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FOREWORD

This volume is one of the first to be produced by the Nuffield
Science Teaching Project, whose work began early in 1962. At that
time many individual schoolteachers and a number of organizations
in Britain (among whom the Scottish Education Department and
the Association for Science Education, as it now is, were conspicu-
ous) had drawn attention to the need for a renewal of the science
curriculum and for a wider study of imaginative ways of teaching
scientific subjects. The Trustees of the Nuffield Foundation con-~
sidered that there were great opportunities here. They therefore
set up a science teaching project and allocated large resources to
its work.

The first problems to be tackled were concerned with the teaching
of O-Level physics, chemistry, and biology in secondary schools.
The programme has since been extended to the teaching of science
in sixth forms, in primary schools, and in secondary school classes
which are not studying for O-Level examinations. In all these pro-
grammes the principal aim is to develop materials that will help
teachers to present science in a lively, exciting and intelligible
way. Since the work has been done by teachers, this volume and
its companions belong to the teaching profession as a whole.

The production of the materials would not have been possible with-
out the wholehearted and unstinting collaboration of the team mem-
bers (mostly teachers on secondment from schools); the consulta-
tive committees who helped to give the work directionand purpose;
the teachers in the 170 schools who participated in the trials of these
and other materials ; the headmasters, local authorities, and boards
of governors who agreed that their schools should accept extra
burdens in order to further the work of the project; and the many
other people and organizations that have contributed good advice,
practical assistance, or generous gifts of material and money.

To the extent that this initiative in curriculum development is
already the common property of the science teaching profession, it
is important that the current volumes should be thought of as con-
tributions to a continuing process. The revision and renewal that
will be necessary in the future, will be greatly helped by the interest
and the comments of those who use the full Nuffield programme
and of those who follow only some of its suggestions. By their
interest in the project, the trustees of the Nuffield Foundation have
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sought to demonstrate that the continuing renewal of the curricu-~
lum ~ in all subjects ~ should be a major educational objective.

Brian Young
Director of the Nuffield Foundation
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To those on whom these problems are inflicted
First of all, don’t worry.

You will probably be able to answer some of the problems.
Others you will find too difficult. Some, you will find, have no
simple answer: this is intentional, but see what you can do. And
some problems are simply meant to start discussion — they ask,
‘What do you think?’

Some problems will involve things you have already covered in
your physics. Others will bring in new topics. And some problems
will be concerned with things which are unfamiliar but which are
linked with what you have already heard about. Some questions
are just problems to test your ingenuity. A good scientist tests
what he can, and what he has time for, but he cannot test every-
thing, he cannot find all the answers. All the same, he enjoys
speculating about — wondering about ~ a lot of other things.

Altogether there are far too many problems for you to be able to
tackle all of them. You will have to pick and choose. Some prob-
lems will be more interesting, or provoking, than others. Do them.
With luck, you will enjoy them.

Above all, don’t worry.

In some places you will come across Uncle George and Freddie
Jones. Most of you will think they are awful nuisances. Some of
you will think that they ought not to be introduced into anything
so solemn as physics questions. They have their uses!

Uncle George is intelligent and interested, and has time to spare,
but he knows very little physics. He certainly didn’t do any
physics at school; he was on the classics side, and when he was a
boy the classics side did no science. So, you see, he is not an
examiner who knows all the answers and is waiting to trip you up.
He understands what you say if you tell him simply and shortly,
and don’t lead him astray with ‘red herrings’. He is also quite
willing — perhaps rather too willing! — to suggest new ideas of his
own, sometimes rather ‘off-beat’.

Freddie is your own age. He is ingenious and moderately sensible,
though you will often be able to put him right about things. He
also is liable to have off-beat ideas.



Multiflash pictures
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Figure 1

Figure 1 represents a ‘multi-flash’ photograph of a ball rolling
along a flat surface. The rate of flashing was 1500 per minute.

a. What sort of motion did the ball have? Can you tell which way it
was moving?
b. What was its speed?

02
a. You will probably guess that figure 2 represents a ball } ©3
falling from position 1 to position 11, but could you really 104
be sure of this from the diagram? Could it not be going |[1©5
upwards from 11 to 1? Explain your answer. N
b. Assuming the ball is falling from 1 to 11, what can you [H©®6
say about its motion? §j
©HO 7
Referring still to figure 2 and assuming that the flashing | /[]
rate is 1500 per minute, find: N
1©8
a. the average speed between the time of picture 6 and the .
time of 7 (cm per sec); I
b. the average speed between 10 and 11 (cm per sec); ~Q9

¢. the time interval between 6 and 10, or between 7 and

11 (sec);

d. the increase of speed (cm/sec) in this time interval; ©10
e. the acceleration in cm/sec per sec;

J. the acceleration in metres/sec per sec.

Suppose that, for figure 2, the rate of flashing had been 300 o11
per minute instead of 1500 per minute. Suppose that the
first flash comes as the ball is released, in position 1. R
Draw a diagram to the same scale showing what the picture would:
now look like,



1 Multiflash pictures ' 6

Figure 5

5 For figure 5, a ball rolling down an inclined plane, the flasher was
set for 150 a minute, that is, one-tenth of what it was for the ball
falling vertically in figure 2. By using the inclined plane we have
‘diluted gravity’ to only u fraction of its ‘freely falling’ value.
We call the acceleration of gravity ‘g’; let us call the number
representing the fraction ‘f’. So the acceleration for the ball rolling
down the inclined plane in figure 5 is ‘fg’.

By comparing figure 2 with figure 5, and knowing the rate of
flashing in both cases, find the fraction ‘f’. Explain how you got
your result. '



Revision of vibrators and ticker-tape
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6 Diagrams K,L,M, show successive ten-tick pieces of ticker-tape

cut off and pasted side by side. In each case there are seven pieces,
and the heights are shown in centimetres. The dots at the start
and the end were too close to count properly, so only the middle
sets of ten ticks (70 in all) are shown.

a. Describe briefly the kind of motion followed by the person or
object pulling the tape through if the result is () like K, (%) like
L, (@) like M.

b. So far as you can tell from the diagrams, which tape reached
the fastest speed, and what was that speed (¢) i cm per ten-tick
(remember that each length of tape corresponds to a time of ten
thkS) (%) in cm per second, if the v1brator used tapped out 50
dots in one second?

¢. Actually it seems likely that the fastest speed reached was more
than that calculated in (b), though for a shorter time than ten ticks.
Why is this?

Look again at diagrams K,L,M of question 6.

a. How far did the object attached to the tape move in 70 t1cks
(% seconds) for the motion shown in K?
b. How far for the motion shown in L?
¢. How far for the motion shown in M?



2 Revision of vibrators and ticker-tape 8

8 a. Calculate the average speed for the 70 ticks shown in diagrm I§,
question 6. To do this, use answer 7 (a); remember that the time is
70 ticks = £ second, and calculate by using:

total distance moved
total time taken

average speed =

b. In the same way, calculate the average speed for the 70 ticks
shown in diagram L.

¢. Then do the same for diagram M.

d. The average speed you found in (a) is, of course, the actual
speed of tape K throughout the time of 70 ticks. This is not true
for tape L. Did tape L ever have the actual speed you found in
(b)? If so, how many times did it have that speed?

Note : The same question could be asked about tape M, and the answer
would be the same.

30L

20
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Figure 9

- 9 a.What is the value of the constant velocity represented by
figure 9? Give the answer in cm per ten-tick.
b. If the paper strips, diagram 9, had been for 50 ticks instead of
10, how tall would they have been for the same velocity?
¢. If 50 ticks take 1 second, what is the value of the constant
velocity represented by diagram in cm per second? What is the
value of this velocity in metres per second?



10

"

2 Revision of vibrators and ticker-tape 9
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Figure 10

a. Figure 10: by how much does the velocity increase in every ten-
tick interval of time? Give the answer in cm per ten-tick.

b. How much is this increase of velocity in cm per second? (50
ticks = 1 second)

c. Answer (b) is the acceleration in cm per second in every ten-
tick. What is the acceleration in cm per second in every second?
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Figure 11 Ticks

Figure 11 shows two lengths of tape. One includes dots 0 to 10,
then we count on another 90 dots, and cut off a length of tape in-

_ cluding dots 100 to 110. So these tapes are ‘100 dots apart’.

And 100 dots = 2 seconds. Find the acceleration in (a) cm per 10
dots per second, and (b) cm per second per second.
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Finding out about force and acceleration

Describe ‘briefly experiments you have tried without making
measurements,* using small trolleys and elastic cords. Say what
connection you noticed between the pull of the forces exerted and
the accelerations that were produced.

Imagine you are sitting on a large trolley. You have a piece of rope
with a ring at each end. You hold one ring; another pupil holds the
other ring. He (or she) then pulls you along, '

a. so that you and the trolley move at a steady speed,
b. so that, starting from rest, you cover 10 metres in 6 seconds,
¢. so that, starting from rest, you cover 10 metres in 3 seconds.

What sort of pull in your arms would you feel in (a), (6), and (c)
above?

d. Next, a third pupil sits behind you on the trolley. You notice
that this does not make much difference to the pull you feel for
(@), the steady speed. What difference does it make to () and (¢)?

a. A stone hangs on a thread of cotton. The thread is strong enough
to support several similar stones. But when the stone is lifted half
a metre and dropped the thread breaks. Why is this?

b. Suppose the thread had been no stronger, but stretched more
easily. Would this have made any difference?

A newspaper report says; ‘In order to make a soft landing on the
Moon’s surface, retro-rockets must be used.’

a. What do you think this is about? What is meant by a ‘soft

landing’, and by ‘retro-rockets’? (retro = backwards, as in
‘retrogress’)

b. How would the use of retro-rockets lead to a soft landing?

This question follows from question 15. Answer each part below by
saying ‘increased’, ‘decreased’, or ‘unchanged’.

How would the force the retro-rockets have to exert in order to
ensure a soft landing be altered if:

*You may count the number of trolleys!
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a. they are to be switched on for ten minutes instead of five?

b. the space-ship is travelling at twice the speed?

c. it contains two men instead of one?

d. the space-ship is made with twice the volume s1mp1y by having
more room inside — that is, no more metal, no more equipment,
no more men?

You have done acceleration experiments with small trolleys pulled
by elastic. First you had to pull a trolley along with a steady force
F, unchanging over most of the trolley’s run from start to stop.
This was done by using a piece of elastic. Then you pulled it with
a force of 2F, then, perhaps, 3F.

a. How did you make sure that a steady force F was being exerted?
(Give details of exactly how you did this.)

b. How did you get forces of 2F and 3F?

¢. You also inclined the trolley board slightly in order to compen-
sate for friction — how did you find the correct angle of inclination?

Two pupils did a trolley and tape experiment in which they pulled
the trolley, first with one elastic cord, and then with two elastic
cords kept extended to the same extent as before.

g

-
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15 25 35 45 55 5 15 25 35 45 55
One elastic cord Two elastic cords

Figure 18 (2) Figure 18 (i7)

They took the first tape and cut the middle part of it into six ten-
tick lengths, 0~-10, 10-20, 20-30, 30—40, 40-50, and 50-60. These
were pasted at regular intervals on graph paper, with the result
shown, one-quarter real size, in figure 18 (Z). They then did the same
thing with the second tape, result as in figure 18 (iZ), also one-
quarter actual size.
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3 Finding out about force and acceleration 12

a. Do these graphs show ‘steady force, steady acceleration’? How
do you know?
b. Do these graphs show ‘twice the pull, then twice the accelera-

‘tion?> How do you show this from the graphs given?

¢. The first strip in figure 18 () is more than twice the length of
the first strip in figure 18 (7). Similarly for the last strips. How do
you explain this?

In the experiment, question 18, how could you simplify and speed
up the working of 18 () by assuming 18 (a) is true, that a steady
force gives a steady acceleration?

How could you further speed up the work by nor using scissors
and paste?

Not to be answered unless you have done an experiment with a
carbon dioxide puck pulled with an elastic cord.

a. What is a carbon dioxide puck? What is the advantage of using
it?

b. How was a steady force applied to the puck?

¢. How was the acceleration measured?

d. What result did you get?

Not to be answered unless you have found the acceleration of a
trolley by using a ‘millisecond timer’, measuring time intervals in
thousandths of a second.

a. What measuring instruments did you use? (You probably used
three.)

b. What did you measure with them (four measurements), and how
was it done?

¢. How did you find the acceleration?

d. What (if anything) did you discover from the experiment?

Every experiment shows something, even if it is not what you hoped
for!

a. How could you arrange to pull one trolley with a force F, then
two trolleys with 2F, then three trolleys with 3F? Say briefly how
you would measure the accelerations.

b. What would you expect to notice about the results for the
accelerations?
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This is the same as 22, except that ‘puck’ is substituted for
‘trolley’.

a. How would you arrange to pull one carbon dioxide puck with a
force F, then two with 2F, then three with 3F? Say briefly how you
would measure the accelerations.

b. What would you expect to notice about the results for the
accelerations?

If one trolley requires a force F to give it an acceleration, a;

a. what force is required to give three trolleys, piled on top of
each other, an acceleration of 2a?

b. what force is required to give four trolleys an acceleration of
2-5a?

You answered 24 by common sense, backed up by the results of
experiments like those referred to in questions 17-23. You can
now bring together all these results in one relation between: force;
acceleration ; number of trolleys.

a. Write down this relation, using the symbol cc for ‘varies directly
as’, or ‘is proportional to’.

b. Write the relation, using the symbols F for force, a for accelera-
tion and m for number of trolleys. (Why #? — you will hear about
this later.) '
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26 Suppose that each of the following objects is seen to be moving
with a constant speed and is not changing direction, that is, its
velocity is constant:

a. a chair being pushed across a level floor,

b. a barge being pulled along by a tug-boat,

¢. a ¢ycle going downhill, rider freewheeling,

d. a carbon dioxide puck moving over a glass surface,
e. a spoon dropping slowly through syrup,

f- a man descending on a parachute,

g. a locomorive pulling a train up a gradient,

h. a spaceship far away from other bodies,

1. a girder being raised at a steady speed by a crane.

(7) Write down, for each of (@) to (7) above, the forces acting on
the object underlined — or, alternatively, say that no forces at all
are acting-on it. If there are forces acting, what can we say about
these forces?

(72) An object at rest is a special case of an object having constant
velocity, that is, its constant velocity is zero. What can we say
about the forces acting on an object which is not moving?

27 1If a body moves with constant velocity (including being at rest),
then there are no forces acting on it, or the forces acting on it are
balanced. That is to say, there is no resultant force. Suppose, how-
ever, that the body is nor moving with constant velocity, then a
resultant force must be acting on it. It might be:

a. accelerating,

b. decelerating (slowing down),
¢. moving in a curve,

d. (@) and (c) together,

e. (b) and (c) together.

Give one example of each of (@) to (¢) above, and say in what
direction the resultant force is acting. Give diagrams.

Questions (@) and (b) are easy; (c), (d), and (e) are difficult.
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Figure 28

Figure 28 shows a hill down which a ball rolls on to a flat horizontal
surface which goes on as far as you like.

a. What happens to a real ball on a real surface?
b. What would happen if there were no friction or air resistance

at all?

POV P077777 777700 PP 72700072777

Figure 29 (a)

Figure 29 (b)

a. Figure 29 (a) shows a curved glass surface — a large ‘watch-
glass’ from the chemistry lab, or a large curved mirror. It is placed
on the bench and a small steel ball is held as shown, and is then
released. What happens to the steel ball?

b. Figure 29 (b) shows a length of curtain rail, bent as shown. A
ball is placed at position x and is let go. How far does it go up the
other side? What happens then?

Newton’s First Law (write it out if you haven’t already written it)
states:

‘Every object continues to move with constant speed in a straight
line, or to remain at rest, unless some unbalanced (resultant)
force acts on it.’

Your Uncle George sees this law written in your book. ‘Apart
from wunbalanced force which I don’t understand,’ he says, ‘this is
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plain nonsense. Here’s a wheelbarrow full of garden rubbish; this
won’t move with constant speed, it soon stops if I stop pushing
it.” And he states two laws which are, he says, ‘better and more
sensible’ than Newton’s.

Uncle George’s laws of motion.

1. Everything slows down and stops unless someone pushes it
(on the flat, he means).

2. Everything that goes up comes down again — or tries to.

Write a page or so in answer to this, or jot down a few notes for a
discussion later on,



5
31

32

33

17
Arithmetic to algebra via geometry

A car has a speed of 20 mph. Two seconds later its speed is 23
mph. Two seconds after that, 26 mph. We can tabulate this:

time,seconds 0 2 4
speed, mph. 20 23 26

a. If it continues to accelerate like this, what is its speed at time
6 seconds? 7 seconds? 10 seconds?

b. What could you think its speed was at time —2 seconds, that is,
2 seconds before its speed was 20 mph?

¢. How much increase of speed is there in 2 seconds?

d. How much increase of speed is there in 1 second?

e. Which of the above answers is the acceleration?

f- What is meant by ‘acceleration’?

a. A train increases its speed steadily from 40 km per hour to
50 km per hour in 5 seconds. What acceleration is this?

b. The same train might also increase in speed from 12 metres per
second to 15 metres per second in 5 seconds. What is its accelera-
tion?

A body is moving with a steady (constant) acceleration. It has a
velocity v at the instant the clock starts and, after accelerating
steadily with an acceleration a for time ¢, its velocity is 2. We can
sayy

a. Define “acceleration’, and show how the above equation comes
from your definition.

b. Write in an intermediate stage between the equation above and
the equation below: ‘

v =u- at
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34 Figure 34 shows two paper tape diagrams. Two other paper tape
diagrams are shown in figures 9 and 10. As usual, the tape is
attached to the moving object and is dragged through the vibrator.

Strips of paper, seven in each case, are cut off between dots 0 and
10, 10 and 20 and so on, up to 60 to 70. The strips are stuck side by
side.

a. What kind of motion is represented by figure 9?

b. What kind of motion is represented by figure 10?

c. What kind of motion is represented by figure 34 (i)?

d. What kind of motion is represented by figure 34 (ii)?

e. How far has the object in figure 9 moved between ticks 0 and 70?
J- How far has the object in figure 10 moved between ticks 0 and 70?
g. How far has the object in figure 34 () moved between ticks 0 and
70?

h. How far has the object in figure 34 (i7) moved between ticks 0
and 70?
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Veloeity
( em e e

Figure 35

35 Figure 35 is a graph of the motion of an object whose speed is
increased from 100 cm per sec to 400 cm per second.

a. What is it, in this graph, that represents the distance the object
moved in 4 seconds? ,

b. Find the distance moved. (Divide the diagram into a rectangle
and a triangle, and remember that the area of a triangle is § base
X height.)
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36 An object has a velocity « at the instant the clock starts and, after

37

time ¢, reaches a final velocity ». Its speed has increased at a con-
stant rate, shown by the straight line in figure 36. We shall use the
symbol ‘s’ for the distance covered in time z. Then

v — U
2

a. How is this equation obtained from figure 36?
b. In terms of the acceleration a,

s=ut + t

s=ut+ % at®
How is this obtained from the previous equation?

This is an alternative, and entirely algebraical, method of obtaining
the last equation s = ut + % ar®. We use the symbols #, v, ¢, a, s
with the same meanings as before, and the acceleration a is
constant.

a. The average velocity during time ¢ is ? g & why?

b. Therefore s = | 2 —; u] - t, why?

c. Finish the proof by using, from question 33, the equation

v = u - at, so getting
s=ut+ % at®
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Figure 38

38 Figure 38 is a graph of the motion of a car which travelled from the
centre of a town to a nearby village. Speed in metres per second
is plotted upwards, and time along.

From the information obtained by looking at the graph, write an
account of the journéy. Do not make any measurements or cal-
culations. ’

39 Find the acceleration the car had during the time intervals re-
presented by (a) A to B, () Bto C, (¢)Cto D, (d) D to E, in
figure 38.

40 Find, in two ways, the distance covered by the car during the time
interval represented by D to E in figure 38. Check that the two
answers are the same,

a. by measurement of two areas on the graph,
b. by using s = ur + %} at®
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Measuring g°

To be done at home. You can count quarter-seconds by saying
‘nought, one, two, three, four’ (0, 1, 2, 3, 4) quickly but distinctly.
Practise this while looking at the seconds hand of a watch or clock
— count for 3 seconds, saying O at the start and 12 at the end of the
3-second interval. When you think you have the timing about
right, proceed to find ‘g’, the acceleration of gravity, as follows.

Find a small stone or other small heavy object. Stand on a stool or
chair or bench so that you can drop it from a measured height of
2 metres (6 feet 6 inches near enough). Say ‘nought’ as you release
the stone, and notice which number you are saying, or have just
said, when you hear the stone hit the ground. Make the best
estimate you can of time taken — make a guess to the nearest tenth
of a second.

a. Find ‘g’ from s = § g2,
b. How do we get s = } g2 from the general equation
s=ut + % at®?
c. Why is this a highly inaccurate experiment?
d. Why doesn’t it matter much about measuring the 2 metres
exactly?

You have seen a determination of ¢ which was a great improvement
on the rough experiment in question 41, Time was measured in
milliseconds instead of quarter-seconds.

a. Draw a diagram of the arrangement for releasing the ball. How
did this start the timer counting?

b. Explain how the timer was stopped by the ball at the end of its
fall. Give a diagram.

¢. How did you calculate g?

A ball takes 450 milliseconds to fall 1-0 metre.

a. What value does this give for g? (s = 1 gz2).

b. How long would it take to fall 25 cm?

c. If it continued with the same acceleration, how long would it
take in falling from a cliff 100 metres high?

d. In fact, it would not continue with the same acceleration for
100 metres, why not?
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6 Measuring ‘g’

Another way of finding ¢ is by taking a ‘multiflash’
photograph of a falling object; something resembling this
is shown in figure 44. Answer question 3 if you have not
already done so.

Figure 2 was drawn so that the first flash and therefore
the first picture, 1 in the diagram, comes exactly as the
ball is released. This would be very difficult to arrange,
and is unlikely to happen by chance. However, the method
of calculation in question 3 is correct, even if the ball
was released between two flashes. This is because the
calculation depends on the difference of speeds at two
instants. Figure 44 shows 9 positions at - second inter-
vals (1500 per minute) of the same ball. Pictures previous
to 1 are missing. We shall get three values of g from this
diagram, and then we can average the results. Proceed as
follows:

a. Find the average velocity between 1 and 2, and the
average velocity between 6 and 7. The time interval be-
tween these is 5 sec.

__increase of velocity
time interval

b. Repeat for the % second between 2 and 3, and 7 and 8.

¢. Repeat for 3 and 4, and 8 and 9.
d. Average the three values for g found in (a), (), and (c).
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7 .On being pushed around
45 Consider the following:

a. a tin-can, which could be filled with sand, swinging on a long
string attached to the ceiling,

b. a piece of wood, or anything that could have small loads put in
or on it, floating on water,

c. carbon dioxide pucks on horizontal glass,

d. flat, heavy preces of metal — weights perhaps — resting on ball
bearings on a smooth surface,

e. friction-compensated trolleys, that is, compensated by sloping
the plane slightly.

What have all these in common? Answer, they are attempts to get
rid of effects due to gravity and friction, so that we can test how
things behave when these confusing forces are not acting — that is,
they are attempts to simplify things. Of course they are not very
successful attempts; at best we only get rid of gravity and friction
for things moving in one plane, and that must be horizontal or
nearly horizontal. There are other snags, for example, (a) works
only as long as the can moves just a small distance, otherwise the
weight of the can becomes very important. And (e) works only in
one direction; if we try to push the trolley any way except down
the plane we have large forces due to weight and friction acting.
Nevertheless, they are the best we can do, short of a voyage in a
space craft!

You have tried pushing the can, the wood, the puck, the trolley,
etc., with one finger, or pulling with cotton. Describe what you
feel, when

(2) you give ‘sz’ (the thing in italics in (@) to (¢) above) a sudden
increase of speed, and when you give it a slow increase of speed or
stop it slowly — that is the difference in feel for large and small
accelerations,

(#) when you try different quantities of matter, e.g. two pucks or
two trolleys on top of each other, as compared with one; or the
can filled with sand compared with the can empty.

Yes, the answers to these questions seem too easy, but they are
important. They show the property of matter we call mertia.
Inertia is a short way of saying ‘amount of difficultness in getting
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into motion’, or ‘amount of sluggishness’, or ‘amount of un-
shovability’, or ‘amount of difficultness in being accelerated’. Two
trolleys have twice the inertia that one has. Two trolleys are twice
as massive; they have twice the mass. Exactly how to measure mass
is something we shall see later.

Notice that inertia works both ways. The greater the difficulty in
getting moving, the greater the difficulty in stopping. Compared
with a car, a ten-ton lorry has a more powerful engine and more
powerful brakes. If the brakes won’t stop the lorry, something
else will — and then we have a nasty accident.

What about force? Force is what must be exerted to give matter an
acceleration. The bigger the acceleration (or deceleration), the
bigger the force required. The bigger the mass, the bigger the
force required for the same acceleration. In fact, you have already
discovered the relation between force, mass, and acceleration — see
question 25.

(#7i) Write down the relation between force (F), acceleration (a),
and mass (m). Use ‘ oc’ to mean ‘is proportional to’ or ‘varies
directly as’.

Difficulr. Having read question 45, do ybur best to explain ‘in
your own words’ what is meant by, (@) inertia, () mass, (¢) force.

This is not an invitation to write out definitions to be learnt by
heart; you will 7ot be asked this in an examination. It is an ‘Uncle
George’ question: explain to Uncle George what these three words
mean. You can assume he understands ‘acceleration’. In each
answer, give him an actual example of what you are talking about;
most of us find real things easier to understand than generalities. -

a. An egg stands on a piece of metal tubing which stands on
cardboard which stands on a tumbler which contains water. The
cardboard is then jerked out. What happens to the egg, and
why? What two reasons are there for having water in the tumbler?

Figure 47
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b. Several other ‘parlour tricks’ with coins, weights, books, etc.,
depend on inertia. Describe and explain one such trick.

a. Uncle George has wax-polished his car so that water stands on
it in large drops, without wetting it. The car is left out in heavy
rain. The rain stops. Then Uncle George gets in and drives off.
He comes to a traffic light, which changes to red, and he stops
rather quickly. A ‘swoosh’ of water comes over his windscreen.
Explain what inertia has to do with this. '

b. Uncle George and Freddie, who are inexperienced sailors, hire.a
motor-cruiser on the Norfolk Broads. They set off down the river
in fine style. Then they want to stop for the night. Uncle George,
who is steering, sees a nice piece of bank ahead. ‘T’ll drive along-
side there,” he says, ‘and when I say “jump?, I’ll switch off the
engine while you jump ashore with the stern anchor and stick it
in the bank.” They do this, and Freddie, who bravely hangs on to
the anchor, gets very wet. Later, Uncle George, who has heard
about inertia, says it is ‘inertia’s fault that you got wet’. Explain
how inertia made Freddie wet, and say what Uncle George ought
to have done.

In question 30 there is a statement of Newton’s First Law of
Motion. What connection is there, do you think, between inertia
and Newton’s First Law?

You have used a thing called -a ‘wig-wag machine’ or an ‘inertia
balance’. Its ‘rate of waggle’ depends on the inertia, or mass, of an
object put on it, and not at all on the weight of the object. It works
in just the same way in the laboratory and in a space-ship

a. How would you show, without taking it out of the laboratory,
that it does compare masses of objects, and not weights?

b. If you put a larger lump on it, it waggles more slowly. Give a
reason why this happens - that is, a reason in terms of inertia and
force (‘ The larger lump has the larger inertia, therefore . . .)

¢. What else do you think has a main, controlling effect on its rate
of waggle? (Choose your answer from: resistance of the air, weight
of the springs, springiness of the springs, tightness of fastening to
the bench, whether or not it is exactly level.)
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You have masses of 1 kg, 1 kg, and 2 kg. How would you use a
wig-wag machine to find the mass of a lump which is ‘somewhere
about 1% kg’? (Remember that the time for one waggle is not
directly proportional to the mass you put on the platform in fact,
you do not know how time varies with mass. Hint: Graph paper
might be needed.)

Trolleys and ticker-tape can be used to compare masses, Section
3. The answer to question 25 was,

force oc [number of trolleys] X [acceleration]

If we increase the number of trolleys, or load things on to a trolley,
we increase the total volume, mass (Inertia), weight, and other
properties as well.

a. On what does the force needed for a given acceleration depend:
volume, weight, mass of the trolleys, or something else?
b. ‘Force « [....] X [acceleration]’

Write out the above relation, and fill in the blank with one word
that is more useful than the previous ‘number of trolleys’.

: ‘Number of trolleys’ did not really mean a number, it meant ‘the
amount of whatever-it-is possessed by the number of trolleys we
used’. Now we know the proper name for the ‘whatever-it-is’.

Note 2 : And that name is ‘mass’, so force is proportional to mass X acce-

leration. This is the same as saying,

force = K mass X acceleration
where K is the same number for all forces, masses, accelerations;
but K does depend on the units we use. Later, in Section 8, we
shall see that, if we use sensible units, which means using the
newton as the unit of force, then K = 1, so

force = mass X acceleration, or F = ma
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Using gravity to compare masses.

Kilograms — weight and newtons

Remember, mass is what is measured by comparing accelerations
produced by the same force on different masses — the bigger the
acceleration, the less the mass. This can be done directly by means
of trolleys and ticker-tape, or more quickly by finding rates of
waggle of wig-wag machines. Neither is very accurate nor speedy,
but a much easier and more accurate way of comparing masses is
ready to hand.

a. How can you quickly compare the masses of two objects by
comparing their weights?

b. Describe briefly a method of comparing weights which is
different from (a).

The two methods of comparing masses you mentioned in question
53 can be correct only if the weight of an object is directly propor-
tional to its mass, so that comparing weight is the same as com-
paring mass.

Briefly describe the kind of experiment that convinces us (and
which convinced Galileo) that weight is directly proportional to

mass. (The reason why this ‘convinces us’ is given by question
55.) -

The weight of a body is the pull (force) of the Earth on it. Let
w = the pull of the Earth on a body of mass m. If it is allowed
to fall freely, then this force w, its weight, gives it the acceleration
we call ‘g’.

a. Use the equation at the end of Section 7,

F = ma

‘

to show that, for a freely falling body,

W = mg
b. This is the same as saying g = ;- Now explain why the experi-

ment in question 54 convinces us that we can compare masses by
comparing weights on a beam balance or spring balance, as you
said in question 53.
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Difficult. We still haven’t explained what looked like a trick at the
end of Section 7, when we jumped from F = K mato F = ma, by
saying that it all depended on using ‘sensible units’.

We have been measuring force (thought of as a push or a pull) in
kg-wt. 1 kg-wt is the force of the Earth pulling on a mass of
1 kilogram. Also you have found by experiment that the accelera-
tion of gravity, g, is about 9-8 metres per second per second. Put
this in the F = K ma (or w = K mg) equation. Then,

1 kg-wt = K X 1 kg X 9-8 metres per second per second

a. What is the nasty number that represents the value of K in
F = K ma, if we use kg-wt as unit of force?

Let us therefore forget about gravity and gravitational units of
force (weights), and invent a new unit of force, namely a force
which gives unit mass unzr acceleration (1, not 9-8 .. .). We call it
the newron. Then,

1 newton = K X 1kg X 1 metre per second per second

b. So what now is the value of K? And what is the definition of ¢
newton which gives this value of K? (‘1 newton is that force

which . . .")

Difficult. There is another very good reason, besides that of
simplifying an equation, which makes us use the newton as a unit
of force, rather than the pull of gravity on a mass of 1 kilogram,
which we call a kilogram-weight.

What is that other ‘good reason’? (Hinz: it has to do with the value
of K at different places.)

The Earth gives a mass of 1 kilogram an acceleration of 9-8 metres
per second per second. 1 newton gives a mass of 1 kilogram an
acceleration of 1 metre per second per second.

a. What is the pull of the Earth measured in newtons, on a mass of
1 kllogram>

b. What is the pull of the Earth on 2 kg? On X kg?

¢. What is the pull of the Earth on unit mass of any lump of matter,
measured in newtons per kilogram?
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d. ¢ Gravitational field” is measured as ‘force per unit mass’. What,
then, is the gravitational field strength of the Earth ? (Remember
to give the units.)

The value you give in 58 (d) for the Earth’s gravitational field
strength is the value at sea-level. Will the value up a mountain
be more or less or the same?

Give the reasons for your answer.
An 80-kg man goes from England, where he was in a gravitational
field of 9-81 newtons per kilogram, to the equator, where heisina .

gravitational field of 9-78 newtons per kilogram. By how much
does the force of gravity acting on him change (answer in newtons)?

&,

Figure 61

5

Figure 61 shows a spring-balance marked in newtons. The manu-
facturer did nor get this marked by using a trolley and ticker-
tape.

a. How do you think he did get it marked in newtons?

b. Suppose you had a trolley with a mass of exactly 1 kilogram.
How would you use it, together with the usual ticker-tape and
vibrator, to test whether the 1 newton mark is correct? (Give just
a brief outline of the method.)

a. How would a spaceman use the apparatus of figure 61 to find
g on the Moon or on Mars?

b. How would he find g on a planet where g is more than 10 new-
tons per kg? (He has a 100-gm mass, as well as the 1 kg.)
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A spaceman, in his space suit, weighs 882 newtons on Earth, where
the gravitational field is 9-8 newtons per kilogram. What would he
weigh,

a. on a smaller planet, where the field is 1-4 newtons per kg?
b. on a larger planet, where the field is 15 newtons per kg?
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Problems on F = ma
(You may also require: v = u 4+ at; s = ut 4 3ar*)

A boy pulls a 5-kg cart loaded with 95 kg of bricks. He pulls with
a force of 200 newtons. Neglect friction.

a. Find the acceleration of the cart.

b. How far, starting from rest, does he pull the cart in 2 seconds?
c. If this went on, how far would he pull the cart, from rest, in
10 seconds? How fast would it then be moving? .

d. The answers in (c) are not possible. Why not? (Don’t just say
‘because of friction’. There are other reasons — look at the num-
bers.)

Repeat the calculations (a), (b), (c) of question 64, assuming this
time that friction drags the cart back with a constant force of 50
newtons.

A 20,000-kilogram wagon is on a slightly inclined railway, with just
enough downhill slope to compensate for friction. A child pushes
the wagon downbhill with a force of 2 kg-wt, and continues to push
for 5 minutes.

a. Express the force in newtons.
b. What speed does the wagon acquire after 5 minutes?
¢. How far does the child walk?

(Note, assume that a small extra push was given at the start,
sufficient to overcome ‘static friction’. You can take g = 10 new-
tons per kg.)

A 1500-kg car .travelling at 12 metres per second (about 27 mph)
crashes into a wall and is stopped in 0-10 second. Find the average
collision-force stopping the car during that time.

To get some feeling for the size of the force, convert your answer
into tons-weight by using the relation: 1 ton-wt (British) = 10,000
newtons, approximately. '
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A 60-kilogram boy jumps from a window-ledge 1-25 metres above
a hard floor. Estimate the force exerted on him by the floor while
he is stopping, by answering the questions below. Suppose that he
foolishly forgets to bend his knees while landing so that the total
‘give’ of his feet, etc., is only 0-025 metre (1 inch), in compression
of floor, shoes, feet, ankles, spine, etc., during the stopping process.

a. Show that his time of fall is 0-5 second (use' ¢ = 10 metres per
second per second).

b. Find the speed of the boy at the end of his fall, just before land~-
ing. To calculate the time taken by the landing process we must
find the boy’s average speed during the landing process. Write
down his speed just before he lands and his speed when he has
finished landing, take the average.

¢. Use that average speed to find how long he takes for the process
of landing, that is, how long he takes to travel 0-025 metre.

d. You know his speed before landing and his speed after landing,
so you know his change of speed; and you also now know how
long he took to make that change of speed. Calculate his accelera-
tion (negative) during landing.

e. Using F == ma, calculate the force the floor exerted on him dur-
ing landing.

f. Express this force in tons-wt, using 1 ton-wt = 10,000 newtons.

A 70-kilogram sprinter starts from rest and reaches a speed of 8

-metres per second in 2 seconds.

a. What is his average acceleration during those 2 seconds?

b. What is his weight (pull of the Earth on him) in newtons?

c. What force is required to give him this acceleration?

d. Express this force as a fraction of his weight (take g = 10 new-
tons per kilogram).
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A hammer, with a light handle and a 1-2-kilogram head, moving
with a speed of 5 metres per second, strikes a horizontal nail in a
piece of wood without any rebound. The nail is driven 1 millimetre
into the wood.

a. Find the average deceleration of the hammer.
b. Find the average force acting on the nail.

¢. What difference, if any, do you think it would make if the ham-
mer did rebound? Give the reason for your answer.

_—uxl
m mee s e SR s S R et e e O S AN S Vet R P
% €] X }

Figure 71

Electrons are shot from an electron gun G at high speed in a
vacuum tube, and travel down the tube to the point P. On the way
they pass between two horizontal plates X, and X, which are
0:02 metres long. -

a. what is the general effect on the electrons of connecting X; to
the positive plate of a battery and X, to the negative plate?

b. How does an-electron move when it has passed beyond the
plates?

¢. Difficult. How long does an electron spend between the plates
if its velocity is 3 X 107 metres per sec?

d. Difficult. If the vertical force on an electron, while it is between
the plates, is 1075 newtons, and the mass of the electronis 9 x 1073
kg, what is its vertical acceleration?

e. Difficult. What is its vertical displacement while between the
plates?

[ Difficuls. If the distance from the centre of the plates to P is
0-2 metre, roughly how far from P would the electron strike the end
of the tube while X, and X, are connected to the battery?
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Impulse and momentum-change.
Newton’s second law

This Section does three things. First, and least important, there is
an easier way of doing questions such as 66, 67 and 69. Second,
this leads to an important new idea: momentum. Third, this brings
us to a statement of Newton’s Second Law of motion (which we do
not have to learn by heart) and another way of writing F = ma.

Question 69 is a good one to take first. The sprinter, of mass m
(70 kg), pushes against the ground with a force F, which means
that the ground pushes back against him with a force F; that is
why he gets moving. It takes a time ¢ (2 seconds) for him to reach
a speed v (8 metres per second). By using v = # + at, and F =
ma, you should have obtained the answer in 69 (¢), that F = 280
newtons.

A good measure of what the ground has been doing (pushing him
with a force F for time ¢) is the product Fr, which we call the
impulse. A good measure of what the man has gained is the product
mw, mass X velocity, which is called momentum (remember, he
started from rest).

Now, impulse = Ft = [280 newtons] X [2 sec] - 560 newtons *
seconds, and momentum = mov = [70 kilograms] X [8 metres/
sec] = 560 kilogram - metres/second.

We already know, from F = ma, that

1 newton = 1 kilogram * metre per second per second
so 1 newton - second = 1 kilogram - metre/second.
560 newton - second = 560 kilogram - metres/second.

Therefore, for the sprinter in our problem,
impulse = momentum gained from that impulse.
Ft = mv

This is right for something starting from rest, # = 0. But if it
started with velocity u, which increased to v, the gain of velocity is
(v — u), so it is better for us to write

Ft=m(@ — u) =mv — mu
impulse = momentum gained
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Now work out 69 (c) directly from Fr = mv, remembering that
u=0. Write F= _t You know the values of m, v, and 2.

Remember that ‘kilogram - metres per second’ is the same as “new-
tons’.

Work out 66 (b) from Fr =
Work out 67 from Ft = mv.

Work out 71 from Fr = mwo. First find (c) as before, then use Fr =
mo to find ». Omit (d). Then work out (¢), by remembering that the
initial vertical velocity was 0, so that the average vertical velocity

(4 . . .
=, and the vertical displacement is

while it is between the plates is 5

%‘. Then (f) as before.

Of course we can easily get impulse = momentum gained by two
lines of algebra, as well as from one particular example. Start by
writing F = ma. Then:

a. The acceleration a is the increase of speed from # to v in time z.
What can we substitute for a?
b. Multiply both sides of the equation by ¢ and what do we get?

Important question for those who will be doing calculations about
molecules later on.

A toy machine-gun shoots ball bearings weighing 2 gm (0-002 kg)
each at the rate of 3 per second at a vertical steel plate, with a
horizontal velocity of 11 metres per second. The balls rebound from
the plate with practically the same speed with which they hit it.

a. What is the momentum of a ball on impact?

b. What is the momentum of a ball as it rebounds? (Remember the

velocity is reversed, so mo is changed from -+ mv to — mv.)

¢. What is the change of momentum of one ball on impact?

d. What is the change of momentum of all the balls meetmg the plate

in one second (namely 3 per second).

¢. Use F — Change of momentum
time (1 second)

to find the average force on the

plate.
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A small hose shoots water at the rate of 6 gm (0-006 kg) per second
at a vertical steel plate with a horizontal velocity of 11 metres per
second. The water rebounds with practically the same speed with
which it hit the plate. Find the force exerted on the plate.

This is the same as 77, and the answer is the same. The only
difference is that, instead of 3 balls, we take ‘1 second’s worth’ of
water (0-006 kg), and go straight to answer (d).

Newton’s Second Law
Newton’s First law was stated at the end of Section 4.

Law 1. ‘Every object continues to move with constant speed in a
straight line, or to remain at rest, unless some unbalanced (re-
sultant) force acts on it.’

Now we can go on to Law 2, which says what happens when a
resultant force does act.

Law 2. “When an unbalanced (resultant) force acts on an object
the gain of momentum produced is proportional to the force
multiplied by the time for which the force acts.”

Instead of ‘is proportional to’ we can put ‘equals’, provided we
measure the quantities concerned in a proper and consistent system
of units. One such system is the one we have been using, based on
metres, seconds, kilograms, newtons, etc. Newton’s law 2,
expressed as an equation is:

my — mi
Fe——— or Ft =mv — mu

impulse = momentum gatned

v— U

Another way of writing this is to put == g, the acceleration,

and then we get:
F = ma,

which was the equation we first got from the trolley and ticker-tape
experiments.
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| F = ma applied to flow of liquids and gases

1 7 %

slow fask  dlow
Figure 79

waber

oufl”

Figure 79 illustrates an experiment you have performed or seen
performed. Describe the experiment and say what happened.

Newton’s Second Law, F = ma, shows that anything having mass,
including liquids, and gases as well as solids, needs force to
accelerate it. Also, pressure is force per unit area. Now use
figure 79, to explain why ‘pressure is smaller where flow is faster’.
It will help if you imagine a little submarine (an oblong piece of
wood of the same ‘density as the water) moving along with the
water. Start your answer as follows.

‘In the wide part, A, the submarine is moving along fairly
slowly with the water. It is not changing its motion. In the narrow
part, B, the submarine is moving much faster, but is not changing
its motion. At C, where the tube is narrowing, the water has tc
change from slow flow to faster flow and the little submarine must
change speed t0o.” Now go on to say what you can about the
forces acting on the front end, and on the stern, of the submarine.
In which part of the tube, A or B, is the pressure smaller?

Then tell the story about the submarine when it reaches the position
D. \

Tear off two strips of paper about 13 inches long (foolscap) and
2 inches wide. Stand upright, but bend your neck so that your face
is towards the ground. Hold one strip in one hand so that it hangs
vertically with the top end touching the tip of your nose. Hold the
other strip in the other hand with its top end touching your chin.
Blow. What happens? And why?
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Figure 82

Now fold one of the paper strips of the previous question in the
middle, so that the two parts are at about 90° with each other.
With a finger and thumb of each hand, hold the strip so that the
bend is touching, or close to, your lower lip (figure 82). Blow. What
happens? And why?

Apparatus: cotton reel (with or without cotton) having a clear
central hole. Postcard, preferably the 44" X 3%” size. Pin. Draw
the diagonals of the postcard and so find its centre. Stick the pin
through the centre.

Figure 83

Hold the reel in one hand and the card in the other, so that they
are in the position of figure 83, but touching each other. Blow hard
down the hole, and at the instant you start to blow, let go of the
postcard. What happens? How do you explain it?
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a. Look at a Bunsen burner and take it to pieces. Then draw a

sectional diagram of it, showing in particular the position of the
gas-jet relative to the air-hole. '

b. You might think that the gas-jet would push air and gas out of
the hole, but in fact air comes 2 at the hole, mixes with the gas
and is burnt at the top of the burner. Explain why air comes in at
the hole.

¢. This is nothing to do with Newton or Bernoulli, but why has
air mixed with the gas? What happens when the Bunsen ‘lights
back’? Wouldn’t it be simpler for the Gas Board to mix in air at
the gasometer, and supply the mixture all ready for burning? (Gas
stoves, gas fires, etc., all work in the same way as a Bunsen.)

> r= B
5 ;\K
Figure 85

Figure 85 shows an ‘aerofoil’ section, such as the section of the
wing of an aircraft: The arrows indicate air moving past a stationary
aerofoil as in wind-tunnel experiments; but it makes no difference
if the aerofoil moves and the air is at rest, as for an aircraft in flight.

a. Notice, first, that the aerofoil deflects the air stream downwards,
that is, it exerts a downwards force on the air. So what is one
reason why there is an upwards force on the aerofoil?

b. Notice, secondly, that the air above the aerofoil has to move a
greater distance round the top of the aerofoil than the air under
the aerofoil has to move round the bottom of the aerofoil. There-
fore the stream above, at AA’, moves faster than the stream below,
at BB'. So what is the second reason why there is an upwards force
on the aerofoil?

(Now you have explained why an aircraft flies.)
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Two ships attempt to steam on parallel courses, close together.
If they do this they are likely to collide. Why? Illustrate your
answer with a diagram.

Examine a scent-spray, fly-spray, hair-spray, paint-spray or any
simple type that sprays when air is blown over the top of a tube
dipping into liquid. Draw a simple diagram and explain why the
spray works.
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'IVIore about momentum. The Third Law*

A body A exerts a force F for a time 7 on a body B, that is, A gives B
an impulse Fz. Equally, B will exert a force F on A, but in the
opposite direction, so we call it —F. This means that B gives an
impulse — Fr to A.

a. Mention (one sentence for each) four examples of ‘a body A
exerting a force on a body B’, while B exerts an opposite force on
A.

Let mpvp be the change of momentum A produces in B, and let
m4v4 be the change of momentum B produces in A.

b. What do m4, mp, v4, vp stand for?
¢. Prove that,
ma V4 -+ mp o =0.

a. Express in words what equation 88 (¢) tells us about change of
momentum when-bodies exert forces on each other.

b. Express in words what can be said about the zozal momentum of
a ‘closed system’ of bodies.

¢. What do you think is meant by a ‘closed system’?

You have probably verified the principle called ‘conservation of
momentum’ in several different ways, though it is unlikely you
have done all those mentioned below! Choose any one of these —
the one you consider most interesting — and describe how you used
it to verify numerically the conservation of momentum principle.

Trolley experiments:

a. Collision between moving trolley and trolley at rest, with the
trolleys not sticking together.

b. A collision with the trolleys sticking together after contact.

¢. A lump of something dropped on to a moving trolley.

d. Two trolleys ‘exploding’.

e. Trolleys ‘imploding’, that is, pulled together by, for example,
a stretched elastic band.

J. Trolleys ‘colliding’ without coming into contact, because they
carry magnets. (g, &, i, j, see next page.)

* Questions 88 and 89 are difficult and might be omitted altogether or
postponed until after Question 92.
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g. Carbon dioxide puck collision experiments.
h. Pendulum collision experiments.
7. Collision experiments between rolling balls.
7. Collision experiments with cosns.

Two identical cars A and B stand on a horizontal road bumper to
bumper. John stands on the bumper of A with his hands resting
on B and pushes hard until he falls off because the two cars have
got too far apart. Ignoring the effects of friction, what can you say
about the velocities of the two cars:

a. at the moment (time ¢) John falls oft?

b. at any earlier moment than z?

¢. at any moment after z?

d. How are the answers to (a), (b), and (c) affected if both cars are
subject to small equal frictional forces?

e. What effect would it have had if, instead of falling off, John had
managed to remain standing on the bumper of A ?

The experiment of the previous question is repeated, but car A
now carries passengers while car B remains empty. The effect of
this is to give car A a mass equal to 1} times that of car B. John
pushes the cars apart as before until he falls. off. Ignoring the
effects of friction, what can you say about the velocities of the two
cars:

a. at the moment (time ¢) John falls off?
b. at any earlier moment than z?
¢. at any moment after z?

A bullet of mass m g, having a high velocity v, is fired into a lump
of matter of mass mz. The bullet does not emerge, and the lump
acquires a velocity vz.

a. Use the conservation of momentum principle to show that, -

(mz, + mp)oL
mp

OB =
b. Usually it is quite sufficiently accurate to simplify this to
vp = TEOL \Why?
mp

c. Describe briefly an experiment in which you have found the
velocity of an air-gun bullet by this method.
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Figure 94 (i) is the outline of a plan of a cloud chamber. It is set
up so as to show tracks of a-particles.

Figure 94 (7) Figure 94 (47)

a. What is there on the metal plate M?

b. Copy the diagrams and draw in two or three possible tracks, as
you might see them at one instant.

¢. What do the tracks consist of? )
d. A thumb-print is not a thumb, but it shows where a thumb has
been. What do the tracks show?

e. A very large majority of the tracks are straight, and there is
no visible evidence of violent collisions. What does this suggest
about atoms?

f- Sometimes a track does show a sudden split into two tracks,
figure 94 (ii). How do you explain this?

a. Continuing from question 94. If the gas in the cloud chamber
is helium, instead of air, then the angle between the two branches
of a split track is always 90°. What does this tell us about
a-particles?

b. How would you use two pendulums, or two heavy ball-bearings,
to demonstrate to Uncle George that your answer (a) is true?

¢. A better demonstration might be given by using two ping-pong
balis hung on long nylon threads. The balls have been coated with
carbon to make them conducting. How would you gi