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Foreword
It is almost a decade since the Trustees of the Nuffield Foundation decided to 
sponsor curriculum development programmes in science. Over the past few years 
a succession of materials and aids appropriate to teaching and learning over a wide 
variety of age and ability ranges has been published. We hope that they may have 
made a small contribution to the renewal of the science curriculum which is 
currently so evident in the schools.

The strength of the development has unquestionably lain in the most valuable part 
that has been played in the work by practising teachers and the guidance and help 
that have been received from the consultative committees to each Project.

The stage has now been reached for the publication of materials suitable for 
Advanced courses in the sciences. In many ways the task has been a more difficult 
one to accomplish. The sixth form has received more than its fair share of study in 
recent years and there is now an increasing acceptance that an attempt should 
be made to preserve breadth in studies in the 16-19 year age range. This is no easy 
task in a system which by virtue of its pattern of tertiary education requires 
standards for the sixth form which in many other countries might well be found in 
first year university courses.

Advanced courses are therefore at once both a difficult and an interesting venture. 
They have been designed to be of value to teacher and student, be they in sixth 
forms or other forms of education in a similar age range. Furthermore, it is expected 
that teachers in universities, polytechnics, and colleges of education may find some 
of the ideas of value in their own work.

If this Advanced Physics course meets with the success and appreciation I believe it 
deserves, it will be in no small measure due to a very large number of people, in the 
team so ably led by Jon Ogborn and Dr Paul Black, in the consultative committee, 
and in the schools in which trials have been held. The programme could not have 
been brought to a successful conclusion without their help and that of the 
examination boards, local authorities, the universities, and the professional 
associations of science teachers.

Finally, the Project materials could not have reached successful publication without 
the expert assistance that has been received from William Anderson and his 
editorial staff in the Nuffield Science Publications Unit and from the editorial and 
production teams of Penguin Education.

K.W. Keohane
Co-ordinator of the Nuffield Foundation Science Teaching Project



About this book
This book is written for both students and teachers. There are experiments 
suggested in it, but the main work is theoretical. We have tried to write it in such a 
way that teacher and student may think through the theory together. For that 
purpose, many of the arguments are presented in the form of chains of questions. 
Each question is, however, answered at the back of the book, so that no one need 
be 'lost'. This is not a book for those who expect to sit back and watch someone 
else doing the work, and it contains much practical workaday physics, but it is 
physics done with the head, rather than with the hands.

There are a number of passages, enclosed in ruled boxes like the sample that 
follows, which are comments or information meant mainly for teachers.

Using this book in the classroom

This book contains work intended to interest the best students, which 
goes further than most students need, or will wish to go. Parts One and 
Two, and Part Three up to the end of stage one, page 75, contain the 
main material of the book. It is not essential for anyone to do more than 
this, and compulsory examination questions would be restricted to this 
material. We think that all students should see just a little of Part Four, 
which tries to indicate the width and scope of the results, studied earlier 
in rather close detail, so that they may see quantum physics in a broader 
perspective.

Stages two and three of Part Three are provided for students who are not 
satisfied with the crude arguments of Part Three, stage one. They should 
not be forced on anyone, but we hope that a proportion of students will 
enjoy exercising their skill and ability to the full by following through 
one or both of these extra sections. Stage two is within the capacity of 
most students, provided there is time for it. Stage three is tougher, but 
has the merit of drawing together and using a number of the pieces of 
mathematics developed earlier in the course.

Teachers will, of course, use this book as they think best. Some groups 
of questions may be used for homework, or class discussion. Teachers 
may wish to expound certain parts, leaving students to read the same 
material later, or they may prefer students to read in advance of the 
teaching. Others may wish to run a seminar system, with the class work 
being mainly discussion of work read beforehand.



The approach to quantum physics

Part One discusses the problem of wave-particle duality for photons, and also 
links the study of photons with earlier work on energy levels, showing how energy 
level schemes can be derived from spectra. Part Two shows that electrons share 
with photons the same puzzling dual behaviour, by way of experiments on electron 
diffraction.

Part Three puts these ideas to use in building a theory of the hydrogen atom. The 
first, crudest attempt in this direction simply treats an atom as a hard-edged box 
into which standing waves have to be fitted somehow or other. It is followed by a 
slightly better version, which takes note of the 1/A variation of potential, and shows 
how the Balmer 1 /n2 rule arises as a consequence. Finally, for the few, there is a 
further discussion based on a simple numerical solution of a one-dimensional 
Schrodinger equation.

Part Four is intended, by way of examples including the helium ion, the hydrogen 
ion molecule, the patterns of ionization energy in the Periodic Table, oscillating 
molecules, and alpha decay, to indicate in a general fashion the scope and power 
of quantum theory.

Waves, particles, and atoms



Introduction: the quantum revolution
The years 1900 to 1930 saw a revolution overtake physics, comparable to the 
revolution brought about by Newton two centuries earlier. This Unit is about that 
revolution. Before Newton, the Sun and the planets were a puzzle. They obeyed 
known laws   the laws of Kepler   but no one knew why. After Newton, the solar 
system could be explained, and all that was needed to explain it were the laws of 
motion and the law of gravitation. Everything else followed as a consequence. 
The quantum revolution was comparable. Before 1900, many scientists believed 
that atoms existed, though some, notably Ostwald and Mach, were not sure one 
could believe any such thing.

But no one knew why the atoms of any one element had the properties they did 
have. After the period 1926 to 1930, there was a theory of these things, and papers 
came thick and fast, showing how to explain the spectra of elements, chemical 
bonds, electrical conductivity, magnetism, the nature of solids, and many other 
matters. Chemistry suddenly seemed explicable, though it has in the event turned 
out rather hard to get good quantitative predictions for many reactions.

These discoveries were made by finding that all was not well with the deepest laws 
of the physics of 1900, especially Newton's Laws and the wave theory of light. 
Richard Feynman, as a working physicist, has this to say about what happened:

Then it was also found that the rules for the motions of particles were 
incorrect. The mechanical rules of "inertia" and "forces" are wrong — 
Newton's laws are wrong   in the world of atoms. Instead it was 
discovered that things on a small scale behave nothing like things on a 
large scale. That is what makes physics difficult   and very interesting. 
It is hard because the way things behave on a small scale is so 
"unnatural"; we have no direct experience with it. Here things behave like 
nothing we know of, so that it is impossible to describe this behaviour in 
any other than [mathematical] ways. It is difficult, and takes a lot of 
imagination.' 
Ft. P. Feynman

Other reading

This quotation comes from The Feynman lectures on physics, Volume 1. You 
will find that Chapters 1 to 3 give a valuable overall view of the nature and 
achievements of physics, and that they are well worth the effort of reading.



On several occasions in this book we shall suggest that you read some parts of 
other books. There are several reasons why this might be a good thing. No one 
book is likely to be perfect. Another book will often give a new and helpful 
perspective, quite apart from the fact that any one book may be wrong. The 
quantum idea is so strange and so important that many of the best physicists, 
including some of those who were responsible for the original ideas, have tried to 
write about it. Their efforts are likely to be much better than ours, and there can be 
especial value in direct contact with the people who first worked on the problems. 
In later years, whether you learn more physics or more of another subject, books 
will be your main source of new knowledge, and it is likely that some practice 
now will make it easier to learn by reading later on. (In the list on page 161, you 
will find details of reading recommended in the text.)

We do not suggest that you ought all to read all of the books mentioned. In a class 
of several students, each might read one or two on any one topic, and tell the 
others about what they say. The task of having to report on a book may itself help 
you to read more critically.

The work of this Unit

This Unit will try to show where the strange new quantum ideas came from. They 
will be used in a series of problems, showing how it is possible to explain the 
spectrum and energy levels of an atom, and to indicate how more complicated 
matters   like chemical bonds or random radioactive decay   may be understood. 
To reach that point, we shall have to discuss how it is that electrons behave like 
waves as well as like particles. But we start with something familiar, yet something 
that reveals all the peculiarity of the quantum world. We begin with light.

Waves, particles, and atoms



Part One

Photons

'Query 8 Do not all fix'd Bodies, when heated beyond a certain degree, 
emit Light and shine; and is not this Emission perform'd by the vibrating 
motions of their parts?'

'Query 29 Are not the Rays of Light very small Bodies emitted from 
shining substances?'

Isaac Newton (1730) Opticks.

'Suppose a number of equal waves of water to move upon the surface of 
a stagnant lake . . . and to enter a narrow channel leading out of the lake. 
Suppose then . . . another equal series of waves . . . arrive at the same 
channel . . .; if the elevations of one series . . . correspond to the 
depressions of the other, they must exactly fill up those depressions, and 
the surface of the water must remain smooth.

'Now I maintain that similar effects take place whenever two portions of 
light are thus mixed; and this I call the general law of the interference of 
light.'

Thomas Young (1804) 'Reply to the animadversions of the Edinburgh 
Reviewers on some papers published in the Philosophical Transactions 
(1804).'

'. . . the energy in the light propagated by rays from a point is not smeared 
out continuously over larger and larger volumes, but rather consists of a 
finite number of energy quanta localized at space points, which move 
without breaking up and which can be absorbed or emitted only as wholes.

Albert Einstein (1905); translated from Annalen der Physik 17, 132.



What is light?

The words of Newton, Young, and Einstein quoted on the previous page reveal a 
difference of opinion as to which of two models of light to adopt: the wave model 
or the particle model.

Earlier work in this course should have raised the same question. In Unit 8, 
Electromagnetic waves, the behaviour of light at narrow slits and the action of a 
diffraction grating were both explained by supposing light to be a wave. It was even 
possible to say something about what sort of wave light might be; one member of 
the family of electromagnetic waves.

Other evidence, however, has pointed in a different direction. When light shines on 
some metals, it ejects electrons from them, and the energy delivered seems to come 
in lumps or 'quanta', just as if there were something particle-like about the beam of 
light, properly described. You may have seen such evidence from the photo-electric 
effect, when you were working on Unit 5, Atomic structure.

In this Part, we shall see how, strangely enough, both models are needed. To begin 
with, we review some of the evidence.

Review of evidence 1
Long wavelength radiation does not do things that short
wavelength radiation can do

Think about taking a photograph of a radio aerial. The aerials at Brookmans Park, 
near London, radiate 140 kilowatts of energy at a wavelength of 330 metres. They 
also reflect a little visible light energy. Only the latter affects the photographic 
emulsion, even though the visible light can have much less total energy. 
Similarly, if you photograph a car, even though the end containing the engine may 
be quite hot and will emit a good deal of infra-red radiant energy, the photograph 
does not usually show the bonnet 'brighter' than the rest of the car.

If it is a dull day, with little light energy available, one simply makes a longer 
exposure, and the photograph comes out. But however long the exposure, the 
infra-red and radio waves never affect the film. A similar experiment can be 
performed in the laboratory.

See Unit 4, Waves and oscillations, experiment 4.4, for details.

Figure 1 shows an experiment you may have seen. A diffraction grating or a prism 
splits up the light from a filament lamp into a spectrum of colours, which falls on a 
piece of photographic paper.

6 Waves, particles, and atoms



blue

light

Figure 1

not blackened here at all 
(except by some blue from 
the second order spectrum)

Q1 Which model of light explains the action of the grating better? Why?

This book contains many such questions. See the chapter 'Answers' 
(page 149).

Where there is yellow, green, or blue light on the paper, it blackens after 
development. It also blackens beyond the blue, being affected by yet shorter 
wavelength radiation, called ultra-violet radiation. But it does not blacken either in 
the red part, or in the warm, infra-red part of the spectrum. Yet there is plenty of 
energy in this long wavelength part of the spectrum, and even if there were not, a 
longer exposure is found to make no difference. Somehow, these rays are unable to 
affect the film. The film contains grains of silver halide each of which needs to have 
a certain energy delivered to it to produce a developable grain of silver.

Q2 Suppose the spectrum in the experiment above is made very faint. Do you 
think that any radiation which previously affected the paper will not do so now? 
How would you make a test?

Q3 Suppose radio waves did affect photographic film. What might be needed 
as well as a black paper wrapping to keep it unexposed? Is black paper good 
enough if the film is near a source of gamma rays?

There are other examples. Energy is needed to ionize atoms, as was shown by 
electron bombardment experiments in Unit 2, Part Five, when considering the 
evidence for the existence of energy levels. Experiments with X-rays or gamma 
rays show that they can ionize air, whilst ordinary visible light, however bright, 
is incapable of delivering the necessary energy to an individual 'air' molecule.

Part One Photons



Biologists know that photosynthesis is a process which needs Hght of short enough 
wavelength to deliver the necessary energy to molecules in the leaves of plants. 
Red light will not do, however bright it is. Shopkeepers hang yellow filtering 
screens over their windows to stop the blue part of sunlight fading the fabrics on 
display. Yellow or red light does no harm. Nor will every kind of radiation from the 
sun give you a sun tan.

The situation is rather like that of a bus service which has a minimum fare. If the 
minimum fare is five pence, you cannot travel any distance at all for four pence, 
while you might be able to go several miles for five. Light is like that: red light 
(four pence) sometimes has no effect at all, while light of a slightly shorter 
wavelength will promptly produce results, like the five penny piece. Or it is like a 
slot machine that produces a cup of tea when a coin is inserted. A coin of half the 
value does not produce half a cupful; it produces nothing at all.

Review of evidence 2
The photo-electric effect

When light shines on some metals, electrons are ejected. The energy with which 
they come out can be measured, which is useful because we can relate this energy 
to the energy and frequency of the incoming light. The examples above were 
qualitative: this one can be made quantitative.

Q4 What is the advantage, in scientific inquiry, of a quantitative experiment 
which allows one to make measurements over one which can only be described in 
general terms?

Demonstration 
10.1 Simple photo-electric cell

Demonstrations 10.1, 10.2, and 10.4 are identical with demonstrations from 
Unit 5 (5.16, 5.17, and 5.18). They may, or may not, all need to be done 
again.

1006 electrometer, with 1011 iQ input resistor, or 10~ 11 A range
1003/1 milliammeter (1 mA) for electrometer

1033 cell holder with four U2 cells
189 ultra-violet lamp

1056 magnesium ribbon 100 mm long
1055 glass plate
1055 wire gauze, 70 mm x 60 mm, for example, 20 mesh copper

503-6 retort stand base, rod, boss, and clamp
52 K crocodile clip

1053 razor blade

Waves, particles, and atoms



Figure 2 shows a suitable arrangement. Scrape the magnesium ribbon 
with the razor blade to expose clean metal, turn over about 20 mm at one 
end, and push this end into the electrometer input socket.

Make a gauze cylinder 60 mm tall by wrapping the gauze round a former 
15 to 20 mm in diameter. Turn out the last few millimetres, as shown in 
figure 2, to give a means of clamping the cylinder over the ribbon, and of 
making connection to the cylinder.

Using a 1011 fi input resistor to the electrometer (current up to 
10~ 11 A), there should be at least half scale deflection when the 
ultra-violet lamp is some 10 to 20 cm from the ribbon.

A glass plate absorbs the ultra-violet, and the current falls to zero. A 
copper or iron rod in place of the magnesium gives no photo-electric 
effect. Replacing the copper gauze with iron gauze makes no difference.

Some types of electrometer may be provided with a zinc plate and a 
gauze collector, with which the effect can be obtained using visible light.

gauze

magnesium ribbon

to 6 V battery

electrometer

Figure 2
Simple photo-electric cell.

Experiments like this suggest that light of short enough wavelength can eject 
electrons from a metal, but that light of longer wavelength will not. It is not easy to 
find clear evidence which definitely settles upon one view of what is happening; 
indeed the photo-electric effect proved to be one of the more obstinate of the

Part One Photons



problems that experimentalists have tackled, right from the time of its discovery by 
Hertz. Hertz found that, when he was experimenting with his radio spark transmitter 
(you may have seen a similar one in Unit 8), the sparks came more readily when 
another spark gap was operating nearby. The effect was traced to the ultra-violet 
light from the second spark knocking electrons out of the metal making the gap for 
the first, and so starting off a conducting path in the gap.

It was a long while before the combined results of many experiments began to tell 
a clear story. The story they tell is as follows.

a Light of a certain colour is found to produce electrons with a certain 
definite maximum energy. Even though brighter light delivers energy at a faster rate, 
brighter light of that colour does not produce electrons with a greater energy; it 
produces more electrons with the same energy.

b Light of wavelength larger than a certain value (differing according to the 
metal used) produces no electrons, however bright it is.

Q5 How does point b above compare with the spectrum photograph 
experiment, figure 1 ?

c If the wavelength of the light is reduced (frequency increased) the 
maximum energy of the electrons rises. The results can be explained if the energy £ 
delivered by the light arrives in 'quanta' or parcels of size E = hf, where f is the 
frequency and h is a constant, called Planck's constant, equal to 6.6x 10~ 34 J s.

Einstein, who thought of this quantum picture to explain the photo-electric effect, 
explains it as clearly as anybody:

'According to the concept that the incident light consists of energy quanta 
of magnitude hf, however, one can conceive of the ejection of electrons 
by light in the following way. Energy quanta (photons) penetrate into the 
surface layer of the body, and their energy is transformed, at least in part, 
into kinetic energy of electrons. The simplest way to imagine this is that a 
light quantum delivers its entire energy to a single electron; we shall 
assume that this is what happens. ... An electron to which kinetic energy 
has been imparted within the body will have lost some of this energy by 
the time it reaches the surface. Furthermore, we shall assume that in 
leaving the surface of the body each electron must perform an amount of 
work WQ , characteristic of the substance of which the body is composed. 
The ejected electrons leaving the body with the largest normal velocity 
will be those that were directly at the surface. The kinetic energy of such 
electrons is given by KE = hf— Wn .max

'If the emitting body is charged to a positive potential difference relative to
a neighbouring conductor, and if V represents the potential difference
which just stops the photo-electric current. . . [then]
eV = hf- W0
where e denotes the electronic charge.

1 0 Waves, particles, and atoms



'If the deduced formula is correct, a graph of V versus the frequency of 
the incident light must be a straight line with a slope that is independent 
of the nature of the emitting substance. . . .

(From Einstein, A., 1905, Annalen der Physik, 77, 132, as reproduced 
in translation, in Arons (A.B. (1965)) Development of concepts of 
physics, Addison-Wesley. (Einstein's symbols have been modified.))

Q6 Having read Einstein's summary of the explanation of the photo-electric 
effect, by means of a quantum model, use it to calculate the minimum frequency of 
light needed to ionize a helium atom, whose ionization energy is about 
24 electronvolts.

1 electronvolt = 1.6x 10~ 19 J
h = 6.6x1(T 34 J s.

When Einstein made this suggestion, the quantitative experimental evidence was by 
no means clear. When there was a definite quantitative prediction to test, however, 
experiments were done, and despite many difficulties, showed that the results fitted 
Einstein's ideas. Some of the best experiments were done by Millikan, and it is 
possible to repeat some of Millikan's experiments in the school laboratory, though 
absolutely clear-cut results must not be expected.

Reading

See Millikan, The electron, chapter X, for Millikan's description of his 
photo-electric measurements. These were the first reliable test of the 
linear relationship between maximum energy and frequency suggested by 
Einstein. His results are given on page 228 of the book.

Demonstration and long experiment 
10.2 Colour of light and energy of photo-electrons

To test Einstein's ideas quantitatively, one must shine light on a clean metal surface 
for, if the surface is dirty, or if it is oxidized, the light has to try to remove electrons 
from a whole variety of different kinds of molecules on the surface, and the ejection 
of electrons from the metal is not what is being tested at all. In practice, this means 
having the metal in a vacuum and, ideally, cutting a clean surface just before the 
test. For a school experiment, it is good enough to use a photo-electric cell from 
which nearly all the air has been removed. The emitting surface will be some metal 
such as potassium, while the electrons will be collected on a metal, such as 
platinum, that does not emit electrons when light shines on it. You may well be 
able to detect effects in any experiments you see which would be explicable if the 
collector were emitting electrons. One reason for this is that the potassium tends to 
get deposited on the platinum collector to some extent. Such effects may tend to 
mask those you are hoping to see.



light

any input capacitance the 
electrometer may have

collector

to display meter

electrometer (voltmeter)

Figure 3
Circuit fora test of the photo-electric effect.

Test of Einstein's predictions

To test Einstein's ideas, it is necessary to measure the maximum energy with which 
electrons are emitted. One way to do this is to connect the photo-electric cell to an 
electrometer, which behaves as a voltmeter that draws next to no current, as 
shown in figure 3. As electrons are gathered by the collector, a potential difference 
builds up across the capacitance of the electrometer, and also across the photocell. 
The collector becomes negative, since electrons with negative charge are arriving 
there, and thus, as the potential difference builds up, it becomes harder and harder 
for more electrons to reach the collector. If the electrons, charge e, have a certain 
maximum kinetic energy, no more electrons will reach the collector when the 
potential difference V is given by

maximum kinetic energy = el/.

Thus, a big potential difference, V, recorded by the electrometer, indicates a large 
maximum energy of the electrons, and V is in direct proportion to the maximum 
kinetic energy as long as the electrometer records V without reducing it by drawing 
any current. The electrometer gives trouble when the light is dim, for the current 
is then small, and the electrometer always does draw some current, however little.

A good test is to sweep the various colours of the spectrum across the photocell. 
With red light, the potential difference is small, but it rises as the light shining on the 
cell is made bluer.

If one colour is chosen, and the light is made dimmer by cutting off some of it with 
a stop, the potential difference shows little if any change until the light is so feeble 
that the electrometer current begins to matter a good deal. Both results are what 
was predicted.

f2"
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The Planck constant h

It would be nice to be able to try different metals in the photocell, and to test 
Einstein's predictions more thoroughly, but that would be a very ambitious 
undertaking. At least, the value of the Planck constant h can be estimated, from the 
potential differences V^ and l/2 across the photocell when no electrons reach the 
collector, in light of frequencies ^ and f2 . Whatever the energy W needed by an 
electron to escape from the metal,

and
hf, = eV,- 
hf2 = eV2 - W.

From these equations:

h =
e(V2 -V,)

The frequencies of the two colours of light have to be calculated from measurements, 
or estimates, of their wavelengths. Earlier in the course, you may well have 
measured /?, whose value is 6.6x 10~ 34 J s, in this way. In this Unit we shall see 
how important a constant it is: it will turn up in more than this one place. Like the 
charge on an electron, it is a fundamental constant. No one knows why it is has the 
value it does have, and physicists are not even able to see whether this would be a 
sensible question to ask, much as some would like to ask it. Maybe one day h will 
be linked up with other things in a way that helps to make sense of its value, but 
for the time being it is just one of those things that are as they are.

Demonstration and long experiment 
10.2 Colour of light and energy of photo-electrons

(see experiment 5.17)

1068 parallel beam projector
59 l.t. variable voltage supply
69 high dispersion prism

1074 photo-electric cell
1006 electrometer

1003/1 milliammeter (1 mA) for electrometer
1033 cell holder with one U2 cell
1053 card with slit

1067 E set of stops
1000 leads
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Figure 4 shows an arrangement for projecting a spectrum of white light 
on the photocell. A slit in a card held over the photocell allows only a 
narrow range of wavelengths to enter the cell. Figure 3 shows a 
suitable circuit.

to electrometer

parallel
beam projector

Figure 4
Projection of a spectrum on a photocell.

The slit should be about 2 mm wide, and should be centred on the 
aperture of the photocell. The parallel beam projector may be overrun by 
up to 30 per cent to obtain a bright spectrum. The spectrum should be 
formed at minimum deviation. Room lighting should be dim, and the 
photocell shielded from stray light.

The photocell may contain a battery and a potentiometer for reducing the 
cell current to zero by applying an external p.d. to it. In the method 
suggested here, these are not used; the cell develops its own p.d. across 
itself and the electrometer.

Before connecting the electrometer to the photocell, connect a 1.5 V 
dry cell across its input, and alter the sensitivity (gain) until the display 
meter reads full scale for this p.d. When connecting the electrometer to 
the photocell, join the positive going input to the potassium emitter, and 
remove any input resistor so that the electrometer functions as a 
voltmeter of the highest possible input resistance.

Variation with colour Start with the dark region of the spectrum beyond 
the red over the slit, and with the electrometer short-circuited. Then 
switch the electrometer to read the p.d. across its input terminals, when
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no appreciable reading should appear. Sweep the spectrum slowly across 
the slit, allowing time for the p.d. to rise at each step. The reading rises 
through the blue and into the ultra-violet. Beyond the ultra-violet it stays 
steady, even if the light is cut off, because there is no way for the 
electrometer input capacitance to discharge. If the electrometer is 
momentarily short-circuited, the reading falls to zero and stays there, if no 
radiation is entering the cell.

Warning A seemingly paradoxical result can be obtained by sweeping 
the spectrum back from blue to red, when the high reading falls steadily, 
though one would expect it not to, since low energy electrons produced 
by red light ought not to be able to reach the collector. The reason is that 
some potassium gets onto the collector, and it emits some electrons which 
flow the 'wrong' way. It is probably best to avoid the point by not 
sweeping the spectrum across the slit from blue to red.

To estimate the Planck constant /?, note the electrometer indications 
1/ 1 and V2 first when red light and then when violet light fall on the cell. 
Estimates of the wavelengths give an acceptable value of h, using

Variation with brightness Shine the blue part of the spectrum on the 
slit. Reduce the intensity by placing stops over the lens of the projector, 
with the stops exactly over the centre of the lens (since an off centre stop 
produces a spectrum in a different place and alters the colour of the light 
falling on the slit). The p.d. should change by less than 10 per cent, 
though the intensity has changed by a much larger factor. If the intensity 
is reduced very much, the p.d. will fall much more, as the electrometer 
resistance becomes comparable to that of the photocell. The point needs 
to be admitted openly.

Energies of photons

The parcels or quanta of radiant energy, of size £ = hf, can be calculated for 
different frequencies, given that h = 6.6x 10~ 34 J s. This has been done in table 1. 
See Rogers, Physics for the inquiring mind, page 723, for a splendid drawing 
showing how big the quanta of various radiations are.

Radio 2
1500m

2x105 Hz

f 10-28 J

I TO' 9 eV

3 cm microwaves
3x10-2 m

1010 Hz

7x10' 24 J

4x10~ 5 -eV

Visible light
6x10~ 7 m

5 x1014 Hz

3x10"">J

2eV

Gamma rays
10"12 m

3 x 1 020 Hz

2x1Q- 13 J)

106 eV J

Table 1
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Q7 Nuclei also have energy levels. It takes 2.2 MeV energy to break apart a 
deuteron (a neutron plus proton). What wavelength of radiation is needed to do 
this? Is your answer the smallest or the largest wavelength that will do?

Q8 The school 3 cm microwave apparatus has a power of about 10~ 3 watt. 
How many photons does it emit each second? each cycle of oscillation? 
(Velocity of microwaves = 3x108 ms~ 1 .)

Q9 Your answer to question 8 may be 1020 photons per second. How much 
power would a gamma ray source deliver if it emitted 1020 photons each second? 
(Use the data in table 1.) A school gamma ray source does not burn a hole in its 
box, despite this calculation. Do its photons each have less energy?

Demonstration 
10.3 Counting photons

If a Geiger counter is held near a source of gamma rays, the counter shows 
random individual counts, there being perhaps 103 counts per second at most. The 
answer to question 9 shows why this number must be fairly small, and the answer 
to question 8 shows why a similar experiment with microwaves which are also 
electromagnetic waves, will not show lumpy, quantum behaviour. Since the 
frequency of gamma rays is of the order of 1020 Hz, if there are 103 photons in a 
second, there is only one photon in every 1017 cycles. So the number of photons in 
a second is not the same as the number of cycles in a second.

Demonstration 
10.3 Counting photons

130/6 gamma GM tube
130/3 GM tube holder
130/1 sealer
195/1 pure gamma source

Simply place the GM tube close to the gamma source, showing that the 
number of counts is small at large distances, rising to about 10 3 s ~ 1 at 
small distances. This experiment is intended simply to suggest that 
gamma ray quanta are few, as they should be if they are large in size. 
Stronger conclusions cannot be drawn, a because the tube detects 
perhaps one in a hundred of the photons entering it, b because the 
'lumpy' nature of the observations might just as well be explained by 
saying that the tube 'fires' when enough wave energy has been delivered.

See the Appendix, page 137, for an optional demonstration (10.10) of the 
Compton effect. This work can be done now if an extra double period or 
so of time can be spared. A very simple discussion of the relevance of the 
Compton effect to the existence of photons is given in this Appendix.
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The emission of photons

The photo-electric effect suggests that when light energy arrives, it does so in 
parcels of size £ = hi. We now consider whether a similar description will serve for 
the emission of light by an atom. In Unit 2, Part Five, 'Electrons and energy levels', 
experiments were described which suggested that atoms gain or lose energy only 
in lumps, jumping from one level to another. In particular, the energy levels of 
mercury atoms were found.

Q10 In the electron bombardment experiments mentioned above, were quanta 
of light used to give evidence for the existence of energy levels? How was the 
evidence obtained?

Demonstration 
10.4 The spectrum of mercury vapour

In Unit 5, Atomic structure, the spectrum of mercury was examined. Mercury atoms 
in a vapour, like other isolated atoms, emit light only at certain sharp wavelengths. 
If light from a slit is formed into a spectrum, the spectrum is composed of narrow 
lines. Using a grating, the wavelength of any line can be found from the angle at 
which it is formed. What lines might be expected in the mercury spectrum? The 
electron bombardment experiments with mercury vapour suggested that mercury 
atoms could accept energy in lumps of size 4.90 electronvolts, or 7.84x 10~ 19 J, as 
well as in lumps of a number of other sizes. If mercury atoms emit photons with 
this energy, the frequency will be 11.8 x 1014 Hz, dividing the photon energy by 
Planck's constant h. The wavelength will be 2.53x 10~ 7 m, dividing the velocity of 
light by the frequency. Such 'light' is in the ultra-violet part of the spectrum. 
Indeed, its existence is a reason why mercury lamps are used for sterilizing things, 
since the ultra-violet light can destroy bacteria. The ultra-violet line at wavelength 
2.53x 10~ 7 m can be detected in light from mercury vapour.

Demonstration 
10.4 The spectrum of mercury vapour

(see experiment 5.18)

1071 mercury discharge lamp
1073 concave reflection grating 

	screen with slit (see below)
1053 strip of fluorescent paper, 20 mm wide, 0.5 m long, green

503-6 retort stand base, rod, boss, and clamp
1056 a little mercury in a polythene bottle
1055 microscope slide

191/2 fine grating

Safety This experiment involves ultra-violet light and mercury vapour: 
both are potentially dangerous. Please observe the safety precautions 
in the following instructions.

-------------------------------p-- --~ _j-_-_s------_



ultra-violet lamp "

fluorescent paper

concave grating

about 0.5 m

Figure 5
Production of mercury spectrum using a reflection grating.

Figure 5 shows a suitable arrangement. A screen, 0.3 m high and 0.6 m 
wide, is placed in front of the mercury discharge lamp, with a slit 1 mm 
wide opposite the aperture in the lamp casing. A strip of green 
fluorescent paper is pinned across the screen above the slit, on top of 
white, non-fluorescent paper. The screen must be large enough to protect 
the class from stray ultra-violet light, and no student should look 
directly at the lamp.

Fix the grating at a distance from the screen equal to its radius of 
curvature (about 0.5 m), so as to cast a spectrum back on the screen, 
with the zero order image of the slit in focus and just above the slit.Tilt 
the grating so that the diffracted orders lie over the horizontal strip of 
fluorescent paper, but fall partly on the white paper, as in figure 6. Any 
ultra-violet lines appear only on the fluorescent paper, visible lines being 
seen on both. Run the lamp at a low level at this stage.

Put a microscope slide over the slit: the ultra-violet lines vanish. Gently 
squeeze a polythene bottle containing a few drops of mercury so that the 
vapour comes out just in front of the grating. The ultra-violet lines fade or 
vanish for a moment. Close the bottle immediately. The experiment may 
be used in passing to illustrate the existence of a vapour, which is very 
poisonous, even above cold mercury. Do not warm the mercury in an 
attempt to get more vapour.

Measure the distances between the zero order line and the first order 
green line, and the second order ultra-violet line near the green line. The
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wavelength of the ultra-violet line can be inferred from its position near 
the green line, either by using the grating spacing, or, more simply, by 
assuming the wavelength of the green line (5.46x 10~ 7 m).

The class may use the fine transmission gratings to observe the visible 
spectrum of mercury street lamps, and of other sources.

The presence of ultra-violet lines and their wavelength

If the spectrum of mercury vapour is formed by a diffraction grating and is cast 
onto both fluorescent paper and white paper, ultra-violet lines can be detected as 
glowing lines on the fluorescent paper only, whilst visible lines show up on both 
kinds of paper. Figure 6 shows the effect.

ze ro order vi Diet gr

first order 
ultra-violet

sen y sllow

second order 
ultra-violet

paper

Spectrum of mercury using fluorescent paper to detect ultra-violet lines.

It is possible to confirm that the lines on the fluorescent paper are ultra-violet by 
holding a piece of glass over the source; then, only these lines vanish.

If cold mercury vapour is puffed into the air in front of the grating, so that the light 
has to pass twice through the vapour, both the ultra-violet lines fade or vanish.

It seems probable from this evidence that the two ultra-violet lines are the first 
and second order spectra of the same wavelength. It also seems likely that light of 
this wavelength corresponds to a jump between energy levels, one of which is the 
lowest possible level. This is because cold mercury vapour, most of whose atoms 
will be in the lowest level, absorbs the radiation strongly; presumably it does so as 
these atoms jump up to the level 4.9 electronvolts above the lowest level, taking 
the necessary energy from the radiation.

The measured wavelength of the ultra-violet light should correspond closely with 
the predicted wavelength, 2.53x 10~ 7 m, calculated from the energy level 
difference 4.9 electronvolts.

"19
Part One Photons



Spectral lines and energy levels

Table 2 gives the wavelengths, frequencies, and photon energies of some of the 
lines in the mercury vapour spectrum.

Colour

yellow

green

violet

ultra-violet

Wavelength
i/m

5.79x1CT 7

5.46 x1CT 7

4.35 x1CT 7

2.53x1(T 7

Frequency 
f/Hz

5.18x1014

5.50 x1014

6.90 x1014

11.80x1014

Photon energy
hf/J

3.42x10~ 19

3.64x1CT19

4.56x1CT19

7.84x1CT19

Table 2

Figure 7 shows some of the levels in the mercury atom's ladder of energy levels. 
The lowest level has been given the arbitrary energy zero. The energies of other 
levels are given both in electronvolts and in joules. The differences in energies 
between levels can be mapped out by electron collision experiments such as those 
described in Unit 2.

You have just seen that the difference in energy, 7.84x 10~ 19 J, between the 
lowest level and the one shown next above it, corresponds to the emission or 
absorption of photons of this same energy, having wavelength 2.53x 10~ 7 m. 
Question 11 is about some of the other lines in the spectrum.

Energy/joule 
14.1 x10-19

12.4x10-'" 

10.7X10- 19

Energy/eV 

8.84

7.73

670

8.75 x10- 19 
7.84 X10-19

5.46 
4.9

Figure 7
Some energy levels of mercury.
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Q11a The yellow line corresponds to a jump starting at the highest level shown. 
Down to which one?

b The green and violet lines both come from jumps down from the level at 
12.4x 10~ 19 J. Which must be the bigger jump?

c There is a spectral line corresponding to a jump from the level at 
14.1 x 10~ 19 J to the level at 7.84x 10~ 19 J. Is the line visible?

Notes for teachers

1 We choose mercury for the above discussion so that students may see 
how energy levels and spectral lines are linked, in a case where previous 
work indicates a source of knowledge of energy level differences 
independent of spectral evidence. The previous, empirical study of energy 
levels was in Unit 2.
2 Electrical measurements of energy levels are none too precise, and a 
level difference given to three or more significant figures almost 
certainly comes from spectral evidence.
3 Not all the mercury levels are shown in figure 7. Nor do all possible 
transitions occur: some are forbidden by selection rules.
4 A very good display page on the analysis of the mercury spectrum 
appears in PSSC Physics, second edition, page 644, or in PSSC College 
physics, page 630.

Summary: the evidence from spectra

Although it is hard to measure energy levels accurately by electron collision 
experiments, it can be done. The differences E between these levels agree with the 
energies calculated from E = hf, using the frequencies f of the spectral lines that 
are observed coming from atoms. Light seems to be emitted from atoms just as if 
one photon of energy £ = hf arises from a jump between levels with an energy 
difference f. The value of h which decides photon sizes in the photo-electric effect 
also decides photon sizes and frequencies in spectra.

Q12 Using £ = hf, one can work out energy levels from the frequencies of 
spectral lines, and doing it this way is more accurate than using collisions. What 
would be wrong with quoting energy levels worked out from spectral frequencies 
for the analysis of a spectrum as given above in question 11 ?

Q13 The quantity h = 6.6x 10~ 34 J s has now appeared to work in two 
different situations. Would you think it fair to claim h as a universal constant?
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Mapping energy levels from spectra

We have seen with the mercury spectrum how, if the energy levels are known, 
possible spectral lines can be predicted. Using this idea the other way round, it is 
possible to map energy levels using spectral evidence. We shall now map out the 
energy levels of hydrogen atoms. These are going to be important, because we shall 
develop a theory which predicts and explains the energy levels of simple atoms. 
This is the revolutionary theory called wave mechanics or quantum theory, which 
this work is all about. The analysis of the hydrogen spectrum is set out as a series 
of questions (numbers 14 to 20).

The energy levels of the hydrogen atom

Experiment 
10.5 The hydrogen spectrum

Look at a hydrogen discharge tube through a diffraction grating or a direct vision 
spectroscope. You should see a number of bright lines in the visible region, the 
wavelengths of which can be measured using the grating formula nX = d sin 0. 
You need not measure them. It is possible to photograph the spectrum with a 
camera focused on the tube, with a grating over the camera lens.

Experiment 
10.5 The hydrogen spectrum

191/2 fine grating
193/2 hydrogen spectrum tube

194 holder for spectrum tubes
14 e.h.t. power supply

1000 leads

Run the discharge tube from the e.h.t. supply. Look at it through the 
grating, held near the eye with its rulings parallel to the tube.

Not all hydrogen tubes give the atomic hydrogen line spectrum. The 
trouble seems to be due to age. The demountable discharge tube (item 
144) can be filled with hydrogen from a balloon, which has been filled 
from a hydrogen cylinder. The tube is then pumped out (vacuum pump, 
item 13) until the spectrum appears (with the e.h.t. supply connected).

For a bright spectrum, the 50 Mfi resistor in the e.h.t. supply should not 
be in circuit.
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Figure 8 shows a photograph of the hydrogen spectrum, with a scale of 
wavelengths in units of 10~ 8 metre. The visible region stops at about 
\ = 4x10~ 7 m, in the middle of the photograph, and the lines to the left of that 
are in the invisible ultra-violet, which of course can be photographed. It is the 
brighter (thick) lines that are from hydrogen atoms. Some of the others come from 
other atoms or molecules present in the discharge tube.

Figure 8
The hydrogen spectrum.

Table 3 gives wavelengths and frequencies for the hydrogen spectrum, divided into 
three groups. It is the middle, Balmer series of lines that shows in the photograph.

Lyman series

wavelength frequency 
/10~ 7 m /1014 Hz

Balmer series Paschen series

wavelength frequency wavelength frequency
/1CT 7 m /1014 Hz /10- 7 m /1014 Hz

1.2157

1 .0257

0.9725

0.9497

0.9378

0.9307

0.9262

24.659

29.226

30.824

31.564

31.966

32.208

32.365

6.5647

4.8626

4.341 6

4.1029

3.9712

3.8901

4.5665

6.1649

6.9044

7.3064

7.5487

7.7060

18.756

12.822

10.941

10.052

9.5484

1.5983

2.3380

2.7399

2.9822

3.1395

Limit 32.881 x1014 Hz

Table 3
The hydrogen spectrum.

There are other high frequency lines in the Lyman series but as the frequencies get 
larger they also get closer and closer together and the series seems to converge to 
the limiting value quoted in table 3 .

Q14 Locate on the photograph in figure 8 the Balmer line of wavelength 
6.56x10~ 7 m. Is the last line tabulated (at 3.89 x 10~ 7 m) observable? Are there 
more lines of still shorter wavelength?
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Q15 The lines in the Lyman series are of shorter wavelength and larger 
frequency, all in the ultra-violet. The first two lines are at frequencies

24.659 x1014 Hz
29.226 x1014 Hz. 

The first Balmer line is at a frequency of:
4.5665 x1014 Hz. 

Can you spot a connection between these three frequencies?

Q16 Suppose an atom has three energy levels, with levels at energies fv £2 
above the lowest level (figure 9). Spectral lines of frequency fr f2 may appear, 
where

E2 = hf2 .
What other spectral line frequency is also likely? Discuss the connection with 
question 15.

Figure 9

£,

Q17 Suppose an atom has four energy levels, with one level of much lower 
energy than the others (as in figure 10). Then three of the spectral lines (A, B, C) 
will be of higher frequency (large energy changes) than the two others (D, E). 
What does this idea suggest about a possible relationship between the seven 
Lyman frequencies and the six Balmer frequencies given in table 3?

Figure 10

'
C

V \' 

D E

f \

B A 

     .. 1
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When the Lyman and Balmer series are compared, the ideas suggested by 
questions 15, 16, and 17 can be put together to give a simple scheme of energy 
levels that might explain all the frequencies. The same analysis can be used again 
when the Balmer and Paschen series are compared. We start by assuming that the 
Lyman series is a set of frequencies like ABC, figure 10, coming from energy 
differences all involving one lowest level, like level 1 of figure 10. Then the Lyman 
frequencies, all plotted on one vertical scale, give a set of possible energy levels. 
The Balmer and Paschen series are plotted on the same vertical scale, traced on 
slips of paper, and slid up alongside some Lyman lines. Figure 11 shows the result.

32

28

24!

20

16

12

Figure 11 0'    

Analysis of the hydrogen spectrum.

Q18 What do you notice about the positions of the shifted frequencies?

Q19 Calculate the energies of photons corresponding to the first two Lyman 
frequencies,

24.659 x1014 Hz 
29.226 x1014 Hz.

Q20 Write down, without using E = hf, the photon energy of the first Balmer 
frequency, f= 4.566 x1014 Hz.
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In table 4, the energy levels of hydrogen that will explain the observed frequencies 
have been written out. You have, in question 19, calculated the first two. The first 
and lowest level, with index number n = 1, has arbitrarily been given zero energy. 
The observed frequencies can only tell us about differences in energy between 
levels so that the choice of a zero is arbitrary, like deciding to measure heights from 
sea level as zero.

Energy/J n (index number of level)

0 1

16.30x1(T 19 2

19.35x1CT 19 3

20.40x10~ 19 4

20.80x1(r19 5

21.10x10~ 19 6

21.30x10~ 19 7

21.40x1(r 19 8 

etc.

Limit 21.80x10~19 n = oo

Table 4
Energy levels of hydrogen.

Every frequency f in the observed spectrum has a photon energy /?/that is equal to 
the difference between one pair of these levels.

Figure 12 shows the energy levels plotted against the index numbers n.

The energies rise towards a limit, between 21.5 and 22.Ox 10~ 19 J. The accepted 
value is 21,8x 10~ 19 J. This limit energy' has the same value as the ionization 
energy of hydrogen (13.6 electronvolts), which can be measured independently by 
electron collision experiments. Ionization must be the process of lifting an electron 
from level 1 to the limit of the series of levels.

The electron in the hydrogen atom seems always to have one or other of a series of 
definite energies, which get closer and closer together until, at 21.8 x 10~ 19 J, the 
levels merge and the electron has escaped.

From similar evidence from spectra or electron collisions, the energy levels of other 
atoms may be determined. All have this feature of levels reaching up to a limit 
beyond which the atom is ionized.
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20

18

16

14

12

10

 limit'21.8x 10-' 9 J (13.6electronvolts)

123456789 10

Figure 12 Index number n for each level 

Energy levels of hydrogen against number n attached to each level.

If, as in table 4, the energy of level 1 is called zero, then an electron which has 
escaped from the atom will have 21.8x 10~ 19 J more energy than this (if it only 
just had enough energy to get out and has no energy left over for kinetic energy). 
It is often convenient instead to choose as zero the energy of a free electron   one 
not trapped in an atom. If this is done, then we say that an electron in level 1 is 
21.8 x 10~ 19 J below that of the free electron, and we might say that £ 1 is minus 
21.8x10~ 19 J.
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The 1/n2 rule found by Balmer

In 1885, following hot upon the first accurate spectral measurements, a Swiss 
physics teacher, Johann Balmer, pointed out that the hydrogen spectrum obeyed a 
remarkable rule. The energy levels could each be put in the form

21.8x10-19 
n2

where n is the index number in table 4. (Balmer worked with frequencies, not 
energy levels, which made it harder.) The discovery was no accident: Balmer 
believed, like Pythagoras, that patterns of whole numbers would help to explain the 
mysteries of the Universe.

Pythagoras found that stringed instruments give notes of frequencies like /, 2f, 3f, 
etc. in a series. We now realize the origin of these integers in the series of standing 
waves that can exist on strings. The music of hydrogen is more complicated, but 
we now think   and this Unit will show how   that these Balmer integers also 
arise from standing wave patterns of wave-like electrons.

Q21 Cut a strip of paper which extends, as in figure 13, from the first level 
(zero) to the broken line at the limit 21.8x 10~ 19 J. Fold it in four lengthways. 
Between which level and the limit does it now reach?

£/10-'»J

"strip of paper with four folds 
laid on figure 7

Figure 13 n=\ n=2
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Some open questions

Hydrogen atoms are about 0.5x 10~ 10 metre in radius (Units 1 and 5 looked at the 
size of atoms), and each needs 13.6 electronvolts (21.8x 10~ 19 J) energy to 
become ionized. Can these values be explained? Why do the energy levels follow a 
simple 1//72 numerical law? Why are there energy levels anyway? These are some 
of the questions we shall try to answer in Part Three. Before that, we return to 
photons to puzzle a little more about what light is like.

Photons — waves and particles

'If one does not feel a little dizzy when discussing the implications of 
Planck's constant h it means that one does not know what one is talking 
about.'

Niels Bohr.

So far our discussion has concentrated on the particle-like aspect of light. But light 
has wave properties too. The discussion here will be helped if you see, or have seen 
two films: 'Photons' and 'Interference of photons'.

Note to teachers

See page 160 for details about these two PSSC films.

'Photons' tries to show that if a brief burst of light is made so faint that 
in one burst a sensitive photocell (photomultiplier) will emit no more than 
one electron, the wave prediction that it will be necessary to wait until 
the end of the burst until enough energy has been delivered is false. 
Electrons can come out whenever the photon happens to arrive, and one 
occasionally comes right at the start of the burst. The argument in the 
film is open to the criticism that unless it is shown that the energy 
delivered in a burst is really less than the 1 electronvolt or so needed to 
eject an electron, there could be plenty of wave energy available. If the 
ejection of an electron is just not very likely the same result is obtained.

'Interference of photons' is, for our purposes, much the more useful film. 
It shows the random, lumpy arrival of energy in an interference pattern, 
the chance of energy arriving being large where a wave would be large 
and small where waves would cancel. In this film, it is pointed out that 
the photomultiplier releases an electron from about one photon in a 
thousand, which exposes the problem raised above about 'Photons'.
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Consider an example of wave behaviour that is easy to observe   the spectrum of a 
diffraction grating when light of a single wavelength is shone on it. (Figure 14.)

Effect of a grating 

A distant point P is bright if 
0, P! is just one wavelength 
behind 0 2 P2' which is A behind 
O 3 P 3 , and so on, so that ail the 
waves arrive at P in step.

Figure 14

to P a long 
way off

What can we think about this if light is a stream of bullets? One particle can only go 
through one slit: how can the direction it takes on coming out be affected by the 
other slits which it hasn't gone through? But the pattern when all slits are open is 
very different from the pattern for only one slit. You should have seen the effect of 
changing the number of slits in Unit 8, Electromagnetic waves.

Perhaps it is something to do with the fact that in a light beam there are many 
bullets going through; maybe other bullets going through 0 2 , O 3 , and other slits, 
affect one that goes through O v and together they give the diffraction pattern. 
This can be tested if we work with very feeble light. It can be made so feeble that 
photons go through one at a time: then they can't affect one another. In that case 
the argument that one particle can only go through one slit will still hold and the 
diffraction pattern should perhaps disappear for feeble light.

Your eye is a very sensitive photon detector, if it has had time to adapt to darkness. 
It is fairly easy to arrange, with a grating in front of your eye, that there is only one 
photon at a time between the grating and the retina, on which a diffraction pattern 
may be formed.
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grating (rulings not to scale)'

faint light diffraction spectra 
on retina

pupil 'eye

Figure 15
only one photon 
in here at a time

Experiment 
10.6 Interference of single photons

52A flashlamp bulb 1.25 V, 0.25 A
52 C baseboard
52 D spring connector with lampholder
52 B U2 cell
1053 fogged photographic film 
1053 cardboard slide mounts, 35 mm 

191/1 coarse grating 
1055 photographic exposure meter 

	slide projector

Students look at a torch bulb, and observe the diffraction spectrum. Then 
slides containing fogged film are propped against the bulb, so as to 
reduce the intensity by a large known factor (see below). If this factor is 
large enough, students can calculate that the photons in flight to their 
eyes are an arm's length or more behind one another, so that they cross 
the grating and eye one at a time. At this intensity, in a well blacked out 
room, the bulb filament is still just visible, and the diffraction spectrum 
can still be seen. Students need to stand about half a metre from a lamp 
so one lamp and one set of filters can serve about four observers.

To make the fogged film, pull the film out of its cassette and expose it to 
daylight for a minute or so. The film can be developed in a tank or dish. 
Fixing and washing are advisable if the film is to be used in later years.

To calibrate the filters, put an exposure meter in the direct beam of a slide 
projector, and move it until it reads near maximum. Put a fogged film 
slide into the projector, and without moving the meter, take the new 
reading.
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It will be necessary, usually, to change the meter range (often done by 
opening a louvre). A reduction of six or seven stops (/-numbers) is 
typical, giving an intensity reduction of 2 6 or 2 7 (64 and 128 
respectively). The meter may read 'light values'. A change of unity in light 
value is also a factor of two in intensity. Ideally, filters giving an intensity 
reduction of about 100 should be prepared, making pairs which on top of 
one another are calculated to give a reduction of up to 104 . (The 
reductions multiply, of course.) Students can be given ready calibrated 
filters.

Experiment 
10.6 Interference of single photons

Look at a torch bulb through a diffraction grating. You should see a spectrum easily.

Q22 The bulb emits about 0.3 W in all (multiply current and p.d.) of which 
about 10~ 2 W is visible light, the rest being heat. About how many visible photons 
does it emit each second? (f w 6x 1014 Hz, h = 6.6x 10~ 34 J s.)

Q23 If your eye is about 0.3 m from the bulb, about one photon in 50 000 
enters your eye (pupil area divided by total area of a sphere 0.3 m radius). 
About how many photons enter your eye in a second?

Q24 Light travels at 3 x 108 m s~ 1 . When one photon enters your eye, how far 
behind it is the next one that will enter, on average? (First work out what fraction 
of a second there is between photons.)

Q25 You should be given a pair of fogged film filters, that together reduce the 
intensity by up to 104 times, to prop up in front of the lamp. How 'far apart' are the 
few photons that now get through to your eye?

You should have found, in answering question 25, that the photons that will enter 
your eye are now up to 3 m 'apart' on average. As your eye is about -^ this 
distance from the lamp, there is only one photon 'on the way' at any instant. 
(There are still 10s photons entering your eye each second, though.) 
The photons now go through the grating singly and alone and travel to your retina 
with no others to 'interfere' with. On a simple particle picture, a particle photon 
obviously cannot go through more than one slit. But the grating spectrum will only 
be seen if something wavelike goes through every slit   the spectrum is explained 
by adding waves from many slits. Does the spectrum vanish, or not? This is the test.

If you look carefully, you will see that the pattern is still there. How can there be a 
diffraction pattern? Only rarely will two or more photons go through the grating 
and eye together. Yet the diffraction pattern is explained by saying that part of the 
light goes through every slit! Somehow a particle photon 'interferes with itself, as 
if something like a wave went through every slit. Such experiments have been done 
many times. The film 'Interference of photons' is one version. Another was made
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in 1909 by G. I. Taylor, who took diffraction photographs with light so feeble that 
his exposure time reached 3 months. Rumour has it that he went on holiday during 
the experiment.

We are back up against the fundamental worry about quantum ideas. A particle 
(photon) model is needed. When we take it seriously and look for the vanishing of 
wave effects when the radiation is feeble, we find that a wave model is still needed 
to explain the results. Neither model will do for all cases.

More needs for both models

Both models are needed to explain photo-electric experiments. The energy arrives 
in lumps E = hf, but how is f known ? By measuring wavelength L How is 1 
known? By using a wave model to calculate X = c/sin 6 for the grating. Figure 16 
shows how one experiment needs two models.

grating, 
spacing d

photocell

Figure 16
energy at angle 0 

given by X=d sin 0 (waves)

;nergy arrives in lumps 
E=hf (particles)

Figure 17 shows the wavelength of X-rays being measured by a crystal, whose 
regularly spaced atoms act like a grating. Waves would be reflected strongly at 
angles given by the Bragg rule X = 2d sin 0, and the X-rays are reflected at definite 
angles only. X can be calculated. Yet the counter shows, as usual in an X-ray or 
gamma ray beam, irregular 'clicks' as photons arrive one by one. This experiment 
also needs both models.

crystal, layers d apart

lead block with hole 

X-ray tube

Geiger counter

Energy at angle II 
where A=2f/sin 0 (waves)

to sealer counting 
pulses (particles)

Figure 17
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Chance and the arrival of photons

We now introduce an important new idea into the story: the idea of chance. 
Chance and randomness have appeared before in the course, mainly in Unit 5, 
Atomic structure, when discussing radioactive decay, and in Unit 9, Change and 
chance, where chance was the basis of the understanding of thermal equilibrium.

Chance enters the description of light in an attempt to make the wave and the 
particle models fit together in one important respect: in making them give the same 
answers for the rate of arrival of energy in a beam of light.

The answer from the particle model is simple enough. The amount of energy 
delivered every second by a beam of photons is the number of photons that arrive 
each second, multiplied by the energy of one photon, hf.

The answer from the wave model is a little subtler. The brighter the light, the bigger 
the amplitude of the wave, but the two are not in direct proportion. In Unit 6, 
Electronics and reactive circuits, you saw that the energy exchanged per second by 
an alternating current in a resistance was in proportion, not to the amplitude of the 
current, but to its square. Similarly, in Unit 4, Waves and oscillations, the energy 
stored by a harmonic oscillator varied as the square of its amplitude. In Unit 8, 
Electromagnetic waves, some reasons were given for thinking that the energy 
delivered by a sound wave is in proportion to the square of the amplitude of the 
wave motion. For light, the same rule applies. The square of the wave amplitude is 
in proportion to the rate at which the light beam delivers energy.

If particle and wave model are to agree,

number of photons arriving per second oc square of wave amplitude.

But the photons in an interference or diffraction pattern do not arrive in a steady, 
regular stream. The film 'Interference of photons', or experiments with X-rays 
detected by a GM counter, show that the photon energy parcels land at random, 
coming in quite irregularly. It isn't possible to predict where an individual photon 
will go, except that it will go rarely where the pattern is dark, and often where it is 
bright.

The arrival of photons is rather like spraying something with an aerosol paint spray. 
Suppose you point a can of spray paint at a screen, and give a short burst. 
(Figure 18 a.) A second burst (b) and a third larger one (c) will build up a pattern 
of paint drops.

A very long burst will cover the screen with paint to a varying thickness (d).

If the paint spray is replaced by a lamp, for which lenses or apertures gave a 
brightness variation the same as the paint density variation (e), then with the lamp 
turned low you would see photons arriving in the same random way as the paint 
drops, gradually building up the final intensity.
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Figure 18

For the lamp and lens, wave theory can predict the amplitude at each place. The 
brightness is proportional to (amplitude) 2 . The number of photons coming in to 
each place varies in the same way as (amplitude) 2 varies.

Putting together the models of photons-arriving-by-chance and the wave- 
amplitude-decided-by-interference, we have:

chance of a photon arriving oc (wave amplitude) 2 .
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The strange story of energy transfer by photons

No. of photons

f 2.8x10 7e3.6x10 6

Figure 19
Series of photographs showing the quality of picture obtainable from various numbers of photons. 
Photographs, Rose, A. (1957). Advances in biological and medical physics, 5, 277.

Figure 19 comes from Rose, A. (1957) Advances in biology and medical 
physics, 5, 211-242. We are grateful to an early draft of the M.I.T. 
Introductory physics series, by Professor A. P. French, for bringing these 
photographs to our attention.
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Figure 19 vividly illustrates what abstract arguments about the chance arrival of 
photons mean in practice. The photographs were made to represent the quality of 
picture obtainable using dim light. When the light is dim, the picture breaks up into 
a number of randomly placed spots, just as if a number of lumps of light energy had 
been delivered to particular places.

It does seem, then, that when light spreads out and so becomes feebler, we must 
imagine the energy it carries parcelled up into quanta of definite size, which are 
more or less densely spread out in space. It is necessary to add that the place where 
the energy of a photon will be delivered cannot be predicted in advance, though 
many will in the end fall where the wave amplitude is large.

Time effects

The fact that there is no detectable delay in the emission of photo- 
electrons, even in dim light, helps to confirm the story. In one experiment 
(Elster, J., and Geitel, H., 1912, Phys. Zeits. 13, 468-476), light of 
intensity less than 10~ 10 W m~ 2 produced electrons with energy of the 
order 10~ 19 J, with no detectable delay. On a wave model, a wave will 
deliver energy into an area of the order of the square of its wavelength; 
certainly less than 10~ 12 m 2 in this instance (wavelength 5x10~ 7 m). 
Energy was therefore obtainable from the wave by an electron no faster 
than 10~ 22 Js~ 1 .To obtain 10~ 19 J, it would be necessary to wait 1 000 
seconds: over a quarter of an hour. Any one such area, on a photon 
picture, must wait an average of a quarter of an hour between photons, 
but in a surface of several square centimetres, some such areas will 
receive photons with as little delay as one pleases, and emission starts at 
once. On a wave model, all areas must wait together and no electron 
can emerge for a quarter of an hour.

To see how strange all this is, consider the following peculiar story.

A harbour master is told that there has been an earthquake out at sea, and a large 
wave is spreading out from it. He works out from the speed of sea waves that the 
wave can be expected at noon, but he also calculates that, though the wave was 
large near the source, because it is spreading out it will be less than half a metre 
high when it reaches his harbour. So he expects all the boats in the harbour to rise 
and fall gently. At noon, he watches the boats. Nothing happens. Then suddenly, 
one boat shoots ten metres into the air, while the rest stay quite still. Then, as 
though someone were throwing dice to pick on which boat will be affected, other 
boats, quite at random, shoot up suddenly. But where he had expected all the 
boats to rise a little, he sees many fewer boats shoot up much more.

This is how sea wave energy would arrive if it behaved as light does.
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How light behaves — a summary

Light delivers its energy in lumps or photons, of size £ = hf.

A bright beam contains many such photons, a feeble beam few. High frequency 
radiation has bigger photons, and thus, has fewer of them for a given power. The 
photons travel at 3 x 10s m s~ 1 .

If the light shines on a grating, or a pair of slits, energy still turns up at a detector in 
lumps. But the lumps do not turn up evenly spread out, as they do if there is no 
grating. Many arrive at some places, few at others. They come in no predictable 
order, but they do pile up into a pattern. And that pattern is the pattern wave 
energy would arrive in if the wave had gone through all the slits.

If you cover up some slits, the photons arrive in a new pattern: the one for waves 
going through all those slits that are still left open. This effect has been seen in 
Unit 8, with gratings having different numbers of slits.

Photons are only observed when the light reaches a detector: because of this you 
might argue that questions about what photons do en route have no meaning. 
However, if you want to say what happens to a photon en route you have to say 
that it goes through the grating in one of many possible ways, the behaviour of 
many photons being such that there is a good chance of them landing in a wave 
maximum and a small chance of them landing in a wave minimum. The chances 
are just right for many photons to build up exactly the pattern which the wave 
theory predicts.

How does a photon decide where to go? It doesn't; one goes one way, another 
goes another, and they do these things just often enough to build up the right wave 
pattern.

Which slit did each photon go through? We can't tell.

Is light really photons? No, how could the slits a photon didn't go through affect 
its path?

Is light really waves? No, how could feeble waves deliver a bunch of energy before 
enough wave energy had arrived?

What is light? Light.
t 

How does light behave? As we said.

Why does it behave so? No one knows.
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No one knows? On the last point, one might want to say, 'Light is an 
oscillating system; oscillators are quantized, so that is why light behaves 
as it does'. This leaves the question, 'Why are oscillators quantized?'. 
'The rules say so.' 'Why are those the rules?' 'No one knows.'

Nobody likes it — but that's how it is

Nobody likes this strange mixture of two models when they first meet it. But then 
Newton's Laws, especially Law I, seem strange at first too, and even more so do 
ideas about the Earth being round with people 'upside down' on the other side. 
The idea of Copernicus that the Earth travels round the Sun seemed hopelessly 
implausible   even unintelligible   to many people. Of course the Earth was sitting 
in the middle of the Universe, they thought. Of course light must be one thing or 
the other, you may say. You would not be alone in feeling uneasy. Here are some 
things that physicists and teachers have said about the quantum puzzle.

Project Physics, Unit 5, says:

'No one was prepared to find that both wave and particle descriptions 
could apply to light. But this dualism cannot be wished away, because 
it is based on experimental results.'

Sir William Bragg said:

'On Mondays, Wednesdays, and Fridays we adopt the one hypothesis, on 
Tuesdays, Thursdays, and Saturdays, the other.'

(But it is worse than that. We adopt both all week, including Sundays.)

Einstein was quite open about his doubts. In a letter to Born (1926) he says:

The quantum mechanics is very imposing. But an inner voice tells me that 
it is still not the final truth. The theory yields much, but it hardly brings us 
nearer to the secret of the Old One. In any case, I am convinced that He 
does not play dice.'

PSSC Physics says:

The study of the photon was the hard school in which physicists became 
more sophisticated in the ways of the world.'
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Richard Feynman is one of the present-day research physicists who have learned to 
live with the problem. He works in theoretical quantum mechanics, and accepting 
the conflict is the only way he and others have found to make progress.

In The Feynman lectures on physics, Volume I, Chapter 37, he says:

Things on a very small scale behave like nothing that you have any direct 
experience about. They do not behave like waves, they do not behave like 
particles, they do not behave like clouds, or billiard balls, or weights on 
springs, or like anything that you have ever seen.

'Newton thought that light was made up of particles, but then it was 
discovered . . . that it behaves like a wave. Later, however, ... it was 
found that light did indeed sometimes behave like a particle. . . . Now we 
have given up. We say, "It is like neither"'.

'Because atomic behaviour is so unlike ordinary experience, it is very 
difficult to get used to and it appears peculiar and mysterious to 
everyone, both to the novice and the experienced physicist. Even the 
experts do not understand it the way they would like to, and it is 
perfectly reasonable that they should not, because all of direct human 
experience and of human intuition applies to large objects. We know 
how large objects will act, but things on a small scale just do not act 
that way.'

About the basic idea, bullets arriving by chance, in large numbers where a wave 
would arrive in large quantity, Feynman says:

'One might still like to ask: "How does it work? What is the machinery 
behind the law?" No one has found any machinery behind the law. No 
one can "explain" any more than we have just "explained". No one will 
give you any deeper representation [model] of the situation.'

It would not be surprising if by now you are feeling as Alice felt in the looking-glass 
world:

'Alice laughed. "There's no use trying," she said: "one can't believe 
impossible things."
' "I daresay you haven't had much practice," said the Queen. "When I was 
your age, I always did it for half-an-hour a day. Why, sometimes I've 
believed as many as six impossible things before breakfast." . . .'

Lewis Carrol/, Through the looking-glass. 

In Part Two you will get some more practice.
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Part Two

Electrons

. . . For I neither conclude from one single Experiment, nor are the 
Experiments I make use of, all made upon one Subject: Nor wrest I any 
Experiment to make it quadrare [square] with any preconceiv'd Notion. 
But on the contrary, I endeavour to be conversant in all kinds of 
Experiments, and all and everyone of those Trials, I make the standards 
(as I may say) or Touchstones by which I try my former Notions. . . .'

Robert Hooke 1661.

'At this moment the King, who had been for some time busily writing in
his notebook, called out "Silence!" and read out from his book, "Rule
Forty-two. All persons more than a mile high to leave the court."
Everybody looked at Alice.
"I'm not a mile high," said Alice.
"You are," said the King.
"Nearly two miles high," added the Queen.
"Well, I shan't go, at any rate," said Alice: "besides, that's not a regular
rule: you invented it just now."
"It's the oldest rule in the book," said the King.
"Then it ought to be Number One," said Alice.
The King turned pale, and shut his notebook hastily.
"Consider your verdict," he said to the jury, in a low trembling voice.

Lewis Carroll, Alice's adventures in Wonderland.
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The wave properties of X-ray photons are widely used to obtain information about 
the arrangement of atoms in solids, using the diffraction patterns produced by 
regularly arranged atoms, which behave like three-dimensional diffraction gratings.

Figure 20 a is an example: an X-ray diffraction photograph of a polythene sample. 
Figure 20 b is a diffraction photograph of a rubber sample, but it was taken with a 
beam of electrons, not a beam of X-rays. Electrons also have wave properties.

Figure 20
a X-ray diffraction   polythene. Photograph, Imperial Chemical Industries Ltd., Plastics Division. 
b Electron diffraction   stretched rubber. Photograph, Professor f. H. Andrews.

In Part One, the strange wave-and-particle behaviour of photons was described. 
The behaviour of photons may seem to you very peculiar, but there is one comfort: 
electrons behave in just the same way. All the interference and diffraction 
experiments that are possible with light can be duplicated with electrons, though 
the wavelength for electrons is usually very small.

Slides and photographs

Figures 20 a and 20b come from Unit 1, and are slides 1.6 and 1.5 
respectively. Slide 1.4 is another electron diffraction photograph, while 
slides 1.7, 1.8, and 1.9 are more X-ray photographs.

See also Plate III (b) and (c) in Born, M., The rest/ess Universe, for 
another pair of X-ray and electron diffraction photographs.

Rogers, E. M., Physics for the inquiring mind, page 741, gives a pair of 
two-slit interference patterns, one for light and one for electrons.

PSSC Physics, second edition, page 627, gives a pair of photographs of 
diffraction at a straight edge.
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Figures 21 and 22 show interference effects for X-rays and electrons respectively. 
Figure 21 shows the diffraction of X-rays produced by narrow wires of width 
0.0436 mm, 0.0379 mm, 0.0188 mm (from Kellstrom Nova acta Regiae. 
societatis scientiarum upsaliensis Series IV, 8, 5, page 61).

Figure 21
Diffraction of X-rays by narrow wires.
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The top two photographs in figure 22 (from Jonsson, C., 1961, Zeitschrift fur 
Physik 161, 454) show electron diffraction at a single slit and at double slits. The 
pictures below show diffraction at three slits with theoretical intensity curves.

Figure 22
Diffraction of electrons at slits.
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The wave behaviour of electrons is of practical as well as of deep theoretical 
importance. Electron diffraction is widely used in the study of the structures of 
materials.

Demonstration 
10.7 Electron diffraction

In the demonstration tube shown in figure 23, an electron beam is focused onto a 
fluorescent screen on the end of the tube. The beam passes through a target made 
of graphite. (Graphite has the advantage that it does not melt or break up when 
heated by the electron beam.)

Figure 23
Electron diffraction tube. 
Photograph, Te/tron Ltd.

Q1 Why does the electron beam heat the target? Where does the energy 
come from?

The screen shows two (or more) rings, which we shall argue are a diffraction 
pattern somewhat like the ring patterns obtained with X-rays when diffracted by 
polycrystalline materials.

Demonstration 
10.7 Electron diffraction

197 electron diffraction tube
14 e.h.t. power supply
27 transformer

50/1 cylindrical magnet
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Figure 24
Circuit for electron diffraction tube.

The anode at the side of the tube is connected to the e.h.t. positive 
terminal, not using the 50 MfJ resistor. The negative terminal is earthed 
and connected to one of the filament sockets in the tube base. The 
filament requires 6.3 V. Two rings should be visible at voltages between 
3 kV and 5 kV. As the voltage is raised the rings shrink in size, and 
become brighter. The ring diameter may be measured with a rule marked 
in millimetres.

A magnet placed near the neck of the tube will bend the electron beam 
and shift the whole pattern sideways.

At high voltages, the rings are small. As the voltage is lowered, the rings become 
larger.

Q2 In optical diffraction by a slit, say, does red light produce a broader, or a 
narrower pattern than blue light?

Q3 If experiment 10.7 really involves diffraction of electrons by a 'grating' of 
regularly placed atoms, how would the wavelength have to change to obtain an 
increase in the ring diameter, corresponding to an increase in the angle of 
diffraction?

Q4 The energy carried by the bombarding electrons heats the graphite target. 
What effect would an expansion of the target have on the ring diameter, if the 
effect were large enough to be noticeable (it is not) ?

Q5 If the voltage on the anode is reduced, are the electrons in the beam 
travelling faster, more slowly, or at the same speed as before?
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Q6 Does the behaviour of the rings when the voltage is varied suggest that 
slow electrons have the same, a larger, or a smaller wavelength than fast electrons?

If the phenomenon is diffraction, it seems that fast electrons have small wavelengths. 
Before we draw this conclusion, we examine a little more closely whether it is 
reasonable to suppose that the effect is due to diffraction.

Diffraction by graphite

The process used to deposit carbon atoms in a thin film on the target of 
the tube suggested, produces graphite in a special form. Layers of 
hexagons of carbon atoms, as shown in figure 25, are deposited parallel 
to the target, and perpendicular to the electron beam. Unlike figure 25, the 
layers are not quite perfect (some hexagons being deformed and having 
missing atoms), and the regions of approximately regular arrangement are 
not very big. Nor are successive layers, laid on top of one another, laid 
down in the fixed orientation in relation to one another which would be 
obtained in a true graphite structure.

A rough picture of the state of the target material may be obtained by 
imagining small platelets each containing a single layer of atoms arranged 
in some approximation to figure 25, but with the platelets laid down 
beside and on top of one another in a random fashion, rather like a pack 
of playing cards spread out in a jumble on a table.

Diffraction from such a material is not three-dimensional Bragg 
diffraction. Each small ordered layer acts like a two-dimensional 
diffraction grating, the net effect being the combined effect of many such 
gratings all in one plane but orientated at every possible angle in that 
plane.

A full treatment of two-dimensional diffraction is not simple. In what 
follows, we have treated a two-dimensional array of atoms as if parallel 
rows of atoms behave like parallel slits in an ordinary grating. Such a 
treatment is only approximate, but it happens that the system under 
discussion has too poor a resolution for any difference to be detected.

The structure of atomic layers in graphite is known, from X-ray diffraction. The 
carbon atoms form up in arrays of hexagons, as shown in figure 25. If you hold this 
figure at eye level and look across it, you should see rows of parallel lines of atoms. 
If you turn the page, different sets of lines will spring into prominence. We shall 
suppose (as is roughly true) that such a set of rows of atoms scatters a wave in the 
same fashion as a set of parallel rulings on a grating. For such a grating, if the
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Figure 25
Arrangement of carbon atoms in a graphite layer. (Atoms in the target of the electron diffraction 
tube are arranged rather less perfectly.)
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spacing of lines is d, and the wave has wavelength X, there will be a first order 
diffraction maximum at an angle 6, where

1 = ds\r\6.

The diffraction effect of a single such layer of atoms can be imitated using light 
passing through a grid of regularly arranged holes or spots. Figure 25, reduced onto 
a 35 mm film negative, makes a suitable grid. Look through the grid at a torch bulb 
about two metres away, and you should see a pattern of bright diffraction spots. 
Rotate the grid in its own plane, and then the spot pattern also turns. Since the 
graphite in the electron diffraction tube contains many such grids of atoms, placed 
at every possible angle, the pattern of spots is blurred out into several rings (usually 
two). If the optical grid is spun rapidly round, it too gives a ring pattern.

Preparation of optical grids

A set of grids can easily be made by photographing figure 25 on many 
frames of a roll of 35 mm black and white film, using the negatives as 
grids of 'holes' in a dark background.

Photograph the page at a distance of about one metre, so that the image 
of the page has linear dimensions about one-third that of the field of 
view. For good contrast, over- rather than underexpose. The negatives can 
be mounted in cardboard slide mounts, with the unwanted area masked by 
opaque adhesive tape.

A 2.5 V torch bulb, viewed at a distance of about two metres, with the 
grid held over the eye, makes a suitable object.

Q7 Using A = rfsin 0, and supposing that the two rings visible in the electron 
diffraction experiment do come from diffraction by rows of atoms with spacings 
d^ and c/2 , how ought the sines of the angles 6^ and 62 to compare? Will their 
ratio depend on the wavelength?

Figure 27 (page 53) shows the diffraction angle 9 and the ring diameter D. For each 
ring, D will be approximately proportional to sin 0. Therefore, if sin 0.,/sin 02 is a 
constant ratio whatever the wavelength, the ratio D^/D 2 will also be constant. We 
saw before that the wavelength seems to change with the voltage. Thus, if the 
phenomenon is electron diffraction, the ratio £> 1 /D2 ought to stay the same if the 
tube voltage is varied. For the tube suggested, a range of 3 kV to 5 kV is suitable. 
Table 5 gives some sample results.
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Electron gun p. d./V D^/mm £> 2 /mm

5000

4000

3000

Table 5
Diffraction ring diameters.

26

28.5

34

45

49.5

56

1.73

1.74

1.65

Average 1.71

The constancy of the ratio D^/D2 is consistent with the diffraction explanation of 
the rings, and its value gives information about the relative spacings of the rows of 
atoms responsible.

Q8 If the larger ring comes from diffraction by rows a distance d apart, does 
the smaller ring come from rows with spacing 1.7rf, or C//1.7?

Figure 26 indicates two sets of rows which could be responsible for the two rings. 
Because the hexagons of carbon atoms have sides 1.42x 10~ 10 m long, the

vertical lines show rows of atoms \ .42x 10 10 ) m apart, while the horizontal

lines show rows of atoms -|(1 .42x 10~ 10 ) m apart. See figure 26 b for the 
geometry involved.
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a Two row spacings in a graphite layer. 
b Geometry of row spacings.
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Q9 What is the ratio of the spacing of the two sets of rows shown in 
figure 26?

Q10 Does this ratio agree with the experimental results for the ratio of the two 
ring diameters?

The above arguments do not prove that the rows of atoms in figure 26 are the rows 
responsible, but the pattern of rings on the screen is consistent with what would be 
obtained by diffraction from a graphite structure.

Wavelength and energy or momentum of electrons

The p.d. V indicates the energy of the electrons, which rises as A falls. One might 
suppose that (energy) x (wavelength) might be constant. At the time, about 1927, 
when electron diffraction was discovered in America by Davisson and Germer, and 
in England by G. P. Thomson, physicists knew of a speculation by the Frenchman, 
Louis de Broglie, that particles might be associated with waves. De Broglie based 
his ideas on similarities between some theories about light and theories of mechanics 
and had predicted that momentum multiplied by wavelength would be constant.

Momentum mv cc 1/A.

Q11 If the accelerating p.d. is V, will the velocity v of the electrons be 
proportional to V, MV, JV, 1/JV?

Thus to test de Broglie's idea, that v oc 1//I, calculate D^/Tfrom your measurements 
and see if it is constant. (D is the ring diameter, V the gun voltage.)

Table 6 gives some results obtained by G. P. Thomson, taken from his 1928 paper 
describing his experiments on electron diffraction. They are for an aluminium target. 
You could test whether D^JV is constant. Thomson's voltages were estimated from 
the size of a spark gap and are not highly accurate.

Date y/volt D/cm

October 7

October 1 0

October 7

October 7

October 7

October 7

October 1 1

October 1 2

October 1 2

Table 6

17500

30500

31 800

40000

44000

48600

48600

56500

56500

3.10

2.45

2.32

2.12

2.08

1.90

1.98

1.83

1.80

Diffraction results obtained by G. P. Thomson. 
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Note to teachers

A wider range of voltage would be desirable, both in the results for the 
school tube and in Thomson's results. It is hard to exclude the possibility 
that energy x wavelength is constant (Ox V constant), though values of 
Ox V do change considerably over the available range. Sceptical pupils 
may be referred to figure 28 which shows a wider range of values, 
collected by Davisson in 1928. The Thomson paper is G. P. Thomson, 
Proc. Ft. Soc. (1928) A117, 600. Davisson and Germer's announcement 
is in Nature (1927) 119, 558.

Planck's constant h again

The measurements made in the electron diffraction experiment enable us to find the 
constant in the relation

1 mv oc —.

Notes for teachers

It is strictly true (on present theories) at all velocities, that p = h/1 for 
electrons, p is the momentum; if necessary in relativistic form. 
There is a corresponding rule for photons. If, using £ = me2 na'ively, one 
says that p = me = E/c, then one gets p = hf/c = h/X, which is the same 
rule as before. A more rigorous way is to use the exact relativistic rule 
connecting energy, momentum, and rest mass mQ ,

E2 =

For a photon, the rest mass m0 is zero, so the rule simplifies to E = pc. 
When the relativistic rule is used for electrons, putting

p = m0 v/JC\-v2 /c2 )

and expanding the square root as a series in v2 /c2 , then for v <| c,

Non-relativistic formulae will cope with slow electrons, but never with 
photons, whose velocity is always c.
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De Broglie originally suggested that the relation should be
h mv = —,
A

where h is Planck's constant, 6.6x 10~ 34 J s, which was met before in connection 
with photons.

In one experiment with the electron diffraction tube, the larger ring diameter was 
45 mm at a p.d. of 5000 V (you may prefer to substitute your own_data). The

spacing d in graphite for the larger ring (the smaller spacing) is ^—(1.42x 10~ 10 ) m 

or 1,23x 10~ 10 m. The target was 135 mm from the fluorescent screen.

Q12 What is the angle 6 in figure 27, in radians?

target

45 mm

Figure 27

Q13 What is sin 01 (You may use an approximation.) 

Q14 What is the wavelength /I, using A = d sin 9?

Q15 The kinetic energy -l/r?\/2 of an electron, charge q, accelerated through 
p.d. V, is qV. Write an equation in terms of q and V for its momentum mv.

Q16 For an electron, q = 1.6x 10~ 19 C, m = 9.1 x 10~ 31 kg. Find the 
momentum for a p.d. of 5000 V.

Q17 Find the constant h in mv = h/1.

Q18 Are the units of (momentum) x (wavelength) the same as those of 
(energy) (1/frequency) ?

Q19 If the same value of h appears in both E = hf and mv = h/X, would that 
be a reason for thinking that h might be a universal constant?

Q20 The wavelength of 5000 volt electrons comes to about 0.2x 10~ 10 m (see 
Q14). At what p.d. would accelerated electrons have a wavelength of 0.2x 10~ 6 m? 
(Compare ultra-violet light.)
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Other measurements of h

Figure 28 is a graph prepared by Davisson in 1928, collecting several people's 
results together. Wavelength /I is plotted against 1/^/17 where V is the accelerating 
p.d. You should have shown in answering question 15 that

Q21 Show that the slope of the graph is equal to h/^J2mq. Find h from the 
slope (for this graph, V was measured in volts, /I in units of 10~ 10 m).

Source

This graph comes from an article included in Boorse and Motz, The 
world of the atom. Volume II, page 11 62. The article is 'Are electrons 
waves?' by Davisson, and should be very useful for teachers. It was 
originally published in the Franklin Institute Journal (1928), 205, 
page 597.

0.25

Vaccelerating P-d. 
Figure 28

Wavelength of electrons against reciprocal of the square root of the accelerating voltage. 
Based on Boorse, H. A., and Motz, L. (1966) The world of the atom, Volume II, Basic Books.
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Momentum, not velocity, as the guide to wavelength

The experimental results show that the velocity of electrons is inversely 
proportional to wavelength. More evidence is needed to show that it is momentum, 
not just velocity, which decides the wavelength. To see what the evidence might be, 
we consider other particles, of different mass.

Q22 How much more slowly will a neutron have to travel than an electron if the 
two are to have the same momentum?

Such particles— neutrons and even gas molecules, which are of much greater mass 
than electrons — have been successfully diffracted, but to get momentum 
corresponding to a wavelength of 10~ 10 m, it is found that these heavier particles 
have to go very slowly - which makes the experiment hard to do. Neutron 
diffraction is now a tool used by physicists and others to supplement X-rays in the 
study of solids, as also is electron diffraction.

Matter waves are now out of the realm of speculation. We may not like, or 
understand them, but they are used every day as research tools. The relation 
mv = /7/A says that for X « 10~ 10 m, mv x 6x 10~ 24 kg m s~ 1 . A neutron has a 
mass of about 1.6 x 10~ 27 kg, so the kinetic energy at this momentum,

F =
(mv) 2 

2m '

comes out close to 10~ 20 J, or less than 1/10 electronvolt. In a solid at room 
temperature, the molecules vibrate with energies of this size, and a good way to 
make neutrons suitable in wavelength for diffraction experiments is to let them pass 
into a warm solid and bounce about among the atoms.

slow 'thermal' neutrons 
emerge, usable in 
diffraction experiments

atomic pile

Figure 29
Slowing down of neutrons.

Soon they lose energy, by collision after collision, and end up in thermal 
equilibrium with the right energy for diffraction.
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If not only electrons and neutrons, but all particles of matter have wave properties, 
is it feasible to think of ordinary lumps of matter (collections of particles), like a 
tennis ball, as having wave properties?

If one thought this, one could calculate the wavelength. It is then clear why the 
wave properties, if they exist, do not show up in experiments.

Q23 An electron, mass of order 10"~ 30 kg, has a wavelength of 10~ 10 m at a 
velocity of order 107 m s~ 1 . Estimate the wavelength associated with a ball in a 
game of tennis.

Q24 What happens to a diffraction pattern as the wavelength is made smaller 
and smaller? What happens as the wavelength is made larger and larger? Why are 
X-rays and not visible light used to study crystal structures by diffraction methods? 
Why are diffraction effects with tennis balls never seen?

Film: 'Matter waves'

You should, if possible, see the film in which Davisson describes how he and 
Germer found electron diffraction. Some of their original apparatus is shown, and 
their experiments are repeated with modern improvements.

Film: 'Matter waves'

Guild Sound and Vision (see page 160).

This film makes an admirable summary here, but could be shown earlier 
or later. Students who saw the film at 0-level may not need to see it 
again, though it is probably worth a second viewing.

The electron dilemma — reading

Which are electrons really — particles or waves? We have been here before: the 
answers are the same as for photons. This is the microscopic world of quanta. The 
inhabitants may behave strangely, but at least they all behave the same way.

Every student meeting this strange world for the first time needs time to become 
used to it; time to talk over the problems and to circle suspiciously round the ideas 
involved. As so many people have written so well about these problems, we suggest 
that you would do well to read some of the things they have said. As we pointed 
out at the beginning of this book, there are a number of reasons why this may be a 
worthwhile exercise, besides enabling you to become clearer about what the 
problem really is and how quantum behaviour is to be described.
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Each reference that follows has a short commentary, telling you roughly what to 
expect. Following the references is a set of questions. You will do well to have the 
questions in mind as you read, and you may be asked to give answers to some of 
them.

Note to teachers

We suggest that each student should read one, at most two pieces, and 
that he should tell the others what answers he has found to the questions. 
Other tasks could be set: to write a short magazine article, or to write 
answers to a number of questions.

The Feynman passage is tough, but very worth while, as it gives a clear 
picture of how quanta behave. The chapters from PSSC and Physics for 
the inquiring mind are strongly recommended.

References

Feynman, The Feynman lectures on physics, Volume I, Chapter 37. This is difficult, 
but worth it. Concentrate on 37—1 to 37—5, without worrying about the algebra in 
37—3. Feynman describes beautifully how the quantum world behaves, and you 
should read the words rather than the mathematics.

PSSC, Physics, 2nd edition, Chapter 33.
PSSC, College physics, Chapters 31, 33, 34. The chapter from the PSSC course 
gives information at about the right level for sixth form students. It is worth reading 
carefully. Section 33—7 is interesting because it compares the photon and the 
electromagnetic wave models of light. The three College physics chapters expand 
the same material.

Rogers, Physics for the inquiring mind, Chapter 44. This is a long chapter, and 
although you may like to read it all, the especially relevant parts are pages 723 
(about photons) to 727, and pages 737 (particles and waves) to 742. The 
diagrams on pages 723, 725, 740, and 741 are very useful, as is the table at the 
top of page 738.

Born, The restless Universe, Chapter III. Max Born was one of the physicists who 
first explored the quantum world. He first suggested that chance or probability had 
to be used to describe the behaviour of particles. Pages 106—117 will be revision 
for most students. But read pages 117—121 about photons. You could skip pages 
122—133 on spectra and Bohr's model of the atom; also skip pages 133—139 on 
the Compton effect and pages 139—151 which introduce electron waves. You 
should read pages 151—158 carefully. See especially plate III (b). The final pages, 
159—165, are interesting, but could be missed.
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Toulmin and Goodfield, The architecture of matter, Chapter 12. This is a fairly 
condensed historical account of the development of quantum ideas. Concentrate 
most on the section, 'Radiation is atomised'. You could stop at the point where 
Rutherford's nuclear model of the atom is discussed.

Project Physics, Reader, Unit 5 contains a good chapter by Banesh Hoffmann.

Rothman, The laws of physics, Chapter 10. This is also historical, but less 
condensed than Toulmin and Goodfield. It is worth following up to page 180, but 
the final part (The uncertainty principle') could be omitted. (Energy is measured 
on page 1 69 in ergs. 1 erg is equal to 10~7 joule.) If you have little time, omit 
pages 172-178 (The size of a photon').

Caro, McDonell, and Spicer, Modern physics, Chapter 3. This chapter concerns the 
photo-electric effect, and the behaviour of photons. It is useful as a guide to which 
ideas come from experiment and which from theory.

Tolansky, Revolution in optics, Chapter 2. Do not bother with pages 33—37 on 
'black body' radiation. Concentrate on pages 37 (The photon') to 43. The 
remaining pages, 43—50, link up usefully with other parts of our work, but are less 
essential.

Bennet, Electricity and modern physics. Chapter 13.2—13.3 describes the 
photo-electric effect and the idea of photons rather briefly. There are several 
paragraphs describing the dual nature of light, and brief notes on spectra and the 
wave nature of particles.

Project Physics, Text, Unit 5. Chapter 18, section 18.4, discusses the photo-electric 
effect, and its interpretation is considered in 18.5. Section 18.6, on X-rays, is useful 
but less necessary. Chapter 20, sections 20.2 and 20.3, gives a good outline of the 
wave and particle behaviour of photons and electrons. (You will have to accept one 
formula from relativity.) Section 20.4 outlines the developments in quantum theory 
that will form most of the remaining work in our course.

Hoffmann, The strange story of the quantum. Chapter 8 discusses the ideas of de 
Broglie and the Davisson—Germer experiment. Electrons as waves and particles are 
discussed on pages 166—173. Chapter 3 discusses the photo-electric effect.

The Open University Science Foundation Course, Units 6 and 7, Atoms, elements, 
and isotopes: atomic structure. The electronic structure of atoms. See sections 6.4 
and 6.5 on spectra and energy levels. Later Units dealing with quantum theory 
may also prove useful.

Now here are some questions to ask yourself as you read:

a Does the author say that £ = hf comes from experiment, from theory, from 
both, or from elsewhere?

b Does the author say that mv — h/X comes from experiment, theory, both, or 
neither? Are the answers for photons the same as for electrons, or not?

c Does the author say that the behaviour of electrons and photons can be 
deduced from deeper ideas?
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d What does the author say about why the description of the quantum world 
is widely accepted?

e Does he say it is a final and true description? (Do you think he ought to?)
f Does he mention 'probability'? What does he say is probable or not 

probable?
g What is said to be random, unpredictable?
h What is said to be predictable?

i Does he explain why quantum effects are not seen on the large scale, for 
photons or for electrons?

j Does he say whether photons can vanish, unlike electrons? (Watch out for 
words like 'absorbed'.)

k Are photons said to have mass as well as momentum?
I Do you have the impression that in the development of these ideas, 

experiment led theory, theory led experiment, or a bit of both happened?
m Does he talk about 'models' or 'analogues' or 'pictures' (or some similar 

word) of photons or electrons?
n Does he say we have no adequate model of photons and electrons, or 

that we have two good models,,or that we have a complicated model, or that we 
shouldn't expect to have a model? What do you think about these questions?

Waves of chance

What are these electron waves waves of? Nobody knows; most physicists have 
stopped trying to answer. The electron itself is the thing that is detectable, and that 
is no wave. The wave is a kind of ghost, telling how the electron is likely to travel. 
Just as for photons, the rule is: calculate the amplitude and square it to find the 
intensity, and that tells you how many electrons will arrive on average, or if you 
prefer, the chance that one electron will arrive.

To say that electrons interfere is just to say that they pile up one by one in the 
pattern in which a wave would arrive. It is not to say that electrons are waves, but 
that waves are needed to describe how electrons travel.

The only thing these waves have to do is to give an amplitude, such that

chance of arrival oc (amplitude) 2 

can be calculated.

The rest of the paraphernalia of a wave model, that is, ups and downs, medium, 
push, pull, oscillations, are not used. No one has found a way to use them or give 
them meaning. The (amplitude) 2 is all that counts. The rest is 'not there' at all, so 
far as observable events go, though the phase of the waves is an essential 
ingredient in adding up the total effect of several waves, whose total amplitude is 
then squared to find the intensity or probability.
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The oldest rule in the book

' "It's the oldest rule in the book," said the King. . . .'

It is a curious feature of the wave-and-particle description of light and of electrons 
that it uses old rules in new ways. The old physics of particles, using terms like 
momentum and energy, still has a place. The old physics of waves, with amplitudes 
being added together to calculate superposition effects, still has a place. The rules 
are the old rules, but their combination is new and startling. In combining them, 
physicists were forced to think very hard about the difference between events they 
could record, such as the arrival of energy carried by a photon, and things they 
could not, such as the oscillations of an electron wave, or which slit a photon 
passed through. And perhaps the need to remember the difference between what 
you can actually observe and measure, and what you cannot, really could be called 
the oldest rule in the book. The physics of quanta nevertheless gave physicists a 
sharp reminder of it.
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Part Three

Waves in boxes
'"Is there any point to which you would wish to draw my attention?"
"To the curious incident of the dog in the night-time."
"The dog did nothing in the night-time."
"That was the curious incident," remarked Sherlock Holmes.'

A. Co/73/7 Doyle, The memoirs of Sherlock Holmes.

That which changes in matter, the rusting blade, the hard coal turned 
smoke, is but a rearrangement of the same tiny particles. The chemist 
can recover the iron from rust, or the carbon from the hot gas, and the 
elements recovered differ in no whit from their counterparts in a sheltered 
sample. Atoms do not change!'

Professor Philip Morrison.
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The stability of atoms

The idea that particles have wave properties turned out to be the key to 
understanding how it is that the atoms of an element are all so much alike, and stay 
alike, behaving in just the same way in chemical or physical experiments year after 
year. The Greeks first thought of atoms as a way of explaining how it is that matter 
can change, but still be recoverable: that water can freeze and then become water 
again, that iron can be obtained from the ore, rust away, and be recovered again. 
Their idea, since pursued by chemists, was that the changes in matter were to be 
thought of as changes in the arrangement of atoms, while the atoms themselves 
remained unchanged. This stability of atoms is an essential part of the explanation: 
matter is recognizable and behaves consistently; it is possible to do chemistry, just 
because atoms always behave in the same way.

For these reasons, atoms were for long thought of as hard, unchangeable spheres, 
which could not be broken into smaller pieces. But we now think that atoms do 
have parts: that they are electrons surrounding a nucleus, itself made of protons and 
neutrons. The electrons are often imagined revolving around the nucleus. This 
view gets us into several difficulties, as follows.

If such a 'solar system' atom hits another, the laws of dynamics say that the 
motion of the electrons in each must change, just as the Earth's orbit would change 
should another star pass close by. Yet the kinetic theory says that such collisions are 
happening all the time, at the rate of billions a second. How can a miniature solar 
system retain the same properties — size, spectrum, energy, and chemical 
properties — when subject to such a buffeting?

As with the dog in the night-time in the Sherlock Holmes story, the curious thing 
is that nothing happens.

New atoms can be minted (in nuclear reactors), yet they seem to behave exactly 
like all others of the same kind. But a 'solar system' atom could be put together in 
many ways, the 'planets' orbiting at any radius they please. Somehow, when the 
parts of an atom are put together, they choose the 'right' behaviour. There is 
evidence, seen earlier, that atoms exist with one of a limited number of energies; all 
atoms in, say, the lowest energy level being like all others in that level. But a 'solar 
system' atom is not confined to any particular energy by the ordinary laws of 
dynamics. Any energy should be possible. The very existence of energy levels 
demands a new kind of theory which goes beyond ordinary dynamics.

The 'solar system' model makes wrong predictions, too. Just as an electron 
oscillating in an aerial generates radio waves, so electromagnetic laws predict that 
electrons going round in orbit will radiate. (If we look at an orbit edge on, the 
electron will seem to be oscillating.) Such an orbiting electron will lose energy 
continually, spiralling inwards until it can go no further. But atoms do not radiate 
continually, and do tend to stay the same size. (Calculations show that if the 
orbiting electrons radiated energy, an atom would collapse in less than 10~ 10 s.)
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Instead, as has been seen in Part One, atomic spectra can be explained by 
supposing that the atom jumps from energy level to energy level, radiating when it 
does so, but not radiating at all while in one particular level.

A new theory for atoms

These are some of the problems that led to a new kind of dynamics for atoms, called 
wave mechanics or quantum theory. A new theory must not just avoid the 
difficulties. It must (and can) explain why atoms behave as they do. For 
preference, it should also make new predictions, and that too was achieved. Here 
are some things that the theory can explain.

1 The size of atoms

For instance, a hydrogen atom is about 0.5x 10~ 10 m in radius, as measured by 
various methods. Somehow, the electrical attraction of the proton for the electron 
fails to make the atom collapse any further.

Q1 Suggest some ways of measuring the size of atoms or ions. (Hints: 
X-rays; kinetic theory; thin films.)

2 The values of the energy levels

Hydrogen has levels at energies 21.8 x 10~ 19 //? 2 J below the energy at which the 
electron is torn free (the atom is ionized).

3 The existence of a lowest possible energy level

No hydrogen atom has ever been found with energy lower than 21.8 x 10~ 19 J 
below the energy for ionization.

We shall try to show something of how these things are explained. Quantum theory 
is more powerful than we can show in this course. It can help to explain the 
behaviour of nuclei as well as of atoms, though here there are many unsolved 
problems. It can explain how atoms that form molecules come to be bonded 
together, and why those that do not, do not. It can explain the chemists' Periodic 
Table, with its curious number patterns 2-8-8-18 and so on, of repeating 
properties. It can describe the rotations and vibrations of molecules that cause them 
to emit or absorb infra-red light. It has helped physicists to understand the strength 
of materials, and the electrical conductivity of metals. In fact, there are few sciences 
concerned with atoms and molecules that have been left untouched by the ideas of 
wave mechanics.
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The arguments that follow
Reaching towards a theory of the hydrogen atom

The work of this part of the course now embarks upon a series of arguments in 
stages (stages one to three) which are intended to lead towards the final goal, an 
understanding of the quantum, or wave-particle theory of hydrogen atoms. The 
hydrogen atom is quite a complicated problem, and is as far as we shall go in detail. 
But the theory can be extended — with difficulty — to other atoms and molecules, 
and in Part Four we shall try to indicate finally the sort of results that can be 
obtained with more complicated problems. However, the hydrogen atom theory will 
mainly have to stand as a symbol for these other possible achievements.

Note for teachers
The Bohr theory

Bohr's theory of the hydrogen atom does not appear in any detail in this 
work. This is not because it is uninteresting or unimportant. Time is short, 
and although the Bohr theory is of great historical interest, it is misleading 
as a theory in that it is essentially not a wave theory at all. Nor are Bohr's 
orbits as real as they may seem: indeed in the ground state of hydrogen 
there is exactly zero orbital angular momentum, and the electron does not 
'go round' the nucleus at all. There are plenty of good accounts of Bohr's 
theory (see below) and teachers may wish to fill in the historical 
background by describing it. Such a description should be regarded as 
additional to the work of this course.

Bohr theory: references

Boorse and Motz, The world of the atom, Volume II, page 734. 
(Biography and original paper.)

Born, TTje restless Universe, page 176.

Caro, McDonell, and Spicer, Modern physics, page 84.

Conn and Turner, The evolution of the nuclear atom, page 230. 
(Original paper.)

Rogers, Physics for the inquiring mind, page 731. 
(Good for student reading.)

Sherwin, Basic concepts of physics, page 228. 
(Out of print.)
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Stage one ..
Order of magnitude arguments about hydrogen and about nuclei

At this stage, we shall see how to answer the following question: 'Why does the 
electrical pull of the proton on the electron not pull the electron in a hydrogen atom 
closer to the proton than a certain distance?'

The answer turns out also to explain why there cannot be electrons in the nucleus, 
why the gamma rays that emerge when neutrons combine with protons to make 
deuterons (heavy hydrogen) have high energy, and, in a general way, why solids 
are so very incompressible. We approach the first stage by thinking about waves 
which are confined to small space.

Q2 Electrons have wave properties. Electrons in an atom are kept close to the 
nucleus by electrical attraction. What kind of waves appear on a string or spring 
when the waves are kept inside a part of the string by fixing the ends?

Q3 What is the frequency of the lowest note obtainable 
length 0.5 m, if waves travel on the string at 200 m s~ 1 ?

>n a guitar string of

Demonstration 
10.8 Standing waves

a Standing waves on a stretched cord

When waves on a stretched cord are kept within two fixed ends, the cord does not 
vibrate at any frequency one may wish. Instead, if it is driven at varying frequencies, 
it responds only at definite frequencies. It does not respond at any frequency lower 
than that for the pattern of motion with one 'loop' shown at the top of figure 30. 
That is, a standing wave of wavelength longer than twice the length of the cord 
cannot be 'fitted in' at all.

r
fixed wall

vibrato

Figure 30
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Perhaps an atom, in which the wave-like electrons are confined to a small space, 
may be thought of as being filled with standing waves.

b More complicated standing waves

An atom is a three-dimensional thing, not a long thin string. Look at standing 
waves on either a flat plate, a rubber diaphragm, or a springy ring. If there is time 
see more than one.

Figure 31

Figure 32

With these two-dimensional standing waves there is again a lowest possible 
frequency, and a largest possible wavelength, that can allow a standing wave to 
'fit inside'. We shall tell a similar story about atoms.

Demonstration 
10.8 Standing waves

a Standing waves on a rubber cord (see experiment 4.15c)

1009 signal generator
1060 vibrator

134/2 xenon flasher
1055 rubber cord (-1 m long, 3 mm square cross-section)

503-6 retort stand base, rod, boss, and clamp
121 metal strips as jaws 2 pairs

44/2 G-clamp (small) 2
1000 leads
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b Vibrations in a rubber sheet (see experiment 4.16e)

1009 signal generator
1044 large loudspeaker

134/2 xenon flasher
1053 sheet of rubber

503 retort stand base 2
1076 large ring

Figure 33 a shows how the rubber cord may be stretched between jaws 
held in a clamp, and the vibrator, to which it may be tied. The cord should 
not be so taut as to prevent the vibrator from vibrating freely. White 
painted spots on a black rubber cord make for an effective demonstration, 
especially if the cord is viewed both in steady light and when 
illuminated by a stroboscope.

rubber cord held in jaws

vibrator

irubber sheet stretched over large ring

rubber band

Figure 33
Standing wave experiments.
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Figure 33 b shows how to excite oscillations in a rubber sheet. The sheet 
is stretched over the large metal ring, so as to be as evenly stretched as 
possible. Holding the sheet to the ring by a large rubber band makes it 
easy to make small adjustments of the evenness of the sheet's tension. 
The large loudspeaker is placed below the ring and rubber sheet. 
Frequencies in the range 10 to 100 Hz are required, and the larger the 
power delivered by the loudspeaker, the better. Try a central position of 
the speaker first, and a low frequency, and raise the frequency gradually, 
looking and listening for the lowest mode, in which the centre of the 
rubber sheet rises and falls. Radial lines drawn on the rubber make the 
oscillations easier to see. The amplitude may be 10 to 20 mm at the 
centre.

At a higher frequency, with the speaker off centre as in figure 306, a 
mode of oscillation can be found in which the rubber surface tilts, one 
side rising as the other falls, the rim staying fixed, of course.

Film loops (see page 160).
'Vibrations of a drum' shows the rubber diaphragm.
'Soap film oscillations' shows standing waves on soap films.
These two loops are not essential, but may be helpful.

The size of an atom: the region where electrons are likely to be

In work on ionic crystals (Unit 3, Field and potential), when Na + and Cl~ ions 
came within distances of less than about 3x 10~ 10 m, large repulsive forces sprang 
up which held the ions in balance against their electrical attraction. It would be 
reasonable to think of the ions 'touching' at these distances, but all this means is 
that the electrons around an Na + ion started to try to share neighbouring space with 
those round a Cl~ ion.

We have seen that where an electron goes in an interference experiment is a matter 
of chance. Many go where it is likely that any one will go. Similarly, we shall 
develop the idea that an atom is a region where electrons are likely to be found. 
The edge of an atom is the distance beyond which electrons are unlikely to be 
found. The job of wave mechanics is to predict, using standing wave ideas, the size 
and shape of such regions, inside which there are large amplitude standing waves 
and a big chance of finding electrons, and outside which the amplitude is small and 
electrons are rarely found.

/ Q4 What is the order of magnitude of the size of an atom or ion?

68 Waves, particles, and atoms



A crude theory of hydrogen: waves in an atom-sized box

If electron waves are confined, as in an atom, to a space of size 10~ 10 m, certain 
important consequences follow, even from very rough guesses about the shape of 
the waves. The following questions explore these consequences for a hydrogen 
atom, composed of one proton and one electron.

Q5 In figure 34 a standing wave with one half wavelength 'loop' is shown 
fitting into a diameter of the space, so that A,«4x10~ 10 m. Is this the largest or 
smallest possible wavelength that would fit across a diameter?

electrons not often found out here

'electrons likely to be here

wavelength K 4x10-10 m

Figure 34

Q6 An electron of wavelength A has momentum mv = h/L What value of 
momentum is associated with the above wavelength? (/? = 6.6x 10~ 34 J s.)

Q7 May the electron have less than this momentum, in the circumstances? 

Q8 The electron has momentum mv at least equal to 1.6x 10~ 24 kg m s" 1 .
fTJV2 _

What is the least possible kinetic energy —— ? m = 9.1 x 10 31 kg. and 
mv 2

2 ~ 2m '

An electron confined within such a space must be moving around fairly rapidly, 
with kinetic energy at least 14x 10~ 19 J, which is of the order of 10 electronvolts.

Q9 What prevents the electron with such kinetic energy from flying away from 
its proton ?

Q10 What energy must be transferred to electrical potential energy for an 
electron to move from 1.0x 10~ 10 m to a long distance from a proton (to become

free)? (e = 1.6 xlO"19 C; -1— = 9x109 N m2 C~ 2 .)
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Q11 Has an electron with kinetic energy 14x10 19 J enough energy to escape 
from a distance of 1.0x 10~ 10 m from a proton?

These arguments may be put the other way round. Electrical attraction between 
proton and electron is just capable of holding the electron within 1.0x 10~ 10 m, 
because the short wavelength and large momentum demanded by this limit on size 
require a kinetic energy nearly equal to, but still less than, the electrical energy 
needed to tear the electron free.

But an atom cannot be much less than this size, as the following questions show.

Q12 Suppose the electron in a hydrogen atom were confined to a space ten 
times smaller, 0.1 x 10~ 10 m. How many times smaller would the wavelength have 
to be than before?

Q13 How many times larger than before would the momentum mv have to be?

_„ . _, ..... • , (momentum) 2 .,Q14 Show that the kinetic energy is equal to -————————. How many times
2/7?

larger than before would the kinetic energy have to be?

Q15 What is the least possible value of the electron's kinetic energy?

Q16 To tear the electron away from a distance 1 .Ox 10~ 10 m from a proton, 
energy 23x 10~ 19 J had to be transferred to electrical potential energy. How much 
energy is needed if the distance is ten times smaller?

Q17 Would the electrical attraction be strong enough to keep the electron 
within a space 0.1 x10~ 10 m across?

Summary of stage one
Why are atoms about 10~ 10 m in size

If the electron in a hydrogen atom were kept within a space much larger than 
10~ 10 m across, the wavelength of the standing wave would be large and the 
momentum and so the kinetic energy would be small. The kinetic energy turns out 
to be less in magnitude than the electrical potential energy of the charged electron 
and proton. Thus the atom can 'afford' to be smaller, energy being transferred from 
electrical potential energy to kinetic energy. As the 'box' shrinks, the wavelength is 
reduced, and the momentum and kinetic energy rise as a result (mv = /?//l).

But the box cannot be made indefinitely smaller. There comes a point where the 
wavelength is so short that momentum implies the kinetic energy greater than the 
electrical energy binding the particles together. It is like squeezing down a box with 
a ball in it that rattles about faster and faster the smaller the box. If the box is made 
too small, the ball bursts through the walls. Figure 35 illustrates this idea.
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size of box 

wavelength A 

momentum mv=h/ A

kinetic energy 
, ,, (mv) 2imv= W
Figure 35

too small 

very small 

very large

too large
(ball bursts out)

Notice also that the energy predicted by the above calculations is about right. At
1 .Ox 10~ 10 m radius, the electrical potential energy is — 23 x 10~ 1 9 J, compared with
the measured ionization energy of hydrogen — 21.8x 10""19 J (Part One).

The crude theory of hydrogen

A more formal version of essentially the same argument about the 
hydrogen atom as a box appears in Feynman, The Feynman lectures on 
physics, Volume I, Chapter 38.4. Teachers may like to look at it. By 
carefully choosing constants, the correct expressions for the Bohr radius 
and ionization energy come out. In the argument above, one could have 
chosen 2. = 2nr rather than /1/2 = 2r, when 'better' answers could have 
been extracted. But the constants would have been introduced ad hoc, 
and we prefer a rougher calculation. It is precisely when finding out how 
to fit waves correctly into a hydrogen atom that a fuller treatment, given 
..later, comes into its own.

The rough calculation only shows that an election can't be confined 
within 0.1 x 10~ 10 m, but could be confined within 1 .Ox 10~ 10 m. To 
work out an equilibrium distance, it would be necessary to equate 
dV/dr for the electric potential to d (kinetic energy) /dr — giving a 
calculation rather like that for ionic crystals in Unit 3, Part Four. This is not 
pursued because the argument is too rough to justify such detail. For 
example, the standing wave can't have a constant wavelength since V, 
and hence the electron's kinetic energy, must vary with r.
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Why are solids very hard to compress?

Almost without it being noticed, one of the biggest puzzles in physics has been 
solved. It is a well-known fact that you do not fall through your chair (usually) or 
that steel struts will support large loads. Solids are strong in compression. Physics 
also tells us that the atoms in these things are nearly all empty space.

If two solar systems came together, they could easily penetrate each other. But 
atoms do not go on penetrating each other until the nuclei are close together: they 
stop at distances of the order of 10~ 10 m. This is because the electrical repulsion 
between the electrons tends to keep electrons away from the overlap region. As the 
atoms are forced together, each electron is confined to a smaller and smaller box, 
which means that it must have smaller wavelength, and so larger momentum and 
larger kinetic energy.

In Unit 3 a mysterious repulsion force had to be introduced to keep the ions of an 
ionic crystal in balance. The source of these repulsion forces that make solids hard 
to squash is now explicable. In squashing a solid we are trying to squeeze the 
electrons of each atom into a smaller space, and they will not do it. Or rather they 
will do it only if we supply the energy from outside. Calculations like those given 
above show that a small squeeze may require a lot of energy, which is why huge 
forces are needed to squash any solid.

Problems of the nucleus — electrons in the nucleus?

This discussion can throw some light on the problems of the nucleus, which is a 
very small box indeed, about 10~ 14 m across (Unit 5). It was once thought that a 
nucleus of mass A, charge +Z might be made of A protons and A — Z electrons, the 
electrons being held to the protons by electrical forces. Similarly, people have 
thought of a neutron as a proton plus an electron, held together electrically. Both 
views must be wrong. Why? Because in a box of size 10~ 14 m, /I w 10~ 14 m, mv 
comes to 10~ 19 kg m s~ 1 . The kinetic energy is (mv) z /2m, which is 10~ 9 J for 
electrons, that is, 1010 electronvolts. There are no known forces which could hold 
down electrons with so large a kinetic energy: the electrical energy of attraction at 
10~ 14 m is only 105 electronvolts or 10~14 J (as may be calculated knowing its 
order of magnitude at 10~ 10 m, from question 10 above).

Electrons cannot be squeezed down within nuclear sizes by electrical forces. Can 
protons? We explore this next.

72 Waves, particles, and atoms



The energy of particles within the nucleus

Not much is understood about the forces which hold nuclei together, but at least 
they must be strong enough to contain protons or neutrons within regions of size 
about 10~ 14 m across. The particles must have wavelength A of this order of 
magnitude or less. As before:

The size determines the largest wavelength L 

Momentum mv = — at least.
A

„. . (mv) 2 h2 Kinetic energy = -——— = ——- at least. 
2m 2mA2

Q18 Find the least kinetic energy of a neutron or proton contained within a 
space such that A = 10~ 14 m or less. Look up values of h and m.

Q19 Convert the energy in question 18 to electronvolts (e = 1.6x 10~ 19 C).

The above calculation suggests that the kinetic energy of particles within a nucleus 
will be of the order of 10 MeV. The energy with which nuclear forces bind them 
together must be at least as large as this; it turns out not to be very much larger, in 
fact. To take a case where the evidence is fairly simple, we consider the nucleus 
made of one proton and one neutron, the deuteron.

When neutrons from a reactor are fired at protons (in water or wax, for example), 
the protons may capture neutrons in a way not unlike the capture of electrons by 
protons to make hydrogen atoms. In the latter process, light is emitted at many 
frequencies, up to the limit where the photon energy is equal to 21.8 x 10~ 19 J, the 
difference in energy between a free electron and one in the lowest energy level of 
hydrogen (see Part One). When protons capture neutrons, to form deuterons, 
'light' is emitted in the form of gamma rays of just one energy, 2.2 MeV.

Q20 How many energy levels has a deuteron?

If wave ideas are used to calculate other possible wave states for a deuteron, they 
show that all the states one can imagine have kinetic energies greater than the 
energy with which the deuteron is bound together. Thus only one state exists, that 
with energy 2.2 MeV below 'freedom', for which the kinetic energy comes out to be 
2.2 MeV less than the potential energy with which the deuteron is bound.
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photons emitted many other 
levels (1/n2 )

electron 'falls' as potential energy 
drops under attraction of proton

free electron

electrical 1 //-shape' 
(potential energy)

a Hydrogen atom

21.8x10-l9 J 

...........i

scale w 10- 10 m

2.2 MeV photon

neutron 'falls' under 
attraction of proton

free neutron-----p.

single, lowest level

(+) proton 

scale K 10- 14 m
b Deuteron nucleus

Figure 36

Reading

PSSC College physics, Chapter 35, gives a good account of atomic, 
molecular, and nuclear binding, and could be used to bring together the 
theoretical arguments and experimental evidence presented so far.

A photograph of the deuteron formation gamma ray spectrum appears on 
page 664, while pages 666—667 show how the many nuclear energy 
levels of a complex nucleus may be mapped out, using methods very like 
those employed for atomic energy levels in electron bombardment 
techniques (Unit 2, Part Five).
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Other nuclei have many energy levels, typically with energies of a few million 
electronvolts, spaced at intervals of the order 0.1 million electronvolts. The levels 
can be investigated experimentally by firing particles of known energy at nuclei, 
and seeing how much energy they give up. This method is exactly analogous to the 
method discussed in Unit 2, Part Five, for finding the energy levels of atoms by 
firing electrons at them. Theoretical work is still going on to see if the levels of 
various nuclei can be explained theoretically. Too little is known about nuclear 
forces for any but partial successes to have been achieved so far. Ultimately, 
theorists would like to be able to explain the existence of the many sub-atomic 
particles themselves as different energy states of a smaller set of objects. This is no 
more than a dream at present.

A possible place to stop

This is a place to ask students if they want to go further. The 
achievements are limited, but the character of the arguments has been 
exposed, and it might be sensible to stop here, and pass to a brief 
version of Part Four. With many classes, it would be best to do so, and 
would certainly be better than wearying them with ideas in which they 
cannot sustain an interest.

We hope that some students, and some classes, will want to explore the 
ideas a little further. Stage two will be enough for most, while a few may 
continue through stage three. Both stages show how the ideas can be 
used to make more detailed and more accurate predictions. As it is the 
range and quality of its predictions that make quantum theory a great 
theory, we hope some will pursue the ideas as far as they can. If it can be 
arranged, it would be good if those students who wanted to could go on, 
while others were employed on other matters. But no student should feel 
ashamed of stopping here (with a brief look at Part Four): he or she has 
seen already the main dilemmas of quantum physics, and the sort of way 
they are resolved.

Teachers who pass here to Part Four should look particularly at 
examples 4, The number patterns 2—8-8-18, and so on, in the Periodic 
Table', 6, 'How a molecule is held together', and 7, The water molecule'.
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Stage two
Electron standing waves in a 1/r shaped 'box'

Note to teachers

In this stage, we show how the shape of the 'box' in which electron 
standing waves are trapped affects the allowed wavelengths, and so 
decides the allowed energies, or energy levels. We shall give an 
argument for the 1//?2 rule of the energy levels of hydrogen atoms. In 
stage three, a numerical solution of a one-dimensional Schrodinger 
equation will be shown. That argument will require students to 
understand how the potential energy varying as ^|r determines the 
kinetic energy, and so the effective wavelength at any distance r. These 
ideas are developed and used in stage two.

However, the results of stage two are substantial enough for it to be 
possible to stop there, omitting stage three. It will still be possible to 
follow as much of Part Four as students wish.

Towards a better version of the theory

The crude wave-particle argument used so far has given a taste of the ideas behind 
the new wave mechanics. But the real job of the theory is to do what has so far 
been neglected: to say just how the waves do fit into atoms or nuclei, and so to 
obtain more information about their behaviour. For the hydrogen atom, for example, 
how does a wave-electron behave in an inverse square force? What waves are 
allowed? That is the kind of question we have to ask.

In stage one, we thought of an atom, or a nucleus, as being like a box in which 
electrons and their waves are trapped. In stage two, we shall be more realistic, and 
as a result, make the theory yield information about the 1//? 2 rule for the energy 
levels of the hydrogen atom and the size of the atom. That this process of improving 
a theory is possible may be a valuable lesson in itself. It often happens in science 
that one has to feed into a theory more or less inadequate assumptions. It is often 
the case that the better the assumptions the more detailed and reliable are the 
predictions, but that the mathematics becomes harder to do. A scientist has to learn 
to choose just the right level of adequacy of assumptions for the kind of answer 
he needs.

The hydrogen atom — an electrical 'box'

An electron trapped in a box is not unlike a person locked in a room. An electron in 
a hydrogen atom is not much like either of these.
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Q21 Suppose you are blindfolded and locked in an empty room. You take a few 
steps. How is your motion changed if you a do, b do not reach a wall? When will 
you feel strong forces?

Q22 Now suppose you are blindfolded, and in a field in which another person 
is standing, holding a prize. He blows occasional sharp bursts on a whistle, and you 
move towards the whistle when you hear it. The louder you hear it, the quicker you 
move. Why is this situation rather more like that of an electron held near a proton 
than is the situation of question 21 ?

In stage one, we calculated the kinetic energy of a trapped electron by finding first 
the momentum mv, from the wavelength 1 of a standing wave, using de Broglie's 
relation

hmv = —.
A.

Then the kinetic energy ±mv2 could be calculated.

Because it is easy to link the energy of the electron with the wavelength of a 
standing wave, it is best to describe not the forces, but the changes in energy 
produced by the electrical attractions between proton and electron in a hydrogen 
atom.

Q23 Figure 37 shows two kinds of elephant trap. Which is more like the 
electron-trap set by a proton? Which is more like the model used in stage one?

Figure 37 a b

Physicists call such an electron-trap a 'potential well'. A hole, or a well (like 
figure 37 a) is a place where the gravitational potential energy of an object that has 
fallen into it is less than that of one which is 'free'. To become free, a trapped object 
must acquire potential energy. In the electric field of a proton, an electron which 
moves closer to the proton, or 'falls', then has less potential energy than before. To 
get a long way from the proton — to become free — the electron must acquire 
potential energy.
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It is convenient, and conventional, to call the potential energy of a free, untrapped 
electron zero. If this is done, its potential energy when in the trap will have to be 
less than zero, that is, be given a negative value. This means only that the electron 
must acquire energy in order to 'climb' out. This convention was referred to in 
Part One.

Potential wells — a good but slightly dangerous metaphor

Physicists often use metaphors, but need to remember that, like all 
metaphors, each has its limits. A radio telescope is said to 'see' a source; 
an electron is said to 'feel' a force. Neither description is meant literally. 
A 'well' is just such another metaphor, vivid but not in exact 
correspondence to the situation it illuminates.

A ball rolling inside a hollowed-out space is not exactly analogous to a 
ball which moves in a straight line and is restrained by forces acting along 
that line. The first ball rises up the sides of the well, the sides producing a 
horizontal component of change of velocity. The second ball does not 
move vertically at all. If the interchange of kinetic and potential energies 
of the two balls follows the same relationship with position, the two 
problems are in some way analogous. Thus, in Unit 5, a hill shaped to a 
1/> curve was used as an analogy for the motion of an alpha particle in a 
potential varying as 1/r. Nevertheless, the analogy is not a complete one, 
and a ball moving on a real hill or in a real bowl will make motions that a 
particle in the corresponding potential will not make.

The potential well for hydrogen

In Part Three, question 10, the potential energy V of an electron at a distance of 
1.0x10~ 10 m from a proton was found to be — 23 x 10~ 19 J, using

y = q,qz q, = <72 = 1.6x10- 19 C.

= 9x109 N m2 C-2.

Q24 Write down at once the potential energy at r = 0.5 x 10~ 10 m.

Table 7 gives values of the (negative) electrical potential energy V of an electron 
and a proton at distances from r = 2. Ox 10~ 10 m to r = 0.1 x 10~ 10 m.
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/Y10- 10 m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

W10~ 19 J 230 115 77 57.5 46 38.4 33 28.9 25.5 23

r/10- 10 m 1.2 1.4 1.6 1.8 2.0 

W10~ 19 J 19.1 16.4 14.4 12.8 11.5

Table 7
Potential energy of an electron at various distances from a proton.

Plot V against r, as in figure 38, using similar scales. It is best to leave a space 
above the r axis for later use (see figures 56 and 59).

Distancer/10-10 m

100

5> 200

Figure 38
Variation of potential energy with distance for an electron near a proton.

Later use of 1/r graph (figure 38)

The graph carries the numerical values of the hydrogen potential well in 
accessible form. It will first be used in arguments in this stage. In stage 
three, the space above the r axis can be used for drawing one graphical 
solution of the Schrodinger equation — the standing wave equation for an 
atom.

Q25 This potential well or electron trap is a bottomless well. Why doesn't the 
electron fall down and down and down . . .? (Hard but look at stage one again.)
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Finding the kinetic energy of the electron

We shall use the graph of the potential well (figure 38) to find the kinetic energy of 
the electron at various distances r from the proton. We do this because, given the 
kinetic energy, we can compute the momentum and so also the wavelength. Given 
the wavelength, which turns out to vary from place to place, we shall try to fit 
standing waves inside the potential well.

A hydrogen atom in its lowest energy level has to acquire an energy of 
21.8 x 10~ 19 J for the electron to escape and become free. Draw a horizontal 
line across your copy of the potential well graph at energy E = — 21.8 x 10~ 19 J, 
as shown in figure 38. We shall write £ to mean the net energy of the electron in 
the atom, which is the same as the energy of the appropriate energy level (see 
table 4, page 26).

Q26 A 103 kg car freewheeling uphill acquires potential energy at the rate of 
about 10 4 joules per metre of vertical rise. At what height will a car which started 
with kinetic energy 10 5 J stop?

Q27 Use your potential well graph (figure 38) to find at what distance r 
according to ordinary mechanics, an electron with energy £= — 21.8x10~ 19 J will 
stop moving away from a proton. What will be its kinetic energy at that distance?

Q28 If the electron moves closer to the proton than the distance where its 
kinetic energy is zero (about 1.1 x 10~ 10 m) what happens to its potential energy V? 
If the total energy £ is constant, at — 21.8x 10~ 19 J, what then happens to the 
kinetic energy?

Q29 Use the potential well graph to find the kinetic energy at r = 0.3x 10~ 10 m, 
if the total energy £ = -21.8x 10~ 19 J.

Rule for finding the kinetic energy

The total energy £ is constant. Close to the proton, at small radii, the potential 
energy falls and the kinetic energy rises. If at radius r the potential energy is V, 
the kinetic energy is (£— I/). This can be read off the graph as the distance shown 
as I on figure 39. We shall use this rule repeatedly, because the kinetic energy 
decides the wavelength.
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kinetic energy zero here

Figure 39
Finding the kinetic energy at distance r.

Standing waves with variable wavelength

We have now found that the kinetic energy of the electron near to the proton is 
larger than the kinetic energy further away, if the total energy remains constant. The 
momentum will change in a similar way. In working these ideas out, we have been 
treating the electron as a particle. Now we shall try to treat it as a wave instead, 
but at the same time try to make the wave obey the same rules as the particle 
would have to. The key to this is the expression for the wavelength:

X = h/mv.

If the wave is to behave like the particle, then the wavelength A might be small 
close to the proton where the momentum is large, and may increase further away as 
the momentum falls.

Ordinary dynamics tells us that the electron cannot be further away from the proton 
than the distance at which E = V and the kinetic energy is zero (question 28). 
Presumably the wave dies away to zero somewhere near that distance. But can 
standing waves of variable wavelength occur? All the waves on strings and springs 
seen so far have had one fixed wavelength. The following demonstrations show that 
variable wavelength standing waves are perfectly possible.
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Demonstration 
10.9 Oscillators with varying wavelength

a Rubber cords of different thickness

Figure 40 shows two cords, tied end to end. One end of the pair is fixed, and the 
other is vibrated.

thin

Figure 40
Oscillating rubber cords.

long wave

thick

vibrator
short wave

Q30 Do both cords vibrate with the same frequency?

Q31 On which cord do the waves travel more slowly? (Use what you know 
about the speed of waves on cords from Unit 4.)

Q32 Why have the standing waves on the thick cord the shorter wavelength?

b A hanging chain

A hanging chain (figure 41) carries more load at the top than at the bottom. Waves 
on a tight rope travel faster than on a slack rope. By shaking the top, standing 
waves can be made whose wavelength is smaller at the bottom than at the top, 
because the velocity is smaller at the bottom than at the top.

Figure 41
Oscillating hanging chain.
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c Rubber strip of varying width

This is perhaps the prettiest. A V-shaped length of rubber is vibrated at the narrow 
end (figure 42).

wood jaw:

Figure 42 shortwave 
An oscillating V-shaped rubber strip.

vibrator

long wave

Where waves travel slowly, on the more massive wide part, the wavelength is short. 
It increases slowly along the strip, being long at the narrow end where waves 
travel fast.

It is worth looking at the lowest frequency of vibration: the standing wave with one 
loop (figure 43).

Figure 43
Lowest mode of V-shaped rubber strip.

vibrator

The peak is not in the middle, but near the wide end. Near that end, the rubber 
curves more sharply than at the other, just as it would have to do if there were 
many short waves at that end and few longer ones at the other. The wave in a 
hydrogen atom will look very similar, and we shall need to describe how 'curved' it 
is in terms of long or short wavelengths.

In every case, the velocity varies from place to place. The frequency is the same at 
all places, so the wavelength must vary from place to place. These are standing 
waves in which a wavelength, adjusted to the proper value for each place, must fit 
into a finite region.

Part Three Waves in boxes 83



Demonstration 
10.9 Oscillators with varying wavelength

1009 signal generator
1060 vibrator

134/2 xenon flasher
1055 length of light chain
1055 V-shaped strip of rubber
1055 rubber cord (0.5 m long, 3 mm square cross-section)
1055 light rubber cord (0.5 m long; e.g. dressmaking elastic)

a Rubber cords of different thickness

See figure 40. Tie the thick rubber cord to the thin elastic, and fix one to 
the vibrator. Since the wave velocity depends on the square root of the 
mass per unit length, an effective demonstration requires cords having a 
mass ratio of at least four. Good lighting is important.

b Hanging chain

See figure 41. The sort of chain sold for securing bath plugs is suitable. It 
is easiest to swing the top round in a small circle, but it will be clearer 
that a standing wave is involved if the top is oscillated sideways.

c Rubber strip of varying width

See figures 42 and 43. Rubber cot sheet is a suitable material, cut with a 
razor blade along previously marked lines, while being held down and 
lightly stretched. A piece 0.5 m long, tapering from 100 mm to 10 mm, is 
about right. A line drawn down the middle helps to make the motion 
clear, especially as the edges of the strip tend to flap. Stroboscopic 
illumination along the length of the strip is very effective. Use as large an 
amplitude of oscillation as can be managed.

Standing waves in spherical atoms — a piece of geometry

The standing waves shown in demonstration 10.9 were all waves on a straight line, 
or one-dimensional standing waves, though 10.8 showed two-dimensional 
standing waves. But an atom is a three-dimensional object. One might perhaps hope 
that some at least of its electron standing waves would have the waves (and so also 
the chance of finding an electron) spread out uniformly round the nucleus in all 
directions. To put it more shortly — the atom may be a sphere, at least sometimes. 
Luckily, there is a mathematical theorem which relates one-dimensional standing 
waves along a line to spherically symmetrical standing waves.
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Recall that the square of the amplitude of the electron standing wave is 
proportional to the chance of finding an electron. In a wave on a straight line, if the 
amplitude is A at some place, the chance of finding an electron near that place is 
proportional to A 2 . The theorem says that we can treat spherical standing waves in 
a simple way. Pretend there is a one-dimensional standing wave from the centre 
out along one radius, and find the amplitude A at any radius r. Then A 2 dr 
represents the chance of finding an electron near that radius in any direction; that is, 
in the wall thickness dr of a spherical shell of radius r around the centre (figure 44).

onedimension
A2 a chance
of electron at distance d.

spherical wave
same A 2 cr chance of electron 
anywhere at radius r (within the wall 
thickness of the spherical shell)

sphere, radius r

Figure 44

Spherical symmetry

The above passage, on spherically symmetrical waves, represents the 
largest piece of evasion in this work. No simple reasoning can be offered 
in its favour, but the result has no physical content. It is a happy accident 
of three dimensions. The less it is emphasized the better.

In one dimension, a standing wave i// can be represented by

,,— — = - k2 iv.
dx2 ^

In three dimensions, this becomes:

Transforming to polar co-ordinates, if there is no variation with angle 
(spherical symmetry) geometry transforms the above into

r dr2 
d 2A

or

dr2 = -k2A.
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Now XI 2 = r 2y/ 2 , and y/ 2 dv represents the chance of having an electron in 
a small volume dv at one place, r 2 i// 2 dr represents (apart from a 
constant 4n) the chance of having the electron in the volume 4nr2dr, 
that is, at all points in a shell between radii r and r+dr. A 2 will be zero 
when r = 0.

'edge' of atom

Figure 45

Fitting standing waves into a hydrogen atom

Figure 45 recalls the discussion of the kinetic energy of an electron of total energy 
£ near to a proton, page 80. Close to the proton, the kinetic energy and momentum 
are large, the wavelength small. At larger radius r, the kinetic energy and 
momentum are less, the wavelength more, using A = h/mv. The 'edge' of the 
atom is the radius at which £ = V, where the kinetic energy is zero.

Q33 Parts a—d in figure 46 show some possible waves of varying wavelength 
'fitted into' the space between r — 0 and the 'edge' of the atom. Which of the 
waves shown in a—d have the right kind of variation of wavelength with radius? 
(Recall demonstration 10.9.)
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'edge' of atom
£=V 

kinetic energy=0

Figure 46

All the waves start with zero amplitude at r = 0, because each might represent the 
chance of finding electrons within the wall thickness of a spherical shell of radius r. 
The volume of the shell wall shrinks to zero at r = 0. Electrons are not often found 
at very small radii because there is so little room for them. The chance per unit 
volume may be quite high (it is, in fact) but the volume itself is small.

Estimation of average wavelength for the lowest level of hydrogen

One way of fitting in a wave of varying wavelength would be to find an average 
wavelength. To find the average wavelength, an average value of the kinetic energy 
is needed. We shall make such a calculation for the lowest level of a hydrogen 
atom, whose energy E = —21.8 x 10~ 19 J.

As the kinetic energy is zero at radius r, where E = V, the value at radius r/2 might 
do as an average. This kinetic energy 'half way out' will be equal to E, as shown in 
figure 47, because the potential V follows a 1/V law, doubling as r is halved. We 
shall take the value E as a rough average value for the varying kinetic energy.
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t Radius

Figure 47

kinetic energy=£ at r/2

potential energy V varies as 1 //•

Note for teachers

If the total energy is E, a negative quantity, the average kinetic energy 
between r = 0 and r = rQ , where

= 2
£ =

is given by.

average kinetic energy = E+
e2 \ lr ro -—— \r2 dr

471V /Jo
r2 dr

if we assume the electron to be uniformly distributed in a sphere of
radius rQ .

Therefore average kinetic energy = £+ —
2

Therefore average kinetic energy = -1 £|.

See the article by Professor Mott in Sources of physics teaching, volume I, 
for a similar argument.

In the estimation above, we have set the average kinetic energy equal to 
£, not-l£. Note also that the very large kinetic energies near r = 0 do not 
contribute much, for the electron is rarely there.
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Q34 Take £ as approximately 20 x 10~ 19 J and estimate the mean momentum of 
the electron, (m = 9.1 x 10~ 31 kg, or 10~ 30 kg. Momentum = ,/2/r? (kinetic energy), 
since momentum = mv and kinetic energy = -i/w2 .

Q35 What is the mean wavelength? (^ = h/mv; h = 6.6x 10~ 34 J s.)

The mean wavelength comes to about 3x 10~ 10 m. Half a wavelength is about 
1.5x 10~ 10 m. But the wave has to fit into a space between r = 0 and roughly 
r = 1.0x 10~ 10 m. It is clear that no more than one half wavelength can fit in. (The 
discrepancy between 1.5x 10~ 10 m and 1.0x 10~ 10 m is a result of the roughness 
of the approximation. We shall do better later on. It rather suggests that the wave 
might go beyond the 'edge' of the atom, and that turns out to be quite true.)

Figure 48 shows what the wave might be like. Compare figure 46 c.

wave plotted above r axis

Radius

£= -21.8x10 -is J

Figure 48

energy plotted 
below f axis

'edge'

A success of the wave-particle theory

The wave sketched in figure 48 is the standing wave imagined for the lowest 
energy level of hydrogen. It turns out to have only one loop, which is the least 
possible number of loops in a standing wave. Recall that the lowest member of any 
standing wave family has just one loop half a wavelength long. In stage one, page 
65, we assumed that the lowest energy level must have a one-loop wave. Now we 
see that it does. The measured energy E of the lowest energy level does correspond 
to a wavelength which gives the lowest member of a standing wave family. The 
theory can explain why there is a lowest possible energy level, and why it occurs 
with an energy of about — 20 x 10~ 19 J.

In introducing Part Three, it was pointed out that any model of an atom involving 
electrons moving round a nucleus would make it difficult to explain why atoms are 
so alike and so stable, if ordinary dynamics applies. But this new theory which links 
momentum to wavelength can deal with the problem. The atom cannot collapse
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further because there are no possible lower standing wave patterns. Atoms in the 
lowest level are alike because there is just one standing wave pattern, so just one 
possible energy.

More theoretical explanation - the 1//? 2 rule for energy 
levels of hydrogen

The theory, even in the rough 'average wavelength' version we are using at the 
moment, can explain why there are a series of energy levels, and the origin of the 
1//7 2 rule for their energies discovered by Balmer (page 28). Questions 36—41 
show how.

Q36 The lowest energy level, index number n = 1, has a standing wave with 
n = 1 loop. How will a wave theory explain the existence of other energy levels?

Q37 The Balmer rule says that foe 1//?2 . If E, is the total energy for the level 
n = 1, what is the energy F2 for the level n = 2, with a two-loop standing wave?

Q38 Figure 49 a shows the lowest level, energy E, and the radius r of the 'edge' 
of the atom, where E = V. 
Figure 49 b shows the second level, energy £/4. Why has the radius risen to 4r?

Radius

Figure 49

Q39 The standing wave for the level n = 2 now has two loops, to be fitted into 
four times the radius, as suggested in figure 50 a and b. Why has the mean 
wavelength doubled?

SO"
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same as figure 48 but squashed 
up to bring radius 4r on scale

' = 1 mean wavelength A
Radius

= 2 mean wavelength 2 A
4 r Radius

Figure 50

The new energy £/4 means a new mean kinetic energy. In figure 506 with energy 
f/4, the kinetic energy averaged over the shaded region out to radius 4r includes 
more small values than in the shaded region in figure 50 a. The mean kinetic energy 
must have fallen, just as the energy f has fallen. The new mean kinetic energy 
means there is a new mean momentum and wavelength. If, and only if, the new 
mean wavelength turns out to have just doubled, will a wave, as shown in figure 
50 b, just fit into the new space required. The next two questions show that it 
actually does fit.

Q40 Earlier arguments (question 34) gave:

1 Momentum = ^J2m (kinetic energy) since momentum = mv and kinetic 
energy = -i/r?i/2 .

2 Mean kinetic energy may be equal to £ approximately. Supposing only that 
the mean kinetic energy is proportional to the total energy f then:

mean momentum oc ^/^Tusing 1.

In going from the level n = 1 to the level n — 2, the 1/n2 rule reduces fto E/4. 
What happens to the mean momentum?

Q41 A = h/mv. What has happened to the mean wavelength?

The new energy E/4 is just right. Question 39 shows that, for n = 2, this new 
energy leads to a bigger atom which would need a wave of doubled wavelength to 
fit into it. Question 41 shows that the wavelength obtained with energy E/4 is in 
fact just doubled, so the wave does just fit in as question 39 requires it to do. The 
Balmer 1//?2 rule is the result of making the waves fit into an electrical box with a 
1 /r shape. The whole numbers n appear because atoms are standing wave systems 
and a standing wave may only have a whole number of loops.
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Algebraic version of the argument for the 1//?2 rule

Some may prefer the argument in a more compact form, as follows.

If E is the total energy of the level, we assume as before that:
mean kinetic energy oc E. 

But mean momentum oc ,/£! 
So mean wavelength X oc 1/^/£ since mv = h/L

Now E is also related to r0 , the distance to the atom's 'edge', and

from the "!//• law for the electrical potential energy.

If the atom is described by a standing wave with n loops, each half a 
wavelength long, then, if /I is the mean wavelength and r0 the distance, 
the waves must fit into the box with n loops in distance r:

nJ. oc rQ . 

Thus n\ — loci —

using the dependence of /I and r0 on E. 
Simplifying this gives

n^fE = constant 

or £ oc —=•, which is the Balmer rule.%

Quantum theory's description of atoms

So far, we have only made rough sketches of the shapes of possible standing 
waves, and have done some order of magnitude calculations. It is possible, but 
harder, to compute the actual shape of the standing waves for simple atoms. You 
may like to look at figures 60 to 65 (pages 108 to 111) which show accurately 
calculated wave shapes for some energy levels of hydrogen. How they were 
calculated is explained in stage three, and one of them is worked out. 
But even without further detailed calculation, you have already seen the essence of 
the ideas.

As we promised at the start of stage two, it has been possible to improve the theory 
so that it will explain a good deal about a hydrogen atom. The atom's size and the 
energies it can have can be found by discovering the standing waves that will fit 
into it. Their amplitude at a place predicts the chance that an electron will occupy 
the region near that place.
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The two-humped wave for n = 2 (figure 50 b) shows that an electron, for a 
hydrogen atom with the 'right' energy, will often be at one of two distances from 
the proton. The accurate picture, figure 63, shows that it will more often be at the 
larger distance, which has the bigger hump. As the electron may be anywhere 
around the proton, this wave predicts that the electron will usually inhabit a pair of 
fuzzy regions around the proton. For n = 3, there are three such regions. See 
figure 70, page 121.

These shells are some of the 'orbitals' of which chemists often speak. They are the 
humps of standing waves: waves the square of whose amplitude predicts the chance 
that an electron will be within a fixed region of space.

Pythagoras explained the music of the lyre in terms of whole numbers, which we 
now describe in terms of wave-loops on its strings. Quantum theory explains the 
music of atomic spectra in a similar way, in terms of whole numbers of wave-loops 
fitting into atoms.

The makers of quantum theory

Quantum theory was the work of many people, notably Schrodinger, Heisenberg, 
and Born. Schrodinger, building on de Broglie's wave-particle ideas, was responsible 
for introducing the wave idea into the theory of atoms. The theory was developed 
over the years 1924 to 1930, but it grew out of an important earlier theory.

This earlier theory was the work of Bohr, who thought of it soon after Rutherford 
had produced his model of atoms containing small nuclei surrounded by electrons. 
Bohr's theory was a somewhat makeshift affair, but was nevertheless of the first 
importance.

Bohr's theory was an orbit theory of hydrogen. The electrons were supposed to 
keep to certain definite orbits, each with a definite energy, and never to travel in 
other orbits in between.

Waves were not mentioned in the theory. It had two big weaknesses. Firstly, it went 
wrong for atoms heavier than hydrogen. Secondly, and this was a more serious 
fault, it could not say why some orbits were allowed and others not although it told 
you how to calculate which ones were allowed.

The importance of the theory was that it worked, however shakily. The ingredients: 
h, m, e, and the electric potential of a charge, were used to calculate the energy of 
hydrogen atoms for the first time. Bohr brilliantly produced the formula for the 
energy of any level:

£.=4I2n2m
n

How he got it is no longer of such interest: the important thing was that he made 
people realize that you could put together the mass and charge of an electron, EO ,
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and Planck's constant, and explain the hydrogen levels. From that time the search 
for a better theory increased in intensity. It took many years, and was achieved by 
the combined efforts of de Broglie (the wave idea), Heisenberg, Born (the idea of 
waves deciding chance), Schrodinger (an equation for the waves), and later Dirac 
who gave the theory even deeper foundations, showing that the wave idea was just 
one possible way of looking at the problem.

The new theory has come to be called wave mechanics or quantum mechanics.

End of stage two: another place to stop

This completes stage two, and many classes will wish to stop Part 
Three, 'Waves in boxes', here and go on to look at material from Part 
Four which illustrates in principle how quantum theory can be developed 
further and how powerful it is.

Stage three has something to offer the more mathematically inclined. The 
crudities of averaging the wavelength are abandoned, and the way in 
which accurate solutions can be found is illustrated. Earlier work with 
graphical solutions finds a new and exciting use.

Stage three uses a computer-made film, which shows solutions being 
calculated and displayed graphically. Figures 60 to 65 are a set of frames 
from such a film. Students who omit stage three might still enjoy the film.
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Stage three
Schrodinger's equation for electron waves in atoms

Note for teachers

Most students will have stopped at the end of stage two, and will perhaps 
have seen the computer film showing the drawing of accurate standing 
waves, as illustrated in figures 60 to 65. They will not, of course, 
understand how the calculations are made. But some students could now 
move to stage three. They can have the 'magic' of the computer removed 
by doing one solution themselves. The ground has been prepared, and the 
actual solution is not at all laborious. Presented in the right way, as an 
effort both to see what the computer did and to see more deeply into the 
achievement of Schrodinger, the effort could be rewarded by a sense of 
real achievement. The magnitude of the achievement can hardly be 
over-emphasized in the classroom. This calculation is one of the giant 
strides forward in physics. Before it, knowledge of atoms was essentially 
a heap of facts. After it, scientists felt they understood atoms, and were 
confirmed in that feeling by the power of the method to generate new 
results. Chemists will be well aware of the repeated use made of the ideas 
in discussing bonds and orbitals.

An equation for a new dynamics

In stages one and two we used a mixture of old and new ideas. We took kinetic 
energy and momentum from the physics of Newton, but added the strange and new 
result, i — h/mv, of de Broglie. Put in the right kind of pot, and stirred with the 
right kind of spoon, these ideas together went some way towards explaining the 
features of the behaviour of a hydrogen atom which the physics of Newton cannot 
digest.

If Newton's dynamics will not serve, are there new dynamical equations to be 
found which will describe the peculiar particle-waves of the quantum world? 
An answer to this question was provided by Schrodinger. He had to make 
guesses — leaps in the dark - but by guessing with imagination and skill he 
produced, among other things, a way of solving the standing-wave problem for 
atoms. In doing so he was doing more than solving a problem in physics. He turned 
out to be making a theory of much of chemistry as well.

His equation — when it can be solved — can tell you the energy, size, and structure 
of any atom you care to think of. The mathematics was formidable, but suddenly 
physicists could see a way to explain all (or nearly all) of another science. 
The equation could also be applied to combinations of atoms; to the effects on 
electrons of having to form wave-patterns with two or more atomic nuclei instead 
of only one. Then it came out that the theory could also explain the way in which 
atoms were bonded together, in molecules, and then in solids. The reasons why
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water H — O has a bond of nearly 90°; why copper atoms, when brought together,

H
give good conduction whilst silicon atoms do not; why alpha particles with high 
energy come from nuclei with shorter half-lives than those with low energy - these 
reasons could all be given by the same basic scheme. A whole vast area had 
suddenly been made accessible, and it became possible for some to suggest that 
only the problems of the nucleus and of the stars now remained to be tackled.

In this course, with a little more work, we can follow in the footsteps of 
Schrodinger and see a little of what he did to make the standing wave idea really 
predict answers about atoms. We shall see how accurate standing wave patterns can 
be calculated. It is that understanding — knowing what kind of theory it is — which a 
scientifically educated person might reasonably want to have. Later on in life, if one 
becomes involved with a science that uses Schrodinger's ideas, one can learn to 
master and use them. Just now, you should think of yourself as seeing the drama, 
not expecting to become an actor able to take part yourself.

Schrodinger's equation for standing waves in atoms

Here is one way of writing Schrodinger's equation for calculating the energy levels 
and size of a hydrogen atom, if the atom is spherical:

Just now, we are simply writing it down, without reasons.

The usual form of Schrodinger's equation

The equation above is not quite like the usual form of Schrodinger's 
equation. It is the time-independent part of it, usually written:

As shown on page 85, for spherical symmetry we can write A = n// and

The quantity 2m(E— V) is the (momentum) 2 , and as mv = h/X, the 
equation reduces to:

27t\ 2
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A stands for the amplitude of a spherical shaped standing wave, the amplitude 
being different at different radii r, as we said in stage two. The value of A 2dr at any 
radius r is proportional to the chance that an electron will be within the thickness dr 
of a shell of radius r, that is, will be found near a distance r from the proton. A is a 
wavelength, which also depends on r. Equation 1 is a rule about waves. To 
complete it we need to use particle ideas about electrons, to find out how /I should 
vary with r.

In stage two (questions 26 to 29), we saw how the kinetic energy of an electron 
would vary from place to place. Using the particle rule

total energy £= kinetic energy+potential energy V 

we can say

kinetic energy = E— V. 2

We can now demand that our wave follow a similar rule as it changes wavelength 
from place to place, since the wavelength 2. is given by

X = h/mv 3

and mv = ^J2m (kinetic energy). 

Thus, using 3 and 4
A.2A2 =

2m (kinetic energy) 2m(E—V)

For any fixed value of E we care to choose, we can, if we know the way potential 
energy V varies from place to place, calculate the kinetic energy at each place, and 
so say how A must vary from place to place. So the rule of equation 5 tells us at 
each place what A must be in equation 1.

An equation 'out of the blue'?

We have written down Schrodinger's equation (1) without justifying it, for a good 
reason. That is what Schrodinger did. He did not deduce it from something else. He 
did not write it down to summarize experimental results. He guessed what sort of 
equation to write down.
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Two notes of caution

1 Of course, Schrodinger did not guess blindly. Like all good theorists, he 
knew a lot about what sorts of equations produce particular sorts of 
results, and so he knew that wave equations produce discrete solutions 
and integral values. He was also guided by a particular formulation of 
dynamics, in which quantities like action have maximum or minimum 
values for the paths a particle actually follows, which did not mention 
waves, but could be recast into a wave-like equation. The guesswork lay 
in making these choices; in deciding what to keep from earlier theories, 
and what to throw away.

2 Not only was the equation a guess: Schrodinger also knew, and we 
know, that it was almost certainly wrong. For it can be shown to be in 
conflict with the principles of relativity. As it turned out, Dirac managed 
to remove this difficulty. But the story carries a nice moral: theoretical 
physicists are quite prepared to use inexact, guessed principles if they 
seem to be helpful.

Guessing is commoner in physics than one might suppose.

How else can one go forward if one doesn't know enough to be sure? The 
difficult art is to guess well, so that one's guess produces answers that agree with 
experiment.

But Schrodinger did try to make his guess seem fairly plausible. We shall try to do 
the same, but like him, we cannot prove anything. As we try, some of the magic 
may be removed from the mathematical symbols.

Why the equation might be plausible

The need is for an equation to represents standing wave whose wavelength varies 
with distance r as sketched in figure 51.

Figure 51
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Q42 Put the regions X, Y, and Z in order of decreasing wavelength.

A standing wave of constant wavelength looks like figure 52. The curve may be 
described by the equation:

„ . 2w S ' n ~'

+A

Figure 52

At any distance r, there is an oscillation of amplitude A. The largest value of A is 
A Q , occurring at intervals A/2 apart.

But figure 51 is clearly not sinusoidal in form; indeed, this is how one tells that X 
varies with r. The sinusoidal function is the very function generated by a constant L

If we differentiate the sine equation twice we obtain:

d^A__l2n\2 -

For constant wavelength X the sine equation is the solution to this differential 
equation. On a curve, d zA/dr2 is represented by how sharply curved the graph is at 
one place. In earlier graphical solutions (Unit 4, Waves and oscillations, using time 
variations, not distance variations) we used a technique for drawing curves to match 
changing values of d 2A/dr2 , only then it was d2A/dt2 .

Figure 53 may remind you of the technique. We drew curves in a number of short 
steps, previously of size Af, now of width A/-. Suppose at some stage the curve 
sloped at some angle like that of the lefthand section of the graph in figure 53. To 
obtain the next section of graph, the slope may need to be changed. d2A/dr2 is the 
amount by which the slope must change. To draw the curve on, we produce the 
existing section on at the same slope for a further distance Ar, as shown by the 
broken line. Then the point at which it cuts the vertical line through the end of the 
second interval Ar is moved up or down by the amount (d2A/dr2 ) (A/") 2 . The new 
segment of graph is drawn passing through this adjusted position.
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Figure 53

In an equation like

d2A I2n\2A

the minus sign means that the slope is reduced if A is positive, so keeping the 
graph curving towards the axis of r. It is the minus sign which generates the to and 
fro form of the sine or cosine curve. (If the sign were positive, whenever the curve 
pointed away from the axis, the next bit of curve would point away even more, and 
the graph would shoot off to infinity. We shall meet that problem with Schrodinger's 
equation, as it happens.)

Q43 Of the two curves in figure 54, b clearly has the smaller wavelength. 
Which graph is generally more sharply curved?

Figure 54
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Q44 The equation 
l2n 2

describes both curves. For which is 2n/)i the greater?

Q45 For which is d2A/dr2 greater in magnitude, for the same value of XI?

Just because d 2A/dr2 is greater for b, A being the same, b turns over in a shorter 
distance, repeats itself over a shorter distance, and has a shorter wavelength.

Consider the curve in figure 51 again, redrawn in figure 55.

turns over in 
-short long—

Figure 55

distance

It turns over in a short distance at low values of r, but in a longer distance at larger 
values of r. It is like a sine curve, but one whose wavelength increases as r 
increases. Because a sine curve has a constant wavelength, this is not a sine curve.

The guess we make about the curve in figure 55 is that it might represent the 
standing wave in a hydrogen atom, and be the solution of

where 2. varies from place to place as it must in a hydrogen atom if the rules 
X = h/mv and kinetic energy = imv2 are obeyed. This, and the decision to trust 
the energy relationship

kinetic energy = total energy— potential energy

are the essential content of Schrodinger's guess about how to tackle the hydrogen 
atom problem.
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The proof of the pudding

The proof of a theorem in mathematics is in the arguments leading up to it. 
Schrodinger's equation is not a theorem: it is a guess. It can only be judged by 
results. Schrodinger showed that it could predict many things. We shall show in 
detail how it predicts just one thing: the shape of the wave representing the lowest 
energy level of a hydrogen atom. This will have to stand as a symbol for the many 
other possible predictions.

Solution for the lowest energy level of hydrogen

Here is equation 1 again:

Also, from equation 5, page 97,

2n\2 l2n\z „ ,. . . . — = — 2m (kinetic energy). 
l] \ h\

With h = 6.6x 10" 34 J s; m = 9.1 x 10~ 31 kg, the quantity

comes to 0.165x 10 +39 J~ 1 m~ 2 .

You may check this if you wish. Using this value, equation 1 becomes:
d2A
—— = -0.165x 10 +39 (kinetic energy) A. dr2

Equation 7 is the equation whose solution we shall obtain by graphical 
is suggested that you draw the solution out for yourself, as follows:

means. It

The first step

The first step is shown in figure 56. You may use your copy of figure 38, page 79. 
At r = 0, the amplitude A must go to zero, since its square represents the chance 
per unit shell thickness of finding an electron in the thickness of a shell of radius /•; 
and such a shell vanishes at r = 0. The initial slope is arbitrary, and will only affect 
the size of the curve, not its shape. So we draw a line arbitrarily from A = 0 to 
A = 1.0 at r = 0.1 x 10" 10 m, as in figure 56.
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15 2.0
/ > 0.34'4=0.165'x"^i<(kinetic energy) _1_ 
-'• ' . . .100

-is

Radius/10-"? fill

200

Figure 56
First step - solution of lowest level wave for hydrogen.

At 0.1 x 10~ 10 m, the kinetic energy can be read off the same graph. It is the 
distance between the line for E and the curve of the potential energy. Choose 
E = — 21.8x 10~ 19 J, the known energy of the lowest level of hydrogen atoms. 
The kinetic energy after one step is then 208 x 10~ 19 J, read from figure 56.

The next bit of the graph must not slope so much. It must come down from the 
projected value of the first bit by (dzA/dr2 ) (0.1 x 10~ 10 ) 2 since A/- = 0.1 x 10~ 10 m, 
as in figure 57.
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A

A

Figure 57

But dM/d/-2 is given by equation 7. Inserting the value of the kinetic energy into 
equation 7, and multiplying by (A/-) 2 , we have the instruction,

drop the line by (0.1 65x 10 +39 ) (208x ICT 19 ) (A) (0.1 x 1Q- 10 ) 2 ;

or, the same instruction, cancelling powers of ten,
drop the line by (0.165) (A) (208) (1/100).

Since A has reached the value 1.0, the instruction 9 becomes 

drop the line by (0.165) (2.08) = 0.344.

Figure 56 also shows the new section of graph, sloping less steeply than the first 
section, in which this instruction has been followed.

Further steps

The graph may now be continued; use the same rule for changing the slope, but 
remember to put in the up-to-date values of both the kinetic energy and the 
amplitude A.

As long as we go on reading the kinetic energy off the graph in units of 10~ 19 J, 
and r in units of 10~ 10 m, the powers often in equation 8 will go on cancelling as 
in equation 9 so that

each new drop = 0.165 (previous A) (kinetic energy) (1/100).
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Figure 59 shows the graph continued out to r = 1.8 x 10 1 ° m. (After 
r = 0.8x 10~ 10 m, the step size can become 0.2, when the factor 1/100 
becomes 1/25.)

At about /• = 1.05 x 10~ 1 ° m, the kinetic energy falls to zero, and the graph is 
straight. It is not at once clear what should be done beyond this point. If the 
electron were like a ball rolling up a hill, then at r = 1.05x 10~ 10 m its kinetic 
energy would be zero and it could not roll any further up the hill. If this were true 
for the electron, A would have to drop to zero for all distances beyond 
1.05 x 10~ 1 ° m, as in figure 58.

But A cannot suddenly drop to zero in the curve we are drawing, since (dM/d/-2 ) at 
this point will not then obey the rules. So we can either give up trying to draw a 
curve at all, or go beyond this point using the rules as if nothing had happened. If 
we go on, the kinetic energy (E—V) changes sign, so (d 2A/dr2 ) changes sign and 
the curve starts to bend upwards in such a way that it comes in gently but 
steadily to meet the axis.

Figure 58

kinetic energy 'negative'
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Figure 59
Solution of lowest level wave for hydrogen.

This curve, then, is the wave that tells where the electron will be found most often 
in a hydrogen atom.

The square of the amplitude drawn represents the chance of finding an electron at 
each radius within a shell of fixed thickness. The best chance is at radius 
0.5 x 10~ 1 ° m. This was the radius of the smallest orbit Bohr's theory envisaged. 
But there is no orbit, just a good chance of finding an electron near that distance. 
These standing waves that describe the chance of finding an electron are a 
tenuous kind of reality, but they are the way physicists see the microscopic world. 
There are no orbits, and no machinery: just waves describing chance. The waves 
have none of the comfortable ups and downs of a real medium, to make them 
easy to visualize.
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They have properties that are very hard to imagine. Saying, for the wave beyond a 
certain distance, that the kinetic energy is negative, is preposterous. It means saying 
that potential energy is greater than the total energy; that the electron can be where 
it hasn't enough energy to be; that the cow can jump over the moon. Wave ideas 
suggest to us that we follow this crazy path: it happens often in theoretical physics 
that an idea which starts by looking quite plain and sensible turns out to invite one 
into apparently absurd situations. The physicist usually accepts the invitation, to see 
what will happen. Sometimes an absurd result shows that the theory is wrong, 
sometimes it turns out to be an important step forward. In the present case, the idea 
that a particle has a chance of spreading a little beyond where its energy should 
allow it to go turns out to be an important new idea in physics. In Part Four you 
may see, for example, how it helps to explain radioactive alpha-decay.

Solving the Schrodinger equation on a computer

In the graphical solution, we took the value of £from experiment, and obtained a 
curve which tailed down nicely at large values of r, as a boxed-in standing wave 
must do.

In fact, the equation can locate this and the other energy levels for us, for it is, as 
we have seen, only at the allowed energy levels that standing waves exist at all. It 
would be very tedious to draw all the graphs for a wide range of values of £, so as 
to locate those few which gave good standing wave curves. But a computer is 
more tolerant, so we have arranged for one to draw the curves on a film whilst it 
steadily tries out many possible energies £.

The film has three main sequences:
1 At energy £= — 21.8x10~ 19 J (the lowest level), the computer repeats 

the step by step graph drawing shown in figures 56 and 59. This is to show that it is 
doing just the same as a person can do with pencil and paper.

2 An energy of about — 30x 10~ 19 J is tried, lower than that of the lowest 
energy level of hydrogen ( — 21.8x 10~ 19 J). The computer draws a new graph, just 
as in 1 but more quickly. This graph utterly fails to be a standing wave curve at all. 
Instead of being 'boxed in', coming down to zero at large radii, it shoots off to 
infinity instead. Figure 60 is taken from the film, and shows this curve. 
Then an energy of about — 15x10~ 19 J is tried. This too fails to produce a graph 
representing a standing wave, as figure 61 shows. The failure this time is of the 
opposite kind to the previous one; this curve shoots off to minus infinity. 
In between the two lies the standing wave for the lowest energy level of hydrogen, 
at energy — 21.8x 10~ 19 J, neither going off to infinity in the plus or in the minus 
direction, but coming down smoothly to the /"-axis to represent a wave bounded in 
space, as any wave representing a stable state of an atom must be.
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Wave amplitude

Electrical potential energy

£=-30x10~19 J

Figure 60
Computer-drawn wave function for hydrogen. Energy about -30x 1Q~ 19 J.

Radius

Wave amplitude

Electrical potential energy

E= -15x10- 19 J

Figure 61
Computer-drawn wave function for hydrogen. Energy about —15x10~ 19 J.

Radius
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3 Finally, the computer draws the line so quickly that it is all seen at one 
moment. Then it steadily tries a range of values of £. Generally, after a promising 
start, the wave goes off to infinity, but at a series of particular values of E, the first 
being the lowest level — 21.8 x 10~ 19 J, it drops suddenly to the axis and 'fits into a 
box'.

These good standing waves appear at energies
-21.8x1(T 19 -21.8x10~ 19

— J, —— J,
4 ' 9

and so on, having two, three, etc., loops. At each standing wave, the film 'stops' so 
that one can look at its shape.

Because the waves occupy a growing space, the scale of r has to be shrunk by a 
factor of two after each standing wave has been reached. This happens while the 
standing wave is 'stopped' on the screen. Then the search for the next one begins.

Figures 62 to 65 show the standing waves with one, two, three, and four loops. 
The horizontal broken lines indicate the energies at which they were found. You can 
check, if you wish, that these energies are in the ratio 1 to 1/4 to 1/9 to 1/16, 
measuring each downwards from the axis of r. (The energy scale, unlike the r scale, 
was not changed during the film.)

Wave amplitude

5x10-'°m

energy of lowest 
level /? =

Figure 62
Computer-drawn wave function for hydrogen, at the energy of the lowest level, n = 1. 
Energy-21.8x10- 19 J.
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Wave amplitude

energy n=2

energy

10x10-10 m

Figure 63
Computer-drawn wave function for hydrogen, at the energy of the level n = 2. (Note that the scale 
of r is reduced from figure 62 by a factor of two.)

Wave amplitude

energy n=3 

energy n = 2

energy n =

20x10-'°m

Figure 64
Computer-drawn wave function for hydrogen, at the energy of the level n = 3. (Note that the scale 
of /• is reduced from figure 63 by a factor of two.)
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Wave amplitude

40x10-'°m

energy n =

Figure 65
Computer-drawn wave function for hydrogen, at the energy of the level n = 4. (Note that the scale 
of r is reduced from figure 64 by a factor of two.)

The computer-made film of the solution of the 
wave equation for hydrogen

The film, from which figures 60 to 65 are taken, was made at the request 
of the Nuffield Advanced Physics project, by the Atlas computer 
laboratory, Chilton. We are most grateful to the staff of the laboratory for 
their help and in particular, to Dr F. R. A. Hopgood. The film is published 
as a film loop as part of the Advanced Physics materials. See page 160.

It is a great advantage to have a projector that can be stopped while 
projecting an image, so that what is going on in the film at various stages 
can be pointed out. Some of the crucial points are: a When the kinetic 
energy first goes negative in the first sequence, b When the energy £ is 
changed for the first time to a value other than — 21.8 x 10~ 19 J. This is 
done in close up, the horizontal broken line which indicates the value of E 
being moved along the axis, c When, in the third sequence, £ changes 
continually, d When, in the third sequence, a standing wave is first found, 
and the picture freezes, e When the scale of r shrinks by half, immediately 
after each standing wave has been found, f The leaving behind of energy 
markers on the energy scale at the values where standing waves were 
found, so ending the film with a ladder of calculated energy levels.
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Can the Schrodinger equation be solved without a computer?

In Part Three, we have used numerical methods to solve the standing wave 
equation for hydrogen, and have employed a computer to do the same job more 
quickly. The solutions obtained are sets of graphs, or they could have been rows of 
numbers, but they are not algebraic equations. It happens that mathematicians can 
write formulae for the shape of the curves in the case of the hydrogen atom, but 
this cannot be done except for such simple problems. Atoms with three, or thirty, 
electrons, defy analytic — that is, algebraic - solutions.

We make no apology for using methods suited to the computer rather than to formal 
mathematical analysis, for several reasons. All but the simplest problems of this sort 
have to be tackled by numerical methods (though the nastier ones need a start from 
a guessed equation for a solution, or the arithmetic would be hopelessly 
unmanageable). Therefore we have introduced this part of quantum theory in the 
way it most often has to be done. Analytical methods have great importance, but 
numerical ones are very useful, and have often been neglected. Lastly, the 
numerical solution shows how the mathematical machine's wheels turn; why the 
wave curve bends first towards the axis, and then away; and why just a few among 
many possible curves are bounded in space.

Atoms and mathematics

Why, philosophers have asked, should mathematics ever turn out to describe the 
real world? What right have we to expect the pure simplicity of equations to fit the 
messy behaviour of matter? Whatever one's answer to such questions, it is fair to 
marvel at the way it happens. Quantum theory is yet another example of the way in 
which mathematics can offer new insight into the world. The art is to know which 
sort of mathematics to use.
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Part Four

The scope of wave mechanics
'. . . The rules of quantum physics are quite definite. People know how to 
calculate results and how to compare the results of their calculations with 
experiment. Everyone is agreed on the formalism. It works so well that 
nobody can afford to disagree with it. But still the picture that we are to 
set up behind this formalism is a subject of controversy.

'I should like to suggest that one not worry too much about this 
controversy. I feel very strongly that the stage physics has reached at the 
present day is not the final stage. It is just one stage in the evolution of 
our picture of nature, and we should expect this process of evolution to 
continue in the future. One can be quite sure that there will be better 
stages simply because of the difficulties that occur in the physics of today.'

P. A. M. Dirac, 'The evolution of the physicist's picture of nature', 
Scientific American Offprint No. 292.
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Aims of Part Four

It is not the aim of this Part to give students any extra information. The 
aim is to help them to appreciate the scope, value, and power of wave 
mechanics, by illustrating its use in a variety of contexts.

The series of examples, 1 to 8, may provide teachers with material on 
which they can draw. A few may find time for most instances, others for 
only one or two at the level suggested. Still others may prefer to treat all 
or some much more lightly. Our main concern is that students shall see, 
or at least hear, that wave mechanics is not limited to hydrogen atoms 
alone, but commands a great sweep of microscopic physics. Naturally, 
teachers will hope to call upon the assistance of chemists among the 
class — indeed a joint session with the chemistry teacher might be very 
valuable.

Teachers should feel free to simplify or omit material as seems proper to 
them. A short lecture may be the appropriate medium, or perhaps 
students should be asked to read selected parts in preparation for a 
discussion.

Example 1
The helium ion He+

If one wants to understand atoms other than hydrogen, then helium, number two in 
the Periodic Table, is the next one to try. As with hydrogen, evidence from spectra 
and ionization experiments should help. The spectrum of ionized helium is shown in 
figure 66. Ionized helium, one electron and a doubly charged nucleus, is similar 
enough to hydrogen for simple results to be expected.

The wavelengths, compared with the hydrogen Lyman lines, are shown in table 8.

H (Lyman) He + 
>l/10- 10 m A/10- 10 m

1216 303

1026 256

972 243

949 237

Table 8
Comparison of wavelengths from H and He + .
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Figure 66

Spectrum of ionized helium. Photograph, Kruger, P. G. (1930), The physical review, 36, 5, 858.

Each wavelength for ionized helium He + is just four times smaller than one for the 
hydrogen atom. It is also the case, as these data suggest, that the lowest energy 
level for He + has energy — 4x 13.6 eV, just four times lower than the energy, 
— 13.6 eV, of the lowest level of hydrogen. (In Part Four we shall write all energies 
in electronvolts. 13.6 eV = 21.8x 10~ 19 J.)

It is not hard to see why the helium ion behaves like this.
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For hydrogen, as in figure 67 a, the electrical potential energy is given by
e2 /4nsQr, where e is the value of the charge both on the electron and on the proton.

Radius r (^O)H

a H b He+

Figure 67
Comparison of energy and radius for H and He + .

The helium ion He + also has one electron, but has a nucleus with charge 2e. The 
potential energy of the electron is given by 2e 2 /4iie 0r as in figure 67 b; a curve of 
the same form as that for H in figure 67 a, but with the magnitude of every energy 
value doubled.

How do the sizes of the ions compare? To answer this, we note that a good 
measure of the 'size' of the atom or ion is the distance rQ at which the total energy £ 
is equal to the potential energy. At r0 , the electron has no kinetic energy at all; 
except in wave mechanics, the electron cannot be more than rQ from the nucleus.

As figure 67 shows, (rQ ) H must be twice (r0 ) He +. since halving the radius and 
doubling the charge will quadruple the potential energy, which is just what the 
spectral data say must happen. In terms of the equations for the two values of r0 :

4(£) H = 4
2e2

so

= 2.
' 0 'He +

The standing wave which describes the one electron in the helium ion must have 
one loop in the lowest state, as for hydrogen, but must fit into half the space, so its 
wavelength must be half that for the electron in the hydrogen atom.

But the change to the wavelength is already decided, through the relationship
A = h/mv and the energy. If we suppose, as before (page 91) that the mean kinetic
energy is proportional to the total energy E, then

A cc —=. (since mv oc ^/kinetic energy).
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£ has quadrupled; the wavelength must have halved. So on both counts the new 
wavelength fits. He + has a larger energy for the lowest level both because of the 
stronger pull of the doubly charged nucleus, and because an He + ion is half as 
big as an H atom.

Algebraic version

E cc Z/r0 , from rules for calculating the electrical potential energy, where Z is the 
number of protons in the nucleus.

But X oc r0 , and /I cc 1 l^fE if £ oc mean kinetic energy.

So combining the above equations, EccZ^fE 
or EccZ 2 .

If Z goes from 1 to 2, £ is quadrupled, as the spectral data confirm.

Example 2
Explaining X-ray spectra

The hydrogen Lyman lines and the ultra-violet spectral lines from He + discussed in 
example 1 above are the shortest wavelength lines these atoms emit. Other atoms 
higher in the Periodic Table also emit short wave radiation: X-rays.

The X-rays are produced when an electron which was in a deep energy level, 
close to the nucleus, has been ejected previously, and is replaced by another 
'falling' into this deep level and emitting energy.

The energy £ emitted is equal to the energy of the level, and, being emitted as a 
photon of frequency f, the frequency is given by

£ = hf.

But also £cc Z2 from example 1 above, if Z is the number of charges on the 
nucleus of the atom involved, and the energy level concerned contains an electron 
very near the nucleus, with no other electrons closer to the nucleus to complicate 
matters.

Thus, if the frequency f of the shortest X-ray wavelength emitted by atoms is 
measured, for atoms with different nuclear charges, we should find that:

/oc Z2 
or •f'ac Z.
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Figure 68 shows such a plot of ^JJ against Z, using data obtained by Moseley, who 
was the first to test this relationship.
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Square root of frequency 
Figure 68

X-ray frequencies and atomic number Z
After Moseley, H. G. J. (1913) Philosophical Magazine (6), 27, 7024.

Notes to teachers

1 The argument above is no more than suggestive, but was not meant 
to be rigorous. In particular, ^/7is actually proportional to Z— 1 more 
nearly, because of the screening effect on the nuclear charge of the other 
electron sharing the level involved. The PSSC text, College physics, 
Chapter 35, gives a good account of X-ray spectra and screening effects.
2 Moseley's original writings on X-ray spectra and their implications for 
understanding the Periodic Table are reproduced in Classical scientific 
papers — physics, from page 182. The passage on page 189, discussing 
the evidence for the Periodic Table as a sequence in order of increasing 
nuclear charge, is especially interesting.

Example 3
The helium—lithium jump

The Periodic Table has the striking feature that at intervals, an increase of one more 
proton in the nucleus produces a dramatic change in chemical properties. For 
instance, He -> Li, Ne -» Na, A -> K. We can understand a little about this too
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Consider neutral helium, with two electrons. The energy needed to remove one 
electron (ionization energy) is 24.6 eV. This is less than the value 4x 13.6 eV for 
He + , because the negative charge on each of the two electrons somewhat reduces 
the attraction of the nucleus for the other. (Each electron 'sees' the nucleus partly 
shielded by the negative charge of the other electron.) It is as if the nucleus had an 
effective charge between 1 and 2 units, so far as each electron is concerned.

Consider the lithium nucleus with Z = 3. Following the £oc Z2 rule, an 
ionization energy of 9x 13.6 eV might be expected. Even if the other two electrons 
shielded the third as well as possible, making Z effectively equal to 1, the energy 
would be at least 13.6 eV. The experimental value is much less, only 5.4 eV, this 
easily removed electron producing the high reactivity of lithium. By contrast, 
helium atoms seem reluctant to lose or gain an electron, and helium is unreactive.

The third electron also occupies more space than might be expected. In lithium 
metal, the atom seems to have a radius of about 1.51 x 10~ 10 m. In an ionic crystal, 
like LiF, the Li + ion with one electron missing has a radius of only 0.68x 10~ 10 m. 
See figure 69.

Figure 69

The only explanation is that this third electron is not in the lowest energy level, 
n = 1, at all, but is in a higher level, n = 2 seems likely. The energy will be lower 
by the Balmer 1//?2 rule.

•i o C

If the effective value of Z were 1, the energy should be —'— = 3.4 eV.

This is nearly right — and since it is possible that the effective value of Z is more than 
1, since the two inner electrons will not provide a perfect shield — it is easy to see 
how 5.4 eV can be explained.

To remove a second electron from lithium, that is to change from Li + to Li ++ , 
requires 75.6 eV; this must be from the n = 1 state, for which energy would be 
122.4 eV for no shielding, and 54.4 eV for perfect shielding (effective value of 
Z= 2).
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The third electron does not go into the same state as the first two. A systematic 
look at ionization potentials shows several 'jumps' like this one (see Unit 5); each 
'jump' can be explained by saying that no more than two electrons can go into any 
one of the standing wave patterns — the extra electron in an atom with one more 
proton has to go into a wave state of different energy.

This is a simple version of the 'exclusion principle', first suggested by Pauli. 
Electrons are not gregarious; they 'want to be alone'.

Example 4
The number patterns 2—8—8—18, and so on, in the Periodic Table

So far we have only considered standing waves in hydrogen which have spherical 
symmetry; that is, the electron is equally likely to be found in any direction.

Not all the possible standing waves for hydrogen are like this. For the lowest energy 
level, n = 1, at —13.6 eV, there is only one possible standing wave, which is the 
one drawn out in Part Three, stage three (see figures 59 and 62). But for the next 
level, n = 2, energy — (13.6/22 ) eV, there are four different possible standing waves, 
only one of which is the symmetrical one shown in figure 63. Figure 70 shows 
another way of representing the waves, as cloud patterns; the denser the cloud the 
larger the wave amplitude and the more often the electron is there rather than 
elsewhere.

The one electron in hydrogen, and the two in helium, will usually be in the lowest 
energy state, n = 1. But electrons are exclusive, as was suggested in example 3 
above, and the third electron in lithium has to go into one of the four standing 
waves of higher energy, and is therefore easy to remove.

Each of these four waves can have two electrons so there is no further dramatic 
drop in ionization energy until 2 + 8 electrons have been put in: at the 11th electron 
a higher state, n — 3, has to be used. The periodic repeats at 2—8—8—18—18 seen in 
many physical properties (see Unit 5) can all be understood just by calculating 
orbitals (the chemist's name for the standing wave patterns) and giving two 
electrons to each.
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Hydrogen : lowest level n = 1, 
one pattern, spherical blob 
shape, E--13.6 eV

core and skin onion shape dumb-bell shape

both doughnut shape 

Hydrogen : second level n = 2, four patterns, E = - —— eV for all

Figure 70
Some states of the hydrogen atom. For n = 1, there is one spherically symmetric state. For n = 2, 
there are four states, only one being spherically symmetric. The density of shading in the figure , 
represents the chance that a small volume nearby will be occupied by an electron. That is, the 
density represents i// 2 , where y/ 2 dv is the chance that an electron will occupy volume dv. Note that 
previous graphs of spherically symmetric states (figures 59 and 62 to 65) plotted not i//, but 
A = r(// : so that/4 2d/- = rz i// 2dr is proportional to the chance that an electron will occupy a 
spherical shell of radius r, thickness dr, and volume 4nr2dr. A = iy/ for the ground state has a 
maximum at the Bohr radius, but the function i// for the same state is greatest at the nucleus. The 
maximum arises because, although y/ 2 , the chance per unit volume, decreases with r, the volume 
4nr2dr of a spherical shell increases with volume.

Example 5
Oscillating molecules with equally spaced energy levels

Both physicists and chemists are interested in studying the bonds between 
molecules, how strong they are, or how easily they stretch or bend. Wave 
mechanics helps them to obtain such information from measurements of the 
frequencies at which bonded molecules absorb or emit radiation as they oscillate.

For instance, the two iodine atoms in the molecule I 2 behave rather as if they were 
connected by a spring of nearly constant stiffness k, as suggested in figure 71.

F „ '• -MilFigure 71
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If the atoms were, say, trolleys, they would be able to oscillate to and fro, their 
energy changing continually back and forth from kinetic energy to potential energy 
(Unit 4). The potential energy stored in a spring of stiffness k which is stretched by 
an extra length x is-l/rx2 . The total energy £ is constant. Figure 72 illustrates the 
changes of position and energy.

stretched fully innnnnnrc potential energy=f 
kinetic energy=0

partly stretched
potential energy <£ 

kinetic energy <E

not stretched
potential energy =0

kinetic energy=F

fully compressed

(stretching is very much exaggerated)

potential energy=£ 
kinetic energy=0

maximum potential energy

potential energy=J kx2

£=total energy

'maximum sstretch

kinetic energy in between 
zero and maximum extension

Figure 72 b
Changes of position and energy of a harmonic oscillator.

For atomic sized objects, the wave behaviour of particles is important. As with 
electrons, the amplitude of a wave decides how likely it is that the atoms will be a 
certain distance apart. As an approximation, we suppose that the atoms will not 
move in and out more than a distance X Q , the maximum stretch, where £ = -i/rx2,.

The standing wave, wave length A, which says where the atoms may be, must fit 
into a space of size about x0 . If the standing wave has n loops, then

nl oc x0 

for the standing wave to fit in a 'box' of size X Q .
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For the lowest level, n = 1, for the next, n = 2, and so on. The energy £ of each 
level fits a very simple pattern: the energy increases in equal steps as n increases. 
The energy levels are equally spaced. Indeed, this fact was used in Unit 9, 
Change and chance, in the discussion of the model of a solid imagined as being 
made up of many harmonically oscillating atoms. It is not hard to see how this 
result comes about, as follows.

Energy

A A/3

Figure 73
Waves fitting into a harmonic oscillator 'energy well'.

Figure 73 suggests how the waves for n = 1,2, and 3 might fit into the 'box' 
formed by the harmonic oscillator.

The kinetic energy is always between zero and £; suppose the mean kinetic energy 
is proportional to £. Then, since the mean momentum mv is proportional to the 
square root of the mean kinetic energy,

mean momentum cc ,/£ 

Thus mean wavelength X cc 1 

But for the harmonic oscillator,

since A = h/mv.

maximum amplitude x0 cc since £=

Using these results for A. and x0 in the equation for waves in a box

cc X

we have n(\/^/~E) cc ^fE

or n cc £.

So the energy £ increases in equal steps as the number n increases.
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Further details for teachers

1 Average kinetic energy
f *0 If " a

Average kinetic energy = (£—-i/rx2 ) dx/ dx = £/3.
o 'o

2 The lowest level has some energy, as X is finite. It turns out that 
£= (A?+ -!)/?/where

m 

is the classical oscillator frequency.

Note that because of the factor (/7 + -1), £ is not quite proportional to n, 
and the lowest level has n = 0, not n = 1. The arguments of page 122 
are only good for large values of n. They fail at low values of n, because 
the spreading beyond the classical limits is important there. Indeed, for 
n = 0, the spreading is all-important, and yields the lowest state, 
energy ±hf.

The wave for the lowest level has one maximum at x = 0, so the atoms 
are most likely to be at their equilibrium distance. It is the quantum 
analogue of an oscillator at rest. For large n, the wave looks like figure 74. 
The amplitude turns out to be larger for large displacements, corresponding 
to the classical oscillator, which spends most time at large displacements, 
where it is moving slowly. The wave tails off exponentially beyond the 
classical limits ±XQ .

square oc classical time spent at x

small kinetic 
energy, large A

Figure 74
Harmonic oscillator, large n.

classical 
edge of box
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3 The levels for real oscillating molecules become more closely spaced 
as the energy E rises. A typical potential well is shown in figure 75.

Figure 75
harmonic:
£ cc x 2 , equally spaced levels .

Near to equilibrium, for low energy levels, the well is harmonic. But as £ 
rises, the well expands more than proportionately to x2 , the wavelengths 
do not diminish so rapidly with f, and thus the levels rise in smaller 
steps.

Example 6
How a molecule is held together

The idea that electrons have wave properties is the basis for understanding how 
some atoms cling together to form molecules. The simplest molecule to think about 
is the ion of molecular hydrogen Hj, made of two protons sharing one electron.

The following account is much influenced by PSSC College physics, 
page 663. Teachers may find the PSSC version briefer, better, or both.
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Figure 76 a shows a proton H + separate from a hydrogen atom. Figure 76 b shows 
the same, but the electron is bound to the other proton. Figure 76 c shows another 
way of arranging the electron. It now spends time near both protons, and the 
electron wave has a new shape spread over a region near and between the two 
protons.

H H+ H+ H H 2 +

,-H .• .-...•.•' •

Figure 76

Figure 76 c is the molecule H^, which is a stable molecule. If it is stable, the 
arrangement c must have lower energy than either a or b. It is possible to explain 
in outline how this comes about.

Figure 77 a shows the electrical potential energy for an electron produced by the 
two protons. In the space in between the protons, the potentials may be added to 
give the hump shown in figure 77 b.

Potential energy Potential energy Potential energy Potential energy

spacing

Figure 77

The problem then is to fit an electron wave into this new type of box. A good first 
guess at a possible answer is to just add the two electron waves which fit the two 
boxes separately — they will fit near the two nuclei, around X, Y, but not around P — 
here some adjustment will be needed to make the answer fit. Such adjustment gives 
a new wave, looking like the one shown in figure 76 c. The energy is lower than 
that for figure 76 a or b for two reasons:

1 The wave has bigger amplitude in the space between the two nuclei so the 
electron has more chance to be attracted electrically by both of them, which gives 
a lower potential energy.

2 At the same time, because the 'box' of figure 77 b is bigger than that 
around a single nucleus, the wave can have a bigger wavelength, and therefore the 
values of momentum, and so of kinetic energy, can be lower.
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The molecule is thus more stable than either of the alternatives because the total 
energy is lower. The ionization potential of H 2 is 16.3 eV compared with 13.6 eV 
for H.

Other molecules

The same principles apply to other molecules, but the problems are usually more 
complicated. For the H 2 molecule, which is also stable, a very similar wave to that 
shown in figure 76 c fits the box, though the box is modified by the electrical effects 
of the extra electron.

If we try to add more electrons, and make, say, H 3 or HeH, or He2 , the rule that 
only two electrons may occupy a wave state comes into play, and the extra electron 
or electrons have to occupy other wave states. It turns out that the other waves do 
not give the electrons a high chance of being at places like P in figure 77 b, where 
their potential energy is low, so these molecules are either much less stable, like 
He 2 , or do not exist at all, like HeH.

The above is a small part of a larger story. There are three main ideas in it:
1 Fitting waves into more complicated boxes.
2 Allowing for the changes in electrical energy.
3 Obeying the rule of not more than two electrons for each wave state.

These rules, taken together, are the key to understanding the bonds which cement 
together the common molecules, and many solids. These electron-sharing bonds are 
known as covalent bonds.

Example 7
The water molecule

Water is made of one oxygen and two hydrogen atoms. X-ray studies indicate that 
the molecule has the form 0—H, with a right angle (nearly) between the 0—H

H 
bonds. Wave ideas can explain this.

The peculiar behaviour of water— high melting and boiling points, great 
power to dissolve things — depends largely on the molecule being 
lopsided, or 'polar'. If water did not behave like this, but behaved like, say, 
H 2 S, life as we know it would be impossible.
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The electron standing waves for oxygen not only depend on distance frorn the 
nucleus but also vary with direction. Similar effects may be seen in two dimensions, 
with Chladni plates or rubber diaphragms (see page 67). In Figure 78 a, we have 
shaded the region where the wave is fairly large. It has four lobes sticking out into 
space round the nucleus.

+8

y . •

Figure 78 a b
Electron cloud, for oxygen, hydrogen, and water.

Figure 78 a shows two separate electron waves for oxygen which we have labelled 
the x and y waves because they point along two directions at right angles. If an H 
atom is brought up, the H wave and the oxygen x wave can be combined to give a 
new wave of lower energy, and two electrons (one from H, one from the 0) can 
occupy this wave state. See Figure 78 b.

Another H can similarly be brought up to share the y wave. The result is H 2 0. 
Because the x and y waves for oxygen are at right angles, the angle between the 
O—H bonds is almost a right angle.

Knowledge about the angular patterns of standing waves fits in with measurements 
we can make on the angular shapes of molecules. The whole architecture of 
molecules is related to the standing wave patterns which can be fitted in the three- 
dimensional box of an inverse square law field.

In Unit 1 the angle between bonds in the rubber molecule was mentioned. 
This angle arises for similar reasons. Chemists in the class may know of 
other interesting instances. Graphite, met in Part Two of this Unit, is one.
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Example 8 
Alpha decay

Alpha particles from a radioactive substance can be fired at nuclei of that same 
substance, in experiments similar to Rutherford's alpha-scattering experiment, 
performed by Geiger and Marsden (Unit 5). Such alpha particles rebound from the 
electrical 'wall' around the nucleus. That is, they approach a nucleus until their 
electrical potential energy is as big as their original kinetic energy, which might be 
about 5 MeV. Then they move away again, running 'downhill' until, at a large 
distance, when their potential energy is zero again, they have got back their original 
kinetic energy.

The puzzle is, how could the alpha particles ever have got out of the nucleus in the 
first place, with 5 MeV of energy? If they rebound from the electrical wall, the wall 
must rise above 5 MeV, to some place like X in figure 79. So alpha particles which 
emerged with 5 MeV energy must be trapped inside the nucleus, behind X, and they 
are trapped forever, or so it seems, since they have not the energy to climb over the 
hill whose peak is at X. If they could get over the hill, then when they arrived at 
an identical nucleus in a scattering experiment, they could reach the hill top again, 
and many would drop inside the nucleus. They do not do so, so the difficulty 
remains.

alpha particles in nucleus
cannot escape over the

shaded barrier closest approach possible 
for 5 MeV particles

Figure 79

Wave mechanics provides the clue to the puzzle. In all of figures 62—65, showing 
waves for the hydrogen atom, the wave leaks into places where a particle ought not 
to be, because the particle has not enough energy to be there. These are the 
regions at large radius where the potential energy is greater than the total energy, 
so that the kinetic energy would be negative.
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In such regions the wave exists, but dies away rapidly. Now the hill, shown shaded 
in figures 79 and 80, over which the alpha particles cannot climb on our previous 
argument, is just such a region. Inside the box representing the nucleus the alpha 
particles must be described by trapped standing waves. But, as suggested in 
figure 80, these waves can leak out of the box if they die away under the hill, but 
the hill has only a limited thickness, so that just a little wave amplitude is left 
outside the hill.

alpha particles trapped in nucleus 
energy above zero but below X

wave dies away 
under the hill

'energy of an alpha particle 
far from nucleus ('zero' 
energy)

alpha particle occasionally emerges, 
and acquires 5 MeV energy by 'rolling 
downhill'

__ barrier infinitely thick - no alpha 
"particles ever emerge

Figure 80
Waves leaking through a hill.

trapped standing waves 
inside the nuclear box

If there is some wave amplitude outside the hill, there is some chance that an alpha 
particle will turn up outside the hill instead of staying inside forever. It turns up with 
energy 5 MeV above zero, as suggested in figure 80, and runs down the electrical 
potential slope, converting this potential energy to 5 MeV of kinetic energy. We say 
that the nucleus has decayed.

A complication. It was not quite true to imply above that all alpha 
particles fired at a similar parent nucleus rebound. If some can tunnel out, 
a similar proportion can tunnel in. The effect is very small but it has been 
observed.

The larger the alpha particle energy, the thinner the hill it has to escape through, and 
the greater the wave amplitude outside will be, having died away less under the hill. 
So nuclei with high energy alpha decays should release alpha particles more often, 
and have short half-lives. This turns out to be true. Figure 81 illustrates the idea. A 
stable nucleus will be one for which the alpha particles in the nucleus lie at an 
energy below zero, so that the wall is infinitely thick, and no waves escape.
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alpha particles— — —————— high energy
often escape

jjarticles_ medium 
rarely escape energy

Figure 81
Alpha energy and decay probability.

The effect is called 'tunnelling'. It is not confined to radioactive decay. An electronic 
device called a 'tunnel diode' uses the same effect, some of the current it passes 
being carried by electrons which have 'tunnelled' through a potential hill inside the 
device.

The escape of an alpha particle from a nucleus is a matter of chance, for the wave 
which is found outside the hill only describes the chance of finding a particle 
outside. It is for this reason that radioactive decay is a random process. 
Radioactive decay was the first example of a random process contained in the 
course, in Unit 5. Now we see that this randomness is related to the randomness 
that lies very deep in physics: the chance-like nature of the waves of wave 
mechanics.
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Postscript
A personal note on the origin and future of quantum mechanics
by Professor Sir Nevill Mott
Cavendish Professor of Experimental Physics,
University of Cambridge
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The organizers of the Advanced Physics Project have asked me to write a few words 
about quantum mechanics, both as it looked forty years ago when I started 
research and as it looks now. Forty years ago Bohr's theory of the atom held the 
field. We were brought up on it, our textbooks and lectures contained beautiful 
pictures of elliptical orbits, and I think we students really believed they existed. They 
explained so much: the Balmer series in the spectrum of hydrogen. X-ray spectra, 
and a lot more besides.

I believe that the leaders of physics at that time were divided into those who were 
trying to make the Bohr theory better and better and those — many fewer — who 
felt it would in the end have to be replaced by something quite different. Among the 
latter was the German physicist Heisenberg and he and others produced the first 
breakthrough, the so-called 'matrix mechanics' which did promise to be quite 
general. It promised to be a form of mechanics replacing Newtonian mechanics, 
capable of answering any question that Newtonian mechanics could answer but of 
giving different answers at any rate for problems about atoms. The mathematics 
promised to be difficult; physicists who were good at mathematics thought they 
would have a lot of fun.

Schrodinger's equation was a bit of a bombshell. Schrodinger used 'easy' 
mathematics, differential equations, which are part of any university course. I 
remember a talented mathematical contemporary saying to me, 'all the fun has gone 
out of quantum theory, I'm going to study Law' - and he did. He was wrong; the 
later developments of quantum mechanics are difficult enough in all conscience. 
But what I remember most vividly about this equation was that Schrodinger 
himself did not know what it meant! He thought his 'wave intensity' must be 
interpreted as density of charge. We know now that this is only true in a statistical 
sense, and that the amplitude gives the probability that a particle will be found 
somewhere. This was first clearly stated by Max Born, a German physicist who 
moved to England in 1933.

To start research just after Schrodinger's equation was — perhaps — like being an 
explorer just after Columbus. The facts of physics and chemistry were wide open. In 
a very few years Schrodinger's equation was used to explain why atoms form 
molecules, why some solids conduct electricity and others do not, how radioactive 
decay occurs, and the details of the spectra of helium and most other atoms. It did 
everything that Bohr's theory could do and a lot more. Most convincing of all, it 
made predictions. For instance, it showed that the Rutherford scattering formula — 
really the basis of all of nuclear physics — did not work if an alpha particle hit a 
nucleus, namely of helium, of just the same kind as itself. When this prediction was 
made, the Cavendish Laboratory quickly mounted the experiments which showed 
that it was so. And even more important, quantum mechanics predicted that moving 
protons, quite slow by the standards of nuclear physics, could penetrate into an 
atomic nucleus of a light element, and so encouraged Cockcroft and Walton to make 
their famous first disintegration of the nucleus with artificially accelerated particles.
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What quantum mechanics did not do was to predict the neutron! And if one looks 
at quantum mechanics as it is today, it is in nuclear or particle physics that it is still 
floundering. Here it is just like Bohr's theory was, brilliantly successful sometimes, 
failing at others, constantly being modified, and calling on all the techniques of 
advanced mathematics. No one would pretend that here it was the last word.

But outside the nucleus, the least one can say is that no one has proved it wrong. 
In the theory of molecules the theoretical chemists use all the resources of modern 
computers to calculate the properties of molecules and achieve greater and greater 
success. Schrodinger's equation gets more and more complicated as the number of 
electrons in a molecule increases, so the computer comes into its own here. In 
solids, particularly metals, there are problems of real mathematical difficulty. 
Superconductivity is one, understood in principle but not in detail. Our whole 
thinking about semiconductors and transistors is based on quantum mechanics and 
has become a very exact branch of science. At the time of writing there is a great 
deal of interest in non-crystalline semiconductors, which present a more difficult 
problem — how does the electron find its way among a jumble of molecules put 
together anyhow? But no one doubts that quantum mechanics is competent to give 
the answer.

What of the future? I see quantum mechanics applied to more and more complicated 
systems — the molecules of biology, technically useful alloys, conducting glasses, 
and polymers. Quantum mechanics, I dare guess, will not change, but the methods 
of using it will change as they have already in the last decade or two. And in the 
nucleus and in stellar interiors, it would be arrogant to guess. Will a billion dollar 
accelerator give us the final understanding of the nuclear particles, or will some 
brilliant insight in theory? Only the future can show.
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The Compton effect: a photo-electric game of billiards
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If there is time for it (at least two periods) the Compton effect may strengthen the 
impression that photons can behave like particles. In the Compton effect, photons 
rebound from electrons, and it is found that the laws of conservation of energy and 
momentum applied to the collisions predict the angles and energies of the photon 
and the electron after the collision. The analysis suggested below is rudimentary, 
fuller versions may be found in many texts. The following are suitable for students:

Born, The restless Universe, page 133.

Project Physics, Text, Unit 5.

Rogers, Physics for the inquiring mind, page 727.

In 1923, Arthur Compton discovered that photons could bounce off particles like 
electrons, in collisions which were very similar to collisions between particles. He 
found how to play billiards with light. It is possible to repeat a simplified version of 
the experiment in the school laboratory. The effect is best seen with the very 
energetic, and very particle-like, gamma ray photons from a radioactive source.

Optional demonstration 
10.10 The Compton effect

130/1 sealer
130/3 GM tube holder
130/6 gamma GM tube
195/1 pure gamma source
1069 apparatus for showing the Compton effect (see figure 82)

512/2 beaker, 400 cm3

Practical details

The apparatus, shown in figure 82, can easily be made in a school, though casting 
the lead cylinder and forming its end into a cone are a little troublesome. The lead 
cylinder is 60 mm tall, and about 20 mm in diameter, the lower end being turned 
down to about 15 mm diameter, or a little larger than the diameter of the source.

The lead sheet is 1 mm thick, with a hole in the middle cut to take the smaller end 
of the lead cylinder. The hole should be smaller than the wide end of the cylinder, 
so that the sheet can rest on the cylinder in the last part of the experiment, as in 
figure 84.

The shape of the cylinder is intended to cover the whole end face of the counter in 
the first part of the experiment, so reducing as much as possible the number of 
photons reaching the counter except via the scattering material. The end with 
reduced diameter allows a greater flux of photons into the scattering material than 
a wide-ended cylinder would do.
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gamma source I wood block

Figure 82
Apparatus for showing the Compton effect. 
a Arrangement of apparatus. 
b Lead cylinder and lead sheet.

The geometry is intended to favour as large a flux of scattered photons into the 
counter as possible, regardless of the angle of scatter, as long as this angle is 
substantial. The counter is placed so as to discriminate in favour of scattered 
photons, because it is insensitive to photons entering its end face, but sensitive to 
those entering its sides. An end window counter such as the MX 168 will not do, 
since it has shielded walls, and the soft scattered gamma rays are unlikely to enter 
the counter at all.

The source is placed, facing upwards, in a hole drilled in a disc of wood so that its 
surface is about 5 mm below the top of the wood. The wood requires a hole of 
large diameter to be sunk into it a little way, to take the body of the source, with a 
4 mm hole drilled deeper in the centre, to take the 4 mm pin on the back of the 
source.
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water added" scattered photon

photons easily pass 
through lead sheet

Figure 83
Photons scattered by water.

lead sheet above water-

Figure 84
Demonstration that the scattered photons are 'soft'.

-scattered photon absorbed 
by lead sheet
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With the apparatus arranged as in figure 82, the number of gamma ray photons 
reaching the GM tube through the cylinder, plus any background, is counted over a 
period of five minutes. A count of about 600 may be expected. Subsidiary, rather 
tedious experiments, would show that the lead sheet and the glass beaker have a 
negligible effect on this count. It will probably be best to avoid making these tests.

Water is now poured into the beaker, up to the top of the lead cylinder. Take care 
not to disturb the positions of the cylinder, GM tube, or source, and not to wet the 
last two. Make a further five-minute count. The count is now larger, perhaps 800, or 
more if the photon flux and the scattering geometry are optimized. The increase 
should certainly be four or more standard deviations larger than the previous count, 
so the change is not likely to be a random fluctuation.

One may now argue that the extra scattered photons must, from the geometry, have 
been turned through a substantial angle. An argument, indicated below, suggests 
that the scattered photons will now have lower momentum, longer wavelength, and 
less energy, and should pass less readily through lead on that account. To test this, 
lift the lead sheet from the bottom of the beaker, and rest it on top of the cylinder, 
taking care to restore the cylinder and counter to their former positions over the 
source. A final five-minute count now shows that the number of photons reaching 
the counter has fallen to a value differing little, if at all, from its first value. No, or 
practically no scattered photons penetrate the lead sheet, though their parent 
photons managed it easily.

Water is a convenient scattering material, and costs no more than a beaker to hold 
it. The same volume of wood (with a central hole drilled to take the lead cylinder) is 
no better, so far as we can tell. Aluminium might be better, but a suitably shaped 
lump would be expensive. Perspex could also be tried, again at some expense.

Collisions of photons

We imagine the extra gamma rays counted with the water present to have been 
scattered through a substantial angle, as suggested in figure 85. Were this an 
ordinary collision between particles, one would wish to know the energy and 
momentum of the incoming particle.

photon 'out'

- particle i

Figure 85 ptloton "'"'
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The energy of gamma rays from Co 60 is 1.2 MeV, of the order 2x10 13 J. Were the 
photons particles, of kinetic energy -^mv2 , velocity v, their momentum mv would be

2—x (kinetic energy).

The gamma rays travel at velocity 3x10 s m s~ 1 . For an order of magnitude of 
their momentum, we take

momentum = energy _ 2x 10~ 13 
velocity ~~ 3x 10 8

10~ 21 kg m

(Actually, the factor-l in ±mv2 comes from classical mechanics. In relativity, it 
vanishes for photons, and the relation

momentum = energy 
velocity

is exact.)

If momentum is conserved in the collision, which one cannot suppose it to be 
without evidence, the only way for the photon to be turned through a substantial 
angle is for the electron to carry off substantial sideways momentum. This remark 
applies to photons the rules for ordinary particles. Figure 86 sketches some sort 
of possible momentum diagram. We know little except that the electron must 
acquire momentum not substantially less than the original momentum of the 
photon, if the scattering angle is more than slight. Perhaps the momentum carried 
off might be estimated at 3 x 10~ 22 kg m s~ 1 .

momentum p2 of 
outgoing photon

momentum p, of 
incoming photon

10-22 kg ms-1

Figure 86
a Momenta in a photon-electron collision. 
b Adding the momenta vectorially.

vector sum of pe and p2 , equal 
top,

^ Pe________

142 Waves, particles, and atoms



If the particle that scattered the photon was a massive nucleus, it could have carried 
off momentum without recoiling at high velocity with great kinetic energy. In 
general, the particle the photon strikes will acquire kinetic energy given by

. . . (momentum) 2 kinetic energy = -————————. 
2 (mass)

The momentum is more or less fixed, so the energy carried off is larger the smaller 
the mass of the struck particle. If the particle is an electron, its mass is only 
10~ 30 kg which, with the momentum estimate of the order of 3x 10~ 22 kg m s~ 1 , 
gives an estimate in the region of 5x 10~ 14 J, or a little less than 0.5 MeV, for the 
energy the electron will carry off.

Thus, an electron struck by a 1 MeV photon may carry off a good part of the 
photon's energy, and photons scattered through a substantial angle should have 
considerably reduced energy, and so have a longer wavelength. They will pass less 
easily through lead, and the last part of the experiment tests this point. Better 
experiments set out to measure the exact change of wavelength predicted by more 
precise versions of the theory, with favourable results.

(Detailed attempts to work from equations of energy and momentum conservation 
are not necessary to make the point required, and they could give absurd answers — 
showing the energy of the electron to be greater than the initial photon energy, for 
example — if non-relativistic formulae are used.)
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Q1 This question can be answered from two points of view: knowing about the 
electromagnetic wave theory of light; and knowing about the dual photon-wave 
description of light.

Hertz, who was the first man deliberately to manufacture electromagnetic waves in 
the laboratory in a test of the electromagnetic wave theory of Maxwell, is reputed to 
have said (1889):

The wave theory of light is, from the point of view of human beings, a 
certainty.'

a Explain whether you think Hertz would make the same statement today. 
b Do you think 'certainty' is ever an appropriate way of labelling a model like 

the wave model of light? Why?

Q2 'Electrons (and photons) behave in a perfectly definite way. The results to 
be expected from an experiment can be stated perfectly clearly. The trouble is the 
results do not seem to be intelligible if one wishes to say that electrons (and 
photons) behave exactly like something else (a wave, or a particle).'

a What are the results to be expected from, say, a two-slit 'interference' 
experiment?

b Do these results lead to 'trouble' as suggested above?

Q3 Suppose an electron from an accelerator is observed to travel in a path of 
radius 50 mm at right angles to a magnetic field B of size 1 .0 N A" 1 m~ 1 . What 
wavelength is associated with an electron having the momentum implied by these 
data? Why can the path be seen clearly in a cloud or bubble chamber, unaffected by 
wave behaviour?

/?= 6.6x10~ 34 J s. 
e= 1.6x1(T 19 C.
a mv2Bev = —— .

Q4 A nucleus emits a gamma ray photon, and recoils in the opposite direction 
from that in which the gamma ray is emitted.

a Why does the nucleus recoil?
b Would a less massive nucleus recoil with more, or less, or the same 

velocity for the same gamma ray energy?
c Why is the wavelength of the gamma ray a little longer than the wavelength 

calculated from £ = hf, and the difference E between the nuclear energy levels 
concerned in the emission of the gamma ray?

Q5 Give a reason why an electron microscope can be used to form images of 
objects like viruses, about 10~ 8 m in size, for which an optical microscope is 
useless.
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Q6a Does the velocity of an electron vary with its energy?
b Does the wavelength associated with an electron vary with its velocity?
c Does the wavelength associated with an electron vary with its energy?
d Does the velocity of a photon vary with its energy?
e Does the wavelength of a photon vary with its energy?
f Does the wavelength of a photon vary with its velocity?

Q7 A helium ion He + and a hydrogen atom both have one electron. The He + 
ion is half the size of the H atom. Suggest a reason why the electron will be harder 
to remove from the ion than from the atom.

Q8 Why did Rutherford, Geiger, and Marsden not detect diffraction effects 
when they studied alpha particles fired at a crystal lattice of metal atoms? 
(Energy of alpha particles used « 1 MeV, e = 1.6x 10~ 19 C, 
mass of alpha particle « 10~ 26 kg, h = 6.6x 1CT 34 J s.)

Q9 Work on ionic crystals (Unit 3, Part Four), suggests that sodium and 
chlorine ions are very unsquashable. Why is it hard to squash ions that are, after all, 
mostly empty space?

Q10 For discussion or comment:

'When people start to learn physics, they usually expect to learn things 
physicists feel certain to be true. After a while, they find they have learned 
instead why physicists do not feel absolutely certain of anything.'
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Part One 
Photons

1 The wave model. The bright parts of the spectrum are explained by 
supposing that waves coming from many slits at just the right angle can all add up 
in phase at this angle, but will cancel at other angles.

2 No. Try a long exposure and see if the exposed/unexposed boundary shifts.

3 Keep film in metal boxes. Gamma rays penetrate paper, and thick lead 
boxes are needed to protect film from such radiation.

4 Hard to answer briefly. But measurements give scientific thinking 
something definite to work on. They also tell you when you are wrong, which is 
very important. It seems likely that a wave-protagonist could explain away our first 
examples (photography, ionization, photosynthesis) because they are rather vague. 
But faced with the measured energy of photo-electrons, which does not increase if 
the light is brighter, he could be in greater difficulties.

5 They are exactly the same: a 'cut off' exists beyond which longer waves 
have zero effect.

6 f= 5.8x1015 Hz, 1= 0.52x1 (T 7 m (for visible light 1 « 5x1Q- 7 m).

7 1 = 5.6x 10~ 13 m. This is the largest wavelength that will do. Notice that 1 
is the same order of size as an atomic nucleus.

8 Photon energy « 10~ 23 J. 
Photons emitted per second « 10 20 s~ 1 . 
Photons emitted per cycle « 1010 (/= 1010 Hz).

9 10 7 watts. No: there must be very few of these big photons.

10 No. The evidence came from electron collisions. (You should be able to 
expand this answer.)

11a To the level at 10.7x10"19 J.
b The violet (short wavelength, high frequency) line must come from the 

bigger jump.
c Its photon energy is 6.3x 10~ 19 J, close to the ultra-violet photon at 

7.84x 1019 J and bigger than the violet photon of energy 4.56x 10~ 19 J. 
This line will be in the invisible ultra-violet.

12 It would be arguing in a circle (figure 87).
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spectra

E=hf E=hf

Figure 87 energy levels

13 Maybe, if it goes on being useful, and having the same measured value, in 
other circumstances. (We shall see that it does.)

14 The (red) line A = 6.56x 10~ 7 m appears at the extreme right as a heavy 
blur (it is very bright). The nearby fine lines are not from H atoms. The line at 
3.89x 10~ 7 m is nearly in the middle, with at least two more lines visible at shorter 
wavelengths still. Notice how the lines make a smooth series, getting closer and 
closer together.

15 The Balmer frequency is the difference between the first two Lyman 
frequencies. W. Ritz pointed out in 1908 that all spectral lines could be expressed as 
differences in a similar way.

16 A frequency f3 , corresponding to a jump between the two upper levels, 
where

£2 -f, = h(fa -fj
f» = f*-f,- 

This is the relationship found in question 15.

17 Lyman (high frequency) lines are like the ABC set, Balmer (lower 
frequency) lines are like the DE set. Perhaps they all come from the same energy 
levels except that the Lyman lines all involve a lower level like level 1.

18 Each Balmer frequency is the difference between the Lyman line at 
24.659 x 1014 Hz and one other higher line. Each Paschen line is the difference 
between the Lyman line at 29.226 x 1014 Hz and one higher line.

19 16.3x10~ 19 J. 
19.35x10- 19 J.

20 The difference between the above two energies: 3.05x 10~ 19 J.

21 The paper now stretches from level n = 2 to the limit. Each level, index 
number n, lies at 21.8x '\Q"l9 /n z below the limit.
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22 Each photon has energy SB 4x 10~ 19 J. 
If the power is 10~ 2 W, that is about 3x 1016 photons per second.

23 About 10 12 photons per second enter your eye.

24 About 3x 10~ 4 m between photons (10~ 12 second between photons).

25 104 times further apart, about 3 m.

Part Two 
Electrons

1 The electrons have energy because they are accelerated by a potential 
difference. At 5 kV and 1 mA, a power of 5 W is delivered. If some electrons are 
stopped in the thick support material of the target, it will become hot.

2 Red light has a longer wavelength than blue light. Its diffraction pattern is 
broader.

3 Larger diffraction angles ('broader' patterns) would come from a larger 
wavelength, given the same spacing of atoms.

4 If the atoms moved apart, the rings would become a little smaller.

5 More slowly.

6 Slow electrons have a larger wavelength than do fast electrons.

7 t/., sin 9 1 = d2 sin 0 2 if 0 1 and 9 2 are measured at the same wavelength. 
The wavelength disappears from the equation, so if d^/d2 is constant, sin 0.,/sin 6 2 
is constant. The ring diameters Dr D 2, are nearly proportional to sin #v sin 62 . So 
£>.,/£> 2 measured at any one wavelength should be equal to D^/D 2 measured at 
any other wavelength.

8 Smaller ring (smaller sin Q) from larger spacing (1 = d sin 9). So the 
smaller ring comes from rows with spacing 1.7 d.

9 V3T

10 N/3~= 1.73. The agreement with the sample results is fair.

11 Velocity proportional to JV.

12 0.167 radian.

13 0.167 approximately, using the fact that the sine of a small angle is nearly 
equal to that angle measured in radians.
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14 0.205x10--"° m-

15 mv = ^/2mqV.

16 3.81 x 10- 2 3 kg m s~ 1 .

17 h = 7.8 x 10~ 34 J s. (Accepted value 6.6x 10~ 34 J s.)

18 Yes. Both are in J s since energy Qmv2 ) can be measured in kg m 2 s~ 2 
and momentum (mv) in kg m s~ 1 .

19 It would be some reason.

20 A oc 1 f^JV. The wavelength is to be raised by a factor of 104, so V must be 
reduced by a factor of 108 , giving 5x 10~ 5 V. It would be impossible to produce and 
detect electrons with such low energies.

21 h/1 =mv= J2mqV. Slope is W* = h/j2mq~.
h = (J2mq) x slope = J2x 9.1 x 10~ 31 x 1.6x 10~ 19 x (12.25x 10" 10 ) = 
6.61 x10~ 34 J s.

22 About 2000 times slower, for a neutron is 2000 times more massive than an 
electron.

23 If mass is of order 0.1 kg, velocity 10 m s~ 1 , A « 10~ 33 m.

24 Smaller wavelength — smaller angles; larger wavelength — larger angles. 
A for X-rays is about the same as interatomic spacings in crystals. For light the 
wavelength is much larger, and no diffraction pattern is produced. For tennis 
balls, a structure of spacing 10~33 m would give possible angles but for d (say) 
ID" 2 m, sin0 « 10~ 31 .

Part Three 
Waves in boxes

1 X-ray diffraction (Unit 1) tells us the spacing between atoms or ions in a 
solid which, if we assume that each atom is touching some of its neighbours, 
enables us to work out how big the atoms are.

When gases diffuse through one another, they do so rather slowly because any one 
molecule keeps hitting others as it travels around. So it takes time for molecules to 
move from where there are more of them to where there are few of them. From the 
time needed, compared with the very short time a molecule would take to move 
unimpeded, the size of the molecules that get in the way can be calculated. This is 
done in Nuffield 0-level Physics, Year IV.

Answers Part Three 1 53



If oil spreads on water, sometimes some oils spread out into a layer one molecule 
thick. The thickness of the oil carpet can be found if we know its area and the 
volume of the drop originally placed on water.

2 Standing waves appear: the travelling waves going each way bounce off 
the fixed ends of the string and interfere with each other.

3 The longest wavelength /I possible is 1 m (half a wavelength on 0.5 m). 
The lowest frequency f = velocity/A = 200 Hz.

4 10- 10 m.

5 Largest. A s= 4x 10~ 10 m.

6 mv 1.6x 10~ 24 kg m s~ 1 .

7 No. The wavelength given is the largest possible value, the momentum is 
therefore the least possible value, (mv = h/L)

8 Kinetic energy ^ 14x 10~ 19 J.

9 The electrical attraction between them.

10 Potential energy = q^q 2/4ne 0r. Energy transferred = 23x10~ 19 J.

11 No. It needs 23x10~ 19 J.

12 Ten times smaller. X < 0.4 x 10~ 10 m.

13 Ten times larger, mv > 16x 10~ 24 kg m s~ 1 .

14 A hundred times larger.

15 1400x10- 19 J.

16 230x10~ 19 J (ten times as much; potential energy cc I/A).

17 No. The electron has more kinetic energy than is needed to escape.

18 Energy of order 10~ 12 J.

19 Energy of order 10 MeV (107 eV).

20 One only.
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21 When you reach a wall your momentum suffers a short, sharp change. If 
you move without hitting a wall, your momentum is unchanged (you could even be 
on roller skates, feeling no force at all except at the walls). The only large forces that 
occur arise when you hit the walls.

22 The electron feels a force towards the proton that varies as 1/A2 . There is 
nothing corresponding to a wall which suddenly pushes an outward moving 
electron back towards the proton. In the whistle-in-a-field situation, you will move 
as if a force attracts you to the prize. The feebler the sound, the less the 'force' 
would appear to be, and if the sound dies off as 1/Y2 , the situation might be made 
into quite a good imitation of electrical attraction.

23 The pit b with shelving sides is more like the 1/V variation of potential 
energy for electrical attraction. The steep sided pit a is like the hard-edged 'box' 
used in stage one.

24 -46x 10~ 19 J (doubled, since r has halved).

25 The closer the electron is to the proton, the smaller its wavelength and so 
the larger its momentum and kinetic energy. At some small radius r, the rise in 
kinetic energy is actually bigger than the drop in potential energy, and the 
electrical attraction fails to pull the electron in as close as this.

26 After 10 metres of vertical rise.

27 At about r = 1.1 x 10~ 10 m. The kinetic energy is zero.

28 The potential energy falls. The kinetic energy rises.

29 At r= 0.3x 10~ 10 m, the potential energy V = -77 x 10~ 19 J. The kinetic 
energy is the difference E- V = 55.2x 10~19 J.

30 Yes.

31 The waves travel most slowly on the thick cord. The tension is the same, 
so the extra mass per unit length lowers the velocity.

32 v = fX, so small v means small L The wave doesn't travel far in one cycle.

33a Yes. /I increases as r increases, so this is plausible.
b No. 1 is smaller, not larger, at large radius.
c Yes. There is only one loop, but the wave is more sharply curved at small 

radius.
d No. The wave is more sharply curved at large radius, where the 

'wavelength' should be large.

34 Mean mv « 2x 1CT 24 kg m s~ 1 .
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35 MeanAw SxlO"1 " m.

36 The next possible standing wave will have n = 2 loops, the next n = 3, 
and so on.

37 £* = § = T

38 Because V oc (1 //•), and the radius comes where £ = V. Reducing E and V 
by a factor 4 raises r by a factor 4.

39 Mean wavelength = 2x (radius)/(number of loops). For A? = 1, 
A, = 2/-/1 and for n = 2, A 2 = 2x4/72 = 4/-.

40 The mean momentum is halved.

41 The mean wavelength has doubled, as it must if the wave is to fit.

42 ZYX.

43 b.

44 b.

45 b.

Answers to 'More questions'
1a We don't think he would be so sure, though the case must have seemed 

cut and dried at the time. The whole of Part One, 'Photons', was about why the 
wave model on its own is not good enough.

b How could one ever know that all the predictions of a particular model 
had been tested? The history of physics has been full of surprises for those who 
felt 'sure'.

2a Electrons (photons) arrive one by one, in random places, building up so 
that the number arriving at a place averages out to be proportional to the intensity of 
a wave to be expected to arrive at that place.

b It depends what you call 'trouble'. If you insist on one of the two models 
alone, wave or particle, the predictions are wrong. If you mix the two 'correctly', the 
predictions are right, but you may not like the mixture.

3 X = 0.8x 10~ 13 m. The wavelength is too small to see diffraction effects on 
this scale.

4a The gamma ray carries off momentum; to conserve momentum the nucleus 
must recoil, as must a gun firing a shell. 

b More.
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c The nucleus carries off some of the energy E; the gamma ray must have
less than £ and so have longer wavelength from E = hf (or you could argue from
the Doppler effect).

5 Electron wavelengths A. = h/mv are much smaller than 10~ 8 m for realistic 
energies. The wavelength of visible light is larger than 10~ 8 m.

6a Yes.
b Yes.
c Yes.
d No.
e Yes.
f Not in empty space. In glass, though, which disperses light having a 

range of wavelengths, the speed and wavelength are related.

7 The electron is both closer to the nucleus, and the nucleus has twice the 
pulling power (charge 2e).

8 The wavelength is too small. (X w 10~ 14 m.)

9 To squash an atom or ion means confining its electrons within a smaller 
space. This raises the kinetic energy, for 1 must decrease and mv increase. This 
energy has to be supplied by the squashing forces.

10 We don't know how you feel. But this is how it seems to some of us. 
If it is true, it is a good thought with which to end a physics course.
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Lists of films, film loops, books, 
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Films and film loops
16 mm films

The following three black and white, sound films are available for hire from Guild
Sound and Vision Ltd (formerly Sound Services Ltd.)/ Kingston Road, Merton Park,
London S.W.19. The last two are the most useful of the three. All originate from
the PSSC programme.
'Photons.' 19 minutes, black and white, sound. No. 900 4173-2.
'Interference of photons.' 14 minutes, black and white, sound. No. 900 4174—9.
'Matter waves.' 28 minutes, black and white, sound. No. 900 4177—0.

8 mm film loops

The following computer-made loop is essential for those who wish to attempt Part 
Three, stage three, of this Unit. 'Solving a standing wave equation for a hydrogen 
atom.' Penguin, No. XX 1667 (standard 8).

The following two loops may be useful, but are not essential. 
'Vibrations of a drum.' Ealing Scientific, No. A80-3924/1 (super 8). 
'Soap film oscillations.' Ealing Scientific, No. A80-2660/1 (super 8).
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Books
Page numbers of references in this book appear in bold type.

For teachers '•

In writing this Unit we have drawn with gratitude on the ideas of three major contributions to the 
teaching of quantum ideas. Each of them is worth studying. They are:

Mott, N. F. (1968) 'On teaching quantum phenomena', from Sources of physics teaching, Part 1.
Taylor & Francis. 88.
This contains reprints from the journal Contemporary physics.

PSSC (1966) Advanced topics supplement. Heath,
now incorporated into
PSSC (1968) College physics. Raytheon. 21,57,74.118.125.

Sherwin, C. W. (1961) Basic concepts of physics. Holt, Rinehart & Winston. 64.
This is out of print at the time of writing, but it contains so much of value that we list it in the hope
that it will be reprinted.

Teachers will also find much of value in:
Boorse, H. A., and Motz, L (1966) The world of the atom, Volume 1. Basic Books. 54, 64. 
This is an interesting collection of papers from the Greeks to the present day, but is an expensive 
investment.

Feynman, R. P., Leighton, R. B., Sands, M. (1963) The Feynman lectures on physics. Volume 1. 
Addison-Wesley. 3, 40, 57, 71.

Cropper, W. H. (1970) The quantum physicists. Oxford University Press.

Wichmann, E. H. (1971) Berkeley Physics Course, Volume 4 Quantum physics. McGraw-Hill.

For students

In addition to parts of Feynman et al. The Feynman lectures on physics (see above) and 
PSSC College physics (see above), the following are useful:

Bennet, G. A. G. (1968) Electricity and modern physics. MKS edition. Edward Arnold. 58.

Born, M. (1951) The restless Universe. Dover. 42, 57, 64, 138.

Caro, D. E., McDonell, J. A., and Spicer, B. M. (1962) Modern physics. Edward Arnold. 58,64.

Classical scientific papers - physics (1964) Mills & Boon. 118.

Conn, G. K. T., and Turner, H. D. (1965) The evolution of the nuclear atom. Iliffe. 64.

Hoffmann, B. (1970) The strange story of the quantum. Penguin. Also available in Dover Press 
edition. 58.

Millikan, R. A. (1963) Phoenix Science Series The electron. University of Chicago Press. 11.

Open University (1971) Science Foundation Course, Units 6 and 7, Atoms, elements, and isotopes: 
atomic structure. The electronic structure of atoms. Open University Press.

Project Physics (1970) Text and Reader, Unit 5, Models of the atom. Holt, Rinehart & Winston, 
N.Y. 39,58,138.

PSSC (1965) Physics. 2nd edition. Heath. 21,39,42,57.

Rogers, E. M. (1960) Physics for the inquiring mind. Oxford University Press. 15,42,57,64,138.

Rothman, M. A. (1966) The laws of physics. Penguin. 58.

Tolansky, S. (1968) Revolution in optics. Penguin. 58.

Toulmin, S., and Goodfield, J. (1965) The architecture of matter. Penguin. 58.



Apparatus list

14
27

44/2
50/1
52 A
52 B
52 C
52 D
52 K

59
69

121
130/1
130/3
130/6
134/2

189
191/1
191/2
193/2

194
195/1

197
503-6
512/2
1000

1003/1
1006
1009
1033
1033
1044
1053

1055

e.h.t power supply
transformer
G-clamp (small)
cylindrical magnet
flashlamp bulb 1.25 V, 0.25 A
U2 cell
baseboard
spring connector with lampholder
crocodile clip
l.t. variable voltage supply
high dispersion prism
metal strips as jaws
sealer
GM tube holder
gamma GM tube
xenon flasher
ultra-violet lamp
coarse grating
fine grating
hydrogen spectrum tube
holder for spectrum tubes
pure gamma source
electron diffraction tube
retort stand base, rod, boss, and clamp
beaker 400 cm 3
leads

milliammeter (1 mA)
electrometer
signal generator
cell holder with four U2 cells
cell holder with one U2 cell
large loudspeaker
Local purchase items
razor blade
card with slit
strip of fluorescent paper, 20 mm wide,
0.5 m long, green
fogged photographic film
cardboard slide mounts 35 mm
sheet of rubber

Small laboratory items
glass plate
wire gauze, 70 mmx 60 mm, for example, 20 mesh

copper

Experiment
10.5, 10.7
10.7
10.8
10.7
10.6
10.6
10.6
10.6
10.1
10.2
10.2
10.8
10.3, 10.10
10.3, 10.10
10.3, 10.10
10.8, 10.9
10.1
10.6
10.4, 10.5
10.5
10.5
10.3, 10.10
10.7
10.1, 10.4, 10.8
10.10
10.1, 10.2, 10.5,
10.8
10.1, 10.2
10.1, 10.2
10.8, 10.9
10.1
10.2
10.8

10.1
10.2
10.4

10.6
10.6
10.8

10.1

10.1
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microscope slide 10.4
photographic exposure meter 10.6
length of light chain 10.9
V-shaped strip of rubber 10.9
rubber cord (0.5 m long, 3 mm square cross section) 10.8, 10.9 
light rubber cord (0.5 m long, e.g. dressmaking

elastic) 10.9

1056 Chemicals
magnesium ribbon, 100 mm long 10.1
a little mercury in a polythene bottle 10.4

1060 vibrator 10.8, 10.9
1067E set of stops 10.2

1068 parallel beam projector 10.2
1069 apparatus for showing the Compton effect 10.10
1071 mercury discharge lamp 10.4
1073 concave reflecting grating 10.4
1074 photo-electric cell 10.2
1076 large ring 10.8
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Index
Where significant information is contained in an illustration or diagram, the page reference is italicized.

alpha decay, 129-31 
apparatus. 162-3 
atomic nucleus, 72—5 
atomic number, 118 
atoms, size of, 63. 68, 70-71 

stability of, 62-3

B
Balmer. Johann. 28
Bohr, Niels, quoted, 29
Bohr theory, 64, 93
bond angles, 127-8
books and further reading. 3. 11. 21, 54,

57-9, 64, 74, 11 8, 1 38 
Born, Max, 94, 134 
Bragg. Sir William, quoted, 39 
Broglie, L de, 51. 52. 94

chance, 34-5, 131
see also Units 5, 9 

compressibility. 72, 147 
Compton effect. 16, 138-43 
computer-generated film, 107—11 
covalent bonding, 127

deuterons, 16, 73, 74 
diffraction, 6, 30, 31-3, 56

see a/so electrons; X-ray; and Units 1 and 
Dirac, P.A.M., 94, 98

quoted, 11 3

Einstein, A., quoted, 5, 1 0-1 1 . 39 
electrons. 41-60, 72, 76-81

diffraction of, 42. 44, 45-51 , 53
wavelength and momentum of, 51-2, 54, 55 

energy levels. 21
of deuteron, 73
of hydrogen, 24-9, 90-92
of mercury, 19, 20, 21
of nuclei, 75
see also Unit 2 

exclusion principle, 120

Feynman, R.P., quoted, 3. 40 
film loops. 68 
films, 29, 56, 107-11

gamma rays, 7, 15, 16. 73
see also Compton effect 

graphite. 128
electron diffraction by. 47-51, 53

H
Heisenberg, W.. 94, 134 
helium, 11,118-20 

' He + ion, 114-17, 147 
Hertz, G., 10 
Hooke, R., quoted. 41 
hydrogen. 1 47

Bohr theory of, 64, 93 
H* molecule, 125-7 
size of atom of. 63, 70-71 
spectrum of, 22-9; 1//? 2 rule, 90-92 
wave theory of, 69-71, 74, 76-9, 86-90; 

film illustrating, 107—11; Schrodinger 
equation for, 101, 102—6; wave states 
for. 120, 121

I
iodine molecule, 121 
ionic crystals. 68, 1 47

see also Unit 3 
ionization, 7, 11 
ionization energy, 26, 120

light, dual model of. 6. 33. 38-40
see also diffraction; photons 

lithium, 118-20

M
matrix mechanics. 1 34
mercury, spectrum of, 1 7-21; see also

Units 2, 5
microwaves, 1 5, 1 6 
Millikan, R.A., 11 
molecules, bonding in, 125-7

oscillating, 121-5 
Morrison, P., quoted, 61 
Moseley. H.G.J., 118

N
neutrons, 55, 72, 73 
Newton, Isaac, quoted, 5

optical grids, 49
orbitals, 93
oscillators, variable-wavelength,
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P T 
Pauli exclusion principle. 120 Taylor, G. I., 33 
Periodic Table, 1 20 Thomson, G. P.. 51 
photo-electric effect, 6, 8-1 1 , 33 tunnel diode. 1 31 

colour and intensity effects in, 11-15 
time effects in, 37 W 
see also Unit 5 water molecule, 1 27-8 

photographic quality, 36. 37 wave mechanics, see quantum theory 
photons, 5-39

counting of, 1 6 X 
emission of, 1 7-21 X-ray spectra, 117-18 
energies of, 1 5 X-rays, 7 
momentum of, 52 diffraction of, 42. 43 
random behaviour of, 34-5. 37 wavelength of, 33 
see also Compton effect

photosynthesis, 8 Y 
Planck constant (/?). 1 3, 1 5, 21 , 52. 53. 54 Young. T., quoted. 5 
polythene, diffraction by, 42 
potential well, 77-8. 79 
protons, 72, 73, 78-9

Q
quantitative experiments, 8 
quantum theory, 22, 92-4, 1 34-5 

see a/so Schrodinger equation

radio waves, 1 5 
radioactivity, 1 29—31

see also Unit 5 
randomness, see chance 
reading, uses of, 4, 56-7

see a/so books and further reading 
repulsion forces, 72

see also Unit 3 
rubber, 42

S
Schrodinger, Erwin, 93, 94
Schrodinger equation, 79, 95-102, 134-5

difficulties of solution. 112
solution for hydrogen, 102-6; film

illustrating, 107-11 
sodium chloride. 68

see also Unit 3
solids, incompressibility of, 72, 147 
spectra. 6-7

of hydrogen, 22-9
of ionized helium. 114—17
of mercury, 1 7-21
see also Units 2, 5 

standing waves, 65—8
spherically symmetrical. 84—5
variable-wavelength, 81-4
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