


Physics Teachers' guide 
Supplementary mathematics

Science Learning Centres

ISBN 0 14
082.71 7 X

Nuffield Advanced Science

N12199



IMuffield Advanced Physics team

Joint organizers

Dr P. J. Black, Reader in Crystal Physics, University of Birmingham

Jon Ogborn, Worcester College of Education; formerly of Roan School, London SE3

Team members

W. Bolton, formerly of High Wycombe College of Technology and Art

R. W. Fairbrother, Centre for Science Education, Chelsea College; formerly of 
Hinckiey Grammar School

G. E. Foxcroft, Rugby School

Martin Harrap, formerly of Whitgift School, Croydon

Dr John Harris, Centre for Science Education, Chelsea College; formerly of Harvard 
Project Physics

Dr A. L. Mansell, Centre for Science Education, Chelsea College; formerly of 
Hatfield College of Technology

A. W. Trotter, North London Science Centre; formerly of Elliott School, Putney

Evaluation 

P. R. Lawton, Garnett College, London



Physics Teachers' guide

Supplementary mathematics

Nuffield Advanced Science
Published for the Nuffield Foundation by Penguin Books



Penguin Books Ltd, Harmondsworth, Middlesex, England 
Penguin Books Inc., 7110 Ambassador Road, 
Baltimore, Md 21207, U.S.A. 
Penguin Books Ltd, Ringwood, Victoria, Australia

First published 1973  .-. ' 

Copyright ©The Nuffield Foundation, 1973

Design and art direction by Ivan and Robin Dodd 
Illustrations designed and produced by Penguin Education

Filmset in 'Monophoto' Univers
by Keyspools Ltd, Golborne, Lanes.
and made and printed in Great Britain
by C. Tinling & Co. Ltd, London and Prescot

This book is sold subject to the condition that it shall not, by way of trade or 
otherwise, be lent, re-sold, hired out, or otherwise circulated without the 
publisher's prior consent in any form of binding or cover other than that in 
which it is published and without a similar condition including this condition 
being imposed on the subsequent purchaser

r" '?;. .
o'\i i Kti



Contents
Nuffield Advanced Physics team //' 

Foreword vii 

Introduction 7

Section 1
Computation 4

1.1 Indices - rules for manipulation 4
1.2 Power of 10 notation - logarithms 5
1.3 The slide rule 8
1.4 Scaling 10

Section 2
Functions 75

2.1 Introduction 75
2.2 Co-ordinates 16
2.3 Proportionality 77        
2.4 Proportionality expressed algebraically 18 -•-.'..
2.5 Inverse proportion 19
2.6 More difficult patterns or relationships 20
2.7 Dependence on more than one variable 27 .

Section 3
Linear graphs 23

3.1 Introduction 23
3.2 Measuring the slope or gradient 23
3.3 Lines which do not pass through the origin 24
3.4 The linear graph in scientific work 26
3.5 The area 'under' a graph 29

Section 4 . - - .. 
Non-linear graphs 31

4.1 Introduction: 31
4.2 Linear graphs from non-linear equations 32
4.3 An unknown index   the use of logarithms 34
4.4 Growth and decay functions 34
4.5 Area 'under' the graph again 36

Section 5
Differentiation 38

5.1 Introduction 38
5.2 Rate of change and gradient for non-linear variations 39
5.3 Differentiation of x" and rates of change 44
5.4 Turning points 49
5.5 The second differential coefficient 52
5.6 Small changes and 'errors' 53

in



Section 6
Sine and cosine graphs 57

6.1 Introduction 57
6.2 Differentiating sin 6 and cos 0 58
6.3 Circular measure of angles 60
6.4 Small angles 64
6.5 The derivatives of A sin kO and A cos kO 64
6.6 Angular rotation and y= A sin cot 66

Section 1
Integration 69

7.1 Reverse differentiation 69
7.2 Numerical'reverse differentiation' 77
7.3 Areas and integration 77

Section 8
Exponential variations 84

8.1 Introduction 84
8.2 Identifying exponential variation 88
8.3 The differential equation 91
8.4 Napierian logarithms 95
8.5 The number e 36

Section 9
Chance 98

9.1 Random events - frequency and probability 98
9.2 Measuring probability 702
9.3 Theoretical probability 704
9.4 The probability scale 704 t • •
9.5 Combining probabilities 705
9.6 Randomness - the most likely distribution 705
9.7 Binomial coefficients 772
9.8 Probability'games' 774

Section 10
Dynamics 116

Appendix A Books and other reading 775 

Appendix B A syllabus for supplementary mathematics 779 

Index 727

IV



Consultative Committee

Professor Sir Nevill Mott, F.R.S. (Chairman)
Professor Sir Ronald Nyholm, F.R.S. (Vice-Chairman)
Professor J. T. Allanson
Dr P. J. Black
N. Booth, H.M.I.
Dr C. C. Butler, F.R.S.
Professor E. H. Coulson
D. C. Firth
Dr J. R. Garrood
Dr A. D. C. Grassie
Professor H. F. Halliwell
Miss S. J. Hill
Professor K. W. Keohane
Miss D. M. Kett
Professor J. Lewis
J. L. Lewis
A. J. Mee
Professor D. J. Millen
J. M. Ogborn
E. Shire
Dr J. E. Spice
Dr P. Sykes
E. W. Tapper "'  ' 

C. L.Williams, H.M.I.



Foreword
It is almost a decade since the Trustees of the Nuffield Foundation decided to 
sponsor curriculum development programmes in science. Over the past few years 
a succession of materials and aids appropriate to teaching and learning over a wide 
variety of age and ability ranges has been published. We hope that they may have 
made a small contribution to the renewal of the science curriculum which is 
currently so evident in the schools.

The strength of the development has unquestionably lain in the most valuable part 
that has been played in the work by practising teachers and the guidance and help 
that have been received from the consultative committees to each Project.

The stage has now been reached for the publication of materials suitable for 
Advanced courses in the sciences. In many ways the task has been a more difficult 
one to accomplish. The sixth form has received more than its fair.share of study in 
recent years and there is now an increasing acceptance that an attempt should be 
made to preserve breadth in studies in the 1 6-19 year age range. This is no easy 
task in a system which by virtue of its pattern of tertiary education requires 
standards for the sixth form which in many other countries might well be found in 
first year university courses.

Advanced courses are therefore at once both a difficult and an interesting venture. 
They have been designed to be of value to teacher and student, be they in sixth 
forms or other forms of education in a similar age range. Furthermore, it is expected 
that teachers in universities, polytechnics, and colleges of education may find some 
of the ideas of value in their own work.

If the Advanced Physics course meets with the success and appreciation I believe it 
deserves, it will be in no small measure due to a very large number of people, in the 
team so ably led by Jon Ogborn and Dr Paul Black, in the consultative committee, 
and in the schools in which trials have been held. The programme could not have 
been brought to a successful conclusion without their help and that of the 
examination boards, local authorities, the universities, and the professional 
associations of science teachers.

Finally, the Project materials could not have reached successful publication without 
the expert assistance that has been received from William Anderson and his 
editorial staff in the Nuffield Science Publications Unit and from the editorial and 
production teams of Penguin Education.

K.W. Keohane
Co-ordinator of the Nuffield Foundation Science Teaching Project



Introduction
'Furthermore, in physics, the ability to think effectively depends upon 
having some rather definite skills and knowledge, particularly on having 
some mathematical understanding.' 
Nuffield Advanced Physics Teachers' handbook.

Some parts of mathematics which are especially valuable in the education of a 
scientist are taught within the Advanced Physics course, along with the physics for 
which they are used. These are mainly the solving of simple differential equations, 
and the use of the exponential, sine, and cosine functions. Students who also take a 
sixth form mathematics course should have no special difficulties with these, but 
others may need more time for practice than the Physics course can allow. There 
may be some who have difficulty with mathematics learned before the sixth form, 
for example, with proportion, powers of ten, logarithms, and so on.

This Guide is intended to assist teachers who have students who are not doing a 
sixth form course in mathematics, and to provide material from which they can 
select what they want.

The Guide is written in a sequence which follows the needs of the Nuffield 
Advanced Physics course fairly closely, as they develop. The methods suggested 
have also been chosen to fit closely with the particular needs of the Physics course. 
There is, of course, no suggestion that there are no better methods or sequences.

Each numbered sub-section of the Guide is followed immediately by a selection of 
examples relevant to that piece of work. Further examples may well be needed, a 
number of which can be taken from the Advanced Physics course (see table 1).

This Guide is deliberately fairly comprehensive. Besides containing revision of 
elementary mathematics, which many students will not need, it contains some parts 
which, for satisfaction and completeness, go rather beyond the minimum 
requirements of the Physics course. It is not a mathematical course to be followed 
all through, but a collection of resources from which to select a course. Details of 
books referred to in the text are given in the list on page 118.

It would be valuable if the teacher responsible for the physics can also teach any 
supplementary mathematics that is needed. In that way, the work done in the time 
allocated to the latter can be of the greatest support and value to the physics. If this 
cannot be arranged, then the closest collaboration will be necessary to ensure that 
the work in physics and mathematics is carefully co-ordinated.

To mathematicians who receive this Guide apologies are necessary. To suggest that 
they should adopt these methods in preference to others of their own would be an 
impertinence. No doubt ways will occur to them of developing the mathematical 
ideas so as to assist the Physics course. Details of the Nuffield Advanced Physics
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course are to be found in the Teachers' handbook, and a glance at that volume will 
be necessary for teachers of mathematics who do not know this course.

General outline

Computation

This is mainly revision of ground usually covered at 0-level   indices, logarithms, 
slide rule work, etc. Many teachers will feel they can omit it altogether or make the 
treatment brief. The need for practice in these topics lies in their constant use in the 
Physics course.

Functions and graphs

The functions dealt with are those which students will meet in physics. Those not 
mathematically inclined will need lots of practice to help to establish a feeling for 
the functional patterns and to enable them to recognize those patterns in the future.

Differentiation and integration

The emphasis is on graphical methods throughout, with frequent reference to 
physical situations in which a derivative has some significance. Numerical methods 
play a prominent part in this work.

Exponential changes and probability

Growth and decay patterns are an important part of the Physics course, and 
the concept of probability appears in Unit 9, Change and chance. The weaker 
mathematicians will undoubtedly need some extra time to become familiar with the 
ideas involved.

Timing

The time required will depend on students' needs, but is likely to fall within a range 
from 2 periods a week for one year, to 3 or 4 per week over the same time. A less 
desirable allowance would be 2 periods a week spread over two years; it is less 
desirable because much of the work and extra practice will come too late to be of 
great help.

It is not easy to suggest how much time should be spent on the various topics   
much will depend on the ability of members of the class and whether the early work 
can be covered quickly   but the aim should be for students to spend most of the 
available time doing rather than hearing about mathematics. Activities which develop 
confidence, such as handling numbers, drawing graphs, and using the slide rule 
successfully, will be the most helpful way to spend time.
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Table 1 gives a rough guide to the points at which the various sections are used in 
the first year of the Physics course, together with an approximate time scale.

Stage in first 
year of the 
Physics course

Term 1

Term 2

Term 3

Table 1

Sections of the 
Physics course

f Unit 1, Materials and structure 
< Unit 2, Electricity, electrons,  
(, and energy levels

J Unit 3, Field and potential 
\ Unit 4, Waves and oscillations

Unit 5, Atomic structure- 
Unite, Electronics and. 
reactive circuits

Mathematics

computation 
functions and graphs 
differentiation

sine and cosine functions 
integration

exponential change
probability
dynamics
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Section 1

Computation
This section is mainly concerned with methods of computation   indices, logarithms, 
the slide rule   and it also has a brief mention of areas, volumes, and 
trigonometrical ratios in 'Scaling'. It is, therefore, a revision of 0-level work. 
Many teachers will no doubt omit it altogether, feeling that the ideas contained in 
it are well enough established already. Others taking the weaker mathematicians 
may judge that benefit will accrue from going 'back to the beginning' to see 
where it all stemmed from. In any case, teachers should not spend long on this 
revision   in fact, there is much to be said for practice in arithmetic at regular 
intervals throughout the course to build up students' speed and confidence in 
handling numbers.

The need for practice in these methods lies in their use in the Physics course. In the 
lessons devoted to mathematics, the aim should be to give students the necessary 
background knowledge and a sufficient number of examples, so that progress in 
physics is not delayed or the emphasis shifted too much from the physics to the 
mathematics.

The ideas in 'Scaling' (1.4) appear early in Unit 1, Materials and structure. Some 
teachers may wish to do section 1.4 before section 1.1.

1.1 Indices — rules for manipulation

Often difficulties stem from an inability to translate the 'shorthand' of mathematics 
into ordinary language. Students must know what the index means and should be 
encouraged to express things like 2 s in words, e.g. 25 means that 2 is multiplied by 
itself 5 times, i.e. 2x2x2x2x2 which equals 32. 2s is another way of writing 32.

Easy manipulation of numbers in this index form requires rules which are not 
difficult to establish when the indices are simple positive integers. For this,' it would 
be wise to work with numbers throughout (e.g. 23 x22 = 2x2x2x2x2 = 2 5 ), 
and generalize only at the end. Writing out in full should establish that:

a p m x.p n = pm+n
b (pm) n = pmn
c pm +pn =pm~n if m>n or 1/p"- m if n>m

The class may well remember that indices are not restricted to positive integers. The 
meanings given to fractional and to negative indices arise from a stipulation that 
these indices should obey the same rules as the positive integers, b can be used to 
find out what a fractional index means:

(p*) z = p so that p* stands for ^fp. ,.
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Again, using 4 instead of p may give greater understanding. For the meaning of a 
negative index, rule a could be employed:

P 1 P3 xp 2 =p32 =p so that p 2 =   =  P3 P 2 

A negative index means a reciprocal.

Now rule c simply becomes pm +pn = pm~", and allows a meaning to be given to 
p° if m is made equal to /?:

pm+ pm = pO = 1.

Summarizing, the rules for dealing with indices are

a pmxp" = pm +"
b (pm} n = pmn
c pm+p"= pm ~ n
d p 1/" = nfp
e p~m = 1/p">

f P° = 1

Examples will be needed to familiarize students with these processes.

Examples for section 1.1

1 What are the values of   
a92 b9~ 2 c9* d 9~*? 

[81,1/81,3,1/3.]
2 Write the answers to the following as powers of 2 

a (8) 7 t>y8T32 c s/4. 
i"22i 24 22 ' 5 I

3 Write the answers to the following as numbers without indices 
a22 -2- 1 b30 -H3~ 1 c7- 1 x142 . 

[8, 3, 28.]
4 Which is the largest and which is the smallest of 

1/10' 2 , 26 , 3/1000?
[100, 64, 10.]

5 What is the value of a2 b3 /a3b2 ? 
[b/a.]

1.2 Power of 10 notation - logarithms

In the Physics course both very large and very small numbers occur and these are 
expressed by using the power of 10 notation. Examples should be given to show 
the simplification which the method achieves:

100000000 = 10s 
250000000 = 2.5 x 10s .
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Quite fearsome looking calculations can become tame when numbers are written 
out in this way, e.g.

3000x0.00018_ 3x1Q3x1.8x10-4_ 3x 1.8 x 1Q2 _ 2 ?x 2?() 
0.002 2x10~ 3 2

If fractional indices are introduced as well, the question, 'What is 10°' 5 ?' arises. 
10° 5 stands for /TO and is approximately equal to 3.1 62. It is not important that 
students should be able to calculate the square root of 10, but they should know 
that it can be done and that they can find its value from tables or by using a slide 
rule (see section 1.3).

10 by the method of successive approximations

If students were interested — and only if — there might be some value in showing 
them the method of successive approximations.

,/10 is obviously greater than 3 and less than 4 because 32 = 9 and 42 = 1 6.
Suppose it is (3 + x) where x is less than 1.
If/TO = 3 + x, then 10= (3+x) 2 = 9+6x+x2 .
x2 will be a small number compared with the others and is neglected in
comparison.

;. 10«9+6x so that x « 0.17.

For a first approximation, /TO ~ 3.17.
A second approximation can be obtained by letting /TO = (3.17 + y) so that
10 = 3.17 2 + 6.34K+X2 .
. . , . , ... 10-3.17 2 0.0489 Again y2 is neglected, giving y « ———-— = —————.

6.34 6.34

.'. yx -0.0077.

Estimated value of/TO is 3.1623. 
[Correct value 3.1624.]

Other fractional indices

Other fractional indices, such as 10°-75 and 10°- 25 , might be interpreted.

Since 10°- 75 = 10*, it is the fourth root of 103 or the square root of the square 
root of 1000.

Since 10°- 3 = 103/1 °, it is the tenth root of 103 or that number which multiplied by 
itself 10 times gives a result of 1000. That number is very close to 2, for 210 = 1024.

The aim in introducing fractional indices is to show that other numbers can also be 
expressed as powers of 10, and then to plot a graph which will enable the index 
to be found for any number between 1 and 10.
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Given that 10°-3 « 2.00 and that 10°-5 ~ 3.1 6, the class should be able to use the 
indices rules to supply the values of 10° 2 , 10°- 8 , and then 10° 7 . Then 
10°- 1 (10°-8 -MO°-7 ), 10°-4 (10°-7 -MO°-3 ), 10°- 6 (10°-3 x10°-3 ), and 
10°-9 (10°- 7 x10°-2 ) follow.

Such calculated values are given in table 2:

x 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

y = 10* 1.00 1.26 1.58 2.00 2.51 3.16 3.98 5.01 6.31 7.94 

Table 2

If students are able to do so, they should plot a graph, x is called the logarithm of 
the number y to the base 10 — it is the power to which the base must be raised to 
give that number.

*= lg10 X or simply Ig y.

The example quoted at the start of this section could now be used to show 
logarithms in action, using the graph to obtain values:

T X 1 8 1 fiO-48 x 1 f)°-2 55
x102 = ———^f———x102 = 10°-435 x102 = 2.7x102 = 270.

The more complex operations of multiplication and division have been transformed 
into the simpler operations of addition and subtraction. Accuracy is limited if a 
graph is used, so tables of logarithms have been calculated. It may be of help if 
the above calculation is written out in a more conventional way — if only to revise 
how to obtain the logarithms of numbers greater than 10 and less than 1.

3000= 3.0 x103 IgSOOO =lg3.0+lg103 =0.4771+3 = 3.4771 
0.00018= 1.8 x10~ 4 lg 0.00018 = lg1.8+lg1(T4 = 0.2553-4 = 4.2553

Ig (3000 x 0.000 1 8) = T.7324
0.002= 2.0x10- 3 lg 0.002 = Ig 2.0+lg10~ 3 = 0.3010-3 = 3.3010

Ig (3000x0.00018-0.002)= 2.4314

The number whose logarithm equals 2.4314 is 270.

There should be no difficulty with exercises involving lgp*if students consider the 
meaning of p*. They should see that Ig p" = x Ig p. Some exercises should ensure 
that students can cope with use of logarithms in computation but it should not be 
overdone. It is more important that they should develop speed, confidence, and 
accuracy with a slide rule.

Examples for section 1.2

1 What are the values of the logarithms to base 10 of the following? 
a 1000 b10 cO.1 d10°-75 _e120 f 0.0275 g 5/fO. 
[3.00, 1.00, T.OO, 0.75, 2.079, 2.439, 1.1 99.]
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2 Which numbers have the follow/ing logarithms to base 10? 
aO b5 c 2.301 d 3.959 e 0.7782 f 5.3010. 
[0, 100000, 200, 0.009 1, 6.000, 2 x 10 ~ 5 .]

3 What is the logarithm to base 1 0 of the following product? 
1Q0.301 x 10°-497 . 

[0.798.]
4 What are the values of the following? 

a5.31/2.12 b 5.31x2.12 c 63.1 x 2.72 d 6.31/27.2. 
[2.505,11.26,171.6,0.2319.]

5 Use logarithms to evaluate the following. 
a54 b5"c/7d^6e 120°'3 .

[625, 2.236, 2.646, 1.817, 4.206.]
6 What are the values of the following? 

a 0.671/0.425 b 0.671x0.425 c (0.325/0.526) x 0.425. 
[1.579,0.2852,0.2626.]

7 The logarithm of a number to any base is the power by which the base 
must be raised to give that number. What are the values of the following? 
a Iog 3 1 b Iog 5 5 c Iog 2 4 d Iog 2 29 . 

[0,1,2,3.]

The book Logarithms by Austwick contains many worked examples and exercises.

1.3 The slide rule

Ability to use a slide rule with speed and accuracy will be of tremendous value to 
students, not only in the Physics course, but in any career involving numerical 
calculations. Some will need a lot of encouragement.
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The use of the slide rule could be introduced by students making simple rules for 
themselves. This can conveniently be done using graph paper at least 200 mm long, 
which should be cut along a straight line to give two pieces with graph markings 
right up to the edge. A linear scale from 0 to 1.0 in divisions of 0.1 should be 
marked over a 200 mm length on each piece (see figure 1). When the 0 mark on 
one scale is placed against 0.3 on the other scale, then the number opposite 0.4 is 
0.7. The arrangement obviously adds the two numbers, 0.3 and 0.4. To use two 
scales for multiplication, the process must be converted to addition. If the 0.3 on 
the top rule stood for 10°'3 , then opposite 10°-4 on the lower scale, we find 10°-7 
which is the product of 10°-3 and 10°-4 . Indeed, the scales could be marked with the 
values of 10°, 10°' 1 , 10°' 2 , etc., as figure 2 shows. With the 1.0 on the lower 
scale set opposite 2.0 on the upper, all the numbers on the upper scale are just 
twice as big as the numbers on the lower scale underneath them.

The scales are obviously not very convenient as they stand — but the process for 
marking them more conveniently should be clear. Since 10°- 699 = 5.0, on a 
200 mm scale length, the 5.0 mark should be at a distance of 0.699x 200 = 139.8 mm 
from the start of the scale, the 1 mark (figure 3).

Table 3 gives the distance of the principal scale markings along the scale:

Scale marking, x 1 2 3 4 5 6 7 8 9 10 

Ig x 0.000 0.301 0.477 0.602 0.699 0.778 0.845 .0.903 0.954 1.000

Distance along scale
/mm 0 60.2 95.4 120.4 139.8 155.6 169.0 180.6 190.8 200.0

Table 3

Other scale points can be inserted if desired.

Division can be accomplished by setting one number opposite the other and finding 
the result opposite the 1 or the 10 on the appropriate scale. Care is needed, in all 
cases, in placing the decimal point.

The scales referred to here are known as the C and D scales on commercial rules, 
C being on the slide and D on the lower stock. There are other scales on slide rules 
whose purpose should be described if pupils have rules to refer to. Many rules have 
A and B scales, A being on the upper stock and B on the slide. These scales are the 
squares of the C and D scales and enable squares and square roots to be found. 
For cubes and cube roots the K scale is used in conjunction with the C or D scale. 
Cl and Dl scales give the reciprocals of the C and D scales respectively.

Students should be given instruction and practice in the use of the C and D scales 
and in the evaluation of squares, square roots, and reciprocals. Efficiency in using a 
slide rule comes with experience and they should be encouraged to use the rule 
whenever possible. Detailed instructions for slide rule use are not given here. Most 
modern 0-level texts for mathematics give these and manufacturers supply 
instructions too.
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Exercises for section 1.3

1 Evaluate the following with the home-made slide rule: 
a 3x2.5 b 4x5 (set the 10 mark under the 4) c 5/3 d 3/5 e 300/5 f 300/50.

2 Find the value of: 
a 79 b 8* c1.53 . : .

1.4 Scaling

Children grow up in a world of models — model cars, model aircraft, and model 
houses and furniture. These scale models are replicas, in miniature, of the real thing. 
Ask students to suppose they were to make a model of a house of the dimensions 
shown (figure 4), the length of the model to be 30 cm. What should its height and 
breadth be?

Figure 4

To make a replica, all linear dimensions must be reduced from metres to an equal 
number of centimetres. The scaling factor is 1 /100 — the model is 1 /100 of full 
scale — and all linear dimensions are reduced by the same ratio, the 'ratio of two 
quantities of the same kind being the number of times the first is bigger than the 
second. For example, the ratio of length to height of the house is 2.5, both for the 
real thing and for the model.

The scaling factor is not the same for all aspects of a model. Ask the class what the 
scaling factor is for the area of a wall (1 /104 ) and for the volume of the house 
(1/106 ). Students should appreciate that: 1 like quantities are being compared 
again, 2 the scaling factor is different because areas involve products of two lengths 
and volumes products of three lengths, 3 it is not necessary to calculate areas or 
volumes to obtain the appropriate scaling factor. This is a good opportunity to 
remind the class of the formulae for the circumference (2nr) and the area (nr2 ) of a 
circle, and for the surface area (4nr2 ) and volume (-fw3 ) of a sphere. These involve 
powers of the radius, so that, if the radius is scaled by a factor k, the area scaling 
factor will be k2 and the volume scaling factor k3 .
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Figure 5

In scaling, angles do not change. The end of the house in the real case is a 
similar figure to the end of the model house (figure 5). All the corresponding 
angles are equal. Students may need to be reminded of the trigonometrical ratios. 
In a right-angled triangle, e.g. AABC,

the sine of an angle opposite side . . AB-P~————— i.e. sin c = —-
hypotenuse BC

. . , , adjacent side the cosine of an angle = —-—————
hypotenuse

i.e. cos c = AC 
13C

, . . , , opposite side . . ABthe tangent of an angle = —*-*-————— i.e. tan c = —
adjacent side AC

All these are ratios. In scaling, both lengths will change by the same factor and the 
ratio does not change. So the angles remain the same.

A few simple scaling exercises will be needed here. Chapter 4 of PSSC Physics is 
useful reading for students, with examples at the end. There is a film to go with this 
reading if teachers care to use it. ('Change of scale', 900 4120-6, Guild Sound and 
Vision Ltd, formerly Sound Services Ltd).

The meanings of the sine, the cosine, and the tangent of an angle must be learned, 
for they are part of the daily language of science and mathematics. Examples may 
be needed to help learning, but these should not be long tedious calculations 
involving difficult angles. Rather, they should be directed towards recognition of the 
appropriate ratio and obtaining a value from tables.

Students might be expected to 'discover' some trigonometrical relationships for 
themselves by doing questions of a more structured kind, such as 10, 11, and 12 
in the examples which follow. They should know the relationships between the 
ratios for angle 9 and those for angle (90 — 0), and they might benefit from a first 
look at the approximations which can be applied when angles become small. The 
trigonometrical form of Pythagoras' theorem is not difficult to obtain, but the

~n
Section 1 Computation



Figure6

example that follows, leading to expressions for the sine and cosine of 20 should 
only be used as a 'buffer' for the fastest pupils at this stage.

In figure 6, ABC is an isoceles triangle with AB = AC = 1 unit. AN is drawn 
perpendicular to BC, and because ABC is an isosceles triangle, it bisects BC, 
i.e. BN = NC so that NC = i-BC. BD is drawn perpendicular to CA produced. 
Let angle BCA = 0.

a What is the size of angle CBA?
[6.] 

b What is the size of angle BAD?
[20.] 

c What is the size of sin 20?
[BD.] 

d Use triangle BDC to obtain a value for sin 9.
[BD/BC.] 

e Use triangle ANC to obtain a value for cos 0.
[NC.] 

f What is the product sin 0 x cos 0 equal to ?

g Use the answer to c to obtain an expression for sin 20.
[2 sin 0 cos 0.] 

h Use the fact that AD = CD- 1 to find out what cos 20 equals.
[2 cos2 0-1.]

Examples for section 1.4

1 The data in table 4 refer to two 'model' cars.

Length Breadth

Rolls-Royce Silver Shadow 5.2m 1.8m 

Rolls-Royce model 76mm 28mm ! 

Aston-Martin DB6 4.6m 1.7m. • 

Aston-Martin model 73 mm 27 mm 

Table 4

Which is the scale model and what is the scaling factor? 
[Aston-Martin, 1/63 approximately.]
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2 A geographers' globe is a scale model of the Earth. If the radius of the 
globe is k times the radius of the Earth, what is the ratio of the following quantities 
on the globe to those on the Earth? 
a the length of the Equator
b the area of the circle of which the Equator is the circumference 
c the surface area 
d the volume

[k, k2 , k2 , k3 .]

Figure 7

3 Figure 7 is a plan view of a scaled up version of the packing of atoms in a 
simple crystal. Lengths have been scaled up by a factor of 10 million. What is the 
scaling factor for a the area occupied by an atom b the volume occupied by an 
atom? c Are the angles between the places joining atom centres different from 
those drawn on the scaled up diagram? 

[1014, 10 21 , No.]
4 If all the atoms in a 22 s.w.g. copper wire grew to be 50 mm in diameter, 

what would be the diameter of the wire?
Diameter of a copper atom = 2.5x 10~ 10 m. Diameter of 22 s.w.g. wire = 0.711 mm. 

[140 km approximately.]
5 If all the linear dimensions of a wire are scaled down by a factor of 4, by 

what factor does a the volume b the surface area change?
c How would the breaking strength change if the strength were proportional to the 
cross-sectional area?

[1/64,1/16,1/16.]
6 The heat loss per unit time from a living body is proportional to the surface 

area of the body. If the linear dimensions of a human being were doubled, how 
would the heat losses change? By what factor do you think the food intake would 
change? . 

[4.]
7 If you make a one-tenth model of a table out of the same material, and the 

original had a mass of 20 kg, what would be the mass of the model? 
[20 g.]
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8 A rocket rises vertically for 15 km, then at 30° to the vertical for 80 km 
along its path, and finally at 60° to the vertical for a further 100 km. How high is it 
above ground level and how far has it moved horizontally? 

[134km, 127 km.]
9 A trolley on a horizontal surface is pulled with a force of 3N by means of a 

string inclined at 40° to the horizontal. What is the force accelerating the trolley 
along the plane? 

[2.3 IM.] 
10 ABC is a right-angled triangle and the angle at C is equal to 9 (figure 8).

Figure 8

a Write down the ratios for sin 9, cos 0, tan 9.
b What is the size of angle B in terms of 0?
c Write down the ratios for sin (90-0), cos (90-0), tan (90-0).
d What does sin (90 — 0) equal amongst the answers to a?
e What does cos(90—0) equal amongst the answers to a?
f Express tan (90 — 0) in terms of tan 6.

11 Using the triangle in 10, Pythagoras' theorem tells us that 
AB2 + AC2 = BC2 .
a Find an expression for AB in terms of BC and 9. 
b What is AB 2 equal to? 
c What is AC2 equal to in terms of BC and 0? 
d Substitute these in the expression above and simplify the resulting equation.

12 Draw a right-angled triangle having one angle very small (5° or less). 
Measure the angle and work out the approximate values of the sine, cosine, and 
tangent of this angle. Examine tables for the ratios for small angles. What can you 
say about the values of sine, cosine, and tangent for small angles?
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Section 2

Functions
There is much in Section 2 that is revision of earlier work, and teachers should not 
spend long on it if the class is familiar with and able to handle the content. The 
work is concerned with displaying and recognizing the functional relationships 
ycc x, yoc 1 /x, y oc x2, y cc 1/x2 , most of which appear in the Physics course 
at some stage. In this way, experience is gained with the graphical and algebraic 
methods of expressing these functions or patterns. Those students who are not 
mathematically inclined will need all the reinforcement of basic ideas that is 
possible. Plenty of experience with numbers, graphs, and equations will help in 
establishing a feeling for such relationships.

Graphs of the trigonometrical functions and growth and decay patterns are dealt 
with later.

2.1 Introduction

A brief introduction will be needed. It might be on the following lines:

There are very many examples in physics, in other sciences, in economics, and in 
daily life, where changing one thing can result in the change of another thing. To 
take some examples, the temperature at which water boils changes if the external 
pressure changes; increasing the force applied to a rubber band fixed at one end 
causes an increase in its length; increasing the price of motor fuel causes an 
increase in the cost of groceries. If more is to be found out about the detail of the 
processes involved, or if predictions regarding behaviour are to be made, or if different 
materials are to be compared, measurements must be made to obtain sets of 
numbers which express the value of one quantity for a chosen value of some other 
quantity. As an example, in studying the way in which a spring extends, we might 
apply known forces and measure the extensions those forces produced.

Force, F/N 0246 8 10

Extension, e/mm 0 3 6 9 12 15

On the top line are the numbers of units of force used, the factor whose magnitude 
the experimenter selects. Below each of those numbers is a number expressing the 
extension resulting from the application of that particular force. The quantity whose 
value is chosen is frequently called the independent variable (in this case, the force), 
the other quantity being the dependent variable. Clearly, there is a pattern between 
these pairs of quantities. What is it and what would be a useful way of displaying it?'

It is probably enough to say that a function is a relationship between one set of 
quantities and another. Students who have followed a course based on one of the 
recent mathematics projects may draw a mapping diagram to show the relationship 
(figure 9). Because there is a linear relationship between force and extension, equal 
increments of force give equal changes in the extension.
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nsion/mm 
-16

force interval

corresponding 
extension interval

Figure 9

In physics, another way of displaying such patterns is of enormous value. This is 
the graph.

2.2 Co-ordinates

If necessary (and it should usually not be), the idea and application of a co-ordinate 
system can be revised by means of the National Grid system used on Ordnance 
Survey maps. Students could practise identification of places on local maps by 
means of co-ordinates and should appreciate that, to avoid confusion, it is necessary 
to have a rule about which co-ordinate is stated first. That rule — the co-ordinate for 
distance east of the origin before that for distance north of the origin — is the same 
as the one used when specifying position relative to a set of cartesian co-ordinate 
axes, the 'east' reading being referred to as the x co-ordinate, the 'north' reading 
as the y co-ordinate. If needed, exercises should be set to give practice in plotting 
points, and negative co-ordinates should be included in the data. It might be wise 
to include an example in which the axes represent quantities which are not distances.

Exercise for section 2.2

1 Draw axes on a sheet of graph paper. Choose the origin to be somewhere 
near the middle of the paper. Mark values along the axes from 0 to 10. Plot the 
following points on the graph paper:

(0, 0), (4, 3), (3, 4), (7, 8), (0, 7), (-3, 0), (-4, -3).

Where does the line joining ( — 3, 0) with (7, 8) cut the line joining (3, 4) with 
(0,7)?

[At (2.6, 4.4).] . .
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2.3 Proportionality

Descriptions of the graph representing the data given in section 2.1 should be asked 
for and the following points brought out:

1 The graph is a straight line passing through the origin.
2 It represents a behaviour in which doubling the quantity represented by the 

x co-ordinate doubles that represented by the y co-ordinate, i.e. if (a, b) 
lies on the line, then (2a, 2b) is also on the line.

Students should be told that this is called 'direct proportionality', that it is written 
as force cc extension it produces, and that there are many examples of pairs of 
quantities which behave similarly. Such behaviour is not confined to scientific 
matters: the cost of buying sweets is in direct proportion to the weight bought, and 
if the weight bought is doubled, the cost is doubled too!

A few exercises in which data are examined to see if one quantity is proportional to 
another would be useful here. Examples should progress from the easy to the more 
difficult and should include cases in which direct proportionality does not occur. A 
sample of exercises appears below.

Examples for section 2.3

1 Is the distance travelled by these cars proportional to the time taken?

a Time/s 0 40 80 120 160 200 

Distance/km 012345

[Yes.] 

b Time/s 0 20 45 70 105 135

Distance/km 0 1.6 2.6 3.3 4.1 4.7 ,

[No.]

2 Is y proportional to x for the following data?

x: 1.7
y: 5.1
[Yes.]

x: 3.0
y: 8.0
[No.]

x: 20.0
y: 1.00
[No.]

2.8
8.4

5.5
18.0

22.5
1.07

3.4
10.2

7.5
26.0

24.7
1.19

4.2
12.6

10.0
36.0

27.3
1.44

5.3
15.9

28.9
1.76
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2.4 Proportionality expressed algebraically

If x represents the value of the independent variable and y that of the dependent 
variable, then, if y oc x, the data will show that y/x has a constant value for all the 
values of x. Perhaps the class will have noticed this already, but it should be 
verified for the data given in the examples used. If such a relationship between the 
quantities involved is known, it has advantages over the pictorial methods of 
displaying data; it is briefer and easier to use, and is perhaps more accurate.

Generalizing further, a pattern of direct proportionality can be written as y/x = m 
where m is the constant of proportionality. Some students may find the following 
helpful in appreciating the significance of m. In the example chosen in section 2.1, 
each value of the dependent variable corresponded to just one value of the 
independent variable — as though there were a machine (figure 10) into which one 
fed the value of the x co-ordinate, and the machine multiplied this by m and fed 
the result to the output.

Figure 10

Some practice in manipulating the equation and writing it in different forms may be 
needed (e.g. y/x — m, y = mx, x = y/m), and students should know how to get the 
value of m from the graph. Some discussion of the units of m will be necessary, 
including the case where x and y have the same units and m is simply a number. 
When determining the value of m from the graph, it is wise to point out that it is 
necessary to choose two points on the straight line, one of them, in this case, being 
the origin.

The introduction of algebraic symbols may be a difficult step for some students. The 
step may be made easier by using symbols, other than x and y, to represent 
physical quantities, and by frequent statement of the meaning of those symbols. 
Numerical examples will help the weaker mathematicians to gain confidence, 
particularly in obtaining equations to represent numerical data arid in solving simple 
direct proportion problems.

Examples for section 2.4

1 Given that y cc x, fill in the blanks below, 
x: 12 10 7... ... -2
/: 42 ...... 14 0

Write an equation relating x to y.
[35, 24.5,4,0, -7; /= 3.5x.] .
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2 The mass m, of a substance is directly proportional to its volume V. It is 
found that a cube of side 5 cm has a mass of 1 kg. Write an equation for m in 
terms of V. What is the unit of the constant and what name is usually given to it? 
Rewrite the equation with the constant as the subject.

[m = 8V using g and cm3 units, or m = 8000V using kg and m3 units. 
Density = m/V.]

3 Write equations for those patterns in the examples for section 2.3 in which 
one variable is proportional to the other.

[For 1a distance in km = J_xtime in s. For 2a y = 3x.]
4 The following readings were taken in an experiment to measure how much 

current / flowed through a wire when a p.d. V was placed across it.

//A: 1.25 2.15 3.15 4.35 
1//V: 1.40 2.35 3.45 4.75

Is this an example of direct proportionality? If you think it is, write down an 
equation for V in terms of /, stating the unit of any constant used. 

[Yes; V = 1.09/; VA~ 1 or SI].

2.5 Inverse proportion

Inverse proportion should also be examined and represented by equations. A simple 
pattern of this kind is:

x: 123456 : 
y: 120 60 40 30 24 ?

This pattern is clearly not one of direct proportionality, for as x gets larger, 
y decreases. What happens when x is doubled? What is the missing number 
in the y sequence? Can a way of getting a constant number from corresponding 
values of x and y be discovered?

It may help to remind the class of a Boyle's Law experiment (Nuffield 0-level 
Physics Guide to experiments IV, experiment 76) for which the following is a 
typical set of values:

Air pressure, p/kl\l m~ 2 100 120 140 160 180 200 

Air volume, V/cm3 60.0 50.0 42.9 37.5 33.3 30.0

The fact that pV is constant may be more immediately obvious than that p oc 1 /V, 
so that the pattern will be expressed as pV = k. This should also be written as 
V = k/p. The volume is proportional to the reciprocal of the pressure, a behaviour 
described as inverse proportion. Students should also plot a graph to show how V 
varies with p and see that:

it is not a straight line, • -
it does not pass through the origin,
if (a, b) lies on the curve, then (2a, b/2) and (a/2, 2b) do also.

Some exercises should follow this, each including some discussion of the units of 
the constant involved.
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Examples for section 2.5

1 Suppose that the amount by which the length of a block of material is 
compressed for a given force depends on the cross-sectional area as follows:

Cross-sectional area/mm2 100 200 300 400 

Amount compressed/mm 6 3 2 1.5

Is this inverse proportion? What equation would represent this pattern? What 
would be the value and the unit of the constant? 

[Yes; compression x area = 600 mm3 .]
2 Suppose that the frequency of the note emitted by a taut string plucked 

at its midpoint varies with the length of the string as follows:

Length/mm 500 400 332.5 250 

Frequency/Hz 256 320 384 512

Is this inverse proportion? What is the equation these quantities fit, and what is the 
unit of the constant?

[Yes; length x frequency = 128 m s~ 1 .]
3 Do the following numbers fit an inverse proportion pattern? 

p: 3.1 2.7 2.2 
q: 1.9 2.15 2.6 
[No.]

4 The time of swing of a pendulum of fixed length is inversely proportional to 
the square root of the acceleration due to gravity. A 1 -second pendulum is 
transported to the Moon where the acceleration due to gravity is only -1 of the 
Earth value. What is the time of swing? 

[2.45 s.]

2.6 More difficult patterns or relationships

Experience should be extended to other patterns. This time, work could start from 
the algebraic equation, a pattern being obtained from it and a graph plotted to 
display that pattern. The relationships q = kp 2 and q = kp~ 2 might be considered, 
k being given a definite numerical value.

Students should be clear that q is not directly or inversely proportional to p in these 
cases, but that q is so related to p2 . If there is any doubt, numerical work will reveal 
the proportionality and graphs of q against p2 and q against 1/p2 respectively will be 
straight lines through the origin. The effect of the value of k on the pattern and on 
the graphs may also need some discussion.
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This work should not be laboured. The important thing is that more complicated 
patterns exist. They give an opportunity for more practice in handling physical 
quantities, and their arithmetical and graphical expression.

Examples for section 2.6

1 What is the algebraic relationship for each of the following sets of numbers 
or quantities? 
a
p: 0 1 4 9 16 
q: 0 1 2 3 4

[q = p* or q2 = p.] 
b
p: 0 1 2 3 4 
q: 0 2 8 18 32 .

[q= 2p2 .] •;-'._. .:. . .. 
c
Time of swing of pendulum/s 246 

Length of pendulum/m 149

[Time = 2x^/length.]

2 The time of swing of a pendulum is proportional to the square root of its 
length. If a pendulum of length 0.25 m has a time 1 s, how long should it be to 
have a time of 2 s? 

[1 m.]
3 In successive seconds, a falling object travels 5, 15, 25 metres. How is the 

distance it has travelled from its starting point related to the time it has been 
travelling?

[f/s: 0123
d/m: 0 5 20 45 d = 5f2 .] .

4 The illumination of a surface by a certain lamp is in inverse proportion to 
the square of the distance of the surface from the lamp. Where would you place the 
surface so that its illumination is twice as big as that at 1 m from the lamp? 

[0.707 m.]

2.7 Dependence on more than one variable

Very often a quantity is found to depend on more than one variable. For example, 
the time, t, taken to travel at steady speed from one place to another, depends 
directly on their distance apart, d.

That is, t oc d if the speed is constant.

However, the time to travel between two places a fixed distance apart at steady 
speed is in inverse proportion to that speed, v.

That is, t cc 1 /v if d is constant.
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How will t change if both d and v change? If both d and v are doubled, how does t 
change? If d is doubled and v is halved how does t change? How has d/v changed?

Students should see that t oc d/v or t = kd/v.

Some teachers may care to supplement the work at this stage with experiments 
leading to simple quantity patterns, e.g. distance—time measurements for a trolley 
rolling down an incline (Nuffield 0-level Physics Guide to experiments IV, 
experiment 3), but they should consider whether or not the time involved could 
not be spent better in giving students practice at manipulating 'fictitious' patterns. 
Confidence increases when the class handles numbers successfully, algebraic 
equations mean more when they are seen to represent patterns relating quantities 
which are given actual values, and the weaker members of a class may benefit by 
having more practice.

Examples for section 2.7

1 The electrical resistance of a material in the form of a wire varies directly 
as its length and inversely as its cross-sectional area. Write down an algebraic 
expression for its resistance.

2 The pressure of a gas is thought to be inversely proportional to its volume 
when the temperature is kept constant, and directly proportional to its absolute 
temperature when the volume is kept constant. Do the following values support 
that view?

Pressure/N cm" 2 1000 1200 1500

Volume/cm3 72 70 60

Temperature/K 300 350 375

Yes; £^ = 240 N cm K~ 1
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Section 3

Lineargraphs
3.1 Introduction

The work of Section 2 has shown that if y is proportional to x, that is, if y = mx, 
and if x can take on any value (if necessary, within a limited range), then a graph of 
y against x is a straight line passing through the origin. The work of Section 3 could 
start by asking what would be the effect if m had a different value. No doubt, it w\\l 
be easier for some if there are numerical data to work from. Distance—time 
relationships for constant speeds provide suitable material and students might start, 
by plotting graphs to represent y — 3x and y = 5x on the same set of axes, with y 
representing distance travelled and x the time elapsed. The graph with the larger 
value of m is steeper.

3.2 Measuring the slope or gradient

None of what immediately follows is very surprising — in fact, some will regard it as 
obvious and hardly worth attention. Nevertheless, it is worth pursuing for the sake 
of the more difficult work to come. It would be wise to establish the method for 
measuring the slope or gradient of the graph (figure 11) from two points, P and Q, 
marked on the line. Students should complete the right-angled triangle PQR, 
measure the 'lengths' of PR and QR from the scales marked on the axes, and 
calculate the ratio QR/PR. Of course, this has the same value as m in y = mx. They 
should also be shown this more generally in terms of the co-ordinates of P, say 
(xv xj, and Q (x2 , x2 ).Then PR = (x2 -x.,), QR = (x2 -X.,).

y — xand the gradient = ———-. 
x2 -x1

But if x = mx, then y = mx2 and /1 = mx^,

so that the gradient =
— mx.

(x2 -xn ;
= m.

Figure 11

Sections Lineargraphs 23



There are some important points to drive home about this. First, it doesn't matter 
which two points on the line are chosen — except that it would be better to choose 
points widely separated to make the measurement as accurate as possible. If 
students find the algebraic approach difficult, they might appreciate the 
geometrical method illustrated in figure 12, or prefer to show it by basing 
calculations on different points. Second, the visual steepness of the line depends on 
how the scales are marked off on the axes, but the gradient does not, because PR 
and QR are measured from the scales on the axes.

PR = 3PT
QR = 3ST

QR/PR = ST/PT

Figure 12

For the sake of the work to come, teachers should take the opportunity to clarify the 
meaning of m = (y2 —y.,)/(x2 —x.,). (V2 — y-,) ts the change of y corresponding to a 
change in the value of x equal to (x2 — X,). Thus the gradient measures the rate at 
which y changes with respect to x.

Exercise for section 3.2

Express the following physical quantities as 'the rate at which ——— changes with
respect to ———.'
a speed b acceleration c the force constant for a spring d resistance.

[a distance, time; b velocity, time; c force, extension; d p.d., current.]

3.3 Lines which do not pass through the origin

All the linear graphs considered up to now have passed through the origin (if 
y = mx, then when x = 0, y = 0). What about the line which does not, the line 
which crosses the /-axis at a scale distance c from the origin, the intercept? What is 
the algebraic expression represented by the line? The class might be asked to 
imagine a parallel line through the origin (figure 13). The two lines clearly have the 
same gradient and for any and every value of x, the corresponding value of y on the 
line with intercept c is just c greater than the value of y on the line through the 
origin. The equation for the latter is y = mx, whilst that for the former is 
y = mx+c. A quick look at numerical examples, e.g. plots of y — 5x and 
y = 5x4-7, should convince students of this:
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Figure 13

For x values of 012345
y = 5x has y values: 0 5 10 15 20 25
y= 5x+ 7 has y values: 7 12 17 22 27 32

The graphs are parallel lines; the gradients measured from two points on each line 
are the same.

It is important that the class should note that, if y = 5x+7, y is not proportional 
to x, for doubling the value of x does not give a y value twice as big. In general 
terms, if y = mx+c, then when x = 1, y = m+c, and when x = 2, y = 2/77+c, but 
2/77+c is not equal to 2(m+c). Thus, y = mx+c gives a straight line graph (for this 
reason it is called a linear relationship) which has a gradient of m and an intercept c. 
When c = 0, the graph goes through the origin and y is proportional to x. Changes 
of scale by which the axes are marked out do not change the values of m or c.

Students will need practice in measuring gradients and intercepts. Equations of 
lines parallel to the axes should not be omitted ('If we think of the line x = 2, 
y can have any value you like but x must always equal 2'). Negative intercepts and 
negative gradients must be included too. In every case, the equation plotted should 
also be rearranged with y as the subject, i.e. as y = mx+c. A few examples follow.

Examples for section 3.3

1 Sketch the graphs of:
a y = 3x b y = 3x+4 c y = 3x-4 d y = 4-3x e x = 3y f x = 3y-4. 
What are the gradient and intercept in each case?

2 The following data show how the length of a rod depends on the 
temperature measured in °C.

50 100 150 200
1001 1002 1003 1004

Temperature 0/°C 

Length /./mm

What is the length at 0 °C? What is the gradient of the graph? What is the equation 
of the graph?

[1000 mm; 2x 10~ 2 mm °C~ 1 ; L = 2x 10~ 2 0+1000.]
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3 The specific heat capacity of nitrogen under certain conditions can be 
represented by C = 0.732 + 0.000067 0 where 0 is the temperature in °C and C is 
measured in J g~ 1 °C~ 1 . What is the specific heat capacity at 0 °C? How rapidly 
does the specific heat capacity rise with increase of temperature? 

[0.732 Jg- 1 0 C~ 1 ; 0.000067 J g~ 1 °C" 2 .]
4 Using the following data, find out how the density of sodium chloride 

solution varies with concentration.

Concentration C/
grammes per 100 g of solution 5

1.033

10

1.071

15
1.109

20

1.147
25

1.185Density rf/g cm" 3

[d= 0.995 + 0.0076 c.]
5 Given that x and y are related linearly and that when x = 1 , y = 1 and 

when x = 7, y = 4, find the relationship.

3.4 The linear graph in scientific work

This is an appropriate point at which to say something about experimental work and 
straight line graphs. In scientific work, it is frequently necessary to find out how one 
quantity depends on another. This can be done by taking corresponding 
measurements of the two quantities and plotting a graph. If the graph is linear, then 
it should be easy to find that relationship. If it is not linear, the puzzle is harder. 
There is, however, a small though important difference between what has been done 
up to now and what has to be done with experimental measurements. Up to now an 
equation has been taken (or fictitious 'results' derived from an equation have been 
used), x has been given an appropriate value, and the value of / has been 
calculated. Provided the arithmetic was faultless, the value of y was known 
exactly and the various points, if plotted correctly, lay exactly on a straight line. 
However, with experimental measurements, there will inevitably be some error in 
those measurements and the points when plotted will, in all probability, not lie 
exactly on a straight line. The first decision needed is whether or not the 
relationship can reasonably be represented by a linear graph. Consider the examples 
shown in figure 14.

Figure 14
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In figure 14a the points lie scattered about the line without any definite trend one 
way or the other. In figure 14 b, however, though the distance of the points from the 
line is no greater than in figure 14s, there is a definite trend. In each case there are 
as many points below the line as there are above, and in the case of figure 146 
there are even 2 points on the line, but the probability would be that the 
relationship between x and y indicated by figure 146 would be better represented by 
a curve. Drawing 'the best straight line' through a set of points does not necessarily 
mean the line passing through the greatest number of them — but a line such that 
there is no definite trend of the points away from the line and with about as many 
points on one side of the line as the other. It should be pointed out that linear 
relationships should not be assumed to hold over ranges of the variables greater 
than those in which measurements have been made, unless there are good reasons 
for assuming this.

Students should now be given examples of experimental measurements which 
might follow linear laws and be asked to find the best relationship between them. 
Some of these examples should involve the use of a 'false' origin and the problem 
of finding the intercept. Though the direct method, (measure the gradient and then 
substitute the co-ordinates of a point on the line into / = mx+c in order to 
calculate c) may appeal, the opportunity can be taken to show the following 
method. • ' • . :

2x,

By similar triangles (figure 1 5): 

/a-/, _ 2*,-*, _ ^

Thus, K2 ~K1 = XT — c, giving c = y, — (y2 ~ K-,) which can be obtained from the 
graph with the false origin, though it depends on having an x scale which includes 
a value twice that of the smallest.
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Examples for section 3.4

Are there linear relationships between the corresponding quantities in the following 
experimental results? If so, establish the equation linking them.

1 The density of water at different temperatures:

Temperature/°C 10 20 30 40 50 

Density/kg rrr3 999.7 998.2 995.6 992.2 988.0 

[This relationship is not linear.]

2 The deflection of the free end of a cantilevered beam for different loads at 
the free end:

Load/N 0.5 1.0 1.5 2.0 2.5 3.0 

Deflection/mm 31 58 89 121 149 181 

[Linear: deflection in mm = 60 x load.]

3 The depth of immersion of a loaded test-tube for different loads:

Load/1 <T 2 N 0 2.0 3.0 5.0 6.0 8.0 10.0

Depth/mm 1 6 10 12.5 17 21 26

[Linear: depth in mm = 250x load + 1, with load in N.]

4 The current, /, through a solution for different applied voltages, V: 

Current/mA 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Voltage/V 1.32 1.72 2.00 2.22 2.69 3.08 3.35 3.66 3.96 

[Linear: V = 340 /+1.30 (V in volts, / in amperes).]

5 The current / through a wire for different applied voltages V:

Voltage/V 0 1.0 2.0 3.0 4.0 5.0 6.0

Current/mA 0 1.4 3.3 4.7 6.1 7.9 9.2

What is the resistance of the wire?

[Linear: / = 0.001 55 V (I in amperes, V in volts), 645 ohms.]

6 The frequency of the note given by blowing across the top of an open 
bottle and the volume of water in the bottle:

Frequency/Hz 320 341 384 427 480 512

Volume/cm3 33.5 51.5 79.0 105 123 131

[Not linear.] •
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3.5 The area 'under' a graph

The aim here is to give a first introduction to finding the area under a graph by the 
method of strip-division and to ascertaining whether that area has any physical 
significance. Students should have met this in their 0-level work and it may have 
been raised earlier when work on linear graphs started.

Figure 16

Sometimes the 'area under a graph' has a physical significance and"ttre~class should 
be shown that the area under a velocity—time graph gives the distance travelled. 
This is quite simple for the case of uniform velocity. For an object travelling at 
constant acceleration from rest, the velocity is proportional to time and the 
velocity—time graph (figure 16) is a straight line through the origin. Now consider 
the moment when its velocity is /. A very small time later, its velocity will have 
increased a small amount and it will have travelled a distance equal to 
average speedy, time interval. This is the same as the area of the shaded strip if the 
height and width are measured from the scales on the axes. The total distance 
travelled from rest in time t will be the sum of all the strips making up AOAB — and 
the 'line of tops' of the strips can be made to follow OB more closely by simply 
imagining very many strips of very small width.

Distance travelled, s = area of AOAB
= -lyf where v = velocity at time t. 

But if the acceleration is a, then v = at and s =

A similar argument shows that the area under a force—extension graph for a spring 
gives the energy transformed in stretching it slowly and that the area under a 
p.d.—charge graph for a capacitor gives the electrical energy stored.

It is important to emphasize that, in computing these areas, the dimensions must be 
taken from the scales marked on the axes. It is worth mentioning that-it is, of course, 
only the area 'under' the graph if the variables are plotted the 'right' way round. 
Plotted the other way round, it would be the area to the left of the line which was 
significant. . ,
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Examples for section 3.5

1 Data relating to the stretching of a spring are given in section 2.1. How 
much energy is transformed in stretching it slowly 
a from an extension of 0 mm to an extension of 5 mm?

[8.3x10- 3 J.] 
b from an extension of 5 mm to an extension of 10 mm?

[25x10- 3 J.]
2 In a flying start to a car race, a car passes the starting line at 30 m s~ 1 

with a constant acceleration 3 m s~ 2 . Using a graphical method, find how far it 
travels in the first 10 seconds. 

[450 m.]
3 The acceleration of a rocket increases linearly with time and has reached 

2 m s~ 2 after 60 seconds. The second stage is then ignited, and the acceleration 
increases more rapidly (though still linearly) to reach a value of 8 m s~ 2 at 120 
seconds after blast off. At that time, the third stage is fired and the acceleration (still 
increasing linearly) reaches a value of 24 m s"" 2 at 1 60 seconds,after blast off. 
What is the significance of the area under the graph of acceleration against time and 
what is the value of the quantity after 160 seconds? 

[Velocity, 1000 m s" 1 .]

R Radius

Figure 17

4 The circumference of a circle is proportional to the diameter, the constant 
being n, and a graph of circumference against radius (figure 17) is a straight line 
passing through the origin and with a gradient of 2n. What does the area of the 
narrow shaded strip represent? What is the area under the graph up to radius R 
equal to?

[TlR 2 .]
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Section 4

Non-lineargraphs
Section 4 is concerned with some simple non-linear functions and raises the 
question of how they might be plotted to obtain straight lines. Students who have 
already been through the work of Section 2 ('Functions') will have had much of 
the experience of graph work suggested in the Introduction that follows and for 
them it need be no more than a brief recapitulation. For those who omitted the 
work of Section 2 a more detailed treatment is worth while.

4.1 Introduction

The work could start with the class plotting and deducing the shapes of graphs 
described by algebraic equations, e.g.:

1 y = 4x 2 y = 4x-2 3 y = 4x2 4 j/2 = 4x 
5y = 4/x 6y=1/x 7y=4/x2 Sj/=4(x-2) 2 

It will probably be enough if each student tackles two examples and is asked to 
describe results to the other members of the class, pointing out the important 
features of each graph, e.g. in the case of / = 1/x, y gets larger as x gets smaller 
and vice versa, and the curve never crosses the axis. It will be necessary to prompt 
students to think about both positive and negative values of the variables. The 
significance of constant factors should be considered and so should the effects that 
a change of magnitude or sign would have.

It is not intended that any of this should become laboured. The aim is to get some 
feel for graphical work, not that the class be given a potted course on algebraic 
geometry. Teachers should limit or extend the work according to their students' 
abilities.

The forms of the equations above are the same as those to be met within the 
Physics course, and some examples drawn from physics follow. Teachers may 
prefer to use these in addition to or in place of those given above. At the end of the 
day, it is hoped that the shape of the graph in a given case might be 'guessed' 
from the appearance of the equation.

Examples for section 4.1

Discuss the shapes of the graphs in the following cases:
1 A graph of velocity v against time t where the following equation fits 

the motion:

2 A graph of distance s against time t where the following equation fits 
the motion:

s = 5 t2 . ' •
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3 A graph of velocity v against distance s where the following equation 
fits the motion:

v2 = 20 s 
or v2 = 20 s+10.

4 A graph of force F against distance r where the following equation 
applies:

F = 5/r2 .

5 A graph of potential V against distance r where the following equation 
applies:

V = 1 0/r.

4.2 Linear graphs from non-linear equations

Section 4.2 gives a simple illustration of another use to which graphs can be put. 
Theories often lead to equations between quantities and an experiment to check the 
predicted variation will show whether the theory has failed or not.

The aim of many experiments is to find out how one quantity changes when some 
other quantity is changed. A graph is a convenient way of displaying the pattern 
of the measurements, and should that graph be a straight line, it is possible to find 
an equation relating the values of the dependent variable to those of the 
independent variable. The question that now arises is: 'If the graph turns out to be a 
curve, is there any way in which the equation relating the variables can be found?

The class might consider the pattern of values for the distance an accelerating 
trolley has moved from its rest position after various times:

Timef/s 0.8 1.3 1.9 2.3 2.9 

Distance s/m 0.141 0.372 0.794 1.113 1.850

s increases much more rapidly than t and a graph of the data has a shape much 
like that of y = kx2 . In any case, s oc f2 is expected if the trolley has uniform 
acceleration, but it is difficult to say with certainty that the s—t graph is of the 
s = kt2 shape. Had it been a straight line, it would have been much easier. Can the 
s = kt2 prediction be checked by plotting the figures to obtain a straight line 
graph? If the s values are plotted as y co-ordinates and f2 as x co-ordinates and if 
s = kt2 , the equation of the graph would be y = kx, which is a straight line through 
the origin. For this test, the numbers to be plotted are:

y = s/m 0.141 0.372 0.794 1.1131.850 

x = t*/s* 0.64 1.69 3.61 5.29 8.41

These numbers do give a straight line through the origin and confirm that, in this 
case, s = kt2 , with k equal to 0.22 m s~ 2 . It should be pointed out that plotting the 
data in this way has enabled the prediction (s = kt2 } to be checked and has also 
resulted in finding the value of k.
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Students might now discuss how they would deal with data to see if these fitted 
the predicted equations in example 1, which follows. In each case, they should 
consider what information could be gained from a measurement of the gradient and 
the intercept of the linear graph. Parts e and f might be attempted if the other parts 
prove easy, and some students might be helped if the equation is rearranged into 
the form y = mx+c.

k 1 For example F = ———— rearranges to r = ^fk—+d
*• ' | I V| I

i ii!, . , , ,.,-!• ; 4. 4.which can be compared with y = m x +c.

Examples for section 4.2

1 How would you check to see if experimental data fit the following 
equations?
a V — C/r where C is a constant. 
b F = k/r2 where k is a constant. 
c E = ±mvz where m is a constant.

7 when F and m, are the only variables, " •
2 when F and r are the only variables,
3 when m1 and r are the only variables. . 
£e V = —— - where C and k are constants, k might be an unknown constant error in 

(/•+*)
measuring the distance r of example a. 

fc
f F = ———— where k and d are constants. Again, d might represent a systematic (r-d) z
error in measuring r.

[Possible answers

	Plot as y Plot as x Gradient gives Intercept gives

a V 1/r C Must go through (0, 0)

b F ^|r2 k Must go through (0, 0)

c £ v2 -1/7? Must go through (0, 0)

d1 F m^ Gm2 /r2 Must go through (0, 0)

d2 F Mr2 Gm^m2 Must go through (0, 0)

d3 r2 m^ Gm2 /F Must go through (0, 0)

e r 1/V C -k

f r MjF Jk * +d

There are other answers, except in the case of f.]
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2 In checking the predicted equation for the period of a simple pendulum, 
i.e. 7" = /ry/Twhere 7" is the period, k a constant, and L the length, an experimenter 
plots a graph of T against ^/ZTand obtains a straight line which does not go through 
the origin. It cuts the T axis at +0.1 second. What do you think this means?

[A systematic error in measuring the period. All the periods are too large by 
0.1 second.]

4.3 An unknown index — the use of logarithms

Though the technique is not required in the Physics course, the following might be 
useful for some practice with logarithms. It deals with the case where variables 
p and q are related by the equation p = C qm, C and m being unknown constants.

As a first step, consider the equation p = qm. Students should be shown that, if 
logarithms are taken, it becomes Igp = m Ig q and that this is simply y = mx if 
Igp is plotted as the / co-ordinate and Ig q as the x co-ordinate, the gradient of the 
graph being the unknown index m. Now they should be able to cope with p = C qm 
for which the Igp against Ig q graph has a gradient of m and an intercept of Ig C. 
In the examples that follow, the numbers have been chosen to avoid negative 
characteristics.

Examples for section 4.3

1 Show that the following values of p and q are related by p = C q m and 
find values for C and m.

p 8.70 12.04 15.16 18.12 
q 2.00 3.00 4.00 5.00 
[P = 5<7°' 8 .]

2 For certain conditions (when heat cannot flow into or out of a gas), the 
values of the pressure P and the volume V are related by an equation of the type 
PVy = k where V and k are constants. Use the following data to find the value of J 
for air.

P/IMm' 2 1.0x105 7.5x10" 5.0x10* 2.5x104 

V/m3 1.34 1.64 2.19 3.60

[y= 1.4.]

4.4 Growth and decay functions

Growth and decay functions are treated in more detail in Section 8, 'Exponential 
variations'. However, they first appear in the Physics course in Unit 2, and the 
opportunity is taken here to give students a first look at this kind of pattern.

Considering a simple growth function provides a good introduction. Living matter 
grows because cells split into two. Suppose that, in a given case, this happens 
once every minute and that there are 1000 cells to begin with. The class could be 
asked to produce a table showing how the number of cells changes with time.
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Time in minutes t 0123 4 5 

1 2 4 8 16 32
Number of cells 
in thousands n

Table 5

The lower numbers in table 5 are the powers of 2 from 2° to 2 5 . What is the 
equation which represents the number pattern in this table? Discussion should 
produce the answer n = 2 f. It should be clearly understood why the number 2 
appears in the expression, and discussion should extend to the growth functions 
n = 3'and n = 2tlz . In the latter case, some may prefer to ask what equation would 
represent a growth process which caused a doubling every two minutes. Graphs of 
y = 3X, y = 2X, y = 1" should be plotted on the same set of axes — as in figure 18.

A decay process can be represented by a situation in which half the number of cells 
alive die in 1 minute. The equation then becomes n = (i) f which can be written 
n — 1 /2 f = 2~'. A graph of y = 2~" can be plotted on the same axes as those 
above.

Those who did section 1.2 will have seen a similar growth graph already. There a 
graph of y = 10x was plotted and x was said to be the logarithm to base 10 of y. 
In these graphs, x is the logarithm to a different base of y; e.g. if y = 3X, then 
x = Iog3 y. ,

b= 1

0 1

Figure 18
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4.5 Area 'under' the graph again

It would be wrong to give the impression that all variations can be expressed by 
simple algebraic formulae. In a real situation with a wide range of variables, the 
opposite is the case. The extension of a wire is not proportional to the force 
producing it if the force becomes too large — the wire breaks! A car does not have a 
constant acceleration when we consider large times! But a graph of the variation is 
still useful. Not only does it give a picture of the pattern of the values but it can 
be used to find the range of the independent variable over which some simple 
equation describes the variation, and if there is anything significant about its 
steepness or about area, that can be determined also.

Another look at areas 'under' a graph would be useful here. The class should be 
given some examples of non-linear variations and asked to find the area under the 
the graph between certain limits. The method of strip division should be used, i.e. 
ordinates should be drawn at suitable regular intervals, and a horizontal line drawn 
at the top of each strip in a position such that the graph passes through the middle 
of it (figure 1 9). Pupils who are worried about the inaccuracies of this method 
could be persuaded to draw the ordinates at a smaller separation and try again. 
Reminders to measure the height and width of each strip from the scales marked 
on the axes will be necessary and the units in which the 'area' is measured may 
need clarification.

! I I I I I I

Figure 19

It would save time if duplicated graphs were available for distribution to the class.

Examples for section 4.5

1 Results from an experiment on stretching rubber are shown below:

Extension/mm 5 10 15 20 25 30 35 40 45 50 

Force/TV 1.9 2.9 3.6 4.15 4.6 4.9 5.25 5.5 5.7 5.9

Plot a graph of these with extension as the x co-ordinate. How much energy is 
transformed in producing an extension of 50 mm? 

[0.21 J.]

36 Supplementary mathematics



2 A car makes a journey lasting 6 minutes during which its speed v in 
km h~ 1 can be represented by the equation

0.1 v = 6f— t2 , t being the time in minutes.

Plot a graph to show how its speed changes with time and estimate how far it 
travelled.

[Strips 1 minute wide: 6.1 km; strips-1 minute wide: 6.03 km; accurate
result is 6.00 km.]

7 1500|.
E

.ii
"2 1000
13 
V)

Q)

IX
500

-1500

0 0.2 0.5 0.75

Figure 20

1.0 1.25 1.5 
Volume/dm3

3 Figure 20 shows the variation of pressure with volume for the gas in the 
cylinder of a certain engine. The useful energy output is represented by the area 
enclosed within the curve. What is it? ' • 

[630 J.]
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Section 5

Differentiation
The emphasis in Section 5 is on the graphical interpretation of differentiation. 
Uniformly accelerated motion is chosen as the situation in terms of which the new 
ideas are introduced, but it is important that students have practice with examples 
in which time is not one of the variables and in which the gradient has a physical 
meaning other than a time rate of change.

5.1 Introduction

Much of the work that follows is of a graphical nature and requires some 
knowledge of the meaning of 'gradient'. A reminder of how to measure the gradient 
of a straight line would be appropriate. The gradient is (y2 — y^ )/x2 — x., where 
(xv yj and (x2 , y2 ) are two points on the line (figure 21). The symbol Ay is often 
used to stand for a difference between two values of y, i.e. a y interval, and Ax for

Figure 21

an x interval. These are spoken of as delta y and delta x. So the gradient is Ay/Ax. 
Ask if it matters where Ax is taken or how big Ax is and bring out the fact that, for 
a straight line, the gradient is the same everywhere and equal to m in y =. mx+c. 
(If this has been forgotten, substitute in (x2 — X1 )/(x2 — x2 ).) Ask what the difference 
is between a graph (figure 22) for which Ay/Ax = +5 and one having 
Ay/Ax = —5. In the former, as x increases, y increases at 5 times the rate, whereas 
in the latter as x increases, y decreases at 5 times the rate.

Example for section 5.1

The following are the distance—time data for a particular very small air bubble rising 
in a liquid, the distance being measured from some arbitrary position.

Time t/s 012345 

Distance s/mm 10 20 30 40 50 60
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Figure 22

a What is the average speed during the first second?
[10mms~ 1 .] 

b How does the average speed depend on the time elapsed?
[It is constant.] 

c Write down an equation relating the distance with time.
[s= 10+1 Of.]

d What is the gradient of a graph of distance against time and how is it related to 
the answers to a and b?

[Gradient =10 mm s~ 1 ; it is constant and equal to the speed.]

5.2 Rate of change and gradient for non-linear variations

An easily visualized example is an accelerating car. All cars carry an instrument 
which indicates the speed at any instant. The speedometer measures the 
instantaneous speed. When it indicates 40 km h" 1 (or 25 m.p.h.) it means that if 
the car exactly maintained the speed of that instant, it would cover a distance of 
40 km (or 25 miles) in 1 hour. Data regarding the accelerating car can also be given 
in the following way:

Distance covered by car, s/m 0 1 4 9 16 25 36 49 

Time, t/s 01234567

What can be deduced about the speed from these figures? Can the instantaneous 
speed at any time be extracted from them? The car is obviously accelerating — 
during the 1st second it covers 1 m, in the 2nd second 3 m, in the 3rd second 5 m. 
In the 3rd second, the car has an average speed of 5 m s~ 1 — and this was 
obtained by dividing a distance interval As by a time interval At.

AsAverage speed during interval A? = —.
Af
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For those students who have used methods adopted by recent mathematics 
projects, it may be better to talk in terms of time and position intervals on mapping 
diagrams, as follows.

Figure 23

The first mapping diagram (figure 23) shows how time maps into position. The 
average speed, within the interval, is the distance interval divided by the time 
interval, i.e. the factor by which the intervals are scaled in mapping from time to 
position.

Average speed = scaling factor = -r-/nrt s" 1

Figure 24

The second mapping diagram (figure 24) shows how this scaling factor, i.e. the 
average speed, depends on the time. The average speed is proportional to the 
average time, the acceleration being 2 m s~ 2 . This could be shown by a third 
mapping diagram (figure 25).
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s/m

15.

_0 0 1 4 t/s

Figures 25 and 26

A graph should be sketched (figure 26) to represent the data given previously and 
the process of finding the average velocity discussed in graphical terms, to bring 
out the facts that As/Af is the gradient of the straight line joining the points on the 
graph at the beginning and the end of the time interval chosen, and that, if the 
instantaneous speed at 2 seconds were required, this average would be larger 
because the car is accelerating. A better estimate of the instantaneous speed at 2 s 
could be obtained by using a smaller time interval. The class could do some 
calculations to find the average speeds over time intervals of 0.5 s, 0.1 s, 0.01 s, 
and 0.001 s and could tabulate the results. The graph cannot be used accurately 
enough for this purpose, so it will be necessary to tell students that the numbers fit 
the equation s = t2 . The completed table should look like table 6:

since f = 2 s

since s = 4 m

f+Ar 

s+ As 

As 

At 

As /At 

Table 6

3.0 

9.0 

5.0 

1.0 

5.0

2.5 

6.25 

2.25 

0.5 

4.5

2.1 

4.41 

0.41 

0.1 

4.1

2.01 

4.0401 

0.040 1 

0.01 

4.01

2.001 

4.004001 

0.004001 

0.001 

4.001

As Af gets smaller, the value of As/Af gets closer and closer to 4.00 m s~ 1 . In 
fact, the value of As/Af could be made as close to exactly 4.00 m s~ 1 as was 
desired by taking a small enough value of Af. The limiting value of As/Af as Af 
tends to zero is written as ds/df and is called the first differential coefficient or the 
derivative of s with respect to f.

T , . ds .. As That,s,-=l,mA,. 0-.

It should be noted that ds/df and As/Af are not the same thing but that As/Af gets 
progressively closer in value to ds/df as Af becomes smaller, ds/df is the 
instantaneous speed (whose value has been found at 2 s).
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To most students, the idea of a limiting value will be new and teachers may wish 
them to have some more practice. Two sample questions are given, but practice 
with one should be sufficient.

If the above process has not been shown graphically, this should be done now so 
that students appreciate that the derivative is also the gradient of the tangent to the 
curve at the point in question (figure 27). The example used above should also be 
considered algebraically. There is a good reason for doing this. The instantaneous 
speed (the gradient of the tangent to the curve) changes as the time of travel 
increases and the algebraic method reveals how.

Figure 27

If s = f2 , then at time t+At, the distance travelled is s+ As.

.'. s+As= (f+Af.) 2 = t2 + 2t Af+ (Af) 2 .

But s = f2 , so we have As = 2t At+ (At) 2 and, dividing throughout by At,

-rr = 2f+Af. (This expression could be checked from the table.)

If At gets smaller and smaller, As/At will get closer and closer to 2t, and the limit, 
when Af-» 0, will be 2t. That is,

• 
df

This is the instantaneous speed or rate of change of distance. For a graph of any 
quantity z, the derivative dz/df measures the instantaneous rate of change of z. If 
dz/df = +7, then, at the time for which the value is quoted, z is increasing at the 
rate of 7 units s" 1 whereas if dz/dt = —7, z is decreasing at the rate of 7 units s" 1

There is an opportunity here for a quick revision of 0-level kinematics, perhaps in 
the form of a structured question for homework.
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Examples for section 5.2

1 The relation describing how the distance s in metres that an object has 
moved after various times f in seconds is s = 5t2 . Find the average speed during 
the following time intervals:
a 1.0 s to 2.0 s b 1.0 s to 1.1 s c 1.0 s to 1.01 s d 1.0 s to 1.001 s 
e 1.0 s to 1.0001 s. 
What is the instantaneous speed at t = 1.0 s?

[a 15 m s~ 1 ; b 10.5 m s" 1 ; c 10.05 m s~ 1 ; d 10.005 m s~ 1 ; 
e 10.0005 m s~ 1 . Exactly 10 m s~ 1 .]

2 A quantity y varies with another quantity x according to the equation 
y = j~x~~. Find the value of Ay/Ax for the following ranges of x: 
a x = 1.0 to x = 2.0 b x = 1.0 to x = 1.5 c x = 1.0 to x = 1.25 
d x = 1.0 to x = 1.1 e x= 1.0 to x = 1.05. 
What is the limiting value of A//Ax as Ax—> 0? 
Use four-figure tables to find the square roots.

[a 0.41; b 0.45; c 0.47; d 0.49; e 0.50. Exactly O.5.]
3 Sketch velocity—time graphs for a a stationary object b an object moving 

with steady velocity c a uniformly accelerating body d a body whose velocity is 
decreasing non-uniformly. Your answers to c and d should show velocities 
changing with time. Acceleration is rate of change of velocity, Av/ At, where Av is 
the change in velocity occurring in the time interval Af. The instantaneous value at a 
given time is the limiting value of Av/At as Af -> 0, i.e. the gradient of the tangent 
to the v—t graph at that time, and is written as dv/dt.
If a body is moving so that the distance travelled, s, is given by s = ktz where k is 
a constant, how is the instantaneous velocity related to the time? 

[v = ds/dt = 2kt.]

By taking a time interval At in which the velocity increases by Av, find the value 
of A v/ At.

[Av/At = 2k.] 
What is the value of dv/dt?

[2k.]
The acceleration, a, is constant and equal to 2k — so it doesn't matter whether Af is 
small or not.
Rewrite your equations for s and v using a instead of k and sketch graphs to show 
how s, v, and a change with time. 

[s = \ at2 , v = at.]
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4 If s = ut+^at2 , find out how the velocity and the acceleration change 
with time.

[v = u+at, acceleration = a = constant.]
5 Find a formula for ds/dt if s = t3 . 

[3fz.]
6 Find a formula for the acceleration if v = 3f2 .

5.3 Differentiation of x"and rates of change

Up to this point, the development has concentrated on the concepts of distance and 
velocity and their rates of change. This was partly because that kind of situation was 
likely to be more familiar and more easily visualized, and partly to avoid introducing 
other ideas which might have confused the issues. Now students' experience should 
be widened to cases where the derivative is not a time rate of change, but a rate of 
change of one quantity with respect to some other quantity which is not time. In 
doing this, the emphasis should be on the graphical interpretation throughout. As 
an example, the total power, P, radiated by a lamp filament depends on its 
absolute temperature, 7, approximately as T"4 . AP/A7" means the average increase 
in power radiated per unit rise of temperature in the range selected. As AT tends 
to zero, AP/A7" becomes the gradient of the tangent to the curve of P against T 
(figure 28) at a particular temperature, i.e. the 'instantaneous' rate of increase of 
power with temperature rise. Using a numerical value for dP/dT (e.g. 0.1 W K~ 1 at 
2000 K) may help students to get hold of the idea.

Figure 28
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There are cases where the gradient of the tangent to a curve has greater 
significance. If the energy stored in a spring is E when its extension is x, increasing 
the extension to x+ Ax will be accompanied by an increase of energy to E+AE. 
Since the energy transformed equals forcex distance moved (in the direction of the 
force), then the average force over the range used is Af/Ax for elastic behaviour. 
The magnitude of the force at a particular value of x is df/dx.

Other cases will, no doubt, come to mind — electric field as a potential gradient, the 
change of resistance with temperature, the e.m.f. of a thermocouple as a function of 
temperature, changes of volume accompanying changes of pressure for a gas. A 
sufficient number should be discussed for the class to appreciate the importance of 
derivatives.

Frequently, the variation between two quantities, y and x, involves a relationship 
like y = kx" where k and n are constants. How is dy/dx found in that case? The 
method is the same — consider a change of Ax in x producing a change of Ay in y.

Then (y+ A/) = k(x+ Ax)". .

This can be written as y+Ay = kx" 1 + —
I x /

It is not intended that a treatment of the binomial theorem should follow. For the 
weaker mathematicians, a simple numerical treatment plus a guess will be enough. 
Students will know that, at the end, they will imagine Ax becoming very small 
indeed so that Ax/x is a very small number. The problem is: 
what is the value of (1 +a very small number)"? 
Try various values of n for Ax/x = 0.01.

(1+0.01) 2 = (1+0.01) (1 +0.01) « 1.020
(1+0.01) 3 = (1+0.01) 2 (1+0.01) w 1.020+0.010 = 1.030
(1+0.01)^ = (1 +0.01) 3 (1+0.01) « 1.030 + 0.010 = 1.040

Each time the result is approximately 1 +0.01n and the approximation becomes 
better as Ax/x becomes smaller. In general, if Ax/x is very small,

. Ax\" /, Ax 1 +— « 1 +n— 
x} \

the error becoming smaller as Ax/x becomes smaller.
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_, . , /- Ax V . Ax . .. The expansion of 1 +— when — is very small
\ * I x 

The following, more algebraic, argument may suit some students.

.... , _ /„ AXr „ /* AX AX/. AX\ „ ^AX /AX With n = 2, n -I-— = 1 1H——H——1 +— = 1+——+ —
i vl I y \ y \ y \ v I v 
\ X / I X / X \ X / X \ X

( Ax\2 2Ax Ax1 +— = 1 +——I-a term involving the square of —.
x I x x

x

2Ax Ax .... , , , Ax = 1 +———I——h terms involving the square and cube of — xx x

„ 3Ax . Ax 
= 1 +———h terms involving the square and cube of —. 

x x

When n = 4, /1 +— )"= [1 +—) (l + — 
I x l I X M x

, 4Ax . . . /Ax\ 2 /Ax\3 /Ax\4 = 1 +———h terms involving — , — , —
X \ X ] \ X I \ X j

Each time n \s increased by 1, the number of terms Ax/x increases by 1. This seems 
to indicate that:

( i \n . . Ax l Ax Ax 1 -\—— = 1 +/?——h terms involving — to higher powers than 1. 
X I X X

( A V \ -i-— t t n j s now becomes 
x /

( Ax Ax 1 +/?——h terms depending on — to higher powers than 1 
X X

= kxn+nkxn~'t Ax-I-the other terms involving Ax to higher powers than 1. 
But / = kx", and consequently 
A/ = nkx"' 1 Ax+terms involving Ax to higher powers than 1.

Teachers using the simpler approach could substitute words like 'a correction much 
smaller than Ax/x' for the expression at the end of these equations.

Thus A//Ax = n/rx"~1 +terms involving Ax. 

In the limit when Ax tends to zero, A//Ax tends to /?/rx"~ 1 . 

.'. if / = kx",
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Though it may not occur to students, it has only been shown that this is the result 
if n is a positive integer. Whether it applies or not when n is a fraction or is 
negative depends on whether the expression obtained for (1 + Ax/x)" remains 
true. At the least, the class should be told that it does, but no more should be done 
than to show by simple numerical exercises that calculations come out correctly 
when n is a fraction or negative, e.g. if Ax/x = 0.01 and n = — 1,

-—| = (1.01)-" : 0.9901 from reciprocal tables,

f *£ « [1+ n :^| =0.99,
x] \ x '

AY
and if— = 0.01 and/? = i x 2

= (1.01 )* w 1.005 from square root tables,

Ax-—— ~ 1 +/7 —— 
X | I X

= 1.005. 

The rule for finding the derivative seems to be valid for all values of n.

The proof that dy/dx = nkx"~ 1 is not to be learned. It is included so that students 
may see that it can be done and is not prohibitively difficult. They should be 
encouraged to go through it, but it is the result that is important. Practice questions 
in quantity will be needed so students may gain familiarity. They should be told 
that the process of finding dy/dx is called differentiation (because it deals with 
small differences) and that the derivative dy/dx is sometimes called the differential 
coefficient of y with respect to x.

Examples for section 5.3

1 The charge Q stored in a battery varies with time t as shown in figure 29. 
Sketch a graph to show how the current delivered by the battery varies with time. 
What is happening over the period AB?

Figure 29
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2 The world population at various periods in history has been estimated as: 

Date 1650 1750 1800 1850 1900 1950 1960 

Population in millions 500 700 900 1100 1600 2500 3000

Sketch a graph showing how the rate of increase of population has changed 
between 1650 and 1960. What would you estimate the population will be in 1980?

3 A sodium chloride crystal is thought to be made up of regularly arranged 
charged ions, Na + and Cl~. The electrical tear-apart energy varies with separation 
as follows:

Separation r/10~ 10 m 

Energy £/10- 19 J

2.0 2.8 3.0 3.5 4.0
20.0 14.3 13.3 11.4 10.0

Draw a graph of E against r.
The normal distance between ions is 2.8x 10~ 10 m and the size of the electrical 
force between them is dE/dr. Use your graph to find the value of this force at the 
normal distance of separation.

[5.1 x10~ 9 N.]
4 The resistance of a semiconducting material varies with temperature as 

shown in figure 30. Sketch a graph to show how the rate of change of resistance 
with temperature varies at different temperatures.

Figure 30

5 Write the following statements mathematically:
a The rate of change of power, P, with current, /, flowing through a resistor is 
proportional to the current.

b Near the Earth, the rate of decrease of the temperature, T, with height, h, is 
proportional to the height.

c The rate of change of volume, V, of a sphere with radius r, is equal to its surface 
area. Can you see why?
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6 What are the approximate values of the following?
a(1+0.01) 5 b (1.005) 10 c(1-0.03) z d (0.995) 3 e 71 .004 f 1.002x1.003 
g 1/?yo.997 2 (first write this in the form 0.997").

[1.05, 1.05, 0.94, 0.985, 1.002, 1.005, 1.002.]
7 Write down the derivative of y with respect to x in the following cases: 

a y = 3x2 b y = 4x7 c y = 2x10 d y = 3x~ 2 e y = 4/x5 f y = 8/x g y = TX 
h x = 3x*.

[6x, 28x6 , 20x9 , -6x~ 3 , -20x~ 6 , -8x~ 2 , ix~*,x"*.]
8 Find the derivative in the following cases: 

a s = ut+^at2 where w and a are constants 
b y = mx+c where m and c are constants. 
What can you say about the derivative of a constant? 
c y = 1+2x + 3x2 + 4x3 .

[ds/dt = u+at; dy/dx = m; derivative is 0; dy/dx = 2 + 6x+12x2 .]
9 The power radiated by a hot filament, P, is proportional to the fourth 

power of the absolute temperature, T. What is the rate of change of radiated power 
with temperature? What is its value at 2000 K if the power radiated at 2000 K is 
100 W?

= dP/dT;0.2\N K~ 1 .]

5.4 Turning points

This topic serves to consolidate some of the earlier work and to bring attention back 
to derivatives as gradients of graphs. Some use will be made of turning-points in the 
work on ionic crystals (Unit 3, Field and potential). Indeed, the chapter entitled 
'Ionic crystals' in Unit 3 Students' book provides a lot of material for the class to 
Work at — and it may be that teachers would prefer to use some of the mathematics 
time to allow another look at that part of the Physics course. If Unit 3 has not been 
completed, this topic might be included, as below, in readiness.

The variation shown in figure 30 is that of the resistance of a piece of doped 
semiconductor over a wide range of temperature. The variation of the gradient of 
the tangent to the curve, dR/dT, should be discussed, when the following points 
sho'uld emerge:

from A to B, the gradient is negative, i.e. as T increases, /? decreases, 
from B to C, the gradient is positive, i.e. as T increases, R increases, 
from C to D, the gradient is negative, i.e. as T increases, R decreases, 
at B and at C, the gradient is zero.

B and C are the turning points, B being a minimum and C a maximum. Another 
graph, figure 31, showing how the gradient changes with T, could be sketched. 
This has a turning point too, where the tangent in the region B— C has its greatest 
positive gradient.
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Figure 31

The turning points can be found if the equation describing the data is known, for 
there the value of the derivative is zero. An examination of the sign of the 
derivative for x values on either side of the turning point will give the direction of 
slope of the tangents and indicate whether the turning point is a maximum or a 
minimum.

Some emphasis needs to be placed on the fact that, for a non-linear graph, the 
gradient of the tangent to the curve changes from place to place, that is, that 
dy/dx varies with x. The variation of gradient can be found either by drawing 
tangents at various x values and measuring their gradients, or, if the curve equation 
is known, by finding dy/dx. The class should appreciate, qualitatively, that if the 
graph (figure 32) showing the variation of energy, E, of a pair of ions with their 
separation, r, is known, a graph showing how the force between them, — df/dr, 
changes with r can be obtained. Is the reverse true? No; the force ( — dE/dr) 
against r curve only gives the shape of the E—r curve at each value of /•; that is, it 
shows what change of E corresponds to a small change of r. It doesn't give the 
magnitude of £ at each point.

Figure 32
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This would be a good opportunity to explain why a negative sign appears in the 
equation F = — dE/dr.

® e
direction of increasing r

direction of force on the negative ion

If r is increased by moving the negative ion further away against the attractive 
force, the energy increases too, so that dE/dr is a positive quantity.

The force has a direction opposite to that of increasing r and is counted as a 
negative force. F = dE/dr would not do because a negative quantity cannot equal a 
positive quantity. If the charges were of the same sign, then dE/dr would be negative, 
with the force positive so that F is still equal to — dE/dr.

Examples for section 5.4

1 A stone is thrown upwards. The distance travelled, s, is given by 
s = ut+^at2 where u is the initial velocity, a is the acceleration, and t is time. In 
this case u = 20 m s~ 1 and a — —10m s~ 2 . Sketch a graph showing how s 
changes with t.
What is the significance of the turning point? 
What is the value of ds/dt there?
How long after release is it before the stone reaches its greatest height? What is 
this height?

[ds/df = 0 at turning point; 2 seconds; 20 m.]
2 Find the turning points on a graph of y against x if 

ay = x2 b y = x2 -4x+2 c y = 2+4x-x2 . 
Are these points maxima or minima?

[At x = 0, minimum; at x = 2, minimum; at x = 2, maximum.]
3 There are 2 turning points on the graph of y = x3 —3x2 . Where are they? 

What kind of turning point are they? What are the values of y at the turning points? 
[At x = 0 and x = 2; 
at x = 0, a maximum with y = 0; 
at x = 2, a minimum, y = —4.]

4 The molecule of iodine behaves like two masses joined by a spring, for 
which the spring stiffness is 3.6x 10 2 N m~ 1 . The energy stored in the spring bond 
when the atoms are distance x apart is given by E = k(x— L) 2 where 
L = 2.5x10- 10 m.

Figure 33
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a At what value of x is the force between atoms zero?
[2.5x10- 10 m.] 

b What is the equilibrium separation of the atoms?
[2.5x10~ 10 m.] 

c What is the value of kl
[1.8x102 N m"1 .]

d The atom is set into oscillation with a total energy of 4.05x 10~ 1B J. Draw 
graphs to show how the potential energy and kinetic energy are related to x.

5.5 The second differential coefficient

In the work on the simple harmonic oscillator in Unit 4, Waves and oscillations, 
second differential coefficients are used. So far in Section 5, there have been one or 
two cases where, after finding how the derivative of y changes with x, there has 
been reason to look at the derivative of the derivative (see the examples for 
section 5.2). In kinematics, if s = 3t+7t2 , then the velocity v is given by 
v = ds/dt = 3 + 14f and the acceleration is given by a = dv/dt =14. The usual 
mathematical notation, d2s/dt2 , should be introduced for dv/dt, the numerals 2 
indicating that the process of differentiation with respect to f has been carried out 
twice. Warnings will be necessary. This is not a fraction; in ds/dt one cannot 
cancel d and get s/f. It is a piece of mathematical shorthand standing for 'the 
derivative of s with respect to t was found and then the derivative of that derivative'. 
It would probably be wise to leave it at that, but some students may be able enough 
to see the sense in the notation d 2s/df2 , as follows.

Figure 34
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Consider a graph of s against t (figure 34). To find the instantaneous acceleration, 
the velocity at two times separated by an interval At must first be found. 
The average velocity over time At at A is As/At and that at B is As'/ At. 
The change in average velocity is

As' As

The average acceleration is

1 /As' As\ 
At\At At]

,., . As' — As which equals .

As' — As is the change of As, or A(As).
The acceleration is the limiting value of A(As)/(Af) 2 as Af — > 0 which is written
as d 2s/dt2 .

For many, the difficulties with notation would take too long to overcome.

Example for section 5.5

Find the second differential coefficient of y with respect to x in the following cases: 
a y = 3x2 b y = 4x7 c y = 2x 1 ° d y = 3x~ 2 e y = 4/x5 ' 
f y = 8/x g y = ^fx~ h y = 3x*.

[a 6; b 168x5 ; c 180xs ; d 18x~ 4 ; e 120x~ 7 f 16x~ 3 ; 
: g -ix-s/ 2 ; h — fx- 5 ' 3 .]

5.6 Small changes and 'errors'

This section could be delayed until later, though it would be a pity to omit it 
altogether. The questions which it attempts to answer should arise during work in 
the laboratory and it may be better to answer those questions in the Physics course 
as they arise.

The ideas of the previous sections can be put to an immediate use. There are 
occasions when the effect on one quantity of a small change in some other 
quantity needs to be known; or, to put it another way, if x changes and becomes 
x+ Ax (Ax small), how does y change? Closely linked to this is the question of 
'errors'. In doing experiments, measurements are made and other quantities 
calculated from them, e.g. to obtain the cross-sectional area of a wire, a diameter 
measurement is used in a calculation. Inaccuracies of measurement are bound to 
occur, and so any other quantity calculated from that measurement will be in 
'error'. Here the question is: what will be the uncertainty in the result of the 
calculation if the inaccuracy in the measurement can be estimated?

Often, difficulties experienced in understanding what follows arise from uncertainties 
about what symbols mean, and though the development here is algebraic, teachers 
might decide rightly to do the work numerically.
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Suppose x = kxn where x is the variable measured, y being calculated from it by 
the formula. If there was a small uncertainty Ax in the measurement, then x+Ax 
should have been used in the calculation and not x, and the result would have been 
X+Ax and not y. The uncertainty in y is therefore AX- A similar argument applies if 
small changes are being considered; AX is the change in y resulting from a change 
of Ax in x. The problem then is to obtain AX, and section 5.3 showed this to be 
given by Ay = nkx""1 Ax+terms involving higher powers of Ax. If Ax is small 
compared with x, the terms involving higher powers of Ax can be neglected, so 
that, to a good approximation,

AX « nkx""1 Ax.

Point out that this is an approximation and that Ax is not, this time, a quantity 
whose value can be chosen so that it tends to zero. Some may be helped by looking 
at the above argument graphically (figure 35) and numerical examples should be 
used to dispel worry about neglected terms.

contribution of 
neglected terms

Figure 35 *

Numerical illustration of effect of neglected terms

As a simple example, let y = x2 and the value of x = 1. If the uncertainty in 
measuring x is 1 per cent, then Ax = 0.01. For 1 per cent inaccuracy 
X = (1.01 ) 2 = 1.0201 and the actual 'error' is 0.0201, whereas the 'error' by the 
approximation is 0.02.

With a 10 per cent error y = (1.1)2 = 1 21, actual 'error' = 0.21, estimated as 0.20.
With a 30 per cent error y = (1.3) 2 = 1.69, actual 'error' = 0.69, estimated as 0.60.
With a 50 per cent error y = (1.5) 2 = 2.25, actual 'error' = 1.25, estimated as 1.0.

The result of the estimate is good if the percentage error in x is not too large.

Fractional change and combining uncertainties

The fractional uncertainty or change in y is AX/X * (nkxn~^ Ax)/kx" = A?(Ax/x). 
100 (Ax/x) is the percentage uncertainty or change in y and the above is usually 
expressed as:

percentage uncertainty or change in y
~ n times percentage uncertainty or change in x.
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If the class is interested, the topic could be taken further, though it would probably 
be better if that occurred when the need for it arose in practical work. The next step 
would be to examine what the uncertainty in y would be if it had to be calculated 
from the product of two different measurements, e.g. y = kuv where k is a constant. 
Following an argument similar to that above,

y+ Ay = k(u+ Au) (v+ Av) = kuv+kv Au+ku Av+k Au Av 
Ay = kv Au+ku Av+k Au Av

, . . Ay Au Av lAu Av\ and since y = kuv, —?- = —— | —— h — x — . 
y u v \ u v I

If both Au/u and Av/v are small, the last term may be neglected in comparison with 
the others, so that:

percentage uncertainty in y « sum of percentage uncertainties in u and v.

It should be explained why positive signs were given to both Au and Av. If it is 
not known whether the measurements are high or low in calculating the uncertainty 
in the product, the gloomiest view must be taken to get that uncertainty. This point 
needs careful consideration when y is obtained from the quotient of two numbers, 
i.e. when y = ku/v. If the 'error' in u were such as to make y too large, it is possible 
that the 'error' in v might also make y too large. Thus:

v-Av v(1-Av/v) v\ u l\ v

For small values of Au/u and Av/v, this can be approximated as follows:

Av \ I Au Av

, Ay Aw Av whence — ~ — + — . 
y u v

Again, percentage uncertainty in y ~ sum of percentage uncertainties in u and v.

This can be extended to any number of factors, of course. When a quantity is 
calculated by multiplying or dividing a number of factors together, the percentage 
uncertainty in the quantity is approximately equal to the sum of the percentage 
uncertainties of each of the factors.

Some discussion of random uncertainty and systematic error will no doubt be called 
for, as well as methods of estimating the random uncertainty in a measurement.

Examples for section 5.6

1 What uncertainty would occur in the calculated value of 
a the surface area b the volume of a sphere,
if there were a 2 per cent uncertainty in the measurement of the diameter? 

[a 4 per cent; b 6 per cent.]
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2 The acceleration due to gravity, g, decreases with an increase in distance R 
from the centre of the Earth. If g = k/R2 , what change in g will result from a 
0.01 per cent increase in /??

[0.02 per cent (negative) or g falls by 2 mm s~ 2 .]
3 A satellite is put into a circular orbit round the Earth with a speed v. Due to 

the variability of rocket fuels, the speed achieved could be 'in error' by 0.01 per cent. 
What is the percentage variation possible in the orbit time, 7"? The orbit time T 
is inversely proportional to the cube of the speed v. What is the percentage 'error' 
in the orbit radius? The cube of the orbit radius is proportional to the square of the 
orbit time. What do the negative signs in your answers mean? 

[-0.03 per cent; -0.02 per cent.]
4 In Millikan's experiment, what error in the charge of the oil drop (as a 

percentage) will arise from a 2 per cent uncertainty in the radius of the oil drop? 
[3 per cent.]

5 Estimate the possible uncertainty in the value calculated for the Young 
modulus if there are uncertainties of 0.5 per cent in the value of the stretching 
force, 0.5 per cent in the measurement of the unstretched length, 1 per cent in the 
diameter of the wire, and 3 per cent in the extension which the force produces. 

[6 per cent.]
6 In an experiment to measure the energy transformed per coulomb of 

electricity passed, a heater in a metal block was supplied with a current of 1.00 A 
for 2 minutes, and the temperature rise was measured carefully. After the block 
had been allowed to cool, it was warmed mechanically by friction. A cord carrying a 
mass of 10.0 kg was wound round it and the block was turned by a handle so that 
the mass was held stationary above the floor without any tension in the other end 
of the cord. It took 120 turns to raise the temperature between the same values as in 
the case of electrical heating. The diameter of the block was measured and the 
circumference calculated to be 0.1 m. The value of g was known to be 9.81 m s~ 2 
and you can assume the heat losses were identical. 
How many joules were transformed per coulomb in the electrical experiment?

[9.81 J C- 1 .]
Estimate the uncertainty in this result from the information below, and re-state the 
result as 9 ... ± ...
1 The maker of the ammeter only guarantees his meter to be accurate to 2 per cent 
of full scale deflection (1 A).
2 Each 1 kg mass making up the load was put on a balance which then read 1 kg 
in each case, but it was found that up to 10 g more could be added before the 
pointer moved.
3 The diameter of the block was measured with vernier callipers as 31.8 mm 
(0.0318 m) but a few more measurements ranged from 31.7 to 31.9 mm.
4 The experimenter remembered he had started with the turning handle at the top 
and finished at the bottom, but couldn't remember whether he called 0 or 1 the 
first time it reached the bottom.

[31 per cent; 9.8±0.4 J C~ 1 .]
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Section 6

Sineand cosinegraphs
The work of this section is meant to help students to become more familiar with the 
shapes of the graphs of sines and cosines of angles. The gradients of these graphs 
are also examined and the circular measure of angles is introduced. Those who have 
not done section 1.4 may need a reminder about the definitions of the sine ratio and 
the cosine ratio.

If a teacher wished, Section 7 could be taken before Section 6.

6.1 Introduction

A line rotating about one end can be used to generate the sine and cosine 
functions. Students should think about a wheel, of 1 m radius, with a number of 
spokes, and consider the height of the ends of the spokes above the horizontal 
through the centre. For a spoke making angle 9 with the horizontal, this height is 
sin 6, and a graph could now be plotted showing how sin 0 changes for values of 0 
up to 360° (figure 36).

radius=1m

repeats the values 
from 0° upwards

81°

Figure 36

The graph can be checked using a few more values obtained from tables. A 
teacher could put it to immediate use by asking the class to find the sines of angles 
larger than 90°. Some students will see relationships between the sines of angles, 
e.g. sin 0 = sin (180-0) = -sin (180 + 0) = -sin (360-0). There is no need to 
learn these — they follow immediately if one thinks of the wheel and its spokes.

Cos 9 is the horizontal distance of the end of a spoke from the centre. A graph of 
cos 9 should also be plotted — the shape seems to be the same though the curve is 
moved 90° to the left compared with the sine graph. Students could cut along the 
curve with a pair of scissors and superimpose the cosine graph on the sine graph to 
show that the shapes are identical.

Some teachers may like to do a demonstration using some of the apparatus 
required for demonstration 78, Nuffield 0-level Physics Guide to experiments V, to 
get these ideas over. Use the lamp and the turntable plus sphere and screen. The
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turntable can be turned through various angles by hand and the projected 
displacement of the shadow of the sphere measured. The arithmetic will be easier if 
the maximum displacement from the centre is a convenient number for division.

Examples for section 6.1

1 What are the values of the sines of the following angles? 
a 0° b 90° c180° d 270° e 360°. 

[0, 1, 0, -1, 0.]
2 What are the cosines of the above angles? 

[1, 0, -1,0, 1.]
3 What is the range of angles, within the range 0° to 360°, for which, 

respectively, a the sine b the cosine is negative? 
[a 180° to 360°; b 90° to 270°.]

4 Which angle or angles have a sine of value 
a +0.5 b -0.5 c+0.71 d-0.71 ? (Think of the wheel and its spokes.)

[a 30° and 150°; b 210° and 330°; c 45° and 135°; d 225° and 315°.] 
Repeat example 4 for the cosines. (Think of the wheel and its spokes5

again.)
[a 60° and 300°; b 120° and 240°; c 45° and 315°; d 135° and 225°.] 
How does a graph of y = 3 sin 6 differ from a graph of y = sin 6?

6.2 Differentiating sin 0 and cos 0

What is meant by the derivative of sin 0? What must change in order to change 
the value of sin 6 ? What does it mean in terms of a graph? Questions like these 
should lead to the answer that the derivative of sin 9 with respect to B is the 
gradient of the tangent to the graph of sin 6 against 6 at the point considered.

Students should find A(sin 0)/A6 at various values of B, from tables and should 
tabulate their calculation as in table la.

Differentiating sinfl numerically

58"

Figure 37
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e
0°

15°

30°

45°

60°

75°

90°

0+A0

1 °

16°

31°

46°

61°

76°

—

sinO

0.0000

0.2588

0.5000

0.7071

0.8660

0.9659

—

sin(0+A0)

0.0175

0.2756

0.5150

0.7193

0.8746

0.9703

—

A(sin0)

0.0175

0.0168

0.0150

0.0122

0.0086

0.0044

—

Asin0/A0

0.0175

0.0168

0.0150

0.0122

0.0086

0.0044

0.0000

0

0°
15°
30°
45°
60°
75°
90°

COS0

1 .0000
0.9659
0.8660
0.7071
0.5000
0.2588
0.0000

0.01 75 cos 0

0.0175
0.0169
0.01 52
0.0124
0.0088
0.0045
0.0000

b 

Table 7

Any who feel that 1 ° is too big an angular change to consider can be invited to 
do the calculations using a smaller value. Of course, the average gradient at, say, 
130°, need not be calculated. It has the same magnitude as that at 50° but a 
negative sign. Values of A(sin 0)/A0 can now be plotted over a range from 
0° to 360°.

The shape of this graph is suspiciously like a cosine graph, but the largest value is 
only 0.0175. The class might suggest that the expression describing the graph of 
A(sin 0) / A0 against d is 0.0175 cos 9 and they could then check to see if values of 
0.0175 cosd tallied with the values for A(sin0)/A0 at a few points (table 1 b). If 
the suggestion is not forthcoming, some time must be spent discussing how a graph 
of k cos 9 differs from a cos 6 graph.

The agreement is striking and becomes better as A9 becomes smaller. 

In the limit, A0 -* 0.
d(sin0) 

69 = —0.0175 cosO per degree of angle.
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It should not be necessary to do the case of the cosine in the same detail; a 
qualitative examination of a cosine graph shows that the gradient variations are 
exactly opposite to the variations of a sine graph.

d(cos0) 
dO

= —0.01 75 sin 0 per degree.

A(cos 9)~~ ""

360 61°

-•-0.0175

Figure 38

6.3 Circular measure of angles

Two treatments are given below, A and B. A is a simple empirical approach which 
might suit the less able mathematicians. B is more analytical and uses the circle 
method of section 6.1. Teachers should choose one of these treatments or use their 
own method according to the ability of the class. The class should not be made to 
feel that the radian is a mysterious unit of angle but rather that it is a sensible unit 
because it simplifies equations for the derivatives of sin 9 and cos 6.

A The factor 0.0175 comes into the expressions in section 6.2 because the 
angles were measured in degrees. This should become clear if the meaning of the 
derivative is considered. For simplicity, consider the gradient of the tangent to a sine 
curve (figure 39) at the point where 9 = 0°, or 360° (or 180°). At that point, the 
size of cos 6 is exactly 1 and the value of d(sin 9)/d9 is 0.0175 per degree of angle. 
What does this mean? If a tangent to the sine curve is drawn at the angle 9 = 0°, 
the straight line has a gradient of 0.0175 per degree of angle, i.e. it rises (or falls) 
by 0.0175 for every 1 ° increase of angle. If the unit of angle had been different, the 
rise (or fall) of the tangent would have been different for unit change of the angle.

180 01°

Figure 39

How many degrees must the angle change by for the tangent to rise from 0.0 to 
1.0? This can be found by drawing a tangent at 0° on the graph, or by calculation.
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It is a change of 1.0/0.0175° = 57.14° and if this had been the unit in terms of 
which angles were measured, the multiplying factor in the equations would have 
been unity. This is so convenient that the angle (it turns out to be 57.30° if 
calculations are done more accurately) is used as a unit in which other angles can 
be measured. It is called 1 radian and books of tables usually include one for the 
conversion of degrees into radians. If angles are measured in radians:

d(sin6>) 0 ._. — ——— - = cos 6 rad 1 . d(cos0)and — - ——— - -
d9

— oi 1 1 u i du

There is more significance than there seems to be in this method of measuring 
angles. A clue can be found by calculating how many radians there are in 360° 
(6.28) — the result appears to be 2n. So, if an angle of 1 rad were drawn at the 
centre of a circle (figure 40), AB would fit into the circumference 2n times. Arc AB 
would be equal in size to the radius, and arc AB/OA = 1. This is how angles are 
measured in radians. An arc of radius r is drawn across the angle and the arc 
length s within the angle is measured (figure 41). Then

angle 9 in radians = arc length s 
arc radius r

Figure 40

Figure 41
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B The reason for the appearance of 0.0175 in these expressions becomes 
apparent if d(sin 9)/d6 is obtained by the circle method. To achieve this, the 
angle 6 must be changed by A0, the change of sin 0 determined, and the limiting 
value of A(sin 6)/AO found when A0 tends to zero. Figure 42 shows this. AB is 
sin 6, CD is sin (6+ A0) and thus the change in sin 9 = A(sin 6) = DE.

radius = 1 m

Figure 42

As A0 becomes smaller and smaller, the figure EDB gets closer and closer to a 
right-angled triangle in which angle EDB = 6, as shown in the diagram on the 
right, an enlargement of EDB for a very small value of A6>. From triangle EDB, in the 
limit when A0 tends to zero,

DE=DBcos0 or A(sin 0) = DB cos 6.

A(sin0) DB
Hence limA0->0 ———— = —— cos0. 

A6 A9

DB is the same fraction of the circumference as A0 is of 360° so that
DB/A0 = 271/360 (circle radius = 1 m) and 27C/360 = 0.0175. The 0.0175 appears
in the equations because the angles were measured in degrees.

Figure 43
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The angle could have been measured in units to make DB/A0 = 1. For angles not 
small, this would require the arc length on a circle of unit radius to be equal to the 
angle, so that there are 2n of these units in 360°. This unit is the radian; 1 radian 
is 57.30°. If the radius of the circle is r, then the arc length s equals Or (figure 43). 
Thus

9 in radians = arc length s/arc radius r

, A(cos0) DB 
Note also that hm A0 -> 0 —————=- — sin0

A0 A0

d(sinfl) d(cos0) . „ _, „————-=cos0 rad~ 1 and ————-=-sm0 rad~ 1 .
d6 d0

Of course, measuring angles in radians does not change the shape of the graphs. 
All it amounts to is that, instead of marking the angle scale from 0° to 360°, the 
scale is marked in radians at the rate of 1 radian = 57.30°.

Practice will be needed to make the radian familiar to the class.

Examples for section 6.3

1 Measure an angle with a piece of string by the following method. Draw an 
angle of about 120° (don't measure it) and make the lines defining the angle about 
12 cm long. Now draw a circle of radius 10 cm with its centre at the apex of the 
angle. Use the string to determine the length of the arc cut off by the angle. 
Calculate the angle in radians.
Now measure the angle in degrees with a protractor and use tables to find out how 
accurate your measurements have been.

2 Express the following angles in radians without using tables. 
30°, 60°, 90°, 45°, 180°, 270°, 360°.

[7C/6, 71/3, 71/2, 71/4, 71, 37C/2, 271.]

3 Express the following angles in degrees. 
n/4, 2n/5, 271/3, 0.925, 0.740, all in radians. 

[45°, 72°, 120°, 53°, 42.4°.]
4 What are the values of the sines of the following angles? 

1 rad, 7i/2 rad, 0.3840 rad.
[0.8415,1.0000,0.3746.]

5 Without using tables, convert the following angles in degrees into radians. 
40°, 300°, 18°, 720°, 180°.

[271/9, 57C/3, 7C/1 0,471, 71.]

6 A wheel on a ticker tape trolley has a diameter of 40 mm. The trolley rolls 
through a distance of 1 m. What angle in radians does the wheel turn through? 

[50.]
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7 A sector of a circle of radius r is of angle 6 rad. What is its area?
ti^2 .]

8 How far round the arc of a circle is it if the arc subtends an angle of 
3 radians at the centre and the radius is 60 mm? 

[180mm.]

6.4 Small angles

It should only be necessary to draw up a table (table 8) showing the values of 9 in 
radians, sin 6, cos 9, tan 9 for angles in the range 0° to 10° to make the point that, 
for these angles, sin0 « 0 w tan0 and cosO « 1, the approximations being the 
better the smaller the angle. The reason is apparent if a small angled right-angled 
triangle (figure 44) is drawn. For small 9, BD w BC and AC w AB, so giving the 
approximate equalities.

• „ BCsin S * — 
AB

Figure 44

BD 
AB

E!C ' AC AC 
AB

C D

or
10

5

2

1

0/rad

0.1 745

0.0873

0.0349

0.0175

sinfl

0.1736

0.0872

0.0349

0.0175

cos 8

0.9848

0.9962

0.9994

0.9998

tanO

0.1763

0.0875

0.0349

0.0175

Table 8
Values for small angles.

6.5 The derivatives of A sinkO and A cos fed

No doubt it will be easier if teachers discuss examples in which A and k have 
numerical values, and if they deal first with A sin 9 and then with sin kG. The results 
obtained for sine can be 'carried over' to the cosine case. It may be best simply to 
offer the examples (page 67) and guess the answer in the general case.

A graphical approach is advised (figure 45). The effect of A in A sin 9 is to change 
all values of the y co-ordinate for a definite 9 by a factor A. Thus for a given A0 at a 
certain value of 6, A(sin 0) becomes A A(sin 0), and the gradient will be A times 
larger.

d (A sing) 
dO

= A cos 6.
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What about sin kO? A graph of sin 0 against 6 is identical with a graph sin k6 
against kO. Obtaining a few points for the graphs will convince any who doubt it. 
However, if the graph is to be of sin kO against 0, then the scale on the axis will 
need re-numbering if re-drawing the curve is to be avoided — figure 46 shows this.

Figure 45 U——A0—=>l

Figure 46

7t scale forkS

n/k scale for 6

The average gradient of sin kO against 9 is

A(sinA-0) = A(s'mkO) ~

i.e. k times larger than that of a sin k(l against k& graph. 

= k coskO.

If the effects of both the A and the k are taken into account:

d(As\nkO) „, ,. , . ., , d(AcoskO) .. . ,„ —————— = Ak cos kO, and similarly —'————— = -AksmkO.
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6.6 Angular rotation and y = A sin cot

The aim of this section is to introduce the ideas of angular velocity and variation 
with time described by equations of the type y = A sin tat and y = A cos cot. It is 
not meant to be a study of systems which are described by such equations; that is 
done in Unit 4 of the Physics course. But students who have already done Unit 4 
will know of the importance of this kind of variation.

A simple way of starting the work is to consider the wheel, thought about in 
section 6.1, rotating at ah angular speed of 1 rad s~ 1 . If a clock is started when a 
given spoke is horizontal, then t seconds later, the end of it is at a height above the 
horizontal of y = sin t. This should be extended to the case of a wheel of radius A 
turning at a steady angular speed of to rad s~ 1 when y becomes A sin cot. Sketch 
a graph (figure 47) to show this variation and point out the comparison between 
the x co-ordinate scale marked off in radians and then in seconds. If the time for one 
cycle of changes is 7" (the period), then, coT = 2it. (Think in terms of what the 
wheel is doing.')

2n scale in radians

2it
scale in seconds

Figure 47

Some teachers may prefer to introduce the idea experimentally, using one of the 
methods detailed in the Teachers' guide for Unit 4, Waves and oscillations, or in the 
Nuffield 0-level Physics Guide to experiments V (73, 74, 78).

Questions about the speed of the end of a spoke in a vertical direction will raise the 
problem of finding the derivative of y = A sin cot. By comparison with the result 
obtained in section 6.5,

— IA sin con = Aw cos cot and — lAcoscot\= — Acos\r\cot. 
dt\ } dt\ I

It may help to consolidate the work of the previous section if students consider the 
effects on the vertical speed of a point on the wheel as A and co are changed.
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Examples for sections 6.5 and 6.6

1 On the same set of axes, draw or sketch graphs to show how the variation 
of sin 9 against 9 compares with that of 2 sin 6 against 9 in the range 0° to 360° 
Measure or calculate (by considering a value of A0 = 1 °) the gradient of each 
graph at 30°.

[0.01 5 per degree and 0.030 per degree.] 
What would be the gradient of y = 5 sin 6 at 6 = 30°?

[0.075 per degree.]
What is the general expression for the gradient of the graph of sin 6 against 9 if 6 is 
in radians?

[COS0.]

What do you think the general expressions would be for a graph of A sin 9 
against 6 and for a graph of A cos 9 against 0? 

[A cos 9 and-A sin 6.]
2 On the same set of axes, draw or sketch graphs to compare the variation of 

sin 9 against 9 with that of sin 29 against 9.
Measure or calculate the approximate gradient of sin 9 at 9 = 60° using A0 = 1 °. 
Measure or calculate the approximate gradient of sin 26 at 9 = 30° using A0 = 1 °. 
What would be the result of doing this for sin 30 at 9 = 20°?

[0.0086 per degree; 0.017 per degree; 0.025 per degree.] 
Now obtain these gradients in units of rad~ 1 . For this purpose, they should be 
multiplied by 57.3 degrees rad~ 1 .

[0.49; 0.97; 1.43.]
More accurate working (i.e. using smaller values of A0) gives the gradients as 
0.50, 1.00, and 1.50. The first of these is cos 9 (i.e. cos 60°). What are the second 
and third?

[2 cos 29 and 3 cos 30.]
If you had been asked to find the gradient of a graph of sin kO against 0, what 
should the answer have been?

[kcosk9.]
3 Write down the derivatives of a y = 5 sin 3x b y = 3 cos 5x. 

In each case, calculate the gradient of the graph when x = jt/3 rad.
[dy/dx = a 15 cos 3x; b —15 sin 5x. Gradient = a —15 rad""1 ; 
b +13 rad" 1 .]

4 Write down the first five angles at which there are turning-points on a 
graph of a y = 2 sin x; b y = 3 cos 6x.

[a 7i/2, 37t/2, 571/2, 7jt/2, 9n/2; b 0, 71/6, 7t/3, 7t/2, 2?t/3.]
5 What is the significance of the constants a and co in the expression 

y = a sin cat for the position of an object at various times?
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Figure 48 -2

6 The graph (figure 48) shows the variation of the charge on a capacitor 
with time. The variation can be described by the equation q = q0 sin cot. 
What are the values of q0 and co?

[<70 = 2 C, co = 100?: rad s~ 1 .] 
What, in general, is the current flowing?

[co<70 cos cot.] 
How large is the current when f = 1 s?

[20071 A.]
7 Figure 49 is a copy of a ticker-tape trace, obtained by attaching a piece of 

ticker tape to one end of a pendulum. Plot a graph to show how the displacement 
from the central position y varies with time t.

Figure 49

What is the equation describing this motion if the vibrator was vibrating at 50 Hz 
and only every fifth tick is shown on the above copy?

[y = 50 cos (7tf/1.2) mm.] 
How does the speed of the pendulum bob change with time?

[dy/dt = -(5071/1.2) sin (jrf/1 .2) mms" 1 .] 
What is its maximum speed?

[507T/1.2 = 131 mrns" 1 .]
How does this check with the average speed at the centre found directly from the 
tape?

[130 mm s- 1 .] 
8 The motion of an oscillating mass on a spring can be described by:

y = 0.1 sin 10?

where y is the displacement in metres from the centre of its motion, and t is the
time in seconds.
What is a the speed b the acceleration of the mass?

[cos 10f; -10sin 10f.] 
What is a the speed b the acceleration, when t = 0 s and when t = 7t/20 s?

[Speed: 1 m s~ 1 ; 0. Acceleration: 0; -10m s~ 2 .] 
What do you think a negative acceleration means?
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Section 7

Integration
Section 7 deals with integration, first as the reverse of differentiation, then by the 
numerical method, and finally as the area under a graph. The technique of 
numerical integration is important as it is the method by which some differential 
equations are solved in the Physics course. The method is used in Unit 2, Electricity, 
electrons, and energy levels, and then again in Units 3, 4, and 5, Field and 
potential, Waves and oscillations, and Atomic structure, in the first year's work. 
Unit 10, Waves, particles, and atoms, also uses the ideas. For those who have not 
yet done Unit 2, this section would form a helpful introduction; for those who have 
met the ideas already in their physics, it provides the opportunity for a second look, 
to consolidate and get things straight in their minds. It is worth reminding teachers 
that the Students' books for the Units mentioned provide some examples.

This section could easily be taken immediately after Section 5 if desired.

7.1 Reverse differentiation

The case of motion under constant acceleration is chosen to illustrate the work 
because of its familiarity, but, if it is felt that the class will find it uninteresting, one 
of many other examples could be used.

The problem could be stated as follows: 'We know how to find the velocity and 
acceleration of a body if we are told how the distance it travels, s, is related to time. 
We have to differentiate s with respect to time to get the speed and then again to 
get the acceleration. Supposing we knew what the acceleration was, can we get 
the equations for the velocity and the distance travelled? Can we work the 
differentiation process in reverse?'

Suppose the acceleration dv/dt were constant and equal to 10 m s~ 2 . This simply 
means that the gradient of the velocity-time graph is constant and the v—t graph is 
therefore a straight line. But there are very many different straight lines which can be 
drawn with the same gradient, each having a different intercept from the others 
(figure 50). The equation which describes a straight line graph is / = mx+c 
where m is the gradient and c the intercept.
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Figure 50
alt these lines have the same'gradient but 
different intercepts on the v axis

Thus, if all that is known is dv/dt = 10, the equations for the possible 
velocity— time graphs have the form:

v = IQt+c.

What is the significance of c? It is the velocity when f = 0. If this information is 
given, or indeed, a velocity value at any particular time (i.e. one point on the 
v—t line), then c can be found. No doubt, the equation will be recognized as 
v = u+at.

What about the distance covered if the body starts with v = 0 at t = 0 (i.e. c = 0) ? 
For these conditions, v = ds/dt = 10f. What has to be differentiated to obtain 10? 
as the result? Differentiating / = kx" gives dy/dx = nkxn~^ so n = 2 and k = 5. 
As before, any constant could be added to the equation for s, because a constant 
doesn't vary and has a derivative of zero.

s = 5tz + constant.

Reverse differentiation doesn't give the whole answer — on each occasion one more 
piece of information is needed to find the value of the constant; if 5 = 0 when 
t = 0, then s = 5f2 .

[S =

Students will need practice examples.

Examples for section 7.1

1 The force F in newtons needed to stretch a certain spring by distance 
x is found to be equal to QOx when x is measured in metres. The energy converted 
to spring energy, A£, in a small extension Ax is .given by

A£ = F Ax.

Write this as a differential equation involving d£/dx and x and then solve it, i.e., 
find an expression for £ which, when differentiated, gives the differential equation. 

[£=30x2 +c.]
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How much work must be done to stretch the spring from 10 mm to 60 mm? 
[£= 0.105 J.]

2 What are the 'reverse differentiation' equations for 
a dy/dx = 5x b dy/dx = 5x+3?

[y = (5x2 /2) + c; y = (5x2 /2) + 3x+c.]
3 How does the distance s vary with time t for an object accelerating 

from an initial velocity of u at a uniform acceleration a, i.e. v = u+atl

4 Find equations for curves having the following gradients: 
a dy/dx = 2.

[/= 2x+c.] 
b dy/dx = 2x.

[y = X2 + C.]
c dy/dx = 2x2 .

[ K = |x3 + c.] 
d dy/dx = 2x3 .

[y = ±x* + c.] 
edy/d0 = 10 cos 50.

[y = 2sin50+c.] 
f dy/d6= 10 sin 50.

[y= -2 cos 50+ c.]
5 A body moves in a straight line with an acceleration equal to 6(1 — t) in 

m s~ 2 , where t is the time for which it has been travelling. It starts from rest, and 
1 second later, it reaches a point 2 m from where it started. How far will the body 
be from its starting point after a 2 s b 3 s? 

[s = 3t2 -t3 ; a 4 m; b 0 m.]
6 The speed of a body in metres per second at various times is given by 

v = 4f2 — 3. Rewrite this as a differential equation involving ds/dt and t. Find the 
relation between s and t which corresponds with this and then calculate the 
distance travelled between f = 2 s and t = 5 s. 

[s = Af3-3t+c; 147 m.]

7.2 Numerical 'reverse differentiation'

The method of numerical 'reverse differentiation' is taught within the Nuffield 
Advanced Physics course. The following will serve as an introduction or as a 
revision for those needing extra practice.

Graphically, the equation dy/dt = k defines a set of lines of gradient k. Given the 
value of y at any time, the line defined can be obtained by a numerical method.

If Ay and At are increments of y and t, Ay/ A? is the average gradient over the time
interval Af at the place considered, and equal to that of the tangent. Then
dy/dt = Ay/Af. (This is dealt with in section 5.1 .)
Suppose that the initial value of y(t = 0) is 2 m and that dy/dt = 5 m s~ 1 .
In a time interval of 0.1 s (A? = 0.1 s), y increases by Ay = 5A? = 0.5 m.
Therefore y becomes 2.5 m at a time t = 0.1 s.
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In the next interval At = 0.1 s, Ay is again 0.5 m, and y = 3.0 m at the end of that 
interval.

It is apparent that this is going to give a straight line (figure 51).

X/m

- 2

0.1 0.2 t/s

Figure 51

Solution of dy/dt = 5y

The method can now be used to solve a more difficult differential equation, e.g. 
dy/dt = 5y.

It might be worth while spending a few moments letting the class guess at a 
solution. ('No, it isn't fj/2 because its a y—t graph and we are differentiating with 
respect to t'; 'it isn't 5/f because the y on the right isn't a constant and in any case, 
you couldn't have y = 5yt.') This is a graph whose equation hasn't been 
differentiated up to now.

As before, the equation is written in terms of small intervals of y and t: 

Ay » 5y At.

This equation can now be used to build up the y—t curve if a point on the curve 
is known (figure 52). For simplicity suppose y = 2 when f = 0. For At = 0.1 s, 
Ay » 5x2x0.1 = 1.

So / becomes 2+1 = 3 approximately at a time t = 0.1 s.

For the next interval of 0.1 s, y = 3 and hence Ay « 5 x 3 x 0.1 = 1.5. 
At a time of 0.2 s, y reaches the value 4.5, approximately. 
For the next interval 0.1 s, y ~ 4.5 and hence Ay ~ 5 x 4.5 x 0.1 = 2.25. 
At a time of 0.3 s, y reaches a value of 6.75, approximately.

And so the graph builds up as the diagrams in figure 52 show. The graph should 
be plotted as the calculations proceed so that any errors of calculation may be 
shown up.
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y 6 y - 5

0:1 0.2 0.3 0:4

0.1 0.2

Figure 52

0.3 0.4 
r/s

It would probably be best not to worry the class with the mathematical reasons 
why Ay is only approximately equal to 5y Af. The limiting value of Ay/ A? as At 
tends to zero is dy/dt (= 5y in this case). For finite values of Af, dy/dt is only 
approximately equal to Ay/At, the approximation becoming better the smaller At 
becomes. Students could be shown the graphical interpretation of this (figure 53):
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m A? = (dy/dt)At is not exactly equal to Ay, but it is probably enough simply to say 
that in the real graph, y changes continuously and not in a series of short straight 
lines.

gradient aU

"f
m&t

I

' Time 

Figure 53

Solution of d 2 //dr2 = 10

How does y vary with t in the case of a variation described by d 2 y/df2 = K, a 
constant?

d 2 y/dt2 means that differentiation with respect to t has been carried out on y (so 
getting the gradient of the y—t graph) and then again on the expression for the 
gradient. It stands for the rate of change of the gradient of the y—t graph with f. If 
this step is not apparent to students it may be worth while talking in terms of 
velocity and acceleration, as follows.

For constant acceleration, the velocity— time graph is a straight line and the gradient 
equals the acceleration, i.e. dv/dt = K. In incremental form Ai//Af = K. But v is the 
slope of the s— t graph, so that

A(slope of s—f graph) 
Af

= K.

d 2 y/df2 = K means that the rate of change of the slope of the y—t graph is 
constant. Two more pieces of information are needed before the graph can be 
drawn: 7 where to start drawing it, 2 what its initial gradient is, as was found when 
'reverse differentiation' was used (section 7.1).

Consider the case of an object falling from rest in the Earth's gravitational field. The 
acceleration is 10 m s~ 2 , i.e. for a distance—time graph, A(slope) ~ 10 A? and for a 
time interval Af = 0.1 s, A(slope) « 1 ms ~ 1 .
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The slope changes in each successive time interval of 0.1 s by 1 m s 1 and the 
slope at t = 0 is zero. Thus (figure 54) the slope is 1 m s" 1 at f = 0.1 s and a line 
of this slope must be drawn extending from t — 0.05 s to t = 0.15 s and rising 
from y = 0 to y = 0.1 m. This is the sensible thing to do; a line drawn with this 
slope from the origin would mean that the object had a velocity of 1 m s~ 1 at 
t = 0, and if drawn from t = 0.1 s, it would mean that there was no movement for 
the first tenth of a second. In the second interval of 0.1 s (from t = 0.15 s to 
t = 0.25 s) the slope is 2 m s~ 1 , and in this time y increases by 0.2 m to become 
0.3 m. In the third interval of 0.1 s (from t = 0.25 s to t = 0.35 s) the slope is 
3 m s~ 1 and y increases to 0.6 m, and so on. Figure 54 shows how the graph 
builds up.

y 1.0 '"

0.8

0.6

0.4

0,8

0.6

0.4

Figure 54
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Examples for section 7.2

Students should be urged to tabulate their calculations in this work.

1 Plot a graph of distance s against time t for a car whose velocity v is given 
by the equation

v = — = 2 — 5f rn s " 1 . 
dt

The initial value of s is 2 m. 
When is s a maximum and when is s zero? 

[0.40 sand 1.38s.]
2 Obtain a graph of y against time t if dy/dt = —2y and if the value of y for 

t = 0 is 2, over a range of time of 1 s. Estimate the value of t which makes y 
equal to 0.6.

[0.55 s.]
3 In a number of cases, the force F acting on an object is found to vary 

inversely as the square of the distance r of the object from a certain point, i.e. 
F = k/r2 . For a small change of r, Ar, the energy converted to potential energy, Af, 
is given by Af « — F Ar

Convert this expression into a differential equation involving dE/dr, k, and r only, 
and solve it for the case where k = 10~ 7 N m2 and where E = 10~ 6 J at 
r = 0.1 m. Use a range of r values from 0.10 m down to 0.01 m with A/- = 0.01 m. 
Show results graphically.

Range of r/m

Ar/m

Force at mean 
value of r/N

A£= -FxAr J

Energy from 
change/J to

0.105-0.095

-0.01

10~ 5

+ 10-7

9.50x10-7 
10.50x10-7

0.095-0.085

-0.01

1.23x1(T 5

+ 1.23x10- 7
10.50x10- 7 
11.73x10-7

0.085-0.075 . . .

-0.01

1.56x10-=

+ 1.56x10- 7 ...
11.73x10- 7 
13.29x10" 7 ...

Table 9

4 Plot the distance—time graph for a particle whose acceleration is described 
by the equation d 2s/df2 = 3. 
Initially s = 0 at t = 0 and the particle is at rest.

5 Plot the distance—time graph for a particle oscillating on the end of a 
vertical spring. The motion is described by

acceleration =
d 2 x 
dt2 = -0.1 x.

Initially, at t = 0, x = 100 units and the velocity is zero. 
Take Af = 1 s and plot the graph for 20 s.
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6 Try problem 5 with a positive sign instead of a negative sign in the 
equation, i.e.

7 A rocket, whose mass is m at some instant, uses up a mass Am of fuel in 
time At and so increases its speed by Av. The fuel gases are ejected at velocity u 
with respect to the rocket.
The average force on the rocket over time At = massx acceleration = m Av/At. 
This equals the rate of change of momentum of the fuel ejected.

T1_ Av Am Thus m — - = — u —— . 
At At

If the initial mass of the rocket is MQ and fuel is burnt at a constant rate, n, then 
after time t, m = M0 —/jt. Thus

Av Av u/j(M.—ut) — = uu or — = ———— .
° At M At M0 -f2t

a Assuming MQ = 10000 kg, /.i = 50 kg s~ 1 , and u = 2000 m s~ 1 , draw a graph 
showing how the acceleration of this rocket varies with time in the first 50 s. 
The above would be true for the rocket moving in space where there was no 
gravitational field. If the rocket is lifting off from Earth, gravity reduces all the 
accelerations shown on the graph by 9.8 m s~ 2 (assuming the rocket doesn't get 
far enough away for the acceleration due to gravity, g, to change).

U/Ll
Net acceleration = — - ——— — g. 

MQ - fit

b Now plot a distance-time graph for the first 50 s of flight. Use Af = 10 seconds 
and the average acceleration obtained from the figures of a after subtracting 
9.8 ms- 2 .

d 2 s u/j
The graph is an approximate solution of -3-= = -r-. ——— —g.^ —

7.3 Areas and integration

Students will need to be reminded that there is sometimes significance in the area 
'under' a graph, the area being bounded by the horizontal axis, the graph, and two 
verticals. Revision of its measurement is probably best achieved by means of a 
simple exercise.

Revision exercise for section 7.3

The graphs in figure 55 represent patterns of values obtained as measurements in 
certain circumstances. By considering gradients and areas, what can you deduce 
about those circumstances?
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stretching
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Figure 55

[Figure 55 a Constant velocity, distance travelled = 30 km.
b Constant velocity, distance travelled = 30 km (same 'area').
c Constant acceleration 1.5 m s~ 2 , distance travelled = 300 m.
d Constant acceleration 0.25 m s~ 2 , distance travelled = 550 m (false
'origin').
e Discharging battery. Charge capacity = 36 kC.
f Energy stored = area to left of graph = 4.5 J.
fir Motion under gravity, acceleration = —10 m s~ 2 . Reaches maximum
height (in 2 s) of 20 m. Returns to starting point in 4 s (distance
travelled = 0). Area below time axis must be counted negative.
/? Work done in extending from 3 mm to 7 mm is 0.06 J. Graph has false
origin. Area is measured to left of line.
/ Work done in extending from 3 mm to 1 mm is 0.051 J. Graph has false
origin. Area is measured to left of curve.]

78 Supplementary mathematics



It is by convention that the phrase 'area under a graph' is used. Of course, if the 
variables were plotted 'the other way round', it would be the appropriate area to the 
left of the graph which was significant. The graphs shown in figure 55 include 
cases to illustrate this (figure 55 f, h, and /).

Students must realize that the areas are to be measured by obtaining dimensions 
from the scales [figure 55 a and b], beware of 'false' origins [d, h, i], and be able to 
find the appropriate area by the method of strip division [/]. The case where areas 
are given negative signs might be discussed [g].

Those who need more practice at finding areas by strip division might be set the 
task of finding the area of a quadrant of a circle of radius 50 mm by this method 
[1975 mm 2 for strips 5 mm wide] and use it to find a value for n [3.16].

This method of obtaining an area gives an approximate answer. How could that 
answer be made more accurate? (Use strips of smaller width.) Mathematicians 
would say that, for a graph of y against x, a strip of width Ax had been chosen and

Mi i i i i
Figure 56

then the area of that strip was pAx, y being the mean value of y for that strip. To 
show that the areas of several strips have been added together, the symbol 
£ (sigma) is used and, if the two verticals are drawn at x1 and x2 , this is indicated 
by writing them below and above the Y.

stands for the area calculated by the sum of the areas of strips Ax wide between 
the axis, the curve, and the verticals at x1 and x2 .

To find the exact area, the size of the strip width must be made very small,
i.e. Ax must tend to zero. Then the sum will get closer and closer to the true area
as Ax becomes smaller. Mathematicians would then write

area = y dx,

'the integral of y with respect to x'. The sign { is simply an old English 's' standing 
for the words 'sum of and the 'dx' indicates that the strip width tends to zero.
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Again, x1 and x2 indicate the limits between which the area is measured. For 
example, if we wished to express the fact that the velocity gained by a body, in the 
time between 0 and t, was the area under an acceleration—time graph, we should 
write this as:

f Velocity gained = a dt.
Jo 

This is equal to (v—u) where v is the velocity at t seconds and u that at 0 seconds.

f Thus v = u+ \ a dt.

For a = constant, the result has been obtained before (section 7.1). 'Reverse 
differentiation' gave v = u + at and so, as the results must be the same:

a dt = at.

It is not difficult to interpret this piece of mathematical 'shorthand'. Obviously, the 
area under the curve of a against t is aAf+aAf+aA?.... This equals 
a(At+ At+ Af. . .) which, in turn, equals at.

I I
I I I
I I I
I I I
I I !

-Ar

Figure 57

Teachers should take the argument a step further by discussing distance travelled 
as the area under a velocity—time graph for motion under constant acceleration. 
That gives:

f f 
Distance travelled = v dt = ut+^at2 by the area method

Jo
rt ft 

or v-dt = (u+at) dt = ut+^at2 by reverse differentiation.
Jo Jo

Again, the result wanted is obtained by the reverse differentiation of the expression 
being integrated.
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Is it always so? Do 'integration' and 'reverse differentiation' mean the same thing? 
Teachers could stop here and say the processes are the same, but for those 
students who want a little more, the following general treatment might be 
satisfactory.

Reverse differentiation is the process by which, given the graph of the gradient of a 
y—x curve for different values of x, the shape of the y—x curve could be found. 
There is a whole family of possible curves (figure 58), each differing from the others 
only by a constant. The constant is the value of y when x = 0, for example. If the 
constant can be found, reverse differentiation will reveal how / changes with x; it 
will give the equation relating y to x.

dy 
dx

giving

Figure 58

Finding the area under a (dy/dx) — x graph between 0 and some value x means 
adding up strip areas when the width tends to zero (figure 59). The height of each 
strip is Ay/Ax and the width is Ax, so each strip has an area Ay. If the strip 
widths tend to zero, and the area from 0 to x is calculated, then we have found the 
total change of y between 0 and x.

Figure 59

Area Ay
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— dx = x—c 
o "x

C" dy , 
or y = —dx+c.

Jo dx

Again this is the equation relating y to x once c is known. The two processes are 
the same, the term integration being used in preference to 'reverse differentiation'. 
The class should be told that, in practice, the limits are not stated, it being 
understood that J . . . dx stands for {* . .. dx.

The general rule that

if — = x", then / = ———h constant (except when n = — 1) 
dx A?+1

should be mentioned, as should the fact that the result of an integration can always 
be checked by differentiating it. The method of dealing with limits which are not 
'0 and x', e.g. numerical limits, should be apparent from the examples that follow.

Examples for section 7.3

1 Evaluate the following and check by differentiating.
f( ft ft fx fy fF

a 2dr b -2r2 df c 6r2 dr d x^dx e (2+4y-y3 )dy f dF
Jo Jo Jo Jo Jo Jo
fx

g -xdx.

° [a 2f; b 2It, c 2t3 ; d ix5 ; e 2y+2y*-ly«; f F; g -^x2 .]

r2 x dx = -ix2 means that the area under the graph of y = x from x = 0
Jo

to x is -|x2 .
From x = 0 to x = 4, the area is 8 units (i.e. -1 42 ). 
From x = 0 to x = 3, the area is 4.5 units. 
Thus from x = 3 to x = 4, the area is 3.5 units,

i.e. I"* " xdx= a42 --i32 ) = 3.5.

Find the values of:
ft = 4 f3 fn/2 f" f/2 f2 -|

a 2fdr b x2 dx c cos0d0 d cosOd0 e sin Ode f T^ dx
I II I I I

Jt =2 J-2 JO . JO Jo Jl

[a 12; b 11-f; c 1; d 0; e 1; f-1] 

3 The work done in extending a spring by x is | Fdx.

3 spring follows Hooke's law [i 
done in extending the spring by x.

Jo 
If the spring follows Hooke's law [i.e. F oc x], establish an equation for the work
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4 Water leaks through a dam wall at a rate given by

— = 10+ 3t2 dm3 s~ 1 . 
dr

How much water will have leaked away in 10 seconds? 
[1100 dm3 .]

5 The rate at which the electric potential V varies with the distance r from 
the centre of a sphere carrying charge Q is represented by the equation

dJ/ = Q ~d7~

Integrate this to find how the potential V varies with distance.

[V = ——— +a constant.
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Section 8

Exponential variations
8.1 Introduction

Exponential variations are first discussed in connection with the decay of charge on 
a charged capacitor when a resistor is connected across it (in Unit 2, Electricity, 
electrons, and energy levels), and then in connection with the decay of activity of a 
radioactive element (in Unit 5, Atomic structure). The Students' books for these 
Units contain examples of a variety of exponential changes to show that it is a 
pattern worth investigating. Groups of students could tackle more of these 
problems, different from those they attempted during the physics lessons. Teachers 
should use as many or as few of these as they think necessary to give students a 
'feel' for this kind of variation.

After the problems have been tried, a discussion to bring out the major points 
regarding exponential changes would be useful. All the curves have properties 
similar to N oc 2 r where t is time measured in units of the doubling time (or to 
/Voc 2~' where t is now in units of halving time). N increases (or decreases) by a 
constant factor in equal time intervals and the curve could be termed a constant 
ratio curve. The word 'exponential' should be introduced to describe this type of 
variation (figure 60).

The gradient of an exponential curve, d/V/df, is directly proportional to N. This 
comes out of the fact that d/V/df is also an exponential curve with respect to t (see 
examples 1, 2, and 3). If N oc 2', then d/V/df oc 2' and so d/V/df oc N.

Summarizing, if N varies exponentially with t, then
7 N changes by a constant factor in equal time intervals.
2 The gradient d/V/df also changes by the same constant factor in those 

equal time intervals (i.e. d/V/df is exponential too).
3 The gradient d/V/df is proportional to /V at every moment, i.e. if N is 

doubled (or halved), d/V/df is doubled (or halved).

Examples for section 8.1

1 Cells which reproduce by dividing into two may, as long as the food 
supply is adequate, double their number at regular intervals.

Time t 012345 units 

Number N 1 2 4 8 16 32 units

a What is the number of cells after t units of time?
[2'.]

b Draw a graph of /V against t. 
c What equation represents this pattern of variation ?

[/V = 2'.]
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N 4

Figure 60

d Find the ratio of N at each unit of time to its value at the time 1 unit before, e.g.

N at time 2 units _ 4 _ „ 
N at time 1 unit 2

[2.] 
What do you notice about these ratios?

[All equal.]
e Obtain values of AN/At. How does AN/At vary with time f ? How does it vary 
with N?

[AN/At varies with t in the same manner as N does. That is, dN/dt <x A/.]
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2 The data in table 10 give the weekly death toll in the Great Plague, 
beginning with the week ending 25 April 1665 (week 1).

Week number 

Plague deaths

Week number 

Plague deaths

Week number 

Plague deaths

Week number 

Plague deaths

1 

0

11 

470

21 

6544

31 

652

2 

0

12 

725

22 

7165

32 

333

3 

9

13 

1089

23 

5533

33 

210

4 

3

14 

1843

24 

4929

34 

243

5 

14

15 

2010

25 

4327

35 

281

6 

17

16 

2817

26 

2665

7 

43

17 

3880

27 

1421

8 

112

18 

4237

28 

1031

9 

168

19 

6102

29

1414

10 

267

20 

6988

30 

1050

Table 10
From Creighton, C. (1965) A history of epidemics in Britain, Volume I, Cass.

a Draw a graph of the number of deaths N against t (in units of weeks). 
b How does the earlier part of the graph compare with that of N = 2' in example 1 ? 
c Obtain values of A/V/Af. How does AA//Af vary with time t? How does it vary 
with /V?

[The initial rise is exponential, doubling every 1.5 weeks. This rise is not 
maintained, partly because of an increasing scarcity of victims.] 

d Find the ratio of the number of deaths in each week to the number in the week 
before. What do you notice about these ratios?

3 An experiment in which the current flowing when a capacitor discharges 
through a resistor may be recalled from Unit 2 or may be repeated. See experiment 
2.17. The current variation with time (i.e. at 10 s intervals) is recorded from the 
moment the switch is opened. Suitable initial values are

1 ap.d. oflOV,
2 a current of 100 uA (R = 100
3 a charge on the capacitor of 5x 10~ 3 C (C •• 500 uF).

\

Figure 61
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If the current at any moment is /, then the p.d. across C = /?/, i.e. V = 105 /, and
hence the charge Q = 500 x 10~ 6 x 105 /, so that Q = 50 /.
Thus the current readings can be used to give the charge decay curve.
a Why does the current fall?

[Because the p.d. driving it falls and that falls because the previous current 
flow removed some charge. The current falls because of the current itself. 
This is similar to an epidemic but falling instead of growing. The more 'flu 
victims there are, the more infectious people there are about so the more 
new cases there are — until the virus runs out of people.]

b By what factor does Q change in equal time intervals? By what factor does
dQ/dt change in equal time intervals?

[About 0.55 in 30 s. Note that Q = 50 / = -50 dQ/dt.] 
4 The number of cars in private ownership in Britain has risen over the years

as shown in table 11.

Year
Cars
(in millions)

Year
Cars
(in millions)

1947

1.94

1957

4.19

1948

1.96

1958

4.55

1949

2.13

1959

4.97

1950

2.26

1960

5.53

1951

2.38

1961

5.98

1952

2.51

1962

6.56

1953

2.76

1963

7.37

1954

3.10

1964

8.25

1955

3.52

1965

8.92

1956

3.89

1966

9.51

Table 11
Data from Centra/ Statistical Office Annual abstracts of statistics (1958-70). By permission of the 
Controller, H.M.S.O.

a Plot a graph of the number of cars against time.
b Find the ratio of the number of cars in each year to the number in the previous
year, e.g.

Number in 1949 = 2/3 = 
Number in 1948 ~ 1.96 ~

5 Table 12 gives the used-car prices for a Mini Saloon over a period of years. 
Year of model 1968 1967 1966 1965 1964 1963 1962 1961 

Used-car price/£ 509 425 360 315 270 235 205 180

Table 12
From Motorists' guide to new and used car prices (1970), Blackfriars Press.

a Plot a graph of the price against year.
b By what factor does the price change in succeeding years? What do you notice
about these ratios?
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8.2 Identifying exponential variation

The teaching should now aim to produce a more general equation for exponential 
change.

Suppose that a quantity A/ varies exponentially with time, that at t = 0 the value of 
the quantity is A/0 , and that in 1 second, it changes by a factor a. A table can be 
drawn up (table 13) showing how the quantity changes with time:

Time in seconds 012 3 4 5 

Value of the quantity N0 N0a N0a2 NQ a3 N0 a* N0 a5 

Table 13

Clearly, after time t, the quantity has a value given by

/V = N0 a l. 

Note that a is simply a number.

Students could be shown that this has the general property of an exponential 
change, and that in equal time intervals (no matter what that interval is), N changes 
by a constant factor. If Nt +/\t IS tne value of N at (t+ A?) and Nt is its value at t, 
then:

A/ /Va(f+AQ a'a*f_ At
Nt N0 a' at

and this depends only on the time interval Af and not on t. For equal time intervals, 
the ratio of the N value at the end of the interval to that at the beginning is 
constant.

Exponential patterns can also be represented by an equation written in terms of the 
'doubling time'. Then it would be

N = N0 2 X

where x is the time measured in units of 'doubling time'. This is really the same 
equation as N = NQ a' (where a is the factor of increase occuring in 1 second). 
Suppose the 'doubling time' was T, then xT = t and,

N = N0 a f = N0 aTx = NQ ( a T) x = NQ 2 X

giving a? = 2, as it should do, for the ratio of the values of N at the end and 
beginning of a time interval of Af is a A '. Thus, for exponential change, the 
expression describing that change is

/V = NQ x af— »• number of time units elapsed

* i \i

value at the value at factor of change 
time considered the start in 1 unit of time

t= 0
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It is not always easy to use the method of finding the ratio of N at the end to N 
at the beginning of several equal time intervals to decide whether data fit this type 
of equation. Fluctuations in the data or inaccuracies of measurement cause 
fluctuations in the value of the factor of increase. It would be easier to recognize an 
exponential variation if the data could be plotted in such a way as to give a 
straight-line graph.

Those who have remembered that if

N N _= 8 <thenf=lo8._

will not find it difficult to take logarithms to obtain 

Ig N = Ig N0 + t Ig a.

Others might be led to this by being reminded how a straight line graph could be 
obtained from data fitting p = Cqm (section 4.3). Thus, by plotting a Ig N—t graph, 
a trend away from exponential variation could be recognized, and if exponential, 
a and A/0 could be determined from the gradient and intercept respectively. 
Students will need practice at handling data in this way and might now re-examine 
the data of the introductory questions or attempt questions similar to those which 
follow. Question 4 is a good introductory question for the next section, and if the 
graphs are plotted now, they should be saved.

In discussing equations for exponential change, teachers should not omit 
decreasing changes. For example, if the quantity decreases by 1/a in 1 second, 
then, after t seconds,

The 'halving time' or 'half-life', 7", is such that a j = 2.

Examples for section 8.2

1 Is the following an exponential change?
The data in table 14 relate to the power capacity of electrical generating plant in 
Great Britain measured in GW (109 W).

Year 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 

Capacity/GW 12.9 13.1 13.8 15.0 16.2 17.7 19.2 20.6 22.5 24.6

Year 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 

Capacity/GW 26.6 28.0 30.0 31.9 33.9 37.2 39.3 40.0 43.9 46.2

Table 14
Data from Central Statistical Office (1970) Annual abstract of statistics. By permission of the 
Controller, H.M.S.O.

[This rises exponentially except for some minor pauses.]
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2 The world population has been estimated as in table 1 5. Does this show an 
exponential change?

Year 1650 1750 1800 1850 1900 

Population 0.47 x109 0.69 x109 0.92 x109 1.09x109 1.57x109

Year 1920 1930 1940 1950 1960

Population 1.81x109 2.01 x109 2.25 x109 2.51 x109 2.99 x109

Table 15
From Thompson, W. S. (1965) 5th revised edition, Population problems, McGraw-Hill.

[This rise is more than exponential.]
3 In an experiment in which a capacitor discharges through a resistor, the 

initial current / was 100 jiA. Its value was recorded at 10 s intervals and found to 
change as follows:

60 |iA, 36 uA, 22 u.A, 13 uA, 8 p.A, 5 p.A.
Is this an exponential change? If so, by what factor does the current change in 
1 s (i.e. what is a in / = /O a') ? What is the halving time?

[Yes; a = 0.95; 13.7 s.]
4 a Use logarithm tables to plot graphs of N = 2 s and N = 3'for values of t 

from 0 to 1.0 units.
b These curves are exponential: for equal increase of f, N increases by a constant 
factor. From your answers to a find the values of 2°' 25 . 
Knowing that 23 -° = 8.0, what is 23 ' 25 ?

[1.19; 9.52.]
c Explain why N = a'will have the property stated in b no matter what value the 
number a has.

Note

There are many cases (some are included in the above examples) where the 
quantities concerned are not continuous variables. In plotting the data of the above 
examples, some students may produce a straight line chart where N can only 
take on integral values (figure 62). This is probably a better way of displaying the 
data than plotting the points and drawing a curve through them.

Figure 62
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When an equation such as N = NQ a t \s used to represent the variation of a 
discontinuous variable, N has to be restricted to possible values.

8.3 The differential equation

This section deals with the integration of dN/dt = kN. The work is part of the 
Physics course and is thoroughly treated there, but for those who wish to follow the 
argument again, a version of the work covered in the chapter 'Exponential changes' 
in the Students' book for Unit 5 follows.

The gradient of an exponential curve also varies exponentially. If students need a 
reminder of this, it can be provided quickly by calculating the gradient of 
N = 10' [t = Ig/V] using a table of anti-logarithms as in table 16.

t N t+ht /V+A/V A/V A/V/Af 
0.00 1.000 0.01 1.023 0.023 2.3

§ - i.ao

0.20 1.585 0.21 1.622 0.037 3.7

tf= 1 ' 57 

0.40 2.512 0.41 2.570 0.058 5.8

— =1.60 

0.60 3.981 0.61 4.074 0.093 9.3

)w-'-
0.80 6.310 0.81 6.457 0.147 14.7

)§ = '-
1.00 10.000 1.01 10.233 0.233 23.3 

Table 16

Clearly dN/dt is also exponential and hence dN/dt cc N is true for exponential 
changes. It is the latter form of variation which is first met in Unit 2 in the case of 
the discharge of a capacitor (dQ/df oc Q).

The question to be solved is: if dN/dt = kN, how does N vary with t ? The 
simplest case (i.e. dN/dt = N) should be taken first and the solution obtained by a 
numerical method.

Students might be asked: 'Using the same axes as you did for question 4, 
section 8.2, plot out, step by step, the growth of N starting from N = + 1.0 at 
t = 0 if dN/dt = N. Take 0.1 s steps for A? and stop when you reach t = 1.0 s.' 
Since A/V w N At, for the first time interval of 0.1 s, A/V « 0.1 and N becomes 1.1.
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For the next 0.1 s, A/V ~ 1.1 x 0.1 = 0.11 and A/ becomes 1.21, and so on. This is a 
little larger because N has increased. At t = 1.0 s. A/ will have risen to about 2.6 
(figure 63).

N 3.0
A/=3'

Figure 63
0.2

If smaller time intervals than 0.1 s are used, N rises to a higher value (why?) 
nearer to 2.7. Accurate work gives 2.71828 ... as the value A/ reaches when 
f = 1.0 s, if it has the value 1.0 initially. If N = a* is the equation for an exponential 
curve (so that N = 1 when t = 0), then A/ reaches the value a when t = 1. In the 
case where dN/dt = N, a has to have this value 2.718 . .., for which the symbol e 
is used [i.e. N = e'].

'Now repeat the curve drawing for the growth represented by

^=0.7 A/.' 
df

The graph obtained is very close to that for N = 2 l .

'Use logs to find what e°'7 is or estimate its value from the first curve.'

The calculated value is 2.01; from the graph, 1.95. Instead of A/ = 2< being written 
for the solution of dN/dt = 0.7 A/, this could be written as:

A/ = ( e°- 7 )' = e°-7f if N= 1.0 when t= 0.

'What do you think A/ would be equal to if dN/dt = kN and N was equal to 1.0 
when t = 0?'
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In the previous example, k was 0.7 and N came out to be e°- 7 '. Generally, it might 
be expected that N = ekt would give dN/dt = kN. It is worth emphasizing that this 
is not different from a'; it is simply that a has to have the value ek if the gradient of 
the curve (dN/dt) at a particular time is to be k times the value of N at that time.

It is not difficult to extend this to the case where the variation starts at some value 
other than 1.0, say NQ . A numerical approach might be easier but perhaps the 
following argument might be appreciated. Compare M = e*' for which M = 1.0 
when t = 0 with N = NQ e*' for which N = N0 when t = 0.

Clearly, at any chosen time, N = NQ x M and in a small time interval, A/V = NQ x AM.

Thus the gradient, dN/dt, of the N—t graph will be N0 times larger than the 
gradient, dM/dt, of the M—t graph,

d/V .. dM D dM—-=/Vx——. But, ——
dt ° dt dt

that is, ^I=/vn x——. But, —— = /WW and N = Nn x M.
lj- 0 -j+ -j+ 0

.'. — = N0 kM= kN.

The differential equation describing N = e*' is the same as that describing 
N = N0 ekt. Consequently, if it is known that dN/dt — kN then, in general:

This determines the fractional rate of growth. 

This is the value of N at the start (i.e. when t = 0).

Examples for section 8.3

1 A bucket has a hole in the bottom, and when it is full, water leaks out at a 
rate of 100 cm3 s~ 1 . The rate of leakage as a function of time is shown in table 17.

Time/s

0

10

20

30

40

50

Table 17

Rate/cm3 s

100

78

60

47

36

28

Is this an exponential variation? 
[Yes.]
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What is the rate of leakage when t = 90 s?
[10cm3 s- 1 .]

If the volume remaining at t = 90 s is 390 cm3 , how much water was there at the 
beginning?

[3900 cm3 .]
2 How do the graphs of the equations dA//df = +kN and d/V/df = — kN 

differ?
3 Suppose y represents the number of families who have central heating in 

their homes at any time. What would the symbols Ay and Ay/Af stand for? 
It might be plausible to think that a family would not consider installing central 
heating unless they had met other families like themselves who had done so and 
who recommended it. Why might a mathematical model like Ay/Af = ky be 
appropriate for the number of families having central heating?

4 Suppose the population of Great Britain would stay steady if there were no 
emigration or immigration, then suppose that immigration is stopped totally while, in 
each year, 10 per cent of the population of the country at the start of that year 
decide to emigrate within the year.
Draw a graph of the variation of population over the next 10 years, assuming that 
the initial population is 50 million people.

5 The p.d. V across a capacitor of capacitance C having charge Q is given by 
V = QIC. When the capacitor is discharging through a resistance R, the current 
when the p.d. is V is / = VI R, so that / = Q/CR.
In a small time interval Af, short enough for the current to be considered constant, 
the charge changes by AQ.

The minus sign indicates that this is a discharge, i.e. that Q falls when current flows
so that AQ is a negative quantity.
a If CR = 50 s, plot the decay graph for the charge Q using At = 5 s and an
initial value of Q of 5 x 1 0~ 3 C.
b Your graph is an approximate solution of

^=——L Q 
dt CR

Why is it approximate? What is the mathematical equation describing the graph to 
which it approximates?

[Q = 5x10- 3 e-°-°2f .]
6 Table 18 gives the number of counts recorded in 1 minute (the count-rate) 

at various times, when a radioactive substance was placed near a counter.

Time in hours 0.5 1.0 1.5 2.0 3.0 4.0 5.0 

Count-rate/ minute -1 9535 8190 7040 6050 4465 3300 2430

Time in hours 6.0 7.0 8.0 9.0 10.0 11.0 12.0 

Count-rate/minute" 1 1800 1330 980 720 535 395 290 

Table 18
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a Test whether the data fit the mathematical model of exponential decay.
[They do.]

b Find the half-life, i.e. the time for the count-rate to fall to -l of the original 
value.

[2.3 hours.]
c If A/0 is the number of radioactive atoms at the start and N is the number of those 
left at time t, then N = A/0 e~*'. Find the value of the decay constant, k.

[8.4x10~ 5 s- 1 .]
7 Imagine that when substance A is mixed with substance B a chemical 

reaction starts in which energy is released so that the mixture becomes warmer and 
that the rate of release of energy is proportional to how warm A and B are. This 
situation could be described by an equation such as dT/dt oc T where T is the 
temperature of the mixture and t is time. If the constant of proportionality is
6 x 1CT 3 s~ 1 , how long will it be before the mixture explodes if the explosion 
temperature is 405 K and the initial temperature is 300 K? 

[50 s.]
8 When 7-rays pass through lead, they are partly absorbed. The count-rate, 

C, for a /'-source when a thickness of x mm of lead is interposed between the 
source and a GM tube, is as follows, the positions of the source and detector 
being kept fixed:

x/mm 6 9 12 15 18 21

Cr/minute' 1 1075 925 780 660 570 480

What mathematical equation describes this number pattern? What is the half- 
thickness of lead in this case?

[C = 1500e~°-° 54X; 12.8 mm.] 
9 a Write down the derivative in the following cases:

7 y = 2e3x 
2 y= y0 e~kx 
3/V=7e<2r+1 >

[dy/dx = 6e3* = 3/; dy/dx = -ky0 e~kx = -ky;
dN/dt = 14e<2t+1 >= 2/V.] 

b Integrate the following equations:
1 dy/dx = e*
2 dy/dx = 5y
3 dy/dx = 6e3 *.

[y = e*+c; y = y0 e5*; y = 2e3*+c.]

8.4 Napierian logarithms

If a number, say A/, is equal to a', t is called the logarithm to the base a of N. 
Growth and decay variations are usually expressed in terms of e. Thus, if 
N = ekt, kt is the logarithm of N to the base e. This is written as In N = kt' and 
called the Napierian logarithm of N. Books of tables often include these. For 
variations expressed by the equation N = A/0 e*' taking Napierian logarithms gives 
In N = In N0 + kt. The class could gain practice by plotting a graph of N = e' using 
tables and comparing it with that drawn in section 8.3.
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8.5 The number e

Students may be interested in knowing how the value of e can be obtained to many 
decimal places, and this section is included to help teachers to answer. Students 
should know that e can be calculated and that, like n, it 'goes on forever'. The 
value found in section 8.3 was approximate because, in drawing the graph, the 
gradient remained constant for each time interval of— second. The graph of 
N = e' has a gradient which increases continuously, and N grows a little more 
rapidly than the numerical method indicated, so that the value obtained (about 2.6) 
was an underestimate. The smaller the time interval used, the better the value 
obtained, but the process is not one to be adopted because, for example, if 
Af = 0.01 s, 100 operations have to be carried out to reach t = 1 s, and the work is 
tedious. However, the result that would have been obtained can be found 
numerically without much difficulty by setting the graphical process out as in 
table 19.

The numerical integration of dN/dt = N used a value of A? = 0.1 s so that 
A/V ~ 0.1 N = -A- N.

Time interval N at the start A/V N at the end
from to 

t= 0 s t= 0.1 s 1 

t = 0.1 s t= 0.2s 1- 

f = 0.2 s f = 0.3 s

t=0.9s f=1.0s (1+To) 9 Tod+Tff) 9 

Table 19

Up to t seconds, the value of N becomes (1 +TTT) IC" if A? = 0.1 s.

It should not be a hard step to extend this result to the case where Af = Ti-5 s. 
After 1 s, N would be equal to (1 +TW) I °°' anc' tn ' s works out to be just over 2.7.

To get a better result At must be made smaller still. In fact, e is the limiting value of 
(1+1 /n)n when n becomes very large, i.e. tends to infinity. There is still the 
problem of how to work that out but it is not worth while introducing the binomial 
theorem to do it. Table 20 shows values of (1 + 1 /n)" for some values of n.

n 1 2 3 10 100 1000 10000 

(1+1//J)" 2 2.25 2.37 2.59 2.70 2.717 2.718 

Table 20

A simpler way round the problem is to look at what N would be after t seconds:
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/ 1 V"N = e f = 1 + — when n tends to infinity.

If nt is called x, then 1 //? = ?/x, so that

/ t\" N = 1 +— provided x tends to infinity.
I x l

The class will probably accept the fact that if this were expanded, the expansion 
would contain terms with t, t2 , t3 . . . etc., which we could write as

N = ']+At+Bt2 +Ct3 + Dt* .. .

Even when x tends to infinity, A, B, C don't become large (because otherwise N 
would be large when f = 1 s), but the series will go on forever. To find the values 
of the coefficients, it must be remembered that, for N = e r, d/V/df = N.

— 
dt

No matter what t is, d/V/df must equal A/. If t = 0, the expressions become /V = 1 
and d/V/d? = A, so that A = 1 . And the coefficient of a power of t in one 
expression must be the same as the coefficient of that pqwer of f in the other. 
Comparison shows that

A 1 B 1 C 1

(2
Thus N= 1+f+ —

2 2x3 2x3x4

To find e, t must be equal to 1.

1 1
2 2x3 2x3x4'" 

= 1+1+0.5000+0.1667 + 0.0417 + 0.0083+0.0014+0.0002+ . 

w 2.7183.

The magnitude of the terms rapidly decreases in size and they soon become 
negligible, so that calculating the value of e to many decimal places is not too 
laborious.
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Section 9

Chance
The main points required from this section are the concept of probability in terms of 
the number of ways an event can occur and also in terms of the frequency with 
which an event occurs. These ideas are considered in Unit 9, Change and chance.

Useful books for students are Huff, How to take a chance and Weaver, Lady Luck. 
The PSSC film 'Random events' (Reference no. 900 4116-5, Guild Sound & 
Vision Ltd, formerly Sound Services Ltd) might be useful.

9.1 Random events — frequency and probability

The idea of frequency and the concept of probability in terms of frequency can be 
introduced by examining a set of data in which a random variable is involved. Some 
methods by which the data can be obtained are:

1 Examining the results of football matches, or cricket scores.
2 Measuring the heights or weights of members of the class.
3 Obtaining the number of counts recorded by a GM tube and sealer in 

30 seconds for a weak radioactive source kept at a fixed distance from the GM tube 
(such that about 100 counts are recorded in i minute).

4 Counting the number of words per sentence in a book.
5 Counting the number of times the letter 'e' appears per line of text.

Whichever method is chosen, the data will have to be grouped and the frequency 
with which results lie within a group determined. The number of groups chosen 
should not be too small, for that will not show the data adequately, nor too large 
because that will necessitate the collection of a large amount of information. 
Generally, some 6 to 10 groups of equal range covering the whole range of the 
variable will be suitable. To illustrate the development, data from the results of 
football matches will be used.

The First Division football results for 13 September 1 969 were as shown in table 21. 
How many teams failed to score? How many scored one goal? The number of 
times an event, such as scoring one goal, occurs is known as the frequency of that 
event, and a frequency table is made out for the data (table 22).
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First Division results, 13

Burnley

Chelsea

Coventry City

Everton

Manchester United

Newcastle United

Nottingham Forest

Sheffield Wednesday

Stoke City

Tottenham Hotspur

West Bromwich Albion

Table 21

Event
(i.e. number of goals)

0

1

2

3

4

Table 22

0

2

2

2

1

0

2

1

4

0

2

Fre
(i.e.

5

5

10

1

1

September 1969

: 1 Arsenal

: 2 Wolverhampton Wanderers

: 2 Crystal Palace

: 0 West Ham United

: 0 Liverpool

: 1 Derby County

: 1 Southampton

: 2 Leeds United .

: 2 Sunderland

: 3 Manchester City

: 2 Ipswich Town

(i.e. number of teams)

A useful way of representing the data is by means of a histogram. In such a 
diagram, the frequency is represented by the area of a rectangle, the base of which 
represents the group range. If the group ranges are the same, then the height is 
proportional to the frequency. A histogram (figure 64) should be drawn from the 
frequency table (table 22).

o 10

234 
Number of goals

Figure 64
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Ask what chance there would be of picking, at random with a pin, a team which 
had failed to score. Of the 22 teams, 5 failed to score; the chance is said to be 
5 in 22 or 5/22.

This, the relative frequency, may be called the probability estimate.

frequency of the eventprobability estimate = —————————————
total number of events

So far, chance has been concerned with events in the past. What is the chance of 
picking a team which will fail to score in the next set of matches? Can the 
probability estimated on past results be used to forecast what might happen?

Other sequences of data of the same kind as the data used above should now be 
obtained and analysed. The data for First Division football matches for 4 more 
weeks are presented in table 23 and figure 65. For each week a histogram has been 
drawn. In this case, the same total number of events occur in each set of data. If 
the total number in each set changes, relative frequencies should be considered.

Number of teams scoring
0 goal 1 goal 2 goals 3 goals 4 goals 5 goals

Week A 484501

Week B 7 6 6 1 1 1

Week C 6 7 6 3 0 0

Week D 4 8 8 1 1 0

Table 23
First Division results over four weeks.

Results considered week by week show only a little consistency. If, however, the 
results are compared month by month then, though the actual fluctuations are 
larger, the fraction of the teams failing to score, or scoring once, etc., is more 
steady. Again, it is the relative frequency that is being considered. For purposes of 
comparison, the frequencies for 3 periods of 4 weeks are given in table 24, 
together with the frequencies for a complete season. The relative frequencies are 
given in brackets.
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8

6

|—

4

2

n in
012345 012345

Week A . WeekB

— — 6

4

~

2

0 TI.
0123 01234

Week C Week D

Figure 65

Number of teams 
failing to score

Number of teams 
scoring 1 goal

Number of teams 
scoring 2 goals

Number of teams 
scoring 3 goals

Number of teams 
scoring 4 goals

Number of teams 
scoring 5 goals

Number of teams 
scoring 6 goals

Number of teams 
scoring 7 goals

Total number of 
teams

Table 24
First Division results over three

Month A Month B

18(0.31) 27(0.345}

22 (0.38) 22 (0.28)

5 (0.085) 20 (0.255)

8(0.14) 7(0.09)

3 (0.05) 1 (0.015)

2 (0.035) 1 (0.015)

0 0

0 0

58 78 

months and over the season.

Month C Season

21 (0.24) 252 (0.273)

29 (0.33) 335 (0.362)

24(0.27) 196(0.212)

10(0.11) 97(0.105)

2 (0.025) 30 (0.032)

2 (0.025) 11 (0.012)

0 2 (0.002)

0 1 (0.001)

88 924
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Examples for section 9.1

Plot histograms to display the following data:
a For the lengths of sentences in a chapter of a book, indicated in table 25.

Number of
words 1-5 6-10 11-15 16-20 21-25 26-30 31-35 36^0 41-45 46-50
Frequency 6 18 

Table 25

15 12

b For a weak radioactive source, the counts indicated in table 26, recorded by a 
GM tube and sealer over 30-second intervals.

Range of count 100-109 110-119 120-129 130-139 140-149 150-159 

Frequency 2 7 21 17 6 3 

Table 26

9.2 Measuring probability

The work of section 9.1 should show that random fluctuations have a lessening effect 
on the relative frequency or probability estimate as the total number of events 
considered increases. In this section, the probability of a coin coming down head 
uppermost when tossed is measured. Students who object because 'the result is 
obvious' could toss a drawing-pin onto a hard surface and measure the probability 
of it ending point uppermost.

Groups of students could toss coins and record the sequence of heads and tails 
obtained over 100 throws. Plotting the excess of heads or tails at each stage in the 
sequence will result in charts showing considerable fluctuations (figure 66). The 
charts convey \\il\e except that the fluctuations do not decrease as the number of 
throws increases. Amongst the fluctuations, there will, no doubt, be some long runs 
of consecutive heads or tails, e.g. in the case shown in figure 66, there is a run of 
6 consecutive heads and one of 7 tails. It is not possible at any stage to predict 
after a throw what the next will be.

Numberof throws

Figure 66
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CD

100 110 120 130 
Number of throws

Figure 67

If, however, the relative frequency (number of heads/number of throws) is 
plotted (figure 67), the graph shows clearly that the fluctuations have a decreasing 
effect as the number of throws increases and that the proportion of heads obtained 
settles down to a number close to 0.5, i.e. in a large number of throws, very close to 
half of them will be heads. That proportion becomes more constant, as the number 
of throws increases.

The results in table 27 measure the probability estimate of the coin used falling 
head uppermost when tossed.

Number of throws Number of heads Proportion

1 000

2000

3000

4000

5000

6000

7000

8000

9000

10000

502

1013

1510
2029

2533

3009
3517

4035

4539
5068

0.502

0.507

0.503

0.507

0.507

0.502

0.502

0.504

0.504

0.507
Table 27

From Kerrich, J. E. (1946). An experimental introduction to the theory of probability. 
Munksgaard, Copenhagen.
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9.3 Theoretical probability

The coin experiment is not likely to cause surprise. Perhaps many will think it could 
have been predicted. It could have been argued that the coin can only come to rest 
in one of two ways and that there is no reason to suppose one way is more likely 
than the other. So, in a large number of trials, the probability of getting a head 
must equal that of getting a tail, i.e. the proportion of heads will be i. This is called 
the theoretical probability.

, . . . . ... number of ways a favourable event can occurtheoretical probability = ————————-——————————————————
total number of ways possible

Compare this with the probability estimate:

frequency of favourable eventsprobability estimate = ——————————————————
total number of events

Intuitively, the theoretical probability will be regarded as the value the probability 
estimate will reach after a large number of events. It should be noted, however, that 
the argument depends on the ways being equally likely. For this to hold, the coin 
must be perfect and how can this be known unless it is tested by the method of 
section 9.2? Students who expect a result of 0.5 are assuming an ideal coin. In the 
drawing-pin experiment, the ways in which the pin can come to rest are not equally 
likely. That case does not involve a symmetry.

Common usage of the word 'probability' is often in the context of 'degree of belief 
that an event will occur, e.g. a horse winning a race or rain falling tomorrow. The 
remark: There is a 50 per cent chance that it will rain tomorrow' is not usually an 
assessment of probability by the number of ways events can occur or have 
occurred in the past. It is usually nothing more than the expression of an opinion.

9.4 The probability scale

When a coin is tossed, it could come to rest head up or tail up or it might stand on 
its edge. In the test of section 9.2, standing on edge never happened (even in 
10000 throws) and so its probability is taken to be zero. Again, it is not possible 
for a two-headed penny to turn up tails and the probability of a tail is zero. 
Impossible events have a probability of 0.

With a two-headed penny, heads will turn up every time giving a probability of 1 — 
a certainty.

The scale of probability extends from impossibility to certainty, from 0 to 1.

The class should now be given practice in deducing theoretical probabilities for 
ideal cases.
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Examples for sections 9.3 and 9.4

1 Consider a six-sided die.
a What is the total number of possible ways the die can land when thrown? 
b What proportion of the total number of ways will give a 5 uppermost? 
c What is the probability of a 5 being thrown?
d If the die were thrown 6 times, how many fives would you expect? 
e If the die were thrown 1 000 times, how many fives would you expect? 

[a 6; b 1 /6; c 1 /6; d ?; e about 1 67.]
2 A ball is placed in a box, the bottom of which is divided into two equal 

areas, X and Y, by a line. The ball can move freely within the box. What fraction of 
the time would you expect the ball to be in half X when the box is continuously 
and randomly shaken?

[*]
3 a At a fairground booth a 2p coin can be rolled down a small ramp onto a 

table on which are drawn a series of parallel lines 32 mm apart. If the coin comes 
to rest without touching or lying across a line, the player gets his coin back with a 
bonus of 3 coins. How much do you expect to win or lose if you try the game 2000 
times? The diameter of a 2p coin should be taken to be 24 mm.

[Nothing.]
b If another set of parallel lines cross the first set at right angles, also at a 
separation of 32 mm, what would you expect then?

[Probability of winning = 1 /1 6.
.'. In 2000 goes, you would expect to win 125 times, lose 1875 times.]

9.5 Combining probabilities

This section is concerned with the probability of two or more independent events 
occurring.

Consider a coin being tossed twice. What is the probability of getting two heads? 
These two events are independent of one another; the way the coin falls the first 
time has no effect on how it will fall on the second occasion. The possible ways 
the coin can fall are (H = head, T = tail):

HH:HT:TH:TT.

There are 4 possible ways, only one of which gives two heads. The probability of 
getting two heads is -1.

The above problem is similar to finding the probability of two coins falling heads 
when both are tossed. There are 4 possible results and the probability of getting 
two heads is -1. If the point needs making, diagrams such as those shown in 
figure 68 could be drawn.
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1st throw

/ 
2nd throw HH HT TH TT

Figure 68

A point which should emerge from these problems is that, with independent 
events, the number of ways (and the probabilities) multiply.

The probability of getting a head and a tail is worth discussing. If the order matters, 
then there is only one way of being 'successful' and so the probability is-i 
(i.e. -ix-i = -1). However, if the order does not matter, then there are two 'successful' 
results and the probability becomes-i (i.e. -j+-g- = -J-). If the probability of event 
A happening is PA and that of B happening is P B , then the probability of A and 
then B happening is PA x PB , whereas the probability of either A or B happening is
PA+PB-

The problems for the previous section about tossing dice and about placing 
counters in a box merit further discussion. The former appears in Unit 5, Atomic 
structure, and the latter in Unit 9, Change and chance.

In Unit 5, there is an experiment in which 100 dice (or wooden cubes) are rolled 
and those showing a 6 (or a marked face) are removed and counted. The remainder 
are reshaken and again the 6s are removed and counted, and so on for about 
10 throws. The experiment gives evidence of an exponential decay in the number 
of dice remaining after each throw. In the ideal case of very many trials, it would be 
expected that -l of those shaken would show up 6, so that the numbers remaining 
would decrease as below:

100 83 69 58 48 40 33 28 23 19 16.

The method by which these numbers are obtained indicate that the pattern is 
exponential.

Table 28 expresses the results in more general terms:

1 st throw 

2nd throw 

3rd throw

Number before 
throwing

N

i/v

Number 
showing 6

Number at end of 
throw

/V--l/V=f/V

mh throw 

Table 28
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In terms of probabilities, the probability of throwing a 6 on the 3rd throw, but not 
before, is -g-(-f) 2 , i-e. the product of the probabilities of not throwing a 6 on the first 
throw, not throwing a 6 on the second throw, and throwing a 6 on the third throw 
(.|x-|x-i). Similarly, the chance of not throwing a 6 at all in three throws is (-|) 3 .

1 counter
2 ways

2 counters 
4 ways

3 counters 
8 ways

4 counters 
1 6 ways

12 
34

12 
3

if

12 
3

12 
4

4

12
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3

3 
4

1 
3

V
2

1 
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2
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1
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1

2
4

1

1
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^
1 
3

)

\

1 
3

3
4

13 
4

>^
1 
2

3

\
1 
4

xfe-

1 
2

4

2
1

12

^-^^

l^

12 
3

12 
3

12 
34

Figure 69

In the case of the 'counters-in-a-box' question, a tree diagram (figure 69) will help 
to clarify matters and show that the probabilities of independent events multiply.

There is an experiment in Unit 9, Change and chance, to test these predictions. The 
class place 4 counters at random in the halves of a box drawn on paper. The easiest 
way to do this is to spin a coin to decide which half each counter should go in, or 
to use a die and place the counter according to whether the die shows an odd or an 
even number. With a class of 1 6, there should be an average of 1 student each time 
getting all counters in one specified half. About 10 trials should be sufficient. It 
should be clear that the probability of any counter arrangement is 1 /16, i.e. that the 
probabilities multiply (1/24 = 1/16).

Examples for section 9.5

1 A letter is selected at random from the word 'OPERATIONS'. What is the 
chance that it will be a a vowel b letter 0? 

[a 0.5; b O.2.]
2 If a coin is tossed 3 times, what is the chance of getting 

a HHH b HTH c THT d two heads and a tail in any order?
[a 1/8; b 1/8; c 1/8; d 3/8.] 

3 a What is the chance of throwing two sixes with two dice?
[1/36.] 

b If a die is thrown twice what is the chance of successive sixes?
[1/36.] 

c What is the chance of throwing less than 3 with a die?
[1/3.] 

d What is the chance of throwing a total of 3 or less with two dice?
[1/12.]

~ro"7
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e Construct a table (figure 70) showing all the possible results of throwing two 
dice. What is the most likely score and what is its probability? 

[7; 1/6.]

Figure 70

4 A box is divided into 2 halves, A and B (figure 71).

Figure 71

a If a counter may be placed in either half, how many ways are there of placing it in 
the box?

[2.] 
b How many ways are there of placing 2 counters in the box?

[4 = 2'.] 
c How many ways are there with 3 counters?

[8 = 23.] 
d How many ways are there with 4 counters?

[16 = 24 .]
e What proportion of the ways of arranging the 4 counters in the box gives all 
counters in part A?

[1/16.]
f If the counters move about randomly within the box, how often would one expect 
to see all the four counters in half A?

[1/16 of the time.] 
g What is the probability of all 4 counters being in half A?

[1/16.] 
h What is the probability of 3 in half A and one in half B?

[1/4.] 
i What is the probability of 2 in each half ?

[3/8.]
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5 A die is thrown several times. 
a What is the probability of throwing a 6 with the first throw?

[1/6.] 
b What is the probability of not throwing 6 with the first throw?

[5/6.]
c What is the probability of first throwing a 6 with the second throw, i.e. the 
probability of not throwing 6 with the first throw and then throwing 6 with the 
second throw?

[5/36.] 
d What is the probability of throwing a 6 with the third throw but not before?

[25/216.] 
e What is the probability of not throwing a 6 in three throws?

[125/216.]
f By considering the probabilities of first throwing a 6 on the first, second, and third 
throws, what is the probability of throwing at least one 6 in three throws?

[(1/6+5/36 + 25/216) = 91/216.]
g By considering the probability of not throwing a 6 in three throws, what is the 
probability of throwing at least one 6 in three throws?

[1-(125/216) = 91/216.]
6a A pack of cards (without jokers) is cut. What is the probability of cutting 

1 a red suit 2 a diamond 3 a picture card 4 an ace 5 the ace of spades?
[ 1 1 /2; 2 1 /4; 3 3/13; 4 1 /13; 5 1 /52.]

b The pack is now cut on 4 occasions. What is the probability of cutting a 
picture card or ace on each occasion? What is the probability of not cutting a 
picture card or ace at all? What is the probability of cutting a picture card or ace 
at least on one occasion?

[4/13)4 = 0.009; (9/1 3) 4 = 0.23; (1-0.23) = 0.77.] 
7 A set of dominoes are shaken in a bag and one is drawn from the bag at 

random. What is the probability that at least one half of that domino will be blank?
[7/28= 1/4.]

A second domino is picked without the first one being replaced. Find the 
probabilities of the following results. 
a Both the first and the second were 'blanks'.

[7/28x6/27 = 1/18.] 
b The first, but not the second was a 'blank'.

[7/28x21/27 = 7/36.] 
c The second, but not the first was a 'blank'.

[21/28x7/27 = 7/36.] 
d Neither had a 'blank' on it.

[21/28x20/27 = 5/9.]

9.6 Randomness - the most likely distribution

What is meant by 'random events', 'moving randomly'? In a random state of affairs, 
any one way (or arrangement) in which an event can occur is just as likely to occur 
as any other way. There are no restrictions; the choice is impartial. Rolling a perfect 
die could give random numbers of pips uppermost; a loaded die could not, for the
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die would tend to come to rest with its centre of gravity as low as possible and that 
way of settling would be more likely than the others. The probability of the face 
opposite to the loaded side ending uppermost would be greater than the probability 
of any one of the other faces finishing uppermost.

This does not mean that in randomness all distributions are equally probable. 
Consider the 4 counters placed in the divided box. There are 16 different ways of 
arranging the numbered counters between the halves A and B. Only one of these 
has all 4 counters in half A — the probability of that distribution is 1 /1 6. The 
distribution of two counters in each half can occur in 6 different ways, giving a 
probability of 6/1 6.

The class might tabulate the different distributions and the probabilities as in 
table 29.

Arrangement of counters Probability 
Number in A Number in B

0 4 1/16
1 3 4/16
2 2 6/16
3 1 4/16
4 0 1/16 

Table 29

The most likely distribution is 2 counters in each half, because this distribution can 
occur in the greatest number of ways (6). The least likely distribution is all the 
counters in one specified half — because there is only one way in which that can 
occur. The probability of finding 'all in one half becomes increasingly smaller as the 
number of 'counters' increases, as the examples for the section show.

To reinforce the point, the data for 8 molecules in the box can be quoted. See 
table 30.

Arrangement 
Number in A

0

1

2

3

4

5

6

7

8

Table 30

of molecules 
Number in B

8

7

6

5

4

3

2

1

0

Number of ways in 28 ways 
in which this can occur

1

8

28

56

70 : ' . -

56

28

8

1

Probability

1/256

8/256
28/256

56/256

70/256

56/256

28/256

8/256

1/256
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Again the most likely distribution is the one in which the molecules are equally 
divided, and those distributions which are nearly equal to it have high probability 
too. The chance of getting all in one specified half is just one way in the total 
number of possible ways.

The following passage by L. Boltzmann could be used as a summary of these 
points:

'From an urn, in which many black and an equal number of white but 
otherwise identical spheres are placed, let 20 purely random drawings be 
made. The case that only black balls are drawn is not a hair less probable 
than the case that on the first draw one gets a black sphere, on the second 
a white, on the third a black, etc. The fact that one is more likely to get 10 
black spheres and 10 white spheres in 20 drawings than one is to get 20 
black spheres is due to the fact that the former event can come about in 
many more ways than the latter.'

From Boltzmann, L., translated by Brush, S. &. (1964). Lectures on gas 
theory. Originally published by the University of California Press; reprinted by 
permission of The Regents of the University of California.

Examples for section 9.6

la Suppose there are 100 molecules of gas in a container. Over a long period, 
what fraction of that time will all the molecules spend, by chance, in one 
half?

[The number of ways of arranging 100 molecules between the two halves
is 2100 , so the probability of 'all in one half (i.e. a specified half) is 1 in
2100 The value of 2 100 can be found by taking logarithms.
|g 2100 = 100x0.30 = 30 so that 2100 = 1030 approximately.
If the molecules were observed every microsecond, then in 1030 \is (or
1024 s), you might expect to see the molecules all in one specified half on
one occasion. But, if the Universe is perhaps 1010 years old (i.e. 3x 1017 s),
there hasn't been much of a chance yet!]

b At atmospheric pressure, the container might have in it 1022 molecules. What 
fraction of the time over a long period will all the molecules spend, by chance, in 
one specified half ?

[A fraction 1 in 21022 .]
[The number expressing this result has about 3000000000000000000000
digits in it.]

2 Two dice are thrown. In how many ways can the total of the numbers 
uppermost be a prime number?

[2 in 1 way, 3 in 2 ways, 5 in 4 ways, 7 in 6 ways, and 11 in 2 ways - a
total of 1 5 ways.] 

What is the probability of throwing a prime number in this way?
[Probability = 15/36.]
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3 In pile A, there are ten cards, of identical size, numbered 1 to 10, the 
numbers being hidden. In pile B, there are 5 similar cards numbered 1 to 5, the 
numbers also being hidden. One card is to be drawn from each pile. 
What is the probability of drawing 3 and 7?

[1/50.] 
What is the probability of getting a 5 and a 2?

[2/50.]
In how many ways can a total of 10 or more be obtained and what is the 
probability?

[20; 20/50.] 
What is the probability of finding the total is less than 10?

[30/50.]

9.7 Binomial coefficients

Students who have done certain mathematics courses at 0-level may recognize the 
pattern for the number of ways for the distributions in section 9.5 as binomial 
coefficients. Others may wonder how to obtain these figures without having to draw 
lengthy tree diagrams. It is not suggested that the binomial theorem be studied, but 
teachers might like to consider a small digression if students seem interested.

Suppose a distribution diagram (figure 72) is drawn for the tossing of a coin or for 
the placing of counters in a divided box. Letter A stands for a head uppermost or a 
counter placed in part A of the box, B for a tail uppermost or a counter in part B, 
the order in which the letters appear having no significance. For example AB means 
a head and a tail in any order. For AA and BB, only one way is possible, but for AB 
there are two ways (head followed by tail, or tail followed by head).

distribution tree - numberofways 

1 toss or 1 counter A B 11

2 tosses or 2 counters AA AB BB 1' 2 1

A A A A A
3 tosses or 3 counters AAA AAB ABB BBB 1 3 3

4tossesor4counters AAAA AAAB AABB ABBB BBBB 146 

Figure 72

Now consider the distribution AAB. It is obtained either by first having AA and then 
B, or by having AB and then A. There is only one way of obtaining AA, and two 
ways for AB, so that there are 3 possible ways of getting AAB [A—A—B, A—B—A, 
B—A—A]. A 'number of ways' diagram can now be constructed, in which each 
number is the sum of the two numbers immediately above it. This is Pascal's 
Triangle (figure 73). It can be used to obtain the number of ways in which a given 
distribution can be achieved — provided the number of counters or tosses is not too 
large. The distribution diagram is not really needed because the distribution can also 
be deduced from Pascal's Triangle.
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/\ /\ /\ /\ /\/\ A A
r 8 28 56 70 56 28 X 8 X 1 

V 10 45 120 210 252 210 120 45 10 \
/\ /\ /\ /\ /\ /\ /\ /\ /\ A A

11 55 165 330 462 462 330 165 55 11 1
> /\ /\ /\ /\ /\ /\ /\ /\ /\ A /\
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2"= 2048 

2'2 = 4096 

2 13 = 8192 

2 14 = 16384 

2' s = 32 768

1 14
A A .
1 15 105

Figure 73

Histograms should be drawn for a few of the distributions. It is possible to extend 
this work to the Normal distribution curve and the analysis of errors. A suitable 
development along those lines appears in the School Mathematics Project's book 
Additional mathematics, Part 2, Chapter 17. In the Teachers' guide for Unit 5, 
Atomic structure, experiment 5.12 is concerned with randomness and the 
uncertainty this introduces into a measurement of a count-rate. Details also appear 
in the Students' laboratory book. The class may welcome the opportunity to look at 
those ideas again.

Examples for section 9.7

1 Twelve counters are scattered randomly in a box divided into two halves. 
What is the probability of finding that the number in either half does not exceed the 
number in the other half by more than 4?

[Possible distributions are 4 and 8, 5 and 7, 6 and 6, 7 and 5, 8 and 4.
Number of ways (495+ 792) x 2+ 924 = 3498
Total number of ways = 212 = 4096.
Probability = 3498/4096 « 35/41 = 0.85.]

2 Draw a histogram to represent the probability of obtaining 0, 1, 2, 3 heads 
when 3 coins are tossed.
Do this for 4 coins (up to 4 heads), 5 coins (up to 5 heads), and 9 coins (9 heads). 
In each of these cases, choose your scales so that the same area represents unit 
probability. For the case of 9 coins, use smaller column widths. 
What would a histogram for a large number of coins look like?
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9.8 Probability 'games'

Probability calculations and 'games' are sometimes used in attempts to account for 
the bulk properties of matter in terms of the behaviour of molecules. A 'game' of 
this kind was in fact used in the Nuffield 0-level course when considering the 
diffusion of bromine molecules in air (Nuffield 0-level Physics Teachers' guide IV, 
page 232).

The Scientific American Offprint 'Molecular motions' by Alder and Wainwright, 
provides useful reading at this point. One 'game' which is described is to find the 
distribution of distance between molecules by using a random number table to 
determine the position of molecules in an enclosure, and then measuring the 
separation of each pair of molecules. This is repeated many times to obtain the 
required distribution of distances. A similar game — for a two-dimensional 
enclosure — would be easy for the class to play. Details are given below.

Some insight into the realms of chance in science can be obtained if students read 
chapter 9 in The laws of physics by Rothman from which the following quotation 
has been taken.

'When physicists get down to measuring and describing the behaviour of 
particles, they find that they are dealing not with certainties but with 
probabilities. They cannot predict the behaviour of any single particle but 
only the average behaviour of a group of particles.

The concept of probability has become a foundation-stone of modern 
physics.'

Exercise for section 9.8

a Place 4 'molecules' in the enclosure shown in figure 74 at positions 
determined by random number tables or by drawing cards out of a bag. If 7,0 is 
drawn, the 'molecule' is placed at the centre of the first square in column 7, etc.

b Measure the distance between each pair of 'molecules'.
c Assign a new place to each molecule in turn (by using the random 

number table or by drawing cards) and measure the distances again. If a 'molecule' 
lands on top of another, the move is not allowed and that molecule is considered 
not to have moved.

d Continue for a number of moves (at least 20) and draw a suitable 
histogram to show the distribution.

Of course, it makes it easier to collect the results quickly if several students play 
simultaneously and pool their readings at the end..
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Section 10

Dynamics
There is no Unit in the Nuffield Advanced Physics course which is solely concerned 
with dynamics. The topics required are either treated in detail as part of the course 
when the need arises, or briefly revised if adequately covered in the Nuffield 
0-level course.

This book has given some attention to the revision of motion under constant 
acceleration, but there will probably be a need to give students additional practice 
with numerical problems covering a much wider range than that. Indeed, there may 
be a need for a more detailed second look at some of the 0-level ideas and 
teachers should refer to the texts (Nuffield 0-level Physics Teachers' guides III, IV 
and V) where appropriate. The topics which should be considered are:

1 Scalars and vectors.
2 Newton's Laws of motion, momentum, energy, and work.
3 Motion in a circle.
4 Simple harmonic motion.

Brief notes under these headings follow.

Elementary questions can be found in the questions books for the 0-level course, 
particularly Questions books IV and V, and there are some rather harder examples in 
the Nuffield Advanced Physics Students' books for Units 2, 3, and 4. Rogers, Physics 
for the inquiring mind and PSSC Physics are good sources for suitable questions.

Scalars and vectors

Consideration of two displacements shows that numerical addition of the distances 
does not give the displacement from the starting point, and that geometrical 
addition by the parallelogram law is necessary. Velocity (displacement per unit time) 
and acceleration (change of velocity per unit time) behave similarly. Forces should 
also be considered, together with their resolution into two components. Chapters 2 
and 3 of Rogers, Physics for the inquiring mind, will be found useful as a guide to 
teaching.

Newton's Laws of motion, momentum, energy, and work

This topic receives an extensive treatment in the O-level course and only a brief 
reminder of F = ma should be needed. Students should know that force is also the 
rate of change of momentum and that momentum is a vector. Newton's Third Law 
and the conservation of momentum are important.

Chapters 7 and 8 of Rogers, Physics for the inquiring mind, are useful here, and 
PSSC Physics has chapters which cover the ground well.
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The topics of energy and its conservation and transformation might also need 
consolidation. See particularly Units 2 and 3 of the Nuffield Advanced Physics 
course.

Motion in a circle

The class may need to see again the derivation of v2 /r for the inward acceleration. 
The vector method (Nuffield 0-level Physics Teachers' guide V, page 47) should 
be used. This is also in Chapter 21 of Rogers, Physics for the inquiring mind. 
See Nuffield Advanced Physics, Unit 7.

Simple harmonic motion

Students may wish to go through some of the work of Unit 4 again and to widen 
their experience by looking at other examples of simple harmonic motion.
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Appendix A 
Books and other reading

Page numbers of references in this Guide appear in bold type.

Alder, B. J., and Wainwright, T. E. (1959) 'Molecular motions'. Scientific American Offprint
no. 265. 114.
Useful in section 9.8, 'Probability games'. .

Austwick, K. (1962) Logarithms. Pergamon. 8.

Gartside, S., and Kaye, D. (Ed. Roseveare, D.) (1969) Square two, volume 1. BBC Publications. 
Quadling, D., Shuard, H., and Lawrance, A. (Ed. Roseveare, D.) (1970) Square two, volume 2. 
BBC Publications. 
These books deal with most of the topics in this Guide.

Huff, D. (1965) How to take a chance: the laws of probability. Penguin. 98. 
A readable book for students.

Midlands Mathematical Experiment (1970) 0-level Book 2. Harrap. 
Provides useful questions for Sections 1, 2, 3, and 4.

PSSC (1965) Physics. 2nd edition. Heath 11,16. 
Useful for Section 10, 'Dynamics'.

Rogers, E. M. (1960) Physics for the inquiring mind. Oxford University Press. 116, 117. 
Useful for Section 10,'Dynamics'.

Rothman, M. A. (1966) The laws of physics. Penguin. 114. 
Useful for section 9.8, 'Probability games'.

School Mathematics Project (1968) Additional mathematics book, part 2. Cambridge University
Press. 113.
This book deals with most of the topics in this Guide.

School Mathematics Project (1964) Book T. Cambridge University Press.
School Mathematics Project (1965) Book 74. Cambridge University Press.
School Mathematics Project (1968) Supplement to Books T and 74. Cambridge University Press.
These provide useful questions for Sections 1, 2, 3, and 4.

Weaver, W. (1964) Science Study Series no. 24 Lady Luck. Heinemann. 98. 
A study of the theory of probability.
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Appendix B
A syllabus for supplementary mathematics

Items marked * receive explicit attention within the Nuffield Advanced Physics 
course.

Indices and their manipulation —the power-of-ten notation.
Logarithms to base 10 and their use. The slide rule.
Ratio and scaling. The sine, cosine, and tangent of angle as a ratio.

Direct and inverse proportion graphically. The algebraic equations y = kx and 
y = k/x. Dependence on more than one variable. 
Linear graphs, gradient and intercept, y = mx+c.
Non-linear graphs, y = kx2 , y = k/x2 , y = k/x. Linear plots of these functions. The 
area 'under' a graph. ; 

'Growth and decay functions. ....••• :

'Small changes of variable and the gradient of a graph.
dy/dx as Nm A)(._^ 0 A//Ax. Differentiation of x" with a minimal treatment of
(1 +x)" when x<s1. 

"Rates of change; turning points; d 2 y/dx2 .
Small changes and 'errors'.

Sine and cosine functions treated graphically.
Derivative of sin 9, cosO; the circular measure of angles and the small angle
approximations.
Derivatives of A sin kd and A cos k6; angular rotation.

Integration as reverse differentiation. 
'Numerical reverse differentiation to solve simple equations,
'e.g. dy/dx = kx, dy/dt = by, d 2 y/dt2 = k, d 2 y/dt2 = -co2 y.

rx 
Area under a graph and the ydx notation. Its equivalence to reverse differentiation.

Jo

"Growth and decay patterns; the exponential variation. 
'The numerical solution of dN/dt = +kN. 
'The number e; Napierian logarithms.

'Random events and frequency. Relative frequency and theoretical probability. The
probability scale.
Combining probabilities. 

"Randomness and the most likely distribution. The binomial coefficients (Pascal's
Triangle).

'Revision of dynamics; scalars and vectors.
'Newton's Laws of motion, momentum, energy; motion in a circle; simple 
harmonic motion.
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Index

Where the page reference is to an example, it is italicized.

angles, trigonometrical ratios of, 11
small, 14. 64 

angular rotation, 66
approximations, yiO by method of successive, 

6
small angle, 14, 64
'errors' and uncertainties, 54
using the binomial theorem, 45—7, 49 

area 'under' a graph. 29. 36. 77—82
of a circle. 30

B
binomial theorem, 45-7

coefficients and Pascal's triangle, 112-13 
Boltzmann, L. quoted. 111 
books and further reading, 8, 11, 98, 11 3, 114, 

11 6, 117, 118

circular measure of angles, 60—3 
co-ordinates. 1 6 
cosine of an angle, 11

of a small angle, 14, 64
graph, 57
derivative of, 58-66

functional relationships, 15-22 
direct proportion, 17-18 
growth and decay, 34—5 
indirect proportion, 19 
more than one variable, 21—2

gradient, see graphs 
graphs, area 'under', 29, 36, 77—82 

exponential, 84, 89
gradient or slope of, 23-5. 33. 34. 38, 39, 41, 

45, 49-51 ; see also exponential 
variations and sine and cosine graphs 

growth and decay, 35; see a/so exponential
graphs

intercept of linear. 24-5. 27, 33, 34 
linear, 16-17, 23-9, 32-3 
non-linear, 31-6 
sine and cosine, 57 
turning points of, 49-51 
use of logarithms, 34, 89 

growth and decay patterns, 34—5; see a/so 
exponential variations

H
histograms, 99, 102

derivative, first, 41-2
of x n. 44-7
second, 52-3, 74
of sine and cosine functions, 58-66
turning points, 49-51 

differential coefficient, see derivative 
differential equations, 70-5, 91-3 
direct proportion, 1 7-1 8 
distributions, 109-13

E
e. 96-7
energy, 116
'errors', see uncertainties
exponential variations, 84—93 

differential equation for, 91-3 
doubling time of, 84, 88 
halving time or half-life of. 84, 89

films, 'Change of scale', 11 
'Random events', 98 

fractional changes, 54—5 
frequency of an event, 98—9

indices, 4-5 
fractional, 6-7

and the slide rule, 9 
integration, reverse differentiation, 69—75; as

area under a graph, 77—82 
of x n, 83

intercept, see graphs 
inverse proportion, 1 9

limits of integration, 79—82 
logarithms, 5-7

use of in graphical work, 34, 35, 89 
.1 Napierian, 95

M
mapping diagram, 15, 16. 40 
momentum, 116 
motion in a circle, 117

N
Napierian logarithms, 95 
Newton's Laws of Motion, 116 
Nuffield 0-level Physics, 19, 22. 57, 66, 114. 

116-17
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numerical methods, differentiation, 41 
derivative of sin 6 and of cos 6, 58—60 
differential equations, solution of, 71—5, 91—3 
e, value of, 96
gradient of a non-linear graph, 41 
reverse differentiation, 71-5, 91-3

Pascal's Triangle, 112-13 
percentage uncertainty, 54-5 
probability estimate, 100—1 04

games, 114
of independent events, 105—7
scale, 1 04
theoretical, 104

proportion, direct, 1 7—1 8; inverse, 1 9 
Pythagoras' theorem, 14

radian, 61,63
random events, 98—11 4; most likely

distribution of, 109-11; see also films 
rate of change, 24; and gradient. 39, 41-5 
ratio, 10; trigonometrical, 11 
relative frequency, 1 00—103 
reverse differentiation. 69-82 
Rothman, M. A., quoted, 114

S
scalars, 116 
scaling, 10-12

scaling factor, 10
simple harmonic motion, 117
sine of an angle, 11

of a small angle, 14, 64
graph, 57
derivative of, 58—66 

slide rule, 8-9 
slope, see graphs
small angle approximations, 14. 64 
strip division, areas by, 29, 36, 79—82 
syllabus, 119

tangent of an angle, 11; of a small angle, 14. 64
timing, 2-3
tree diagram, 107.
trigonometrical ratios. 11

graphs of. 57
derivatives of, 58—66
values for small angles, 64 

trigonometrical relationships, 11-12, 14, 57 
turning points. 49-51

U
uncertainties, 53^1; combining uncertainties, 

54-5

V
vectors, 116

W '

work, 116
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