into a vast family of concentric 
spheres, like the shells of an onion. Each planet was given several 
adjacent spheres spinning about different axes, one within the next: 
three each for Sun and Moon, four each for the planets; and the 
usual outermost sphere of all for the stars. Each sphere was carried 
on an axle that ran in a hole in the next sphere outside it, and the 
axes of spin had different directions from one sphere to the next. 
The combined motions, with suitably chosen spins, imitated the 
observed facts. Here was a system that was simple in form (spheres) 
with a simple principle (uniform spins), adjustable to fit the facts - 
by introducing more spheres if necessary.
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EUDOXUS' SCHEME OF MANY CONCENTRIC SPHERES
Bach body, Sun, Moon or planet, had several spheres spinning steadily around 
different axes. The combination of these motions succeeded in imitating the 
actual motions of Sun, Moon and even planets across the star pattern.

Models of Eudoxus' Scheme? No physical models should be 
shown - except perhaps an onion to illustrate the structure.

Refer to the shells of an onion, and use pictures. Proceed quickly, 
since appreciation of cleverness and complexity is sought rather 
than knowledge of details.

In explaining the details of Eudoxus' machinery (described in a 
later paragraph below) anything more than a sketch of the four 
spheres for one planet would defeat its own ends. The B.B.C. 
constructed a brilliant model with four hoops for its 'How and 
Why' programme. That even shows the inner pair of a planet's 
quartet of spheres producing the loops in the path. Teachers with 
special interests might borrow the B.B.C. model, or a 20-second 
film of it in action. We do not recommend constructing one; and 
certainly not buying one.

Simplicity in Theory. To make a good theory, we must have 
basic principles or assumptions that are simple; and we must be 
able to derive from them a scheme that fits the facts reasonably 
closely. Both the usefulness of a theory and our aesthetic delight 
in it depend on the simplicity of the principles as well as on the
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close fitting to facts. We also expect fruitfulness in making pre- *
dictions, but that often comes with these two virtues of simplicity *
and accuracy. To the Greek mind, and to many a scientific mind *
today, a good theory is a simple one that can save all the phenomena *
with precision. *

Nowadays we also expect a good theory to provide language to 
facilitate interchange and growth of understanding.

Is the Theory True? Questions to ask, in judging a good theory, T 
are, 'Is it as simple as possible?' and 'Does it save the phenomena 
as closely as possible?' If we also ask^ 'Is it true?' that is not quite 
the right requirement. We could give a remarkably true story of a 
planet's motion by just reciting its locations from day to day 
through the last 100 years; our account would be true, but so far 
from simple, and so spineless, that we should call it just a list, not 
a theory.:}: The earlier Greek pictures with real crystal spheres had 
been like myths or tales for children - simple teaching from wise 
men for simple people. But Eudoxus tried to devise a successful 
machine that would express the actual motions and predict their 
future. He probably considered his spheres geometrical construc 
tions, not real globes, so he had no difficulty in imagining several 
dozen of them spinning smoothly within each other. He gave no 
mechanism for maintaining the spins - one might picture them as 
driven by gods or merely imagined by mathematicians.

Unless teachers or pupils have special interests, we do not suggest *
giving a detailed account of Eudoxus' machinery, because it would *
take some time and is quite difficult. For those who would like to *
know about it, here is a short account. *

Details of Eudoxus' Scheme. Here is how Eudoxus accounted * 
for the motion of a planet, with four spheres. The planet itself is *
carried by the innermost, embedded at some place on the equator. *

*
The outermost of the four spins round a north-south axle once in * 
24 hours, to account for the planet's daily motion in common with * 
the stars. *

*
The next inner sphere spins with its axle pivoted in the outermost *
sphere and tilted 23£° from the N-S direction, so that its equator *
is the ecliptic path of the Sun and planets. This sphere revolves in *
the planet's own 'year' (the time the planet takes to travel round *
| Young scientists are urged, nowadays, not to be satisfied with just collecting 
specimens, or facts or formulae, lest they get stuck at the pre-Greek stage.
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PART OF EUDOXUS' SCHEME: FOUR SPHERES TO IMITATE THE MOTION OF A PLANET 
The sketch shows machinery for one planet. The outermost sphere spins once in 
twenty-four hours. The next inner sphere rotates once in the planet's 'year'. The 
two innermost spheres spin with equal and opposite motions, once in our year, to 
produce the planet's epicycloid loops.

the Zodiac), so its motion accounts for the planet's general motion 
through the star pattern.t These two spheres are equivalent to 
two spheres of the simple system, the outermost sphere of stars 
that carried all the inner ones with it, and the planet's own sphere.

The third and fourth spheres have equal and opposite spins about 
axes inclined at a small angle to each other. The third sphere has its 
axle pivoted in the Zodiac of the second, and the fourth carries the 
planet itself embedded in the equator. Their motions combine to 
add the irregular motion of stopping and backing to make the 
planet follow a looped path. The complete picture of this three- 
dimensional motion is difficult to visualize.:):

$ In terms of our view today, the spin of the outermost sphere corresponds to the 
Earth's daily rotation; the spin of the next sphere corresponds to the planet's 
own motion along its orbit round the Sun; the spins of the other two spheres 
combine to show the effect of viewing from the Earth which moves yearly around 
the Sun.

t Pupils keen on horses may be amused to hear the Greeks' description of the 
motion given to the planet by the innermost pair of spheres: the figure-of-eight 
motion of a pony weaving a 'bending' exercise round two posts.
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A Good Theory. With 27 spheres in all, Eudoxus had a system 
that imitated the observed motions quite well: he could save the 
phenomena. The basis of his scheme was simple: perfect spheres, 
all with the same centre at the Earth, spinning with unchanging 
speeds. The mathematical work was far from simple: a master 
piece of geometry to work out the effect of four spinning motions 
for each planet and choose the speeds and axes so that the resultant 
motion fitted the facts. In a sense, Eudoxus used harmonic analysis
- in a three-dimensional form! - two thousand years before Fourier. 
It was a good theory.

An Entirely Different Scheme: Sun-in-Centre. Aristarchus 
and a few other astronomers suggested a radically different scheme
- a spinning Earth to account for the daily motion, and a stationary 
Sun, with the planets and the Earth travelling round it in circular 
orbits.
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Planet P,

STARS ON FIXE.D SPHERE 

AT /NFINITY

ARISTARCHUS' SCHEME
Only two specimen planets are shown. Pj might be Mars, Jupiter or Saturn. 
P2 might be Mercury or Venus, (a) View of spheres. (6) Skeleton scheme showing 
planetary orbits.

Models of Aristarchus' Scheme. The contrast may be shown 
by a simple model with an umbrella marked with a few stars. A 
tiny Earth-globe is held near the crook of the umbrella's handle, at 
the centre of that star sphere. Spinning the umbrella, with the 
Earth held still, shows the earlier scheme. Spinning the Earth 
instead shows one aspect of Aristarchus' scheme: the daily motion 
made by a spinning Earth.

ARISTARCHUS' SCHEME 
Umbrella with stars to show a spinning Earth equivalent to spinning star sphere.

123

D42



The other aspect - the Earth making a yearly orbit round a fixed 
Sun - may be shown by placing a ball to represent the Sun at 
the crook of the umbrella's handle, holding the small spinning 
Earth a small distance out from the Sun and carrying it slowly 
round the Sun. That is easier if the teacher dispenses with the 
umbrella and just holds Sun and Earth in his hands, or places them 
on a table. He must move the Earth round the Sun with its spin- 
axis always pointing in the same direction - always pointing to the 
same pole star on the starry sphere which is now stationary.

(A more elaborate model of the solar system (an orrery) could * 
be shown; but we advise teachers to keep that for the teaching of *
Copernicus.) *

*
(We could show, now, the models that explain how Copernicus * 
(and Aristarchus) accounted for the loops of a planet's observed *
motion; but we urge teachers to postpone those too.) *

*
(A small planetarium could be constructed - a W.C. float with a *
small lamp inside and holes pricked for stars; or a small projection *
lantern with a slide of stars, on a turntable or with a rotating *
mirror. That could be used to show the contrast; but there is *
danger of confusion since the planetarium simply shows what we *
see, the same whatever the explanatory scheme.) *

Aristarchus' Scheme Unpopular. This simple scheme, which T 
we now teach as true, failed to attract support. To the Greeks it was 
unacceptable because:

1. It would displace the Earth from its obvious, important 
position, Man at the centre of the Universe.

2. It involved motions that seemed impossible. Objects would 
be flung off a spuming Earth, or left behind - when the clouds 
and everything else obviously stay with the Earth. An Earth 
hurtling along a vast orbit round the Sun would certainly leave 
things behind, in hopeless contradiction to the observed facts.

3. The Earth moving round such a yearly orbit would travel
nearer to some stars and then farther away in the course of a year;
so the starry patterns should change their apparent proportions
and shapes by foreshortening, or by parallax motions. The D43
teacher should illustrate this by walking across the room, looking
at the seated class as he goes, and commenting on the changes of
the pattern of pupils that he sees as he moves nearer or farther
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away from a group. No such changes in the starry patterns were 
observed. (Nor were any observed until the last century when 
tiny parallaxes were measured and told us that stars though not 
infinitely far away are so remote in comparison with the size of 
the Earth's orbit that the Greeks had no chance of observing 
anything but an 'infinitely' remote heaven.)

Simpler Earth-in-Centre Schemes: 'Wheels within Wheels' 
and an Off-centre Viewpoint. Although Eudoxus' model was 
successful in summing up past knowledge and predicting future 
positions fairly well, it had developed the simple set of spheres into 
a complex arrangement which lacked the full appeal of simplicity as 
an explanation. By the time of Hipparchus (about 140 B.C.), 
astronomers were using simpler machinery. We shall describe it 
with circles instead of spheres, though the Greek delight in spheres 
survived in the original descriptions.

For the motion of the stars, there was the usual outermost sphere 
revolving daily. For the yearly motion of the Sun, a radial arm 
carried the Sun round a circular orbit at constant speed. To imitate 
the slight variations in the Sun's motion, which make our seasons 
uneven, the Earth was placed a little way off centre so that observers 
on the Earth are nearer the Sun hi our winter and therefore see it 
moving faster along its ecliptic path than in summer. This eccentric 
placing of the Earth was chosen to fit the facts. A similar scheme 
did fairly well for the Moon, though the eccentric shift for the 
Moon's circle was not in the same direction as the shift for the 
Sun's circle.

Tfo Horifi. rfflWHis jwaf 
at fRe center of ike t 
(ink (&Jtrwt).

December Sun. 
seems to tnwe 
faster tfinnyH 
sttu-ycittem,

THE ECCENTRIC SCHEME -FOB THE SUN
The Sun is carried around, a circular path by a radius

that rotates at constant speed, as in the simplest
system of spheres. The observer, on the Earth, is

off-center, so that he sees the Sun move unevenly—
as it does—faster in December, slower in June.

EPICYCLE SCHEME
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For a planet the machinery consisted of a big circle and a small 
circle (epicycle) carried round the circumference of the big circle. 
A radius of the big circle revolved at constant speed, making one 
revolution in the planet's own 'year', e.g. twelve of our years for 
Jupiter. The end of that radius carried the small sub-circle, whose 
radius revolved once in each of our years and carried the planet 
at its end. Combining these two motions we obtain a looped epi 
cycloid. An observer looking at that motion from the Earth near the 
centre of the main circle would see the epicycloid very obliquely 
and the scheme would imitate the observed motion of a planet very 
well.

MAKING THE PATH OF A PLANET BY THE EPICYCLE SCHEME 
This sketch shows how the two circular motions combine to produce the 
epicycloid pattern that is observed for a planet.

(That is the story for the outer planets, Mars, Jupiter and Saturn. 
The story for Mercury and Venus is somewhat different but has the 
same essence.)

The Earth was fixed at the centre of the main circle, or, to explain 
further discrepancies, a short distance off centre.

Here was simpler machinery that imitated the observed motions 
more closely, and preserved some essential constancies: circles of 
constant radius, arms rotating at constant speed.
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Simple Models for Epicycle and Eccentric Scheme. This is 
simpler machinery and should be demonstrated simply.

D44

Simple model for epicycle scheme. 'Planet' held in hand moves fast round small
circle, while hand sweeps slowly round large arc whose centre is fixed 'Earth'.
a. Hand simply revolves round wrist.
b. Hand carries electric motor, or clockwork, to make planet revolve.
Simple model for eccentric scheme for 'Sun'. Hand carries 'Sun' round large
arc. 'Earth' held fixed, a small distance off centre of arc. Elastic thread joining E
and S shows speed changing with seasons.
Model of epicycloid scheme using a ball on a record-player on large turntable.
The ball may be replaced by a small lamp lit by battery.

The teacher uses his own arms. He holds a large ball in one hand to 
represent the fixed Earth. In the other hand he holds a small ball, 
representing a planet, and sweeps his outstretched arm slowly 
round an arc whose centre is at die fixed Earth. The small, fast, 
circular motion (for the 'epicycle') is made by:

a. revolving the hand, flexibly, round the wrist, or

b. carrying an electric motor with the planet on an arm attached 
to its axle, or

c. carrying clockwork with an arm, as in (b} (e.g. an old clock 
with the escapement removed).

Or the scheme for a planet's motion can be shown by a ball (or 
lamp) on a record-player placed on a large turntable. The record- 
player should be tilted a little so that its axis makes a small angle 
with the axis of the turntable.
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The motion of the Sun, as seen from an eccentric Earth, is demon- D 45 
strated by the teacher sweeping a ball representing the Sun round 
with outstretched arm. He holds a large ball (Earth) a noticeable 
distance away from the centre of the Sun's arc. An elastic thread 
may be tied between Earth and Sun. Watching the thread, pupils 
can see how the Sun's apparent speed must change through the 
seasons if the Earth is off-centre.

(It would be easy to construct a professional model with two electric *
motors and balanced arms and a sliding sight-line - an unwelcome *
elaboration. Such complicated demonstration models should not *
be bought; and they are not worth constructing for teaching with *
our present aims. See the Note, in the Preface to this Year, which *
gives a warning about models.) *

£ - Eattb(futetf) 
C - Center ofank

C^C-CE

THE PTOLEMAIC SCHEME 
This system imitated the motions of Sun, Moon, and planets very accurately.

Ptolemy's Successful Machinery. Ptolemy, about A.D. 120, 
modified the scheme of circles and sub-circles into a tremendously 
successful scheme, a brilliant mathematical machine. His great 
book, the Almagest, remained the authority for describing and 
predicting the motions of Sun, Moon and planets for fourteen 
centuries.

If teachers or pupils are amused by the extra shifts that Ptolemy 
had to make to produce his very successful machine, a short 
description should be given. Otherwise, we should either leave the 
machinery at the stage described above, or simply state very briefly 
what Ptolemy did, saying that he devised his scheme to make it fit. 
But in giving any description of Ptolemy's scheme, however short, 
we must emphasize his constancies. Like any good scientific theory, 
it had essential constancies.
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Ptolemy used a main circle with the Earth fixed near its centre, but 
he did not make the radius of that circle revolve at constant rate. 
Instead, he made another arm, the arm from an 'equant point', 
revolve at constant rate. The Earth was fixed a short distance from 
the centre of the circle on one side. The equant point, Q, was 
placed an equal distance off-centre on the opposite side. An arm 
ran from equant to the centre of the sub-circle that was carried 
round the main circle. (Since that arm changes length, we must, if 
we wish to imagine detailed machinery, think of it as sliding through 
some knob out there.)

The radius from the centre of the main circle was still there to 
maintain constant distance to the circumference.

The arm of the small sub-circle revolved at constant rate carrying 
the planet, as hi the earlier scheme. The plane of the sub-circle was 
tilted out from the plane of the main circle.

Thus, to fit the facts, Ptolemy had many variables that he could 
choose: the ratio of radii sub-circle to main circle; the constant 
speed at which the arm from the equant revolved; the constant 
speed at which the radius of the sub-circle revolved; the tilt of the 
sub-circle's plane; the eccentric distance of the Earth (equal to the 
eccentric distance of Q); and the direction of that shift of the Earth 
out from the centre. Ptolemy had to choose the ratio of radii rather 
than two separate radii, since his machine only predicted the 
direction of a planet's position seen among the stars. For that, his 
machinery was remarkably successful.

The scheme preserved the characteristics of a good, working 
theory; the main circle had constant radius, the arm from the 
equant revolved with constant speed, the Earth was in a constant 
position and a constant distance off-centre; the radius of the sub- 
circle revolved with constant speed.

No 'ultimate cause' was given for this machinery or its motions. 
Planetary motions were presumably started by gods and perhaps 
maintained by gods; and there was no link between them and the 
motions observed on Earth.

The planets were just bright stars moving in the starry pattern. 
Their real distances were unknown and no one knew whether they 
were much nearer to us than the stars, or even which ones were 
nearer than others. Ptolemy's system could place Jupiter nearer than 
Mars, or Mars nearer than Jupiter, equally easily.
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However, since Jupiter moves backward through the star pattern 
so much slower than Mars, astronomers guessed that Jupiter is 
much farther away, just as we guess relative distances of cows, 
trees, etc., seen from a moving train. In fact the order of planetary 
distances guessed at by the Greeks agreed with what we know 
today; but they had neither an experimental reason for it nor any 
idea of the proportions within that order.

If teachers like to form a composite picture with overlays of trans 
parent sheets, they can easily convince pupils that even the clear, 
clever Ptolemaic system was complicated enough to make a head 
ache.

D46

THE PTOLEMAIC SCHEME for the Sun, S5 and two planets, P and P'.
THIS IS THE COMPOSITE PICTURE THAT THE SEPARATE SHEETS (SHOWN OPPOSITE) WILL 

PRODUCE WHEN SUPERPOSED.
(The two small rings at the top show the locating holes in each transparent sheet.)
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(Apart from that flat picture, with its special purpose, Ptolemy's 
refinements are too difficult to show by a simple model. If pupils 
have understood the previous stage - the epicycle and eccentric 
scheme - a blackboard drawing will do best for the new modifica 
tion. A sound mechanical model could be manufactured, with two 
electric motors and arms that revolve and slide - though there are 
difficulties in arranging the supports so that they do not obstruct 
each other. Such a model would be expensive and fascinating; but 
it would not be a good aid in our present teaching.)

o

11

ffi

These are successive diagrams, to be sketched on transparent sheets and hung 
one in front of another on a translucent screen illuminated from behind. As these 
stages are added, they build up the picture shown on the opposite page. The two 
holes at the top fit on pegs in the frame of the screen, so that each stage is located 
correctly on the rest: I, I+ 11,1+II + III, I + II + III + IV.
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Thus, Ptolemy had a magnificent scheme of circles, arms, sub- 
circles and arms, which could reproduce the heavenly motions so 
accurately that it could be trusted to predict the positions of Sun, 
Moon and planets for century after century. In fact it continued in 
use, with occasional corrections, for more than a dozen centuries. 
And for practical purposes, navigators and astronomers would use 
a scheme of that form today. It was neither stupid nor clumsy, it 
was very clever and accurate, a successful machine.

The only things we could say against it now are that it did not offer 
to link the heavenly phenomena with anything else we know hi 
science; and that as machinery it seemed quite complicated. 
Pupils learning about the Ptolemaic system should not be taught 
to despise it but if they develop a headache over its complexity we 
might consider that a good preparation for the simplification by 
Copernicus.

Greek Measurements
Meanwhile, before Hipparchus and Ptolemy perfected the 
machinery of rotating arms on eccentric circles, Greek astronomers 
at the university at Alexandria made a great advance in scientific 
knowledge by making real measurements of distances. They esti 
mated the size of the Earth - which was known in those days to be a 
sphere. They estimated the distance, and therefore the size, of the 
Moon by an ingenious method based on eclipse shadows. And 
they attempted a rough estimate of the distance of the Sun. Such 
measurements brought the purely pictorial mathematics of the sky 
into the realm of measured science.

Those Greek measurements remained in use by astronomers for 
centuries. They were simple; and we should teach them if time 
permits, not just to add information about methods of measure 
ment, but because they show how mankind learnt the real size of 
local space long ago.

The Size of the Earth. The first measurement to be made was 
the size of the Earth itself, and the other measurements emerged in 
terms of the Earth's radius.
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How ERATOSTHENES ESTIMATED THE SIZE OF THE EARTH

Eratosthenes (about 240 B.C.) made one of the early estimates. He 
compared the direction of the local vertical with parallel beams of 
sunlight at two stations a measured distance apart. He assumed 
that the Sun is so remote that all sunbeams reaching the Earth at 
any instant are practically parallel.

He needed simultaneous observations at two stations far apart. 
Good clocks that could be compared and transported were not 
available. So he obtained simultaneity by choosing noon (highest 
Sun) on the same day at stations in the same longitude. He used 
observations at Alexandria, where he worked, and at Syene,:}: 500 
miles farther south. The essential observation at Syene was this: 
at noon on midsummer day, 22 June, sunbeams falling on a deep 
well there reach the water and are reflected up again. Eratosthenes 
knew this from library information. Therefore the noonday Sun 
must be vertically overhead at Syene on that day. At noon on the 
same day of the year, he measured the shadow of a tall obelisk at 
Alexandria and found that the Sun's rays made 1\° with the verti 
cal. He assumed that all sunbeams reaching the Earth are parallel. 
So it was the vertical (the Earth's radius) that had different direc 
tions. Therefore the Earth's radii to Alexandria and Syene make 
1\° at the centre. Then, if 500 miles of Earth's circumference 
subtended 1\°, what length would subtend 360°?

Measuring the 500 miles separation was hard - probably a military 
measurement done by professional pacers. There is doubt about 
the units he used, but some say his error was less than 5 per cent - 
a remarkable success for this early simple attempt. He also guessed 
at the distances of Sun and Moon.

Modern name: Aswan, where the great dam has been built on the Nile.
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If that measurement, carried out with such skill long ago, catches *
pupils' fancy, well and good. But, if a class merely finds it old and *
dull, the teacher should not labour it. He should mention it and *
then go straight on to other things. *

A School Measurement. A demonstration that would bring this D 46 
to life is a measurement of the Earth's radius today, conducted by 
two schools far apart, more or less on a north-south line.

Suppose a school in London and a school in Newcastle arrange to 
co-operate in observing the direction of sunlight at a particular 
instant. They should agree on time and day. They should choose 
noon, if possible, because shadows are at a minimum then so change 
little in the course of a few minutes. (Also, with the Sun highest in 
the heavens the subsequent calculations or drawings feel more 
comfortable.) Each school sets up a pole of known height, say 10 
feet. The pole must be vertical, as shown by a plumb line; or at 
least the point on the ground vertically below must be clearly 
marked. The shadow of that pole is measured. It is not necessary 
to have the same height of pole at both stations. The shadow of a 
building could be used instead, provided the height is known and 
the shadow falls on horizontal ground. Then, having prearranged 
the day, the schools communicate by telephone at noon:

'Have you got bright sunlight there? Is the shadow sharp? ... 
Is it on horizontal ground? ...

'How tall is your pole? ... (the same questions in the other 
direction) ...

'It is nearly noon. Are you ready? ...

' The shadow of our 10-foot pole is 12 feet long. What's yours?

'Oh, our 10-foot pole casts a shadow 11 feet long.'

Of course, that can be done by postcard correspondence, but 
a telephone call is much more romantic and may be well worth the 
cost, because it emphasizes the necessary condition of simultaneous 
observations. (On S.T.D. 3d will suffice to find out if the Sun is 
shining at both stations.)

Then the class must know the north-south distance between the 
stations, measured along the surface of the Earth. If we asked
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professional surveyors to find the distance between two stations 
thousands of miles apart, we might find them nowadays reversing 
Eratosthenes' measurement and estimating it by Sun or star 
heights and the known size of the Earth - and that could be un 
fortunate for the logic of this experiment.

The simplest source of this information is a map. If we use that, 
we certainly must not find the distance from latitude angles from it. 
Those are placed on a map from a knowledge of the Earth's size - 
we should be assuming what we want to measure! Pupils can 
imagine the London-to-Newcastle distance being measured 
directly by a road surveyor with his wheel, walking the distance, or 
less precisely, a car driving the distance. To obtain the actual value 
for use, they may take the distance hi miles (but not in degrees) 
from a map; but they will probably feel that it is more realistic 
to take the distance from the ABC timetable, which gives the rail 
distance and the fares.

In our (fictitious) example above, pupils and teacher would then 
use trigonometry or a graphical method to find the radius of the 
Earth.

To use trigonometry, we sketch the Earth as if we already knew its 
size, then continue the line of the vertical pole at each station down 
into the Earth, as a radius. On the sketch we see those radii meeting 
at the centre of the Earth, making a small angle. The slanting lines 
of sunlight are parallel (assuming the Sun infinitely distant). We 
complete the observation-triangles on the sketch, making a right 
angle at the base of the pole at each station. Then pupils who are 
competent at geometry will find that the angle at the centre of the 
Earth between the radii is equal to the difference of the angles at 
the two stations between base line and sunlight. They calculate 
those angles by saying,

tan [base angle] = [pole-height]/[shadow length]

They calculate the tangents, the angles, the difference of angle.
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=. B-A

Unless pupils are confident and clear with that method, it will be 
better to do it by drawing two triangles to scale. We first show a 
sketch of the Earth with the triangles at the two stations. We draw 
those triangles larger. Then, pointing out that the Sun's rays have 
the same direction at both we place one triangle on the other, with 
the tops of the poles coincident and the rays of sunlight through 
them coincident. Pupils draw a scale picture of the two superposed 
triangles and measure the angle between the two lines that repre 
sent the vertical poles.

The angle at the centre of the Earth will be small. For example, for 
stations in London and Newcastle it will be about 3£°. Then we 
argue that the measured distance, say 250 miles, corresponds to 
that angle, say 3|°; and we ask the value of the circumference of the 
Earth corresponding to 360°. Thence, we estimate the Earth's 
radius.

This is not an essential demonstration. If time is short, or pupils 
do not show much interest, it should be omitted. But we hope that 
many classes will find it exciting.

Size and Distance for Moon or Sun. We ask pupils how they 
could tell the size of the Moon if they knew its distance. We 
suggest each pupil should try holding a coin at arm's length and 
finding the distance at which it just blots out the full Moon. The 
answer will be about 110 coin distances. Therefore, the Moon's 
distance is about 110 Moon-diameters.

C47
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Distance of Moon. This is not a measurement that pupils can 
make, but we should tell them briefly how the Greeks carried it 
out.

Later measurements have been made by standard surveying 
methods, with telescopes sighting a point on the Moon from 
stations a large distance apart; but the Greeks made an early 
estimate by means of eclipses.

We show a diagram of the Earth's shadow in an eclipse of the 
Moon. The usual sketches in books exaggerate the size of Earth 
and Moon and fail to show how unlikely an eclipse is. (See sketches 
on page 99.)

iujfic ny/i 
fovtrnfjtof San

EARLY GREEK MEASUREMENT OF SIZE OF THE MOON
(AND THEREFORE ITS DISTANCE)

Observations of eclipses showed that the width of the Earth's shadow at the Moon 
is 2-5 Moon-diameters. However, the Earth's shadow narrows as its distance 
from Earth increases because the Sun is not a point-source. Since the Moon's 
shadow almost dies out in the Moon-Earth distance, the Earth's shadow must 
narrow by the same amount - one Moon-diameter - in the same distance. Then 
Earth-diameter must be 3-5 Moon-diameters.

We point out that, since the Sun and Moon each have an apparent 
diameter of about | a degree, the full shadow of the Moon only 
just reaches the Earth. It tapers almost to a point at the Earth; 
so we only just see total eclipses of the Sun. The Earth's shadow 
tapers with the same angle from Earth to Moon; therefore, it also 
narrows by one Moon-diameter in that distance.

By watching the passage of the Moon through the Earth's shadow 
in an eclipse, astronomers estimated the width of that shadow in 
Moon-diameters: about 2\. However, that does not give the full 
diameter of the Earth because the shadow tapers, since it is cast 
by the large Sun which is about £° in diameter.
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So the shadow of the Earth must be 2|+1, or 3| Moon-diameters 
wide. Therefore, the Earth's diameter is 3| times the Moon's 
diameter. Therefore, the Moon's diameter is f of the Earth's 
diameter, and the Moon's distance is 110 xf Earth-diameters, or 
just over 60 Earth's radii, some 240,000 miles.

Pupils' Estimate from Eclipse Photo. The cleverness of *
estimating the Moon's distance by the Earth's shadow is not likely *
to appeal to pupils unless they can do it themselves. From time to *
time, there are announcements in the papers of an eclipse of the *
Moon which give the time it starts and ends. But those will not *
yield a good estimate unless they are the stages of a total eclipse. *
(Also, the predicted times are calculated from a knowledge of the *
distance we are trying to measure.) *

However, a rough estimate could be made from a photograph of a D48 
partial eclipse. Best of all, pupils take a photo themselves. Second 
best, we supply a printed photograph and ask pupils to estimate H48 
the proportion between the Moon's radius and the radius of the 
shadow-bite on the Moon.

r Moon-diameter
R Earth-diameter—one Moon-diameter

Sun's Distance. The earliest guesses placed the Sun absurdly T 
close to the Earth and therefore supposed it quite small. Greek 
astronomers made a clever attempt, as follows, and its very 
inaccurate result remained in use for a long time.
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SUN'S DISTANCE
Early Greek estimate of the Sun's distance from the Earth, in terms of the 
Moon's known distance. Greek astronomers tried to measure the angle x (or 
SEM), which is itself nearly 90°.

When the Moon seems to be exactly at half-moon to an observer 
on the Earth, the directions from the Moon to Sun and to Earth 
must make 90°. If observers know the directions of the Sun and 
Moon at that instant, they have data for a vast right-angled triangle 
with a right angle at the Moon and an angle almost 90° at the Earth.

It is very difficult to fix that exact instant, so the Greek estimate of 
87° was far from right. It yielded, by simple geometry, the result 
that the Sun is 20 times as far away as the Moon. We now know the 
ratio is about 400.

That was a valiant attempt. We shall meet the method again in 
Copernicus' estimate of the size of Venus' orbit.

'Dark Ages'
For a dozen centuries astronomy was taught with the authority of 
books and careful adherence to the Ptolemaic system. It was part 
of the general teaching of mathematics that was given to church 
scholars; and it was kept alive by the need to train navigators and 
by strong superstitious interest in astrology. The intellectual world 
was occupied with other matters, and astronomy was largely 
taught without question. From time to time the Ptolemaic 
machinery was endowed with new radii and modified periods of 
rotation to bring it into still better gear with observations.

THE COPERNICAN REVOLUTION: A SIMPLER SCHEME 
Copernicus (1473-1543) was brought up by his uncle to be a 
church administrator; but at an early stage he developed an intense 
interest in bringing the heavenly system into a simpler scheme, 
which he thought would be to the greater glory of God - the 
Ptolemaic system with its artificial equants seemed to him too 
clumsy to be God's best choice. He believed that the planetary
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system, spheres and all, was a divine creation; but he believed God's 
arrangement would be a simple one, all the more splendid for 
great simplicity. He collected together observations of the planets 
in more reliable tables than had so far been available; and in 
thinking about the planetary motions he was struck by the sim 
plicity that would come from changing to a system with the Sun 
at the centre of the universe. This model had been suggested by a 
few Greek philosophers but it was unpopular and soon forgotten. 
Copernicus' development was far more powerful because he built 
into it a system of measurements. As a careful, quiet, contemplative 
monk, with a great love of truth, he spent his lifetime perfecting 
his scheme and was not willing to publish it - apart from talks with 
visiting pupils - until near the end of his life. He believed that a 
simpler scheme, such as he suggested, was all to the glory of God; 
and he fervently believed that his scheme was true.

Copernicus assumed that the Earth spins daily, and that accounted 
for the daily motion of stars, Sun, Moon and planets. He assumed 
that the Earth travels round a central fixed Sun in a yearly orbit. 
In making the change from the Ptolemaic system he moved the 
Earth out of its grand central position and made it an ordinary 
planet like the rest. That was a tremendous change of viewpoint 
which horrified people when, later on, they came to understand it.

Copernicus pictured all the planets moving in circular orbits 
around a fixed Sun. He made the Earth travel once around the Sun 
in a year, spinning once in 24 hours as it goes. The ' fixed stars' 
and the Sun could then remain at rest in the sky.

This scheme replaced Ptolemy's epicycles and equants with 
simpler circular motions. The daily motion of the stars, carrying 
Sun, Moon, and planets as well, could obviously be replaced by a 
daily spinning Earth. That alternative had often been discussed, 
but had been turned down because the critics did not understand 
the mechanics of motion. (They claimed that there would be a 
howling wind of air left behind, and that the ground would outstrip 
a stone dropped from a high tower. On the other hand, the stars, 
etc., could well be carried around by Ptolemy's spheres because 
spheres and rotations were 'natural' in the heavenly region.)

The slower, irregular motions of Sun and planets through the 
star pattern were simplified by a scheme of circular motions around 
the Sun.

This was Copernicus' main contribution: to stop the Sun and
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place it at the centre of the planetary system. Then the Sun's 
yearly motion around the ecliptic was only an apparent one due to 
the Earth's yearly motion around the Sun.

The complex epicycloid of a planet was simply a compound of 
the planet's own motion around a circle and the Earth's yearly 
motion. (On this view, the epicycloid picture is making us pay 
for ignoring the Earth's motion.)

COPERNICUS' EXPLANATION OF PLANETARY EPICYCLOIDS
The lines EJ1S EJ2, etc., are sight-lines from positions of the Earth every two 
months through Jupiter's position towards the stars.

>•-* //y 's-^r /j?
(a)
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3

(a) Two stages sketched. 

Pr&ii" <]f JujHter

(6) More stages sketched.
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(c) Many stages sketched. The sight-line EJ wags up and down in a complicated 
way.

OrHitff 
Jupiter

COPERNICUS' EXPLANATION
The apparent positions of Jupiter in the background of fixed stars. This shows 
FIG. (c) redrawn on a much more condensed scale with the sight-lines from 
Earth to Jupiter continued on out to the stars (e.g. the line to Jt* here is con 
tinuation of EJj). The specimen sight-lines are drawn parallel to the correspond 
ing ones in FIG. (c).
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Looped Paths of Planets. He explained that the looped pattern T 
of planetary motion through the stars is produced by combining 
the simple motion of the planet in a circular orbit round the Sun 
with Earth's simple motion in its orbit around the Sun. The loops 
are due to the Earth's motion - we are observing a simple circular 
motion from an Earth that is itself making circles.

His detailed explanation of a planet's epicycloid ran like this. 
Suppose the Earth travels around a circular orbit and Jupiter more 
slowly around a bigger orbit, both with the Sun at the centre. The 
fixed stars must be much farther away, because no parallax-shifts 
are observed. Then in marking the position of Jupiter among the 
fixed stars we look along a sight-line running from Earth to Jupiter 
and on, far beyond, to the pattern of the stars. As the Earth sweeps 
round and round its orbit and Jupiter crawls more slowly, this 
sight-line wags to and fro as it goes around, marking an epicycloid 
among the stars. When the Earth is at E 19 Jupiter is at J 15 and an 
observer looking along the sight-line EJj sees Jupiter among the 
stars at J*. As the Earth travels from Ej to E2 to E3, E4, E5, E6, 
etc., Jupiter travels steadily but slowly forward from Jj to J 2 to Ja, 
J« Jss JBJ etc. Then the observer on E sees J* in directions that 
swing mostly forwards but sometimes backwards. To see this, look 
at the sketch (d) condensed to a small scale with the sight-lines con 
tinued out to a remote background of stars.

In thus 'explaining' the looped motion of planets, Copernicus 
offered astronomers a tremendous simplification. Nevertheless, 
people constructing tables for navigation are still dealing with the 
planets as seen from the Earth, and are likely to use Ptolemaic 
machinery and neglect the Copernican simplification.

Nor will our pupils welcome the simplification as tremendously *
important, unless we have managed to convey the historical *
development through Greek astronomy with special enthusiasm. *
They will just think we are at last admitting the obvious story. So *
we should not labour the explanation with the diagrams given here *
- these are provided only for the interest of teachers. Instead, we *
should show a simple model, run by student or teacher, as follows. *

The demonstrator makes a mark in the middle of his chest to D49 
represent the central Sun. He moves his right hand rapidly round 
that 'Sun' in a small circle of radius 8 or 10 inches. That hand 
represents the Earth.
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He stretches his left arm out fully, to represent the orbit radius of 
another planet, say Jupiter. He moves his left hand, representing 
Jupiter, more slowly round the larger circle with the Sun at centre.

* *

To show where Jupiter will be seen among the stars which are 
much farther away, the demonstrator carries a light wooden pole as 
'sight-line' from Earth to Jupiter. He holds one end of the pole 
in his right hand (Earth), letting the pole run loosely through a 
ring made by finger and thumb of his left hand and on out beyond 
to the' stars' imagined to be on the walls and ceiling of the room.

As the 'Earth' goes quickly round its orbit and 'Jupiter' moves 
more slowly, the pole wags to and fro as well as making general 
progress across the sky. Pupils will see how the epicycloid pattern 
is produced.

(More elaborate models with an electric torch on the pole have 
been tried; but they are apt to add confusion rather than clarity. 
This is a demonstration in which intelligent imagination should 
play a part. More elaborate models can be constructed with a 
large turntable carrying a record-player turntable, but these require 
considerable planning and construction to avoid their showing the 
wrong thing. We do not recommend them for this.)

Copernicus accounted for the epicycloids of Mars, Jupiter, and 
Saturn by making them move around large circular orbits outside 
the Earth's orbit. He made Venus and Mercury move around 
smaller orbits, nearer the Sun than the Earth's. This accounted for 
their observed behaviour - they keep close to the Sun and swing
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to and fro each side of it. Thus the same scheme served for both the * 
'inner' planets and the 'outer' ones. *

Copernicus did not just offer an alternative that looked simpler; T 
he extracted new information from his scheme: the order and sizes 
of the planetary orbits, a remarkable advance contributed by theory. 
In the Ptolemaic scheme the main circles could be chosen with any 
sizes - it did not even matter which planet was put outermost. In 
fact, Ptolemy was just drawing patterns on the celestial sphere, 
with a mathematical machine, to fit the observations. In the 
Sun-in-centre scheme, the orbits must be in a definite order and 
must have definite proportions. From the planets' apparent motions 
in the sky it was obvious to Copernicus whose orbits were largest 
and whose least. The order must be as follows.

SUN, stationary at the centre
Mercury, nearest the Sun
Venus
Earth, with the Moon travelling round it
Mars
Jupiter
Saturn, farthest of the planets then known.

A chart to be posted up would be useful. D 50

\
\

\ 
\
\

\ v "^/

\ x^" I
COPERNICUS' PLANETARY SYSTEM
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Orrery? If the school has a mechanical model of the solar system, D 3|5c 
an orrery, it should certainly be shown. But one should not be OPT. 
bought. They are expensive toys that do not teach as much as one 
expects. But making a simple one is profitable. If pupils or teacher 
Eke to construct a model it will be worth while. Ingenious gears are 
not necessary: here again it is the idea of the scheme that we are 
trying to show. An informal model in which each planet is carried 
round by a pupil can be a great success.

Sizes of Orbits. Treating the orbits as simple circles, Copernicus T 
calculated their relative radii from available observations; he could 
thus plot a fairly accurate scale map of the system. To obtain the 
actual radii from these relative values, he needed an absolute 
measurement of any one of them, say the distance from Sun to 
Earth. This was known only roughly, so the absolute size of his 
scale model was unreliable.

Estimating Orbits. To see how he calculated relative radii, T 
suppose you are attacking the problem for an inner planet, say 
Venus. Venus, nearer the Sun than the Earth, travels in a small 
orbit round the Sun. This circle is seen practically edge-on from 
the Earth; so Venus seems to swing to and fro in front of the Sun 
or behind it, travelling only a small way each side of the Sun before 
it turns back. Thus it is seen only near the Sun as a morning or 
evening 'star'.

O i

\
>

(ft)
Eorfft

observer's
view

PHASES OF VENUS, AS SEEN FROM THE EARTH

When Venus seems farthest to one side of the Sun, just about to 
turn back, it must be at a point such as C lying on a tangent from 
the Earth to its orbit. In positions A, B, D, ... etc., it would seem 
nearer the Sun. This tangent is perpendicular to the radius, SC, 
of the orbit. So the triangle ECS has a right angle at C and an angle 
at E that can be measured by sighting from the Earth.
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ESTIMATING RELATIVE RADII OF ORBITS 
Venus is shown farthest from the sun.

Copernicus knew the angle SEC from observations, about 46°. 
Then he knew the proportion

SC Radius of Venus'orbit . A , a . _„,,__— = =-^——TT=—T-.——rr- was sin 46°, about 72/100.SE Radius of Earth's orbit '

Pupils could be given the argument and the measured angle, 46°, * 
and asked to find that ratio by trigonometry or by drawing to scale. *

Copernicus had measurements which gave him this angle, and he T 
performed this calculation for Venus and Mercury. For the outer 
planets the argument and the geometry are rather more compli 
cated, but Copernicus calculated the relative sizes of their orbits in 
much the same way. He could draw a scale diagram of the solar 
system, placing the planets in the right order at the right relative 
distances. In that way, Copernicus' theory gave much fuller 
knowledge of the heavenly system than the Ptolemaic machine, 
which offered no such details. However, the new knowledge was 
only yielded by the new theory in terms of the theory's own assump 
tions. The same holds in modem models of atoms; the information 
we extract is only evolved in terms of the pattern we have chosen; 
and we should remember that.

Copernicus could draw a scale map of the orbits and place the T 
planets correctly in them at some chosen starting time. To predict

148



their positions at other times he needed to know each planet's 
'year', the time it takes to travel round its orbit. These 'years', or 
times of revolution, he found from recorded observations. Essen 
tially, he found how long the planet took to get back to the same 
place among the stars.

Using recorded data, Copernicus placed the planets on his scale 
map and predicted their positions at other times, past and future. 
He could check the past ones, and thus test his' picture', or' theory' 
as we should now call it. These tests were encouraging, but there 
were some disagreements which led, through long careful calcula 
tions, to modifications of the simple picture.

Copernicus had to introduce some sub-circles and eccentric *
positions to make his solar system agree with the facts. Some *
modern critics suggest that in the end Copernicus' system was *
almost as complicated as the Ptolemaic one: but they forget that *
Copernicus' extra circles were small additions, while the Ptolemaic *
ones were essential parts of the machinery. Copernicus did make *
a great simplification of thinking. *

*
Copernicus gave other points in support of his theory: he showed *
that the changes of brightness of planets and the placing of the *
loops in their motion agreed with his model. *

Precession. As a crowning virtue of simplicity, Copernicus gave T 
a new interpretation of the precession of the equinoxes. Precession, 
as discovered by the Greeks, was described as the whole star 
system (and the Sun) crawling slowly around the axis of the 
ecliptic, while the Earth and its equator plane and N-S axis stayed 
still. Copernicus reversed the description, saying the Sun and its 
ecliptic plane stay fixed; that is, the plane of the Earth's orbit stays 
fixed. And the Earth's equator-plane (and celestial equator) swings 
slowly around, always tilted 23|° to the ecliptic.

Then Copernicus could describe precession simply: the Earth's 
spin-axis has a slow conical movement; carrying the equator-plane, 
it gyrates around a cone of angle 23J° in 26,000 years.

Though Copernicus gave this clear picture of what happens in the 
precession of the equinoxes, he had no idea what 'caused' it. 
He gave no reason for that motion any more than he gave a reason 
for the motions of the planets which he described so simply. That 
problem had to wait for Newton, who showed that, like so many 
astronomical phenomena, it is a result of universal gravitation.
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THE PRECESSION OF THE EQUINOXES
Sketch of a large patch of Northern sky (about 90° by 90°), showing the slow 
movement of the celestial North Pole among the stars. The point where the 
Earth's spin-axis cuts the pattern of the stars moves slowly around a roughly 
circular path making one revolution in about 26,000 years. (After Sir Robert 
Ball.)
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We should show this picture of precession with the help of an D51 
ordinary Earth globe. We place the globe on the table, with 
its spin axis making about 23|° with the vertical. Keeping the globe 
spinning, we move it round a large circular orbit on the table, with 
a fixed Sun in the centre, keeping the spin axis pointing in a con 
stant direction.
Then, having established that picture of the Earth's yearly motion, 
we show precession by making the spin axis revolve very slowly 
round an axis perpendicular to the Earth's orbit. To do that, we 
simply turn the whole globe, stand and all, round a vertical axis, 
by hand - and, doing that slowly, we keep the globe spinning fast 
and move it at medium speed round the yearly orbit on the table. 
That conical motion takes, in fact, 26,000 years.

Copernicus was at last persuaded to write his scheme in a great 
book, and the book was published at the very end of his life.

(This is one of the few great books in the history of science of *
which we have the original manuscript. A photographic copy of *
Copernicus' original writing, with ink blots and corrections, has *
been published recently.) *

The Explosive Effect of Copernicus' Book. When it first *
appeared, the book was read by astronomers but in its formal Latin *
it was not read by educated people hi general, so the new scheme *
did not have its full impact for some time. Galileo, born some years *
after Copernicus' death, expounded the scheme and put forth *
winning arguments for it in popular, rolling Italian. That was a *
bombshell, because educated readers far and wide enjoyed it, *
understood it, and realized that the Copernican system had made *
the Earth common and ordinary, 'just a planet', and had left the *
stars fixed in space, at any assortment of great distances, with no *
pkce for Heaven. *

That was disturbing, both to man's picture of Heaven and to *
the teaching of Church authorities. No wonder Galileo got into *
trouble for insisting so loudly and clearly that the Copernican *
system is true. *
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COMPARISON OF SIMPLE PTOLEMAIC SCHEME AND SIMPLE COPERNICAN SCHEME

PTOLEMAIC SYSTEM, sketched without eccentricity or equants. Order and 
proportions of orbits not determinate. Epicycle radii not ' to scale'.

\
\

Mars

Jupiter

Saturn.

COPERNICAN SYSTEM, sketched without eccentricity or minor epicycles. 
Orbit proportions, which are determinate, are roughly to scale. 
(Moon's orbit out of scale.)

TYCHO BRAHE, THE AMAZING OBSERVER 
Tycho Brahe (1546-1601) was a Danish nobleman who, in his 
early school days, developed a passion for accurate astronomical 
observation. He was delighted by the way in which astronomers 
could predict an eclipse. But then he was disappointed at the in 
accuracy of predictions for the close 'conjunction' of Jupiter and 
Saturn - an important astrological event. He determined to spend 
his life making such accurate and systematic observations that 
astronomers could not only make good predictions but would also 
know which model of the heavens fitted best. In that, he was to 
provide the precise measurements of planetary motions which were 
essential to Kepler.

At an early stage Tycho realized that the old practice of collecting 
and using chance observations did not suffice. Systematic observa-
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tions and records were essential. He also realized that, to obtain 
great precision, he must make robust instruments and then cali 
brate them, making tables of their errors, rather than strive for an 
instrument that was 'perfectly accurate'.

Using royal endowments and his own fortune, he built a magnifi 
cent palace as an observatory on an island off Copenhagen. He 
spent 20 years there, building a tremendous record of accurate 
observations, all made with naked eyes (telescopes had not been 
invented), using instruments which he designed and constructed in 
the workshops of his palace. Students came from far across Europe 
to work with him; and he drove them hard to make observations 
and reduce them to records, cross-checking between one observer 
and another and one instrument and another.

When he died Tycho left a magnificent record of the motions of the 
planets and of Sun and Moon, recorded against the star pattern. 
He was a magnificent observer but not a strong theorist. He left 
to his pupil, Kepler, the making and testing of theories with those 
records.

In our present teaching we need not go into the history of Tycho 
Brahe and his work; but pupils should know that there was a great 
observer who provided such good records that Kepler could 
disentangle his laws of motion for the planets. Since the planetary 
orbits are almost circles, and the motions of planets along them 
almost uniform, Kepler's achievement depended on very precise 
measurements which he could trust.

KEPLER, THE LAW-GIVER OF THE HEAVENS' 
Kepler (1571-1630) was a brilliant mathematical speculator, 
fascinated with the problems of astronomy, determined to extract 
the laws which he believed God had hidden for him to discover.

Kepler and Tycho form a strange contrast. Tycho, 'rich, noble, 
vigorous, passionate, strong in mechanical ingenuity and experi 
mental skill, but not above the average in theoretical power and 
mathematical skill'; and Kepler, 'poor, sickly, devoid of experi 
mental gifts, and unfitted by nature for accurate observation, but 
strong almost beyond competition in speculative subtlety and 
innate mathematical perception'. Tycho's work was well supported 
by royalty, at one time magnificently endowed; Kepler's material 
life was largely one of poverty and misfortune. They had in com 
mon a profound interest in astronomy and a consuming determina 
tion in pursuing that interest.
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The story of Kepler's life is interesting, showing a poor boy with 
poor health, struggling as a Protestant in a largely Roman Catholic 
world, emerging from the university with philosophy and religion 
his chief interests. He was offered a post to teach mathematics and 
astronomy and accepted it unwillingly, saying he should be pro 
vided for in some more brilliant profession. Once started, however, 
he threw himself into a study of the planets and, as he said, 
'brooded with the whole energy of his mind on the subject'.

We do not need to give pupils even that much of an account of 
Kepler's life: they only need to know the laws he extracted and the 
assurance that he had that the laws were true. Some teachers, 
however, may want to describe Kepler's life and work in detail. 
The notes that follow are too short for that, but there are good 
biographies.

Kepler's Work. Kepler's mind burned with questions: Why are 
there only six planets? Why do their orbits have just the propor 
tions and sizes they do? Are the times of the planets' 'years' 
related to their orbit sizes? The first question, 'Why just six?' is 
characteristic of Kepler's times - nowadays we should just hunt 
for a seventh. But then there was a finality in facts and a magic in 
numbers. The Ptolemaic system counted seven planets (including 
Sun and Moon, excluding the Earth) and even had arguments to 
prove seven must be right.

This shows the basis of Kepler's final scheme. He chose the order of regular 
solids that gave the best agreement with the known proportions of planetary 
orbits.

He tried to find geometrical schemes that would 'predict' the 
relative proportions of planetary orbits which he obtained from 
Copernicus. Geometry was the fashion, so fitting a square between 
two circles (or spheres) seemed a promising way of predicting two 
orbits. Such schemes, however, failed to fit; and Kepler tells us he
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KEPLER'S SCHEME OF REGULAR SOLIDS, FROM HIS BOOK
The relative sizes of planetary orbits were shown by bowls separating one solid 
from the next. The bowls were not thin shells but were just thick enough to 
accommodate the eccentric orbits of the planets.

was suddenly inspired to use regular solids to separate spheres 
instead of squares and other plane figures. Greek mathematicians 
had shown that only five regular solids are possible. Therefore, 
interposing one of each between spherical shells whose sizes 
represented planetary orbits would provide six shells, thus account 
ing for the existence of six planets; and Kepler found he could 
juggle the arrangement of solids to predict the known orbit pro 
portions fairly well.

As a young astronomer, he was fired with enthusiasm by this 
discovery and determined to wrest other secrets from the great 
record of observations he inherited from Tycho.

It is customary to laugh at Kepler's mystical scheme of solids and *
pass quickly on to his discovery of the three laws of planetary *
motion that now bear his name. Yet, to Kepler, that 'five solids' *
rule was a wonderful discovery and good theory. It was a piece of *
mathematical mysticism in keeping with the spirit of the times; *
and, in a way, it was not unlike some rules that we now assume as *
fundamental in modern atomic theory. We should not laugh at it *
but we do now discredit it because: *
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1. It could only provide for the six planets then known. It was 
two centuries more before another planet was discovered, but then 
that spoiled the scheme.

2. When, a century later, Newtonian theory developed it linked 
Kepler's other laws with our general knowledge of mechanics, but 
it offered no link with Kepler's five-solid law. Then a law left 
isolated from general theory must seem little more than an em 
pirical rule or a special demon.

Those two objections could not operate until long after Kepler's 
time. The only objection then was that the measurements of 
planetary orbits afforded by the Copernican scheme did not fit 
the pattern of solids accurately - and many theories throughout the 
ages have had to adopt minor modifications to escape such criticism.
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FIG. 18-2.

THE REGULAR SOLIDS. A geometrical intelligence test

How many different shapes of regular solid are possible? 
To find out, follow argument (a); then try (b).

A regular solid is a geometrical solid with identical regular 
plane faces; that is, a solid that has:

all its edges the same length
all its face angles the same
all its corners the same
and all its faces the same shape.
(See opposite for shapes that do not
meet the requirements.)

For example, a cube is a regular
solid.
The faces of a regular solid might be:

all equilateral triangles
or all squares
or all regular pentagons
or ... and so on ...
(a) Here is the argument for square 

faces. Try to make a corner of a 
regular solid by having several corners 
of squares meeting there.

We already know that in a cube each 
corner has three square faces meeting 
there. Take three squares of card 
board and place them on the table 
like this, then try to pick up the place 
where.three corners of squares meet. 
The squares will fold to make a cube' 
corner.

Therefore we can make a regular solid 
with three square faces meeting at 
each of the solid's corners. (We need 
three more squares to make the rest 
of the faces and complete the cube.)

Could we make another regular solid, 
with only one, or two, or four square 
faces meeting at a corner?

With one square, we cannot make a 
solid corner.

With fwo squares, we can only make 
a flat sandwich.

With three squares, we make a cubical 
corner, leading to a cube.

With four squares meeting at a corner, 
they make a flat sheet there, and 
cannot fold to make a corner for a 
closed solid.

Thus, SQUARES CAN MAKE ONLY "ONE KIND OF REGU 
LAR SOLID, A CUBE.
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(b) Now try for yourself with regular pentagons, and ask 
how many regular solids can be made with such faces.

Then try hexagons, and other polygons.

Then return to triangles and carry out similar arguments 
with triangular faces.

THE RESULT: Only FIVE varieties are possible in our 
3-dimensional world. (Fig. 18-3)

(NOTE that these arguments need pencil sketches but can 
be carried out in your head without cardboard models.)

THE REGULAR SOLIDS -dr^wn after D. Hilbert and S. Colm-Vossen 
in Anschauliche Georfietrfe (Berlin: 
Julius Springer, 1932).

THE SOLIDS BELOW ARE NOT REGULAR SOLIDS

musk be

fe same
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So teachers may want to describe the five-solid theory, just for fun, 
but without making fun of it, so that pupils can see a theory change 
from being acceptable to being quite unacceptable as knowledge 
grows. Nowadays we think of a scheme of spheres and solids as 
artificial, unscientific, silly. But that is only because our taste has 
been educated by Newton and his successors to expect astronomical 
theories to link up with knowledge of the Physics we meet on 
Earth. In Kepler's day, theory was expected to describe reasonable 
machinery, as the Greek theories did, and geometry was the 
essence of such machinery.

A century after Kepler, the five-solid rule found no place in 
Newton's theory: it was threatened with exile because it was not 
a respectable member of the club. Then a law left isolated from 
general theory must seem little more than an empirical rule or a 
special demon, but it always offers strong critical doubt. If teachers 
discuss this rule with pupils and comment on it again when 
teaching Newton's theory, we hope they will emphasize this aspect 
of critical exile - because it illustrates a great value of theory 
though also a great danger. They should, also, point out that a 
century later still, one more planet was discovered (Uranus); and 
that broke up Kepler's rule in a matter-of-fact way.

Kepler's Three Great Laws
In the course of his lifetime, Kepler extracted the three great 
planetary laws which we now call by his name.

I. The orbit of each planet is an ellipse with the Sun in one 
focus.

II. The arm from the Sun to planet sweeps out equal areas in 
equal periods of time. If we mark the position of a planet once 
a month on its elliptical orbit, and draw radii from the Sun to 
those points, the areas of sectors between those radii are all 
equal.

III. If for each planet we take the average orbit radius, R, and 
the time, T, the planet takes to go once round its orbit (its 'year') 
then R3IT* is the same for all the planets. This third law which 
binds the whole planetary system together mathematically 
Kepler discovered, with tremendous delight, quite late in life.
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Drawing an Ellipse. Pupils should try drawing ellipses with two C52 
pins and a loop of thread.

ELLIPSE: THE EARTH'S ORBIT DRAWN TO SCALE
The actual eccentricity of planetary orbits is very small. The orbits are almost 
circles, yet Tycho's observations enabled Kepler to show that they are not circles 
but ellipses. The sketch above shows the Earth's orbit drawn to scale. If a 4-0000 
centimetre line is used, as here, to represent the minimum radius, which is really 
some 93,000,000 miles, the maximum radius needs a line 4-0006 centimetres long. 
The eccentricity of Mars' orbit is over thirty times as big, but even then the ratio 
of radii is only 1-0043 to 1-0000. Mercury is the only planet with a much greater 
eccentricity of orbit, with radii in proportion 1-022 to 1-000. Even this eccen 
tricity of orbit seems small, but it is sufficient to involve Mercury in such speed 
changes around the orbit that Relativity mechanics predicts a very slow slewing 
around of the orbit - a precession of only -rs of a degree per century, discovered 
and measured long before the Relativity prediction!

Mars, the Difficult Planet. As a young man, Kepler travelled 
across Europe to join Tycho Brahe. Together they worked on the 
orbit of Mars, 'the difficult planet'. We now know that the orbit 
of Mars is an ellipse; but it is very close to a circle: the ratio of 
maximum radius to minimum is only 1-0043 :1-000. Yet the 
observed motion of Mars differed enough from simple motion 
round a circle with constant speed to show up clearly in the obser 
vations and make Mars 'the difficult planet'.
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Kepler was sure that the Copernican solar system would turn out 
to be the true model. Under the influence of the Greek tradition, he 
tried circular orbits with the Sun a short distance off-centre and the 
planet carried round by a constant-speed arm from another point a 
small distance off-centre. He made dozens of trials with different 
directions and amounts of eccentric placing. In each trial he used 
some of Tycho's observations to determine the circle, then con 
tinued the motion of his theoretical planet and predicted its position 
at some other date; and checked that with Tycho's observations.

Scheme after scheme failed to fit and had to be thrown away. 
When, after many trials, Kepler found an eccentric-circle scheme 
that fitted well, he made one more test and found his predicted 
position for Mars differed from the observed position by 8 minutes 
of angle.

Might not the observations be wrong by this small amount? Would 
not 'experimental error' take the blame? No. Kepler knew Tycho, 
and he was sure Tycho was never wrong by this amount. Tycho 
was dead, but Kepler trusted his record. This was a great tribute 
to his friend and a just one. Faithful to Tycho's memory, and 
knowing Tycho's methods, Kepler set his belief in Tycho against 
his own hopeful theory. He bravely set to work to go the whole 
weary way again, saying that upon these 8 minutes he would yet 
build up a theory of the universe.

Then it was clear that a circular orbit could not be made to fit the 
facts. Kepler realized he must obtain an accurate picture of Mars' 
real orbit from the observations - not so easy, since we only observe 
the apparent path of Mars from a moving Earth. The true distances 
were unknown; only angles were measured and those gave a fore 
shortened compound of Mars' orbital motion and the Earth's. So 
Kepler attacked the Earth's orbit first, by a method which Einstein 
once said was Kepler's real mark of genius.

The following description shows how Kepler did that. It is not *
offered for teaching - except perhaps to a group with special *
interests - but is given here for the teacher's own interest. *

Mapping the Earth's Orbit in Space and Time. To map the *
Earth's orbit around the Sun on a scale diagram, we need many sets *
of measurements, each set giving the Earth's bearings from two *
fixed points. Kepler took the fixed Sun for one of these, and for the *
other he took Mars at a series of times when it was in the same *
position in its orbit. He proceeded thus: he marked the 'position' *
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of Mars in the star pattern at one opposition (opposite the Sun, 
overhead at midnight). That gave him the direction of a base line 
Sun-(Earth)-Mars, SEjM. Then he turned the pages of Tycho's 
records to a time exactly one Martian year later. (That time of 
Mars' motion around its orbit was known accurately, from records 
over centuries.)

\
POSITIONS OF E, AND M 
ON tINE SF UNKNOWN

Mars Direction recorded.
Star

(a) Dvndwns recorded 
at "troiitumo Man

(I ) One MortMn,''year"fotxr; 
At«« must He tn- smeyositm.

(c) Constructim of EartH's mtilt

KEPLER'S SCHEME TO PLOT THE EARTH'S ORBIT

Then Kepler knew that Mars was in the same position, M, so that 
SM had the same direction. By now, the Earth had moved on to E2 
in its orbit. Tycho's record of the position of Mars in the star 
pattern gave him the new apparent direction of Mars, E2M; and 
the Sun's position gave him the direction E2S. Then he could 
calculate the angles of the triangle SE2M from the record, thus:
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since he knew the directions EjM and E 2M (marked on the celestial 
sphere of stars) he could calculate the angle A between them. 
Since he knew the directions EjS and E2S, he could calculate the 
angle B between them. Then on a scale diagram he could choose 
two points to represent S and M and locate the Earth's position, 
E 2, as follows: at the ends of the fixed base line SM, draw lines 
making angles A and B and mark their intersection E2. One 
Martian year later still, he could find the directions E3M and E3 S 
from the records, and mark E3 on his diagram. Thus Kepler could 
start with the points S and M and locate E a, E3, E4, ... enough 
points to show the orbit's shape.

Then, knowing the Earth's true orbit, he could invert the investiga 
tion, and plot the shape of Mars' orbit. He found he could treat the 
Earth's orbit either as an eccentric circle or as slightly oval; but 
Mars' orbit was far from circular: it was definitely oval or, as he 
thought, egg-shaped, but he still could not find its mathematical 
form.

Law I. Then, wrestling with a plotted shape for Mars' orbit, Kepler 
suddenly found it must be an ellipse, with the Sun in one focus. 
He found that the same rule must hold for the other planets.

KEPLER'S DISCOVERIES FOR MARS
An ellipse with the Sun in one focus fits the orbit of Mars. The spoke from Sun to 
Planet sweeps out equal areas in equal times. The positions marked here show 
planet's positions at equal intervals of time, a"s of its 'year' apart. The planet 
moves with such speeds that all the sectors marked here - a few of them shaded - 
have equal areas.
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PLANET'S 'YEAR'
The planet's year is the time it takes to go once around its orbit. This is the time- 
interval from the moment when its direction hits some standard mark in the star 
pattern until it returns to the same mark. (The Earth moves too. An allowance 
for the Earth's motion must be made when extracting the planet's true year from 
observations.)

Law n. Variable speed. In the course of trying different orbits 
for Mars, Kepler discovered another guiding rule, now called 
his second law. He could not arrange a spoke from any eccentric 
point to sweep round with constant speed and carry the planet 
along the orbit, in agreement with the facts. But, instead, he found 
that an imaginary spoke, running straight from the Sun to the 
planet, does sweep out area at a constant rate. As for Ptolemy and 
the Greeks before him, some constancy had to be ascribed to the 
machinery, or it was useless as a scientific theory. Kepler replaced 
constant rate of revolution by constant rate of sweeping out area.
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PLANETARY DATA - TEST OF KEPLER'S THIRD LAW 
(These are modern data, more accurate than Kepler's)

Radius Time of
of revolution

planet's (planet's
orbit 'year')

R3

Planet

Mercury 
Venus 
Earth 
Mars 
Jupiter 
Saturn

R
(miles)

3-596 XlO7 
6-716 xlO 7 
9-290 X 10 7 

14-16 XlO7 
48-33 XlO 7 
88-61 XlO 7

T
(days)

87-97 
224-7 
365-3 
687-1 

4,333 
10,760

R3
(miles)3

46-49 X 1021 
303-3 XlO21 
801-7 XlO21 

2,836 X 1021 
112,900 X 1021 
695,800 X 10 21

T2
(days)*

7,738 
50,490 

133,500 
472,100 

18,780,000 
115,800,000

(miles) 3
(days)*

6-008 X 1018 
6-008 x 1018 
6-009X10 18 
6-008 XlO18 
6-012 xlO18 
6-011 XlO18

The test of Kepler's guess is shown in the last column.

Law HI. Connecting the motions of all the planets, Kepler had 
then extracted two great 'laws' from Tycho's tables, by his fearless 
thinking and untiring work. He continued to brood on one of his 
early questions: what connection is there between the sizes of the 
planets' orbits and the times of their 'years'? He now knew the 
average radii of the orbits; the times of revolution ('years') had 
long been known. (As the Greeks surmised, the planets with the 
longest 'years' have the largest orbits.) He felt sure there was some 
relation between radius and time. He must have made and tried 
many a guess, some of them sterile ones like his early scheme of the 
five regular solids or wild mystical ones like his speculation of 
musical chords for the planets. Fortunately there is a connection 
between radii and times, and Kepler lived to experience the joy of 
finding it. He found that the fraction R3/T2 is the same for all the 
planets, where R is the planet's average orbit radius, and T is the 
planet's 'year', measured in days. See the above Table.

In teaching this, we must remember that our pupils are not 
waiting eagerly for the answer to a great, urgent question, as Kepler 
was. They do not even feel the strong need to find constancies in 
nature, which is one of the main drives in science. Our pupils 
have grown from the stage of seeing things, collecting facts, of 
making fuller and fuller acquaintance with nature; and they have 
watched us extract some rules, codify our acquaintance. Yet we 
should have been careful not to emphasize those rules in a way 
that would make them formulae to be learnt by heart for use in 
answering examination questions. Therefore, rules and relation 
ships are likely to be interesting to pupils, but not yet recognized 
as the essence of our knowledge.
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Teachers will need to preface their discussion of Kepler's Law III 
by asking the questions that were in Kepler's mind, by sketching 
the relative sizes of planetary orbits on the blackboard, and writing 
the planets' orbital periods ('years') opposite them.

The questions need to be quite clear: 

'Is there any simple relationship connecting these?'

'Is there something which you could work out for Jupiter's 
orbit size and orbit time, for Mars' orbit size and orbit time, for 
Earth's orbit size and orbit time, and so on ... and get the same 
answer for each planet?'

We need to explain that Kepler, not knowing the right answer - not 
even sure that there was one - had to try many combinations such as 
RjT, JR 2/r, working out the value each time to see if it came to the 
same answer for all the planets. At last he found that RajTz did. 
Some teachers may wish to publish part of the table of data, just the 
values of R and T, a week or more before the discussion of Kepler's 
Law III, and pose it as a prize problem to see if any pupils can dis 
cover that RsjT2 is the same. Given a hint by the teacher demon 
strating with quick arithmetic, some false starts3 such as R[TZ, 
some pupils may succeed.

Kepler was a mathematical speculator. He looked for many kinds 
of connections among planetary data and found some that he 
considered successful. His three great Laws were clear, simple, 
and powerful. We still hold them as descriptions that fit the facts 
very accurately. If all the planets were controlled by the Sun alone 
and exerted no disturbing effect on each other, we should expect 
inverse-square-law gravity to hold them in elliptical orbits, fitting 
Kepler's Laws perfectly.

GALILEO, THE POWERFUL ADVOCATE 
Galileo (1564-1642) was a tremendous teacher who did much to 
prepare physics for the Newtonian development. He insisted on 
making theory realistic by tying it to experiment, and on putting 
laws of physics in mathematical form as far as possible. Contrary 
to the popular myth, he was a mathematical codifier and arguer 
rather than a precise experimenter. He did no experiments, but 
quoted them in rough form to support his arguments about Nature.
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In sorting out mechanics from mystical speculation, Galileo 
arrived at Newton's first Law - a moving body continues to move 
if left alone - by an ingenious argument. He knew that a constant 
force, such as the weight of a body, produces constant acceleration, 
constant rate-of-change of speed. (A number of scientists had stated 
that much earlier, but it was Galileo who expounded it clearly.) 
And he laid the foundation, by arguments and experiments, for the 
Newtonian relationships between force, mass, and motion.

Teaching the Copernican System. While Kepler was at work 
on the planets, Galileo, who corresponded with him, was preaching 
and teaching the Copernican system with great enthusiasm. As a 
teacher of tremendous power he was able to put the case for Coper 
nicus in such clear and compelling form that for the first time 
readers far and wide understood it and saw its full import. He 
taught it as true and gave strong reasons for believing it. And when 
be had built his telescope he showed the system of Jupiter's moons 
as a scale model of the Copernican system itself. This was a violent 
and disturbing attack on established thinking; on the central 
position given by all humanist scholars to the Earth and Man; and 
on the teaching of the Ptolemaic system by the Church. When 
Galileo insisted the Copernican system was true, he was attacking 
the general authority of the Church. This brought Galileo, himself 
a devout member of the Roman Catholic Church, into grave 
trouble with the Church authorities. We look back on such 
troubles as resulting from Galileo's argumentative temper and his 
fanatical insistence that the Copernican system was not just theory 
but true. They were signs of the times, part of the picture of 
relations between Church and State and Science in that age.

Telescope. In the middle of his teaching life, Galileo heard 
rumours of an optical instrument that would make distant things 
look closer. He designed a telescope himself and made a small, 
weak one. Then he made larger and stronger telescopes, always 
grinding the lenses himself.

When he turned his telescope to the heavens, he saw many sur 
prising things, some of them very disturbing to the traditional view 
that was being taught by Church authorities and other astronomers. 
He saw the Milky Way resolved into a cloud of tiny stars. He saw 
that the Moon is rocky, with mountains and craters - that was a 
shock to astronomers, who thought of the Moon as a perfect, 
shining sphere, free from any defect. Galileo saw the Moon as
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earthy, rocky and ordinary. He saw spots on the Sun, again a 
disturbing modification of the view that the heavens were perfect.

He saw the planet Venus in crescent shape, changing to other 
'phases' as it moved round the Sun - difficult to reconcile with 
the Ptolemaic machinery.

He looked at Jupiter, noting some small stars near it; and then, 
next night, found the pattern changed.
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GALILEO'S OBSERVATIONS OF JUPITER'S MOONS
These sketches are copied from Galileo's handwritten record. (The orbits of the 
moons are nearly in planes containing our line of sight from Earth to Jupiter; so 
the moons are often in front of Jupiter or behind, and they are often eclipsed by 
moving into Jupiter's shadow. They move quickly around their orbits. That is 
why the pattern changes so quickly and why, often, less than four moons are 
visible.) (For a copy of Galileo's written record, see Galileo by J. J. Fahie.)
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Jupiter seemed to have moved the wrong way relative to those 
stars. Waiting impatiently through a cloudy night, Galileo then 
saw the pattern change again. It was clear the small stars were 
moons moving around Jupiter. Delighted with this, Galileo 
published a full description and claimed Jupiter and his moons as 
a model to support his strong arguments for the solar system of 
the Copernican view.

The Development from Copernicus to Newton
Galileo brought the Copernican picture out into public knowledge. 
He devised telescopes, which were to bring astronomy to much 
higher levels of precision in future generations. And he developed 
and taught, in unfinished form, the new view offeree and motion 
that Newton was to use in his theory. Kepler extracted precise, 
reliable laws of planetary motion; but he gave only vague sug 
gestions for the mechanism of forces to produce such motion. 
The educated world, philosophers, scientists, and other thinkers, 
were soon alive with questions about this solar system of which 
people then knew so much but understood so little. It was this 
climate of active discussion, with scientific societies being formed 
and growing here and there in Europe, that Newton grew up as a 
young man and took astronomy to his heart.
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1500-1700. Two Centuries of Development
In 1500 the Ptolemaic scheme reigned unquestioned - Man and the 
all-important Earth at the centre of a universe of revolving spheres 
and sub-spheres. Copernicus was a young man, just beginning to 
think out his new system of the world. In 1700 Newton's Principia 
had been published and was being discussed far and wide: the 
picture of the heavens had swung over completely to a solar system 
described in accurate laws and now explained in terms of universal 
gravitation.

This change of view, and its full acceptance, went far beyond a 
mere replacing of one celestial scheme by another. It influenced 
man's view of his own position in the universe; and his attitude 
to nature, natural laws, and scientific explanations. It threatened 
to modify his choice of philosophic outlook on divine power, free 
will and determinism.

Such developments in astronomy were part of a tremendous 
change of intellectual interests, a change of the fashionable flavour 
of mind, a move away from the full power of traditional authority 
towards questioning, experimenting, new scientific knowledge. 
It was not that people had been stupid in earlier days. They had 
been just as able as in any generation, but had other interests; 
and the political and economic climate had not favoured new 
science. But by 1600 scientific enquiry was becoming respectable, 
almost a matter for general intellectual interest; and through the 
seventeenth century science grew in respectability and popular 
interest, and power. Scientific societies were formed to discuss 
experiments and exchange news - science became public as well as 
respectable. Mathematical tools developed: algebra came into use 
to supplement geometry, coordinate geometry was devised, and 
(because the time was ripe for it) calculus was invented - all 
bringing great help to scientific discovery. Instruments were 
devised - telescope, microscope, vacuum pump, barometer, 
thermometer and pendulum clock were all invented or developed 
in the seventeenth century. And there was a new attitude to scienti 
fic knowledge: experiment joined with speculative theory to pro 
mote great developments.

Teachers may wish to show a time-chart starting with Copernicus, 
running through the great band of scientists in the seventeenth 
century and on to the mathematicians who continued Newton's 
work in the century beyond. That should show the development of 
the scientific societies; and it might include great names outside 
science. A specimen of such a chart is shown opposite.
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NEWTON'S THEORY AND ITS FRUITS
The history of Newton's life and work and accounts of his person 
ality are given in several good biographies. (More's is now available 
in paperback; so is the Principia in English translation.)

Newton (1642-1726) and Astronomy. As a young man, soon 
after taking his degree at Cambridge, Newton thought about 
astronomy for his own pleasure. He quietly speculated about the 
whole solar system being controlled by universal gravitation; and he 
started by trying out the idea of inverse-square-law gravity on the 
Moon's motion.

Great astronomical questions were in the air: the time was ripe for a 
complete change of viewpoint. The old view had been that motion 
round a circle is the natural one - in the heavens - so people did 
not ask why a planet moves round an orbit. But they did ask why 
it continues to move; and the answer was 'because a force continues 
to push it along'. On the new view, there was no need to ask about 
that force: no force is needed. It was already clear from the writings 
of Galileo that the Greek idea of motionneeding a force to maintain 
it was wrong - at least for motion on Earth. Left alone, a moving 
object would continue in a straight line with constant speed; so the 
revolving spoke imagined by Kepler and others to push a planet 
along its orbit was unnecessary.

That was a revolutionary idea: no force needed along the orbit. On 
the other hand it was fairly clear from Galileo's work that changes 
of motion (changes from constant speed in one straight line) do need 
forces. So the new question was: 'What forces shape the planetary 
orbits? What force or other mechanism could account for the new, 
precise laws of orbits?'

Kepler's Laws were the talk of the day in the scientific world. 
Several scientists saw that a body moving round a circular orbit 
should be regarded as having an acceleration towards the centre. 
Huygens, Hooke, Newton, and probably others too, worked out the 
expression v*[R for that inward central acceleration.

Newton arrived at his own scheme for deriving a = vz[R and tried 
it on the Moon's motion, to test inverse-square gravity. He was 
discouraged and put away the calculation without saying anything - 
in his characteristic way of avoiding controversy.
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There is a rumour among amateur historians that Newton's test 
failed because he did not have an accurate value for the radius of 
the Earth. That is probably untrue. It is much more likely that 
Newton stopped because he saw the grave difficulty of calculating 
the attraction of a large body like the Earth on an object nearby. 
The attraction of the Earth on the Moon is easily dealt with as a

f APPLE

Newton's Difficulty. Assuming inverse-square-law forces, how does a solid 
Earth attract a small object nearby? Consider equal samples of rock A, B3 C, D. 
A would exert a big pull, and D a very small pull; and B and C pull in slanting 
directions. What is the resultant for the whole Earth? How far from the apple 
should we imagine the whole mass of the Earth concentrated to give the same 
resultant attraction? (Surprising answer: one radius away; at Earth's centre.)

force between point-objects. But Newton had to compare that *
force with the attraction of the whole Earth on, say, an apple. In *
the latter case the adding up of inverse-square attractions from all *
the pieces of a great round globe seemed impossible until calculus *
had been invented. When Newton solved this problem, he was *
surprised and delighted at the unexpectedly simple result; that *
the Earth attracts as if its whole mass were concentrated at its *
centre. (This is not a matter to be taught, when we are aiming at *
Newton's whole theory; but it might be mentioned to a fast group.) *

As discussions of Kepler's Laws spread, there was growing interest T 
in them hi the young Royal Society in London, and there were 
attempts to show that something like inverse-square-law gravity 
would account for them. Several people could show that it would 
account for Kepler's Law III; but elliptical orbits and the area law 
remained too difficult. An appeal to Newton in Cambridge pro 
duced the characteristic reply that he had already tried the problem, 
solved it, and shelved it.
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After much encouragement, Newton gathered his work together 
and expanded it into a great book, the Principia. There he set forth 
some definitions and general rules or laws for motion, and then 
applied them to the whole heavenly system. His own account of his 
purpose was:

'from the phenomena of motions to investigate the forces of nature, 
and then from these forces to demonstrate the other phenomena; 
... the motions of the planets, the comets, the moon and the sea ...'

If we are to teach our young pupils in a way that will give them a *
useful picture of the growth of theory, we must not at this point *
pour out dramatic praise hi sermons about Newton's greatness; we *
must show them that this theory was great by carrying them *
through its achievements. We must not make statements about the *
theory, we and our pupils must do it. *

Teaching Newton's Theory
Pupils could read much of the earlier history of astronomical * 
knowledge and theory on their own, but at this stage it seems * 
essential for the teacher to immerse himself in the unrolling of * 
Newtonian gravitation and give pupils a sense of his own enjoy- *
ment of it. *

*
We suggest teachers should set the stage by describing inverse- *
square-law forces and going through Newton's test on the Moon's *
motion. So we give below a suggested outline of that teaching in *
some detail. *

*
When teachers come to the unrolling of Newton's theory - the *
target of all our teaching of astronomy - there will be wide varia- *
tions both in their choice of treatment and in their needs for *
detailed information. Therefore we shall offer first a summary of *
the story we hope will be taught. Then we follow with an account *
giving considerable details, to provide a background of guidance *
and suggestions. There it is difficult to distinguish clearly between *
commentary to teachers (* * * ...) and direct suggestions for *
teaching (T ...). We hope that each teacher will read and think *
about the development of Newtonian theory and then teach it *
in his own way. *

A Tall Chart. As a useful guide in that teaching, we offer a tall D 54 
chart of Development of Astronomy, which notes facts and ideas 
for the development of theory. The later part of that gives the
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main items or achievements of Newtonian theory. Teachers will 
find that an enlarged copy of the chart, pasted together to make 
one tall column and exhibited in class, is a help as a 'prompt copy' 
in teaching. If it can be kept posted in the classroom, pupils will 
see the development and may feel the tremendous power of 
Newton's theory when they see its results written there like a 
series of blows from an insistent hammer.

A large version of the chart could be mounted as an endless loop 
like a roller-towel, on a pair of roller-blind rollers. Or it could be 
arranged to roll up on the upper or lower roller, so that only a short 
section is visible at one time. The longer the visible section, the 
better, of course.

We should not encourage pupils to copy the chart; though a 
miniature version of it in a Pupils' Guide would be useful. Copying 
it is likely to achieve the wrong flavour: neat drudgery instead of 
admiration for growing power. But making one's own version of 
the chart, bringing careful thought to a fresh start on it, would be a 
very valuable activity which some pupils might like to try.

Newton's Idea of Universal Gravitation
Newton saw that no force is needed along the orbit to keep a planet, 
or the Moon (or any other satellite), moving; but that an inward 
force is needed to change motion continuing along a straight 
tangent to motion round an orbit. The satellite must fall inward, 
from tangent to orbit, again and again and again.

That falling could be described as an inward acceleration, which 
Newton showed should have the value v*jR for motion round a 
circle. If that kind of acceleration does need a force in the same way 
as acceleration along a path (in which the moving thing goes faster 
and faster) there must be an inward pull acting on every satellite. 
Something must pull the Moon towards the Earth; Venus, Earth, 
Jupiter, and all the other planets towards the Sun; and Jupiter's 
moons (discovered and seen with telescopes before Newton's day) 
towards Jupiter.

The Earth does exert an inward pull on objects nearby: the 
common pull of gravity. Could that kind of pull extend out 
farther and provide a pull on the Moon to keep it in orbit? If so, 
could the same kind of pull, spreading in the same kind of way, 
extend from the Sun to the planets; and from Jupiter to Jupiter's 
moons? Newton tried out that idea first on the Moon's motion.

175



PRIMITIVE MAN
. .

Planets. eclipses a
EARL1/ 
CIVILISATIONS^
Obssrrtd

GREEKS
dfitt/ibd 1 5,M,5u« O O Q '
MdtiflM Of [ Di AMCT^__ _vXTO^"^

^' 'NEWTOK s

body
ITF«:M(xi)r 
Jl flttion= -

IIV A ClgCLE
Has. cetttal Jael. -^ 
A this

R.

UNIVERSAL

tfc atfct-acfced mass Mi-; 
oc atE.rdd.ini3 mass Mz-U

Assume •mesFJimu? ir< \ 
J

bEDUCTIflNS)^
PREWCTONS v &

TESTS

PLANETARY MOTiflK

(IhwW fJM ll({JM (o WJiHtiin Ofbit
["( • • tytviiti 
L>WitkHiv.Sfl.liW-»fLLIP3£

' iUN IN FfliUS

EflUAL
AREA LAW 

gH
sin holds for JUPITER'S WJKS

176



JH/1MES HP fl/H. JUPITER

SUM< hit 
Jud distance 
TIDK CAM WflWiE- J>|EMTE& .
MflflKS MOTION Mac many f orbit M'

ane £ie£< /n flrfiifc CMAQet iuritq 
Svii during year. Orbit prtuues, cM^ei iti 
luentrlaty. iti tilt etc. Men/tan rtuw« 

a«-due fi 
a Hn

1*1 effect, ciig'tl b*\q& anl unkrifugal force

waki^ it wibfite /to a -5pin»ii 
Nfliffak aioiLiW fin* of kliUff

PLAMEK. IW
litld in wbit bvSMalmt ktaKa pu/W s/ijhHy ky 
olktr [illMtiAlMie SMa/l ^tti full! fUitgt orbit Slifilly. 

(Hat ^iri±£a to 5unA KUr I xx]
Stattui hu'J 

_La 
L3ilace

i ItS
OK Orbit nf UhJHUi 

-BUT
. 

KttttftaiMi until
EINSTEIN,
laini slightly

t Mf^ufVi: itb\t Hii'

177



Gravity Pulling the Moon. As pupils will have found if they 
tried the brown-paper drawing experiment for the Moon, plain 
gravity at full strength provides much too big a force to account 
for the Moon's motion.

Since most pupils will not have tried that extension of the brown- 
paper work, the teacher should make a test now by algebra and 
arithmetic. The following data are needed:

Radius of Moon's orbit = 60 x [Earth's radius]

= 240,000 miles = 3-84 x 108 metres.

Time taken by the Moon to go once round its orbit 
(=1 month!) = 27-3 daysrj:

We first calculate the Moon's actual, central acceleration, vzjR.

(Teachers used to dealing with such problems at a more advanced 
level will be tempted to change v*jR to jRw 2, where to is the angular 
velocity of the Earth-Moon radius. However, we shall not make 
enough use of this kind of calculation to justify introducing w here. 
That would only add a new, confusing quantity; so we do not 
recommend that change, and we hope that teachers who are 
tempted to make it will first try teaching this material in the way 
suggested below.)

We first calculate v as follows:

v = speed along the orbit = circumference/period = 2-nRjT

_ ____27i[3-84 x 108 metres]____ 
~ [27-3 days x 24 hrs/day x 3,600 secs/hr]

With a fast group, we might leave that in factors and continue with 
the next stage of the arithmetic. An average or slow group will

$ 27-3 days looks surprisingly short for a month, but it is the true time taken by 
the Moon to make one complete orbit, judging its direction by the fixed stars. 
However, since the Earth is also moving (round the Sun in a year) in the same 
direction, the Moon has to travel farther to return to the same position relative to 
the Sun. That is why the Moon month in our calendar is about 294 days from full 
Moon to full Moon. For our calculations of the Moon's motion we need the true 
period, 27-3 days.
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find it more comfortable to work out the Moon's speed along the 
orbit now. The result is:

v = 1,022 metres/second (about 2,300 miles/hour)

Then we calculate the inward acceleration that the Moon must have 
to continue round this orbit v 2/R:

v2 _ [1,022 metres/sec]2 
~R~ [3-84 xlO8 metres]

= 0-00272 metres/sec per sec.

One look at that tells us that full gravity, as we find it near the 
Earth, is far too strong to account for the Moon's motion. (Pupils 
who enjoy doing rough calculations very quickly could have assured 
themselves of that by condensing the work above to rough estimates 
- and that would be a good scientific move.) 'Well then, what 
gravity is that - if it is gravity at all?'

Inverse-square Law. At this point we explain that Newton, 
like the other scientists who were worrying about 'explaining' 
Kepler's Laws by gravity, had to try some scheme of diluting 
gravity, thinning it out at greater distances.

'The simplest scheme, halving gravity when the distance 
doubles, does not fit the result above (that would give ^ of our 
g at the Moon, or about 0-17 metres/sec2).

'Another simple scheme is an inverse-square law. That would be 
a sensible one to try because it is the way in which anything thins 
out if it sprouts in straight lines from a small source and con 
tinues out in straight lines without getting lost. Light from a small 
lamp does that. At double distance the same light, spreading out 
through clear air without being absorbed, falls on 4 times the 
area at double distance, giving only J of the illumination, and so 
on for other distances.

'Water, spreading from a hidden spring in a lake or ocean, 
would flow out in straight lines, and the speed of flow would 
have to be J as great at twice the distance from the spring - 
otherwise water would be disappearing or being created.'

We, as physicists, are familiar with an inverse-square law for such
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things, and for the electric field spreading out from a point-charge 
and the magnetic field from a compact 'pole', so we are apt to 
announce an inverse-square law for gravity as an obvious easy 
guess. But to our pupils it is strange and new, as it was to Newton's 
contemporaries. We need to give pupils a clear idea of what it 
means, and to emphasize its nature as the essential characteristic of 
anything that spreads out in straight Hnes without getting lost. A 
crude example which helps in teaching is the story of the 'butter 
gun':

Inverse-square law: 'Butter Gun'

' Suppose the owner of a restaurant invents a gadget to butter T 
many slices of toast efficiently. It is a small, motor-driven sprayer 
that squirts out a fine spray of specks of melted butter from its 
muzzle, in straight Hnes, in a wide cone.

' Suppose the cone of spray just covers one sHce of toast held one 
foot from the muzzle. The toast is held there for a standard time, 
say one second. The toast receives rich buttering. Now place 
toast 2 feet away instead. At that double distance the cone is 
twice as high and twice as wide. The spray now covers 4 sHces 
of toast, and each of them receives medium buttering in one 
second. Now place the toast 3 feet away; and the same cone of 
spray covers 9 sHces: economy treatment.

'Therefore on specimen sHces of toast, placed 1 foot, 2 feet, 
3 feet, ... from the muzzle the thickness of buttering will be in the 
proportion 1 :| :•§•:, ...

'This is the inverse-square law of buttering.'

We may also illustrate the inverse-square law by showing it holds 
for illumination at various distances from a small lamp in a 
darkened room. To show that by measurements with a traditional 
photometer would be tedious and probably confusing because of 
the way the inverse-square law is used in photometry. But simple,

D53
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direct-reading light-meters for photography are now so common 
that many pupils accept them like stopwatches. So we advise 
teachers to borrow one and use it here. Hold the light-meter 
1 foot, 2 feet, 3 feet, ..., from a small lamp and show its readings.

(Of course, a photo-diode could be used, with a demonstration * 
meter; but that is likely to take too much time and attention when * 
we are anxious to proceed.) *

*
(Remember, when using examples of illumination or of sound out *
of doors, that the human eye and ear do not judge intensity on a *
linear scale.) *

Newton's Test. When pupils are familiar with the meaning of an *
inverse-square law, we return to Newton's problem and try diluting *
gravity. Except with an unusually fast group, we do not worry over *
Newton's difficult question: How should the attractions of all the *
parts of the Earth on an apple be added up? That asks: What is *
the' distance' from Earth to apple which we must use when diluting *
g for the Moon? We simply take Newton's result for granted and *
say: *

' Newton himself said that the idea of gravity extending out to the T 
Moon and controlling the Moon's motion occurred to him when 
an apple fell on his head as he sat in an orchard. (Most such 
stories of great men are fables. We know that this one is true; 
because we have a letter in which Newton related it.) He tried 
making gravity "thin out" with an inverse-square law.

'An apple near the Earth falls with an acceleration 9-8 metres/ 
sec2. We count the apple as being 1 Earth's radius from the 
centre of the Earth; and we know the Moon is 60 Earth-radii 
from the centre of the Earth. (We know that from measurements 
like the one the Greeks made with eclipse shadows.) Then, the 
Moon is 60 times as far away as the apple. If an inverse-square 
law does apply to gravity, g out at the Moon would be, not 60 
times smaller, but 60 2 times smaller.

'g would be 9-8/60 2 or 0-00272 metres/sec2.

'Now look back at the inward acceleration we said the Moon 
must actually have if it is to get round its orbit in 27-3 days. 
Newton looked at the two accelerations and was very pleased 
with what he saw.'
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That was Newton's test on the Moon. He was trying out the idea of 
inverse-square law of gravity extending from the Earth to the 
Moon.

= 32 jt/set/sec

EARTH'S GRAVITY

(Newton was also trying out some other things too concerning 
motion round an orbit: the use ofv^/R for central acceleration; and 
the idea that a force produces such an acceleration, just as forces 
in our earthly laboratory produce the more familiar kind of 
acceleration in which trolleys, etc., move faster and faster. In other 
words, Newton made several assumptions in his prediction for the 
Moon; inverse-square law for gravitational attraction, a = v 2/R 
and F = ma. The success of his test might vouch for them all, or it 
might mean that two or more of those were wrong in ways that 
compensated. But in our teaching we should take the simpler view 
that the successful test showed that Newton was entirely on the 
right lines. Thus, we say that he not only felt sure of inverse-square 
law attraction from the Earth but also had made a successful test of 
the idea that acceleration v z/R 'across the motion' does need a 
force like any other acceleration.)

(Newton did not have to guess an inverse-square law 'out of the 
blue', trying it merely because it seemed a simple idea. He himself 
said that he got a clear hint by working backwards from Kepler's 
Law III and finding that an inverse-square law of attractive forces 
from the Sun would fit with that.)

Universal Gravitation. With an inverse-square law for gravity 
guessed at and tested on the Moon's motion, Newton tried uni 
versal gravitation for the solar system.
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UNIVERSAL GRAVITATION

Tat on Mom s

We know that the Earth's attractions on different objects nearby 
are directly proportional to the masses of those objects. We know 
that from the fact that the pulls all produce the same acceleration, 
g, when different masses are allowed to fall freely. Newton argued 
by symmetry that the attractive force should also be proportional 
to the mass of the attracting body - Earth, Sun, Jupiter, etc. Then 
with two masses, M: and M2, Newton could describe the gravita 
tional attraction of each on the other by

AfiAfoF = G—=r— where G is a universal constant. a*

We shall use this Law of Universal Gravitation in describing 
Newton's explanation of Kepler's Law III. So this is a point at 
which teachers will need to discuss that equation quite carefully, 
pointing out that G is a universal constant.

G is quite different from^. For the Earth of mass M and an apple of 
mass m, we have:

m kilograms xg newtons/kg = GMm/r2, where r is the Earth's 
radius

.'. g = G[mass of Earth]/[radius of Earth] 2.
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(Teachers who like thinking in terms of field strength of electric *
fields will see that g here is the field strength of the Earth's gravi- *
tational field.) *

Newton's Laws. Newton formulated his Laws of Motion as *
working rules for his treatment of the heavenly system. (Those *
laws contained some definitions and are partly statements of *
accounting principles and partly descriptions of nature.) He *
formulated in mathematical form the guess of inverse-square law *
and gravitation which was being talked of far and wide, and *
combined it with his Laws of Motion to predict Kepler's Laws and *
many other things. *

*
In Newton's day, geometrical methods were the fashion, and *
algebra was much less freely used. So Newton had to write his *
public exposition in geometrical form - even where he could use *
calculus to great effect in his own work he had to reinforce it by *
geometrical proofs that would appeal to mathematicians who *
still regarded calculus as strange. *

Developing Theory. Having guessed at inverse-square law T 
gravitation (as he said, by working backwards from Kepler's Law 
III) and tested in it on the Moon's motion, Newton made a fresh 
start and constructed a deductive theory. That is a structure that 
starts with assumptions - general principles or laws assumed to 
hold - and draws from them predictions and explanations of nature 
by logic. Logic, in this matter, includes the reasoning that we call 
mathematics: geometry, algebra and the calculus that Newton and 
Leibnitz developed.

Newton chose his assumptions with a careful eye on the behaviour 
of nature. They were in fact his Laws of Motion and his Law of 
Universal Gravitation, together with rules for treating accelerations, 
forces and momenta as vectors which could be added by the paral 
lelogram method. Granted those few assumptions, Newton could 
lead from them to many predictions, some of them things already 
known, such as Kepler's Laws; and other things yet to be discovered 
- all of them now known and found to fit.

Our main work in teaching is now to describe the great list of *
things Newton extracted from his theory, aiming more at piling *
up a great record of successes than teaching the details of each item *
fully. *

*
Here is the short summary of that teaching: longer notes follow. *
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Newton's Theory and its Predictions (summary of 
teaching)
Newton made a fresh start. He assumed four laws and unrolled, 
in his great book, a comprehensive explanation of the heavenly 
system.

He stated his three Laws of Motion and his Law of Universal 
Gravitation, which we now write in the form F = GM1M2jdz

Every object in the universe attracts every other object with an 
inverse-square-law force, proportional to each of the masses con 
cerned.

Results. From those as a starting point, taking them for granted 
as true, Newton argued out many a prediction. He 'derived' or 
'explained' or predicted the following:

1. The Moon's motion round the Earth, controlled by inverse- 
square-law gravity (Newton's original test).

2. Kepler's Law I. Planets' orbits are ellipses with Sun in one 
focus.

3. Kepler's Law n. Arm from Sun to planet sweeps out equal 
areas in equal times (shown to be necessary for any 'central' 
force).

4. Kepler's Law in. [Orbit radius] 3/[Planet's year]2 same for 
all planets of the solar system.

5. Planet's moons: same rule applies to all the satellites of a 
planet, but with different value of constant (e.g. Jupiter's moons; 
and now Earth satellites).

6. Comets, until then lawless and mysterious, follow elliptical 
orbits according to Kepler's Law I, as members of solar system. 
Times of comets' returns predicted successfully.

7. Relative masses of Earth and Sun, Earth and Jupiter, etc., 
estimated through Kepler's Law III (estimate can be made for 
any two bodies which own satellites).

8. Shape of Earth must be oblate spheroid: proportion of radii 
estimated.
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9. Small differences of g predicted: due to shape of Earth and 
due to Earth's spin: both make measured g slightly smaller at 
equator.

10. Ocean tides, due to differences of Moon's attraction. (Two 
tides in 24 hours predicted.)

Similar tides due to Sun are smaller; added to Moon's tides, they 
make spring tides, subtracted they make neap tides. Relation with 
phases of Moon also predicted.

11. Mass of Moon estimated by treating our ocean tide as a 
satellite of the Moon.

12. Precession of the Equinoxes. Shown to be consequence of 
gravitational pulls of Sun and Moon acting on the equatorial bulge 
of the spinning Earth. The 26,000-year period predicted roughly.

13. Irregularities of the Moon's Motion. The elliptical orbit 
changes eccentricity and moves round in its own plane; the plane 
of the orbit slews round slowly; and the Moon shows small extra 
monthly and yearly accelerations. All are symptoms of small 
differences of Sun's gravitational pull. Newton predicted several, 
tested some of them.

14. Perturbation of Planetary Orbits. Each planet is affected 
slightly by the gravitational pulls of other planets. Newton started 
the prediction of these small perturbations.

Discovery of Neptune. Long after Newton's death, when the 
planet Uranus had been discovered, it showed small residual 
perturbations from its expected orbit, in addition to the effects of 
known planets. From these, Adams and Leverrier predicted the 
location and size and orbit of an unknown planet that could produce 
these tiny perturbations by inverse-square-law gravitation. Then 
the planet was seen: a triumph of Newtonian theory.

(Still later, in this century, a tiny residual motion of the planet 
Mercury remained unexplained. The major axis of its ellipse pre- 
cesses at a rate of 43 seconds of angle per century. This probably 
points to the need for a modification of the law of gravitation, now 
explained by relativity.)
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Newton's Theory and its Predictions (more detailed 
account)
As a basis for his deductive theory, Newton described his views of 
space and time and force and motion. He denned mass as' quantity 
of matter', and seemed to consider density an inherently obvious 
concept that could be used in describing quantity of matter.

He stated bis three Laws of Motion. We might give them in less 
formal wording:

I. Any object remains at rest, or continues to move with 
constant speed in a straight line, if it is left alone; that is, if there 
is no (resultant) force acting on it.

II. A force acting on an object makes it accelerate in the 
direction of the force. A constant force gives constant accelera 
tion.

[Force] = [Mass] x [Acceleration]

or [Force] x [time] = Change of [Momentum, mv],

While each of those forms tells us something about force and *
motion, each really amounts, in our teaching, to a description of *
mass4 In some more advanced teaching mass is taken as self- *
evident (!), and Newton's Law II is used to define force. *

III. Action = Reaction. If one object pushes or pulls another, T 
the other always exerts an equal and opposite push or pull - 
whether the objects are at rest, moving with constant velocity 
or accelerating in any way whatever. /

Newton also assumed Universal Gravitation, F = GM^^/d2.

Every object in the universe attracts every other object with an 
inverse-square-law force, which is proportional to each of the 
masses concerned.

$ Statements of Newton's Laws of Motion contain some knowledge of nature 
and some definitions and assumptions. We have an open choice between taking 
force as known by experiment and developing a concept of mass, and taking mass 
as known by experiment, or assumed to have certain properties, and developing a 
concept of force to be measured by mass X acceleration. Either scheme works 
well in a discussion of natural knowledge. But, of course, a mixture of both 
schemes together will lead to confusion. We should certainly avoid that.
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Results. From those as starting point, taking them for granted as 
true, Newton argued out many a prediction. Here are fuller 
descriptions of the things that he 'derived' or 'explained' or 
predicted; with some details of the methods he used.

In discussing Newton's explanations with pupils we should say 
clearly that scientific explanations like these do not 'explain' in the 
sense of giving the first cause, the underlying truth, the 'really 
true' reason. They 'explain' in the sense of linking a new or less 
familiar phenomenon with another that is already known or 
accepted. Thus, explaining in Science is economical; it simplifies 
our knowledge by pointing out connections, thus reducing the 
number of separate bits of knowledge to be piled up in our records. 
And those links or connections facilitate thinking and enable us to 
make predictions. Some philosophers say that explaining a 
phenomenon in science means nothing more than predicting it 
from other phenomena (or from rules generalized from other 
phenomena).

This view of scientific explanations is often disappointing at first, 
but reaches full importance when we see its power and feel the 
satisfaction of building connected knowledge. But for our delight 
in economy and the feeling of fuller understanding that we gain 
from connected knowledge, we might explain all nature by a horde 
of demons, each constructed to produce an observed phenomenon: 
the demons would be arbitrary, disorganized and multitudinous 
in number and variety. We prefer scientific explanations as more 
economical, more satisfying because they form a framework, and 
more fruitful in new predictions. Yet we can hardly say they tell 
us the ultimate truth, or give basic reasons - Newton himself said 
clearly he had no idea of the cause of Gravitation: he merely used 
its inverse-square behaviour to link together the solar system.

(The numbers in the accounts that follow match those of the items 
in the Summary given earlier.)

1. Moon's Motion is accounted for by inverse-square gravity, 
which at the Moon's distance of 60 Earth's radii is predicted by 
theory to be 3,600 times weaker. (That agrees with the actual 
acceleration, v z/R, calculated from the Moon's distance and time- 
to-go-round-the-orbit. That was Newton's early test of inverse- 
square-law gravity and ofv*[R needing a force.) But that does not
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prevent us from listing it now as one of the achievements of New- *
ton's theory - because we are watching Newton making a fresh *
start, taking his assumptions for granted, and deducing predictions, *
the more the better. *

2. Kepler's Law I. From inverse-square-law gravity and his T 
laws of motion Newton showed that a planet must move in an 
orbit that is a conic section with the sun in one focus.

Even today, the easiest proofs, which use calculus, seem clumsy; *
and they are much too difficult for our present pupils. Newton had *
to offer even clumsier alternatives using geometry. Unfortunately, *
this is a case where the best we can give pupils is a statement of the *
'input', Newton's assumptions, and the 'output', elliptical orbits, *
and assure them that the mathematical path from input to output *
is merely logical machinery. We hope that pupils will have gained *
confidence in the use of algebra as machinery and some insight *
into the role of mathematics as logical, obedient machinery that *
leads from input to output. The problem of the man throwing a *
stone up at a bird in a tree, which leads to a quadratic with two *
answers, gave an opportunity for pupils to see mathematics acting *
as an obedient servant, offering both answers because both are *
consistent with the form of problem (input) supplied to the algebra. *
We told a story about the bird being hit, but we forgot to instruct *
the algebra to make sure of contact, or to make sure that the stone *
was still moving upwards when it reached the bird. We only asked *
the algebra, 'At what time will the stone be at the bird's height *
above the ground?' The algebra truthfully gave two answers, one *
for the time on the way up, the other for the time on the return *
fall downwards. (This was the problem in Chapter 1 of the Year *
IV Teachers' Guide, discussing' Mathematics, the honest servant'.) *

So in this case we treat the mathematics as 'machinery in a black T 
box'. We show pupils the 'input' to the box and the 'output' from 
the box - each of them quite simple and easy to understand - and 
we assure pupils that the machinery inside the box is only the 
gears and levers of mathematics.
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(There is a short film made by P.S.S.C. which gives a partial *
connection between an elliptical orbit and inverse-square law *
gravitation. Teachers will find this film interesting, but we are *
doubtful whether it will help very much in actual teaching.) *

Unfortunately, there is no simple demonstration which shows a *
force that is known to follow an inverse-square-law making an *
object move in an ellipse4 The only simple demonstrations are *
just illustrations: *

a. A steel ball rolling round in a slanting path in a glass funnel,

b. A steel ball rolling on a thin rubber sheet (dentist's rubber 
dam). The sheet is supported in a horizontal frame and depressed 
at its centre by a vertical rod held in a clamp. The depressed 
sheet curves to match the potential well of an inverse-square-law 
force reasonably closely. However, friction takes its toll as the 
rolling ball deforms the rubber locally. So this is not recom 
mended.

* Ingenious schemes have been devised to make a CO2 puck move in an ellipse, 
by using a complex arrangement of magnets. Another scheme holds a puck in 
orbit by a thread which runs over a pulley and holds a ping-pong ball hung in a 
tapering, conical box in which there is a strong air blast maintained by a vacuum 
cleaner - the arrangement is extremely expensive and very troublesome to set up; 
and the demonstration takes considerable time because the force exerted by the 
ping-pong ball must be shown to be an inverse-square one.

D55a 

D55b
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Neither of these demonstrations shows a very convincing ellipse. *
The orbit precesses and shows the effect of friction. In neither *
case do pupils know that the force law must be an inverse-square *
one. So these are the best qualitative exhibits of a real particle *
following an oval orbit. Nevertheless, teachers may find that one *
of them helps to make things clearer. *

Note to Teachers. It is easier teaching to proceed to Kepler's *
Law III now, because that can be predicted fully with easy algebra, *
and then return to Kepler's Law II where the prediction uses more *
difficult geometry. However, the Laws are taken in the present *
summary hi their traditional order. *

3. Kepler's Law H. Newton showed that Kepler's Law of 'equal T 
areas in equal times' does not require an inverse-square-law force. 
Any force directed straight from planet to Sun will make the planet 
move in an orbit for which that law holds.

Newton gave a geometrical proof, using changes of momentum *
as vectors. This proof, in simplified form, should be offered to *
pupils in average and faster groups. Most of them would not be *
able to reproduce it, and may even remember the showing of it with *
something of a headache; yet it is a derivation they should see done, *
as part of their contact with a great piece of work. *

Here is an outline of Newton's proof. Seeing it for the first time 
anyone, pupil or teacher will find it dull and difficult if it is given in 
words with black-and-white diagrams. Shown on a blackboard 
with coloured chalks it can appear clear and compelling—and give 
delight.

We use Newton's Law II, Change of momentum = Force x time. T

Then changes of mv are vectors, along the direction of/7, propor 
tional to F.

First suppose we have a planet that is pulled with no force at all. 
That is a queer kind of force law; but it is a clear statement and it 
certainly is possible - a star or a gas molecule out in space, far from 
any other matter, experiences no force and does move with 
constant velocity.
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a. MOTION OF A PLANET WITH No ATTRACTION
Planet P moves in a straight line with constant speed. SP sweeps out equal areas 
in equal times.

6. THE PROPERTY OF TRIANGLES USED HERE
All triangles on the same base and with the same height have the same area. 
Another version: If triangles have the same base and their vertices lie on a line 
parallel to the base, their areas are equal.

The planet, P} continues to move with fixed speed in a straight 
line, AF (Newton Law I). Mark the distances travelled by the 
planet in equal intervals of time: AB, BCS CD, ... etc. Since the 
speed is constant^ AB = EC = ..., etc.

We can still draw a radius SP to our planet, from the non-attracting 
Sun, even though there is no force. Consider the areas swept out 
by tiie radius SP as the planet moves from A to B, B to Q etc., 
in equal times. How do the following triangles compare, SAB, 
SBC, SCD?

All these triangles have the same heights SM, and equal bases, 
AB, BC, CD. Therefore all their areas are equal: the spoke from 
S sweeps out equal areas in equal times. This simple motion does 
agree with Kepler's Law II.
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MOTION OF A PLANET WITH TOGS OF ATTRACTION 
Without tug at B3 P would move on to X.

Now suppose the planet P moves in an orbit, because the Sun 
pulls it inward along the radius PS. But, to simplify the geometry, 
suppose the attraction only acts in sudden big tugs, for very short 
times, leaving the planet free to travel in a straight line between- 
while. Then it will follow a path such as that shown below. Suppose 
it travels AB, BC, CD, etc., in equal times, the inward tugs 
occurring abruptly at B, at C, at D, etc.

The planet moves steadily along AB; then, acted on by a brief tug 
at B, along BS, it changes its velocity abruptly and moves (with 
new speed) along BC. Except for the tug at B the planet would 
have continued straight on, as in the simple case discussed above. 
On this continuation, mark the point X an equal distance ahead, 
making AB and BX equal. Without the tug at B, the planet would 
have travelled AB and BX in equal times, and the radius from S 
would have swept out equal triangles, SAB and SBX. But in fact 
the planet reaches C instead of X. Does this change spoil the 
equality of areas? If the planet travels to C, the two areas are 
SAB and SBC. Are these equal? To change the motion from along 
AB to along BC, the tug at B pulls straight towards the Sun, along 
BS. This tug gives the planet some inward momentum along BS, 
which must combine with the planet's previous momentum to make 
the planet move along BC. The planet's previous momentum was 
along AB.

A B oil nw ^ X

ENLARGED SKETCH OF MOMENTUM-CHANGE AT B
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Therefore,

r original
momentum 

L along AB

gain of 
momentum 
inward 
along BS

must =
new
momentum 

L along BC

Newton's Law II reminds us that momentum is a vector. So the 
adding must be done by vector addition (see sketch). As the 
planet's mass is constant, we may cancel it all through and use 
velocities thus:

P velocity ~j 
1 JL along AB J + L along BS

P gain of velocity J mugt = P velocity]
L along BC J

Let us use the actual distance AB to represent the planet's velocity 
along AB. Then, BX must also represent this velocity and BC must 
represent the planet's new velocity along BC (since all these are

VECTORS TO SHOW VELOCITIES AT B
Scale has been chosen so that AB or BX represents original velocity along ABj 
before tug acts at B.

distances travelled in equal times). Using this scale, we make a 
vector diagram (see sketch) expressing the equation above. Use 
BX (= AB) for the original velocity before the tug. Use BC for the 
velocity after. The change of velocity must be shown by some 
vector BY along BS straight towards S. Complete the parallelo 
gram, with BC the diagonal giving the resultant. Because this is a 
parallelogram the side XC is parallel to BY, so C lies on a line 
parallel to BS.

Now look at the triangles SBC and SBX, in sketch below. They 
have the same base, BS, and lie between the same parallels, BS and 
XC, so they have equal areas. Therefore, area of SBC = area SBX, 
which = area SBA. Therefore, the triangles SBA and SBC have 
equal areas. By a similar argument, the triangles SBC and SCD
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(a) Earlier sketch, redrawn with C in its proper place on XC parallel to BY or BS. 

A B X

(6) Sketch A redrawn with equal-area triangles shaded.

have equal areas, so all the triangle areas are equal, and Kepler's 
second law does hold for this motion. This argument only holds if 
all the tugs come from the same point S. If we now make the tugs 
more frequent (but correspondingly smaller) we have an orbit.

The equal time intervals from A to B to C ... are much shorter. Orbit is nearer to 
a smooth curve. With a smooth-curve orbit, the segments swept out in equal 
times may each be regarded as a bunch of small triangles like those here. So the 
segments must have equal areas.

nearer to a smooth curve, and Kepler's law still holds, provided the 
tugs are directed straight from planet to Sun. If we make the tugs 
still more frequent, we approach the limit of a continual force, with 
an orbit that is a smooth curve. The argument extends to this 
limit, so Kepler's Law II holds for a smooth curved orbit.
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Kepler's Law n and Angular Momentum. If we look at *
Kepler's Law II from the point of view of more advanced mechanics, *
we find that it is simply a statement of conservation of angular *
momentum around the Sun, when the only force acting on the *
planet is a central one passing through the Sun. However, a treat- *
ment in terms of angular momentum goes far beyond the scope of *
our teaching at this stage: and we urge teachers not to mention it. *

Demonstrations of Kepler's Law IT. We can give a number of D56 
illustrations. If a safe, frozen pond is available, we install a person as 
Sun, firmly fixed in the middle of the pond, and run a rope from 
him to a (light) pupil who slides on the ice while tethered by the 
rope. We get the planet pupil moving in a circular orbit and then 
ask the' Sun' to pull the rope in and show the planet moving faster 
when closer.

Teacher or pupil whirls a small, massive object in a horizontal D/C57 
circle at the end of a string, then lets the string wind up round one 
finger; the 'planet' moves round faster and faster as the string 
shortens.

As an interesting demonstration, start a small steel ball rolling D58 
round in a circle inside a conical glass funnel. Pupils watch the ball 
as friction takes its toll. The orbit moves lower and lower in the 
funnel and the time taken for each trip grows shorter and shorter.

Optional Demonstration with a CO 2 puck on a glass table. For D 59 
this particular experiment a ring puck is not likely to be massive OPT. 
enough. Instead, a large block of metal, a pound or so, should 
be placed on a thin slab of dry ice. This puck is then pulled by a 
horizontal thread that runs to the centre of the table, round a light 
pulley wheel and vertically up to a hand or a spring or a load over 
another pulley, to provide an inward pull on the puck.

(The main pulley has to be supported just above the centre of the 
table by some clamping arrangement that hangs from above, 
so that the planetary motion is not obstructed. The pulling thread 
must pass over the pulley and vertically up; and the frame of the 
pulley must be able to rotate about the vertical thread as axis. If 
this device is to work well, it must have two very good sets of ball 
bearings. Whenever this has been tried, the same difficulty has 
always appeared: that the pulley must be a very good one and it 
must be free to swivel round - otherwise the system cannot maintain 
constant angular momentum. A pulley that is really good would be
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very expensive and not justified. Therefore, we do not recommend 
a precision-made pulley for this demonstration, but we do suggest a 
rough form. The rough form can be made from a swivelling chair

castor. A hole must be drilled through the shank that is intended to 
fit in the leg of the chair, and a groove must be cut hi the wheel.)

The simple class experiment of whirling an object on a thread that C 60 
passes through a glass tube held in the pupil's hand (C 12) can be 
modified to show this, if the pupil replaces the load hung on the 
thread by a pull exerted by his other hand.

Each of the demonstrations suggested above is a case of shortening 
the radius from 'Sun' to 'planet' by pulling the planet in with 
whatever (central) force is necessary. Although such a force cannot 
change angular momentum around the Sun, friction can carry a 
large amount away to the Earth and spoil the demonstration. The 
experiments suggested below can be done quickly, with less 
trouble from friction, but they do not appeal to young pupils as 
such clear models of a planet's motion. They are the standard 
demonstrations of conservation of angular momentum in a system 
free from external torque.

Demonstrations with Spinning Bodies. We set a pupil spin- C/D61 
ning about a vertical axis with little friction. The pupil stands
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upright, stretches his arms sideways, and holds a massive object, 
a book or a dumbbell, in each hand. We tell him he represents the 
Sun and the books are two planets. We ask him to pull the planets 
TO his chest, then move them OUT again with arms extended. 
Then we set him spinning about a vertical axis. If we leave him 
alone, he will continue to spin at constant rate but for the effect of 
friction. We then ask him to move the planets IN ... OUT ... IN 
... OUT ...

The pupil should sit on a music stool which spins easily, or in an 
office chair that rotates. Better still, if the laboratory can provide it, 
the pupil stands on a turntable that rotates with little friction on a 
vertical axle. That needs a very good bearing. An ordinary bicycle 
wheel, with its axle vertical, is not strong enough; but a motor- 
bicycle wheel covered with a plywood disc to make the platform and 
supported on a massive base with its axle vertical makes an ex 
cellent turntable. Unless the school already has this, we do not 
advise buying or making it. The expense is not justifiable at this 
level.

As a simple version, which every pupil should be encouraged to C62 
try himself, the pupil simply stands on the floor, starts spinning 
by a sudden twist, and spins on one foot for a short time. With 
practice, it is possible to make two or more revolutions before the 
other foot has come to the rescue, (During this, one foot must 
remain off the ground and the pupil must try to remain as upright 
as possible. Some pupils find it best to raise the toe of the pivot foot 
and spin on the heel as pivot. Some pupils find it easier to spin on 
the toe as pivot.) The pupil carries books with his outstretched 
arms and pulls the books in close to him during his free spin.

tbr

Where the teacher likes to construct a special demonstration, the D 63 
arrangement sketched below is suggested. A small metal table, 
carrying two pieces of vee-channel, arranged in a V, is used as a
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rotating frame. It is placed on a glass table with a small block of 
solid CO 2 between it and the table to provide a frictionless bearing 
for spinning. The V is loaded with two steel balls to act as planets, 
held high up on each arm by a piece of light metal tubing placed 
horizontally between the balls as a spacer. This device is set spin 
ning and the experimenter snatches the metal tube away. When the 
balls run down to the bottom of the V, much closer to the axis, 
the system spins much faster.

Examples of Kepler's Law n. The teacher should point out 
some examples or applications of Kepler's Law II, cases where 
some parts of a spinning object are pulled in to make it more 
compact and then the object spins faster. Suppose the high-diver 
doing a somersault discovers half-way down in his flight that he 
is going to hit the water feet first, when that is not his plan. He 
doubles up, knees against chest, and spins faster for a carefully 
judged time. Or, if he wants to spin slower, he spreads out his 
arms in an even grander pose than usual. The skater starts spinning 
on one toe with arms stretched out and body tilted, then pulls 
himself upright with arms folded and spins very fast.

(Some teachers like to mention the marvellous way in which a 
cat can turn over and land on its feet even if it fails to acquire any 
angular momentum before it starts to fall. This is complicated, and 
likely to be confusing, or at least to seem irrelevant here. Further 
more, the usual explanation of the changes made by the cat, 
flinging legs and tail in and out, is only part of the story: the cat 
also makes important contributions by arching its back and 
twisting - much like the effect of twisting a bicycle pump's rubber 
connector while one holds it bent into a U shape.)

4. Kepler's Law HI. If we combine F = ma and a = v2/R with 
inverse-square-law gravitation, simple algebra produces Kepler's 
Law III.
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needed. F = m ^— a
PLANETARY MOTION

For a circular orbit suppose a planet of mass m moves with speed v 
in a circle of radius R around a Sun of mass M. This motion 
requires an inward resultant force on the planet, mv*jR, to produce 
its centripetal acceleration vz/R.

Assume that gravitational attraction between Sun and planet just 
provides this needed force. Then

_ Mm moz G . —^r- must = R

and distance d between m and M. = orbit radius, R.

circumference 2nR But v = -——f——r-^- = —=- 
time of revolution T

where T is the time of one revolution

_, Mw (2-xRIT)* Mm 4*' :. G.-gr = m.——__ .-. G.-^-= —

To look for Kepler's Law III, collect all R's and T's on one side; 
move everything else to the other.

Rs GM
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Now change to another planet, with different orbit radius R' and 
time of revolution T', then the new value of (/?')"/(T") 2 wiU again 
be G-M/47I 2 ; and this has the same value for all such planets. That 
is because G is a universal constant and M is the mass of the Sun, 
which is the same whatever the planet. Thus RS/T2 should be the 
same for all planets owned by the Sun, in agreement with Kepler's 
Law III.

For another system, such as Jupiter's moons, M will be different 
(this time the mass of Jupiter) and RajT2 will have a different 
value, the same for all the moons.

The planet's mass, m, cancels out. Several planets of different 
masses could all pursue the same orbit with the same motion.

'You might have foreseen that - it is the Leaning Tower 
experiment on a celestial scale.'

With any other law of force than the inverse-square law, R3/TZ 
would not be the same for all planets. An inverse-cube law, for 
example, would make R*/T2 the same for all; then values ofR3/Tz 
would be proportional to (l/R), and not the same for all planets. In 
fact, as Kepler found, they are all the same. The inverse-square 
law is the right one.

Calculus predicts Law III for elliptical orbits too, where R is now 
the planet's greatest distance from the Sun, the major semi-axis.

The only experiment we can offer for Kepler's Law III was pro- T 
duced by Kepler himself: it is the table of values of R3/TZ. 
Although pupils saw that Table when we described Kepler's work, 
and although they must have it in mind when we are trying to 
derive the law from Newton's assumptions, we must certainly 
show it to them again now. We should exhibit the full table of D64 
measurements of R and T for the planets and show the results of (= D 50) 
calculating R3/TZ, and the final testing value, R3JTZ.

With a fast group we might show a table for the four largest of D 65 
Jupiter's moons.
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JUPITER'S SATELLITES AND KEPLER'S THIRD LAW
Distance from 

Jupiter

Name of
satellite

lo
Europa
Ganymede
Callisto

in
Jovian^
diameters

3-02
4-80
7-66

13-48

in
miles
(K)

262,220
417,190
665,490

1,170,700

Time of 
revolution

in
hours
m

42-36
85-23

171-71
400-54

Calculations for test of Law III
R 3

(miles')3

1-803 xlO16
7-261 x 1016

29-473 XlO16
160-440 XlO 16

j-2

(hours) 2

1,802-8
7,264

29,484
160,430

R3
T*

TRY
THIS$$

Pupils may ask whether we could make a similar table nowadays 
for the Earth's family of satellites. We have the Moon moving in 
a circular orbit and some of the artificial satellites have orbits near 
enough to a circle to provide a simple test. Data can be obtained 
from Ovenden's book. (A physicist, needing such data in a hurry, 
would be tempted to work out a satellite's distance from its period 
of revolution. In that case, he would be assuming Kepler's Law III 
for its basis. However, satellite distances can be measured, by 
radar, and even by direct telescopic observations; so we do have 
data for genuine tests.)

Newton himself imagined Earth satellites fired horizontally from a 
gun on a high mountain. With sufficient muzzle velocity, the 
projectile would fall just enough from its initial tangent to match 
the falling away of the round Earth. It would continue like that 
always falling to match the Earth's curve, until it arrived back at the 
gun and hit it from behind.

This is a very useful idea in teaching. Pupils can imagine the pro 
jectile falling with a perpetual inward acceleration as it pursues an 
orbit round the Earth. Thought of like that, motion in a circle 
obviously does have an inward acceleration, and pupils find it easier 
to accept the paradox of the object never getting any nearer the 
centre in spite of accelerating towards it.

| It is simplest to measure the moons' orbits in terms of Jupiter's diameter. The 
radii could remain in those units for a test of Kepler's Law III; but, if these data 
are to be used in gravitational theory (e.g., to compare Jupiter's mass with the 
Sun's), then the same units, e.g. miles, must be used on both sides of the com 
parison.
M The test is made easy by a lucky chance arising from the choice of units, miles 
and hours. Look at the numbers.
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The picture in the box shows Newton's own diagram in his non- 
mathematical part of the System of the World which he added to 
the third edition of the Prindpia in 1726. The English translation 
was probably done by Motte a year or so later.

DE M'lTNDI SYSTEMATE,
non ampHus in terram caderet, Defignet AKB fuperficiem Terrce ;•

e~ centrum ejus; 8c VD, VE, VF, li-. 
neas curvas, quas projectile de mon- 
tis prscalti vertice v, fecundum li- 
neas horizonti-parallelas, audtis cum. 
velodtatis gradibusr fucceffivi c— 
millum defcribat. Et ne ac'ris rc- 
fiftentia-, qua- motus ccelcftes vis 
retardantur, in computum veniat,, 
.fingamus- hunc- omnem tolli, vel 
faltem fiH'refiHere. Et eadetn ra 

tine; tgtgm i n nrcv _

NEWTON S SYSTEM OF THE WORLD

[3.] The action of centripetal forces.
That by means of centripetal forces the planets may be retained in certain 

orbits, we may easily understand, if we consider the motions of projectiles 
(pp. 2-4); for a stone that is projected is by the pressure^f its own weight 
forced out of the rectilinear path, which by the initial projection alone it 
should have pursued, and made to describe a curved line in. the air; and 
through that crooked way is at last brought down to the ground; and the 
greater the velocity is with which it is projected, the farther it goes before it 
falls to the earth. . » »

Let AFB represent the surface of the earth, C its centre, VD, VE, VF the 
curved lines which a body would describe, if projected in an horizontal 
direction from the top of an high mountain successively with more and 
more velocity . . . . . let us suppose either that there is no 
air about the earth, or at least that it is endowed with little or no power of 
resisting; and for the same reason that the body projected with a less velocity 
describes the lesser arc V0, and with a greater velocity the greater arc VE, 
and, augmenting the velocity, it goes farther and farther to F and G, if die 
velocity was still more and more augmented, it would reach at last quite 
beyond 'the circumference of the earth, and return to the mountain from 
which it was projected.
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Note to Teachers on the Value of Kepler's Law HI. As we *
now see this law through Newton's eyes, it offers a survey of the *
field of force in the solar system. Ranging all the way from the *
orbit of Mercury to the orbit of Saturn, the farthest then known, *
Kepler's Law III vouches for an inverse-square-law field of *
attraction: a tremendous exploration, over a vast range, by the *
planets as 'investigating missiles'. *

*
(A bright pupil may ask whether comets vouch for that field of *
force over a still wider range. They do, from the region of the *
innermost planets and perhaps nearer, to well outside the outer- *
most orbits. We know from the portions of their path that we *
observe, combined with their punctual returns, that their whole *
orbit is an ellipse.) *

*
Presently we shall describe to pupils a corresponding exploration *
of the field of force inside an atom. When Rutherford's young col- *
leagues, Geiger and Marsden, counted alpha particles deflected *
from their path as they met a thin wall of gold leaf, they were using *
alpha particles as investigating missiles. They found large-angle *
deflections so rare that it seemed certain that those were the result *
of a single encounter with a strong deflecting field (repulsive) - the *
numbers counted did not fit with the idea of many encounters in *
this thin gold leaf building up a large deflection. *

*
Therefore, each alpha particle travelling to the gold and out along a *
deflected path was like a planet in the solar system telling us about *
the field of force controlling its orbit. Measurements of numbers *
of alpha particles scattered showed clearly that over a tremendous *
range of distances, deep inside the atom of gold, the alpha particles *
encountered an inverse-square-law field of force. *

*
We shall want to describe that to pupils and quote it as the evidence *
that suggested and supported our picture of atoms as' hollow', with *
a tiny massive nucleus carrying a large electric charge. When they *
come to that, it will not seem very convincing if that is their first *
glimpse of 'investigation by orbits', since the events inside the *
gold atom are far too small to see and the geometry that leads us *
from macroscopic observations to our microscopic picture is too *
difficult to give in detail at this stage. *

Therefore, if Newton's prediction of Kepler's Law III catches T 
pupils' fancy now, teachers may want to take this opportunity to 
point out that we now take Kepler's Law III as evidence of a vast 
region of inverse-square-law field, and even give a hint that we
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shall meet a similar story inside atoms, though with electrostatic 
repulsion instead of gravitational attraction. If that forward look 
creates enthusiasm, now is the time for it. But if Kepler's Law III 
seems 'just algebra', and rather difficult at that, for a slower 
group, it may be better to postpone any mention of hollow atoms.

5. Moons. Kepler's Law III should also apply to a sub-family - T 
any planet and its satellites. As Kepler and Galileo had shown, it 
applies to Jupiter's moons though, of course, with a different 
constant for that system, 47i 2 [mass of Jupiter]/G.

Thus, Newton justified Galileo's quoting Jupiter and his moons as 
a model of the solar system.

(In an earlier generation, physicists were tempted at this point to *
suggest a view of an atom as a microscopic model of a solar system. *
Since we now know that such a picture with sharply defined orbits *
is misleading, it is better to omit that reference here.) *

6. Comets. (See note below on'Telling Pupils about Comets'.) T 
Until Newton's explanation, comets were regarded as entirely 
lawless and mysterious, objects of fear that appeared unexpectedly 
in the sky.

. _ ̂ '\
. . - , i'fanet*\ *»,///'/iTi * pCaMt

COMET, MOVING IN AN ELLIPTICAL ORBIT WITH SUN IN ONE Focus, PASSES 
THROUGH SOLAR SYSTEM
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SKETCH OF THE SOLAR SYSTEM, WITH HALLEY'S COMET SHOWN 
The most recently discovered planet, Pluto, is very small and pursues an elliptical 
orbit extending from within Neptune's to a much greater distance. (Mercury and 
Venus are not shown.)

Newton and his fellow astronomers showed that comets have 
elliptical orbits with the Sun in one focus; and Newton pointed 
out that we should therefore regard them as satellites in the 
general solar system. Their ellipses are members of the family of 
planetary orbits, except that they happen to be much more eccentric. 
Thus, Newton took comets out of the realm of superstition and 
mystery in which they had long resided (and still reside for some 
people today).

Different parts of a comet, if it is a collection of small pieces, 
should all travel together along the same orbit - the acceleration 
of the falling body, or the orbit of a projectile, is independent of its 
mass. When we observe the tails of comets trailing behind and 
pushed out sideways, away from the Sun, we infer that other
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FORCES ON PARTICLES IN A COMET'S TAIL
If one particle of the comet has 10 times the diameter of another, its mass, for the 
same density, is 10 X10 X 10, or 1,000 times as great as the other's. Gravitational 
forces on it will be 1,000 times as big. But surface forces, e.g. light pressure from 
sunlight, will be only 10 x 10, or 100, times as great. Thus surface pressure 
matters proportionally more for small particles; less for large ones. It can push 
the very tiny particles in the comet's tail away.

forces not proportional to mass are acting upon them. For many 
years, astronomers thought those forces were due to the pressure of 
light from the Sun. It now seems more likely that the forces are 
chiefly due to bombardment by proton streams from the Sun. That 
is one matter which is waiting for confirmation when the next big 
comet returns.

(We should not divert our teaching to a long sidetrack over that 
'scaling' argument, which might strike pupils as obscure and 
unrewarding. Yet they should meet that in discussing heat losses - 
from calorimeters or from buildings - and neutron escape from 
reactors; and they will certainly meet that in discussing strength 
and size of animals.)

Note to Teachers: Telling Pupils about Comets
The older we are, the more we think of comets as interesting, 
special things that appear in the sky. We see pictures in astronomy 
books, and in newspapers, and we may even remember seeing a 
large comet with our own eyes. But young pupils have merely 
heard the name; they are unlikely to have seen one because most 
comets visible in recent years have required a telescope. (Pro 
fessional astronomers are still waiting for the next return of a big 
comet to try out their present views.)

Before we say that Newton brought comets into his theory of the 
solar system, we should show photographs of comets and give 
examples of their regular returns. For example:
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Halley's Comet. Appeared as a great, brilliant comet in 1682. 
Halley (and Newton) worked out its elliptical orbit and predicted 
its return in 76 years. It did return soon after the predicted date, in 
1759. It has returned twice since then, and is expected again about 
1984.

Working backwards with the estimated period of 76 years, and 
allowing for some calculated disturbances, we find several dates 
that fit with earlier records of great comets. So we believe Halley's 
comet has been seen in the following years:

1066 — — — — 1456 1531 1607 1682 1758 1835 1910

The earliest in that list is the great comet that was thought to 
herald disaster in the Battle of Hastings, the stella over King 
Harold in the Bayeux tapestry.

We may also want to point out that the big comets, such as Halley's, 
appear as such a great bright brush of light across the sky that 
people cannot fail to see them and be impressed. It is not surprising 
that, as well as wonder, they excited awe and even fear. To the 
superstitious they were more strange and queer than the planets. 
When observations of comets showed that they pass quite near to 
us, there were added troubles: not only the practical fear that the 
comet might hurt us, but also the theoretical disaster that the comet 
had smashed through the crystal spheres.

If pupils ask, 'Where do comets really come from?', we should 
say that astronomers now believe there is a large reservoir of 
planetary material circulating out beyond the orbits of large visible 
planets. In interactions between a clump of such material and a 
planet, the clump's orbit is changed and occasionally becomes a 
narrow ellipse that brings that clump in close to the Sun, where 
it is illuminated by bright sunlight, and we see it as an impressive 
visitor.

Some comets seem to have a dense head, as if they are quite 
massive. But we know their mass cannot be big on a planetary 
scale, because on the rare occasions when a comet has a close 
encounter with a planet such as Jupiter, the comet's orbit is 
usually changed, but the massive planet seems to suffer no notice 
able effect.
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7. Masses of Planets. Newton could estimate the relative masses 
of the Sun and planets, whenever the body concerned owns a 
satellite.

The satellite, through Kepler's Law III, provides a value for the 
mass of its controlling body. Although Newton could not check 
those relative masses, this was a typical case of theory providing 
new numerical knowledge in terms of its own assumptions.

For example, Newton could calculate the mass of the Sun in 
terms of the Earth's mass, because each owns at least one satellite. 
(The absolute mass of the Earth itself was not known and could not 
be estimated without some terrestrial measurements like those of 
Cavendish.)

Newton's calculation can be carried out as follows: 
Subscripts s and e and m refer to Sun and Earth and Moon.

*
*

T •» I ttiontf* •- ~

CALCULATING THE RATIO OF SUN'S MASS TO EARTH'S Afs/Afe, by using the motion 
of the Moon. The Moon's mass Mm cancels out. For each motion^ Earth-around- 
Sun and Moon-around-Earth3 just write an equation stating that the needed 
force Mv2]R is provided by gravitation.
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EARTH AS SATELLITE OF SUN. For the Earth's motion around the *
Sun in its yearly orbit, *

*
MM V* 4snzR z */7 •"V-'e _ M v e _ M ^ *\»

"•—~ « — "V^T ~ yw e r. T- a *

47t 2 FJR 31 *.'. Ms = — ^ Note that the Earth's mass, Me, cancels *

MOON AS SATELLITE OF EARTH. For the Moon's motion around the *
Earth in its monthly orbit, *

^ D 2 *'*m r> 
*Sn ^m

*

4vr 2 f-Km3 ! *.'. Me = —— -^Y Again, the Moon's mass, Mm, cancels *
(j L J m J

*

Therefore, dividing one equation by the other *

r aL m_ =___} = ^l_ _
Me [Rm3ITm*] Rm3 T^

*
F DISTANCE OF SUN
[DISTANCE OF MOONj L 1 year J *

*
With the known values of these times and orbit radii, the ratio of *
the Sun's mass Ms to the Earth's mass Me can be calculated. *

*
(We should not drag pupils through all that unless they are * 
interested in comparing the various masses of the solar system and * 
are capable people with algebra so that they follow the working * 
comfortably. But, if we do start, we should not leave the result * 
unfinished. Using quick arithmetic, we must work out the value of T 
that proportion roughly. Taking well-known values in miles, we 
have 93-6 million miles for the Sun and 240,000 miles for the 
Moon, making a ratio about 400 to 1. There are 13 Moon-months 
in a year.

Therefore, ^ °5 * m. = [400]° [1] * = 64xlO«/169 Mass of Earth L13J '

which will come to somewhere between 200,000 and 400,000 
according to our choice of rough arithmetic. Careful arithmetic
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with good data gives 330,000, but attempts to reach an accurate
result miss the point. Pupils should not want to know the proper- *
tion of masses of Sun and Earth with terrific precision. But they *
should be interested in knowing that the Sun is several hundred *
thousand times as massive as the Earth; because then they *
will know that the Earth is unlikely to upset the orbits of other *
planets, such as Mars, noticeably. Here is a case where a rough *
estimate is very useful.) *

Newton could make similar estimates for other mass ratios, such as 
Jupiter's mass to Earth's mass, or Jupiter's mass to Sun's mass, 
for any two bodies which each own a satellite.

Where a body has no satellite, the estimate could not be made. It 
looks as if Newton could not estimate our own Moon's mass as a 
fraction of the mass of the Earth or Sun, since the Moon has no 
satellite. And yet he succeeded in doing that - he found the moon 
does have a 'satellite'! (We promise to explain this soon.)

8. Shape of the Earth ran Oblate Spheroid. In Newton's day T 
the Earth was thought to be a perfect sphere. Newton predicted 
it must be a spheroid, flattened at the poles, bulging at the equator. 
Surveys, not long after Newton's time, showed that the Earth does 
have the kind of shape Newton predicted and more careful surveys 
have confirmed that with some modifications.

Newton realized that a spinning sphere with mobile oceans on it *
would maintain a tremendous equatorial bulge of water. Although *
we should not observe huge tides on account of that bulge (because *
it would all be carried around with the Earth's daily spin), it *
seemed unlikely, and we now know there are not those great ocean *
depths. It seemed more likely that the Earth, in some early pasty *
state of its formation, would have itself taken on a shape with an *
equatorial bulge. *

*
Therefore, Newton thought about the shape the Earth must have *
if, long ago, hi pasty form, it took the equilibrium shape such a *
spinning body required. *

We can show a simple demonstration of a spinning sphere taking an D 68 
oblate shape. We spin a large rubber ball - preferably the hollow 
kind sold in toyshops for small children - with an electric motor or a 
hand-drill. Or a sponge-rubber ball will show the effect if it is 
spun fast enough. A hole is drilled through the ball from north
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pole to south. A thin rod is passed through the holes and held in a 
chuck attached to the motor. (An electrically driven hand-drill 
serves well and has the chuck already attached.)

The ball must be free to slide on the rod at one hole, so that it 
can change its shape; but it must stick to the rod at the other hole 
so that the rod can spin it. There must be a stop at the outer end 
of the rod.

(This homemade demonstration is more convincing, and more 
fun, than the traditional model made with flexible metal strips, 
spun by a special motor; so we do not advise schools to buy the 
latter.)

The general method of Newton's calculation is simple and should 
be described to faster pupils.

His argument ran as follows:

North pok

tcynakonal

South Pote

To ESTIMATE THE BULGE OF A SPINNING EARTH, imagine a pipe of water running 
from North Pole to centre and out to equator. Calculate the extra height of water 
in equatorial branch needed to provide mvzIR forces for spin. This gives extra 
radius of bulge for a pasty Earth congealing while spinning.

Consider a pipe of water running through a spherical Earth from 
the North Pole to the centre and out to the equator. If this were 
rilled with water, just to the Earth's surface at the North Pole, 
where would the water surface be in the equatorial branch of the
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pipe? At the centre of the Earth the water pressure at the bottom of 
the polar pipe is due to the weight of the water in that pipe; and 
this pressure pushes around the elbow at the bottom and out along 
the equatorial branch, trying to push that column of water outward. 
The weight of water in that branch pulls it in. But these two 
forces on water in the equatorial branch must be unequal. They 
must differ by enough to provide an inward centripetal force to act 
on the water in that pipe, which is being carried around with the 
spinning Earth. The weight of the water in that branch must 
exceed the outward push from the water at the elbow by the 
amount needed for mv^jR forces. More colloquially, 'Some of the 
pull of gravity on the water in the equatorial pipe is used to keep 
the various portions of that water moving round in a circle, and 
only what is left over makes the pressure at the bottom of the pipe.'

Therefore, the water column in this pipe must be longer than that 
in the polar pipe. The equatorial pipe must extend out beyond the 
Earth's surface to carry the extra head of water.

Newton calculated the extra height and found that 14 miles would 
be required. He argued that the Earth at an early pasty stage would 
bulge out about this distance. A short time after Newton's day, 
measurements of the Earth confirmed the prediction.

If pupils are interested, particularly if they have looked at Jupiter 
with a good telescope, we might point out that Jupiter shows a 
more marked elliptical shape. Therefore, although Jupiter is 
covered by clouds so that we never see the solid surface, we can 
make a good estimate of the rate at which Jupiter as a whole is 
spinning.

The most valuable way of presenting this for good teaching would 
not be to point it out as one more example of a spinning planet 
having a flattened spheroid shape, but to raise two questions at 
different stages:

(i) When Jupiter is looked at with a telescope, ask, 'What shape 
does Jupiter seem to have?' And then, if pupils notice the oval 
shape, say, 'I wonder what that means?'

(ii) Now when we come to this point in Newtonian theory, or any 
time after this, we say, 'Jupiter is well covered by clouds, and yet 
astronomers know quite well how fast Jupiter as a whole is spinning. 
How can they tell that, without any rocket to go there and find 
out?'
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9. Differences of g. Both that equatorial bulge and the spinning T 
of the Earth have slight effects on the apparent value of g. We 
expect to find the acceleration of free fall smaller at the equator 
than at the poles.

We should hardly worry pupils with the two small effects that *
Newton predicted. In more advanced teaching in the past, g has *
assumed great importance in both experiment and theory, as part *
of our training in mechanics. Nowadays we may leave that to *
specialists. Precise knowledge of g is still important in geophysics; *
but for our pupils it should be only an interesting local acceleration, *
which yields a useful field-strength. However, pupils who enjoy *
seeing the ways in which Newton's theory offered unexpected *
knowledge may want to hear of these two effects: *

(i) Since an object near the Earth's surface at the equator is T 
farther from the centre of the Earth than one at the poles, we 
predict g will be slightly smaller at the equator.

(ii) Also, since an object at the equator is revolving in a circular 
orbit with the spinning Earth, it must have inward resultant force 
to keep it in orbit. Therefore, when we hold an object at rest with a 
spring balance, the upward pull of the balance on the object must 
be slightly less than the object's weight (the pull of the Earth 
downwards on it). Therefore, the balance reads a little less than the 
object's weight. Or, if we let the object fall freely and measure 
the acceleration, relative to the surface of the spinning Earth, the 
acceleration seems less than we should expect because we are 
trying to measure it against a frame of reference which itself has an 
inward acceleration. Both those stories are difficult; and we should 
be wiser to say colloquially, 'At the equator some of the pull of the 
Earth is used up to keep the object moving in orbit; so it seems to 
weigh less.' The effects are small:

(i) makes g 0-2% smaller; 

(ii) makes g seem 0-3% smaller.

Surveys confirm the prediction roughly, but there are additional 
local differences due to mountain masses and other irregularities.

We might point out to pupils that geologists hunting for deposits of * 
dense minerals, oil, etc., use surveys of g - often with apparatus *
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that gives only differences of g from the general average for the 
region. The measurements are delicate and their interpretation 
rather complicated.

10. Tides. Newton showed that tides can be explained as due 
to differences of gravitational pull on the ocean exerted by the 
Moon, and exerted by the Sun. This was one of the greatest 
achievements of his theory because it linked a well-known, im 
portant phenomenon to the story that he was building up from 
common gravity. We have all of us heard of this explanation of 
tides when we were children, and it seems a natural suggestion to 
us and to many of our pupils. In Newton's day it was an astounding 
suggestion; a burst of light upon an important phenomenon that 
had been crying for ' explanation', and receiving strange answers.

(BjDefyed \
tides '•»_ _ *

OCEAN TIDES ARE CAUSED BY DIFFERENCES OF MOON'S ATTRACTION 
(a) The extra-large pull on ocean nearest the Moon raises one high tide. The 
extra-small pull on ocean farthest from the Moon lets it flow away into another 
high tide.
(6) Delayed tides. Actually the high-tide humps are delayed by inertia, tidal 
friction, and effects of rotation. As the Earth spins, they are not opposite the 
Moon. In most places they arrive about J cycle (6 hours) late.

Galileo himself, probably in an attempt to please the Pope when 
he sought permission to publish his book, suggested that tides were 
due to a breathing motion of the Earth! The Mediterranean 
tides are very small (only about 6 inches); but scientists seeing
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tides on the open Atlantic must have suspected some connection 
with the Moon. Yet a simple connection through differences of 
gravity was too big a jump in thinking. Essentially, the idea of 
gravitational fields, weakening as they spread farther, producing 
differences of force, was an easy one to Newton, but an unlikely 
guess for his contemporaries.

(Although it is a simple idea that gravitational pull produces tides, 
the detailed explanation is often put in a complicated way. We 
suggest giving pupils only a very simple account, which will be 
described later. Before that, however, here is some general dis 
cussion for teachers who want to consider the background. Some 
texts and encyclopaedias give a very complex treatment. (G. H. 
Darwin's book, The Tides and Other Phenomena, 1901, reprinted in 
paperback, W. H. Freeman, 1952, is recommended.)

If the Earth and the Moon were each a 'point mass', a tiny 
compact object, but had the same masses and general motion as 
now, they would revolve around their common centre of gravity, 
once every 27-3 days. Nowadays we know the Moon's mass and 
know that the centre of gravity is about 3,000 miles out from the 
Earth's centre towards the Moon.

The gravitational pull of the Moon is just sufficient to swing the 
Earth around that centre of gravity in a month. It provides the 
needed Mz> 2/.Rforces, pulling the Earth towards the common centre 
of gravity. However, the real Earth is bulky, 4,000 miles in radius, 
so that the common centre of gravity is 1,000 miles under the sur 
face. Nevertheless, the Moon provides the inward pull to swing 
the whole Earth in a circular motion around that centre of gravity 
once every month. (And the equal and opposite attraction of the 
Earth on the Moon keeps the Moon in its orbit, swinging around 
that common centre of gravity once in a month.)

That monthly motion of the whole Earth is not one in which the 
Earth spins as well as going round its orbit: the Earth does not - so 
far as that motion goes - point the same part of its surface always 
towards the Moon, though the Moon does behave like that towards 
the Earth. Instead, this motion of the Earth is like that of a window 
cleaner's hand, sweeping round a circle with his cloth on the 
window. Thus, all parts of the Earth go round circles of radius 
3,000 miles, all in the same phase. All need the same 'inward' force 
on every kilogram of matter to keep them in their monthly orbit. 
All such 'needed forces' have the same direction, the direction
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from Earth's centre to common centre of gravity of Earth and * 
Moon - therefore in the' Earth-Moon' direction. *

.-**""""" ^V-roJ

X
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I

ADDING THESE FORCES 
TO PULL OF EARTH'S 

GRAVITY, AND
.SUBTRACTING 

THE NEEDS, 
GIVES

WA1<wt

THE TIDE-PRODUCING FORCE

Material near the centre of the Earth itself is pulled with just the 
right force to provide the needed Mv*jR. But out on the surface of 
the Earth farthest from the Moon, the gravitational pull of the 
Moon is a little weaker: it is not big enough to provide the same 
needed Mv 2/R. Therefore, in that region, some of the Earth's own 
common gravity must be used to provide that acceleration, and 
material there will seem abnormally light. Oceans there will exert 
abnormally low pressure. So, oceans elsewhere, exerting full 
pressure, push the ocean up into a hump in the region farthest 
from the Moon. And material at the Earth's surface nearest the
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Moon is pulled outward by the Moon with slightly too strong a * 
gravitational attraction. The force on it is a little more than the *
needed Mv 2IR. So the oceans there, too, are pulled up into a hump. *

*
Thus, differences of the Moon's gravitational pull lead to two *
humps of ocean, one farthest from the Moon, one nearest. As *
the Earth spins daily, different portions of land meet these humps *
and ocean tides go sloshing up and down every shore. *

*
That is the proper story of the cause of tides, in the simple form *
that does not take account of modifications by land shapes and *
other geographical conditions. Yet even that preliminary story is a *
difficult one for young pupils, likely to give them a feeling that the *
explanation of tides is complicated instead of showing it as a *
delightful achievement. Therefore, the discussion above is only *
offered as a reminder of the background for teachers. *

Teaching about Tides. For pupils, we suggest at most a simpler T 
story such as this:

'The Earth and the Moon pull each other. The pull of the Earth 
keeps the Moon in its orbit. That gravitational pull provides the 
force Mv*IR which each mass, M, on the Moon needs to make it 
pursue its orbit.

' But the Moon also pulls the Earth and that force keeps the whole 
Earth moving in a small orbit round a "centre of gravity point" 
3,000 miles out from the centre of the Earth. The pull of the 
Moon gives just the right force, Mv2/R, for a central mass of 
Earth in its monthly swinging-round. It must do so, or the Earth 
and the Moon would not conduct this monthly dance.

'The Moon's gravitational pull thins out as distance from the 
Moon increases. At places on the Earth farthest from the Moon 
the pull is a little weaker. And at places on the Earth nearest the 
Moon the pull is a little stronger. These differences of Moon- 
pull make the water of oceans pile up into two humps: a hump 
farthest from the Moon where the water is not pulled "inward" 
quite enough; and a hump nearest the Moon where the water is 
pulled "outward" too much.

'Those humps are only a few feet high (not nearly as big as the 
14-mile bulge of the Earth's equator, because this motion is 
much slower than the Earth's daily spin). Those humps are the 
ocean tides. The Earth also has its 24-hour daily spin; and that
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carries the land-masses round to meet those humps in turn. Then 
those humps of water go sloshing up every shore in turn, and 
back again; the two humps make two high tides in 24 hours.'

(There are, however, considerable delays and peculiarities in * 
tidal motion, which have been sorted out by studies since Newton's * 
day. They are due to friction and inertia, combined with the * 
patterns of Earth's masses of land and ocean as boundary con- * 
ditions.) *

*
The Sun also produces tides. Since the tide-generating forces are *
differences of gravitational pulls, the Sun's tides are smaller. *
Because the Sun's distance is much greater than the Moon's *
and the Earth-diameter from nearest surface to farthest surface *
is a smaller fraction of the Sun's distance. *

' Like the tides due to the Moon's pull, there are also two humps T 
of ocean due to differences of the Sun's pull on water farthest 
from the Sun and nearest to the Sun. These are smaller than the 
humps due to the Moon, because the distance across the Earth's 
diameter does not make such an important difference in Sun's 
gravity. The gravitational field due to the Sun is much stronger 
than that due to the Moon because the Sun has a very much 
bigger mass; but the differences of Sun's pull are smaller than the 
differences of Moon's pull.

'The humps of tide due to the Sun will fall on top of the humps 
due to the Moon when the Sun is in the same direction as the 
Moon, at new Moon. They will also fall on top of each other 
at full Moon, when the Sun is just opposite the Moon. At each 
of those two times there will be extra-large tides, Moon-tide 
plus Sun-tide together. Those are the large "spring tides".

'Half-way between spring tides, when the directions of Sun 
and Moon are at 90° (half Moon), the smaller humps due to the 
Sun will fall in some of the low-tide troughs between the humps 
due to the Moon. Then there will be smaller tides, "neap tides ", 
which are Moon's tide minus Sun's tide.'

Where pupils live at the seaside or are familiar with the details of T 
tides, they will raise questions about this explanation:

Question: Why does high tide not occur at the same time day after 
day?
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Answer: Because the Moon travels round the Earth in the same 
direction as the Earth's daily spin, so you must wait a little more 
than 24 hours later to meet the same hump of water that is 
opposite the Moon.

Question: Why is the high tide not exactly' under the Moon'? Why 
do tides differ so much in timing from one port to another?

Answer: Because the response of humps of water is delayed by 
friction and inertia; and the motion of the humps is further 
changed by shapes of shore, estuaries, etc.

Unless pupils want to know about such details, we certainly should *
not bring them in here: we are trying to show the richness of *
Newtonian theory; we are not training navigators. *

11. Mass of the Moon. We return to our promise that we would T 
show how Newton found a 'satellite' for the Moon, and could 
therefore estimate the Moon's mass.

'Newton estimated the Moon's mass from the Moon's tides. 
In other words, the Moon has a satellite after all: the pair of 
humps of water that we call tides.'

Large tides (spring tides) occur every fortnight, when the Sun's *
tide and the Moon's tide agree; small tides (neap tides) occur a *
week later when the Sun and Moon are in directions at right *
angles. *

'From measurements of spring tides and neap tides, in open T 
ocean, Newton could separate out the tide due to the Sun from 
the tide due to the Moon:

Spring tide = Effect of Moon+Sun 

Neap tide = Effect of Moon—Sun

'Simple algebra - adding two equations, also subtracting them, *
gives the two separate effects. Knowing the size of ocean humps *
due to differences of the Moon's attraction, Newton could treat *
those as a satellite of the Moon and estimate the Moon's mass *
roughly.' *

*
We certainly should not labour this matter of estimating the * 
Moon's mass in our account to pupils. But we may mention it as *
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one more product of Newton's theory, perhaps praising it with a *
tribute to his perception and skill in extracting knowledge on a *
basis of his theory. *

12. Precession of the Equinoxes. Newton gave a clear reason T 
for the strange motion known as precession of the equinoxes, and 
he showed that its period should be about 26,000 years, the known 
value.

This was one of the most unexpected outcomes of Newton's * 
theory. Instead of needing special assumptions, or appearing as * 
a minor variation of motion due to practical boundary conditions, * 
precession appeared as a direct, necessary consequence of gravi- * 
tational pulls by Sun and Moon on the equatorial bulge of the * 
spinning Earth.

Precession is our name for a slow, conical motion of the Earth's T 
spin-axis around the axis of the ecliptic - that is, around a line 
through the Sun perpendicular to lie Earth's orbit, an axis at 
23|° from the Earth's polar axis. That was Copernicus' description 
of the slow, creeping motion discovered by the Greek astronomers 
and described by them in a more complicated way. That motion 
carries the Earth's axis round in about 26,000 years. So the place 
where it meets the celestial sphere of stars, the place for a pole 
star, shifts round a path that is roughly a circle, in 26,000 years. 
Our present pole star, which almost falls on the Earth's spin-axis, 
is thus a happy accident for our stage in history. At some earlier 
stages there was no marked pole star, where the Earth's spin-axis 
met the pattern of stars. Still earlier, e.g. around 3000 B.C., another 
prominent star served as pole star.

After its discovery by Hipparchus, astronomers made allowance 
for this motion in their records and predictions, but they had no 
explanation beyond providing an extra arm or sphere in the 
machinery to imitate the motion. Copernicus described the motion 
more simply, but offered no explanation connecting it with other 
motions in the sky or on Earth.

Newton showed this strange motion is a necessary consequence of 
gravitation and the Earth's spin. A spherical, spinning Earth 
would continue spinning with its axis pointing in a constant direc 
tion among the stars as it pursued its orbit around the Sun. (We 
should call that, now, an example of conservation of angular 
momentum.) But an Earth with an equatorial bulge will suffer 
slight extra gravitational pulls exerted by the Sun and by the Moon
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on the parts of that bulge. Since the Earth's spin axis is tilted and 
not perpendicular to the Earth's orbit, those extra pulls make a 
rocking force, which tends to change the tilt of the Earth's spin 
axis.

PRECESSION OF THE EQUINOXES 

SPHERICAL EARTH wtm&C-nctjmcess even

CENTURIES LATER, it woutd Swing (UVun&
its orbit tvitil its axis at same tfo.

OBLATE EARTH $neess&.

CENTURIES IATER, tb Spin-ttKlS
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©
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PRECESSION
(a) The Sun would pull a spherical Earth with a central pull along line joining 
centres, whether the Earth spins or not. 
(6) The Sun exerts extra unequal pulls on the bulge of oblate Earth.

(c) The Sun pulls the nearer part of the bulge harder than it pulls the remoter
part
These small extra pulls are equivalent to some extra pull along the line of 
centres and a small residual force,/, which tries to rock the Earth's axis. 
As with, any spinning body, the effect of any force, /, tending to tilt the spin-axis 
is NOT to tilt the axis but to make it 'precess' instead around another axis.
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Pttcessum,

Pit cess Ion

PRECESSION
The Earthj a spinning top, and a 'mysterious gyroscope' all precess in the same 
way, for the same reason. In the sketches above 'torque axis' means the axis 
around which the tilting force tries to rock the spinning object.

Since the Earth is spinning, that rocking force has the effect that 
such a force has on any spinning object, such as a gyroscope: 
the spinning Earth is made to precess. The rocking force does not 
succeed in changing the tilt of the Earth's spin-axis; instead, the 
spin-axis slews round the ecliptic axis with a conical motion, 
taking some 26,000 years. Thus, precession, which the Greeks 
discovered and Copernicus described hi a simple form with no hint 
of explanation, now becomes part of the Earth's behaviour expected 
on the basis of universal gravitation.

The details of Newton's calculation fall quite outside the scope of 
our present teaching. But we should give pupils a glimpse of the 
general idea. That glimpse makes no sense unless it includes 
some knowledge of the way in which a gyroscope behaves when a 
torque is applied. All of us who have tried treating gyroscopes in

224



any physics teaching know what a disturbing topic that is. The 
experimental demonstrations are fascinating and paradoxical; but 
attempts to explain them as part of ordinary knowledge of 
mechanics comes to grief easily.

Treating angular momentum as a vector is unconvincing until 
pupils have reached a much more advanced stage. Other explana 
tions are apt to have a similar ad hoc flavour. Here we shall meet the 
same difficulty: delightful experiments in a confusing background 
that lacks any linking explanation. We suggest teachers should not 
attempt explanations of gyroscopes. They should give only two 
demonstrations - and should not expand much into the delights of 
tightrope walkers and paradoxical toys. (Small gyroscopes are 
available as toys and we hope pupils will play with them and enjoy 
themtj but we suggest keeping that separate.)

DEMONSTRATION OF PRECESSION WITH A BICYCLE WHEEL, WITH EXTENDED AXLE
HUNG HORIZONTALLY ON A ROPE

Crude explanation with Newton's Law II, considering only the top and bottom 
of rim, A and B. If wheel rocks ever so little in response to torque, A gains 
momentum ATKO to the right; B gains Am» to the left. Combining these with 
previous momenta, we find wheel must be precessing.

One demonstration should be the simplest available gyroscope - 
just to introduce its paradoxical behaviour and show that a rocking 
force applied to a spinning body does not succeed in rocking the 
body, but produces precession instead. The other demonstration is 
a special one that imitates the case of the Earth's precession. 
A simple flywheel - more massive than the usual toy gyroscope - is
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held in a simple frame suspended by a long thread. A stretched 
rubber band is installed to rock the frame; but, if the flywheel is 
spinning, the frame precesses instead of rocking. This model is 
worth the trouble of home-manufacture - but not the high cost of a 
commercial gyroscope - because its geometry resembles that of the 
real situation closely enough for it to be very helpful in teaching. 
Its value is not obvious from a sketch; but teachers who construct 
it will find its message clear and useful.

RutlerSiuut

PRECESSION

EXPERIMENT TO ILLUSTRATE THE PRECESSION OF THE EARTH, WITH SPINNING FLY 
WHEEL 'ROCKED ' BY THE PULL OF A TAUT RUBBER BAND 

This is a modification of ordinary gyroscope demonstrations, specially arranged 
for teaching the way in which precession of the equinoxes is caused. 
A small massive flywheel, spinning in a frame, is held by another frame hung by 
a long thread. The wheel continues to spin with its axis pointing in an unchanging 
direction. When a rubber band is installed, between the outer frame and a hook 
on the inner frame, precession starts, the spin axis moving slowly round a cone. 
When the rubber band is unhooked (without interrupting the spin) precession 
stops.
The rubber band's pull represents the Sun's net pull on the Earth's equatorial 
bulge.

13. Irregularities of the Moon's Motion. The Moon's orbit is 
roughly a circle in a plane tilted about 5° from the Earth's orbit 
plane. But careful observations show many minor deviations and 
changes as time goes on.

The orbit is actually an ellipse, and that would fit with Kepler's 
Law I just as well as a circle; but the ellipse changes. Its eccen 
tricity varies periodically. Its major axis swings round in the 
plane of the orbit; and that plane itself slews round slowly. On
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top of that, the Moon's motion in its ellipse shows extra accelera- *
tions and retardations with periods of one month and one year. *
Some of those modifications from simple motion at constant speed *
round a circle were well known when Newton showed that his *
theory predicted them. But Newton predicted more. *

*
Newton worked out predictions of these effects on a rough scale, * 
explaining them by differences of the Sun's attraction as the Moon *
travels closer and farther from the Sun in its orbit round the Earth. *

*
(Of course, if the Moon stayed at exactly the Earth's distance *
from the Sun, it would follow exactly the same orbit as the Earth - *
a satellite orbit does not depend on the satellite's mass, and, *
therefore, two satellites started on the same orbit will continue *
together whether they have the same mass or different ones.) *

*
Ideally, one might express the effect of the differential gravitational *
causes in a single specification which says:'This is the description *
of the true orbit, as we predict it, knowing the forces, etc., in full *
detail.' Then the effect would be expressed as one overall modifica- *
tion, which would, however, have a rather complicated description. *
In practice, that is too complicated and even turns out to be clumsy *
when we are making comparison with observation. It is easier to *
extract from observation several different types of extra motion, *
as parts of the overall effect. It is also easier to make the same *
separation in the theoretical development. So we see Newton *
working out separate deviations, specifying them, recognizing *
some as already known, checking some by contemporary observa- *
tions, and leaving others to be tested later. The details of deviations *
are very complicated and were not fully worked out by Newton. *
However, those that he did describe and estimate - all of them *
effects of differences of inverse-square-law pull from the Sun - are *
now confirmed by measurement. *

In teaching pupils, we should not describe the separation of the T 
whole modification into several deviations. We should merely point 
out that the Moon does move nearer and farther from the Sun, and 
as a result experiences differences of gravity - rather like tides on the 
Earth on a much wider scale - which make some changes in the 
Moon's motion.

If any pupils ask, as a result of their own reading, why there are T 
several kinds of change, we should point out that those are symptoms 
of the effects of one main modification. They resemble the symp 
toms of measles, all arising from the same infection, but separated
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out by the patient into sore throat, itching spots, troubled eyes, 
and a high temperature. The doctor may use all these in diagnosing 
a single ailment.

In one case - the slewing round of the Moon's orbit hi its own *
plane - Newton's prediction disagreed with observation. He *
predicted 1|° per month, and observation clearly showed 3°. *
Mathematicians in a later generation attempted to explain the *
difference by changing from an inverse-square law of gravity; but *
then they found that Newton's own treatment had neglected a *
term which would bring the prediction up to 3°. Much later still, a *
paper was found hi the archives of Newton's work that showed he *
had found his own mistake and corrected it, then just put his notes *
away as usual. *

*
The only important contribution to our present teaching is a brief *
comment that Newton extended his theory to predict small dis- *
turbances of the Moon's motion. He did not need to make any new *
assumptions for this and his predictions proved correct so far as *
their rough form went. And in finer detail that work of predicting *
and checking is continued today. *

14. Perturbation of Planets. Extending his thoughts of uni- T 
versa! gravitation to the effects of one planet on another, Newton 
saw that the larger planets must pull neighbouring planets out of 
their simple Kepler orbits noticeably. He knew it would be only a 
very small perturbation because he knew the masses of the planets 
are very small compared with that of the Sun. Jupiter, the most 
massive of the planets, has a considerable effect on the others.

Newton showed how to estimate such disturbances. Since the pull *
of a neighbouring planet does not act along the radius from the Sun, *
Kepler's Law II will not be obeyed exactly, nor will the orbit be *
exactly an ellipse following Law I. Newton made a beginning on *
methods of working out deviations from those laws, still holding *
only his original assumptions. We have continued his work to the *
present time, in increasing detail, and so far the predictions have *
fitted the observed disturbances or deviations very closely. *

*
(Teachers must decide for themselves whether this is the moment *
to mention the motion of the perihelion of the planet Mercury. *
After all the perturbations by other planets have been allowed for, *
there is still a slow precession, or slewing round, of Mercury's *
orbit in its own plane. Observations, after all those allowances, *
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show a motion of 43 minutes of angle per century. That residual *
discrepancy is generally considered to be a successful test of the *
modification of inverse-square-law gravitation suggested by general *
relativity. However, there are still doubts in the air. Decision hangs *
on a very small motion; and other causes, such as a concealed *
inhomogeneity in the Sun may account for the deviation instead.) *

In teaching pupils we should simply point out that Newton, T 
assuming universal gravitation, predicted small effects which we 
have verified. We should pass quickly over this, but mention it 
because it leads on to the discovery of Neptune.

Outcomes: Explanations and Connections. All these out- T 
comes of Newton's theory were linked with our observation of 
accelerated fall of any object near the Earth. Thus, Newton linked 
the heavenly system to direct earthly knowledge. However, an even * 
greater virtue of his theory is the wide variety of effects that he * 
showed to be connected by his simple rules of mechanics and * 
universal gravitation. *

15. Discovery of Neptune. A century after Newton's time, T 
another planet, Uranus, had been discovered by observation. 
Presently that planet showed some small deviations from its 
Kepler orbit, beyond those that could be accounted for by the 
perturbing attractions of neighbouring planets. These residual 
discrepancies were small but demanded explanation more and more 
insistently.
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RESIDUAL 'UNEXPLAINED' PERTURBATIONS OF URANUS (A.D. 1650-1850) 
The 'error' is the difference between the observed position of Uranus and the 
expected position (for a Kepler orbit) after known perturbations had been sub 
tracted. The point X marks the discovery of Uranus by Herschel. Working back 
to its orbit in earlier times, astronomers found that Uranus had been observed 
and recorded as a star in several instances. These earlier records are marked by ° 
on the graph. (After O. Lodge3 Pioneers of Science.)
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PERTURBING FORCES ON URANUS, DDE TO NEPTUNE
The sketch shows positions of the planets in the years marked. Before 1822 Nep 
tune's pull made Uranus move faster along its orbit so that it reached positions 
ahead of expectation. After 1822 Neptune's pull retarded Uranus. (After O. 
Lodge, Pioneers of Science.')

Modifications of the inverse-square law of gravitation were tried 
without much success. Then two astronomers, Adams in England 
and Leverrier in France, took the suggestion of an unknown planet 
as the cause of the perturbations and attacked the problem with 
great courage and skill. How they succeeded, how the planet 
Neptune was discovered through pure theory, is a romantic story 
that all pupils should hear and understand as a crown to Newton's 
work.

It was a stupendous problem, to account for the small observed 
perturbation by locating an unknown planet of unknown mass, at 
an unknown distance out, in an unknown direction, moving round 
its orbit in a time which would not be known until the distance out 
had been found. The two mathematicians, working quite inde 
pendently, were indeed groping in the dark. The observed per 
turbations did not even 'point' in the direction of the disturbing 
planet. Nor did they indicate the amount of its pull at the time 
Uranus was observed. They merely showed the effects of accu 
mulated changes of motion produced by the pulls of the unknown 
planet. Adams decided he knew where the planet was in the sky and 
asked the Astronomer Royal to look for it in the direction he sug 
gested. Many a crank sends suggestions to the Astronomer Royal; 
so no search was started. The Astronomer Royal wrote back to 
Adams, asking a question about a further detail. He was surprised

230



to receive Leverrier's suggestion of an unknown planet in almost 
the same position; and he did then start a leisurely search. How 
ever, Leverrier wrote to the Berlin Observatory, where a new star 
map made a quick search for a tiny planet much easier. The planet 
was seen. Neptune was discovered.

Theory
After describing Newton's work we should look back at it and 
comment on its nature as a theory. Newton started with a few 
assumptions - chosen with good knowledge of nature - and from 
them built a great scheme which predicted some things already 
known, other things later to be discovered, and it gave a sense of 
connected knowledge which scientists feel is a powerful possession.

Evidence for Universal Gravitation
We should show pupils a table of measurement of the gravitation 
constant. In Newton's day there was nothing but a wild guess, 
made with surprising success by Newton himself. Then came a 
long series of experiments, starting with work of Cavendish to 
measure the tiny attraction between objects of known masses.
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There were outdoor tests too, using a measured mountain as 
attracting mass. Pupils who see a table of dimensions and masses 
and results will be impressed by the great range of those experi 
ments, so that the inverse-square law of gravitation seems well 
vouched for by earthly tests - heavenly tests already vouched for it, 
by Kepler's Law III.

We look forward to a similar test of the field of force inside an 
atom, when the scattering of alpha particles follows exactly the 
prediction for an inverse-square law of electrostatic repulsion.
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Chapter 4 
OSCILLATIONS AND WAVES

Simple Harmonic Motion
Alternating Currents

Waves



PROGRAMME
In the suggested work on oscillations and waves, interference of light 
waves is the most important section, from the point of view of our 
development of atomic physics this year. Pupils will see Young's 
fringes, diffraction phenomena, and grating spectra, as evidence that 
light has properties of waves.

The most important class experiments will be the interference measure 
ments mentioned above and the continuing series of experiments with 
alternating currents.

Although we comment on other matters at length - such as simple 
harmonic motion, algebra of alternating currents, and observations of 
many different spectra - we do not advise spending much time on those.

OSCILLATIONS AND WAVES
Programme
The work of this part of the year will depend considerably on the * 
amount pupils already know about waves and about alternating *
currents from studies in Years III and IV. *

*
In Year HI we suggested that experiments with the ripple tank should *
extend into a first look at interference. We even suggested a rough *
measurement of wavelength of light by Young's fringes; but we expect *
many pupils will have missed that. *

*
We suggested in Year IV that some pupils should continue with the *
electromagnetic kit into experiments with alternating currents; but we *
expect that many will have done no more than see the wave-form ofa.c. *
from the bicycle dynamo. Pupils who have missed such experiments *
should do them now as class experiments. They should be given enough *
time to continue into experiments with very slow alternating currents. *

*
This Year's work with electron streams in magnetic fields will have *
taken considerable time but the history of astronomy will have needed *
practically no time for class experiments. And the work in radioactivity., *
though very important, can be done in fairly short demonstration or *
class experiments. So pupils should have a considerable time to work *
with waves and a.c. *

Alternatives: Special Experiments (Buffer options)
Those who wish to try Millikan's experiment themselves will need to * 
save considerable time for it; but the experience of doing it will be so * 
good that we shall not grudge them economies elsewhere. *
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Those who try an accurate measurement of']' should be given plenty 
of time - not to get rid of errors, but to learn how inescapably the errors 
are there. (However, since this experiment is so easily treated as a 
measurement 'to get the right answer ' - which would damage our pro 
gramme's teaching - we do not advocate it unless the teacher is 
anxious to give considerable guidance to pupils working on it. We do 
not advise schools to buy special apparatus for this. Only where a 
school already has the apparatus and wishes to use it carefully should 
this experiment be included.}

SIMPLE HARMONIC MOTION 
Looking at S.H.M.
We start by giving pupils three examples of S.H.M. to be investi- C71 
gated as class experiments, without any warning or explanation of 
the nature of the motion:

a. a simple pendulum 

b. a load hung on a spring

c. a trolley, on a smooth horizontal table, tethered between end- 
walls by stretched springs. . , ..

The last is in some ways the best example, because gravity is not *
involved and the two essential factors that control S.H.M. in all its *
forms - the spring-factor and the inertia-factor - are visible and *
variable. *

	*
We have been insisting in astronomy that constancy is the essence *
of scientific descriptions and kws; so it should not seem a strange *
question when we now ask, 'What can you find that is constant in *
the behaviour of each of these devices?' *

	*
We suggest that pupils should move round among the three forms *
fairly rapidly: this is only a preliminary glance at a new type of *
motion so it can be brief - but it should not be replaced by a *
demonstration, or pupils will miss the sense of involvement that *
they need to carry them through further experiments. *
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Give, say, one class period (certainly not less) for pupils to find out T 
what they can. Then at the beginning of the next class, ask what 
each found out. Some will have discovered things that we do not 
normally list as essential characteristics of S.H.M. (Examples: the 
dying-down of amplitude; the loaded spring's exchange of motion 
between vertical oscillations and pendulum swings.) We should 
not condemn or even disregard these, but should accept them and 
even encourage further investigation. For example: is the dying- 
down of amplitude exponential? It would be easy enough to find 
out: and the question itself can be reworded in a much simpler 
form for a young experimenter. Or the observation can provoke the 
question: 'How could you make that worse?', leading to sugges 
tions of paper sails, immersion hi water, or even to a discussion of 
mass.

Again, the loaded spring's strange interchange of motions may lead 
to questions:

1. 'Where have you seen something like that before?' (And we 
might award a scholarship to the pupil who says 'in the coupled 
pendulums in Year I or II'.)

2. 'How could you discourage that strange change of the vertical 
bouncing into sideways swings?' That is too hard; so we give a 
hint by saying, 'That exchange of motion happens easily because 
the two types of motion have comparable frequencies. What 
could you do to make one motion much slower or faster without 
changing the other?'

If that is not enough, we offer a practical hint: a length of string.

Note to Teachers. A load hung on a spring has two quite different *
types of possible motion: bouncing up and down and swinging *
sideways like a simple pendulum. The spring acts as a coupling *
agent, connecting these two motions together. As in other' coupled *
systems', energy is carried from one motion into the other, and *
then back to the first. The closer the two frequencies are to each *
other, the easier it is for the load, when moving with one motion, *
to excite the other motion. *

*
If we work out the period of vertical bouncing of a load on a spring, *
we find it is equal to the period of a simple pendulum whose length *
is the stretch (the extension of the spring) when that load is applied *
to the unloaded spring. Therefore, if the spring has a very small *
unloaded length, and most of the loaded length is stretch, the *
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period of vertical motion is only a little shorter than the period of *
pendulum-motion for the loaded spring. Then, the vertical motion *
soon transfers its energy to pendulum-motion; then back again to *
vertical motion, and so on. *

*
If an experimenter is trying to measure the period of the vertical *
motion, this is a very irritating phenomenon. The cure is to insert a *
considerable length of string between the lower end of the spring *
and the load. This does not change the forces involved in vertical *
bouncing, so the period of that is the same as before. But the *
period of pendulum-motion is now much longer, and transfer to *
that motion will happen much more slowly. *

Outcomes. Most pupils will have found the isochronous property, *
or at least a strong hint of it; and some may have found some of the *
mass-relationships. *

S.H.M. Important. We explain that this is a very important T 
type of motion because:

' It is very common. You will see many examples of it. And it is the 
motion in musical instruments when they make a pure musical 
note.' So we call it simple harmonic motion.

We explain that it is also important in more advanced physics 
because (later on, A-level) we can calculate its frequency; and 
because (still later) we can analyse ANY repeating motion - tides, 
sound waves, motion of moon, electron-waves in atoms, and many 
more - into a whole set of S.H.M's. (If we ask for an earlier 
example, the pupil who says,' Yes, Eudoxus', should get a scholar 
ship at once.)

Then the teacher should give as many demonstrations of S.H.M. D72 
as possible. Here are some examples:

a. a simple pendulum side by side with one twice as long and one D72a 
four times as long, without comment;

b. a torsion pendulum; D72b

c. a horizontal lath of wood anchored firmly at one end, with a D72c 
massive load on the free end;

d. a huge model of a watch's balance wheel and spring; D72d
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e. a U-tube with water in it (ask whether the period would be the D72e 
same with mercury);

/. a ball rolling in a bowl ('Listen to the sound: what can you say D72f 
about the motion?');

_f '/sr
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g. If available: an almost vertical board carrying three metal D72g 
' shelves' on which a ball can roll to and fro as in a bowl; one shelf a 
circular arc - a short arc, not a whole semicircle; one a parabolic 
arc; one a V shape of straight hills making an obtuse angle joined 
by a short curve at the bottom. Pupils listen. The first will give 
what sounds like isochronous motion; the second, a frequency that 
changes while a big amplitude dies down, but isochronous for small 
oscillations; the third, not isochronous at all as the ball rolls up and 
down the shallow opposing hills;

h. the'wig-wag'that was used in Year IV to compare masses. D72h

Time-graph of S.H.M. Then show that the time-graph of D73 
S.H.M. is a sine curve. This may be shown by a massive pendulum 
that carries a paintbrush on its bob, tracing a time-graph on paper 
that is moved steadily. Or a pendulum with a funnel of sand as bob 
can trace its motion on a moving sheet of paper. Or if we have a 
blackboard that can be moved steadily up or down we can write on 
it with a toy paintbrush fed with water from a small reservoir 
carried by a tall vertical lath that sways to and fro.

This should be followed by a demonstration (again) of the wave- D74 
form of the a.c. voltage, with a C.R.O.

Descriptions of S.H.M. Note that we have not defined S.H.M. *
or even described it precisely - that belongs to A-level. We have *
simply shown many examples, and shown the time-graph of one or *
more.
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We should now ask one' theoretical question':' Is the acceleration * 
constant'}' *

With a very long pendulum we could even make measurements of D 75 
velocity with the sealer and millisecond pulses using a photo-diode. 0 PT.

We can illuminate the matter by argument. T

'Where is the bob moving fastest? ... Yes, at the centre. If it is 
moving fastest there, can it move any faster just beyond the 
centre? Can it be accelerating just there? ... Well, if it is, it would 
haveto...'

Extending the discussion out to the extreme of amplitude, when 
the bob is at rest, will promote a lot of argument. With a fast group 
this can reveal and cure some confusions between position, velocity, 
and acceleration, or doubts over maxima and rates of change. With 
a slow group this argument is worrying and should be avoided.

We can extend our demonstrations to musical frequencies. A D76 
tuning fork with a mirror attached to it does not make a beam of

Rotating mirror

light oscillate enough to show clearly; the motion will be made 
visible if the mirror is attached to a small strip of mica stuck to 
the tuning fork arm. The mirror on the mica will be driven by the 
fork with much the same motion but larger and it will deflect a
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small beam of light with considerable motion which can be com 
pared with the trace given by an oscilloscope with a.c.

Let a microphone listen to the tuning fork and show the wave- D77 
form on an oscilloscope.

S.H.M. as Projection of Circular Motion
We shall not treat S.H.M. mathematically and express the descrip- * 
tion in terms of a sine graph. So we need not labour discussion to * 
show that S.H.M. is the projection of circular motion. However, * 
there are some beautiful demonstrations which pupils might see if * 
they are available. *

We attach a ping-pong ball or a small lump of cotton wool to the D 78a 
end of a revolving arm on an electric motor. The arm should make 0 PT. 
one or two revolutions per second. We shadow this circular motion 
on a distant wall. The compact-filament lamp should be in the 
plane of the ball's motion so that the ball's shadow moves up and 
down with S.H.M. Then beside the rotating arm we hang a small 
load on a spring and adjust the load to have the same period as the 
arm. Then we start a true vertical S.H.M. side by side with a 
circular motion, and the shadows of both will move together.

We can make a similar demonstration with a short pendulum D78b 
swinging to and fro above the rotating arm. 0 PT.

We should of course show a train of simple harmonic waves start- D 79 
ing out along a rope.
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We may give pupils pendulums to investigate but we should not 
ask them to make detailed measurements with pendulums to find 
g unless they are so able that we can go through the full deriva 
tion of the formula. (If we give pupils the formula, with little idea 
of its derivation, and expect them to make measurements of g 
with its help, we may well give science a poor reputation. Those 
pupils who will proceed to A-level physics will certainly have an 
opportunity there to use the formula to measure g with full 
understanding. Anyway, detailed precise measurements of g do 
not seem so important in this course as in some other programmes 
of physics.)

For the teachers who wish to spend considerable time on pendu 
lums, here are comments and suggestions.

Comment to Teachers: Pendulum Experiments
Class experiments with pendulums in different teaching pro 
grammes can take several forms:

a. Experiments to demonstrate the relationships or verify the laws 
(Although many pupils may welcome a routine experiment with 
definite instructions and a clear outcome, this form of experiment 
in which the answer is stated first will not give a genuine example 
of science but rather show it as an obedient carrying out of duties. 
In retrospect it will be dull.)

b. Training in techniques of timing and observing 
(Training does not transfer easily; it does not spread to other fields 
of science or life in general except when its potential value makes a 
strong impression. For pupils hi general, this training with pen 
dulums will be wasted.)

*
*
*
*
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c. A scientific investigation *
(Even though pupils know that we are well aware of the ' answer', *
that we have some 'formula' that tells us how pendulums behave, *
they can do genuine scientific work if they regard the experiment as *
an investigation. The experiment itself may be almost the same as *
'verifying the formula' but the instructions need an essential *
twist: we must put it to pupils that they are asked to find something *
out and not to show that what we have already said is true. To set *
the stage for such experiments, we do say what should be measured *
(e.g. many swings should be timed) or what relationships should be *
investigated; but we certainly do not say what results are to be *
expected.) *

- *
Large amplitudes should be tried as well as small, even if they *
necessitate rough tuning, to show that the clockmakers' hope is not *
exactly fulfilled. Different masses of bob should be tried, but that *
should not be laboured - instead we should follow the experiment *
with a question about expecting it with its results from earlier *
knowledge. *

%
Timings of period for various lengths, which can be so tedious, *
should be reduced to a quick anxious competition among pupils to *
contribute to a communal graph and table of results for the whole *
class. *

*
Given the right spirit, this could be one of the best experiments of * 
the Year. *

An Accurate Measurement of g (Optional for very fast groups). *
(After an investigation, the formula can be given and able pupils *
will enjoy extracting a value for g. If, however, the general part of *
the experiment has been presented as an example of' verifying the *
formula' extracting g will be the last straw. To pupils g is not a very *
important measurement and instead of welcoming this indirect *
measurement they are apt to feel that it is an unnecessary excursion. *
We suggest (c), with (d) as an extension for some fast groups.) *

Class Experiments: Measurements with Pendulum
[Treatment (c)]
We give the period of the pendulum as the thing to be investigated C 80 
and discuss briefly with the pupils the physical conditions that OPT. 
might affect the period.

We ask for suggestions. Pupils know that a pendulum of greater 
length takes a longer time to swing to and fro, so they are likely to
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suggest length as one factor affecting period. We encourage further 
suggestions and hope to hear: amplitude (which we define as the 
angle of swing from the vertical, giving a sketch); mass of bob; per 
haps g.

If pupils start to investigate, say, mass as a factor, and make timings 
for a long pendulum with a small bob and then with a large bob, 
they can keep the length factor constant - as they should while they 
investigate something else - but unfortunately they cannot keep the 
amplitude constant. They will soon come back with the complaint 
that the swings are dying down in amplitude, although they are not 
trying to investigate that change. Therefore, we have to suggest 
that the first factor to be changed should be the amplitude, because 
that will die down in any case. Then, if after that we know what to 
do about changes in amplitude, we can go on to investigate other 
factors such as mass of bob.

This is a difficult discussion of planning, too strange and difficult 
for most pupils to do on their own. So, with most class groups, the 
teacher should suggest trying different amplitudes first and simply 
mention our special reason for that choice. With a very fast group, 
putting the question to the class, 'Which factor must be tried first?' 
could stimulate good thinking, and we hope teachers will try it.

a. Period for various amplitudes. We suggest very rough measure- C80a 
ments with big amplitudes, which can be plotted on a graph; and 
then more careful measurements when it becomes apparent that 
the period does not change rapidly at small amplitudes.

Pupils should plot a quick graph, hand to mouth, as they proceed, 
plotting period upwards and amplitude in degrees along. The 
rough measurements will show that the period does change some 
what when the amplitude is decreased from 80 ° to 60° to 40° to 20 °. 
Therefore, in any attempt to investigate the effect of other factors 
(such as mass or length) on the period of the pendulum, it will be 
essential to choose some amplitude region other than the large 
amplitudes, since there changes of amplitude would also affect the 
period as the motion died down.

With a fast group, we raise the question in a careful discussion:

'As the amplitude drops down from large values, the period does 
change a certain amount; so you could not expect to make a pre 
cise investigation of the effect of different lengths on periods if
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you have changes of period due to the amplitude dying down at 
the same time. •..-..

'Does the curve continue like that to small amplitudes, or is 
there any chance that, at a still smaller amplitude than you have 
tried, the graph of period against amplitude will be a bowl with a 
minimum-region at which you could make your measurements; 
or flatten out to a bowl at zero amplitude? You would have to do 
some careful measurements to find out which of these is true. If 
you cannot find some way of dealing with decreasing amplitudes 
you may just as well give up the experiment.'

With encouragement and care, and clear exposition of the nature of 
the problem which threatens to stop the investigation, pupils will 
find the period changes very little at smaller and smaller ampli 
tudes.

b. Period for various masses of bob. Then pupils should try two C80b 
different bobs on a long pendulum. The timing of these will show 
that period is independent of mass; and, although it is not the 
simplest way of showing this, it is probably the most impressive. 
(The simplest is to start two pendulums side by side and watch 
them swing together!)

When pupils come back with the surprising result that the period 
with a heavy bob is the same as the period with the light one, we 
tease them saying:' Could you have predicted that from something 
you already knew?' If they cannot guess, we finally point out that 
this is a case of falling bodies of different masses. The string of the 
pendulum does not help the acceleration of the bob along its arc, 
so we should expect this to be a diluted case of the leaning-tower 
experiment which Galileo did not do.

c. Period for various lengths. Making careful measurements for C80c 
pendulums of different lengths and plotting graphs can easily 
become a tedious business - and for pupils at this stage a rather 
pointless one. Instead of that, we suggest that each pair of pupils 
should make one or two measurements, repeated once or twice, to 
obtain fairly reliable values of period for a measured length.

To provide a useful range of results, the teacher must assign 
different lengths to different pupils beforehand.

Then a communal graph should be plotted by the teacher - and 
perhaps pupils should take home measurements of the whole class
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to plot their graphs. If the initials of the pupils who made the 
measurements are pencilled against each plotted point, some very 
useful (and heated) discussions ensue.

Graph of Measurements; and Graph to give Straight Line. C80c 
The graph of experimental results, T versus L, plotted directly, 
will be a curve. We should not say it is a parabola, though a fast 
group could profitably discover that if we asked a few leading ques 
tions.

We then ask what should be plotted if we want a straight-line graph. 
(See below for discussion of straight-line graphs, their advantages 
and interpretation.) We elicit the suggestion: plot (period) 2 against 
length, T2 versus L. With an average group, the teacher may have 
to suggest that. With a fast group, the teacher should ask pupils to 
look at the graph of T against L and find on it what happens to T 
when L is doubled (Answer: not an obvious factor) and then what 
happens to L for double T (Answer: 4 times as long, if pupils 
remember to include the radius of the bob).

Each pupil should then plot a graph of T2 versus L for the results 
of the whole class. Or, in a slower group, the teacher should plot 
the graph on a large board. If the points seem to lie close to some 
straight line, pupils should use a taut black thread to look for the 
'best straight line' and draw it. If they think the line passes near to 
the origin, they may prefer to force their chosen straight line to 
pass through the origin. If they make the latter choice, their 
straight line will ask the question, 'How close to the simple law 
T2 oc L is the behaviour of the pendulums in our lab?'

Note to Teachers, on Arguments about the Meaning of a *
Straight-line Graph. We remind pupils that the advantages of a *
straight-line graph are: *

. *
1. It is easily drawn with a ruler. *

2. In choosing the best straight line, we take a 'weighted average' *
of our measurements, giving less weight to points that seem out of *
line with the rest. Though that may be dangerous, it is often good *
scientific procedure. *

*
3. If we draw a straight line through the origin, that represents * 
direct proportionality between the two things plotted. And if our * 
plotted points lie close to such a line, we can say that our measure- * 
ments show the behaviour of our experiment is close to that pro- * 
portionality. *

246



With a fast group, we should clear up the logic of this fully. Pupils *
should see that the straight line we draw expresses perfect pro- *
portionality. Our points express the facts of our experimental *
observations. When we compare the points with the line, we are *
comparing the facts with a simple proportionality law. *

There was an important example in earlier years when we measured *
the motion of a trolley running down a hill, or a trolley pulled by a *
constant force. We hoped to find this was a case of constant *
acceleration. If we plotted distance, s, against tz, where t was the *
total time of travel from rest, we hoped to get a straight line. A *
straight line drawn through the origin on that graph has the equation *

*
5 = (constant) t*. *

We may draw such a line whenever we know that s is directly pro- *
portional to t2. *

*
In fact, we do know that s is proportional to tz for any case of * 
constant acceleration from rest. We know that through irrefutable *
logic, simple, reliable mathematics, leading from the statement *

*
change of velocity = constant, a *,time taken *

to the result 5 = \atz. No experiment is necessary to show that IF a *
is constant, THEN s = \atz, because logic does that. No experiment *
is necessary to show that the graph of s versus t z is a straight line *
through the origin for constant acceleration from rest. Then why *
do we plot the graph? What are we doing when we draw the straight *
line among our plotted points? We are trying to find out whether our *
trolley moved at constant acceleration. We know the line is true for *
constant acceleration; so, by seeing how close our points come to *
the line, we are seeing how close our trolley's measured motion *
comes to constant acceleration. *

	*
In many experiments we can find or construct some functions of *
our measurements which, when plotted, will bring the points near *
a straight line; but the 'best straight line' may fail to go through *
the origin. In that case, drawing a straight line and looking to see *
how close the points are to it is not asking whether we have a case *
of direct proportionality, y = kx. But we are still asking whether *
there is a simple linear relationship^ = kx+c. To us as physicists *
the latter is almost as simple and interesting as simple proportion- *
ality, but pupils either find it less clear and simple or think it is just *
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the same as proportionality; and we need to teach the difference as *
far as we find pupils appreciate it easily. *

*
In some experiments, all our measurements of one quantity are *
wrong by a constant amount. (For example, in a pendulum inves- *
tigation of T versus L all the lengths may be too small because we *
forgot to add the radius of the bob.) Then, we should choose our *
functions for plotting so that the measurement with the constant *
defect is left untouched. *

*
(In our example, plotting T2 against L will still give a straight line, *
if every value of L is too short by the radius, but plotting T against *
VL will not give a straight line.) Then, if our graph in the ideal *
case would be a straight line through the origin, the intersect where *
the best line fails to pass through the origin may give us valuable *
information. (In our example, it simply tells us the radius of the *
bob, probably rather inaccurately.) One of the most far-reaching *
examples is the graph of pressure of gas in a flask (constant volume) *
against temperature. The intersect on the temperature-axis gives an *
estimate for absolute zero. *

Discussion of Errors in Pendulum Measurements. If our T
pupils, in a fast group, understood the random walk argument in 
Year IV, we might mention it again here. We point out that if we 
make a measurement a large number of times and take the average 
we are really dealing with the result of a large number of errors like 
steps in a random walk. Therefore by taking ten times as many sets 
of measurements and averaging them we do not reduce our likely 
error by a factor of 10 but only a factor of the square root of 10.

A Value for g. If the teacher wishes, he may help pupils to T 
arrive at a value of g from the graph that they have drawn. That 
should not be a graph of T against the length but of Tz against 
the length.

Our overall aim should be to give pupils experience in real experi- *
ments and a general feeling for the nature of pendulum motion *
rather than skill in making pendulum measurements. *

ALTERNATING CURRENTS

Dynamos: D.C. and A.C.: Meters and Oscilloscopes
We now return to the electromagnetic kit, resuming the study of C81 
the simple dynamo. Pupils should try for themselves d.c. and a.c. 
dynamos on a simple moving-coil meter; then on an oscilloscope.
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Then we provide the bicycle dynamo and ask pupils to try that on C/D 82a, b 
a meter at various speeds; and on an oscilloscope.

Then they try a sample of the mains supply on an oscilloscope. That C 83 
should be a class experiment. It is not dangerous, since an isolation 
transformer can provide a small safe alternating voltage.

Characteristics of A.C. It would be easy to leavea.c. as aslightly *
mysterious version of the direct currents that we deal with in *
simple d.c. experiments, and to suggest that detailed studies belong *
to later work in engineering. But a.c. is our standard form of supply, *
far more economical in distribution because of the efficiency and *
simplicity of transformers. *

*
Pupils are likely to be interested in its characteristics: the obvious *
ones, such as giving the same heating effect as a direct current, and *
failing to move a d.c. ammeter visibly; and the surprising ones *
involving phase-differences. *

*
Therefore, we should give a little teaching of a.c. to all classes, *
expanding it for faster groups, and extending it still farther for *
groups with special interests. We should point out the difference *
between peak values and average values, explaining how we use *
root-mean-square averages. *

Oscilloscope. We show the wave-form, or time-graph, of an D84 
alternating voltage on an oscilloscope. Then we can define some 
useful names: peak voltage; average voltage, which is 0. 
We point out that there is a voltage nearly all the time, and ask for 
suggestions of a way to specify something useful instead of the plain 
average. With a fast group we should suggest the idea of squaring 
the voltage, V, finding the average value of F2, and taking the 
square root of that. We might even point out that such an average, 
the R.M.S. value, is what we really calculated in Year IV for the 
speed of air molecules.

For a slower group, we should just say that we can take an average 
of the upper half of a cycle which is positive, and arrange to take a 
similar positive average for the lower hah0. It is helpful to make an 
oscilloscope show an alternating wave-form and then sketch such 
an average value on its face, with a china-marking pencil.

Meters. We explain that there are ammeters and voltmeters T 
designed to measure R.M.S. average values. As a voltmeter, a gold-
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leaf electroscope does that because, whenever the voltage drives 
charges on to the leaf, the leaf is repelled from its neighbouring rod 
whether those charges are all positive or all negative. We may show D 85 
that with + and — electronic charger, then with a high a.c. 
voltage.

For an ammeter, we might mention the old-fashioned 'hot wire T 
ammeter', in which the current heats a wire which expands and 
sags. The meter measures the sag. Pupils know from earlier experi 
ments that, whichever way the current goes, there is heating. If 
pupils understand that the heating due to a current, C, in a wire of 
resistance R, varies as CZR, they will appreciate the possibility of 
measuring R.M.S. values of current by heating - if the scale for 
the sag of the wire is suitably marked. We might show a working D86 
model. OPT.

Modern moving-iron ammeters use either the attraction on a small T 
piece of iron sucked into a solenoid carrying the current, or the 
repulsion between two pieces of soft iron side by side in a solenoid 
carrying the current.

A large, crude model of the latter form is well worth showing. Two 
iron bars (large nails will do) are placed in a hollow coil to which we 
apply first a d.c. supply, then an a.c. one. When current flows 
round the coil, the iron bars push each other apart.

Teachers may like to convert this into a rough working model by 
holding one bar fixed, installing an axle and pointer for the other 
bar with a hairspring against which the repulsion pushes the other 
bar around. A small model is apt to be confusing. A large, crude one 
is easily put together; but we do not advise any school to buy one 
specially made.

D87 
OPT.
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Algebra for A.C. (Fast groups)
For pupils who are familiar with the graph of a sine function, we T 
can express the voltage thus:

V = PO sin (2nnf) where F0 is the peak voltage.

To find the R.M.S. average value, we need the average value of 
sin2 as time runs on and on. We can help pupils to find that without 
calculus. We point out that the graph of (sin f) and the graph of 
(cos f) look the same except for a shift of origin. They are the same 
pattern. So (sin2 f) and (cos 2 f) have the same average as time goes 
on. But sin2 t + cos 2 t = 1, all the time. Therefore, the average 
values of (sin2 1~) and (cos 2 f) must each be f. Therefore, the root 
mean square value of F0 sin (2nnf) must be (I/\/2)F0.

The R.M.S. value is 0-707 times the peak value. And the peak 
value is 1-41 times the value the voltmeter shows.

Warning: the peak value for '240-volt a.c.' is 40 per cent higher, 
about 340 volts.

Current and Voltage for Resistor (Fast groups)
We could ask pupils what current a steady voltage F0 will drive T 
through a resistance R ohms, and then what current an alternating 
voltage, FO sin (2^nt\ would drive through R ohms. That current 
will change in time, in phase with the voltage (since electrons are 
such quickly obedient fellows) and we shall have a current:

C = C0 (sin 2imf), where C0 = V0jR. 

And the R.M.S. average current will be C0/ V2.

Therefore, if we use R.M.S. meters for voltage and current we shall 
find their readings give a constant ratio R, as for d.c.

'Ohm's Law' with A.C. As a quick demonstration (or class C/D 88 
experiment if there are enough meters) we let an alternating cur 
rent from a low-voltage supply pass through a resistor and make 
enough measurements of p.d. and current to show whether the 
ratio of the (R.M.S.) meter readings is constant.

Current and Voltage for Capacitor and Inductance. Teachers *
with a fast group may feel tempted to go farther and show phase *
changes with an oscilloscope for voltages applied to a capacitor *
or an inductance. But that will prove a much harder matter to *
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understand than one expects. And some special device is needed to *
produce two traces to show the phase difference. It is much wiser to *
add this study, if it is tackled at all, to the work with very slow a.c.; *
because then pupils can follow the story in detail by watching the *
moving pointers of meters. *

Slow A.C.
Although mature physicists can easily see peak values, and discuss * 
the meaning of root-mean-square values and even phase differences * 
with mains a.c. and an oscilloscope, these things are much easier for * 
young pupils if they see them with very slow a.c. and watch the *
moving pointers of meters. *

*
Demonstrations with slow a.c. have long been a tradition, and the *
A.S.E. has published a booklet giving details of generators and *
experiments. We hope that everyone teaching alternating currents *
at this stage will not only have demonstrations of slow a.c. but will *
have enough equipment to put some of these experiments in the *
hands of pupils as class experiments. A number of separate groups *
of pupils can be fed by the same slow a.c. generator. *

Bicycle Dynamo to Introduce Slow A.C. In passing from the D/C89 
mams frequency to very slow a.c., produced by a special generator, 
we should show the simple bicycle generator again, running at 
various speeds, making a sinusoidal trace on the oscilloscope. 
Running it slower gives lower frequency and smaller voltage.

Very Slow A.C.: Generators. The generators of slow a.c. sug- * 
gested in the A.S.E. booklet are not the simplest ones. We need a * 
generator whose mechanism is obvious. In this modern age, simple * 
transistor oscillators can easily be made to give an alternating supply D 90 
of frequency one or two cycles per second. But for our purpose, OPT. 
something more obvious is necessary. The following device (due to 
Pohl) seems best:

A continuous bond of resistance alloy wire is installed round the D91 
circumference of a wooden disc. It may be a single wire stretched 
as a tyre round the rim, or it may be a close-wound coil, like a cheap 
spring curtain rod. Leads are attached to this loop at two points at 
opposite ends of a diameter. These run to an axle attached to the 
disc and out through slip rings to a small d.c. supply, such as a 
2-volt battery. That maintains a steady current through each semi 
circle of the loop. The disc is kept revolving slowly by a motor, and 
two brushes are brought up to touch the loop at opposite ends of a
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diameter. The voltage thus provided between the brushes alter 
nates with the frequency of the revolving disc and shows a roughly 
sinusoidal wave-form.

Very Slow A.C.: Meters. With very slow a.c., pupils can see the D 91
pointers of meters wagging to and fro to show the sequence of 
instantaneous values.

Although ordinary voltmeters and ammeters with centre zeros will 
show this, we need instruments which will follow with the same 
phase for both voltage and current. For that, it is better to use small 
moving-coil galvanometers with a taut suspension and a mirror, 
with a large swamping resistance in series. Then, shunting the 
combination for an ammeter and adding series resistance for a 
voltmeter should give instruments with the same phase response.

Very Slow A.C. with Resistor. With such meters, we show D91 
current and voltage for a resistor: the meters wag to and fro in 
phase. (Obviously, if the meters available in the laboratory are 
suitable, this should be a class experiment.)

Very Slow A.C. with Inductance or Capacitor. Then, with a D 92 
fast group, we may show the same thing with the resistor replaced OPT. 
by an electromagnet, or a capacitor.

Further Work (Buffer options). At that point some pupils will *
want to continue on their own this very interesting study with *
obvious importance in electrical engineering. For example, pupils *
might return to a.c. of mains frequency with an oscilloscope and *
some form of' electronic switch' that will provide two traces so that *
current and voltage can be compared. That can be a thrilling *
investigation, but we do not suggest that buying an expensive *
electronic switch is justifiable. **
For other pupils, this is the beginning of a mystery for which there *
will not be time or interest for further exploration. The most we *
suggest for general teaching beyond this point is a quick look at *
power. *

Power with A.C. (Buffer option)
With a fast group, we sketch graphs of voltage against time and T 
current against time for a resistor. We point out that both V and C 
are positive at the same time, both are negative at the same time. 
The power at any instant, VC, is always positive.
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Good mathematicians might want to work out what the graph will 
be. Using sin2 1 = (£)(! —cos 2f), they sketch a cosine curve wholly 
above the axis and may even see that the average power is given by 
(R.M.S. voltage) (R.M.S. current).

Then we draw similar graphs for an inductance or capacitor for the 
phase difference shown clearly. That will lead to the surprising 
suggestion that in extreme cases the power may be 0. We say,' Yes, 
the energy just surges hi and out of the magnetic field' or,' Charges 
pile up on the capacitor plates and store energy, and then it comes 
pouring back again.'

We point out that electric motors have large electromagnets in 
them, and those will take more current for the same power and may 
therefore make wasteful demands on power lines.

All this is just a suggested line of quick demonstrations and brief *
commentary, leaving some questions for future work where pupils *
are interested. *

WAVES
Revision? Wave motion should have been studied qualitatively *
early in Year III. In extending those studies now we should remem- *
ber that many of the pupils will not proceed to further physics after *
this Year. So we should not make an extensive revision of the *
earlier work. We should only do what seems interesting and rele- *
vant. *

Wave Models
We should demonstrate several forms of wave model. Wave models D 93 
are expensive and often seem to pupils rather 'special': that is, they 
are gadgets specially designed to show waves. Yet waves are general 
phenomena. So we suggest it is more important to show some 
simple examples of waves in common media than to show compli 
cated models. Of course, whatever models the laboratory has 
already bought or the teacher likes to devise should be shown. They 
will be valuable. However, we do not suggest that laboratories 
should buy models specially for this; instead we suggest the follow 
ing:
a. Waves along a rope, and along a rubber tube. D 93a 
b. Waves along a slinky, and any other longitudinal model that is D 93b 
available.
c. (Optional.} Water waves in a narrow, transparent tank observed D 93c 
from the side. (This was shown in Year III, Experiment D 3. As OPT. 
suggested there, slower waves can be seen at the interface between
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paraffin and water if the tank is filled half full of water, with a deep 
layer of paraffin poured on top.) The motion of a particle in the 
surface is a vertical circle. A little sawdust in the water may enable 
this motion to be observed; but it is rapid and not easily seen, so 
only some pupils will notice it.

d. (Optional?) A long line of trolleys connected by springs (such as D 93d 
those used for class experiments in Year I) makes a good model for 
longitudinal waves. Turned sideways, they make a slow transverse 
model.

e. (Optional.') Ring-magnet dry ice pucks placed in a line spaced D93e 
short equal distances apart, make a very interesting model in which 
pupils can see the wave being transmitted from each 'particle' to 
the next by magnetic fields. The line of pucks must be kept in line 
by hedges which limit them to a narrow runway.

Some waves, and of course all pictures of waves, move without 
carrying any energy or momentum. We should try to show 
examples of waves that do carry energy and momentum.

Many teachers will wish to spend some time on sound waves, and 
on instruments that produce sound; and on sound and music. This 
is an admirable part of physics for good clear teaching with some 
fine demonstrations. It is very interesting to some pupils, but dull 
and irritating for some of the less musical ones. So we do not 
suggest treating Sound in this programme, except for a brief men 
tion of sound waves, simply because we feel the time is needed for 
some other parts of physics, especially atomic physics. There are 
already good books for pupils with a special interest in this field.

Stationary Waves
We should show some standing waves, but we should not go into 
the difficult idea of their production by two trains of moving waves. 
(That is an artificial way of treating what seems clearly to beginners 
a simple vibration-pattern, not a wave - if we insist on the wave- 
synthesis story, we make the simple seem complex and artificial.) 
Suggested illustrations:

a. Rope. The teacher ties one end of a long rope to the wall and D 94a 
holds the rope taut, pulling at the other end. By moving his pulling 
hand up and down he excites transverse waves; and he feels for 
resonance, changing frequency or tension till he builds up a 
stationary wave pattern of several loops. The rope should be 
flexible, like soft flexible clothes line.
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When a steady standing wave pattern is maintained, energy is 
dissipated to the air as fast as the driving hand feeds it in. For 
efficient driving, the hand should be very close to a node, at a 
point where there is little motion. That is contrary to one's com- 
monsense feeling that it is best to hold the rope at an antinode and 
move it a lot; but if one tries driving at a node, one feels one's hand 
making a good impedance-match with the rope and driving it hard. 
To make it easier to give this demonstration, mark the rope with 
ink or a ribbon at, say i, |, f, f of its length, tie it, taut, to a wall at 
each end; and drive at one of those marks. Make a ring with finger 
and thumb round the rope there. Move the hand up and down 
with the rope loose in that ring, and change the frequency until 
the 5-loop motion builds up.

b. Slinky. Build up a longitudinal standing wave. D 94b

c. Water in a Tank. Show standing waves in water in a trans- D 94c 
parent tank observed from the side. OPT.

The corresponding experiment at home with a bath half full of H 94c 
water is valuable as well as messy. Pupils need to gain a strong 
physical picture of standing waves if they are to use the concept in 
atom models.

d. A Ring of Standing Waves (Optional extra). In the early *
stages of developing a wave-mechanical atom model, electron orbits *
were replaced by wave-electrons maintaining circular standing *
waves. Only if the circumference of the ring, 2-rtr, contained a whole *
number of wavelengths, n (quantum constant A/momentum of *
electron mv), could that be a stable state - corresponding to a stable *
Bohr orbit. That new model agreed with the Bohr model in its *
simple predictions. Nowadays our models remain in mathematical *
form rather than painting realistic patterns. Yet the standing waves *
are there, defining the stable states; and it would be good to show *
pupils the circular standing waves that served as models in a great *
advance of theory. *

We fill a large shallow round glass trough half full of water and D 95 
excite ripples near the edge. We can find a (high) frequency that OPT. 
will maintain a pattern of standing waves round the edge, with 
therefore a whole number of wavelengths in the circumference.

e. Monochord (Optional). The teacher should pluck the wire D96 
near one end, asking pupils to listen. He should pluck it again, this OPT. 
time placing a finger lightly at the mid-point. That finger should
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touch the wire very lightly because its function is only to 'suggest 
to the wire that it should vibrate into loops' - the finger is not 
intended to force half the wire out of action and hold the vibrating 
part at half length. Repeat with a finger lightly touching at J, J, ... 
of the length from the end. Pupils may be able to see the wire 
vibrating in several loops, but that is difficult at a distance. (If a 
number of monochords are available, this might be a class experi 
ment.)

Then, to show that the vibration does occur in several loops, the 
teacher places small paper 'riders' on the wire, one at each place 
where he expects a node of no motion, and others where he expects 
loops. Then he produces that motion, touching the wire at one node 
and plucking it gently at the loop nearby: the riders at loops jump 
off, while those at nodes remain. This needs practice. It is easier if 
the wire is excited by bowing instead of plucking. It is easier still 
if we use resonance: the teacher adjusts the wire carefully before 
class so that it vibrates in, say, three loops with exactly the fre 
quency of a certain tuning fork. Then, hi class, he places the riders 
on the wire, excites the tuning fork and places its shank on the 
bridge at one end of the wire.

/. Melde's Experiment (Optional}. A light, flexible string, such D97 
as a piece of embroidery thread, is tied at one end to a vibrator and 0 PT. 
the other end runs over a pulley to a load. The length and tension 
are changed until the vibrator makes the thread vibrate with stand 
ing waves in several loops. Then that is observed stroboscopically 
by pupils with a hand stroboscope or by illumination from a com 
pact lamp whose image is formed on the slits of a motor-driven 
strobe disc. Pupils who have seen this are more likely to see the 
motion of the monochord wire if they return to it.

Demonstrations with Sound Waves (Buffer option)
If the laboratory has an oscillator that will drive a loudspeaker at D98 
high frequency, say several thousand cycles per second, and a OPT. 
microphone that will receive this frequency and give a good trace 
on an oscilloscope, some interesting demonstrations with sound 
are possible. However, we do not advise buying special equipment 
for this. Time will be short.

a. The loudspeaker is driven by the oscillator and the microphone 
listens to it. Pupils watch the oscilloscope as the microphone is 
moved away. This will show amplitude decreasing with distance, 
though reflection from the walls may be very troublesome. If the 
oscilloscope's synchronizing device can be driven by an external
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signal, the pattern can be locked to the loudspeaker by connecting 
a small voltage from the loudspeaker's supply to that 'external 
synch'. Then, as the microphone is moved away, pupils will see the 
'waves' of the sound it receives changing in phase as well as 
decreasing in amplitude.

b. The loudspeaker, driven by oscillator, is set up in front of a large 
reflecting wall. The microphone is moved about in the space 
between speaker and wall, and shows standing waves.

c. It is tempting to try two small loudspeakers driven in series 
from the same oscillator, in the hope of finding Young's fringes 
with the microphone.

This experiment is usually spoiled by waves reflected from the 
walls of the room. It succeeds out of doors. If the members of the 
class are asked to find positions where they hear a loud sound (or to 
find minimum positions instead) they can mark out hyperbolas of 
the Young's fringes pattern on a vast scale. They may find that 
easier if they block one ear with a finger.

Demonstrations with 'Centimetre'Wireless Waves 
(De luxe buffer option)
Very good equipment is now available for making and receiving D99a 
electromagnetic waves of wavelength a few centimetres. With this, OPT. 
one can give delightful demonstrations of these short waves 
travelling in straight lines, being reflected by a big prism of wax, 
interfering to form Young's fringes, showing amazing diffraction 
with 'half-period zones', and even performing in a working model 
of an interferometer with partially reflecting plates.

The source is a special compact oscillator, which includes a 
modulator so that the amplitude of the electromagnetic waves 
varies sinusoidally with an audible frequency, say 1,000 cycles per 
second. When the waves are received, they are rectified by a simple 
diode and the output current passing through a loudspeaker pro 
duces the audio note. Alternatively, the original wave is not 
modulated, but an audible note is produced at the receiver by 
mixing the incoming oscillations with oscillations of a slightly 
different frequency to make an audible 'beat note'. (A recent 
device uses a small cavity-oscillator, in a waveguide, as source; and 
that produces strong enough waves for a simple rectifying receiver 
to run a milliammeter directly.)
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The apparatus is easy to set up and run; it is versatile; and the 
demonstrations it gives are delightful. However, it is expensive in 
both money and time. Where the laboratory does not already have 
this equipment, our suggestion is to try teaching this Year without 
it the first time, and then consider buying it.

In any case, this equipment should find an important place in A- 
level teaching, and teachers may prefer to postpone its use until 
then. A film has been prepared, for the guidance of teachers, to 
show some uses of this apparatus in detail. That film will prove very 
helpful when teachers are trying those experiments for the first 
time. It is intended solely for guidance of teachers - it would be an 
unfortunate use of the film to let it replace the real apparatus in 
class teaching. Celluloid microwaves are not very convincing.

Oscillations (De luxe buffer option). If this equipment is used, 
teachers may want to give a series of demonstrations of electrical 
oscillations, ranging from very low frequency (mechanically excited) 
right up to the very high frequency of the centimetre-wave 
generator. Again, a film for teachers is available to show the 
demonstrations in this series. However, most teachers will con 
sider that these demonstrations belong in A-level - where detailed 
treatment is expected.

Wave Trains and 'Stationary Waves': v, n, wavelength
We define wavelength and frequency and arrive at the relation 
between them and speed.:): We may return to measurements with 
the ripple tank, or we may merely refer to them.

In talking of wave speed, we should show simple examples in 
which pupils see a wave form moving along at definite velocity.

t The relation v = nL is, to many a physicist, automatically true, like the 
relation s = vt which connects distance travelled with speed and time. The latter 
seems to us a definition of vs and we hardly think it fair to try to verify s = vt by 
experimental measurements.

On the other hand, if we have a speedometer that is alleged to measure -o directly 
- and instantaneous v at that - we may well want to test the speedometer's read 
ing against measurements of s and t. In doing that, we shall be testing an 
arbitrary instrument (unless we look inside and decide we are testing a law of 
electromagnetic induction!). But we are also giving the beginner some help in grow 
ing familiar with the idea of speed, defined as sjt or dsjdt.

Similarly, separate measurements of v, n and L for continuous waves help the 
beginner to understand those terms and their relationship, even if the measure 
ments seem to us to be testing a tautology. In this case we do not have a separate 
contd. on page 260
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Waves along a rope or rubber tube travel at a speed that is in 
dependent of wavelength and so do sound waves in air. Water 
waves do not; so any detailed discussion of v = nL with water 
waves may prove to be unwise.

Group Velocity
With very fast pupils we can ask whether the pattern of ripples on a T 
pond from a stone (or in a ripple tank) moves as a whole with con 
stant speed. We do not tell pupils that the group speed is different 
from the wave speed but leave them to find this out, if they are 
interested, for themselves. If they do find out, we should comment 
on it - since it is so important in advanced discussions of waves and 
electrons.

A Wave-group Model (Luxury advanced option). Teachers may D101 
like to construct a mechanical shadow model that illustrates the OPT. 
contrast between group velocity and wave velocity clearly and 
cleverly. This is not available commercially, and it would be expen 
sive to make in a robust form. But a simple home-made form will 
prove satisfying. Here is a brief description:

instrument like the speedometer which might be under suspicion. Pupils make a 
direct measurement of v for low-frequency ripples by timing the sweep of a ripple 
across the tank. They make a direct measurement of wavelength by measuring 
the distance from crest to crest on a photograph taken with a single flash; or by 
'freezing' the progressing ripples with a stroboscope. If n were small enoughj 
pupils might make a direct measurement by counting oscillations in a measured 
time; but at even the lowest frequency for the ripple tank nis too highfor that; so 
pupils should use a stroboscope to estimate the rate at which crests pass some 
marking or the rate at which the generating vibrator runs.

Teachers may feel that there is a hint of arguing in a circle - or at least of proving 
nothing - if the stroboscope is used both in measuring L and in measuring n. But 
this is a case of the same device serving two separate functions. For L, the 
stroboscope is just an auxiliary device to freeze the pattern while we make a 
measurement. For n, however, it is the essential measuring instrument and a new 
piece of data has to be obtained from it - we have to know its speed of revolution 
and count the number of slits to argue out the frequency.

For L, the stroboscope could be replaced by a single-flash-photo camera; for n it 
could not. The two uses are quite independent.

260



Stiff wire is bent into a spiral, shaped so that its shadow will imitate 
waves in a limited pulse, as in the sketch. This spiral is not observed 
directly, but its shadow is cast on a translucent screen by a com 
pact light source. The spiral is attached to a rod as axis. To show a 
wave-pulse progressing, the rod is made to revolve and at the same 
time move along. That is done by having a screw-thread of very 
large pitch cut on the rod and threading that portion of the rod 
through a suitable stationary nut. Then, as the rod is cranked by 
hand, it also moves along. (For a screw like that one can use a long 
spiral auger bit.)
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Chapter 5 
LIGHT WAVES

Diffraction 
Young's fringes
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WAVES: INTERFERENCE AND DIFFRACTION 
Ripple Tank: Young's Fringes
We then get the ripple tank out again, and ask pupils to look at the 
wave pattern from two small sources vibrating in phase. They see 
the patterns that lead to Young's fringes.

C102

We discuss interference, showing the geometrical demonstration T 
described in Year III. Pupils who missed those should see them 
now.

a. Two long slats of transparent plastic, each marked with a wavy D103a
line of many wavelengths, represent waves starting from two
sources in phase. The left-hand ends of the slats are anchored, one
vertically above the other, several wavelengths apart. The teacher
holds the right-hand ends, with the slats crossing near those ends,
and shows how the two waves would agree or disagree at various
places on an imaginary screen near him. This demonstration, which
sounds too obvious to be worth constructing, is in fact very helpful
to many pupils. We must remember that the ideas of constructive
and destructive interference of waves are not self-evident; they are
new and puzzling to many people.

b. Pupils who wish to experiment with similar model strips on a H103b
tiny scale may be encouraged to make them at home by cutting thin
slices from corrugated cardboard. These are anchored with drawing
pins at one end, pulled taut and made to overlap near the other
ends. (For details, see Year III.) Long strips like this may even be
used to test the relation that we employ in estimating wavelengths.

If pupils made a measurement with Young's fringes for light in an 
earlier year that may suffice now if it is clearly remembered. But in 
general now is the time for a measurement of the wavelength of 
light. So, after pupils have seen Young's fringes with their own 
ripple tank we do experiments with light waves, as follows.

Diffraction
We first show diffraction, because pupils need to know about that 
when considering Young's fringes.

Demonstrations with Light
We show light from a very bright, very small point source^: casting D103 
shadows of various objects. We let pupils look at the shadows in 
detail.
t The little tungsten and iodine lamp does well, if distances are large. The most 
compact of the ' Wotan' high pressure mercury lamps is excellent but expensive.
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Seeing Diffraction Easily. For pupils to see diffraction easily, *
we must provide translucent screens, to be observed from behind. *
Even then, the pictures will be faint because, for the small wave- *
length of light, we must have a large distance from the object to the *
screen; and, since the source is not a point, a fairly large distance *
from source to object. *

	 *
Therefore, the room should be fairly dark. However, if we try to *
show diffraction in a completely blacked-out room, we defeat our *
own ami in many cases: pupils cannot see what is happening and *
there may be difficulties with discipline. *

	*
In these experiments, where pupils need time for their eyes to *
adjust, we must remember that darkening the room cuts off fresh *
air as well as light; and as the atmosphere grows warmer and wetter, *
pupils feel less comfortable and discipline is likely to become more *
difficult for that simple physiological reason. So we do not recom- *
mend complete blackout, but only half or three-quarters darkening *
of the room and then it is essential to have a very bright source, such *
as the little tungsten and iodine bulb, and to use translucent screens *
for viewing. *

	*
The source, well-housed and shielded, is placed a yard or two from *
the objects and the viewing screens are placed as far as possible *
beyond the objects, say 3 yards or more away. Pupils look at the *
screens from behind - and, as with the pinhole camera, we need to *
remind them to hold their heads back at a reasonable distance. *

	*
The translucent screen must be made of material which scatters *
transmitted light over a small angle so that the observer directly *
behind it gets a large share of the light. (Therefore, architects' *
tracing linen, which is so good for a 'translux' background be- *
cause it scatters over a wide angle, is quite unsuitable here.) *
Ground glass would be good (the acid-etched form being ideal), *
but for problems of storage and breakage. Fortunately, there are *
now good translucent plastic materials that imitate ground glass. *
Failing those, greaseproof kitchen paper does very well indeed as a *
screen. (Or thin white paper soaked in melted paraffin wax will *
make a good screen.) *

	 *
In showing diffraction (or interference) like this it is very important *
to avoid glare from the table-top reaching the screen. If some light *
from the lamp reaches the table at oblique incidence it is reflected *
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only too well and adds unwanted illumination on the screen. The *
lamp must be carefully shielded, or black cloth must be spread on *
the table. *

	*
As objects to cast shadows, there should be some familiar things *
such as a pin and a needle, and perhaps a hair. There should also be *
a metal plate with holes of various sizes or, failing that, a sheet of *
paper with punched holes. The cases where diffraction through the *
holes produces a black spot at the centre of the bright round patch *
will be very surprising; but we should let pupils see those, and tell *
them those are the result of wave contributions adding up. With the *
tungsten-iodine lamp there is enough light to show the white spot *
in the shadow of a small disc or ball. A pin with a large black-glass *
head (like a small hatpin), or a steel ball \ inch to | inch diameter, *
stuck with wax on a sheet of plate glass, will cast a shadow to show *
that surprising thing. *

	*
Teachers concerned with demonstrating diffraction at a more *
advanced stage will be tempted to try a V-shaped slit as object. *
Unless pupils look at the slit carefully before observing the shadow, *
they will be confused by that. So the V-slit should be avoided. *

	*
This is an experiment that takes a good deal of time if pupils are to *
take turns looking at the diffraction pattern on a screen. However, *
it is a fundamental observation, which once seen is never forgotten. *

The Paradox. We hope teachers will include the shadow of a *
small disc or ball, without warning pupils what to expect. It is a *
famous experiment. When Fresnel as a young man submitted his *
paper on wave theory of light to the French Academy, Poisson as *
judge reported a severe objection that, if applied to the shadow of a *
disc, the theory would predict a white spot at the centre. For- *
tunately, the spot was seen, later photographed, and is now easy to *
observe with our special lamp. *

	*
Teachers who wish to show this to a large audience should make an *
array of black-headed pins at a distance of a yard or more from an *
open, compact light source and distribute pieces of greaseproof *
paper among the audience. Here, however, we hope that teachers *
will arrange things so that each pupil can look for himself, first at *
the object that casts the shadow and then at the shadow itself. *

	*
Some teachers arrange these demonstrations with a small lens *
through which pupils observe the diffraction pattern. That enables *
the experiment to be done in a room which is only half dark: it does *
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not require such a bright source of light or such large distances. 
However, it seems to us to make the whole experiment very much 
more vague. Pupils so easily think that the peculiarities which they 
observe are put there by the lens itself4 So we urge teachers to 
avoid that.

The diffraction demonstration is there to start a question: does 
light consist of bullets or waves?

We then show an interference demonstration, Young's fringes. It is 
probably best to give this first as a demonstration; but then there 
should be a class experiment in which each pair of pupils have their 
own double slit and observe the interference pattern on a trans 
lucent screen, viewing it from behind.

Young's Fringes
The simplest form uses a line-filament lamp instead of the first slit 
and a piece of translucent plastic as the observing screen, without 
any lens at all.

The next simplest form uses one lens to form an image of the 
original source on a distant screen. Then a double slit is placed just 
after that lens; and again there is a plain screen, without any eye 
piece, for pupils to observe the fringes.

(Adding an eyepiece for the observer makes the demonstration 
seem more complicated and less direct, though it makes it easier to 
do the experiment. We hope teachers will avoid that.)

Demonstration of Young's Fringes
The teacher should show pupils a demonstration of Young's fringes 
by the simplest method, so that they know what to look for.

Then pupils should do a class experiment, setting up the arrange 
ment, perhaps even ruling the double slits themselves, and looking 
at the fringes. They should try interposing a piece of green glass 
and then a piece of red glass, to see whether the fringes show 
different spacings for different colours.

The source should be a 48-watt, 12-volt lamp run at excess voltage 
to give extra brightness at the expense of a shorter life. The lamp 
should be housed in a shield to minimize the stray light spreading 
over the laboratory. The lamp is best placed high on the wall at one
$ Ask a physicist who wears spectacles what he thinks of the patterns he sees 
when raindrops settle on his spectacle lenses.
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end of the laboratory, (with a duplicate lamp at the other end if there 
is a large class, so that some have to point their experiment one way 
while others point it the opposite way). The lamp should be one or 
two metres from the slits, which are carefully adjusted to be 
parallel to the filament.

The screen should be as far beyond the slits as possible, say 3 
metres. As in the case of the diffraction demonstration, the screens 
used by pupils should be made of translucent material that scatters 
light through a small angle - not architects' tracing linen which 
scatters through a large angle.

Pupils observe the pattern from behind the screen. But, in a well- 
darkened room, they may also see it on white paper, viewed from 
the front - once they have seen, with the translucent screen, what 
to expect.

Then the teacher should discuss the essential meaning of those T 
fringes as evidence for light waves.

Pupils should make rough measurements of the spacing of the C105b 
fringes. That is easily done by catching the fringes on a piece of 
translucent plastic and making marks with a pencil on the rough 
side of the plastic. They should measure the other distances that 
they will need for an estimate of wavelength.

The distance between the slits is the difficult measurement because 
it is likely to be only half a millimetre, at most. Pupils may try 
using a magnifying glass and a millimetre scale (or a half-millimetre 
scale from the Year I oil film experiment) for a very rough esti 
mate. If microscopes are available, pupils should use them to look 
at the slits and the scale, to make a better estimate. Failing that, 
pupils might hold their double slit in a small projection lantern, 
measure its image on a distant screen, and compare that with the 
image of a transparent millimetre scale.

We show pupils the geometry that enables them to work out the T 
wavelength from measurements. That ends with a formula, but we 
must not produce that formula without showing how it is arrived 
at; and we must not encourage pupils to learn the formula by heart 
- instead we should assure them it will be printed on any examina 
tion paper.

The geometry itself should not be too difficult, but some pupils will 
find the argument unreal or evasive - because there is an approxi-
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mation in it. We can lessen that difficulty by sketching a realistic 
diagram with the two slits very close together and the screen 
extremely far away; then the approximation will seem much 
easier to swallow.

Pupils who find the geometry too difficult should see it carried 
through - for the good reputation of science - but the teacher 
should then tell them they need not try to learn it.

Since the making of the slits and choice of lamp, etc., will make all 
the difference between success and failure for this class experiment 
we discuss those arrangements in detail below.

Size of Slits. Both for the demonstrations and for pupils' class 
experiments the two slits need to be very close together, so that the 
fringes are widely spaced; BUT each slit must itself be wide enough 
to let through sufficient light to make the fringes adequately bright. 
These two requirements obviously conflict if pushed too far. 
When the two slits are widened a great deal they merge to make a 
single wide slit!

Also, when we widen each of the individual slits we see fewer 
fringes brightly illuminated on the screen. The spacing of fringes 
in that pattern is determined by the distance, d, between the 
centres of the slits: it is proportional to l/d. For a given value of d 
that fringe spacing is determined, and it does not change if the 
individual slits are widened. But the illuminated patch in which 
the fringes are visible is much smaller for wider slits - that is 
because that patch is determined by the diffraction pattern of each 
individual slit.

Suppose we have slits with distance, d, between their centres and 
each slit is itself an opening of width %d, as in the sketch, then
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the pattern on the screen will only show a central bright fringe and *
one bright fringe to each side of it. (The next fringe beyond will be *
in a region where the contribution from each individual slit just *
falls to 0 in its own diffraction pattern; so the next bright fringe each *
side will be invisible and fringes beyond that too poorly illuminated *
to be seen.) Making the individual slits still wider would make the *
pattern brighter but would soon jeopardize the visible fringe each *
side of centre. *

	*
On the other hand, making each slit a little narrower than that *
would lead to one more fringe showing up on each side, a good *
pattern of 5 bright fringes in all. To give a reasonable fringe spacing *
in a room of ordinary size, the slit separation, d, should be about *
| millimetre. At 3 metres from the double slit, the spacing from *
bright fringe to bright fringe will then be about 3 millimetres. *

	*
So we recommend ruling slits about f millimetre apart, centre to *
centre, and slightly less than J millimetre wide. In other words, if *
we look at the slits when they have been ruled, the opaque strip *
between the slits should be only a little wider than each of the slits *
themselves. *

Ruling Slits. We now have an opaque material that is easy for *
ruling: a coating of graphite on glass, applied by painting 'Aqua- *
dag' on a microscope slide. When the coating is dry, slits are ruled *
with a blunt needle or a ballpoint pen, run along the edge of a ruler. *

	*
It is better to rule slits quickly by hand, making several trials and *
selecting the best, than to complicate matters with a special ruling *
device. A number of ingenious gadgets have been devised to enable *
teachers or pupils to rule double slits, but ruling by hand proves *
simpler and better. *

Discussion of Young's Fringes. Young's fringes do two things *
for us: provide evidence of the wave nature of light; and yield an *
estimate of wavelength. The first is by far the more important in *
our present teaching. All the ordinary demonstrations with rays of *
light travelling in straight Lines, making equal angles with a mirror *
on reflection, and being refracted, fit with a picture (a theory) of *
light as a stream of bullets. Newton himself favoured that idea *
because it accounts for sharp shadows. Applying simple dynamics *
to a particle being refracted, we find that it must move faster in *
glass or water than in air. (That is, if the particle keeps a constant *
mass. If we assumed it maintains constant kinetic energy instead, we *
should find ourselves led to the opposite prediction for speeds!) *
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In Newton's day, Huygens developed a wave theory of light, pre 
dicting reflection and refraction and showing that on his assump 
tions light must move slower in glass or water than in air. Long 
after Newton's day, Foucault measured the speed of light in water 
and found it smaller than the speed in air, thus lending strong sup 
port to the wave theory. But the really convincing evidence for 
wave behaviour of light comes from interference and diffraction.

About 1800, Young allowed light to pass through two pinholes and 
fall on a common patch on a distant wall. There he saw light and 
dark bands. We ask pupils to see for themselves the bright 
and dark alternating stripes.

In a bright fringe: LIGHT+LIGHT makes LIGHT. 

But in a dark fringe: LIGHT+LIGHT makes DARKNESS.

In the latter case, two contributions cancel out. Waves can do that, 
but we cannot imagine particles cancelling.

The name 'interference' for this formation of fringes is unfor 
tunate. It does not aid our teaching because it suggests that one lot 
of light upsets another: far from that, two contributions of light 
from the same source add their motions algebraically. One does not 
frighten the other away or modify the other: we merely get the 
proper mechanical sum of both.

In teaching, we need to emphasize this amazing behaviour, and its 
simple explanation on a wave basis. Only if light behaves as waves 
can we predict or explain the interference pattern of Young's 
fringes.

Other patterns made by diffraction of waves passing various objects 
are also predictable and explainable as wave effects. Neither the 
black spot in the centre of the bright patch made by light through 
a hole at some distances, nor the white spot at the centre of the 
shadow of a disc at all distances, makes much sense if we treat light 
as a stream of bullets. Nor do those make easy sense on a wave basis 
without considerable geometrical discussion; so if we show them, 
we can only assure pupils that they are, in fact, effects that we 
should expect of waves.

Attempts to discuss Fresnel zones, etc., lead to confusion at this 
stage and are, in fact, rather questionable optical teaching at later 
stages. All the more reason for giving great importance to Young's
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fringes which pupils can see with light, compare with water ripples, 
and understand fully geometrically.

The idea of two wave contributions that arrive in opposite phase 
adding up to 0 is sufficiently strange and new to pupils to need 
illustration, however obvious it may be to us. In addition to the 
two slats with wave patterns which are used as a model for the 
formation of Young's fringes, we should give two simple stories, 
however childish they sound, of the actual addition.

1. 'Watch my hands. This hand shows what happens where one 
lot of light arrives. It makes forces which wag up and down, up and 
down, like my hand. The other lot of light makes forces that wag up 
and down, up and down, like my other hand. Where both lots of 
light arrive in phase, this happens.' [Teacher pumps both hands up 
and down, in phase.] 'But, where the two lots arrive out of phase, 
this happens.' [The teacher pumps his hands up and down in 
opposite phases.]

2. ' Suppose each lot of light makes something - say an electron - 
move up and down, flip-flap, flip-flap. Then, where the two lots of 
light arrive in phase, we have

flip-flap, flip-flap ... + flip-flap ... = FLIP-FLAP, FLIP-FLAP ... 

' But where they arrive in opposite phase, we have 

flip-flap, flip-flap ... + flap-flip, flap-flip ... = 0.'

Coherent Sources. In such descriptions we assume that the two 
sources, or the light waves emerging from the two slits, are 
'coherent'. In the early studies of interference, that was a very 
important condition: ingenious schemes had to be used to derive 
both lots of light from the same original source. And in teaching, 
one emphasized that and pointed out that two electric light fila 
ments, strung close together, would never produce Young's fringes 
because the sources of light in the two filaments would oscillate 
quite independently with arbitrary changes of phase. However, that 
should not be emphasized here - probably not even mentioned 
unless a pupil asks - because we are discussing a basic demonstra 
tion of wave behaviour rather than examining the more advanced 
details.
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Furthermore, we now know how to make atoms in some light 
sources gang together and co-operate to produce all their light 
waves in the same phase. Then we have tremendously strong 
sources of coherent light. These devices, called lasers, can pour 
light through two slits and form very bright, sharp fringes on a 
screen. However, the large ones are dangerous, because they pro 
duce such intense beams of light; and they are expensive. Their 
use in teaching lies in the future (they are already doing very 
valuable things in research). We do not suggest acquiring a laser 
for the present experiments because the essence of our aim is to 
show the wave nature of light very simply, and lasers will always 
look complicated even if they are not.

Estimate of Wavelength
A fast group should certainly extract an estimate of the wavelength 
of light from measurements of Young's fringes. When they see how 
small that is, they may understand why light seems to cast sharp 
shadows. In a ripple tank, waves seem to pass straight ahead 
through a gateway many wavelengths wide, but they spread out in 
all directions on passing through a narrow gateway a fraction of an 
inch wide. Similarly, all effects of diffraction round edges show up 
only on a scale comparable with a wavelength.

To estimate the wavelength of light from Young's fringes, pupils 
must go through some geometry. A really fast group should make 
the geometry their own, being shown it and then learning it so well 
that they could teach it to others.

An average group might be shown the geometry and then be 
expected only to say, 'We have seen that and are satisfied that it is 
sensible' - and then they could use the result.

The geometry is essentially similar to that for a diffraction grating. 
The latter is a Young's fringes arrangement with many slits, making 
its fringe pattern at infinity or the equivalent. Teachers familiar 
with the use of simple diffraction gratings will feel that the grating 
geometry is simpler; and they will plead for a grating instead of 
Young's double slit. Here, however, where we want to get light 
fringes directly, experimentally, convincingly, we urge teachers to 
deal with Young's fringes first.

To make the geometry simple, and to prepare for the grating, we 
draw a more realistic diagram than the usual one. We show the two 
slits a small distance apart and place the screen an enormous dis 
tance away (see sketch).
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Then it is obvious that the wave paths from the slits to a place on 
the screen are almost parallel. And pupils will be able to see that 
when the waves arrive in phase at the screen, the extra path is one 
or more whole wavelengths. In such a diagram the extra path shows 
up clearly just outside the slits. Farther away, we see the two 'rays' 
of waves travelling along almost parallel, looking practically in 
phase, to arrive in phase at the screen. The extra path can be 
marked by drawing a line SjM perpendicular to the ray from slit S a .

If pupils find this difficult to picture, they can gam some help by 
trying the home experiment with thin ribbons of corrugated card 
board if they use very long ribbons.

Or the teacher can demonstrate the geometry with two long pieces 
of chain - such as the kind with light figure-of-eight links used for 
dog chains. In fact, with a slow group this may be the only useful 
approach to the ' formula'. The ends of the two chains are anchored 
at two points several 'wavelengths' apart at one end of the table - 
a 'wavelength' being one link. The teacher pulls the chains taut as 
they lie on the table, brings their free ends together and marks the 
junction point. Then he increases one chain by one link, two links, 
... by adding Links at the anchorage, and he again marks the junc 
tion of the free ends when he pulls them taut. In this way he marks 
points on the table that lie on the loci of 'bright fringes'. He
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sketches those loci; then makes simple measurements and calcula 
tions, to test the 'formula'. The advantage of this demonstration is 
that pupils participate and soon understand the changes of path- 
difference and the general idea so well that they can transfer it to 
interference fringes.

Then, with our geometry, we have two similar triangles, 
and ABC, where A is midway between the slits, C is at the central 
bright fringe on the screen, and B is the place where we are adding 
up the two waves.

[the extra path, S 2M] / [the slit separation SjS 2 or d] 

is equal to BC/AB

In the real experiment, the fringes are so close together that BC 
itself is small compared with AB, so AB is almost equal to AC.

Then, for the first bright fringe out from the centre, the extra path 
S 2M is one wavelength, L. So,

Wavelength, L Fringe separation, CB!
Slit separation, d Distance to screen, AC

Example. Suppose the fringe spacing is estimated to be 3 mm 
(being the same from fringe to fringe as we go on out from the 
centre), when the screen is 3 metres away from a pair of slits £ 
millimetre apart. Then:

Wavelength _ 3 millimetres 
£ millimetre 3 metres

This gives a rough measure of wavelength

(4 x 10-3)(3 x 10-3)/3 or 5 x 10~7 metres or 5,000 Angstrom units.

That is a good average value for white light, true for green light to 
which our eyes are most sensitive.

A Valuable Rough Estimate
The point of making this estimate is not precise measurement. This * 
is an important case of desperate measures in desperate circum- * 
stances, where any rough estimate is very valuable because it tells * 
us which county we are in. *
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And that is doubly valuable if the pupil makes the estimate himself *
with his own measurements. ....... *

*
On that view, any value between 2,000 A.U. and 10,000 A.U. is still * 
in the right order of magnitude and well worth having - probably * 
much more valuable at this stage than a precise measurement done * 
as a demonstration. In fact, the wavelength of light is something to * 
take home as a precious demonstration. We hope that pupils will H105 
literally take it home with pride, and we hope that schools will 
encourage them to take home a pair of double slits, or the materials 
for making them, and a lamp and show people they can measure the 
wavelength of light themselves.:]: For home use, where complete 
darkness can be arranged, perhaps hi a long corridor or cellar, an 
ordinary 6-volt or 12-volt lamp will suffice (preferably run at extra 
voltage to make it still brighter). We hope that schools will lend the 
necessary transformer for such a lamp.

Young's Fringes with Sound Waves. We can demonstrate inter- D107 
ference with two small loudspeakers driven in phase by an audio- OPT. 
oscillator. A sinusoidal signal from the oscillator:]: is amplified (by

$ This linking between school physics and other people at home can do so much 
for the development of an understanding of science - and thence for the pro 
motion of good teaching - that we plead strongly for this kind of home experi 
ment. But now we should let it change from simple, practical things like making 
crystals to a glimpse of a great experiment that is bound up with theory. While 
we consider home experiments very important, we recognize the difficulties that 
school authorities may encounter over lending out apparatus which they feel may 
get lost or broken. Since we regard home experiments as so important, we offer 
at present to underwrite such home lending through a special fund. If teachers 
lend lenses, lamps, transformers, etc., and find that they cannot get them back or 
the apparatus comes back damaged or broken, they should apply to:

The J. Willmer Home Experiments Endowment
c/o A.S.E.
52 Bateman Street
Cambridge

The General Secretary, administering this fund, will only ask whether the 
apparatus went on loan with permission, whether the class is following a com 
plete Year of our Nuffield Physics programme, what was damaged, and the cost 
to be met. He will not want to know the name of the pupil and he will not want 
the usual formal details of a report of damage. The cost will be reimbursed most 
happily.

$ The sealer recommended for use in our Programme has a built-in pulse 
generator; but that produces sharp pulses rather than a simple harmonic 
signal, so loudspeakers driven by the pulse generator will radiate a mixture of har 
monics and the interference pattern will be too complicated. We need a pure 
tone here.
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any small amplifier) and sent through two loudspeakers in series. 
For a frequency of three or four thousand cycles/second, the wave 
length of sound is of the order of four inches. The loudspeakers 
should be placed several wavelengths apart. Then pupils walk 
about, many wavelengths from the loudspeakers, and listen for 
loud and soft 'fringes'.

If we then try muffling one loudspeaker, we can show pupils that 
there are places where we hear two pigs under a gate make less 
noise than one pig.

It is practically essential to do this out-of-doors: otherwise waves 
reflecting from the walls of the room complicate the interference 
pattern hopelessly.

We suggest this as an optional demonstration to be done where 
oscillator, amplifier and loudspeakers are already available; but we 
do not recommend buying equipment specially for it.

DIFFRACTION GRATINGS
To us as physicists, the diffraction grating is an instrument of enor 
mous importance: it has enabled us to show that light, X-rays, 
infra-red radiation, electrons, neutrons, etc., all have wave proper 
ties; and it has enabled us to measure their wavelengths. It enabled 
us to measure the wavelengths of light in line spectra from atoms 
and thus lend support to the quantum theory in its early growth, as 
it provided data and tests for the Bohr atom model. Then that 
model and its successors revealed a wealth of information from 
spectra, concerning energy levels and atomic structure. In another 
field, measurements of spectra enable us to estimate the speed with 
which stars are approaching us or receding. When we observe 
spectra of stars, we find tiny changes of characteristic wavelengths. 
These changes - measured with prisms but referred to grating 
standards - lead to an estimate of the star's speed. We even guess 
that the same Doppler effect is responsible for the great shifts 
towards the red in the spectra of distant nebulae - and we infer an 
expanding universe.

All these advances in knowledge have come essentially from 
measurements of wavelengths with gratings. We wish we could 
treat diffraction gratings fully and do justice to those great develop 
ments. But, at this O-level stage, we cannot. Take, for example, the 
passage from line spectra to energy-levels in a Bohr atom. We 
would have to build up the problem: show our young pupils the
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background of knowledge and the need for new answers; describe *
early ideas of atomic structure; lead up to the need for a quantum *
restriction; show the decoding of spectral series into term-formulae; *
and then would come the connecting together and fruitful conclu- *
sion. To pile that on the basic geometry of grating measurements - *
itself difficult for some pupils - makes too heavy and long a task *
now. Only for a few very fast pupils should we contemplate such an *
excursion. *

	*
On the other hand, we should teach the qualitative use of gratings *
to demonstrate waves; because we shall talk of wave behaviour *
extending throughout the whole of nature. We shall talk about the *
wave properties of light; mention the wave nature of X-rays; and *
show a film of' matter waves' which itself will link optical grating *
spectra with electron wave demonstrations. *

	*
Therefore, pupils should do some simple experiments with gratings *
and try making a measurement. But we should not extend our *
experiments into a series of measurements of line spectra, since we *
shall not put them to use. *

	*
The diffraction grating is a topic to treat quickly, encouraging a *
feeling of success by giving help whenever it is needed. *

	*
Pupils should do class experiments with a coarse diffraction grating, *
to see many spectra; then with finer gratings which enable them to *
measure the wavelength of visible light. *

Class Experiments with Gratings. We give each pair of pupils C108a 
a small piece of coarse grating, and ask them to look at a distant 
lamp with a straight-line filament.

In the usual diagrams, showing plane waves (or a parallel beam of *
rays) falling on a grating and giving rise to parallel beams in various *
directions that form the spectra, we imagine a screen for the spectra *
at infinity; or we insert a lens to form the spectra on a screen in its *
principal focal plane. When a pupil holds the grating close to his *
eye, he is using his eye instead of that lens and his retina as a screen. *
In other words, his eye sorts out various parallel beams of light (or *
groups of contributions that make up plane waves) and brings each *
beam to a focus on his retina. Although that seems to us, as *
physicists, optically similar to an open demonstration with a glass *
lens, it will seem puzzling to many pupils - however delightful to *
look at. *
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(The real wave-story of optical images - in contrast with the ray- *
story, which is incomplete and only roughly true - is that all con- *
tributions from an object point must reach the image in the same *
phase. If we remember that, we can see that where the wavelets *
from successive rulings of the grating arrive in phase there will be a *
bright 'image' of the source. On that view, we need not try to *
claim that those separate wavelets mysteriously coagulate to form *
perfect plane wavefronts in several different directions for the *
pattern of several spectral orders.) *

So, as soon as pupils have tried this for themselves, we give a D109a 
demonstration in which white light from a bright vertical line- 
filament passes through a lens to form practically plane waves, then 
through a piece of coarse grating and on to a distant screen. To 
give enough light, the lamp must have a very bright line filament. 
A 48-watt, 12-volt lamp, overrun for a short life, may suffice. For 
larger demonstrations, a projection bulb with a filament restricted 
to a tall narrow region will do well.

The lens is arranged to form an image of the filament on the remote 
screen; and the light arriving at the grating or prism is not quite 
parallel. We adjust a spectrometer to make and receive 'parallel 
light', so that precise measurements can be made. But that 
arrangement makes too small a spectrum for a good demonstration. 
In demonstrations with a grating or a prism we do not aim at pre 
cise measurements, so we do not mind if different rays of light 
from a point on the slit meet the grating or prism at slightly 
different angles. Therefore, we use one lens (instead of two, the 
collimator and the telescope objective) and arrange it to form a real 
image of the slit at a large distance. We place the grating just 
beyond that lens. (Interposing a second lens after the grating 
brings a sharp pattern of spectra to a screen placed much nearer - 
but the pattern is much smaller.)

When pupils have seen that demonstration - with pieces of red D109b 
glass and green glass interposed to ask a question about wave 
length and colour - the teacher should exchange the coarse grating 
for a much finer one.

Looking at Various Spectra with a Grating. Then pupils C108b 
return to their own experiment with a piece of fine grating held 
close to the eye. After looking at a white-hot filament, they should
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observe a neon tube, if possible a hydrogen tube arranged to give 
the atomic spectrum lines, a slit with a bright sodium flamed 
behind it, and then again at a white-hot filament, this time with a 
piece of red or green glass (or gelatine) held in front of it.

The neon tube and the hydrogen tube should, if possible, be 
capillary tubes so that each serves as a line source, like the lamp 
filament. Such a neon tube requires a much higher voltage than the 
ordinary neon lamp bulb, but a small cheap transformer will pro 
vide that. The tube with its transformer should be placed high up 
on an end wall of the room so that pupils can look at it from far 
away. The advantage of neon is that it gives a spectrum of many 
bright lines easily.

Hydrogen tubes show only three or four lines, and they are not very T 
bright. Yet we hope that faster groups will look at the hydrogen 
lines. Then we can tell them that the series continues and its wave 
lengths have been coded in a famous formula. Unfortunately, 
simple hydrogen tubes change their behaviour in use and tend to 
give the molecular spectrum which is of no use for our purpose.

Explanation of Action of Grating
Some pupils will take the grating as an extended form of Young's T 
slits, and the pattern of spectra as a brighter form of Young's 
fringes. That view comes easily from the use of coarse gratings. On 
that view, the formula can be adapted to gratings. Instead of taking 
y to be the displacement of a bright fringe from the centre of the 
pattern, it is now the displacement of a bright line or region in a 
spectrum from the zero order, and instead of [^/[distance from slits 
to fringe] we have sin 0, for viewing at infinity.

However, physics teachers are accustomed to treating the grating 
more carefully, as a case of many wave contributions adding con 
structively on a screen at infinity. With a fast group, the teacher 
should give that description, pointing out the use of the lens placed 
after the grating to bring the picture in from infinity to a screen at 
its principal focus. However, that does not change the use of sin 0 
in the formula.

We describe plane waves arriving at the grating and giving rise to a 
small (cylindrical) ripple from each 'slit 5 or ruling of the grating.

$ A Bunsen flame with a piece of asbestos soaked in sodium chloride or bicar 
bonate solution is quite bright enough. A sodium lamp is an expensive, un 
necessary luxury - and it may show an unwelcome pressure-broadening of the 
lines.
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All of us who have taught the study of gratings know the next step: 
we draw successive, circular ripples from every slit, and sketch a 
slanting tangent, touching ripples of radii 1,2, 3, ... wavelengths 
from successive slits; and then another slanting tangent that touches 
circles of radii, 2, 4, 6, ... wavelengths from successive slits. We 
assert that these tangents show a resultant wave front where the 
contributions from slits arrive in phase and add up to make some 
thing like a plane wave. (See the comment above on the wave- 
story for images.)

That story seem familiar and obvious to us from long practice. It is *
far from obvious to many pupils, and even seems silly: it pays *
attention to those bits of the cylindrical ripples which touch the tan- *
gent line, and it insists that those bits will make up a plane wave; it *
neglects all the rest of the ripples where they cross each other *
obliquely. In other words, we trust Huygens' principle and neglect *
its difficulties. This is the place where pupils should have careful, *
honest teaching if we are to treat the topic at all. The use of Huy- *
gens' principle in teaching has been called in considerable doubt4 *
Even if it can be justified by full mathematical analysis, the version *
we give in ordinary teaching is more than we should ask pupils to *
swallow. We should say quite honestly that near the grating we *
see round ripples emerging, but that farther away we do see those *
portions of ripples that touch the tangent line travelling on in *
agreement, making something like a plane wave; and that in other *
directions the round ripples seem to offer such a variety of contri- *
butions that they cancel out to practically nothing. This is just *
an assertion of the view we wish to use, referring to the physical *
observations. It is the same as the traditional use of Huygens' *
principle, except that it does not start by stating that Huygens is *
right, or continue by wrangling about Huygens' full geometrical *
story. - *

We must not, however, leave it as a simple assertion. We must at D110 
once give a demonstration: plane waves in a ripple tank passing 
through a' grating' of many slits (or splaying from a rake acting as a 
row of sources). The teacher should demonstrate the general idea 
of this with the ordinary ripple tank; but the picture is unlikely to

t See the Nuffield memorandum of 'Waves' by E. Mendoza, published in 
Contemporary Physics, February 1965.
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show the formation of 'spectra' clearly; so that may be followed
by photographs or films:): showing the full story of water ripples. F111

Then, if pupils agree with the idea of the grating producing plane T 
waves in various directions for the different orders of spectra, we 
can show them simple geometry. We draw 'rays' from successive 
slits to a diffracted plane wave-front and we point out that the extra 
path when we change from one slit to the next is one wavelength (or 
2,3, ... wavelengths for higher orders). Then the geometry is clear.

one wavelength, L ——————;——=- = sin o 
slit separation, a

where 0 is the angle of deviation of the spectrum from the original 
beam.

In all this, we have spoken of the grating as made of slits. In a real *
grating, each ruling is a furrow of complex profile, but it is easier *
for beginners to think of a grating as an assemblage of narrow, *
parallel slits, spaced regularly a small distance, d, apart, each slit so *
narrow that light waves spread out widely from it by diffraction *
and thus contribute to several orders of spectra. (It may even help *
if we hold up a comb from the Year III ray-streaks kit to illustrate *
this.) *

Manufacture of Gratings. It may help if we give a crude T 
description of ruling a grating on glass: a diamond point ploughs a
$ In preliminary trials of Year IIIj some teachers tried summing up the obser 
vations pupils made with the ripple tank by showing films. There are excellent 
4-minute filmsj made by P.S.S.C.; and other excellent ripple tank films are also 
available. It is very tempting to use such good films; but we cannot deprecate 
too strongly any such use of films in Year III.

We feel that teachers who want to show films then - when pupils have spent 
several weeks exploring the behaviour of waves on their own - have missed the 
whole point of our series of experiments. The ripple tank experiments are not 
intended to provide necessary factual knowledge in completely correct form. 
They are intended to give pupils an opportunity to work at physics on their own, 
for the experience of experimenting.

Some pupils will emerge with definite rules of wave behaviour; others will 
emerge with only a general memory of having done their own experiments. But 
in the case of the ripple tank, that range of yields will not matter. To show films 
'to put things right' or 'for revision' would threaten to upset the sense of pride 
in depending on what one has done on one's own. Therefore, we very much hope 
that no teacher trying out our programme will use ripple tank films in Year III.

However, when pupils meet interference of waves now in Year V, teachers may 
wish to bring in films, for the first time, for revision.
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furrow, spoiling the surface of a flat sheet of glass. It ploughs 
furrow after furrow, leaving a small strip of unspoiled glass between 
adjacent furrows. Then pupils can picture light pouring through 
those unspoiled strips.

(In fact, of course, the furrows also let light through, in various 
phases that compound to the same definite contribution from each 
successive ruling.)

Modern reflection gratings are ruled on soft metal, the diamond 
ploughing the metal up to make slanting ridges which provide 
preferential reflection in some particular direction. A grating that 
is 'blazed' like that throws most light into the spectrum in that 
direction.

Cheap gratings for teaching use are made by casting a film of 
plastic on a ruled grating - often a reflection one - and then peeling 
it off. If the casting and peeling are done carefully, the replica has 
the same grating-space, d, as the metal original. And the value of 
that is obtained from the maker, who counts the number of furrows 
ruled. Therefore, in telling pupils the grating-space for use in their 
measurements of wavelength, we are not arguing in a circle. (How 
ever, some makers of cheap replicas arrive at the statement of 
grating-space that they supply with the grating by a measurement 
with sodium light of known wavelength.)

From now on, we should change from saying 'slits' to saying 
'rulings'. And instead of calling d the 'slit separation' we should 
call it the 'grating space'.

Estimate of Wavelength
This should be a class experiment. It means much more to a pupil 
to conduct his own measurement of this tiny, inaccessible distance 
from crest to crest of a light wave than to see someone else do it and 
carry out a quick calculation - the latter leads only too easily to a 
formula-dominated examination question. And we hope that some 
pupils will be able to take a piece of grating home:}: and use it as a 
sequel to their home experiment with Young's fringes.

The source should be a line-filament lamp with, say, a green filter in 
front of it. If a mercury lamp with a visible capillary tube can be 
used, all the better. The lamp is placed at one end of the room and

if See footnote in section dealing with Young's fringes.

*
*
*
*

C112

H112

C112
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pupils work as far away as possible. For a rough estimate, the pupil 
holds a piece of fine grating close to his eye, at the near end of a 
metre rule pointed straight at the lamp. His partner moves a pencil 
along another metre rule, placed perpendicular to the first at the 
far end, so that the two rules form a T. The pencil is moved until it 
just obscures a green patch or a green line hi the first order spec 
trum. From their measurements, pupils calculate tan 6 and thence 
sin 0. They have to be given the grating space d. Then they esti 
mate the wavelength.

If we just announced the value of d, that would be almost as bad as 
just announcing the value of the wavelength - it would make the 
experiment seem obedient rather than searching. In supplying the 
value of d, we must explain where it came from and make it clear 
that a mechanical counting during manufacture can supply it. If 
suitable microscopes are available, pupils should use them to look 
at their piece of grating and at the graduations on a finely divided 
ruler. (The ^-millimetre scales provided for the oil-film experiment 
in Year I might do well.) Although they may be unable to measure 
the grating-space, they will certainly see that a direct measurement 
is feasible.

If this estimate of the wavelength of light will be a burden of 
strange geometry and unsure measurements, it would be better to 
omit it. If it will give a sense of delight and insight, it can be one of 
the most powerful experiments of the year.

(As an amusing, informal experiment, some pupils may like to look H113 
at the grating spectra formed by reflection from a gramophone 
record. Unfortunately, the rulings are too coarse to be of much use 
at direct incidence. The observer must take an oblique view as we 
do for gamma rays with crystals. To find the grating space of that 
grating, play the record, counting the turns, and using a ruler for 
the radial length of the recording.)

Note to Teachers on Spectra and our Programme
Spectra are beautiful things to see. The full spectrum of white light *
blazing on a screen as a large demonstration is a surprise and a *
delight to pupils, even though they have seen a dilute version often *
enough in a rainbow, and a small version with their ray streaks. *
Line spectra are interesting things to see; but they are not as sur- *
prising to pupils as to us; and they certainly do not present them- *
selves to pupils as keys to atomic structure - that needs a modern *
Pythagoras. *

284



Absorption spectra, such as that given by green glass held in a *
beam of white light, help pupils to understand the physics of *
colour. *

	*
The 'single line' spectrum of a salted flame is then a surprise: *
instead of a broad band of yellow, pupils see a very narrow band of *
pure yellow. With a fast group, the absorption spectrum of sodium *
vapour then raises an interesting question. *

	*
So, spectra are things that pupils should see anyway. Having made *
a very small spectrum with ray streaks in Year III, they should see *
some larger demonstrations; and if apparatus is available, they *
should look at spectra individually. But that look at spectra for *
delight and general knowledge should take very little time. It would *
not be wise to spend more time looking at spectra in detail and *
measuring wavelengths of spectral lines - unless our theoretical *
teaching during this Year is going to make use of that work in a *
discussion of atom models. There will not be time for that, except *
possibly for very able pupils; so the following section on line *
spectra and energy levels is only a background note for teachers. *

Line Spectra and Energy Levels
Historically, line spectra were among the earliest phenomena *
to give hints of energy levels and a quantum behaviour in atoms, *
but the hint was not taken with serious profit by physicists until *
other phenomena pointed towards quanta. We think of line *
spectra as oifering clear knowledge of energy levels; but we are *
using hindsight. To our pupils, the argument from frequency *
differences through the quantum idea to energy levels would be *
new and far too difficult. We should not try to set it forth at this *
stage. Colleagues in Chemistry press strongly for some teaching of *
energy levels in atoms. They want pupils to know - even before *
Year V - that atoms have well-defined, discrete, energy levels. And *
we wish we could show the amazing story of stability that goes with *
that: atoms and molecules are completely elastic in collisions, up to *
a certain energy - above which they can store or release energy in *
discrete jumps. But the experiments and reasoning which led to *
that knowledge are difficult; and they are not directly relevant to *
its use in chemistry. So we expect that this teaching in chemistry *
will have to rest on simple assertion. *

	*
Physicists study the stability of energy levels in atoms by experi- *
ments in which they bombard atoms of vapour or gas with electrons *
of known energy. Up to a certain kinetic energy, the bombarding *
electrons bounce off the target atom elastically. They give no energy *
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to the atom, beyond the tiny share characteristic of the momentum 
exchange in an elastic collision. They do not change the internal 
energy of the target atom at all. But above a certain minimum 
kinetic energy, bombarding electrons make an inelastic collision, 
giving a sharply defined amount of their kinetic energy to the target 
atom, which is changed to a higher 'state' or energy level. That is 
shown by the Franck-Hertz experiment, in which, originally, 
electrons bombarded mercury atoms in warm mercury vapour. 
Nowadays, a similar experiment can be done with electrons 
bombarding an inert gas such as helium.

After inelastic collisions, the atoms of the target gas soon return to 
their ground state, emitting light as a spectral line. That would link 
up well with a full study of line spectra. Unfortunately the 
demonstration looks too complicated and too 'special'. The target 
material has to be adjusted to the right density to show the effects 
of inelastic collisions; the measurements are easily upset by stray 
potential differences; and the interpretation is not easy for begin 
ners. This is now a standard lecture demonstration in some univer 
sity physics courses. It may well find a place in A-level physics. 
But after looking at the experimental arrangements carefully, we 
consider it is not suitable for our O-level course. (With a tube of 
helium carefully chosen to give the right answer, one can give a 
dramatic demonstration; but even the most mature O-level pupils 
are apt to miss the essence of the experiment and its implication.) 
At most, we might offer a very fast group the P.S.S.C. film of The 
Franck-Hertz Experiment.

(When photons bombard atoms we again meet contrasting cases of 
elastic and inelastic collisions - plain scattering of light and Comp- 
ton effect; and the various forms of Raman effect. These too tell us 
of discrete energy levels in atoms. They also remind us that radia 
tion, from visible light to X-rays, carries its energy in quanta.)

Study of Spectra should remain Qualitative. Except where 
the teacher has special interests and the school already has special 
apparatus, we suggest that the study of spectra should remain a 
qualitative one. With a fast group it might extend into quick 
measurements of the atomic hydrogen spectrum with a grating. 
That spectrum, the Balmer series, has only four lines in the visible 
region. So pupils will not realize that the lines are part of a great 
series, nor could they decode the measurements into a general 
formula. Therefore, to supplement such measurements we would 
have to show a photograph of the Balmer series extending on into 
the ultra-violet. And we might even give those who like arithmetical
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puzzles the Balmer formula and ask them to see whether their *
measurements fit it. If they then ask what we now think that *
formula tells us about atoms, it seems more honest to say that the *
rest of the story is very long than to assert briefly that the formula *
shows us there are energy levels. *

Looking at Spectra formed by a Prism
As demonstrations, we show pupils a large spectrum, formed by a D114 
prism of high-dispersion glass on a distant white screen. Such a 
spectrum is a series of images of a slit, in a progression of colours 
side by side. The wider the slit, the more overlapping there is; the 
less 'pure' the spectrum, but the brighter it is.

For a white light source we need a lamp that sends as much light as 
possible through that original slit and on to the lens beyond it. 
Traditionally, a condenser lens, used to gather light from arc or 
lamp filament and 'concentrate it on the slit', formed a rough 
image of the source somewhere near the slit. In practice, that use 
of the condenser does not give as much advantage as one would 
expect. It may be better to make the light source itself take the 
place of the slit. If the source is a compact one - a small arc, a 
tungsten-iodine lamp, a projection lamp with compact filament - 
the spectrum will be practically a line of colours instead of a tall 
band4 To obtain a tall band, one should use a lamp with a vertical 
line filament in place of the original slit. On a small scale, a 12-volt 
lamp, overrun for a short life, may suffice. For larger demon 
strations, a projection bulb with a filament restricted to a tall narrow 
region will do well.

As in the grating demonstration, we set up a lens to form a real 
image of the slit or line filament on a distant screen. We show pupils 
that. Then we place the glass prism just beyond that lens. Pupils 
see that the prism swings all rays round to a new direction so that 
the screen must be moved to a new place, at about the same dis 
tance. Furthermore, blue light is swung round through a bigger 
angle than red; so the image of the slit now becomes a band of 
coloured images that we call a spectrum.

In a spectrometer, the prism is usually turned to minimum devia- *
tion to ensure still greater precision - if the lenses are not quite *
correctly arranged for parallel light, the prism will still give all rays *

$ That can be avoided by inserting an extra, cylindrical lens. Teachers may find 
it interesting to experiment in modifying a spectrum with lenses from the Year 
III ray-streaks apparatus; but in general this adds complications and takes time, 
so we do not recommend it as a standard arrangement.
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the same deviation if it is set for a minimum. In our demonstration, *
the prism need not be turned to the minimum deviation position. *
As it is turned away from that, it gives a longer spectrum though *
not so pure. *

We show the spectrum, then we try interposing colour filters such D114 
as green glass or gelatine. It is better still to give the pupils them 
selves pieces of coloured gelatine through which to view the pro 
jected spectrum. Remember that most gelatine filters transmit the 
red whatever else they are intended to transmit. It is wise to tell 
pupils that beforehand; then they expect and accept the unwelcome 
patch of red, instead of arguing about it.

We should try holding a piece of coloured material in the various 
parts of the spectrum. Scarlet cloth and green Christmas-decoration 
paper do well. Pupils should also look at those in pure yellow light 
from a sodium flame.

Colour Mixing (Optional). If teacher or pupil has a special inter- C115 
est in' colour mixing', each pupil should be given six colour filters: 0 PT. 
red, green, 'true blue'; and cyan (blue-green, which is minus red), 
magenta (purple, which is 'minus green') and common yellow 
(red+green, which is 'minus blue'). Pupils can then see the effects 
of colour filters and try for themselves subtractive colour printing 
with the second trio of filters. For details of that teaching, and 
demonstrations of colour mixing with small projection lanterns, 
teachers are referred to other literature.

This is a fascinating topic that may be useful as a source of enthu 
siasm and enjoyment for some groups; but we hesitate to suggest it 
in this very busy year for O-level candidates. (Theories of colour 
vision have been under discussion for many years. The practice of 
colorimetry has long seemed well understood. However, recent 
experiments by Land have raised new questions. Land has pro 
jected colour pictures when using only two spectral colours; and 
although interpretations of his work are still under discussion, 
those of us who have seen his demonstrations are convinced that 
his method succeeds. It may be well to read recent accounts before 
embarking on the teaching of colour.)

Another Look at Spectra with Gratings. This may be a good C116 
time for pupils to take a second look at spectra with a grating. They 
have just seen white light spread into a single spectrum by a glass 
prism; so we can remind them that the several spectra due to a 
grating are formed by interference - path differences of various
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whole numbers of wavelengths - the multiplicity is not a property 
of white light itself.

A Simple Spectrum. If they have not tried it in an earlier Year, C 1 1 7 
pupils might now try the 'poor man's spectrum' of sunlight. Each 
pupil holds a cheap glass prism close to his eye and looks at a bright 
sewing needle held at arm's length, in sunlight. The needle should 
be parallel to the refracting edge of the prism. For each colour, the 
prism forms a line image of the Sun's line image in the needle. It is 
said that pupils can even see the Fraunhofer lines with this4

Spectrometers? Setting up spectrometers to show spectra seems *
unwise at this stage. The elaborate apparatus obscures the simple *
story. Nor do we recommend using spectrometers to make *
measurements with gratings - that precision work belongs at A *
level. *

Sunlight. However, a spectrometer does make it easier to show D 1 1 8 
the Fraunhofer lines in the spectrum of sunlight. That is so sur 
prising and important a sight that it is worth while to set up a 
spectrometer for it, even though pupils have to take turns in look 
ing. A spectrometer with a good glass prism is adjusted and the slit 
is made very narrow. Sunlight is directed into the slit with a mirror 
and a small lens is used to form an image of the sun near the slit, so 
that there is enough light for a bright spectrum. We do not tell 
pupils to look for absorption lines, but simply say, 'Look at the 
spectrum. Is it brighter than usual at the blue end?' Then, when 
pupils see the thin black lines, we must give some explanation.

That will practically necessitate a demonstration to show the way *
in which such absorption lines can be produced. Though this may *
seem an advanced extension of our work that hardly fits here, we *
suggest giving it because of its great importance in modern *
physics. Such an absorption spectrum tells us the composition of *
the outer layers of incandescent stars, like the Sun. Slight shifts in *
the position of those lines tell us the speed with which stars are *
approaching or receding. *

So we should show the absorption spectrum in white light that 
passes through (cooler) sodium vapour.

Two methods that work well are described below. In each of them, 
a lens is used to form an image of the white-light source in the
$ For detailed instructions by M. E. Y. Gheury de Bray see The Science Masters' 
Book, Series II, Part I, p. 155 Qohn Murray, 1936.)
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middle of the warm sodium vapour. Since the image is there, all 
rays of white light from the source go through that point - shades 
of our teaching in Year III.

Sodium Absorption Spectrum (Optional extra). We can show 
the absorption spectrum of sodium vapour when white light from a 
hotter source passes through it. This is a troublesome demonstra 
tion to set up but well worth while for pupils who have seen the 
Sun's spectrum.

D119 
OPT.

a. Small demonstration with spectroscope. A prism spectroscope is 
set up and adjusted with a narrow slit. White light from a lamp 
filament is directed on to the slit. A sorted Bunsen flame is placed 
in the path of the light. Pupils are unlikely to see the black absorp 
tion lines in the yellow region unless we make sure that all the while 
light passes through the region of the flame that is rich in sodium 
atoms. To ensure that, we arrange a lens to form a real image of the 
lamp filament in the middle of the flame, and then another lens to 
form an image of that image on the slit of the spectroscope.:}:

b. Large demonstration with vapour from sodium. We arrange a 
large demonstration spectrum with white light from an arc or an 
overrun lamp filament. We interpose in the path of the light a 
vertical chimney inside which metallic sodium is burned. The 
chimney is a piece of iron pipe about 2 inches diameter by 10 
inches high. Wide slits are cut in it near the centre to allow the light 
to pass through it. A piece of metallic sodium, about \ cubic centi 
metre, is placed in a small metal spoon which is poked into the 
chimney through a hole in the side of the tube level with the slits. 
The spoon with sodium in it is heated by a Bunsen burner pushed 
up the tube from underneath. The sodium melts, then catches 
fire (and the bunsen is turned out). The burning sodium produces a
$ See the description by W. C. Badcock in The Science Masters' Book, Series II, 
Part I3 p. 162 (John Murray3 1936.)
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.lot of excited sodium vapour inside the tube in the region where 
the light passes through the slits. Clouds of sodium oxide from the 
burning emerge from the top of the chimney, but there is not 
enough to be a danger. During the burning pupils see a black band 
appear in the yellow region of the spectrum; but if the white light 
is cut off they see a bright yellow band at the same place from the 
burning sodium.

To make sure that all the white light passes through a region rich 
in sodium vapour, we insert a lens to form an image of the filament 
in the middle of the chimney and that image serves as the original 
slit for the white light spectrum.
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Chapter 6 
RADIOACTIVITY

Experimental Study 
Rutherford Atom Model



PROGRAMME
At this point we could continue with grating spectra in two dimensions *
and three dimensions, to throw some light on X-rays and crystals, *
and to enable us to discuss 'matter waves'. *

	*
Pupils are also ready to appreciate one aspect of a discussion of *
theories of light: evidence that light consists of waves. The other *
aspect, the particle behaviour of light, which we emphasize when we *
speak of photons, should wait until pupils have seen the photo-electric *
effect, both in ' wholesale' form (demonstration), and in 'retail' form *
with photons arriving one by one (film). And that had better wait *
until pupils have received some explanation of the working Geiger *
counters, because we shall use a counter to demonstrate photons of *
ultra-violet light and perhaps of X-rays. *

	*
Therefore, since pupils would probably enjoy a change from inter- *

ference experiments, we suggest treating radioactivity now, followed *
by a study of the photo-electric effect which will lead us back to theories *
of light and the contrast between the two aspects of light, light waves *
and photons, and then on to matter waves. *

	 *
We shall also suggest a short description of the general electromagnetic *
spectrum in that later discussion of light. (Appendix.} *

RADIOACTIVITY AND ATOM MODELS
This should be an experimental study taught by real experiments *
and films of real experiments. How much is done by class experi- *
ments must depend on safety rules and equipment; but the whole *
treatment should be by class experiments and demonstrations *
combined, and not solely by giving pupils descriptions or asking *
them to read a book. We suggest the emphasis should be on the *
effects of radiations in making ions and on exponential decay and *
nuclear changes. It has been customary to emphasize the properties *
of alpha, beta and gamma rays by studies of their absorption, etc., *
but those are now only useful information for technical workers *
and are no longer essential tools of investigation - so we should *
treat them very lightly with our pupils. Experimental work on *
those properties is interesting and pupils enjoy it; but it leads them, *
as in the older teaching of chemistry, to a collection of information *
without any strong contribution to understanding. *

Counters are important and pupils should be shown how they *
work so that these common instruments are not invested with *
mystery. *
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In our present teaching, cloud-chambers are even more important 
because they provide the nearest thing to direct evidence of nuclear 
collisions and the scattering phenomenon that leads to the idea of a 
nuclear atom. For the latter purpose, alpha-particle tracks are 
essential, and we should not only let pupils see real tracks but show 
a large exhibit of photographs, which should remain on view for 
weeks. (The Nuffield Physics Group is planning to collect a set of 
such photographs, in the form of large prints or transparencies, 
for use in schools.) Lantern slides run too quickly, and leave too 
shallow a memory for this very important use of cloud-chamber 
pictures.

Since radioactivity is a topic of considerable interest, with a number 
of aspects which can be described fairly simply, teachers may feel 
tempted to spend a long time on this section. But since we hope 
there will be time to proceed to the photo-electric effect, theories of 
light, and 'matter waves', to carry forward our building of atomic 
models, we suggest the teaching of radioactivity should not be 
prolonged. On the other hand, pupils who are especially interested 
will find there are good books, both on the early history of radio 
activity:}: and on modern developments.

Atom Models So Far. In describing solids, liquids and gases, 
and in developing kinetic theory, we treated molecules and atoms 
as round knobs with no internal structure. We described them as 
exerting attractions on each other at short ranges of approach and, 
necessarily, repulsions at very short range. We assumed that those 
forces are 'the same on the way in as on the way out' when one 
atom or molecule approaches another ; so that collisions and other 
interactions are elastic.

Then in Year IV, we met inelastic effects, when electrons are torn 
off atoms by violent electric fields, or knocked off atoms in violent 
collisions. The idea of ions in gases as well as in solutions was 
essential for an understanding of Millikan's experiment. We illus 
trated that idea by showing currents being driven through air by an 
electric field when a candle flame was placed in it, when a lighted 
match or small Bunsen flame provided ions, and-if possible-when 
a radioactive source was held nearby. Those currents were too 
small to demonstrate with a micro-ammeter, so we used an 
electroscope and showed the leaf rising as charge was driven across 
to it, or falling as charge leaked away without any driving battery. 
Such ions can only be produced at the expense of some supply of
$ An excellent account of the early history is given in The Restless Atom by A. 
Romer (paperback, Heinemann Science Study Series).
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energy to drag electrons off uncharged atoms. We did not say that * 
then, but we should say it now. *

In Year IV, we showed some properties of electron streams released *
by hot filaments in a vacuum. Now in Year V we have measured *
e/m for the particles in such streams; and, comparing the result *
with the value for hydrogen ions in solution, we came to picture *
electrons as very small chips of atoms. *

*
Thus, pupils should have by now a picture of atoms as containing *
electrons (fairly easily detached) and some positive material, *
probably holding most of the mass of the atom, the whole being *
held together in some unknown way. We have gone one stage *
further in making pictures of atomic structure, in devising models *
to help our thinking. *

Ions in Air Carry Current. We remind pupils of our tentative T 
atom model - electrons embedded in positive electricity. We ask 
what ways they know of removing electrons, making ions. We show 
again a demonstration of a flame providing ions which can carry a 
current:

a. A candle flame, projected by shadowing, in a strong electric D120 
field between two vertical plates.

b. A high voltage (E.H.T.) arranged to drive ions across an air D121 
gap between two vertical plates to an electroscope. And the same 
with the high voltage removed, showing ions carrying charge away 
from the charged electroscope. We provide ions for that by a small 
flame. A lighted match does well.

(This is not the time to show that effect with more complicated * 
apparatus, such as a d.c. amplifier. If the school has that special * 
device and pupils are familiar with its use, it could be shown here. * 
But at this stage, where we have many new things to show, sim- * 
plicity is best.) *

*
Now pupils are ready to meet radioactivity with more under- *
standing. We should first show the ionizing effect of the radia- *
tions from radioactive substances - the effects by which they were *
discovered, and by which they are still often measured. *

Radioactivity
Radioactivity was discovered by the ionizing effect of certain T 
substances; and at first that was its chief property: making ions
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in air, in photographic emulsion, and in flesh. Nowadays we are 
even more interested in the nuclear changes that release the par 
ticles which produce that ionization; but pupils should start by 
seeing the original property.

We charge up an electroscope and hold a small alpha-particle D122a 
source near it (one microcurie of pure alpha source will suffice). 
Holding a hand near a charged electroscope will change its local 
capacity and make the leaf move. But if the teacher then holds 
his hand still, further movement of the leaf simply shows ioniza 
tion.

For comparison, hold a lighted match near the electroscope; that D122b 
produces more ionization. To show that the match produces 
something conducting in the air, try holding the match some dis 
tance away from the electroscope and blowing across the top of its 
flame towards the electroscope. If we had a large enough radio 
active source, we should see the same thing with that.

Then make a more stable arrangement: attach the radioactive D122c 
source to the rod of the electroscope, or fix it on a stand nearby, 
and install a grounded plate above the electroscope's rod so that 
the source is in a region of electric field when the electroscope is 
charged. Charge up the electroscope and watch it.

Now set up a more formal arrangement for charging the electro- D122d 
scope by ions driven by a battery across an air space between two 
metal plates. Try placing the radioactive source in or near the air 
space; and compare that with the effect of a flame.

Since large sources are not available or suitable for our teaching *
work, it is tempting to change from a common electroscope to a *
more sensitive instrument of the oscillating leaf or fibre type. *
However, we strongly urge teachers to avoid those. In those *
instruments, charge is driven to the electroscope as before, but *
when the leaf has moved only a short distance, it hits a metal plate *
and discharges. The rate at which charge is arriving - in fact the *
current flowing to the electroscope - is measured by the frequency *
of pulsing of the leaf. However, there is serious danger of the *
pulses of the leaf's motion being mistaken for pulses due to indivi- *
dual particles. Just here, where we are about to deal with pulses of *
charge produced by individual alpha or beta particles as evidence *
of random events - the radioactive disintegration of atomic nuclei *
- would be the worst possible place to let that confusion arise. We *
shall be content with an ordinary electroscope, which will show *
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ionization by alpha particles but will not be sensitive enough to 
show ionization by beta particles unless special arrangements are 
made; and there will be no chance of seeing the effect of gamma rays.

Then we proceed to a sealer with Geiger tubes where we shall 
see individual particles.

Preparation for Understanding Geiger Counters
Pupils will understand our demonstrations of radioactivity much 
better if the Geiger counter is not presented suddenly as a mys 
terious instrument. They may have seen it used without much 
explanation in Year I; and they have seen the sealer used as a 
clock in Year IV; but we should now show some experiments that 
will help pupils to feel that a Geiger-Miiller tube makes sense. 
If the experiments described below seem to teachers rather 
childish, we hope they will try the treatment once, because we 
rind it does help to introduce the counting of ionizing particles.

1. Salt into water. We set up a circuit consisting of a mains lamp, 
two copper wires in a large empty beaker, a switch, and the a.c. or 
d.c. mains supply.

We switch on: the lamp does not light - ordinary air does not 
conduct a current.

We make the two wires in the beaker touch: the lamp lights - 
copper conducts a current. (The lighted lamp shows one of the 
effects of current, which are all we know an electric current by.)

We separate the wires again and fill the beaker with distilled water: 
the lamp does not light - water does not conduct enough.

We take a large handful of table salt and throw it into the beaker: 
the lamp lights - we have provided ions to carry the current. We 
then explain:

'There is a p.d. of 200 volts or more between the wires. That 
makes an electric field across the beaker, through the water. 
That field is ready to tug electric charges. It will drag a positive 
charge one way and a negative charge the opposite way. If there 
are charges there and they move under the action of the field, 
that will be a current. I must have put in some charged things 
- carriers, ions as we call them.

'(We believe those ions are charged atoms of sodium and
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chlorine. In fact we believe the sodium and chlorine atoms in the 
crystals of salt were already there as ions, not as neutral atoms, 
in the salt crystals.:}: The water has crawled in between the ions 
in the crystal and lessened the forces between them, so the crystal 
has fallen apart into separate ions.) Now those ions are carrying 
a current through the salt solution, and electrons in the copper 
wires take over the job and keep the lamp alight.

'You think this is an experiment to show electrolysis. It is not! 
This is a salt counter. It is a scheme for counting handfuls of salt. 
/ throw the salt in: you count how many times the lamp lights. 
Of course you will have to wash out the beaker and refill it after 
each count.'

2. A match and a spark. We arrange to produce a large, fat spark D123b 
across a gap between two metal balls. Before the class the teacher 
should try out the arrangement, find the maximum separation 
between the balls for a spark - that distance depending on the 
voltage of the E.H.T. - and then move the balls a little farther apart, 
so that the supply just fails to produce a spark. To make the spark 
a fat, noisy, one when it does occur, we connect a large capacitor 
across the spark gap.

Then, in class, we explain that we are going to make a very strong 
electric field between the two balls, and that we shall store up posi 
tive and negative charges not only on the balls but also on the 
plates of the big capacitor, so that there are big charges waiting 
to be driven across the gap. However, the electric field between the 
balls is not quite big enough to start a spark.

' A spark will not start until the electric field is strong enough. We 
do not have quite enough voltage here to start a spark. The 
electric field is very strong: the camel's back is loaded very 
strongly. It will only take one or two straws to break the camel's 
back; it will only take a few ions in the air in the gap to start a 
spark. Now watch.'

When the capacitor and balls have been charged up to maximum 
voltage by temporarily bringing wires to them from the E.H.T. 
supply, we hold a match flame underneath the gap. There is a 
loud, visible, spark. We try that again.
$ We might tell a fast group that we have evidence of that in the scattering of 
X-rays by the layers of atoms in a crystal of salt. But we could hardly give Bragg*s 
ingenious argument by which he showed that his X-ray measurements lead to 
the conclusion that the atoms in the crystal are already ions, Na+ and Q-.

299



'In that spark, we were not just driving across a few ions put 
there by the flame. They were only the starters, the pacers for 
the full team running the race. As each ion is driven by the 
electric field in the gap, it accelerates, it gathers speed, gains 
kinetic energy, until it collides with an air molecule. There it 
shares and loses its gains; and then makes a fresh start with 
accelerated motion. If the electric field is not very strong, the 
ion makes an elastic collision when it hits an air molecule; the 
two just bounce away from each other, with some sharing of 
energy.

'But if the electric field is strong enough, the moving ion has 
gained so much kinetic energy that it makes quite a different 
kind of collision: it knocks an electron off the atom it hits. It 
cannot do that unless it has a lot of kinetic energy: much more 
than the ordinary energy of an air molecule. If the moving ion 
knocks an electron off an atom or molecule of air, it thereby 
makes a fresh pair of ions. The positively charged remainder of 
the target is driven by the electric field one way, as a positive 
ion, and the electron that has been torn off is driven in the 
opposite direction. The electron may continue for some distance 
accelerating very fast because of its small mass, or it may join a 
neutral atom and become a more massive negative ion.

'Anyway, the collision produces two new ions, and as they are 
driven by the electric field they accelerate and have good chances 
of producing more ions when they make a collision. In this case, 
when the electric field gives an ion enough energy, as it travels 
one free path, to knock an electron off in the ensuing collision 
we have a multiplication of ions: a chain reaction, in which one 
original ion produces two more, and they produce more, and 
they produce more, and so on. Then there is an avalanche of 
charged particles, driven across to the metal ball at each end of 
the gap. That is a spark.:]:

$ Of course, the events in a spark are much more complicated than this simple 
story of an avalanche of electrons built up in ionization by collision. And the 
events in a Geiger counter are different and certainly complicated. Yet this gives 
beginners a sensible idea of the general process.

A useful, simple model of an avalanche can be made as follows: place a wooden 
plank (say 4 ft. long by 6 in. wide), on the table, raised at one end so that it slopes 
gently. Encircle the plank with a rubber band every 4 inches, so that each band 
makes a small horizontal ridge on the plank. Place a row of marbles just above 
each ridge. The marbles represent air molecules, regimented in rows one mean 
free path apart. The slope of the plank represents the strength of electric field 
applied to an ion. With a small slope one marble released at the top of the plank 
(to represent an initial ion) produces a small' leakage current'. But if the plank is 
then raised to a greater slope - 'all ready for a few straws to break the camel's 
back' - a marble released at the top starts a dramatic avalanche.
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'The spark that you see and hear is an after-effect of that 
avalanche. Atoms that have lost an electron give out visible light 
as they recover an electron and return to normal state. (Or per 
haps some atoms have only been excited in some collisions; 
then they too give out visible light as their electron radiates 
the extra energy it had received.) The noise of the spark is 
simply due to the heat developed in that narrow region of the 
avalanche current: the sound wave comes from the high pressure, 
overheated air there.

' So we think of the spark as an avalanche of electrons and 
negative ions driven one way, positive ions driven the other way, 
all increased to tremendous numbers by a chain reaction of 
successive collisions, which starts from a few ions placed in the 
gap originally. Then in an electric field which is not quite strong 
enough to start a spark of its own accord, a few ions supplied 
from outside can start a spark.

'Now watch the experiment again.'

We charge up the system again and start a spark with a match flame. 
Then we say:

'That is not what you think. That is not a demonstration of a 
spark: that is a match counter. I light the matches, you count 
the sparks. Of course we have to charge up the capacitor again 
each time, but we can arrange to do that automatically, and it 
could be done quite quickly.'

3. Alpha particles and sparks. Then, still without any explanation D123c 
of our line of teaching, we show a spark counter for alpha particles. 
That consists of a very thin wire, held taut a short distance away 
from a metal plate or gauze. We use the E.H.T. supply to produce 
an electric field between wire and plate a bit weaker than the field 
in which a spark starts of its own accord. Then we bring an alpha- 
particle source near, so that the region between wire and plate is 
within the range of the alpha particles. The great flock of ions left 
in the air by each alpha particle is more than enough to start a 
spark. So pupils see spark after spark flash between the wire and 
the plate at random places and with random spacing in time.

We explain that we are using a radioactive source of alpha particles, 
which pupils know can produce ions which carry away charge from 
an electroscope. We explain that we have arranged a high voltage 
between wire and plate, just short of the sparking voltage, so that
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the electric field is ready to drive an avalanche, if we provide some 
ions to start it. The most agile agents in the avalanche will be 
electrons. They will move fast, and often knock electrons off other 
atoms in turn before they themselves have time to be collected by 
some atom to form a lumbering negative ion. We want to make 
an avalanche of electrons, and collect them. We use the extra 
strong electric field round the thin wire - strong just as the field 
near a charged point is - so we make sure that the wire is positive. 
Then it will collect the electron avalanche.

A simple form of spark counter has a single wire, protected by a 
metal gauze, which acts as the other electrode. Pupils can see the 
sparks through the gauze, as well as hearing them, when an alpha 
source is brought near to it. A clearer form of counter dispenses 
with the gauze and has a grid of fine wires in front of the other 
electrode, which is a small metal plate. Then pupils can see sparks 
easily as they jump from various places on the grid, when an 
alpha source is held in a fixed position nearby. That makes the 
random nature of the phenomenon clearer. This form of spark 
counter is just as safe. The grid of wires can be connected to earth, 
and the plate, which is connected to the high voltage, can be pro 
tected in a plastic frame.

It should be clear to pupils that now they are seeing an alpha- 
particle counter. But we should complete the story and point out:

'Now we have an alpha-particle counter. The radioactive 
material here emits the alpha particle, you count the sparks. 
A spark starts when an alpha particle moving at fantastic speed 
through the air near the wire makes enough ions to "break the 
camel's back" and let the electric field make more ions by 
collision and so start a spark.

'You have seen a salt counter in which a handful of salt provides 
the ions and you can count the number of times the lamp lights; 
a match counter in which a lighted match provides ions to start 
a spark in a strong electric field, and you count the sparks; 
and now an alpha-particle counter in which again you count the 
sparks.

'Each alpha particle that passes through the right region starts a 
spark. The alpha particle itself has flown through at terrific 
speed long before the spark gets going; but it leaves ions in its 
wake and they start the spark. So when you count the sparks 
you are counting single alpha particles. Each is a small piece of
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an atomic nucleus flung out with enormous energy when that 
nucleus "explodes" in a radioactive change. You are counting 
single atomic events.

'This is the essential property of radioactive atoms. They do 
not just stay there as atoms of ordinary copper or carbon do; 
they are unstable, they suddenly break up, flinging out a particle 
such as an alpha particle, becoming an atom of a different 
chemical element. By counting how many atoms of some stock 
of radioactive material break up in a given time, we can estimate 
the size of the whole stockpile. So counting alpha particles 
with a Geiger counter like this is very useful.

'The counting need not be done by watching sparks: it can be 
done automatically. That is what a sealer does.'

Geiger-Muller Tube and Sealer
We explain that the wire of the spark counter is placed inside a T 
metal shield, which acts as the other electrode, and the high voltage 
supply is incorporated in the sealer which does the counting of the 
pulses of charge delivered by the electron avalanches to the central 
wire.

The actual phenomena inside a tube are much more complicated *
than the simple story of ionization by collision producing an *
avalanche of electrons. We led up to that story with the intention *
of making Geiger counters seem reasonable to pupils, so that they *
could then appreciate what the counters tell us about radioactivity, *
feeling that they are using a familiar instrument. Inside the tube *
X-rays probably play an important part as well as colliding electrons *
and ions and the detailed picture is extremely complex. We do *
not apply sufficient voltage to an ordinary Geiger-Muller tube to *
produce a roaring spark when an energetic particle passes through. *

*
Over a considerable range of high voltage, the plateau, a pulse of *
charge of almost constant size arrives at the central wire, whatever *
the ionization contributed by the initiating particle. Thus we count *
the number of particles by the number of pulses but we do not *
distinguish between one kind of particle and another or between a *
more energetic particle and a less energetic one. Other forms of *
counter, arranged to measure a more gentle level of ionization, *
can distinguish between one particle and another. For our teaching, *
we use tubes which just give pulses of a standard size, working on *
their flat plateau. *

303



We show radioactive sources sending alpha, beta, gamma rays D124 
through appropriate counter tubes. Although a tube that will 
respond to alpha particles is more expensive, we should have one and 
start with it. It must have a very thin 'window' so that the alpha 
particles can get into the gas in the tube and make ions, without 
being stopped by the wall of the tube itself. If the window is made 
of transparent mica, we can also use it to demonstrate photons, by 
lighting a match in front of it. It will count some of the few ultra 
violet photons that come from the flame. We shall make that very 
important use of it later.

We show that alpha particles have a very short range. D125;

We should at once show a cloud chamber in action for comparison. 
That will underline the short range of alpha particles and show the 
intense ionization they produce along their track.

We show how easily alpha particles are stopped: a piece of ordinary D125t 
paper is too thick for them to get through; but a piece of cigarette 
paper will just let them through.

If the laboratory already has sufficiently sensitive electroscopes for C126 
class experiments, pupils can watch a uranium oxide source dis 
charging a charged electroscope.

We can show some quick experiments to illustrate absorption of 
beta rays and gamma rays by sheets of aluminium and lead; but 
we should not labour that study. Measurements of absorption 
coefficients were a very early way of distinguishing between one 
kind of radiation and another and of making rough estimates of 
energy. Although we still need to know about such matters, their 
importance lies in early history and they do not deserve much 
attention now. If we were to devote time and trouble to careful 
teaching of absorption properties, we should be giving pupils the 
kind of routine science that characterized chemistry in an earlier 
generation, when the learning of properties seemed to be of prime 
importance.

When counting gamma rays, we might show a fast group a demon 
stration suggesting an inverse-square law for the counting rate at 
various distances from a small source. Since they already know 
what an inverse-square law is like, from the study of gravitation, 
they should appreciate a real example. The experiment has an
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important moral: in safeguarding oneself from gamma radiation 
the best thing is to move farther away. When at ten times the dis 
tance one should feel 100 times as safe.

We should not overstress the dangers of radioactivity: from general *
talk and reading the public press pupils are likely to take such *
dangers all too seriously. We should say, however, that the way in *
which the radiations harm us is chiefly by making ions in our flesh *
and thereby upsetting or killing cells. (In the case of neutrons, *
some damage is done by knocking protons forward so that they *
make ions; but some damage is also done by the neutrons making *
nuclear changes which lead to radioactive material which itself *
provides particles that do damage.) *

Cloud-chamber
At the same time as seeing a sealer counting alpha particles, beta D128a 
particles, gamma rays, pupils should see an expansion cloud 
chamber showing alpha-particle tracks. However many times they 
have seen this demonstration apparatus at work in earlier years, 
they should see it again now, because they are studying alpha 
particles seriously now, whereas earlier they must have looked at 
them as strange wonders of atomic physics.

If the simple diffusion cloud-chambers suggested for Year I are C128b 
available, pupils might try them again. They will see tracks of 
alpha particles from thoron. If they watch a carefully balanced 
diffusion cloud-chamber long enough they will see the tracks of 
high energy electrons from cosmic rays.

As soon as the cloud-chamber is shown, teachers should post up a D129 
collection of enlarged cloud-chamber pictures, and possibly some 
pictures from bubble-chambers. These now serve as prime evidence 
of the properties and behaviour of the high-energy particles flung 
out by radioactive nuclei when they decay. The Numeld Physics 
Group are making a collection of cloud-chamber pictures for this 
use. The pictures, when posted, should be accompanied by short 
printed descriptions, large enough to be read by pupils at a dis 
tance.

Pupils should see photographs of: a sheaf of alpha rays from a small 
radioactive source, showing their short range; alpha rays with one 
of them making a collision with a massive nucleus, such as nitrogen 
or oxygen in the air in the cloud-chamber; alpha rays with one of 
them making a collision with a hydrogen nucleus, perhaps from the
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water in the cloud-chamber; beta rays wandering through the 
wet air with an irregular path; making collisions less frequently, 
a beam of gamma rays or X-rays, shown by the tracks of the elec 
trons that they eject with their powerful photo-electric effect.

There should be pictures showing alpha-ray tracks bent by a strong 
magnetic field and beta ray tracks bent far more by a weaker field.

Identifying Alpha Particles. There should be a special picture D129 
showing the tracks of alpha rays in wet helium, with one making a 
nuclear collision.

The angle of that fork should be compared with the angle in an 
elastic collision between two large visible equal masses, one of 
them originally at rest. That may be shown with two very long D130 
pendulums carrying equal steel balls, or with equal ring magnets 
coasting on carbon dioxide on a level sheet of glass. The comparison 
suggests strongly that alpha particles have the same mass as helium 
nuclei. And since the two tracks of the fork in the cloud-chamber 
picture look alike we feel sure that alpha particles are helium nuclei, 
moving at high speed.

In the early studies of radioactivity the identity of spent alpha rays *
and helium atoms was tested by an important experiment, in *
which a spectrum gave the final verdict. That experiment by *
Rutherford and Royds was important at the time and is interesting *
now as an experiment that clinched a decision; but since we *
cannot do the actual experiment, it is better to show the right- *
angle fork instead and relegate the spectrum experiment to A-level- *
or to historical studies. *

If teachers wish, they can show pupils a theoretical attack on that T 
right-angled fork; or they could ask a fast group to try to work it 
out for themselves. If a particle of mass m moving with speed v 
hits another particle of the same mass at rest, what must be the 
angle between their paths afterwards? We draw a triangle to show 
the two lots of momentum afterwards adding up to the same 
vector as the original momentum of the incoming particle. Since 
the masses are equal, each side of the triangle is a velocity multiplied 
by the same mass: so we may divide by that mass and take the 
sides of the triangle to represent velocities. We assume that the 
collision is elastic; that is, we assume that no nuclear energy is 
released or absorbed, and no electromagnetic radiation is emitted. 
Then kinetic energy is conserved in the collision. Since the masses 
are equal, we may cancel \m throughout and say that (speed) 2
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beforehand must equal the sum of the two lots of (speed) 2 after 
wards. We quote Pythagoras, and claim that the momentum triangle 
must be right-angled.

Scintillations. In early investigations, the tiny flashes of light 
made by a single alpha particle hitting a screen of zinc sulphide 
provided a very important tool. Counting 'scintillations' was 
tedious and tiring, but it provided the essential measurements of 
alpha-particle scattering that led to the nuclear atom-model. Then 
Geiger counters (and proportional counters) superseded that 
method completely for counting individual particles.

Then, decades later, scintillation counters came back into use, with 
more efficient sensitive materials and photomultiplier tubes 
(amplifying by millions) to take the place of human eyes.

(Warning: the spinthariscope, a device from the early days of 
radioactive studies, may well show only 'pile-ups' of several scin 
tillations together, rather than separate flashes from individual 
alpha particles. Nevertheless it does show nuclear events occuring 
with random spacing in time.)

Now, solid state counters are coming into use, in which the im 
pinging particle makes a similar disturbance - without a flash of 
light playing a part. It pushes some electrons into upper levels, 
leaving 'holes' that act as movable positive charges, in the solid 
semiconductor. Both those electrons and the holes are driven out 
by a strong electric field, making a pulse of current that can be 
counted. Thus, the mechanism closely resembles that of a gas 
ionization (proportional) counter.

Exponential Decay
One of the most important characteristics of radioactivity is that 
the rate at which a stock of radioactive material seems to die down 
exponentially, falling to half value again and again in the same time 
- or falling to -fo value in equally regular, longer, intervals. That 
tells us that the chance of an atom disintegrating is constant in 
time. We are looking at a series of many chance events, all with a 
standard unalterable chance - or at least it appeared unalterable 
until we were able to bombard nuclei with streams of particles 
having such high energy that they can interrupt the course of 
normal radioactive life by effecting more immediate changes.

So the rate at which we count disintegrations is proportional to the
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total number of unchanged radioactive atoms at the moment. Both 
that rate and the stockpile itself die away exponentially with the 
same characteristic half-life.

We should not attempt to teach the mathematical meaning of 
exponential decay at this stage - that will form an excellent study 
in A level - but pupils should, if possible, watch a counter re 
cording the decay of a real substance. That may well be possible 
with the co-operation of the chemistry department.

The restrictions on the availability and handling of radioactive 
materials in schools do not apply to the 'natural' radioactive 
element uranium and its salts. Uranium itself decays with an 
extremely long half-life, emitting a low-energy alpha particle. Its 
daughter has a half-life of about 24 days. In a classical experiment D131 
in the history of radioactivity that daughter was separated out OPT. 
chemically and its exponential decay measured. That would be 
too slow to be convincing here. But that daughter has a daughter 
in turn with a half-life just over 1 minute, emitting beta particles. 
The latter element, the granddaughter of uranium, can be separa 
ted from uranium by extracting with an organic solvent.:}: The 
half-life is short but a counter needs only a very small quantity to 
give an appreciable counting rate. Allowing for the time taken for 
the chemical separation we shall still obtain enough from a small 
quantity of ordinary uranium salt (where it will be 'in equili 
brium') to enable the counter to give a clear story.

$ The chemical separation is not difficult. A few grams of uranyl nitrate treated 
quickly will yield about a microcurie of the short-life granddaughter (proto- 
actinium) enough to provide easy counting with a sealer.

The uranyl nitrate is dissolved in water acidified with HC1 (hydrofluoric acid is 
the traditional agent, but hydrochloric will suffice). The solution is shaken for 
a few minutes with organic solvent: either amyl acetate or di-isopropylketone. 
The solvent extracts the granddaughter element, leaving the uranium and its 
daughter in the aqueous solution. The solvent is placed in a small plastic bottle 
near the beta-counter tube. (The 2-3 Mev beta rays get through the plastic wall 
easily.)

To separate the solvent for that, one may use a separating funnel, hi which case it 
should be' washed ' by shaking with a fresh lot of acidulated water and separated 
a second time. Or one may keep solvent and aqueous solution together in a small 
plastic bottle (preferably inverted) and place the counter tube above the bottle to 
catch beta rays from the solvent. The latter method is easier, and can be repeated 
just by shaking the bottle again for a minute, but the background of radiation 
from the solution may be serious, making a much poorer signal-to-noise ratio 
than the former method's almost pure solution of the granddaughter.)
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If we show exponential decay in a real demonstration with radio- C 
active material, we should also show a model to help to make it 
clear - as simple a model as possible. We suggest the following, 
which sounds childish but preaches the moral so firmly that it 
proves worth while.

Give each member of the class a penny and ask the whole class to 
stand in line, each member shaking the penny in his closed hands 
or tossing it and catching it. Every quarter minute the teacher gives 
a signal and each pupil looks at his penny to see whether it is' heads' 
or 'tails'. Pupils with 'heads' stay in the line, pupils with 'tails' 
fall out. This sounds like a long experiment, but we should 
reflect that it cannot last more than about 2 minutes! And towards 
the end it will raise the very interesting question 'What happens 
about the last atom?'

Changes from Element to Element
The changes when an unstable element emits a nuclear particle T 
should be described very briefly.

(Even at A-level, we should not let this expand into a modern form *
of rote-memory chemistry in which nuclear reactions are learned *
by heart. In selecting examples to illustrate various types of change, *
we should survey the great variety known today and choose *
examples that seem simplest rather than adhere to the original *
cases of the historical development. In this matter, we might look *
at a similar choice in the teaching of chemistry, between choosing *
clear modern examples and following more difficult ones that made *
the early history.) *

We, as mature physicists, take radioactive changes from one ele- T 
ment to another in our stride, but we should present them to pupils 
as an amazing break with the whole tradition of nineteenth-century 
chemistry, a change of the 'ultimate' atoms, a transmutation of 
immutable elements. We should describe the complete change of 
chemical properties between parent and daughter elements.

At this stage, we can only mention transmutation, and perhaps 
illustrate its meaning by the change from radium, a dense metal, to 
radon, an inert gas (+ the helium that emerges as an alpha 
particle).

Teachers might want to carry the discussion on further with *
specially keen pupils. The notes below are only suggestions for a *
possible buffer extension. *
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Unstable Nuclei and Radioactive Changes from Element 
to Element (/Votes for a buffer-extension topic)
We take the break-up and change of radioactive atoms for granted; *
but most pupils have been taught to regard atoms as the ultimate *
chemical particles. True, electrons can be chipped off an atom and *
possibly all an atom's electrons stripped off to leave a bare nucleus; *
but yet that nucleus remains impregnable - according to the simple *
story. *

	*
Although we no longer picture the electrons of an atom neatly *
pursuing sharply defined orbits, we do think of them as arranged *
in energy levels, and we even picture those in lowest energy levels *
as most likely to be found in the outer regions of an atom, some *
distance out from the nucleus. We think of each energy level as *
being clearly defined by the whole arrangement of nucleus and *
electrons: it is specified by a definite energy, the energy needed to *
remove that electron to infinity, or the energy which would be *
dissipated if that electron came into its place from infinity. The *
bigger that energy, the more strongly we consider the electron *
'bound' to the system. *

	*
The outermost electrons of a neutral atom determine its chemistry; *
chemical changes involve exchanging or sharing electrons from the *
outermost groups, that is, those which have lowest' binding energy' *
- the smallest energy needed to remove the electron. *

	*
Thus, the structure of the atom is best described by its whole series *
of energy levels: those in which electrons normally reside, and *
further levels to which some electrons can be moved when the atom *
is excited. *

	*
The arrangement of energy levels and their values depend on the *
number of electrons in the whole system and the electric field in *
which they find themselves. That field is determined by the charge *
of the nucleus (and by the charges of the other electrons in the *
atom). For a neutral atom the total number of electrons is just *
equal to the number of positive electron charges of the nucleus. *
For a neutral atom of atomic number Z there are Z electrons and a *
nuclear charge -\-Ze. Thus the energy levels of that atom are *
determined by Z, because that atomic number determines the *
number of electrons and the fields in which they find themselves. *
The energy levels for 'outermost electrons' determine chemical *
behaviour, and therefore we may say that chemical behaviour is *
determined by the atomic number Z. However, chemical changes *
do not affect the state of affairs of inner regions near the nucleus, *
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except in the lightest elements so, in a way, the relation between Z *
and chemical properties is indirect, via lie electron arrangement *
that the nuclear field engenders. *

Atoms and Energy Levels for Chemistry. In order to in- *
terpret chemical changes in terms of electron behaviour and energy *
levels, we need to use the rules of quantum mechanics, which *
modify our simple, commonsense expectations very seriously. *
Therefore, there is no hope of our simple atomic model assisting in *
teaching Chemistry at this stage, unless one is willing to accept *
crude, qualitative descriptions - plain assertions to be taken on *
trust. *

	*
All we expect here is that pupils will learn that the nuclear charge *
Ze determines the number of electrons; and that their arrangement *
and selection of energy levels are determined by complicated rules *
which would require much more physics; but that those ' outer- *
most' electrons which have small binding energy are exchanged *
and shared between atoms in the making of chemical compounds. *

	*
Therefore to change one element into another, the alchemist's *
dream of lead into gold, would require a change of nuclear charge, *
Ze. At first sight that seems impossible, as we picture the nucleus *
deep in the atom bound together by tremendous nuclear forces. *
But it does happen in the radioactive elements - the heaviest *
known, with nuclei too big to hold together permanently. *

	*
When first discovered, radioactivity was known by the ionization *
that appeared in air, etc., all around the material; then the actual *
radiations that caused the ionization were identified and studied: *
alpha, beta and gamma rays. And at the same time, over half a *
century ago now, transmutation was discovered. When a radio- *
active atom ejects an alpha particle, or an electron as a beta ray, *
it changes its whole chemistry. We are sure that the alpha or beta *
particle comes out from the nucleus, carrying away not only some *
'nuclear energy' but also part of the nuclear charge. *

	*
Radioactive atoms are unstable: they have a definite, constant, *
half-life which tells us something about their probability of *
breaking up. For radium, for example, the chance is 50-50 whether *
an atom breaks up or not in the next 1,620 years, and that chance *
remains constant. However long we keep a sample of radium, those *
atoms which have not yet disintegrated are still just the same kind *
of radium atoms with just the same kind of chance of disintegration *
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in the future, 50-50 for lasting less than another 1,620 years 
or more. The instability appears to be something inherent in 
the nuclear structure. Nowadays, taking a wave view of the 
behaviour of nuclear particles, we picture a stationary wave pattern 
defining the life of an alpha particle inside the nucleus. But that 
wave is not completely confined; it 'leaks' through the potential- 
wall barrier round the nucleus and runs on as a faint wave outside. 
We interpret that wave as telling us probabilities of locations - it is 
not a mechanical wave carrying energy and momentum - so while 
we expect to find the alpha particle inside the nucleus, we see there 
is a chance of finding it one day outside, despite what would seem 
an insurmountable potential wall. That chance of the alpha particle 
being outside - being emitted - is definite and constant, a part of 
the defining wave pattern, as long as the nucleus lasts.

That view is fruitful in helping us to understand nuclear structure 
and make predictions - for example, it tells us to expect high energy 
of alpha particles to go with short half-life of the parent nucleus.

All this goes far outside what we can teach O-level pupils; but it is 
relevant background to our own thinking when we are deciding 
whether to show a film of' matter waves' and give the wave: particle 
idea. That is not just a strange little item decorating modern physics: 
it is of the essence in our view and understanding of the micro- 
physical world. -

The alpha particle which emerges from a radium atom comes out 
with such huge energy that we are sure it came from the nucleus. 
And that is confirmed when we find that the 'daughter' atoms - 
the atoms that were radium until they ejected an alpha particle - 
are entirely different chemically. They form a dense inert gas in 
strong contrast with the properties of radium as a heavy metal. 
Placing radium in the calcium-barium family of the periodic table, 
we find we must move two columns downhill to place the product, 
radon gas, in the column for helium, neon, etc. An alpha particle 
carrying away charge +2e would produce just that shift if the 
atomic numbers of elements in the chemical series are the nuclear 
charge numbers.

Again, radium has long been plentiful enough for good determina- 
tions of its atomic weight, close to 226; and the density of radon 
gas has been measured and found to agree well with the predicted 
atomic weight, 222. The story of this and all the other radioactive 
changes agrees with our view that we have transmutation from 
element to element.

312



When we have a mixture of parent element and daughter element, *
which have different chemical properties, we can separate them by *
ordinary chemical methods. We seldom have, or wish to handle, *
large enough quantities for visible chemistry, so we add stable, *
non-radioactive material of the same atomic number - an inert *
isotope - and then have enough for ordinary chemistry. Yet, we *
can trace the fate of the radioactive isotope with a Geiger counter. *
When we do that, we find that the radioactive material moves *
everywhere with lie inert material of the same element - the *
chemistry of the atoms' outer electronic regions is essentially *
identical. On the other hand, when we use chemistry to separate *
out some pure parent stock from daughter element we find, if we *
wait some time, the daughter element appearing among what was *
pure parent stock. In other words, we see the effects of trans- *
mutation. *

*
This is not something that we can demonstrate directly to pupils *
because it means handling radioactive materials, mixing them with *
other materials, carrying out of chemical separations; and still *
making sure that nothing radioactive gets thrown down a drain or *
used in any dangerous manner. We could only tell our pupils about *
radioactive changes and chemistry. *

Manufacturing Unstable Isotopes: Tracers. Half a century T 
ago, radioactivity was known as a peculiarity of a few heavy ele 
ments: the last dozen at the end of the chemical series are unstable. 
But now that we can bombard samples with high-speed, high- 
energy protons or neutrons - provided directly or indirectly by an 
accelerator such as a cyclotron or a linear accelerator - we can 
make unstable isotopes of every element in the whole chemical 
series. This has opened up a tremendous new field of 'nuclear 
chemistry'. Though it is fascinating and useful, we do not suggest 
that this should turn into a new field for learning-things-by-heart 
in our science teaching. But pupils should learn why radioactive 
isotopes that we now make are so useful: they serve as tags, luggage 
labels, or tracers, that enable us to follow any element we wish 
through processes such as digestion and circulation in a living 
body, and commercial manufacture.

We add a small quantity of radioactive sodium to a large sample of 
common sodium in salt, and can then follow with a Geiger counter 
the progress of sodium through any system, even a human body. 
Pupils should, perhaps, see a short film of a radioactive tracer 
being put to use.
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Deflections by Fields
We should tell pupils that alpha, beta and gamma rays can be dis- T 
tinguished by applying electric and magnetic fields to their paths. 
We should avoid the traditional diagram which suggests that a 
stream of alpha rays and a stream of beta rays would be bent into 
arcs of the same curvature though in opposite directions. With a 
magnetic field, beta rays are bent enormously more than alpha rays 
- as pupils can see for themselves from the cloud-chamber pictures. 
In an electric field, the deflections are comparable, the paths of 
alpha rays being bent somewhat more because of their double 
charge, for particles of the same energy.

For alpha rays, pupils must be content with seeing the bending by D129 
a magnetic field in a cloud-chamber picture.

For beta rays, we can set up a small source (a scrap of uranium salt D133 
would do) and a counter, with a sheet of lead hung between them 
as a barrier. We place a large horseshoe magnet under the lead, in 
such a position that the field between its arms will bend beta ray 
paths round under the barrier and into the counter-tube. With 
out the magnet, the counter shows very little - only a general 
background. With the magnet, the counter will count quite fast. 
With the magnet reversed the counter goes back to its small back 
ground.

If we had a source of positrons, instead of negative beta rays, the *
magnet would tell us because we should have to turn it the' wrong *
way round'. However, with such a source there would also be a *
larger background, because positrons and electrons meet and *
annihilate, emitting gamma rays, some of which will affect the *
counter. *

*
With gamma rays we might be able to show pupils the straight line * 
path, but that would necessitate heavy lead screens. *

RUTHERFORD MODEL
Pupils have seen signs of electrons and positive ions so that a * 
pudding model of atoms may well seem reasonable; but if we * 
proceed to a description of a nuclear model without showing * 
compelling evidence, we shall find ourselves in a hopeless field of * 
assertion. *

Evidence for a Hollow-atom Model. Our first line of evidence T 
for pupils is the almost direct one of cloud-chamber pictures.
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Pupils looking at a cloud chamber in action with alpha particles 
will see straight tracks and straight tracks and straight tracks, again 
and again, and never a nuclear collision. We emphasize the infer 
ence from that; that while an alpha particle makes 100,000 minor 
collisions, it almost never makes a major one in which it bounces 
away on a path in a new direction. In those minor collisions, the 
alpha particle tugs an electron off an air molecule as it hurtles by, 
and thus provides a positive ion and, soon, a negative one, on which 
drops of water can condense to make the track visible. Since the 
track of the alpha particle is not noticeably bent by these collisions, 
we infer that it must have hit something of trivial mass - in fact an 
electron some 7,000 times less massive than the alpha particle 
itself.

In fact, when cloud chambers first came into use a good deal was 
already known about the bombarding bullets, whose tracks they 
made visible. Alpha particles were known to be helium atoms with a 
double charge, He++. Measurements with electric fields and big 
magnetic fields gave the charge/mass ratio, as in measuring ejm 
for electrons: it seemed to be half the value for hydrogen ions, H+. 
Counting alpha particles in a stream and then catching the stream 
in a metal cup to measure its charge showed the charge on each to 
be +2e. That suggested a mass 4 times a hydrogen atom's mass, 
probably helium.

However, if we take a great many photographs of cloud-chamber 
tracks we find occasional examples of a fork in which the alpha 
particle's path is deflected. The enormous number of straight 
tracks is evidence for a 'hollow' atom, with detachable electrons 
somewhere in its outer region; and both the rareness and the big 
angles of the forks are evidence for a very small 'nucleus' in which 
most of the mass of the atom is concentrated.

It must be a massive nucleus, because it is able to hurl an occasional 
alpha particle backward, in some very close approach. In nuclear 
collisions with hydrogen, the alpha particle and the hydrogen 
nucleus that is struck both continue forward. However, in collisions 
with nitrogen, and other heavy atoms, the alpha particle sometimes 
rebounds in a backward dkection. From that we conclude that 
the alpha particle must have a mass intermediate between hydro 
gen and nitrogen. In collisions with helium nuclei the fork 
shows a 90° angle, which indicates an elastic collision with an object 
of equal mass.
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(See earlier discussion of this '90° fork'. We suggested a demon 
stration test with steel balls on pendulums or with pucks. And we 
suggested a fast group should try a theoretical attack with momen 
tum, K.E. and geometry.)

Models of Scattering. Although the rare back scattering was a T 
surprise to Rutherford, he knew quite well what the bullets were 
that he was firing; and he could see how the results would force 
him to make a new picture or model for atoms. But our pupils 
approach this evidence with no such preparation. We need to 
help them with illustrations.

We ask them whether one could find out if cannon balls are con 
cealed in a truss of hay, by firing rifle bullets at the hay. We ask 
them to think of rolling marbles along a slightly sloping table with 
a few spikes projecting up, as in a pin-ball machine. What would 
happen to the marbles?

We hang a long bar magnet (preferably an electromagnet) on a D134 
long pole - so that it forms a stiff pendulum - and place a strong 
electromagnet a short distance below it. The pendulum is free to 
swing, and if its magnet has a north pole at the end, above a north 
pole of the fixed magnet, pupils will see repulsion. Then we pull 
the pendulum aside and let it swing past the fixed magnet.

We suspend a metal-coated ping-pong ball by a very long nylon D135 
thread. We bring the main sphere of a small Van de Graaff machine 
near the ball. The ball gathers a charge and is pushed away. We 
then pull the ball out to one side and let it swing past the main 
sphere.

The electrostatic model gives a fairer illustration of the path of an 
alpha particle under nuclear repulsion; but the magnet model was 
Rutherford's own model, which he used in lectures with obvious 
delight.

THE GREAT SCATTERING EXPERIMENT
To use alpha particles as exploring bullets more precisely and still T 
more fruitfully, one needs statistics of far more collisions than the 
few that cloud-chambers show. One must count alpha particles 
deflected ('scattered') from a copious stream by single collisions 
with an atom in a thin sheet of metal such as gold leaf, in a vacuum. 
In fact that was the first experiment to yield compelling evidence - 
the long series of cloud-chamber photographs came later.
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Counting scattered alpha particles by the faint scintillations they 
made on a screen, Rutherford was amazed to find a few bouncing 
back. Then he encouraged Geiger and Marsden to make a great 
series of measurements of deflections through small, medium, 
and large angles when a narrow beam of alpha particles hits gold 
leaf in a vacuum. Their measurements served to test Rutherford's 
new theory, or model, for atoms: a very small massive nucleus, 
with electrons so far out (and so light) that the alpha particles 
which were seriously deflected met the full force of a bare nucleus. 
He assumed that that nucleus carried a charge +Ze, where Z is the 
serial number in the chemical series. On such a theory the force 
between alpha particle (itself a helium nucleus) and the target 
nucleus is the inverse-square-law ' Coulomb force' of electrostatic 
repulsion.

Alpha particles making a very close approach to another nucleus 
are deflected through a large angle, while those missing the target 
widely are deflected through a small angle, so measurements over 
a big range of angles serve to investigate the field of force inside 
the scattering atoms over a large range of distances from the centre. 
We should post up a table of actual measurements of scattered 
alpha particles for various angles and show how the numbers 
counted fit the predictions for an inverse-square law offeree.

We should not let pupils think that this is just one more measure- *
ment in atomic physics: we should describe the experiment, show *
the results, and even explain the general idea of the theory, so that *
they see it as one of the great turning points in physics. It changed *
our picture of atoms permanently. To do it justice in our teaching *
we must show pupils some of the real story and not just make *
assertions - otherwise we shall seem to be teaching witchcraft *
or telling fairy stories. We cannot show the actual experiment. So *
many conditions have to be arranged and so much apparatus *
explained that the experiment is obscured. Instead we must provide *
a film. That may show diagrams of the experiment to explain its *
general arrangement; but it must also show real apparatus and *
measurements being made. *

Show P.S.S.C. film, Rutherford Atom. F136

Originally the scintillations were counted by eye: trained observers * 
counted for a short time in a dark room. However when we teach * 
pupils today there is no need to go decades back to that in history. * 
We can show in films the observing being done by modern
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scintillators with photomultiplier tubes (treated as a black box, no *
more complex than human eye+brain); and the counting done by *
a sealer. *

Then we ask pupils to compare theory and experiment.

On the theoretical side, we merely say that Rutherford assumed an T 
inverse-square-law repulsion between the big electric charge on the 
massive nucleus of the gold atom and the smaller electric charge on 
the alpha particle flying past it. That is equivalent to Newton's 
assumption of an inverse-square attraction between the massive 
Sun and a planet. But instead of the simple circular orbits which 
serve approximately for planets, the change to a repulsive force 
predicts a different shape: hyperbolas. The alpha particle sails in, 
bends around a corner and sails out again on another almost 
straight track in a new direction. The simple calculation with 
circular orbits that predicts Kepler's Law III becomes too compli 
cated.

Furthermore instead of a few individual planets, each with 
measured orbit and period, Rutherford had to use hordes of little 
alpha panicles to give him a statistical test. He made his theory 
predict the number of particles that an observer would count on a 
receiving screen in various directions, in some standard time. In 
calculating that prediction he simply used an inverse-square law 
of repulsive force and Newton's laws of motion.

We ask pupils to take our word for that and we join them in com 
paring theory and experiment. We post up a table of observations, 
with the numbers predicted - for inverse-square electric repulsion 
- beside them. We discuss the comparison carefully, emphasizing 
its meaning for our knowledge of atoms. The table could be taken 
from Geiger and Marsden's original paper; or, better, it should be 
taken from a modern experiment shown in our film.

We should remind pupils that this was not an investigation directly 
concerned with radioactivity. Alpha particles were simply used as 
investigating projectiles. Nowadays we use particles from accelera 
tors in continuing the investigation of nuclear force fields. With 
those investigating bullets we are exploring the field offeree inside 
an atom in a way that corresponds closely with the exploration of the 
Sun's gravitational field by planets. Kepler's Law III is a summary 
of the latter exploration: it shows that an inverse-square-law field 
offeree extends throughout the region from the orbit of Mercury 
to the orbit of the farthest planet - and comets in elliptical orbits
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extend that exploration to a still wider range. Here we use alpha 
particles to test the inverse-square-law field inside an atom over a 
range of distances of 10,000 to 1.

When, instead of alpha particles, we use protons that have been *
accelerated by a modern machine such as a cyclotron or a Van de *
GraafF, we have a much bigger choice of energies for the bombard- *
ing particles; and we can show that the inverse-square law breaks *
down at close approaches. *

*
(If we used the scattering of protons from an accelerator through- *
out our discussion, that would remove the unnecessary association *
of this story with radioactivity; and we should be bringing our *
pupils closer to modern practice.) *

The Nuclear Charge. The scattering of alpha particles not only T 
provides us with clear evidence for a nuclear atom, but enables 
us to measure the nuclear charge. Chadwick used thin sheets of 
copper, silver and platinum instead of gold and measured the 
scattering of alpha particles by each. From his counts he calculated, 
with the help of Rutherford's theory, the charge on the nucleus of 
each of those three kinds of scattering nucleus. His results were: 
copper 29-3 electron charges, silver 46-3 electron charges, platinum 
77-4 electron charges, with expected errors about 1 per cent. The 
serial numbers of those elements, arranged in order of atomic 
weights and placed in the chemical periodic table, are: 29, 47, 78.

Nowadays, we define the atomic number as the nuclear charge 
(measured in electron charges), but originally it was merely the 
serial number of the element. So Chadwick's measurements 
showed that the nuclear charge is the serial number, or the 
atomic number.

Another Measurement of Atomic Number. Soon after T 
Rutherford's announcement of his atomic model, when Bohr 
was describing the early form of his model, Moseley made measure 
ments, with crystals, of wavelengths of characteristic X-ray lines 
of several elements. Interpreting them on early Bohr theory he 
obtained numbers for nuclear charges which agreed with Ruther 
ford's suggestion.

All this may seem to be delving into the history of a stage when *
our modern knowledge was confused and vague. We suggest that *
teachers should describe this, not because we are preoccupied *
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with history, but because we are anxious to avoid our atom model 
seeming to be described by pure assertion. In this matter of making 
models, it is important to help pupils to see that the models and 
their changes have been suggested in part by experimental know 
ledge. Then pupils should feel some confidence in models and yet 
they should respect our warning that models may change.

SCATTERING OF ALPHA-PARTICLES 
BY GOLD

(Experimental Test by Geiger and Marsden)

EXPERIMENTAL 
MEASUREMENTS

Angle of Experimental 
Deflection9 Count\ 

A" W

150 33 
135 43 
120 52 
105 69.5 
75 211 
60 477 
45 1,435 
30 7,800 
15 120,570 
10 502,570 
5 8,289,000

TEST OF 
THEORETICAL PREDICTION

Value of Test 
1 N

.fffiSbli"**")'
1.15 29 
1.38 31 
1.79 29 
2.53 28 
7.25 29 

16.0 30 
46.6 31 

233.3 33 
3,445 35 

17,330 29 
276,300 30

c Of path of alpha-particles.
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Chapter 7 
WAVES AND PARTICLES

Photo-electric effect
X-rays and crystals
New atom models

Photons
Matter waves



Photons-A Note to Teachers
We have no sooner shown that light has a wave property and * 
measured the wavelength than we upset the story with further * 
demonstrations - by film - that light has a particle property: it *
packages its energy in small quanta. *

*
Pupils should not be asked to wait a long time, preserving a wave *
view and looking on the quantum properties of light as a sort of *
unfortunate turn in the wrong direction. Instead they should see *
both properties as nearly as possible side by side. Although that *
makes us lose some of the delight of building up a triumphant *
wave theory, it enables us to present the modern view more wisely. *

*
For our present teaching, the photo-electric effect gives much the * 
clearest evidence for 'packets of energy', quanta, in light. Pupils *
will have to take on trust the general rule for those packets: *

*
energy in one quantum = (constant, fi). (frequency of light) *

Early Evidence and Origin of Quantum Theory. Several * 
phenomena pointed towards a strange restriction on interchanges *
between radiation and atoms, in the early part of this century. *

*
The idea that radiation energy (or at least its interchanges with * 
energy of matter) comes in packages of amount proportional to * 
frequency first arose in Planck's mind and he used it successfully in * 
fitting a theoretical prediction to the experimental curve for the * 
distribution of energy in the spectrum of a perfect radiator. * 
Classical theory completely failed to predict the experimental 
curves until the quantum restriction was imposed in addition. That 
is far too difficult an avenue into quantum theory to carry any con 
viction with young pupils.

Then specific heats, both of solid elements and of gases, showed 
strange changes with temperature which were not predicted by 
classical mechanics (equipartition) but could be accounted for 
successfully by imposing the quantum rule on rotational motion 
and vibrations of molecules.

Then the photo-electric effect pointed in the same direction - or 
rather was found to be pointing when Einstein applied his clear 
vision to it.

Series in spectral lines, measured and decoded, waited for some
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explanation: and they too fitted into the quantum scheme when *
Bohr thought out his model for atoms. *

*
X-rays and radioactivity added signposts pointing to quanta too. *

*
It is clear now that all electromagnetic radiation carries its energy *
in quanta of size h. frequency; and that periodic motions of *
molecules (spins and vibrations) also have their energy in one or *
more quanta. The quantum-constant is another of the atomic con- *
slants in the universe. *

THE PHOTO-ELECTRIC EFFECT
We should now turn to another phenomenon that is very fruitful in *
atomic knowledge; and easier for pupils to understand. They have *
seen photocells at work - in applications where light releases a *
horde of electrons from a sensitive surface in a vacuum, and the *
horde acts as a current to do jobs for us. That might be called *
the' wholesale' photo-electric effect. Now we look at it in detail, the *
'retail' effect; and we see light flicking electrons out of a metal, *
ultra-violet light tearing them out with the crack of a whip, X-rays *
hurling them out. This strange interchange between radiation and *
electrons throws much light on the microphysical world. *

We start by a direct demonstration of the' wholesale' photo-electric D137 
effect. We connect a plate of freshly cleaned zinc to the leaf of an 
ordinary electroscope and shine light on the zinc. Since it is ultra 
violet light which produces the effect in this case, we should use an 
open arc for this. (The tiny pencil-lead arc suggested in Year IV 
will do well.)

We charge the electroscope and watch the leaf. It may be necessary 
to install an earth plate or grid near the zinc. We show: (1) that a 
metal plate illuminated by suitable light can lose negative charge; 
(2) that an electric field driving negatively charged particles back 
into the plate stops this loss while an electric field in the other 
direction allows it; (3) that while a carbon arc will provide light 
that ejects electrons from a clean sheet of zinc, the effect is stopped 
by interposing a piece of glass.

This experiment suggests some of the photo-electric effect story, 
but it does not show that the negative electricity is coming out in 
particles, 'electrons'; it does not show that the light is arriving in 
bundles of energy, 'quanta'. It only suggests that there is some 
connection between the wavelength of the light and its efficacy in 
ejecting negative change. It seems essential to go much farther than *
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this demonstration and show pupils photons arriving one by one; * 
and we must show that, with light of a given wavelength, all the * 
electrons ejected have the same energy (or rather the maximum * 
energy is the same whatever the intensity of light). These experi- * 
ments are too difficult to show directly: we offer them by film. *

*
An understanding of the photo-electric effect plays an essential *
part in learning atomic physics. The' wholesale' effect is fun to see, *
and it can be put to some good practical uses, but the essential *
story is masked. Pupils need to know something of the 'retail' *
effect - the behaviour of individual quanta of light in ejecting *
individual electrons. The standard experiments are difficult and *
confusing: however clear they seem to a trained physicist they *
strike beginners as inconclusive. They lead teachers perilously *
near to special pleading (see the warning in the next paragraph). *
Therefore we do not suggest any demonstration of the 'retail' *
effect, but we suggest teachers should show two films: *
The Photo-electric Effect (P.S.S.C.) F138

Photons (P.S.S.C.) F139

Both are produced by P.S.S.C. for pupils of sixteen. Both show 
real experiments and give very good teaching commentary. They 
provide just the serious teaching that is needed here. (In contrast, 
we warn teachers against using animated films which merely show 
the picture we wish to assert.)

(The advanced apparatus. For more advanced teaching, there are *
several forms of photocell which can be used for a series of measure- *
ments with various wavelengths of light. Light of a chosen wave- *
length falls on a clean metal surface in a vacuum and ejects *
electrons. The electrons fly across to a collecting grid; but an *
opposing field is applied and increased until the electrons fail to *
reach the grid. At first sight this looks as if one could measure *
the kinetic energy with which the electrons emerge by measuring *
the applied p.d. Unfortunately a contact p.d. appears as well; so in *
practice the experiment is more difficult to run. And the cut-off *
voltage at which the electrons are just stopped is not as sharp as one *
would like. Those who have studied both the internal working of *
these tubes and the teaching of this experiment consider it an *
extremely difficult experiment to teach honestly and clearly. *

*
The interpretation of the measurements with several wavelengths *
is a delight to a mature physicist, who sees a measurement of the *
quantum constant emerge, in the form of hie. But to pupils it is *
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likely to seem interesting and complicated but not to give a clear * 
demonstration of the essential photo-electric fact.) *

Detailed Knowledge. Our present picture of photo-electric *
effect emerged slowly from a variety of observations and sugges- *
tions, including Einstein's contribution which did so much to *
clear up early thinking. From the vantage point of our own *
mature modern knowledge it is clear that our picture of random *
quanta ejecting electrons is correct; but, to our pupils, each aspect *
of the phenomenon is strange and new and needs either an experi- *
mental demonstration or a clear statement from us that it is a new *
piece of knowledge. We should teach our pupils that: *

1. The particles ejected are electrons, with the usual value ofe/m. T 
(Once again a universal ingredient.)

2. The electrons emerge, for a given illumination, with a variety of 
speeds, the slower ones having probably lost energy by travelling 
through outer layers of the metal.

3. The maximum speed of electrons is determined by the wave 
length of light used and not by the intensity. Brighter light only 
produces more electrons - to everyone's surprise, in the early days - 
and not faster electrons.

4. The maximum energy of ejected electrons appears, after an allow 
ance has been made for energy to escape, to be proportional to 
the frequency of the light. This is the basis of Einstein's equation.

5. When the light is first turned on, there is no delay in production 
of electrons, as one would expect if a continuous stream of light 
had to build up enough energy in the metal to eject each electron hi 
turn. Experiments with very weak light tell an impressive story. 
Sometimes an electron is ejected very early, almost at once when 
the light is switched on; sometimes no electron emerges till very 
late, after the weak light has been shining for some time; in general, 
a random distribution of timing. If the weak light is turned off 
again after so short a time that we could not expect its total energy 
to eject a single electron, we still see an electron ejected, during the 
illumination, sometimes. We are forced to picture the energy of the 
light arriving in small 'quanta' with random spacing in time.

All these are aspects of the photo-electric effect which are new and 
strange to pupils. And we must rely on descriptions and films.
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There is no harm in using that mixture provided we are alive to its *
dangers. It is better to use such indirect methods of teaching than *
to puzzle pupils by supporting the new knowledge with experiments *
which do not really demonstrate it. The simple demonstration of *
negative charge being ejected from zinc fails like that. (Reflect on *
problems of teaching another topic: atoms. To mature physicists, *
crystals suggest atoms strongly; the thermal expansion of solids can *
be pictured comfortingly in terms of vibrating atoms and inter- *
atomic forces. But, to pupils, showing crystals as clear evidence of *
atoms does not seem convincing, and a demonstration of the *
expansion of metals ought to seem irrelevant - cart before the *
horse.) *

Photo-electric Effect with G-M Tubes. A Geiger-Miiller tube *
responding to gamma rays is demonstrating the photo-electric *
effect of those very energetic photons. But the random counting is *
due to the random instability of the parent radioactive nuclei: there *
one is not seeing or hearing the effect of photons arriving at random *
in a steady beam of radiation. But we can put a tube to the latter use. *

A tube with a mica window, intended for counting alpha particles, D140 
is likely to be sensitive to ultra-violet photons. We connect the tube 
to the sealer and test it with an alpha source. Then we try lighting 
matches in front of it at various distances. It will show random 
counts. A sheet of glass will prove that visible light is not the active 
agent: we suspect u-v. Perhaps the counts are due to individual 
photons or perhaps they only occur when there is a pile-up of 
several photons. Although a tube with a proper plateau gives the 
same pulse for particles of different energies, it is a far cry from an 
alpha particle with a million e.v to a photon with a dozen e.v.

A tube arranged to count gamma rays will respond to X-rays. If we D141 
run a modern, hot cathode, X-ray tube with its filament so little OPT. 
heated that there are very few electrons to make X-rays, a G-M 
tube at the other side of the room will count X-ray photons one by 
one, showing us a random stream. Even if the X-ray tube is run 
with alternating voltage between cathode and target, the large 
pulses of electrons, 50 pulses per second, will not spoil the random 
story when the filament is cool enough.

An X-ray tube, with a hot filament, running on 20 kilovolts a.c. *
is a dangerous thing. A tube with a filament that is barely warm and *
on a lower voltage might still emit enough X-ray photons to be *
counted one by one - and by that token it would be quite safe! *
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These are good demonstrations to give after pupils have been *
taught by the two films. They are not sufficient to do the initial *
teaching; but they make good sense to pupils who know what they *
are looking for. *

X-RAYS
X-rays. We do not advise schools to buy an X-ray demonstration. *
It has to be hedged with safeguards; it is expensive; and when it is *
run it does not show much. Pupils learn that X-rays can cast *
shadows of bones in flesh - but they knowthat from general reading; *
and they can see pictures of X-ray photos. They might learn that *
X-rays ionize air or bkcken photo films; but they can see ultra- *
violet light do that. *

*
The only very important use of an X-ray tube now would be to * 
show photons being counted one by one, as described above. *

Production of X-rays. Yet we need to give pupils a short des- T 
cription of the production of X-rays: electrons from a hot filament 
accelerated by a large p.d. gain huge K.E.; on reaching the target 
they lose their K.E., nearly always converting it to heat in the 
target - much as a lead bullet would. Just a few electrons, far less 
than 1 per cent of the stream, convert their K.E. to a photon of 
radiation as they come to rest.

'What are X-Rays?' If pupils see the demonstration of X-ray T 
photons being counted before the photon film, they may ask 'Are 
these particles or waves? How do you know?' In any case we should 
say that X-rays can be thrown into spectra - or a diffraction pattern 
- by the regular layers of atoms in a crystal4 If so, we infer (1) that 
they are waves, (2) that their wavelength is very small - nearer 1 
A.U. than the 5,000 A.U. pupils measured for green light.

X-Rays and Crystals
Grating Spectra in Two Dimensions. Some teachers like to *
introduce diffraction gratings by asking pupils to look at a distant *
lamp through umbrella fabric, or a silk handkerchief or any other *
coarse two-dimensional grating. As a link with ordinary life that *
is an excellent beginning; but the complex array of spectra may *
make it more difficult. *

$ X-rays can be diffracted by ordinary ruled ('optical') gratings but only at very 
oblique incidence - somewhat like the use of a gramophone record for light.
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Now, if not before, pupils should certainly try that. A small com- C142s 
pact source of light is placed at the far end of the room, high up on 
the wall, and pupils look at it through some finely woven fabric. 
After seeing the behaviour of an ordinary grating, they should find 
this new observation easy to understand and interpret. Some pupils 
may be confused by having used ordinary gratings with line 
filament sources. We should give them the coarse gratings again 
and ask them to observe the compact light source with those 
gratings first and then use the stretched piece of cloth.

Gratings from Nuffield Chemistry Programme. If the C143 
school is following the Nuffield chemistry programme, they will 
have available the special two-dimensional gratings made up of 
black dots on transparent ground, arranged in various patterns. 
These are suggested in the chemistry programme as models with 
which to interpret X-ray diffraction pictures.

Teachers should borrow those and ask pupils to try looking at the 
lamp through them.

X-ray Diffraction: Single Crystal, Many Wavelengths. In T
any case, we should give some description and explanation of X-ray 
spectra at this point. We ask pupils to think of atoms arranged in 
regular layers in a crystal. Waves reflected from layer after layer 
would bounce out to an observer after travelling longer and longer 
paths from deeper layers. If the extra path required for each 
successive layer is one or more complete wavelengths, the reflected 
waves would all add up to an intense resultant. That is what 
happens when we try reflecting X-rays with a crystal. Only in 
some directions, and only with some wavelengths, do we get in 
tense reflections - hence the pattern of spots that we see in a Laue 
photograph made by X-rays of many wavelengths diffracted by a 
single crystal.

Single Wavelength, Single Crystal: Bragg Formula. Al- *
though most pupils will have proved the formula for an ordinary *
diffraction grating, we should not burden them with details of its *
extension to a formula for X-rays reflected from crystals. *

Yet there is a very easy way of arriving at the Bragg formula. We (T) 
sketch a section of crystal with horizontal layers of atoms, with an 
X-ray tube above, a short distance to one side. Its target is a vertical 
height h above the top layer of atoms. Then X-rays starting from 
the target of the tube and being reflected by the top layer of atoms
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Jiknes

X-RAY DIFFRACTION BY CRYSTAL

will seem after reflection to come from an image of the target a dis 
tance h below the top layer of atoms. There we are using pupils' 
Year III knowledge of the position of the virtual image of an 
object formed by a plane mirror. X-rays reflected from successively 
deeper layers of atoms will seem to come from similar virtual 
images - all in a vertical line below the first one, spaced apart by 2d,
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twice the 'grating-space'. Continuing the geometry from there will 
soon produce the Bragg formula. We should not continue it with 
pupils; but we might show them the construction as an illustration 
of the way we fit the grating formula to X-rays.

Many Crystals, Single Wavelength. However, many sub- T 
stances that we investigate with X-rays are made up of small 
crystals with their atom layers tilted in all different directions. 
In that case, a bright spot produced by one crystal facing in a 
particular direction will be spun round into a circle produced by 
many crystals.

Pupils look at that effect in a simple class experiment. We ask them 
what they think they would see if they looked at a distant compact 
source through a grating of woven cloth and kept the woven cloth 
turning round. We give them a device for trying that, consisting 
of a small ball-bearing assembly, with a short piece of metal tube 
pushed into the inner bearing cylinder to act as a handle. The pupil 
holds the tube and looks through it at the distant lamp. A small 
piece of woven cloth, or a piece of ordinary coarse diffraction grating, 
is placed across the outer cylinder of the bearing. As the pupil looks 
through the tube at the remote light, he spins the outer cylinder so 
that he sees the light through a revolving grating.

C142b

THE ELECTROMAGNETIC SPECTRUM
As suggested earlier, we should give a short description of the T 
electromagnetic spectrum. We mention the great variety of waves 
in its compass, methods of production and detection, and common 
properties. We suggest that at O level, this account should be very 
brief. Its chief landmark should be a long chart; not the traditional D144 
poster crowded with information and sketches in many colours, but 
a simple strip showing ranges of frequencies in octaves, with names 
and wavelengths marked.

Each teacher should decide the placing and size of this discussion, * 
to suit his own tastes and those of his class. Although this is a *
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suitable place in the programme for it, we do not want to interpose *
a long commentary at this point in the Guide. So we shall give some *
notes on this particular part of our teaching in an appendix at the *
end of this Year. *

WAVES AND PHOTONS
That brings us back to theories of light: 'Waves or particles?' T 
Pupils met that question in Year III, but probably left it answered 
in favour of waves. They reinforced the wave view this Year when 
they saw Young's fringes. The two P.S.S.C. films, Photo-electric 
Effect and Photons, will have upset that sense of certainty, suggest 
ing that a beam of light has an essential 'graininess 5, its energy 
being packaged in photons or quanta.

We must now show an essential film which brings both views into 
play together. It is the P.S.S.C. film Interference of Photons. There F145 
pupils see photons arriving one by one at random in the organized, 
wave-determined pattern of Young's fringes. That forces us to 
believe that light has both kinds of behaviour. We should stop 
trying to decide which, and start trying to learn to use both, or 
rather either according to the kind of experiment we are doing.

We certainly should not burden our young pupils with a puzzling *
description of the concept of complementarity. Yet that is a very *
powerful new idea that emerged from our having to accept both *
wave behaviour and particle behaviour - mutually exclusive, *
according to our choice of experiment - and teachers may find it *
worth while to read an account of it for their own interest.^: *

*
With some class groups, teachers may enjoy a considerable dis- *
cussion of theories of light, at this stage of more mature knowledge. *
Some general notes, which may be useful in such a discussion, are *
given in an appendix,' Theories of Light', at the end of this Year. *

MATTER WAVES
Now at last our pupils are ready to learn about matter waves: they * 
have enough knowledge, so that the revolutionary idea will make * 
sense although it feels so strange. *

If they have not done the class experiments with a two-dimensional C146 
diffraction grating of cloth, first held at rest, then revolving, they 
must try those now. Then they should see the P.S.S.C. film Matter f 147 
Waves. It is a very good teaching film, showing real experiments

$ See H. Massey, The New Age in Physics (Harper, 1960).
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with a physicist's commentary, made for school pupils of sixteen to 
eighteen.

It shows how a revolving grating, or a random collection of small 
patches of grating, can produce an interference pattern of circles - 
as pupils have just seen in their own class experiment. Then it 
shows just such a pattern being produced by a stream of particles 
- electrons which we know are particles with definite mass and 
charge. We know electrons carry energy - and, we suppose, 
momentum - compactly when they are moving. Yet moving 
electrons seem to be guided to an interference pattern just like 
waves of light: or, rather, just like photons of light.

There are the two stories, of electrons and of photons. Each T 
has particle properties in some circumstances; and each has wave 
properties in other circumstances. We have to learn to live with 
both views for light, and for electrons; and for hydrogen nuclei, 
neutrons, carbon atoms ... all moving particles, ... cricket balls, ... 
all moving objects.

In the microphysical world, at the level of atoms and parts of 
atoms, wave-behaviour of a moving particle is very important: 
wave patterns guide the particles to interference patterns.

In the macroscopic world, large 'particles' like men, cricket balls, 
and aeroplanes have such extremely minute wavelengths, at any 
noticeable speed, that we never expect to see cricket balls making 
an interference pattern, or men diffracting round a corner.

As optional aids in setting forth this dual view, we may show two 
sets of pictures:

1. To help pupils to understand that more than one model may be D148 
kept in fruitful use, to persuade them not to ask too strongly' Which 0 PT. 
model is true; which is right?' we show them two maps of London. 
One is the usual stylized Underground map in several colours. The 
other is a map of streets with the Underground lines marked on it 
too. We ask which is the right one; and we are likely to receive' It 
depends on what you want it for.'

2. To reinforce the rather indirect evidence of ring patterns for D149 
electron diffraction, we may show pupils two pictures of 'Young's OPT. 
fringes' - actually photographs of biprism fringes - one taken with 
yellow light, the other taken with a stream of electrons. The elec 
tron stream is split into two streams by a fine wire across their path.
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A positive charge on the wire produces deflecting electric fields 
that bring the two streams towards each other so that they overlap 
where they fall on a distant screen. In that overlapping region, the 
photo shows dark and bright fringes, patches of many electrons 
arriving alternating with patches of few electrons arriving. The 
latter experiment is far too difficult to do in any teaching laboratory, 
and even a film of it would be overburdened by technical details; 
yet the resulting photograph and its optical companion form a 
remarkably convincing pair.

ATOM MODELS
Bohr Model-Note to Teachers
Not long after Rutherford set forth his nuclear model for atoms, * 
Niels Bohr made a brilliant move to bring that model into accord * 
with some experimental knowledge of quanta; and he produced a *
very fruitful theory. *

*
We should not try to describe the Bohr model in detail to our *
pupils, still less should we try to carry them through any calcula- *
tions. For one thing it requires too large a background of new *
knowledge; and for another thing it is out of date. It does not agree *
with our present view, though it has played an essential part in *
leading physicists towards the present view. *

*
Some notes on the development of Bohr's model are given in an *
appendix at the end of this Year. They are offered to teachers *
simply for their own interest, as background for teaching or for *
possible use if a pupil asks a question. *

Wave Patterns in Atom Models
We turn from a running electron wave - which experiments forced * 
us to imagine - to the idea of stationary electron waves in an atom. * 
That is how the new idea of guiding waves carried the Bohr atom *
model into a great modern development. *

*
In writing down rules that seemed necessary for a Rutherford atom *
model, Bohr had to state several novel rules, such as the require- *
ment that an electron has a choice of definite, stable orbits, and the *
rule that in switching from one orbit to another the electron emits *
the difference of energy as a single quantum of amount (constant, *
h}. (frequency). The latter rule simply insisted on the quantum *
relation that was already known. But the definition of stable orbits *
seemed rather arbitrary in Bohr's hands. There must be some *
such restriction - line spectra tell us that - but could one give a *
sensible rule for defining the particular orbits? Bohr did that with a *
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rule for' quantizing' angular momentum, which was at best plaus- *
ible. *

*
With the concept of guiding waves for moving electrons, it was easy *
to give a much more appealing rule for choosing orbits: the circum- *
ference of the orbit must contain a whole number of wavelengths, *
so that the electron's wave pattern is a stationary wave. That *
'explained' why the Bohr orbits were stable, and told us we could *
not expect to locate an electron precisely at a point on a sharp orbit; *
and it led to Bohr's predictions of orbit sizes and energies. But *
when that wave model was developed further it no longer agreed *
with Bohr's model; but it has proved fruitful in successful predic- *
tions or explanations. *

Now at this concluding stage of our programme, we should leave 
our pupils looking forward, not equipped with final knowledge - 
such as' modern, correct, true model of the atom at last' - but keen 
to see how knowledge and understanding grow as experiments 
continue and theories change.

We should give pupils a glimpse of our present atom-model: a 
nuclear atom with a fuzzy distribution of electrons instead of sharp 
orbits - fuzzy in position but definite in energy-levels. The loca 
tions (and motions) of the electrons are described by their 'matter 
waves'. Those wave-patterns - which we write as equations when 
they are too difficult to sketch - tell us the probability of finding an 
electron in a given region of the atom. They tell us the betting, 
never a certainty. Yet the betting is useful: it tells us definite 
energy-levels; it explains chemical bonding by electrons; and it 
not only explains the known random laws of radioactivity but also 
predicts new nuclear particles.

This is disturbing new knowledge; and we should not be sorry to 
leave our pupils at this point - they will remember science as com 
bining experiments with a continuing changing series of models in 
our thinking that we call theory.
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Appendix A 

THEORIES OF LIGHT



Discussing Theories
In Year III, pupils looked at the behaviour of ripples on water. The 
ripples proceed as 'wave fronts', lines of crests and troughs that 
travel out from a source, are reflected by a solid boundary, and can 
be refracted where there is a change of wave-speed as they pass into 
shallower water.

Pupils could sketch a snapshot of successive wave fronts. That also 
shows successive positions of the same wave front after 1,2, 3, ... 
periods. On those sketches of wave progress, they could add guide 
lines along the direction of travel, perpendicular to the wave fronts. 
We hope teachers encouraged pupils to do that and even suggested 
the name 'rays' for those lines. Then pupils could see rays emer 
ging from a small source along radii; and rays forming a 'parallel 
beam' for the progress of plane waves. We may certainly draw such 
guide lines if we please; but calling them rays is a suggestive move 
almost amounting to special pleading, which would be bad teaching. 
So we hope that the word 'rays' was introduced with caution and 
not used to suggest that the rays of light must be guide lines of waves.

In looking at the properties of light, pupils saw reflection and 
refraction qualitatively. We now remind them of those properties. 
We ask if a stream of bullets would behave like light: travel in 
straight lines, be reflected making equal angles at the wall, be 
refracted at a boundary between two media. The answers are: yes, 
if they are left alone as they travel (Newton's Law I); yes, if they 
bounce elastically from the wall; yes, if the bullets are attracted 
when they approach the boundary and then travel/aster in a denser 
medium.

Then we remind pupils of several experiments with ripples and ask 
whether waves travel in straight lines, and are reflected and re 
fracted. Could light consist of waves? The answers for straight-line 
travel, reflection and refraction are: yes; yes; yes, if the waves 
travel slower in a denser medium. That offers a clear test, a 'crucial 
experiment' to discriminate between our two theories of light. 
Does light travel faster in glass or water than in air (as it should for 
bullets), or slower (as it should for waves)? Foucault's experiment 
showed that light travels slower in water than in air. We accept the 
wave view with enthusiasm and proceed to certainty when we add 
the evidence of interference.

(Yet to an able group we should express a warning as a question: 
can a crucial experiment ever be a complete yes-or-no test? It only
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tests between one form of the first theory and one form of the 
second theory. If we are clever enough, we can usually modify the 
rejected theory to fit after all - as we can in this case by assuming 
the bullets retain the same kinetic energy rather than the same mass.

Even when we cannot find a saving modification, we can still assert 
an extra 'rule' such as, 'Well, these bullets just do travel faster in 
water than in air: that is our new discovery.' If that seems high 
handed and unscientific, we should reflect that it is just what we 
have had to do in proceeding from classical atomic models to Bohr 
theory and on to quantum mechanics - we have had to assume extra 
rules for the microphysical world in order to succeed in describing 
it in terms of things large enough to observe.)

When pupils see interference effects such as Young's fringes for 
light, they should certainly support the wave view of light. (For a 
century after Newton, both theories had their supporters, but in the 
early 1800s the wave theory emerged as completely right because 
interference proved that. Yet, in the early 1900s it became clear 
that light has some bullet-like properties as well. The idea of 
quanta was suggested and grew stronger.

Visible light can eject electrons from suitable metal surfaces; ultra 
violet light ejects electrons from any metal surface; X-rays eject 
electrons from any matter. When this photo-electric effect is 
studied, it points towards a picture of light arriving in packets of 
energy - the shorter the wavelength the bigger the packet. We call 
each packet a quantum; but as this picture of quanta grew clearer 
and more important, physicists coined a new name to be used for 
light whenever we are concentrating attention on its bullet-like 
behaviour: photons. A photon means a quantum of light, a single 
'bullet' carrying energy and momentum with the speed of light, c.

We hope that teachers will discuss the development of theories of 
light with their pupils, taking sides perhaps, arguing a bit, en 
couraging both open-minded discussion and the use of experimental 
evidence to make provisional decisions. With a fast group, this 
should prove a stimulating discussion that teaches things about the 
nature of science as well as about light. With slower groups, the 
discussion will become difficult or boring if allowed to run long; so 
it should be kept to a minimum, perhaps a mere mention of views 
of light. Everything here depends upon the skill of the teacher in 
giving a feeling that he enjoys the changing tides of opinion. He 
needs to give confident assurance that it is good science to keep 
rival opinions going, even inconclusively.

337



Pupils who will do no more physics deserve to hear of photons even 
if the concept appears only as a surprising complication in our 
views of light.

Teaching the Photoelectric Effect
After bringing interference in to support the idea of light waves, we 
turn away to show the photo-electric effect. The gross effect is 
easily demonstrated: light falling on a metal surface produces a 
current of negative charge that comes from the surface and can be 
driven by an electric field to a collector and on round a circuit. We 
may interpret this as a stream of electrons ejected from the surface 
by the light; but, if we teach that, it is pure assertion at this stage 
because the demonstration gives no hint of individual electrons 
being swept out one by one. It shows a steady stream which could 
equally well be pictured as a smooth stream of negative electric 
'juice' being driven out of the metal. So far, only Millikan's experi 
ment has given any evidence of electric charge being 'atomic', 
suggesting that electrons are definite, basic units. Nevertheless, we 
must start by showing a demonstration of the wholesale effect.

The best demonstration is a simple one in which a plate of freshly 
cleaned zinc is illuminated with ultra-violet light. The zinc is con 
nected to a charged electroscope so that we can see if it loses charge. 
If the zinc is negatively charged (say by induction from a positively 
charged rod), the electroscope will show the charge leaking away 
when ultra-violet light is used. For that, it is essential to clean any 
oxide film off the zinc with steel wool just before the experiment. 
But if the zinc is positively charged originally, ultra-violet light
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seems to have no effect. This supports a picture of the light ejecting 
negative charges. The easiest source of light to use is a naked carbon 
arc. If one is available the arc light is shone on the zinc. Then a 
sheet of glass is interposed; and although the visible light still 
shines on the zinc there is no effect, suggesting that ultra-violet 
light may be the active agent.

For this demonstration, a very simple arc will suffice: two rods of 
carbon held in clamps, connected to a main supply with 30 or 40 
ohms in series. With a d.c. supply, the arc is easily struck by making 
the carbons touch momentarily. With an a.c. supply, the arc strikes 
less easily and requires a little practice. This open arc must be 
shielded from pupils by an opaque screen. However, they can see 
what is happening at the tips of the carbons if we use an ordinary 
converging lens to form an image of the arc on a distant wall.

Lacking an arc, we must use metals that respond to visible light. 
These are alkali metals, which must be enclosed in a glass bulb. The 
bulb is usually evacuated, making a photocell which can be used for 
measurements and for controlling apparatus. If a commercial 
photocell is used, we shine visible light on the sensitive electrode, 
connect the positive of a power-pack to the other electrode and run 
from the negative of the power-pack through some form of meter to 
the sensitive electrode. We see a current which is larger for more 
light.

Special forms of photocell have been developed for teaching. These 
are intended to be used with colour filters or other arrangements 
for shining light of known wavelength on the sensitive surface. A 
repulsive electric field is applied to prevent the electrons that are 
ejected by the light from reaching the collecting electrode. We do 
not recommend such a tube for the present simple, qualitative 
demonstration; but it is essential for a further demonstration 
described below.

How are pupils to see that the light ejects electrons, particles of 
charge, and that more light (of a given wavelength) only ejects more 
electrons and not faster ones? How are pupils to learn that the 
photons which perform this all have the same energy for a given 
frequency of light, and that that energy is directly proportional to 
the frequency? And finally, how are pupils to learn that the photons 
arrive at random in the beam of light, spaced along the beam by 
mere chance? That is roughly the historical order of questions 
about the photo-electric effect; and it gives the order of difficulty in 
demonstration. But yet the characteristics mentioned last seemed
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the most interesting and surprising of all, the most Ukely to excite 
wonder.

For that reason, we consider that pupils must see a film that 
demonstrates photons arriving one by one. There is a very good 
film, produced by P.S.S.C., and we hope that teachers will show it 
to average and faster groups and discuss it with them. This is the 
P.S.S.C. film Photons. A slow group may have to bring their Year V 
studies to a stop just before this.

We hope that no apology is necessary for suggesting American 
films. In our effort to bring our teaching into the realm of present- 
day physics, we have now reached topics where we cannot give 
direct demonstrations in class. Apparatus is available in some cases, 
but it is expensive and often needs considerable apprenticeship. 
The demonstration is then complicated by the profusion of 
apparatus so that we have little hope of getting the essential point 
over, even to a fast group. It seems better, instead, to use modern 
facilities of movie cameras to give pupils a simpler, clearer view. In 
film, the camera can move from a general view to a close-up of 
some apparatus, across to a blackboard for a sketch or a short piece 
of explanation, to a model that illustrates the general idea and then 
back to the experiment itself. Space can be magnified or condensed, 
time can be compressed. To make films that give good, clear teach 
ing, at the same time keeping a strict eye for good physics, is very 
expensive: it seems to necessitate professional equipment and pro 
fessional film-makers. Amateur films are delightful in much of our 
teaching, but here the teaching itself is so difficult that professional 
help is needed. The Nuffield Physics Group could have made such 
films, but since very good ones have already been made by physi 
cists, at enormous expense and with great care, we suggest teachers 
in our Programme should make use of the existing films.

To understand the P.S.S.C. film. Photons, pupils need to know 
some of the things we listed in our earlier questions above. We 
should prepare for that film by showing another film, Photo 
electric Effect, produced by P.S.S.C. That will show light of 
different colours ejecting electrons with different amounts of 
kinetic energy. Instead of the latter, preparatory, film, as a poorer, 
though direct alternative the teacher might give a demonstration 
with a special tube in series with battery and meter, illuminated by 
light through colour filters. Applying an opposing voltage between 
the collector and the sensitive surface from which light ejects elec 
trons, he can show the voltage needed to stop the fastest electrons
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getting across to the collector. Although in the simple theoretical 
picture light of a given colour ejects electrons all of the same K.E., 
in practice most of the electrons have to struggle out through extra 
electric fields, because they come from just below the surface of the 
metal. So the demonstration shows the stream of ejected electrons 
being reduced more and more as the opposing voltage is increased, 
until it just reaches 0 at some critical voltage. The latter voltage can 
be read, with considerable uncertainty, from a graph. If that is done 
for light of several colours, an overall graph can be plotted showing 
critical opposing voltage (to represent maximum K.E. of electrons) 
against some measure of the light's frequency (say, 1/wavelength), 
to represent frequency.

With very careful work and some apprenticeship to the apparatus, 
the plotted points of the overall graph will be likely to close to a 
straight line. The best straight line will not pass through the origin 
because the opposing voltage we measure is not the full voltage 
that operates inside the tube to drive electrons back. There are 
other 'contact' potential differences which must be taken into 
account. To explain them, we should have to describe electrons 
accumulating more in one metal than another and establishing a 
potential wall at the boundary. That would be quite unsuitable 
here: it would certainly spoil the teaching of the simple, important 
ideas of the photo-electric effect. Therefore, we do not recommend 
this demonstration except where the teacher has a strong interest in 
carrying it out - in which case his explanation will gather force 
from the sense of personal experience that will invest his teaching. 
(And therefore we do not recommend schools to buy equipment for 
this.)

Pupils must also learn from this film that doubling the intensity of 
light does not change the maximum intensity with which electrons 
are ejected. Instead, it only leads to a more copious flow of elec 
trons. This is, in a way, strong evidence for the existence of 
photons, bullets of light energy, each able to eject an electron - so 
that more light merely means more bullets, and therefore more 
electrons ejected.

Where there is time to spare and the film is available, teachers should 
wish to show one more film, Interference of Photons. This follows the 
film Photons, using similar apparatus, and shows photons arriving 
in Young's fringes: many in a bright band, few in a dark band. It 
shows that an individual photon seems to pick its path by pure 
chance and arrive at random anywhere on the screen. But the
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chances are determined by the wave behaviour that predicts the 
pattern of fringes, so that the probability of photons arriving in a 
bright fringe is much greater than that for a dark fringe. It is as if 
the wave behaviour guided the bulk distribution of photons into 
the pattern of fringes, while the fate of an individual photon 
remained quite random.

Thus, the teaching we suggest is:

1. All pupils should see the gross effect of ultra-violet light, or 
visible light, making a current of negative electricity stream away 
from a suitable metal surface.

2. All pupils should see a film of the photo-electric effect, showing 
its dependence on the intensity of the light and on the frequency.

3. All pupils should see a film showing photons arriving one by one 
at random.

4. A fast group should see a film that shows photons 'painting' an 
interference pattern.

Matter Waves
'We go straight on from this new picture of light having both wave 
properties and particle properties to mention a similar picture for 
electrons, neutrons, atoms, all pieces of matter. That was the 
fantastic suggestion made by de Broglie in 1926. It changed the 
whole face of physics. It provided a means of developing a very 
successful quantum theory of atoms out of Bohr's beginning, which 
was only partly successful. It altered our whole view of chance and 
certainty in nature.

The physics that we use today, and modern chemistry too, are 
founded on quantum mechanics that arose from the new view. To 
give any sensible teaching of the new ideas and their use goes too 
easily beyond A-level into university physics, where the necessary 
use of differential equations is possible. Nevertheless, we suggest 
that pupils should hear of the new view. So, we suggest that 
teachers should show a very fine film, Matter Waves, produced by 
P.S.S.C.

The ideas of photons with light waves and matter waves with 
moving particles are well-expressed in those suggested films. 
Therefore, we shall not give further commentary here.
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Appendix B
THE ELECTROMAGNETIC

SPECTRUM



We all think of 'the electromagnetic spectrum', ranging from 
longest wireless waves to minute gamma rays, as a very important 
topic which should be taught as part of a general knowledge of 
physics. We feel such a grand sweep of radiations bound by simple 
common characteristics should be easy to expound. But with our 
conscience sensitive about teaching by assertion - or, worse still, by 
special pleading - we soon develop doubts. What parts of the 
spectrum can we show? What common characteristics can we 
demonstrate experimentally? Maxwell, Hertz, Tyndall and many 
others have built a tremendous picture in which we have complete 
confidence: waves consisting of combined electric and magnetic 
fields, all travelling with the same rate speed; with measured wave 
lengths covering such a wide range that their calculated frequencies 
cover more than forty octaves. All carry energy and momentum 
and exert pressure, according to the same rule, on an absorbing or 
reflecting surface. All carry their energy in definite packages whose 
size is proportional to the frequency - or so we believe: we know 
that from direct measurements in the range from visible light to 
gamma rays; but in infra-red and wireless regions the quanta are 
very small and we can only infer their presence indirectly. All turn 
their (electromagnetic) energy into heat when they are stopped by 
an absorbing surface, except for the small fraction of quanta, only 
in the higher frequency region, which spend their energy on photo 
electric effects. And they have properties hi common with other 
kinds of waves: reflection, refraction, diffraction and interference. 
But these radiations differ greatly in their reactions with matter 
from one region of the spectrum to another; and in practice we 
have to use quite different methods of production and detection 
for different regions.

The things we can demonstrate make a very patchy story. The three 
binding characteristics - the velocity, the electromagnetic nature 
of the disturbance, and the quantum packaging - could only be 
demonstrated directly over limited regions. In ordinary teaching 
we have to omit the demonstrations. At most we describe them 
briefly.

We can make measurements of wavelength over a considerable 
range of frequency; but even then when we look into details we 
find that we have calculated the frequencies from electrical data, 
or assumed that the marks on an oscilloscope's sweep system are 
correct - so all pupils have seen is some different wavelengths 
which we state belong to different frequencies of something that we 
state is the same kind of waves.
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In practice, our teaching here must be largely by assertion, with 
some pieces of description to support it. And that is no worse than 
the similar treatment we have adopted for atoms from the earliest 
year of our programme. As long as we know we are teaching largely 
by assertion and do not let too much of our teaching take that form, 
we shall make good progress in giving a perfectly fair picture of the 
physical world. But the moral here is that we should not spend 
long on the electromagnetic spectrum, since we are only going to 
describe the properties of some portions of it. We should give a 
quick survey and post up a large chart for the rest of the year. The 
notes that follow offer some suggestions and commentary.

TEACHING OF ELECTROMAGNETIC SPECTRUM 
Our Eyes are Limited in Range
Whenever pupils are shown a spectrum they should be reminded T 
that it probably extends far outside the visible region, at each end. 
Teachers who have long been familiar with this idea may find it 
difficult to understand why it is not obvious to pupils. The following 
'thought experiment' is helpful:

' Suppose your eyes were covered with a sheet of green glass - 
permanent green spectacles. What would you see? ... Well, what 
does happen to green light, red light, etc., on hitting green glass?'

(If necessary, the teacher should throw a demonstration spectrum 
on the screen and show the effect of interposing a green filter, then 
a red filter.)

'If you send white light through green glass, only the green 
part of the spectrum gets through.

' Suppose you shine white light on a piece of white paper and let 
the scattered white light go through green glass to your eye. You 
will receive only green light and the paper will look green. ... 
Well, yes, after a time you will get so used to seeing nothing but 
green that you will think that piece of paper white after all - you 
may begin to call all bright green things "white".

'If you shine white light at a piece of green paper, it will scatter 
only green light out of that white light, and it will look as bright 
as white paper.'

If pupils are surprised at that, the teacher should again throw a 
spectrum on the screen and show a piece of green paper in various 
parts of the spectrum.
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(The crinkly green paper used for Christmas decorations can be 
obtained in a good green. Otherwise, it is advisable to take red and 
green filters to a draper's and look at samples of ribbon and cloth 
through them until one finds material which looks very bright 
through a green filter and practically black through a red filter. 
That will not be very convincing unless the green material is dyed 
a fairly pure green.)

It will help if we show green paper or cloth in a patch of light from 
a lantern with a filter in front of its projection lens. With a red filter, 
green material will look black; but with a green filter it will look 
bright.

'If you wore green spectacles permanently, what would you see 
if you looked at red things, green things, blue things?

' What would you see if you looked at the whole spectrum falling 
on white paper? What would the range of the visible spectrum be 
in that case?'

(The teacher should sketch a spectrum on the blackboard, colour 
ing it roughly with coloured chalks, and then ask for the similar 
picture if everyone wore green spectacles.)

'Now take those green spectacles off. And instead of seeing just 
a narrow "visible spectrum" ranging from yellowish-green light 
to bluish-green light, you see what we call the full spectrum from 
red through green to blue to violet.

'How do you know that you have not still got some spectacles on, 
but this time spectacles that let through a broader band, all the 
way from what we call red to what we call violet? How do you 
know there is no "invisible light" arriving on the screen beyond 
the red and beyond the violet?

'In fact, there is; but the reason why we do not see it is not that 
we have limiting spectacles in front. It is the retina at the back of 
our eye that is limited, and unable to detect or interpret the light 
in the infra-red or ultra-violet.

'What else does light do, in addition to giving our eyes a sense of 
brightness?
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'All light, streaming along and arriving at some surface, warms 
up that surface if it stops there. Which surface will stop light 
better, black paper or white? If you shine strong light on a piece 
of white paper and on a piece of black paper, you will in fact rind 
the black paper getting a little warmer.'

(Unfortunately, a simple experiment, like the class experiment with *
radiation suggested for Year II, will show that common white *
paper is black in the infra-red region. If one holds the back of one's *
hand near a glowing electric heater and feels the warmth as the *
radiation is absorbed, one finds that pink skin, skin blackened with *
soot, skin coated with white paper pasted on, all record much *
warming, showing they are absorbing a lot of the radiation they *
receive. A coating of aluminium leaf reflects the radiation and very *
little warming is felt. *

*
If we could repeat that with an intense beam of, say, green light, *
we should find a black surface being heated, but white paper would *
just scatter the green light and remain almost as cool as a bright *
metal surface. This experiment is not possible as a demonstration *
because such a small fraction of the total energy-flow from an *
ordinary light-source falls in the visible green.) *

'The heating when light is stopped gives us a way of detecting T 
light even if it is "invisible light". We let the light fall on a 
small heating-detector, which we paint black. We form a spec 
trum with white light from a very bright lamp filament, and we 
place the detector in, say, the green of the spectrum. It shows a 
little warming; and as we move it along the spectrum from blue 
to green to red, the wanning increases.

' That does not mean that red light has a special heating property. 
It only means that there is more red light than green light in the 
white light from this particular lamp.

'Now, when we move on beyond the red into the infra-red, we 
find still more heating. That suggests there is some kind of 
"light" arriving there, though our eyes are unable to detect it. 
Furthermore, we know there is a lot of it because we find there 
is a lot of heating.'

At this point teachers are likely to meet the idea of special 'heat *
radiation' all over again - it is a misconception that arises very *
easily in early teaching. There is, of course, no such thing as a *
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special heat radiation that is better at heating a black surface than, 
say, green light.

To say that there is would be rather like saying that there is a 
specially efficient kind of head-damager which is round and 
covered with red leather - irregularly shaped rocks being less 
effective. Families living at the edge of a cricket ground might well 
evolve such a view simply because the only stray missiles that hit 
their children's heads were round red balls. Families living on a 
mountain slope would blame irregular bits of rock instead. The 
choice of description for head-damagers would be based on what is 
most frequent rather than what is most damaging.

We may use the old riddle, 'Why do white sheep give more wool 
than black sheep?' The answer 'Because there are more of them', 
applies to infra-red radiation. The near infra-red has a much bigger 
energy-flow (in watts per square centimetre) than even quite 
a wide band of green, in the spectrum of light from a white-hot 
tungsten lamp filament.

In light from the Sun, however, we should find the energy-flow 
larger in the green. (These statements are scientifically careless 
because we cannot really specify energy-flow until we specify the 
width of band we shall consider, such as a certain range of wave 
length or of frequency.)

In pursuingthe spectrum out into the infra-red, we find the energy- 
flow increasing until, when we get far out, there is a sudden drop 
to practically nothing. That drop is due to the 'cut-off' of the glass 
used in lenses and prism (and in the bulb of the lamp itself). 
Beyond that cut-off, glass itself is black; so no wonder we see no 
further spectrum.

At the ultra-violet end, our blackened detector of energy-flow will 
still tell us the truth. But, just as there is much smaller energy-flow 
in green than in infra-red, there is still smaller in ultra-violet; in 
fact, too little for a demonstration detector to show, with any 
ordinary source. Therefore, we must use another type of detector 
which is specially sensitive to ultra-violet light. That is, photo 
graphic film or fluorescent material or a photoelectric cell. Each of 
those make use of individual quanta of ultra-violet radiation to 
eject an electron from some atom (or at least move it to an excited 
level) and the large quanta of ultra-violet light are able to make 
much more striking changes of that kind than the smaller quanta in 
the visible spectrum. We are no longer measuring energy-flow

348



proportionally: we are magnifying the violet and ultra-violet * 
region enormously. *

We might illustrate this change of detector by asking pupils to T 
put on their green spectacles again and then imagine one of them 
has red spectacles. What would he see instead? Would the fact 
that he disagreed with the rest mean that he was wrong? Would 
it mean that there is no light in the green, as he would claim? And 
so on.

Using fluorescent material, we can show pupils that something is 
arriving in the ultra-violet region.

If there are facilities for developing photographic film, we should 
place that there also and show that something reaches it in the 
ultra-violet region.

The Full Electromagnetic Spectrum
Then the teacher should sketch the full electromagnetic spectrum, T 
labelling infra-red and ultra-violet and letting those extend on 
outward. In the far infra-red there is an overlap with wireless 
waves. In the extreme ultra-violet there is an overlap with X-rays 
which in turn overlap with gamma rays. These extensions are pure 
assertions so far as pupils at this stage are concerned.

Even if special apparatus is available to demonstrate centimetre *
waves, or to show electrical oscillations in frequencies ranging from *
a few cycles a second to many millions, we should only be unrolling *
new mysteries and making further assertions by showing those *
experiments at this point. They belong to A-level or to special *
teaching for an unusually able group. *

*
Nevertheless, pupils should have, even though it is given by *
assertion, a picture of something we call the spectrum, spreading *
far beyond the limited range which our eyes can see. *

A permanent chart of this on the wall would be very helpful. It is T 
part of a modern man's general knowledge of nature.

Calling this spectrum' The Electromagnetic Spectrum' is probably *
necessary, since that has long been what we know about these *
waves, but the word 'electromagnetic' represents one more *
assertion that we can justify convincingly, at least for light. *
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Appendix C
BOHR'S ATOM MODEL 

AND A MODERN VIEW



When physicists were forced by experimental evidence to adopt a 
wave: particle view, Bohr's model, which had already run into some 
difficulties, was modified so greatly that we no longer speak of it as 
a good picture. Yet we still discuss atoms with many a phrase from 
Bohr's picture. And that picture was indeed the parent of modern 
atom models. Here is a brief description of Bohr's move in making 
his model.

In devising his model, Bohr did not simply discover and announce 
new facts, but rather announced, without much explanation, those 
rules which he could see were necessary to effect a working compro 
mise between classical theory and the facts of experiment. He said, 
in effect, 'the Rutherford atom model is true, and the classical 
laws of motion and electrical forces apply to it'. But then he added 
some new rules which expressed clearly the conflict that physicists 
had been facing uneasily. (Remember the waiter who said apolo 
getically to the customer, 'the Chef says he is very sorry; your 
soup was dishwater'.) Physicists knew clearly that, on the basis of 
reliable classical laws, a static version of the Rutherford atom with 
electrons at rest could not be in stable equilibrium $ and, equally 
clearly, a dynamic or planetary model could not last because it 
would radiate electromagnetic waves and collapse in a very short 
time. Bohr simply stated: 'Atoms do have electrons moving in 
orbits which are stable and do not radiate.' He gave no reason for 
that - it was simply an honest statement that the emperor has no 
clothes.

Then Bohr gave a rule which fitted the experimental facts of line 
spectra: 'Although the atom has stable states, an electron can 
change from a stable state of higher energy to one of lower energy, 
emitting the difference as a single quantum of radiation.' That 
meant that, if we know the energies of the atom in those two states, 
we can predict the frequency of the spectral line emitted; or, in 
reverse, we can obtain information concerning energy levels from 
spectral lines.

Bohr added a rule that specified the stable orbits. It was a rule 
concerning quantization of angular momentum that is still useful 
in modified form; but it came at the time as an unexpected empiri 
cal rule. Bohr gave a hint of justification by Unking it to classical 
predictions for extreme cases (very large orbits) but it remained 
essentially an ad hoc rule.
$ No group of particles exerting only inverse-square forces can remain at rest in 
stable equilibrium. This is Eamshaw's Theorem, worth remembering in our 
teaching; but not something to teach at this level.
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Physicists were glad to take and use Bohr's rules, which proved 
very fruitful in predicting patterns of spectra, in giving estimates 
of the size of atoms, and hi affording interpretation of X-ray 
spectra, ionization potentials, etc. But to some younger scientists, 
the need for the rules did not seem so pressing, and so became 
something to be learned by rote.

STATES AND ENERGY LEVELS
In our present view, the idea of stable states, each a definite energy 
level, remains; and so does the general Rutherford atom picture. 
A photon of each spectral line is emitted when the atom changes 
from one state to another, the electron switching from one energy 
level to another. But we now have a good, simple 'reason' for the 
stationary states; they are defined by stationary wave patterns of 
the electron's wave system.

For a circular orbit a stationary wave is embroidered on the cir 
cumference. A whole number of wavelengths must fit into the 
circumference. We feel it is reasonable to expect such a stationary 
wave to remain stable without growing or shrinking or running 
away. (And yet the electron wave patterns in our speculations are 
not mechanical waves, so perhaps we are unwise to think of them 
as things that could run away in any case.)

We can combine that condition for stationary waves with the 
expression that connects a moving electron's wavelength with its 
momentum—(wavelength) = /(/(momentum). Then we obtain the 
very condition defining stable states that Bohr expressed in his 
surprising rule for orbits; but now the condition seems plausible. 
We should still have to apply classical expressions for potential 
energy and kinetic energy before we can calculate the energy of the 
electron at each level; but if we do that we can predict the lines of 
the simple hydrogen spectrum4

However, quantum mechanics describes the structure and be 
haviour of atoms with a much greater variety of wave patterns, in 
which any close correspondence with the old Bohr model 
disappears. Even for hydrogen, the picture of waves on circular 
'orbits' proves incomplete and partially incorrect.

$ We can calculate the radius of a hydrogen atom on this modified view3 without 
using an expression for energy. We combine the wavelength: momentum rule 
with the requirement that the circumference of the normal stable orbit of the 
electron is one wavelength. And we add the orbit rule: mv^/r = electrostatic 
attraction between nucleus and electron.
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We are left with the view that the atom is hollow with a massive 
nucleus carrying a positive charge (equal to the atomic number * 
times one electron charge); that the atom has electrons that 
'reside' in regions outside the nucleus (the atomic number gives 
the number of those electrons); that the whole system has many 
energy levels, the lower ones (with greatest negative potential 
energy) occupied by electrons, but an unending series of higher 
ones unoccupied. And when the atom changes from one state to 
another, an electron switches from one energy level to another; 
and the difference of energy is emitted as a photon of frequency 
given by (energy-difference)/^.

This fits with ('accounts for' ?) our knowledge of stability and 
elasticity of atoms. At low energies (a few hundredths of an 
electron-volt at room temperature) gas molecules make perfectly 
elastic collisions. Electrons with energies up to a few e.v bounce off 
gas molecules elastically. Only at higher energies are there in 
elastic collisions; and then the energy taken for excitation (or for 
ionization) is a definite amount - the difference between two 
definite energy-levels of the atom.

We still classify the levels, both occupied and unoccupied, by 
number systems which were developed for the Bohr orbit model 
and are now related to the quantum rules which guide our picture- 
making for atoms today. Those number systems are of vital im 
portance to spectroscopists and are of value in some parts of 
chemistry - at least so far as the more loosely bound electrons are 
concerned - but learning them or even their classification does not 
seem to us to make valuable progress in a pupil's understanding of 
modern physics.
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