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Science is an adventure of the ivhole human race to learn to live in and

perhaps to love the universe in which they are. To be a part of it is to

understand, to understand oneself, to begin to feel that there is a capacity

within man far beyond what he felt he had, of an infinite extension of

human possibilities ....

I propose that science be taught at whatever level, from the loivest to the

highest, in the humanistic way. It should be taught with a certain historical

understanding, ivith a certain philosophical understanding, xvith a social

understanding and a human understanding in the sense of the biography, the

nature of the people who made this construction, the triumphs, the trials, the

tribulations.
I. I. RABI

Nobel Laureate in Physics

Preface

Background The Project Physics Course is based on the ideas and

research of a national curriculum development project that worked in

three phases. First, the authors—a high school physics instructor, a

university physicist, and a professor of science education—collaborated

to lay out the main goals and topics of a new introductory physics

course. They worked together from 1962 to 1964 with financial support

from the Carnegie Corporation of New York, and the first version of

the text was tried out in two schools with encouraging results.

These preliminary results led to the second phase of the Project

when a series of major grants were obtained from the U.S. Office of

Education and the National Science Foundation, starting in 1964.

Invaluable additional financial support was also provided by the

Ford Foundation, the Alfred P. Sloan Foundation, the Carnegie

Corporation, and Harvard University. A large number of collaborators

were brought together from all parts of the nation, and the group

worked together for over four years under the title Harvard Project

Physics. At the Project's center, located at Harvard University,

Cambridge, Massachusetts, the staff and consultants included college

and high school physics instructors, astronomers, chemists, historians

and philosophers of science, science educators, psychologists,

evaluation specialists, engineers, film makers, artists and graphic

designers. The instructors serving as field consultants and the students

in the trial classes were also of vital importance to the success of

Harvard Project Physics. As each successive experimental version of

the course was developed, it was tried out in schools throughout the

United States and Canada. The instructors and students in those schools

reported their criticisms and suggestions to the staff in Cambridge,

and these reports became the basis for the subsequent revisions of

the course materials. In the Preface to the Text you will find a list of the

major aims of the course.
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We wish it were possible to list in detail the contributions of each

person who participated in some part of Harvard Project Physics.

Unhappily it is not feasible, since most staff members worked on a

variety of materials and had multiple responsibilities. Furthermore,

every text chapter, experiment, piece of apparatus, film or other item

in the experimental program benefitted from the contributions of a

great many people. Beginning on page A21 of the Text Appendix is a

partial list of contributors to Harvard Project Physics. There were, in

fact, many other contributors too numerous to mention. These include

school administrators in participating schools, directors and staff

members of training institutes for teachers, instructors who tried the

course after the evaluation year, and most of all the thousands of students

who not only agreed to take the experimental version of the course,

but who were also willing to appraise it critically and contribute their

opinions and suggestions.

The Project Physics Course Today. Using the last of the experimental

versions of the course developed by Harvard Project Physics in

1964-68 as a starting point, and taking into account the evaluation

results from the tryouts, the three original collaborators set out to

develop the version suitable for large-scale publication. We take

particular pleasure in acknowledging the assistance of Dr. Andrew

Ahlgren of the University of Minnesota. Dr. Ahlgren was invaluable

because of his skill as a physics instructor, his editorial talent, his

versatility and energy, and above all, his commitment to the goals of

Harvard Project Physics.

We would also especially like to thank Ms. Joan Laws whose

administrative skills, dependability, and thoughtfulness contributed so

much to our work. The publisher, Holt, Rinehart and Winston, Inc.

of New York, provided the coordination, editorial support, and general

backing necessary to the large undertaking of preparing the final

version of all components of the Project Physics Course, including

texts, laboratory apparatus, films, etc. Damon-Educational Division, a

company located in Westwood, Massachusetts, worked closely with us

to improve the engineering design of the laboratory apparatus and to

see that it was properly integrated into the program.

In the years ahead, the learning materials of the Project Physics

Course will be revised as often as is necessary to remove remaining

ambiguities, clarify instructions, and to continue to make the materials

more interesting and relevant to students. We therefore urge all

students and instructors who use this course to send to us (in care of

Holt, Rinehart and Winston, Inc., 383 Madison Avenue, New York,

New York 10017) any criticism or suggestions they may have.

F. James Rutherford

Gerald Holton

Fletcher G. Watson
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Answers to End-of-Section Questions

Chapter 9

Q1 False

02 No. Don't confuse mass with volume or mass

with weight.

Q3 Answer C
Q4 No. Change speed to velocity and perform

additions by vector techniques.

Q5 (a), (c) and (d) (Their momenta before collision

are equal in magnitude and opposite in direction.)

Q6 Least momentum: a pitched baseball (small

mass and fairly small speed)

Greatest momentum: a jet plane in flight (very large

mass and high speed)

Q7 (a) about 4 cm/sec. Faster ball delivers more

momentum to girl.

(b) about 4 cm/sec. More massive ball delivers more

momentum to girl.

(c) about 1 cm/sec. With same gain in momentum
more massive girl gains less speed.

(d) about 4 cm/sec. Momentum change of ball is

greater if its direction reverses.

(These answers assume the mass of the ball is much

less than the mass of the girl.)

Q8 It can be applied to situations where only

masses and speeds can be determined.

Q9 Conservation of mass: No substances are added

or allowed to escape.

Conservation of momentum: No net force from

outside the system acts upon any body considered

to be part of the system.

Q10 None of these is an isolated system. In cases

(a) and (b) the earth exerts a net force on the system.

In case (c) the sun exerts a net force on the system.

Q11 Answer (c) (Perfectly elastic collisions can

only occur between atoms or subatomic particles.)

Q12 Answer (d) (This assumes mass is always

positive.)

Q13 Answer (c)

Q14 (a) It becomes stored as the object rises.

(b) It becomes "dissipated among the small parts"

which form the earth and the object.

Chapter 10

Q1 Answer (b)

Q2 Answer (b)

Q3 Answer (c)

Q4 Answer (c) The increase in potential energy

equals the work done on the spring.

Q5 Answer (e) You must do work on the objects

to push them closer together.

Q6 Answer (e) Kinetic energy increases as gravita-

tional potential energy decreases. Their sum remains

the same (if air resistance is negligible).

Q7 Potential energy is greatest at extreme position

where the speed of the string is zero. Kinetic energy

is greatest at midpoint where the string is unstretched.

Q8 The less massive treble string will gain more

speed although both gain the same amount of kinetic

VIII

energy (equal to elastic potential energy given by

guitarist).

Q9 Multiply the weight of the boulder (estimated

from density and volume) by the distance above

ground level that it seems to be. (For further

discussion see SG 10.15.)

Q10 None. Centripetal force is directed inward

along the radius which is always perpendicular to

the direction of motion for a circular orbit.

Q11 Same, if initial and final positions are identical.

Q12 Same, if frictional forces are negligible. Less if

frictional forces between skis and snow are taken

into account.

Q13 Answer (c)

Q14 Answer (c)

Q15 False. It was the other way around.

Q16 Chemical, heat, kinetic or mechanical

Q17 Answer (b)

Q18 Answer (d)

Q19 It is a unit of power, or rate of doing work,

equal to 746 watts.

Q20 Answer (d)

Q21 Answer (b)

Q22 Nearly all. A small amount was transformed

into kinetic energy of the slowly descending weights

and the water container would also have been

warmed.

Q23 Answer (a)

Q24 Answer (e)

Q25 The statement means that the energy which

the lion obtains from eating comes ultimately from

sunlight. He eats animals, which eat plants which

grow by absorbed sunlight.

Q26 Answer (c)

Q27 Answer (a)

Q28 Answer (c)

Q29 Answer (c)

Q30 AE is the change in the total energy of the

system

AW is the net work (the work done on the

system — the work done by the system)

AH is the net heat exchange (heat added to

the system — heat lost by the system)

031 1. heating (or cooling) it

2. doing work on it (or allowing it to do work)

Chapter 11

01 Answer (c)

02 True

03 False

04 Answer (b)

05 In gases the molecules are far enough apart

that the rather complicated intermolecular forces can

safely be neglected.

06 Answer (b)

07 Answer (b)

08 Answer (d)

09 Answer (c)

(continued on p. Al)
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UNIT3
The Triumph of Mechanics

CHAPTERS
9 Conservation of Mass and Momentum

10 Energy

11 The Kinetic Theory of Gases
12 Waves

PROLOGUE The success of Isaac Newton in uniting the studies of

astronomy and of terrestrial motion is one of the glories of the human mind. It

was a turning point in the development of science and humanity. Never before

had a scientific theory been so successful in finding simple order in observable

events. Never before had the possibilities for using one's rational faculties for

solving any kind of problem seemed so promising. So it is not surprising that

after his death in 1 727 Newton was looked upon almost as a god, especially in

England. Many poems like this one appeared:

Newton the unparalled'd, whose Name
No Time will wear out of the Book of Fame,

Celestial Science has promoted more,

Than all the Sages that have shone before.

Nature compell'd his piercing Mind obeys.

And gladly shows him all her secret Ways;

'Gainst Mathematics she has no defence,

And yields t' experimental Consequence;

His tow'ring Genius, from its certain Cause
Ev'ry Appearance a priori draws

And shews th' Almighty Architect's unalter'd Laws.

Newton's success in mechanics altered profoundly the way in which

scientists viewed the universe. Physicists after Newton explained the motion of

the planets around the sun by treating the solar system as a huge machine. Its

"parts" were held together by gravitational forces rather than by nuts and bolts.

But the motions of these parts relative to each other, according to Newton's

theory, were determined once and for all after the system had first been put

together.

We call this model of the solar system the Newtonian world-machine. As is

true for any model, certain things are left out. The mathematical equations

which govern the motions of the model cover only the main properties of the

(From J. T. Desagulier, The New-
tonian System of the World, the

Best Model of Government, an

Allegorical Poem.)

Beginning of Book 3, The Systems of the World,'

in the 1713 edition of Newton's Principia.

Unit 3 1
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real solar system. The masses, positions and velocities of the parts of the

system, and the gravitational forces among them are well described. But the

Newtonian model neglects the internal structure and chemical composition of

the planets, heat, light, and electric and magnetic forces. Nevertheless, it

serves splendidly to deal with observed motions. Moreover, it turned out that

Newton's approach to science and many of his concepts became useful later in

the study of those aspects he had to leave aside.

The idea of a world machine does not trace back only to Newton's work. In

h\s Principles of Philosophy (1644), Rene Descartes, the most influential

French philosopher of the seventeenth century, had written:

I do not recognize any difference between the machines that

artisans make and the different bodies that nature alone composes,

unless it be that the effects of the machines depend only upon the

adjustment of certain tubes or springs, or other instruments, that,

having necessarily some proportion with the hands of those who
make them, are always so large that their shapes and motions can

be seen, while the tubes and springs that cause the effects of

natural bodies are ordinarily too small to be perceived by our

senses. And it is certain that all the laws of Mechanics belong to

Physics, so that all the things that are artificial, are at the same time

natural.

'The Ancient of Days" by William

Blake, an English poet who had little

sympathy with the Newtonian style

of "natural philosophy."

Robert Boyle (1627-1691), a British scientist, is known particularly for his

studies of the properties of air. (See Chapter 1 1 .) Boyle, a pious man,

expressed the "mechanistic" viewpoint even in his religious writings. He argued

that a God who could design a universe that ran by itself like a machine was
more wonderful than a God who simply created several different kinds of matter

and gave each a natural tendency to behave as it does. Boyle also thought it

was insulting to God to believe that the world machine would be so badly

designed as to require any further divine adjustment once it had been created.

He suggested that an engineer's skill in designing "an elaborate engine " is

more deserving of praise if the engine never needs supervision or repair. "Just

so," he continued,

... it more sets off the wisdom of God in the fabric of the universe,

that he can make so vast a machine perform all those many things,

which he designed it should, by the meer contrivance of brute

matter managed by certain laws of local motion, and upheld by his

ordinary and general concourse, than if he employed from time to

time an intelligent overseer, such as nature is fancied to be, to

regulate, assist, and controul the motions of the parts. . . .

Boyle and many other scientists in the seventeenth and eighteenth

centuries tended to think of God as a supreme engineer and physicist. God had

set down the laws of matter and motion. Human scientists could best glorify the

Creator by discovering and proclaiming these laws.

Our main concern in this unit is with physics as it developed after Newton.

In mechanics, Newton's theory was extended to cover a wide range of
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phenomena, and new concepts were introduced. The conservation laws to be

discussed in Chapters 9 and 10 became increasingly important. These powerful

principles offered a new way of thinking about mechanics. They opened up new

areas to the study of physics—for example, heat and wave motion.

Newtonian mechanics treated directly only a small range of experiences. It

dealt with the motion of simple bodies, or those largely isolated from others as

are planets, projectiles, or sliding discs. Do the same laws work when applied to

complex phenomena? Do real solids, liquids, and gases behave like machines

or mechanical systems? Can their behavior be explained by using the same

ideas about matter and motion that Newton used to explain the solar system?

At first, it might seem unlikely that everything can be reduced to matter and

motion, the principles of mechanics. What about temperature, colors, sounds,

odors, hardness, and so forth? Newton himself believed that the mechanical

view would essentially show how to investigate these and all other properties. In

the preface to the Principia he wrote:

Ironically, Newton himself explicitly

ejected the deterministic aspects of

the "World-Machine" which his

followers had popularized.

I wish we could derive the rest of the phenomena of Nature by the

same kind of reasoning from mechanical principles, for I am
induced by many reasons to suspect that they may all depend upon

certain forces by which the particles of bodies, by some causes

hitherto unknown, are mutually impelled towards one another, and

cohere according to regular figures, or are repelled and recede

from one another. These forces being unknown, philosophers have

hitherto attempted the search of Nature in vain; but I hope the

principles here laid down will afford some light either to this or some
truer method of Philosophy.

Scientists after Newton strove to understand nature in many different

areas, "by the same kind of reasoning from mechanical principles." We will see

in this unit how wide was the success of Newtonian mechanics—but you will

see also some evidence of limits to its applicability.

A small area from the center of the

picture has been enlarged to show
what the picture is "really" like. Is

the picture only a collection of dots?

Knowing the underlying structure

doesn't spoil our other reactions to

the picture, but rather gives us an-

other dimension of understanding it.
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CHAPTER NINE

Conservation of

Mass and Momentum

9.1 Conservation of mass

The idea that despite ever-present, obvious change all around us the total

amount of material in the universe does not change is really very old. The

Roman poet Lucretius restated (in the first century B.C.) a belief held in

Greece as early as the fifth century B.C.:

. . . and no force can change the sum of things; for there is no

thing outside, either into which any kind of matter can emerge out

of the universe or out of which a new supply can arise and burst

into the universe and change all the nature of things and alter

their motions. [On the Nature of Things]

Just twenty-four years before Newton's birth, the English philosopher

Francis Bacon included the following among his basic principles ofmodem
science in Novum Organum (1620):

There is nothing more true in nature than the twin propositions

that "nothing is produced from nothing" and "nothing is reduced

to nothing" . . . the sum total of matter remains unchanged,

without increase or diminution.

This view agrees with everyday observation to some extent. While the

form in which matter exists may change, in much of our ordinary experience

matter appears somehow indestructible. For example, we may see a large

boulder crushed to pebbles, and not feel that the amount of matter in the

universe has diminished or increased. But what if an object is burned to ashes

or dissolved in acid? Does the amount of matter remain unchanged even in

such chemical reactions? Or what of large-scale changes such as the forming

of rain clouds or of seasonal variations?

SG 9 1
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In some open-air chemical reactions,

the mass of objects seems to de-

crease, while in others it seems to

increase.

Note the closed flask shown in his

portrait on p. 7.

To test whether the total quantity of matter actually remains constant, we

must know how to measure that quantity. Clearly it cannot simply be

measured by its volume. For example, we might put water in a container,

mark the water level, and then freeze the water. If so, we find that the volume

of the ice is larger than the volume of the water we started with. This is true

even ifwe carefully seal the container so that no water can possibly come in

from the outside. Similarly, suppose we compress some gas in a closed

container. The volume of the gas decreases even though no gas escapes from

the container.

Following Newton, we regard the mass of an object as the proper measure

of the amount of matter it contains. In all our examples in Units 1 and 2, we

assumed that the mass of a given object does not change. But a burnt match

has a smaller mass than an unbumt one; and an iron nail increases in mass as

it rusts. Scientists had long assumed that something escapes from the match

into the atmosphere, and that something is added from the surroundings to

the iron of the nail. Therefore nothing is really "lost" or "created" in these

changes. But not until the end of the eighteenth century was sound

experimental evidence for this assumption provided. The French chemist

Antoine Lavoisier produced this evidence.

Lavoisier caused chemical reactions to occur in closed flasks. He carefully

weighed the flasks and their contents before and after the reaction. For

example, he burned iron in a closed flask. The mass of the iron oxide produced

equalled the sum of the masses of the iron and oxygen used in the reaction.

With experimental evidence like this at hand, he could announce with

confidence in Traite tlementaire de Chimie (1789):

SG 9.2

Conservation of mass was demon-
strated in experiments on chemical

reactions in closed flasks.

The meaning of the phrase 'closed

system" will be discussed in more
detail in Sec. 9.5.

We may lay it down as an incontestable axiom that in all the

operations of art and nature, nothing is created; an equal quantity

of matter exists both before and after the experiment, . . . and

nothing takes place beyond changes and modifications in the

combinations of these elements. Upon this principle, the whole art

of performing chemical experiments depends.

Lavoisier knew that if he put some material in a well-sealed botde and

measured its mass, he could return at any later time and find the same mass. It

would not matter what had happened to the material inside the bottle. It might

change from solid to liquid or liquid to gas, change color or consistency, or

even undergo violent chemical reactions. But at least one thing would remain

unchanged—the total mass of all the different materials in the botde.

In the years after Lavoisier's pioneering work, a vast number of similar

experiments were performed with ever increasing accuracy. The result was

always the same. As far as we now can measure with sensitive balances

(having a precision of better than 0.000001%), mass isconserved—that is, it

remains constant—in chemical reactions.

To sum up: despite changes in location, shape, chemical composition and

so forth, the mass ofany closed system remains constant. This is the

statement of what we will call the /aw ofconservation of mass. This law is

basic to both physics and chemistry.
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Antoine Laurent Lavoisier (1743-1794)

is known as the "father of modern
chemistry" because he showed the

decisive importance of quantitative

measurements, confirmed the prin-

ciple of conservation of mass in chem-
ical reactions, and helped develop the

present system of nomenclature for

the chemical elements. He also

showed that organic processes such
as digestion and respiration are

similar to burning.

To earn money for his scientific re-

search, Lavoisier invested in a private

company which collected taxes for

the French government. Because the

tax collectors were allowed to keep

any extra tax which they could collect

from the public, they became one of

the most hated groups in France.

Lavoisier was not directly engaged in

tax collecting, but he had married the

daughter of an important executive of

the company, and his association

with the company was one of the rea-

sons why Lavoisier was guillotined

during the French Revolution.

Also shown in the elegant portrait by
David is Madame Lavoisier. She had
been only fourteen at the time of her

marriage. Intelligent as well as beauti-

ful, she assisted her husband by

taking data, translating scientific

works from English into French, and
making illustrations. About ten years

after her husband's execution, she
married another scientist. Count
Rumford, who is remembered for his

experiments which cast doubt on the

caloric theory of heat.



8 Unit 3 Conservation of Mass and Momentum

"The change in the total mass is

zero" can be expressed symbolically

as M, m, = where i! represents

the sum of the masses of m, in all

parts of the system.

Obviously, one must know whether a given system is closed or not before

applying this law to it. For example, it is perhaps surprising that the earth itself

is not exactly a closed system within which all mass would be conserved.

Rather, the earth, including its atmosphere gains and loses matter constantly.

The most important addition occurs in the form of dust particles. These

particles are detected by their impacts on satellites that are outside most of the

atmosphere. Also, they create light and ionization when they pass through the

atmosphere and are slowed down by it. The number of such particles is larger

for those particles which are of smaller size. The great majority are ver\' thin

particles on the order of 10 ""* cm diameter. Such small particles cannot be

indixIduaUy detected from the ground when they enter the atmosphere. They

are far too small to appear as meteorites, which result when particles at least

several millimeters in diameter vaporize. The total estimated inflow of mass of

all these particles, large and small, is about lO^g/sec over the whole surface of

the earth. (Note: the mass of the earth is about 6 x lO^^g.) This gain is not

balanced by any loss of dust or larger particles, not counting an occasional

spacecraft and its debris. The earth also collects some of the hot gas

evaporating from the sun, but this amount is comparatively small.

The earth does lose mass by evaporation of molecules from the top of the

atmosphere. The rate of this evaporation depends on how many molecules are

near enough to the top of the atmosphere to escape without colliding with

other molecules. Also, such molecules must have velocities high enough to

escape the earth's gravitational pull. The velocities of the molecules are

determined by the temperature of the upper atmosphere. Therefore the rate of

evaporation depends greatly on this temperature. At present the rate is

probably less than 5 x lO^g/sec over the whole earth. This loss is ven' small

compared with the addition of dust. (No water molecules are likely to be lost

directly by atmospheric "evaporation;" they would first have to be dissociated

into hydrogen and oxygen molecules.)

Try these end-of-section questions

before qoing on.

SG 9.3-9.7

Q1 True or false: Mass is consented in a closed system only if there

is no chemical reaction in the system.

Q2 If 50 cm^ of alcohol is mixed with 50 cm^ of water, the mixture

amounts to only 98 cm^. An instrument pack on the moon weighs much
less than on earth. Are these examples of contradictions with the law of

conservation of mass?

Q3 Which one of the following statements is true?

(a) Lavoisier was the first person to believe that the amount of

material stuff in the universe did not change.

(b) Mass is measurably increased when heat enters a system.

(c) A closed system was used to establish the law of conservation of

mass experimentally.
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9.2 Collisions

Looking at moving things in the world around us easily leads to the

conclusion that ever^'thing set in motion eventually stops. Every clock,

ever)' machine eventually runs down. It appears that the amount of

motion in the universe must be decreasing. The universe, bke any

machine, must be running down.

Many philosophers of the 1600's could not accept the idea of a

universe that was running down. The concept clashed with their idea of

the perfection of God, who surely would not construct such an imperfect

mechanism. Some definition of "motion" was needed which would permit

one to make the statement that "the quantity of motion in the universe is

constant."

Is there such a constant factor in motion that keeps the world

machine going? To answer these questions most directly, we can do some

simple laboratory experiments. We will use a pair of identical carts with

nearly frictionless wheels, or better, two dry-ice discs or two air-track

gliders. In the first experiment, a lump of putty is attached so that the

carts will stick together when they collide. The carts are each given a

push so that they approach each other with equal speeds and collide head-

on. As you will see when you do the experiment, both carts stop in the

collision: their motion ceases. But is there anything related to their

motions which does not change?

Yes, there is. If we add the velocity 1^.4 of one cart to the velocity Vg of

the other cart, we find that the vector sum does not change. The vector

sum of the velocities of these oppositely moving carts is zero before the

collision. It is also zero for the carts at rest after the collision.

We might wonder whether this finding holds for all collisions. In

other words, is there a "law of conservation of velocity"? The example

above was a very special circumstance. Carts with equal masses approach

each other with equal speeds. Suppose we make the mass of one of the

carts twice the mass of the other cart. (We can conveniently double the

mass of one cart by putting another cart on top of it.) Now let the carts

approach each other with equal speeds and collide, as before. This time

the carts do not come to rest. There is some motion remaining. Both

objects move together in the direction of the initial velocity of the more

massive object. Our guess that the vector sum of the velocities might be

consened in all collisions is wrong.

Another example of a collision will confirm this conclusion. This time

let the first cart have twice the mass of the second, but only half the

speed. When the carts collide head-on and stick together, they stop. The

vector sum of the velocities is equal to zero after the collision. But it was

not equal to zero before the collision. Again, there is no conservation of

velocity.

We have been trying to show that the "quantity of motion" is always

the same before and after the collision. But our results indicate that the

proper definition of "quantity of motion" may involve the mass of a body

Note that in Units 1 and 2 we dealt

mostly with phenomena in which
this fact did not have to be faced.

in syiDDOis, A-_ V Jai, v. ^ u

in this particular case.

5efcrt: v» + w•X^ V5=^'

-- "a -,

V'b

Before: \7^ + Vg,=o

A.t-cr: \t'%^o

Afkr: \/t: + ^L-o
'A + "&
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In general symbols,

Al my 0.

as well as its speed. Descartes had suggested that the proper measure of a

body's quantity of motion was the product of its mass and its speed. Speed

does not involve direction and is considered always to have a positive

value. The examples above, however, show that this product (a scalar and

always positive) is not a conserved quantity. In the first and third

collisions, for example, the products of mass and speed are zero for the

stopped carts after the collision. But they obviously are not equal to zero

before the collision.

But if we make one very important change in Descartes' definition,

we do obtain a conserved quantity. Instead of defining "quantity of

motion" as the product of mass and speed, mv, we can define it (as

Newton did) as the product of the mass and velocity, mv. In this way we

include the idea of the direction of motion as well as the speed. On the

next page the quantities mv are analyzed for the three collisions we have

considered. In all three head-on collisions, the motion of both carts before

and after collision is described by the equation:

m^Vx +m^VB=mf,VjJ+msVB'

in Unit 1. initial and final velocities

were represented as v[ and v . Here

they are represented by v and v

because we now need to add sub-

scripts such as A and B.

SG 9.8, 9.9

before

collision

after

collision

Where m^ and m^ represents the masses of the carts, Vi and ig represent

their velocities before the collision and v/ and Vb' represent their

velocities after the collision.

In words: the vector sum of the quantities mass x velocity is

constant, or conserved, in all these collisions. This is a very important and

useful equation, leading directiy to a powerful law.

Q4 Descartes defined the quantity of motion of an object as the

product of its mass and its speed. Is his quantity of motion conserved as

he believed it was? If not, how would you modify his definition so the

quantity of motion would be conserved?

Q5 Two carts collide head-on and stick together. In which of the

following cases will the carts be at rest immediately after the collision?



Analyses of Three Collisions ^aCO) + mf,{0) =

In Section 9.2 we discuss three examples of

collisions between two carts. In each case the

carts approached each other head-on, collided,

and stuck together. We will show here that in

each collision the motion of the carts before and

after the collision is described by the general

equation

"7aV^a + mgi^B = rnj^V;,' + m^v^'

where m^ and hIq represent the masses of the

carts, i^A and v^ their velocities before collision,

and v/a' and v^' their velocities after the collision.

Example 1: Two carts with equal masses

move with equal speeds—but in opposite

directions—before the collision. The speed of the

stuck-together carts after the collision is zero.

Before collision, the product of mass and velocity

has the same magnitude for each cart, but

opposite direction. So their vector sum is

obviously zero. After collision, each velocity is

zero, so the product of mass and velocity is also

zero.

This simple case could be described in a

few sentences. More complicated cases are

much easier to handle by using an equation and

substituting values in the equation. To show how
this works, we will go back to the simple case

above, even though it will seem like a lot of

trouble for such an obvious result. We substitute

specific values into the general equation given in

the first paragraph above for two colliding bodies.

In this specific case m^ = mg, v^ = -v^, and

Va' = *^' = 0. Just before collision, the vector

sum of the separate momenta is given by

m^vl + m^Q, which in this case is equal to

mA\r^ + rriAi-VA) or m^vl - m^v^

which equals zero.

After the collision, the vector sum of the

momenta is given by ivaVa' + msVB- Since

both velocities after collision is zero, then

Thus, before the collision, the vector sum of

the products of mass and velocity is zero, and

the same is true for the vector sum after the

collision. The general equation is therefore

"obeyed" in this case.

Example 2: The carts move with equal

speeds toward each other before the collision.

The mass of one cart is twice that of the other.

After the collision, the velocity of the stuck-

together carts is found to be h the original

velocity of the more massive cart. In symbols:

^A = 2m B, v^B = -v.^

Before the collision:

and Va' = V, Wa-

m.vA" A = m^iVs = {2ms)VA + m^{-VA)

= 2m£A - m^A
= m^VA

After the collision:

mAV^A + m^v^ = {2m^y^VA + m^v^A

= %rn^A + \rn^^\

= m^VA

Again, the sum of mv's is the same before and

after the collision. Therefore, the general

equation describes the collision correctly.

Example 3: Two carts approach each other;

the mass of one cart is twice that of the other.

Before the collision, the speed of the less

massive cart is twice that of the more massive

cart. The speed of the stuck-together carts after

the collision is found to be zero. In symbols: hIa

= 2mB, Vs = -2irA and Va' = v^' = 0.

Before the collision:

mAVA + msVe = (2mB)VA + mB(-2 Va)

= 2m ^v A - 2m ^v

A

=

After the collision:

Ar7A(0) + m^{0) =

Again, the principle holds. Indeed, it holds for all

collisions of this kind on which no external

pushes or pulls are exerted, regardless of their

masses and their initial velocities.

In these examples all motion has been along

a straight line. However, the principle is most

useful for collisions that are not directly head-on

and where the bodies go off at different angles.

An example of such a collision is on page 23.
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SG 9.10,9.11

F+able

other cart

Forces on cart 6 during collision.

In general, for n objects the law can

be written

2(mA X ('"•''^)a

Consider each of the collisions that we examined. The momentum of the

system as a whole—the vector sum of the individual parts—is the same

before and after collision. Moreover, the total momentum doesn't change

during the collision, as the results of a typical experiment on page 10

show. Thus, we can summarize the results of the experiments briefly: the

momentum of the system is conserved.

We arrived at this rule (or law, or principle) by observing the special

case of collisions between two carts that stuck together after colliding. But

in fact this laiv of conservation of momentum is a completely general,

universal law. The momentum of any system is conserved if one condition

is met: that no net force is acting on the system.

To see just what this condition means, let us examine the forces

acting on one of the carts. Each cart experiences three main forces. There

is of course a downward puU F grav exerted by the earth and an upward

push f^tabie cxcrted by the table. During the collision, there is also a push

f^^from other cart excrtcd by the Other cart. The first two forces evidently

cancel, since the cart is not accelerating up or down. Thus the net force

on each cart is just the force exerted on it by the other cart as they

collide. (To simplify, we assume that frictional forces exerted by the table

and the air are small enough to neglect. That was the reason for using

dry-ice disks, air-track gliders, or carts with "frictionless" wheels. This

assumption makes it easier to discuss the law of conservation of

momentum. But we wHl see that the law holds whether friction exists or

not.)

The two carts form a system of bodies, each cart being a part of the

system. The force exerted by one cart on the other cart is a force exerted

by one part of the system on another part. But it is not a force on the

system as a whole. The outside forces acting on the carts (by the earth

and by the table) exactly cancel. Thus, there is no net outside force. We
can say that the system is "isolated." This condition must be met in order

for the momentum of a system to stay constant, to be conserxed.

If the net force on a system of bodies is zero, the momentum of the

system will not change. This is the law of conservation of momentum for

systems of bodies that are moving with linear velocity v.

So far we have considered only cases in which two bodies collide

direcdy and stick together. But the remarkable thing about the law of

conservation of momentum is how universally it applies. For example:

(a) It holds true no matter what kind of forces the bodies exert on

each other. They may be gravitational forces, electric or magnetic forces,

tension in strings, compression in springs, attraction or repulsion. The

sum of the mi''s before is equal to the sum of mv's after any interaction.

(b) It doesn't matter whether the bodies stick together or scrape

against each other or bounce apart. They don't even have to touch. When
two strong magnets repel or when an alpha paiticle is repelled by a

nucleus, conservation of momentum still holds.

(c) The law is not restricted to systems of only two objects; there can

be any number of objects in the system. In those cases, the basic

conservation equation is made more general simply by adding a term for

each object to both sides of the equation.
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Example of the Use of the Conservation of

Momentum
Here is an example that illustrates how one

can use the law of conservation of momentum.
(a) A space capsule at rest In space, far

from the sun or planets, has a mass of 1,000 kg.

A meteorite with a mass of 0.1 kg moves
towards it with a speed of 1 ,000 m/sec. How fast

does the capsule (with the meteorite stuck in it)

move after being hit?

aHa mass of the meteorite = 0.1 Kg

/77b mass of the capsule = 1,000 Kg

Va initial velocity of meteorite = 1 ,000 m/sec

Vn initial velocity of capsule =

v/ final velocity of meteorite

Vq final velocity of capsule

The law of conservation of momentum states that

rriAVA + m^Ve = m^VA' + m^v^'

Inserting the values given,

(0.1 kg) (1000 m/sec) + (1000 kg) (0) =

(0.1 kg)7,' + (1000 kg)7B

100 kg m/sec = (0.1 kg)v^' + (1000 kg)\^
'

Since the meteorite sticks to the capsule, v^ =

Va' so we can write

100 kg m/sec = (0.1 kg)vA' + (1000 kg)^^'

100 kg m/sec = (1000.1 kg)7^'

Therefore

Va = 1 00 kg • m/sec

1000.1 kg

= 0.1 m/sec

(in the original direction of the motion of the

meteorite). Thus, the capsule (with the stuck

meteorite) moves on with a speed of 0.1 m/sec.

Another approach to the solution is to handle

the symbols first, and substitute in the values

only as a final step. Substituting v^' for v^' and

letting 7b' = would leave the equation m,^^ =

m.\ 7a' + /77b7a' = (^A + /77b)7^'. Solving for Va'

71 ,
nn^Vf,

[m^ +/77b)

This equation holds true for any projectile hitting

(and staying with) a body initially at rest that

moves on in a straight line after collision.

(b) An identical capsule at rest nearby is hit

by a meteorite of the same mass as the other.

CLAWfr.(

But this meteorite, hitting another part of the

capsule, does not penetrate. Instead it bounces

straight back with almost no change of speed.

(Some support for the reasonableness of this

claim is given in SG 9.24.) How fast does the

capsule move on after being hit? Since all these

motions are along a straight line, we can drop

the vector notation from the symbols and indicate

the reversal in direction of the meteorite with a

minus sign.

The same symbols are appropriate as in (a):

rrif, =0.1 kg v^ =0
(Vq = 1000 kg Vf,' = -1000 m/sec

Va = 1000 m/sec Vb' = ?

The law of conservation of momentum stated

that m .^^ + m^Q = m^^^ ' + ^bTb'. Here

(0.1 kg) (1000 m/sec) + (1000 kg) (0) =

(0.1 kg) (-1000 m/sec) + (1000 kq)v^

100 kg m/sec = -100 kg m/sec + (1000 V.q)v^'

200 kg m/sec „ „ ,

^B = —TT^I^r; = 0-2 m/sec
^

1 000 kg

Thus, the struck capsule moves on with about

twice the speed of the capsule in (a). (A general

symbolic approach can be taken to this solution,

too. But the result is valid only for the special

case of a projectile rebounding perfectly

elastically from a body of much greater mass.)

There is a general lesson here. It follows

from the law of conservation of momentum that a

struck object is given less momentum if it

absorbs the projectile than if it reflects it. (A

goalie who catches the soccer ball is pushed

back less than one who lets the ball bounce off

his chest.) Some thought will help you to

understand this idea: an interaction that merely

stops the projectile is not as great as an

interaction that first stops it and then propels it

back again.
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SG 9.12-9.15

One of the stroboscopic photographs

that appears in the Handbook.

(d) The size of the system is not important. The law apphes to a

galaxy as well as to an atom.

(e) The angle of the collision does not matter. All of our examples so

far have involved collisions between two bodies moving along the same

straight line. They were "one-dimensional collisions." But if two bodies

make a glancing collision rather than a head-on collision, each will move

off at an angle to the line of approach. The law of conservation of

momentum applies to such two-dimensional collisions also. (Remember

that momentum is a vector quantity.) The law of conservation of

momentum also applies in three dimensions. The vector sum of the

momenta is still the same before and after the collision.

On page 13 is a worked-out example that will help you become

familiar with the law of conservation of momentum. At the end of the

chapter is a special page on the analysis of a two-dimensional collision.

There are also stroboscopic photographs in the Project Physics Handbook

and film loops of colliding bodies and exploding objects. These include

collisions and explosions in two dimensions. The more of them you

analyze, the more convinced you will be that the law of conservation of

momentum applies to any isolated system.

The worked-out example of page 13 displays a characteristic feature of

physics. Again and again, physics problems are solved oy applying the

expression of a general law to a specific situation. Both the beginning

student and the veteran research physicist find it helpful, but also

somewhat mysterious, that one can do this. It seems strange that a few

general laws enable one to solve an almost infinite number of specific

individual problems. Everyday life seems different. There you usually

cannot calculate answers from general laws. Rather, you have to make

quick decisions, some based on rational analysis, others based on

"intuition." But the use of general laws to solve scientific problems

becomes, with practice, quite natural also.

Q6 Which of the following has the least momentum? Which has the

greatest momentum?
(a) a pitched baseball

(b) a jet plane in flight

(c) a jet plane taxiing toward the terminal
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07 A girl on ice skates is at rest on a horizontal sheet of smooth ice.

As a result of catching a rubber ball moving horizontally toward her, she

moves at 2 cm/sec. Give a rough estimate of what her speed would have

been

(a) if the rubber ball were thrown twice as fast

(b) if the rubber ball had twice the mass

(c) if the girl had twice the mass

(d) if the rubber ball were not caught by the girl, but bounced off and

went straight back with no change of speed.

9.4 Momentum and Newton's laws of motion

In Section 9.2 we developed the concept of momentum and the law of

conservation of momentum by considering experiments with colliding

carts. The law was an "empirical" law. That is, we arrived at it as a

summary of experimental results, not from theory. The law was

discovered—perhaps "invented" or "induced" are better terms—as a

generalization from experiment.

We can show, however, that the law of conservation of momentum
follows directly from Newton's laws of motion. It takes only a bttle algebra.

We will first put Newton's second law into a somewhat different form

than we used before.

Newton's second law expresses a relation between the net force Fnet

acting on a body, the mass m of the body, and its acceleration a. We
wrote this as Fnet = ^ci- But we can also write this law in terms of change

of momentum of the body. Recalling that acceleration is the rate-of-change

of velocity, a = Av/At, we can write:

SG9.16

FnPt — m
or

Av_

At

FnetAt = mAv

If the mass of the body is constant, the change in its momentum,

A(mv), is the same as its mass times its change in velocity, m(Av). So

then we can write:

Fnet At = A(mv)

If m is a constant,

\(mv) mv mv
m(v v)

FAf is called the 'impulse."

SG 9.17-9.20

That is, the product of the net force on a body and the time interval

during which this force acts equals the change in momentum of the body.

This statement of Newton's second law is more nearly what Newton

used in the Principia. Together with Newton's third law, it enables us to

derive the law of conservation of momentum for the cases we have

studied. The details of the derivation are given on page 16. Thus Newton's

laws and the law of conservation of momentum are not separate,

independent laws of nature.

In Newton's second law. "change

of motion' meant change of

momentum-see Definition II at

the beginning of the Principia.



Deriving Conservation of IVIomentum from

Newton's Laws

Suppose two bodies with masses m,^ and

a77b exert forces on each other (by gravitation or

by mutual friction, etc.). ^ab is the force exerted

on a body A by body B, and ^ba is the force

exerted on body B by body A. No other

unbalanced force acts on either body; they form

an isolated system. By Newton's third law, the

forces ^B and ?ba are at every instant equal in

magnitude and opposite in direction. Each body

acts on the other for exactly the same time At.

Newton's second law, applied to each of the

bodies, says

and p^^ At=A(m,Vs)

By Newton's third law

therefore

P^sAt=-P„At

Suppose that each of the masses iVj^ and

^B are constant. Let Va and Vr stand for the

velocities of the two bodies at some instant and

let Va' and Vb' stand for their velocities at some
later instant. Then we can write the last equation

as

mAVA'-rriAVA = - (m eVg' -m bVb)

A little rearrangement of terms leads to

and m,,v^' + m^v u' ^m ,^v^ + m^Va

You will recognize this as our original expression

of the law of conservation of momentum.
Here we are dealing with a system

consisting of two bodies. But this method works
equally well for a system consisting of any
number of bodies. For example, SG 9.21 shows
you how to derive the law of conservation of

momentum for a system of three bodies.

Globular clusters of stars liKe this one
contain tens of thousands of suns held

together by gravitational attraction.
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In all examples we considered each body to have constant mass. But

a change of momentum can arise from a change of mass as well as from

(or in addition to) a change of velocity. For example, as a rocket spews

out exhaust gases, its mass decreases. The mass of a train of coal cars

increases as it moves under a hopper which drops coal into the cars. In

Unit 5 you wiD find that any body's mass increases as it moves faster and

faster. (However, this effect is great enough to notice only at extremely

high speeds.) The equation Fnet = ma is a form of Newton's second law

that works in special cases where the mass is constant. But this form is

not appropriate for situations where mass changes. Nor do the forms of

the law of conservation of momentum that are based on Fnet = ^o. work

in such cases. But other forms of the law can be derived for systems

where mass is not constant. See. for example, the first pages of the article

"Space Travel" in Reader 5.

In one form or another, the law of conservation of momentum can be

derived from Newton's second and third laws. Nevertheless, the law of

conservation of momentum is often the preferred tool because it enables

us to solve many problems which would be difficult to solve using

Newton's laws directly. For example, suppose a cannon that is free to

move fires a shell horizontally. Although it was initially at rest, the cannon

is forced to move while firing the shell; it recoils. The expanding gases in

the cannon barrel push the cannon backward just as hard as they push

the shell forward. Suppose we had a continuous record of the magnitude

of the force. We could then apply Newton's second law separately to the

cannon and to the shell to find their respective accelerations. After a few

more steps (involving calculus) we could find the speed of the shell and

the recoil speed of the cannon. But in practice it is very difficult to get a

continuous record of the magnitude of the force. For one thing, the force

almost certainly decreases as the shell moves toward the end of the barrel.

So it would be very difficult to use Newton's laws to find the final speeds.

However, we can use the law of conservation of momentum even if

we know nothing about the force. The law of consei-vation of momentum

is a law of the kind that says "before = after." Thus, it works in cases

where we do not have enough information to apply Newton's laws during

the whole inter\'al between "before" and "after." In the case of the cannon

and shell the momentum of the system (cannon plus sheU) is zero

initlallv. Therefore, by the law of consen-ation of momentum, the

momentum will also be zero after the shell is fired. If we know the

masses and the speed of one, after firing we can calculate the speed of

the other. (The fibn loop tided "Recoil" provides just such an event for

you to analyze.) On the other hand, if both speeds can be measured

afterwards, then the ratio of the masses can be calculated. In the

Supplemental Unit entitled The Nucleus you will see how just such an

approach was used to find the mass of the neutron when it was originally

discovered.

SG 9.21-9.24

SG 9.25

SG 9.26

SG 9.27

Q8 Since the law of conservation of momentum can be derived from

Newton's laws, what good is it?
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(b) an artificial earth satellite

(c) the earth and the moon

9.6 Elastic collisions

In 1666, members of the recently-formed Royal Society of London

witnessed a demonstration. Two hardwood balls of equal size were

suspended at the ends of two strings to form two pendula. One ball was

released from rest at a certain height. It swung down and struck the

other, which had been hanging at rest.

After impact, the first ball stopped at the point of impact while the

second ball swung from this point to the same height as that firom which

the first ball had been released. When the second ball returned and struck

the first, it now was the second ball which stopped at the point of impact

as the first swung up to almost the same height from which it had

started. This motion repeated itself for several swings.

This demonstration aroused great interest among members of the

Society. In the next few years, it also caused heated and often confusing

arguments. Why did the balls rise each time to nearly the same height

after each collision? Why was die motion "transferred" from one ball to

the other when they collided? Why didn't the first ball bounce back from

the point of collision, or continue moving forward after the second ball

moved away from the collision point?

Our law of momentum conservation explains what is observed. But it

would also allow quite different results. It says only that the momentum of

ball A just before it strikes ball B is equal to the total momentum of A and

B just after collision. It does not say how A and B share the momentum.

The actual result is just one of infinitely many different outcomes that

would all agree with conservation of momentum. For example, suppose

(though it is never observed to happen) that ball A bounced back with ten

times its initial speed. Momentum would stUl be conserved if ball B went

ahead at eleven times A's initial speed.

In 1668 three men reported to the Royal Society on the whole matter

of impact. The three men were the mathematician John WaUls, the

architect and scientist Christopher Wren, and the physicist Christian

Huygens. Wallis and Wren offered partial answers for some of the features

of collisions; Huygens analyzed the problem in complete detail.

Huygens explained that in such collisions another conservation law

also holds, in addition to the law of conservation of momentum. Not only

was the vector sum of mi?s conserved, but so was the ordinary arithmetic

sum of mi'2's! In modem algebraic form, the relationship he discovered

can be expressed as

hm^v/ + im^B^ = ^^.4^.4'^ + hmeVB^

*
\

ii

^ •

In general symbols. \1,\my^

Compare this equation with the

conservation of momentum equation

on page 10.
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SG 9.34-9.37

Christiaan Huygens (1629-1695) was

a Dutch physicist. He devised an im-

proved telescope with which he dis-

covered a satellite of Saturn and saw

Saturn's rings clearly. He was the

first to obtain the expression for

centripetal acceleration (i/Vfl), he

worked out a wave theory of light, and

he invented a pendulum-controlled

clock. His scientific contributions

were major, and his reputation would

undoubtedly have been greater were

he not overshadowed by his con-

temporary, Newton.

Huygens, and others after him for

about a century, did not use the

factor ~. The quantity mv~ was called

vis viva, Latin for "living force."

Seventeenth- and eighteenth-century

scientists were greatly interested

in distinguishing and naming various

'forces." They used the word
loosely; it meant sometimes a push
or a pull (as in the colloquial modern
use of the word force), sometimes
what we now call "momentum." and
sometimes what we now call

"energy." The term vis viva is no

longer used.

The scalar quantity hmv^ has come to be called kinetic energy. (The

reason for the i which doesn't really affect the rule here, will become

clear in the next chapter.) The equation stated above, then, is the

mathematical expression of the conservation of kinetic energy. This

relationship holds for the collision of two "perfectly hard" objects similar to

those observed at the Royal Society meeting. There, ball A stopped and

ball B went on at A's initial speed. A litde algebra will show that this is

the only result that agrees with both conservation of momentum and

conservation of kinetic energy. (See SG 9.33.)

But is the conservation of kinetic energy as general as the law of

conservation of momentum? Is the total kinetic energy present conserved

in any interaction occurring in any isolated system?

It is easy to see that it is not. Consider the first example of Section

9.2. Two carts of equal mass (and with putty between the bumping

surfaces) approach each other with equal speeds. They meet, stick

together, and stop. The kinetic energy of the system after the collision is

0, since the speeds of both carts are zero. Before the collision the kinetic

energy of the system was 2m.{v/ + ^m^VB^. But both iTu^v/' and

hmsVs^ are always positive numbers. Their sum cannot possibly equal zero

(unless both v^ and Vb are zero, in which case there would be no

collision—and not much of a problem). Kinetic energy is not conserved in

this collision in which the bodies stick together. In fact, no collision in

which the bodies stick together will show conservation of kinetic energy.

It applies only to the collision of "perfectly hard" bodies that bounce back

from each other.

The law of conservation of kinetic energy, then, is not as general as

the law of conservation of momentum. If two bodies collide, the kinetic

energy may or may not be conserved, depending on the type of collision.

It is conserved if the colliding bodies do not crumple or smash or dent or

stick together or heat up or change physically in some other way. We call

bodies that rebound without any such change "perfectly elastic." We
describe collisions between them as "perfectly elastic collisions." In

perfectly elastic collisions, both momentum and kinetic energy are

conserved.

Most collisions that we witness, are not perfectly elastic and kinetic

energy is not conserved. Thus, the sum of the ^mv^'s after the collision is

less than before the collision. Depending on how much kinetic energy is

"lost," such collisions might be called "partially elastic," or "perfectly

inelastic." The loss of kinetic energy is greatest in perfectly inelastic

collisions, when the colliding bodies remain together.

Collisions between steel ball-bearings, glass marbles, hardwood balls,

billiard balls, or some rubber balls (silicone rubber) are almost perfectly

elastic, if the colliding bodies are not damaged in the collision. The total

kinetic energy after the collision might be as much as, say, 96% of this

value before the collision. Examples of true perfectly elastic collisions are

found only in collisions between atoms or sub-atomic particles.

SG 9.38-9.40
Q11 Which phrases correctly complete the statement? Kinetic energy

is conserved

(a) in all collisions
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(b) whenever momentum is consened

(c) in some collisions

(d) when the colliding objects are not too hard

Q12 Kinetic energy is never negative because

(a) scalar quantities are always positve

(b) it is impossible to draw vectors with negative length

(c) speed is always greater than zero

(d) it is proportional to the square of the speed

9.7 Leibniz and the conservation law

Rene Descartes believed that the total quantity of motion in the

universe did not change. He wrote in his Principles of Philosophy:

It is wholly rational to assume that God, since in the creation

of matter He imparted different motions to its parts, and

preserves all matter in the same way and conditions in which

he created it, so He similarly preserves in it the same quantity

of motion.

Descartes proposed to define the quantity of motion of an object as

the product of its mass and its speed. But as we saw in Section 1.1 this

product is a conserved quantity only in very special cases.

Gottfried Wilhelm Leibniz was aware of the error in Descartes' ideas

on motion. In a letter in 1680 he wrote:

Descartes (1596-1650) was the most

important French scientist of the

seventeenth century. In addition to

his early contribution to the idea of

momentum conservation, he is re-

membered by scientists as the in-

ventor of coordinate systems and the

graphical representation of algebraic

equations. His system of philosophy,

which used the deductive structure

of geometry as its model, is still in-

fluential.

M. Descartes' physics has a great defect; it is that his rules of

motion or laws of nature, which are to serve as the basis, are

for the most part false. This is demonstrated. And his great

principle, that the same quantity of motion is conserved in the

world, is an error.

Leibniz, however was as sure as Descartes had been that something

involving motion was conserved. Leibniz called this something he

identified as "force" the quantity mv^ (which he called vis viva). We
notice that this is just twice the quantity we now call kinetic energy. (Of

course, whatever applies to mv^ applies equally to ^mv^.)

As Huygens had pointed out, the quantity {k)'mv^ is conserved only

in perfectly elastic collisions. In other collisions the total quantity of

(i)wi;2 afjgj. collision is always less than before the collision. Still Leibniz

was convinced that (^jmi^^ is always conserved. In order to save his

conservation law, he invented an explanation for the apparent loss of vis

viva. He maintained that the vis viva is not lost or destroyed. Rather, it is

merely "dissipated among the small parts" of which the colliding bodies

are made. This was pure speculation and Leibniz offered no supporting

evidence. Nonetheless, his explanation anticipated modern ideas about the

connection between energy and the motion of molecules. We will study

some of these ideas in Chapter 11.
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Leibniz (1646-1716), a contemporary

of Newton, was a German philosopher

and diplomat, an advisor to Louis XIV

of France and Peter the Great of Rus-

sia. Independently of Newton he in-

vented the method of mathematical

analysis called calculus. A long public

dispute resulted between the two

great men concerning charges of

plagiarism of ideas.

Leibnitz extended conservation ideas to phenomena other than

collisions. For example, when a stone is thrown straight upward, its

quantity of (^)mv^ decreases as it rises, even without any collision. At

the top of the trajectory, (^)mv^ is zero for an instant. Then it reappears

as the stone falls. Leibniz wondered whether something applied or given

to a stone at the start is somehow stored as the stone rises, instead of

being lost. His idea would mean that {^)mv^ is just one part of a more

general, and really conserved quantity. In Chapter 10, this idea will lead

us directly to the most powerful of all laws of science—the law of

conservation of energy.

013 According to Leibniz, Descartes' principle of conservation ofmv
was

(a) correct, but trivial.

(b) another way of expressing the conservation of vis viva.

(c) incorrect.

(d) correct only in elastic collisions.

Q14 How did Leibniz explain the apparent disappearance of the

quantity (V)mv^

(a) during the upward motion of a thrown object?

(b) when the object strikes the ground?



A Collision in Two Dimensions

The stroboscopic photograph shows a

collision between two wooden discs on a

"frictionless horizontal table" photographed from

straight above the table. The discs are riding on

tiny plastic spheres which make their motion

nearly frictionless. Body B (marked x) is at rest

before the collision. After the collision it moves to

the left and Body A (marked -) moves to the

right. The mass of Body B is known to be twice

the mass of Body A: m^ = 2mA. We will

analyze the photograph to see whether

momentum was conserved. (Note: The size

reduction factor of the photograph and the

[constant] stroboscopic flash rate are not given

here. So long as all velocities for this test are

measured in the same units, it does not matter

what those units are.)

In this analysis we will measure in

centimeters the distance the discs moved on the

photograph. We will use the time between

flashes as the unit of time. Before the collision,

Body A (coming from the lower part of the

photograph) traveled 36.7 mm in the time

between flashes: 7^ == 36.7 speed-units. Similarly

we find that vT^' = 17.2 speed-units, and Vq' =

11.0 speed-units.

The total momentum before the collision is

just m^v^x'. It Is represented by an arrow 36.7

momentum-units long, drawn at right.

The vector diagram shows the momenta

^A^^^' and meVs' after the collision; /DaI^^' is

represented by an arrow 17.2 momentum-units

long. Since me = 2mA, the hIbV^' arrow is 22.0

momentum-units long.

The dotted line represents the vector sum of

mA^^ ' and m^Vji'; that is, the total momentum
after the collision. Measurement shows it to be

34.0 momentum-units long. Thus, our measured

values of the total momentum before and after

the collision differ by 2.7 momentum-units. This is

a difference of about -7%. We can also verify

that the direction of the total is the same before

and after the collision to within a small

uncertainty.

Have we now demonstrated that momentum

was conserved in the collision? is the 7%
difference likely to be due entirely to

measurement inaccuracies? Or is there reason to

expect that the total momentum of the two discs

after the collision is really a bit less than before

the collision?

m^V^'' ZZ.0

'f^* '^B^b m,^- S6.7

rnX- in
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fi S- 16 V So
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9.1 The Project Physics learning materials

particularly appropriate for Chapter 9 include:

Experiments
Collisions in One Dimension
Collisions in Two Dimensions

Film Loops
One-dimensional Collisions I

One-dimensional Collisions II

Inelastic One-dimensional Collisions

Two-dimensional Collisions I

Two-dimensional Collisions II

Inelastic Two-dimensional Collisions

Scattering of a Cluster of Objects
Explosion of a Cluster of Objects

Transparencies

One-dimensional Collisions

Equal Mass Two-dimensional Collisions

Unequal Mass Two-dimensional Collisions

Inelastic Two-dimensional Collisions

In addition, the Reader 3 articles "The Seven
Images of Science" and "Scientific Cranks" are
of general interest in the course.

9.2 Certainly Lavoisier did not investigate every
possible interaction. What justification did he
have for claiming mass was conserved "in all the
operations of art and nature"?
9.3 It is estimated that every year at least 2000
tons of meteoric dust fall on to the earth. The
dust is mostly debris that was moving in orbits

around the sun.

(a) Is the earth (whose mass is about 6 x 10^'

tons) reasonably considered to be a closed
system with respect to the law of con-
servation of mass?

(b) How large would the system, including the
earth, have to be in order to be completely
closed?

9.4 Would you expect that in your lifetime, when
more accurate balances are built, you will see
experiments which show that the law of con-
servation of mass does not entirely hold for

chemical reactions in closed systems?

9.5 Dayton C. Miller, a renowned experimenter
at Case Institute of Technology, was able to

show that two objects placed side by side on an
equal-arm pan balance did not exactly balance
two otherwise identical objects placed one on top
of the other. (The reason is that the pull of
gravity decreases with distance from the center
of the earth.) Does this experiment contradict the
law of conservation of mass?
9.6 A children's toy known as a Snake consists
of a tiny pill of mercuric thiocyanate. When the
pill is ignited, a large, serpent-like foam curls out
almost from nothingness. Devise and describe an
experiment by which you would test the law of
conservation of mass for this demonstration.
9.7 Consider the following chemical reaction,
which was studied by Landolt in his tests of the
law of conservation of mass. In a closed container.

a solution of 19.4 g of potassium chromate in

100.0 g of water is mixed with a solution of 33.1 g
of lead nitrate in 100.0 g of water. A bright yellow

solid precipitate forms and settles to the bottom
of the container. When removed from the liquid,

this solid is found to have a mass of 32.3 g and is

found to have properties different from either of

the reactants.

(a) What is the mass of the remaining liquid?

(Assume the combined mass of all sub-

stances in the system is conserved.)

(b) If the remaining liquid (after removal of

the yellow precipitate) is then heated to

95°C, the water it contains will evaporate,

leaving a white solid. What is the mass of

this solid? (Assume that the water does not
react with anything, either in (a) or in (b).)

9.8 If a stationary cart is struck head-on by a
cart with twice the mass, and the two carts stick

together, they will move together with a speed

f as great as the moving cart had before collision.

Show that this is consistent with the conservation
of momentum equation.

9.9 A freight car of mass 10^ kg travels at 2.0

m/sec and collides with a motionless freight car

of mass 1.5 X lO'* kg on a horizontal track. The
two cars lock, and roll together after impact.

Find the velocity of the two cars after collision.

HINTS:
The general equation for conservation of

momentum for a two-body system is:

mAi'A + mnVB = rrij^Vj^' + m^Vs'

(a) What quantities does the problem give for

the equation?
(b) Rearrange terms to get an expression for v^'.

(c) Find the value of ly/. (Note v^' = v„'.)

9.10 You have been given a precise technical
definition for the word momentum. Look it up in

a large dictionary and record i-ts various uses. Can
you find anything similar to our definition in these
more general meanings? How many of the uses
seem to be consistent with the technical definition

here given?

9.11 Benjamin Franklin, in correspondence with
his friend James Bowdoin (founder and first

president of the American Academy of Arts and
Sciences), objected to the corpuscular theory of
light by saying that a particle traveling with such
immense speed (3 x lO** m/sec) would have the
impact of a lO-kg ball fired from a cannon at

100 m/sec. What mass did Franklin assign to the
"light particle"?

9.12 If powerful magnets are placed on top of
each of two carts, and the magnets are so ar-

ranged that like poles face each other when one
cart is pushed toward the other, the carts bounce
away from each other without actually making
contact.

(a) In what sense can this be called a collision?

(b) Will the law of conservation of momentum
apply?

(c) Describe an arrangement for testing your
answer to (b).
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9.13 From the equation

rUiV^ + rngVp — m,ti, ' + m^v,,'

show that the change in momentum of object A is

equal and opposite to the change of momentum of

object B. Using the symbol Ap for change of

momentum, rewrite the law of conservation of

momentum for two bodies. What might it be for 3

bodies? for n bodies?

9.14 A person fires a fast ball vertically. Clearly,

the momentum of the ball is not conserved; it

first loses momentum as it rises, then gains it as

it falls. How large is the "closed system" within

which the ball's momentum, together with that

of other bodies (tell which), is conserved. What
happens to the rest of the system as the ball

rises? as it falls?

9.15 If everyone in the world were to stand
together in one field and jump up with an initial

speed of 1 m/sec,
(a) For how long would they be off the ground?
(b) How high would they go?
(c) What would be the earth's speed downward?
(d) How far would it move?
(e) How big would the field have to be?

9.16 Did Newton arrive at the law of conserva-
tion of momentum in the Principia? If a copy of

the Principia is available, read Corollary III and
Definition II (just before and just after the
three laws).

9.17 If mass remains constant, then A(mv) =
m(Av). Verify this relation by substituting some
numerical values, for example for the case where
m is 3 units and v changes from 4 units to 6
units.

9.18 (a) Why can ocean liners or planes not turn
comers sharply?

(b) In the light of your knowledge of the

relationship between momentum and
force, comment on reports about un-
identified flying objects (UFO) turning
sharp comers in full flight.

9.19 A girl on skis (mass of 60 kg including skis)

reaches the bottom of a hill going 20 m/sec. What
is her momentum? She strikes a snowdrift and
stops within 3 seconds. What force does the snow
exert on the girl? How far does she penetrate the

drift? What happened to her momentum?
9.20 During sports, the forces exerted on parts of

the body and on the ball, etc., can be astonishingly

large. To illustrate this, consider the forces in

hitting a golf ball. Assume the ball's mass is .046

kg. From the strobe photo on p. 27 of Unit 1, in

which the time interval between strobe flashes

was 0.01 sec, estimate:

(a) the speed of the ball after impact
(b) the magnitude of the ball's momentum after

impact
(c) how long the impact lasted

(d) the average force exerted on the ball during
impact.

9.21 The Text derives the law of conservation of

momentum for two bodies from Newton's third

and second laws. Is the principle of the conserva-

tion of mass essential to this derivation? If so.

where does it enter?

9.22 Consider an isolated system of three bodies,

A, B, and C. The forces acting among the bodies

can be indicated by subscript: for example, the

force exerted on body A by body B can be given
the symbol P^g. By Newton's third law of motion,

F*B^ = —F'^b. Since the system is isolated, the only
force on each body is the sum of the forces exerted

on it by the other two; for example, F^ =F^ab '^^^ac-

Using these principles, show that the total

momentum change of the system will be zero.

9.23 In Chapter 4, SG 4.24 was about putting an
Apollo capsule into an orbit around the moon.

The question was: "Given the speed v„ neces-
sary for orbit and the present speed i^, how long
should the rocket engine with thrust F fire to

give the capsule of mass m the right speed?"
There you solved the problem by considering the
acceleration.

(a) Answer the question more directly by
considering change in momentum.

(b) What would be the total momentum of all

the exhaust from the rocket?

(c) If the "exhaust velocity" were v^, about
what mass of fuel would be required?

9.24 (a) Show that when two bodies collide their

changes in velocity are inversely propor-
tional to their masses. That is, if m^ and
ttzb are the masses and Av^ and Av^ the
velocity changes, show that numerically,

AVu

rriE

(b)Show how it follows from conservation
of momentum that if a light particle

(like a B.B. pellet) bounces off a massive
object (like a bowling ball), the velocity

of the light particle is changed much
more than the velocity of the massive
object.

(c) For a head-on elastic collision between
a body of mass rUf, moving with velocity

v_^ and a body of mass ma at rest, com-
bining the equations for conservation of
momentum and conservation of kinetic

energy leads to the relationship v,^' =

^Ai^A " wib) .
(w^ + mg). Show that if

body B has a much greater mass than
body A, then v^' is almost exactly the
same as z^^ — that is, body A bounces
back with virtually no loss in speed.

Utut 25



9.25 The equation rrif^Vp, + m^Va = rri/^Vj^' + m^v^'
is a general equation applicable to countless
separate situations. For example, consider a 10-kg
shell fired from a 1000-kg cannon. If the shell is

given a speed of 1000 m/sec, what would be the
recoil speed of the cannon? (Assume the cannon
is on an almost frictionless mount.) Hint: your
answer could include the following steps:

(a) If A refers^to the cannon and B to the shell,

what are v^ and v^ (before firing)?

(b) What is the total momentum before firing?

(c) What is the total momentum after firing?

(d) Compare the magnitudes of the momenta
of the cannon and of the shell after firing.

(e) Compare the ratios of the speeds and of the
masses of the shell and cannon after firing.

9.26 The engines of the first stage of the Apollo/

Saturn rocket develop an average thrust of 35
million newtons for 150 seconds. (The entire

rocket weighs 28 million newtons near the earth's
surface.)

(a) How much momentum will be given to

the rocket during that interval?

(b) The final speed of the vehicle is 6100 mUes/
hour. What would one have to know to

compute its mass?

9.27 Newton's second law can be written F'At =
A(miO. Use the second law to explain the
following

:

(a) It is safer to jump into a fire net or a load
of hay than onto the hard ground.

(b) When jumping down from some height, you
should bend your knees as you come to rest,

instead of keeping your legs stiff.

(c) Hammer heads are generally made of steel

rather than rubber.

(d)Some cars have plastic bumpers which,
temporarily deformed under impact, slowly
return to their original shape. Others are
designed to have a somewhat pointed front-

end bumper.

a~~o

9.28 A student in a physics class, having learned
about elastic collisions and conservation laws,
decides that he can make a self-propelled car. He
proposes to fix a pendulum on a cart, using a
"super-ball" as a pendulum bob. He fixes a block
to the cart so that when the ball reaches the
bottom of the arc, it strikes the block and
rebounds elastically. It is supposed to give the
cart a series of bumps that propel it along.

(a) Will his scheme work? (Assume the "super-
ball" is perfectly elastic.) Give reasons for
your answer.

(b) What would happen if the cart had an initial

velocity in the forward direction?
(c) What would happen if the cart had an initial

velocity in the backward direction?

^^

—

\ t

I

9.29 A police report of an accident describes

two vehicles colliding (inelastically) at an icy

intersection of country roads. The cars slid to

a stop in a field as shown in the diagram.

Suppose the masses of the cars are approximately

the same.
(a) How did the speeds of the two cars compare

just before collision?

(b) What information would you need in order to

calculate the actual speeds of the automo-
biles?

(c) What simplifying assumptions have you
made in answering (b)?

9 '''^ Two pucks on a frictionless horizontal

surface are joined by a spring.

(a) Can they be considered an isolated system?
(b) How do gravitational forces exerted by the

earth affect your answer?
(c) What about forces exerted by the pucks on

the earth?
(d) How big would the system have to be

in order to be considered completely
isolated?

9 31 A hunter fires a gun horizontally at a target

fixed to a hillside. Describe the changes of

momentum to the hunter, the bullet, the target

and the earth. Is momentum conserved
(a) when the gun is fired?

(b) when the bullet hits?

(c) during the bullet's flight?

9.32 A billiard ball moving 0.8 m/sec collides

with the cushion along the side of the table. The
collision is head-on and can here be regarded as
perfectly elastic. What is the momentum of the
ball

(a) before impact?
(b) after impact?

(Pool sharks will recognize that it depends upon
the spin or "English" that the ball has. but to

make the problem simpler, neglect this condition.

(c) What is the change in momentum of the bal'

(d) Is momentum conserved?
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9.33 Discuss conservation of momentum for the
system shown in this sketch from Le Petit
Prince. What happens

(a) if he leaps in the air?

(b) if he runs around?

rewrite the equations with m for m^ and rrif,' and
Vb = 0; solve the simplified momentum equation
for v/; substitute in the simplified kinetic energy
equation; solve for v„'.)

9.35 Fill in the blanks for the following motions:

Object
m V mv jmv'^

(kg) m/sec kgm/sec kgm^/sec^

.VJ^

Le petit prince sur I'asteroide B 612.

9.34 When one ball collides with a stationary ball

of the same mass, the first ball stops and the

second goes on with the speed the first ball had.

The claim is made on p. 20 that this result is

the only possible result that will be consistent

with conservation of both momentum and kinetic

energy. (That is, if m^ = mg and Vg = 0. then the
result must be v,^' = 6 and Vg = ^^.^.) Combine the

equations that express the two conservation laws
and show that this is actually the case. (Hint:

baseball
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CHAPTER TEN

Energy

10.1 Work and kinetic energy

In everyday language we say that pitching, catching, and running on

the baseball field is "playing," while sitting at a desk, reading, writing, and

thinking is "working." But, in the language of physics, studying involves

very little work, while playing baseball involves a great deal of work. The

term "doing work" means something very definite in physics. It means

"exerting a force on an object while the object moves in the direction of

the force." When you throw a baseball, you exert a large force on it while

it moves forward for about one meter. In doing so, you do a large amount

of work. By contrast, in writing or in turning the pages of a book you

exert only a small force over a short distance. This does not require much
work, as the term work is understood in physics.

Suppose you are employed in a factory to lift boxes from the floor

straight upward to a conveyor belt at waist height. Here the language of

common usage and the physics both agree that you are doing work. If you

lift two boxes at once you do twice as much work as you do if you lift one

box. And if the conveyor belt were twice as high above the floor, you

would do twice as much work to lift a box to it. The work you do depends

on both the magnitude of the force you must exert on the box and the

distance through which the box moves in the direction of the force.

With this example in mind, we can define work in a way that allows

us to give a numerical value to the concept. The work W done on an

object by a force P is defined as the product of the magnitude F of the

force and the distance d that the object moves in the direction of F while

the force is being exerted:

W = Fd

To lift a box weighing 100 newtons upward through 0.8 meters

requires you to apply an upward force of 100 newtons. The work you do

on the box is 100 newtons x 0.8 meters = 80 newton-meters.

SG 10.1

Note that work you do on a box

does not depend on how fast you

do your job.

The way d is defined here, the W - F-i

is correct. It does not, however,

explicity tell how to compute W if the

motion is not in exactly the same
direction as the force. The definition

of d implies that it would be the

component of the displacement along

the direction of F: and this is entirelv

correct

Unit 3 29
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Note that work is a scalar quantity.

A more general definition of work

will be given in Sec. 10.4.

The equation W - Fd implies that

work is always a positive quantity

However, by convention, when the

force on a body and its

displacement are in opposite

directions, the work is negative.

This implies that the body's energy

would be decreased. The sign

convention follows naturally from

the more rigorous definition of

mechanical work as W - Fl cos a

where h is the angle between F and

SG 10.2
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the object. So ^mv^ is the expression for the energy of motion of the

object. The energy of motion of an object at any instant is given by the

quantity Imi^ at that instant, and is called kinetic energy. We will use

the symbol KE to represent kinetic energy. By definition then,

KE imv

Now it is clearer why we wrote \mv^ instead of just mv^ in Chapter

9. If one is conserved, so must be the other—and conservation was all that

we were concerned with there. But \mv^ also relates directly to the

concept of work, and so provides a more useful expression for energy of

motion.

The equation Fd = ^mv^ was obtained by considering the case of an

object initially at rest. In other words, the object had an initial kinetic

energy of zero. But the relation also holds for an object already in motion

when the net force is applied. In that case the work done on the object

still equals the change in its kinetic energy:

Fd = A(KE)

The quantity A(KE) is by definition equal to (2"2^'^)finai ~ (^^^^)initiai.

The proof of this general equation appears on the second half of page 32.

Work is defined as the product of a force and a distance. Therefore,

its units in the mks system are newtons x meters or newton • meters. A
newton- meter is also called z. joule (abbreviated J). The joule is the unit

of work or of energy.

Q1 If a force F is exerted on an object while the object moves a

distance d in the direction of the force, the work done on the object is (a)

F (b) Fd (c) Fid (d) ^Fd""

Q2 The kinetic energy of a body of mass m moving at a speed v is

(a) \mv (b) kmy"^ (c) mv^ (d) ^mv"^ (e) mh)^

The Greek word kinetos means
'moving."

The speed of an object must be

measured relative to some refer-

ence frame, so kinetic energy is a

relative quantity also. See SG 10.3.

SG 10.3-10.8

The name of the unit of energy and
work commemorates J. P. Joule, a

nineteenth-century English physicist,

famous for his experiments showing
that heat is a form of energy (see

Sec. 10.7). There is no general

agreement today whether the name
should be pronounced like jool

"

or like "jowl.' The majority of

physicists favor the former.

10.2 Potential energy

As we have seen in the previous section, doing work on an object can

increase its kinetic energy. But work can be done on an object without

increasing its kinetic energy. For example, you might lift a book straight

up at a small, constant speed, so that its kinetic energy stays the same.

But you are still doing work on the book. And by doing work you are

using your body's store of chemical energy. Into what form of energy is it

being transformed?

The answer, as Leibniz suggested, is that there is "energy" associated

with height above the earth. This energy is called gravitational potential

energy. Lifting the book higher and higher increases the gravitational

potential energy. You can see clear evidence of this effect when you drop

the book. The gra\itational potential energy is transformed rapidly into

kinetic energy of fall. In general terms, suppose a force P is used to

displace an object upwards a distance d, without changing its KE. Then



Doing Work on a Sled

Suppose a loaded sled of mass m is

initially at rest on low-friction ice. You,

wearing spiked shoes, exert a constant

horizontal force F on the sled. The weight of

the sled is balancced by the upward push

exerted by the ice, so F is the net force on

the sled. You keep pushing, running faster

and faster as the sled accelerates, until the

sled has moved a total distance d.

Since the net force F is constant, the

acceleration of the sled is constant. Two

equations that apply to motion starting from

rest with constant acceleration are

V = at

and

d = hat^

where a is the acceleration of the body, t is

the time interval during which it accelerates

So the work done in this case can be

found from just the mass of the body and its

final speed. With more advanced

mathematics, it can be shown that the result

is the same whether the force is constant or

not.

More generally, we can show that the

change In kinetic energy of a body already

moving is equal to the work done on the

body. By the definition of average speed,

d = v^,t

If we consider a uniformly accelerated body

whose speed changes from vo to v, the

average speed during t is ^(v + vo). Thus

d = —^xt

By the definition of acceleration, a = AWf;

r' ,
,

D

I II f9
(that is, the time interval during which a net

force acts on the body), v is the final speed

of the body and d is the distance it moves in

the time interval t.

According to the first equation t = via. If

we substitute this expression for t into the

second equation, we obtain

d = 2at = jS—r = 2

—

a^ a

The work done on the sled is W=Fd.
From Newton's second law, F=ma, so

W = Fd

= ma X I
—
a

The acceleration cancels out. giving

therefore t = Avla = {v - vo)/a

Substituting {v - vo)/a for t gives

^^VJ;J^^V-V
2 a

{V +Vo) (V -Vo)

2a

2a

The work W done is W^Fd, or, since F=^ma,

W = ma X d

V - V'
= ma X

2a
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the increase in gravitational potential energy, A(P£)grav, is

A(P£;^av - Fd

Potential energy can be thought of as stored energy. As the book falls,

its gravitational potential energy' decreases while its kinetic energy

increases correspondingly. W^hen the book reaches its original height, all

of the gravitational potential energy stored during the lift will have been

transformed into kinetic energy.

Many useful apphcations foUow from this idea of potential or stored

energy. For example, the steam hammer used by construction crews is

driven up by high-pressure steam ("pumping in" energy). When the

hammer drops, the gravitational potential energ)' is converted to kinetic

energy. Another example is the proposal to use extra available energy from

electric power plants during low demand periods to pump water into a

high reser\'oir. When there is a large demand for electricity later, the

water is allowed to run down and drive the electric generators.

There are forms of potential energy other than gravitational. For

example, if you stretch a rybber band or a spring, you increase its elastic

potential energy. When you release the rubber band, it can deliver the

stored energy to a projectile in the form of kinetic energy. Some of the

work done in blowing up an elastic balloon is also stored as potential

energy.

Other forms of potential energy are associated with other kinds of

forces. In an atom, the negatively charged electrons are attracted by the

positively charged nucleus. If an externally applied force pulls an electron

away from the nucleus, the electric potential energy increases. If the

electron is pulled back and moves toward the nucleus, the potential

energ\' decreases as the electron's kinetic energ\' increases.

If two magnets are pushed together with north poles facing, the

magnetic potential energy increases. When released, the magnets will

move apart, gaining kinetic energ)' as they lose potential energy.

Where is the potential energy located in all these cases? It might

seem at first that it "belongs" to the body that has been moved. But this is

not the most useful way of thinking about it. For without the other

object—the earth, the nucleus, the other magnet—the work would not

increase any potential form of energ>'. Rather, it would increase only the

kinetic energy of the object on which work was done. The potential

energy belongs not to one body, but to the whole system of interacting

bodies! This is evident in the fact that the potential energy is available to

any one or to aU of these interacting bodies. For example, you could give

either magnet all the kinetic energy, just by releasing it and holding the

other in place. Or suppose you could fix the book somehow to a hook that

would hold it at one point in space. The earth would then "fall" up toward

the book. Eventually the earth would gain just as much kinetic energy at

the expense of stored potential energy as the book would if it were free to

fall.

The increase in gravitational potential energy "belongs" to the earth-

book system, not to the book alone. The work is done by an "outside"

F

3
t —

To lift the book at consiant speea.

you must exert an upward force F

equal in magnitude to the weight

F, ,
of the book. The work you do

in lifting the book through distance

d is Fd. which is numerically equal

to F d. See SG 10.9 and 10.10.

A set mouse-trap contains elastic

potential energy.

SG 10.11

SG 10.12

SG 10.13
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The work you have done on the

earth-book system is equal to the

energy you have given up from

your store of chemical energy.

agent (you), increasing the total energy of the earth-book system. When
the book falls, it is responding to forces exerted by one part of the system

on another. The total energy of the system does not change—it just is

converted from PE to KE. This is discussed in more detail in the next

section.

Q3 If a stone of mass m falls a vertical distance d, pulled by its

weight Fgrav = w«g, the decrease in gravitational potential energy is (a)

md (b) mOg (c) mUgd (d) ^md^ (e) d.

04 When you compress a coU spring you do work on it. The elastic

potential energy (a) disappears (b) breaks the spring (c) increases (d)

decreases.

Q5 Two electrically charged objects repel one another. To increase

the electric potential energy, you must

(a) make the objects move faster

(b) move one object in a circle around the other object

(c) attach a rubber band to the objects

(d) pull the objects farther apart

(e) push the objects closer together.

The equations in this section are

true only if friction is negligible.

We shall extend the range later to

include friction, which can cause the

conversion of mechanical energy

into heat energy.

10.3 Conservation of mechanical energy

In Section 10.1 we stated that the amount of work done on an object

equals the amount of energy transformed from one form to another. For

example, the chemical energy of a muscle is transformed into the kinetic

energy of a thrown ball. Our statement implied that the amount of energy

involved does not change—only its form changes. This is particularly

ob\aous in motions where no "outside" force is applied to a mechanical

system.

While a stone falls freely, for example, the gravitational potential

energy of the stone-earth system is continually transformed into kinetic

energy. Neglecting air friction, the decrease in gravitational potential

energy is, for any portion of the path, equal to the increase in kinetic

energy. Or consider a stone thrown upward. Between any two points in its

path, the increase in gravitational potential energ\' equals the decrease in

kinetic energy. For a stone falling or rising (without external forces such

as friction),

A(PE)g,av = -A(KE)

This relationship can be rewritten as

A(KE) + A(P£)grav -

or still more concisely as

A(K£ + P£g,av) =

If {KE + PFgrav) represents the total mechanical energy of the system,
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then the change in the system's total mechanical energy is zero. In other

words, the total mechanical energy, A(K£ + P£grav) remains constant; it

is conserved.

A similar statement can be made for a vibrating guitar string. While

the string is being pulled away from its unstretched position, the string-

guitar system gains elastic potential energy. When the string is released,

the elastic potential energy decreases while the kinetic energy of the

string increases. The string coasts through its unstretched position and

becomes stretched in the other direction. Its kinetic energy then decreases

as the elastic potential energy increases. As it vibrates, there is a repeated

transformation of elastic potential energy into kinetic energy and back

again. The string loses some mechanical energy—for example, sound

waves radiate away. Otherwise, the decrease in elastic potential energy

over any part of the string's motion would be accompanied by an equal

increase in kinetic energy, and vice versa:

ArP£)e.astic = -A(K£)

In such an ideal case, the total mechanical energy (KE + PE elastic)

remains constant; it is conserved.

We have seen that the potential energy of a system can be

transformed into the kinetic energy of some part of the system, and vice

versa. Potential energy also can be transformed into another form of

potential energy without change in the total energy (KE + PE). We can

write this rule in several equivalent ways:

SG 10.14

up lo nere we nave aiways con-

sidered only changes in PE. There

is some subtlety in defining an

actual value of PE. See SG 10.15.

or

or

or

AK£ = -APE

AKE > APE =

A(K£ + P£) =

KE + PE - constant

These equations are different ways of expressing the law of conservation

of mechanical energy when there is no "external" force. But suppose that

an amount of work W is done on part of the system by some external

force. Then the energy of the system is increased by an amount equal to

W. Consider, for example, a suitcase-earth system. You must do work on

the suitcase to pull it away from the earth up to the second floor. This

work increases the total mechanical energy of the earth + suitcase

system. If you yourself are included in the system, then your internal

chemical energy decreases in proportion to the work you do. Therefore,

the total energy of the lifter -i- suitcase + earth system does not change.

The law of conservation of energy can be derived from Newton's laws

of motion. Therefore, it tells us nothing that we could not, in principle,

compute directly from Newton's laws of motion. However, there are
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During its contact with a golf club,

a golf ball is distorted, as is shown
in the high-speed photograph. As the

ball moves away from the club, the

ball recovers its normal spherical

shape, and elastic potential energy

is transformed into kinetic energy.

situations where there is simply not enough information about the forces

involved to apply Newton's laws. It is in these cases that the law of

conservation of mechanical energy demonstrates its usefulness. Before

long you win see how the law came to be very useful in understanding a

huge variety of natural phenomena.

A perfectly elastic collision is a good example of a situation where we

often cannot apply Newton's laws of motion. In such collisions we do not

know and cannot easily measure the force that one object exerts on the

other. We do know that during the actual coUlsion, the objects distort one

another. (See the photograph of the golf ball in the margin.) The

distortions are produced against elastic forces. Thus, some of the

combined kinetic energy of the objects is transformed into elastic potential

energy as they distort one another. Then elastic potential energy is

transformed back into kinetic energy as the objects separate. In an ideal

case, both the objects and their surroundings are exactly the same after

colliding as they were before. They have the same shape, same

temperature, etc. In such a case, all of the elastic potential energy is

converted back into kinetic energy.

This is useful but incomplete knowledge. The law of conservation of

mechanical energy gives only the total kinetic energy of the objects after

the collision. It does not give the kinetic energy of each object separately.

(If enough information were available, we could apply Newton's laws to

get more detailed results: namely, the speed oi each object.) You may
recall that the law of conservation of momentum also left us with useful

but incomplete knowledge. We can use it to find the total momentum, but

not the individual momentum vectors, of elastic objects in coUision. In

Chapter 9 we saw how conservation of momentum and conservation of

mechanical energy together limit the possible outcomes of perfectly elastic

coUisions. For two coUiding objects, these two restrictions are enough to

give an exact solution for the two velocities after collision. For more

complicated systems, conservation of energy remains important. We
usually are not interested in the detailed motion of each of every part of a

complex system. We are not likely to care, for example, about the motion

of every molecule in a rocket exhaust. Rather, we probably want to know

only about the overall thrust and temperature. The principle of

conservation of energy applies to total, defined systems, and such systems

usually interest us most.

Q6 As a stone falls frictionlessly

(a) its kinetic energ>' is conser\'ed

(b) its gravitational potential energ)' is conserved

(c) its kinetic energy changes into gravitational potential energy

(d) no work is done on the stone

(e) there is no change in the total energy

Q7 In what position is the elastic potential energy of the vibrating

guitar string greatest? At which position is its kinetic energy greatest?

Q8 If a guitarist gives the same amount of elastic potential energy to

a bass string and to a treble string, which one will gain more speed when

released? (The mass of a meter of bass string is greater than that of a

meter of treble string.)
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Q9 How would you compute the potential energy stored in the

system shown in the margin made up of the top boulder and the earth?

10.4 Forces that do no work

In Section 10.1 we defined the work done on an object. It is the

product of the magnitude of the force F applied to the object and the

magnitude of the distance tfin the direction oif through which the

object moves while the force is being applied. In all our examples so far,

the object moved in the same direction as that of the force vector.

But usually the direction of motion and the direction of the force are

not the same. For example, suppose you carr\' a book at constant speed

and horizontally, so that its kinetic energy does not change. Since there is

no change in the book's energy, you are doing no work on the book (by

our definition of work). You do apply a force on the book, and the book

does move through a distance. But here the applied force and the distance

are at right angles. You exert a vertical force on the book—upwards to

balance its weight. But the book moves horizontally. Here, an applied

force F is exerted on an object while the object moves at right angles to

the direction of the force. Therefore F has no component in the direction

of 5*, and so the force does no work. This statement agrees entirely with

the idea of work as energy being transformed from one form to another.

Since the book's speed is constant, its kinetic energy is constant. And
since its distance from the earth is constant, its gravitational potential

energy is constant. So there is no transfer of mechanical energy.

A similar reasoning, but not so obvious, applies to a satellite in a

circular orbit. The speed and the distance from the earth are both

constant. Therefore, the kinetic energy and the gravitational potential

energy are both constant, and there is no energy transformation. For a

circular orbit the centripetal force vector is perpendicular to the tangential

direction of motion at any instant. So no work is being done. To put an

artificial satellite into a circular orbit requires work. But once it is in orbit,

the KE and PE stay constant and no further work is done on the satellite.

WTien the orbit is eccentric, the force vector is usually not

perpendicular to the direction of motion. In such cases energy is

continually transformed between kinetic and gravitational potential forms.

The total energy of the system remains constant, of course.

Situations where the net force is exactly perpendicular to the motion

are as rare as situations where the force and motion are in exactly the

same direction. What about the more usual case, involving some angle

between the force and the motion?

In general, the work done on an object depends on how far the body

moves in the direction of the force. As stated before, the equation W - Fd

properly defines work only if d is the distance moved in the direction of

the force. Consider the example of a child sliding down a playground

SG 10.16
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slide. The gravitational force Fgrav is directed down. So only the distance

down determines the amount of work done by Fgrav It does not matter

how long the sbde is, or what its shape is. Change in gravitational

potential energy depends only on change in height—near the earth's

surface, at least. For example, consider raising a suitcase from the first

floor to the second floor. The same increase in PE grav of the suitcase-earth

system occurs regardless of the path by which the suitcase is raised. Also,

each path requires the same amount of work.

sicota> noQfi

If frictional forces also have to be

overcome, additional work will be

needed, and that additional work

may depend on the path chosen-
for example, whether it is long

or short.

SG 10.17

More generally, change in PEgrav depends only on change of position.

The details of the path followed in making the change make no difference

at all. The same is true for changes in elastic potential energy and electric

potential energy. The changes depend only on the initial and final

positions, and not on the path taken between these positions.

An interesting conclusion follows from the fact that change in PEgrav

depends only on change in height. For the example of the child on the

slide, the gravitational potential energy decreases as his altitude decreases.

If frictional forces are vanishingly small, aU the work goes into

transforming PEgrav into KE. Therefore, the increases in KE depend only

on the decrease in altitude. In other words, the child's speed when he

reaches the ground will be the same whether he sbdes down or jumps off

the top. A similar principle holds for satellites in orbit and for electrons in

TV tubes: in the absence of friction, the change in kinetic energy depends

only on the initial and final positions, and not on the path taken between

them. This principle gives great simphcity to some physical laws, as we
will see when we consider gravitational and electric fields in Chapter 14.

Q10 How much work is done on a satellite during each revolution if

its mass is m, its period is T, its speed is v, and its orbit is a circle of

radius H?

Q1 1 Two skiers were together at the top of a hill. While one skier

skied down the slope and went off the jump, the other rode the ski-lift

down. Compare their changes in gravitational potential energy.

Q1 2 A third skier went direcdy down a straight slope. How would

his speed at the bottom compare with that of the skier who went off the

jump?
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Q13 No work is done when

(a) a heavy box is pushed at constant speed along a rough horizontal

floor

(b) a nail is hammered into a board

(c) there is no component of force parallel to the direction of motion

(d) there is no component of force perpendicular to the direction of

motion.

10.5 Heat energy and the steam engine

So far we have assumed that our equations for work and energy hold

only if friction is absent or very small. Why? Suppose that factional forces

do affect a suitcase or other object as it is being lifted. The object must do

work against these forces as it moves. (This work in fact serves to warm
up the stairs, the air, etc.). Consequendy, that much less work is available

to increase PE or KE or both. How can we modify our expression of the

law of conservation of mechanical energy to include these effects?

Suppose that a book on a table has been given a shove and is sliding

across the table top. If the surface is rough, it will exert a fairly large

frictional force and the book will stop quickly. Its kinetic energy will

rapidly disappear. But no corresponding increase in potential energy will

occur, since there is no change in height. It appears that, in this example,

mechanical energy is not conserved.

However, close examination of the book and the tabletop show that

they are warmer than before. The disappearance of kinetic energy of the

book is accompanied by the appearance of heat. This suggests—but by no

means proves—that the kinetic energy of the book was transformed into

heat. If so, then heat must be one form of energy. This section deals with

how the idea of heat as a form of energy gained acceptance during the

nineteenth century. You will see how theory was aided by practical

knowledge of the relation of heat and work. This knowledge was gained in

developing, for very practical reasons, the steam engine.

Until about 200 years ago, most work was done by people or animals.

Work was obtained from wind and water also, but these were generally

unreliable as sources of energy. For one thing, they were not always

available when and where they were needed. In the eighteenth century,

miners began to dig deeper and deeper in search of greater coal supply.

But water tended to seep in and flood these deeper mines. The need arose

for an economical method for pumping water out of mines. The steam

engine was developed initially to meet this very practical need.

The steam engine is a device for converting the energy of some kind

of fuel into heat energy. For example, the chemical energy of coal or oil,

or the nuclear energy of uranium is converted to heat. The heat energy in

turn is converted into mechanical energy. This mechanical energy can be
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A model of Heron's aeolipile. Steam

produced in the boiler escapes

through the nozzles on the sphere,

causing it to rotate.

used directly to do work, as in a steam locomotive, or can be transformed

into electrical energy. In typical twentieth-centur\' industrial societies,

most of the energy used in factories and homes comes from electrical

energy. Falling water is used to generate electricity in some parts of the

country. But steam engines still generate most of the electrical energy

used in the United States today. There are other heat engines,

too—internal combustion engines and turbines for example. But the steam

engine remains a good model for the basic operation of this whole family

of engines.

The generation and transmission of electrical energy, and its

conversion into mechanical energy, will be discussed in Chapter 15. Here

we will focus on the central and historic link in the chain of energy

conversion, the steam engine.

Since ancient times it had been known that heat could be used to

produce steam, which could then do mechanical work. The "aeolipile,"

invented by Heron of Alexandria about 100 a.d., worked on the principle

of Newton's third law. (See margin.) The rotating lawn sprinkler works

the same way except that the driving force is water pressure instead of

steam pressure.

Heron's aeolipile was a toy, meant to entertain rather than to do any

useful work. Perhaps the most "useful" application of steam to do work in

the ancient world was another of Heron's inventions. This steam-driven

device astonished worshippers in a temple by causing a door to open when

a fire was built on the altar. Not until late in the eighteenth centur>',

however, were commercially successful steam engines invented.

Today we would say that a steam engine uses a supply of heat energy

to do mechanical work. That is, it converts heat energy into mechanical

energy. But many inventors in the eighteenth and nineteenth centuries

did not think of heat in this way. They regarded heat as a thin, invisible

substance that could be used over and over again to do work without

being used up itself But they did not need to learn all the presently

known laws of physics in order to become successful engineers. In fact,

the sequence of events was just the opposite. Steam engines were

developed first by inventors who knew relatively little about science. Their

main interest lay in making money, or in improving the effectiveness and

safety of mining. Later, scientists with both a practical knowledge of what

would work and a curiosity about how it worked made new discoveries in

physics.

The first commercially successful steam engine was invented by

Thomas Savery (1650-1715), an English militarv' engineer. Follow the

explanation of it one sentence at a time, referring to the diagram on page

41. In the Savery engine the water in the mine shaft is connected by a

pipe and a valve D to a chamber called the cylinder. With valve D closed

and valve B open, high-pressure steam from the boiler is admitted to the

cylinder through valve A. This forces the water out of the cylinder and up

the pipe. The water empties at the top and runs off at ground level. Valve

A and valve B are closed. Valve D is opened, allowing an open connection

between the cylinder and the water in the mine shaft.

When valve C is opened, cold water pours over the cylinder. The
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Schematic diagram of Savery engine.

steam left in the cylinder cools and condenses to water. Since water

occupies a much smaller volume than the same mass of steam, a partial

vacuum forms in the cylinder. This vacuum allows the air pressure in the

mine to force water from the mine shaft up the pipe into the cylinder.

The same process, started by closing valve D and opening valves A
and B, is repeated over and over. The engine is in effect a pump. It

moves water from the mine shaft to the cylinder, then from the cylinder to

the ground above.

However, the Savery engine's use of high-pressure steam produced a

serious risk of boiler or cylinder explosions. This defect was remedied by

Thomas Newcomen (1663-1729), another Englishman. Newcomen

invented an engine that used steam at lower pressure. His engine was

superior in other ways also. For example, it could raise loads other than

water.

The Newcomen engine features a rocking beam. This beam connects

to the load on one side and to a piston in a cylinder on the other side.

When valve A is open, the cylinder is filled with steam at normal

atmospheric pressure. The beam is balanced so that the weight of the load

raises the piston to the upper end of the cylinder. While the piston is

coming toward this position, valve A is still open and valve B is still

closed.

But when the piston reaches its highest position, valve A is closed

and valve C is opened. Cooling water flows over the cylinder and the

steam condenses, making a partial vacuum in the cylinder. This allows the

pressure of the atmosphere to push the piston down. As the piston reaches

the bottom of the cylinder, valve C is closed and valve B is opened briefly.

In the words of Erasmus Darwin,

the engine

Bade with cold streams, the

quick expansion stop.

And sunk the immense of va-

pour to a drop

Press'd by the ponderous air

the Piston falls

Resistless, sliding through

its iron walls;

Quick moves the balanced

beam, of giant-birth

Wields his large limbs, and

nodding shakes the earth.
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Schematic diagram of Newcomen
engine. In the original Newcomen
engine the load was water being lifted

from a mine shaft.
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The cooled and condensed steam runs off. The valve A Is opened, and the

cycle begins all over again.

Originally someone had to open and close the valves by hand at the

proper times in the cycle. But later models did this automatically. The

automatic method used the rhythm and some of the energy of the mo\ing

SG 10.18 parts of the engine itself to control the sequence of operation. This idea, of

using part of the output of the process to regulate the process itself, is

caHed feedback . It is an essential part of the design of many modem
mechanical and electronic systems. (See the article "Systems, Feedback,

Cybernetics" in Unit 3 Reader.

The Newcomen engine was widely used in Britain and other

European countries throughout the eighteenth century. By modem
standards it was not a very good engine. It burned a large amount of coal

but did only a small amount of work at a slow, jerky rate. But the great

demand for machines to pump water from mines produced a good market

even for Newcomen's uneconomical engine.

Q14 When a book slides to a stop on the horizontal rough surface of

a table
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At the left, a contemporary engraving

of a working Newcomen steam engine.

In July. 1698 Savery was granted a

patent for A new invention for rais-

ing of water and occasioning motion

to all sorts of mill work by the impel-

lent force of fire, which will be of great

use and advantage for drayning mines,

serving townes with water, and for

the working of all sorts of mills where

they have not the benefitt of water

nor constant windes." The patent was
good for 35 years and prevented New-
comen from making much moneyfrom
his superior engine during this period.

(a) the kinetic energy of the book is transformed into potential

energy.

(b) heat is transformed into mechanical energy.

(c) the kinetic energy of the book is transformed into heat energy.

(d) the momentum of the book itself is conserved.

Q15 True or false: The invention of the steam engine depended

strongly on theoretical developments in the physics of heat.

Q1 6 In Savery's steam engine, the energy of coal

was changed (by burning) into energ\' which in turn

was converted into the energy of the pump.

10.6 James Watt and the Industrial Revolution

A gready improved steam engine originated in the work of a

Scotsman, James Watt. Watt's father was a carpenter who had a

successful business selling equipment to ship owners. Watt was in poor

health much of his life and gained most of his early education at home. In
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The actual model of the Newcomen
engine that inspired Watt to conceive

of the separation of condenser and

piston.

his father's attic workshop, he developed considerable skill in using tools.

He wanted to become an instrument-maker and went to London to learn

the trade. Upon his return to Scotland in 1757, he obtained a position as

instrument maker at the University of Glasgow.

In the winter of 1763-1764, Watt was asked to repair a model of

Newcomen's engine that was used for demonstration lectures at the

university. As it turned out, this assignment had immense worldwide

consequences. In acquainting himself with the model. Watt was impressed

by how much steam was required to run the engine. He undertook a

series of experiments on the behavior of steam and found that a major

problem was the temperature of the cylinder walls. Newcomen's engine

wasted most of its heat in warming up the walls of its cylinders. The walls

were then cooled again every time cold water was injected to condense

the steam.

Early in 1765, Watt remedied this wasteful defect by devising a

modified type of steam engine. In retrospect, it sounds like a simple idea.

The steam in its cylinder, after pushing the piston up, was admitted to a

separate container to be condensed. With this system, the cylinder could

be kept hot all the time and the condenser could be kept cool all the time.

The diagram opposite represents Watt's engine. With valve A open

and valve B closed, steam under pressure enters the cylinder and pushes

the piston upward. When the piston nears the top of the cylinder, valve A
is closed to shut off the steam supply. Then valve B is opened, so that

steam leaves the cylinder and enters the condenser. The condenser is kept

cool by water flowing over it, so the steam condenses. As steam leaves the

cylinder, the pressure there decreases. Atmospheric pressure (helped by

the inertia of the flywheel) pushes the piston down. When the piston

reaches the bottom of the cylinder, valve B is closed and valve A is

opened, starting the cycle again.

Watt's invention of the separate condenser might seem only a small

step in the development of steam engines. But in fact it was a decisive

one. Not having to reheat the cylinder again and again allowed huge fuel

Watt in his workshop contemplating

a model of a Newcomen engine.

(A romanticized engraving from a

nineteenth-century volume on tech-

nology.)

BSa'SFv
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Schematic diagram of Watt engine.

savings. Watt's engine could do more than twice as much work as

Newcomen's with the same amount of fuel. This improvement enabled

Watt to make a fortune by selling or renting his engines to mine owners.

The fee that Watt charged for the use of his engines depended on

their power. Power is defined as the rate of doing work (or the rate at

which energy is transformed from one form to another). The mks unit of

power is the joule-per-second, which is now fittingly called one watt:

1 watt = 1 joule/sec

Matthew Bouiton (Watf s business

partner) proclaimed to Boswell (the

biographer of Samuel Johnson):
••| sell here, Sir, what all the world

desires to have: POWER!'

James Watt expressed the power of his engines in different units.

One "foot-pound" is defined as the work done when a force of one

pound is exerted on an object while the object moves a distance of one

foot. (In mks units, this corresponds roughly to a force of 4 nevvtons while

the object moves A meter. Thus. 1 foot-pound is approximately 5 newton-

meters.) Watt found that a strong workhorse, working steadily, could lift a

150-pound weight at the rate of almost four feet per second. In other

words, it could do about 550 foot-pounds of work per second. Watt used

this as a definition of a convenient unit for expressing the power of his

engines: the horsepower. To this day the "horsepower" unit is used in
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engineering—although it is now defined as precisely 746 watts.

I

Typical power ratings (in horsepower)

SG 10.19-10.26 '^^" turning a crank

Overshot waterwheel

Turret windmill

Savery steam engine (1702)

Newcomen engine (1732)

Smeaton's Long Benton engine (1772)

Watt engine (of 1778)

Cornish engine for London waterworks (1837)

Electric power station engines (1900)

Nuclear power station turbine (1970)

0.06 h.p.

3

10

1

12

40

14

135

1000

300,000

[Adapted from R. J. Forbes, in C. Singer et al, History of Technology.]

4 m

A steam locomotive from the early

part of the 20th century.

Watt's invention, so superior to Newcomen's engine, stimulated the

development of engines that could do many other jobs. Steam drove

machines in factories, railway locomotives, steamboats, and so forth. Watt's

engine gave an enormous stimulus to the growth of industry in Europe

and America. It thereby helped transform the economic and social

structure of Western civilization.

The widespread development of engines and machines revolutionized

mass production of consumer goods, construction, and transportation. The

average standard of living in Western Europe and the United States rose

sharply. Nowadays it is difficult for most people in the industrially

"developed" countries to imagine what life was like before the Industrial

Revolution. But not all the effects of industrialization have been beneficial.

The nineteenth-century factory system provided an opportunity for some

greedy and cruel employers to treat workers almost like slaves. These

employers made huge profits, while keeping employees and their families

on the edge of starvation. This situation, which was especially serious in

England early in the nineteenth century, led to demands for reform. New
laws eventually eliminated the worst excesses.

More and more people left the farms—voluntarily or forced by poverty

and new land laws—to work in factories. Conflict grew intense between

the working class, made up of employees, and the middle class, made up

of employers and professional men. At the same time, some artists and

intellectuals began to attack the new tendencies of their society. They saw

this society becoming increasingly dominated by commerce, machinery,

and an emphasis on material goods. In some cases they confused research

science itself with its technical apphcations (as is still done today). In

some cases scientists were accused of explaining away all the awesome

mysteries of nature. They denounced both science and technology, while

often refusing to learn anything about them. In a poem by William Blake

we find the questions:
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And did the Countenance Divine

Shine forth upon our clouded hills?

And was Jerusalem builded here

Among these dark Satanic mills?

Elsewhere, Blake ad\ased his readers "To cast off Bacon, Locke, and

Newton." John Keats was complaining about science when he included in

a poem the line: "Do not all charms fly/At the mere touch of cold

philosophy?" These attitudes are part of an old tradition, going back to the

ancient Greek opponents of Democritus' atomism. We saw that Galilean

and Newtonian physics also was attacked for distorting values. The same

type of accusation can still be heard today.

Steam engines are no longer widely used as direct sources of power in

industry and transportation. But steam is indirectly still the major source

of power. The steam turbine, invented by the English engineer Charles

Parsons in 1884, has now largely replaced older kinds of steam engines.

At present, steam turbines drive the electric generators in most electric-
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The "Charlotte Dundas," the first practical steamboat, built

by William Symington, an engineer who had patented his own
improved steam engine. It was tried out on the Forth and
Clyde Canal in 1801.



Section 10.7 Unit S 49

power stations. These steam-run generators supply most of the power for

the machinery of modern civilization. Even in nuclear power stations, the

nuclear energy is generally used to produce steam, which then drives

turbines and electric generators.

The basic principle of the Parsons turbine is simpler than that of the

Newcomen and Watt engines. A jet of high-pressure steam strikes the

blades of a rotor, driving the rotor around at high speed. A description of

the type of steam turbine used in modem power stations shows the

change of scale since Heron's toy:

The boiler at this station [in Brooklyn, New York] is as tall

as a 14-story building. It weighs about 3,000 tons, more than a

U.S. Navy destroyer. It heats steam to a temperature of 1,050°

F and to a pressure of 1,500 pounds per square inch. It

generates more than 1,300.000 pounds of steam an hour. This

steam runs a turbine to make 150,000 kilowatts of electricity,

enough to supply all the homes in a city the size of Houston,

Texas. The boiler burns 60 tons (about one carload) of coal an

hour.

The 14-story boiler does not rest on the ground. It

hangs—all 3,000 tons of it—from a steel framework. Some
boilers are even bigger—as tall as the Statue of Liberty—and

will make over 3,000.000 pounds of steam in one hour. This

steam spins a turbine that will make 450,000 kilowatts of

electricity—all of the residential needs for a city of over

4,000.000 people!

Below, a 200 thousand kilowatt tur-

bine being assembled. Notice the

thousands of blades on the rotor.

Q17 The purpose of the separate condenser in Watt's steam engine

is to

(a) save the water so it can be used again

(b) save fuel by not ha\1ng to cool and reheat the cylinder

(c) keep the steam pressure as low as possible

(d) make the engine more compact

Q18 The history of the steam engine suggests that the social and

economic effects of technology are

(a) always beneficial to eveiyone

(b) mostly undesirable

(c) unimportant one way or another

(d) verv' different for different levels of society

Q19 What is horsepower?

10.7 The experiments of Joule ^•5<v

In the steam engine a certain amount of heat does a certain amount

of work. What happens to the heat in doing the work?

Early in the nineteenth centun', most scientists and engineers thought

that the amount of heat remained constant; and that heat could do work

as it passed from a region at one temperature to a region at a lower

temperature. For example, early steam engines condensed steam at high

James Prescott Joule (1818-1889)

Joule was the son of a wealthy Man-

chester brewer. He is said to have

become first interested in his arduous

experiments by the desire to develop

more efficient engines for the family

brewery.
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The idea of heat as a conserved

substance is consistent with many
phenomena. An experiment showing

this is •Calorimetry" in the

Handbook.

temperatures to water at low temperature. Heat was considered to be a

substance called "caloric." The total amount of caloric in the universe was

thought to be conserved.

According to the caloric theory, heat could do work in much the same

way that water can do work. Water falling from a high level to a low level

can do work, with the total amount of water used remaining the same.

The caloric explanation seemed reasonable. And most scientists accepted

it, even though no one measured the amount of heat before and after it

did work.

A few scientists, however, disagreed. Some favored the view that heat

is a form of energy. One who held this view was the English physicist

James Prescott Joule. During the 1840's Joule conducted a long series of

experiments designed to show that heat is a form of energy. He hoped to

demonstrate in a variety of different experiments that the same decrease

in mechanical energy always produced the same amount of heat. This,

Joule reasoned, would mean that heat is a form of energy.

For one of his early experiments he constructed a simple electric

generator, which was driven by a falling weight. The electric current that

was generated heated a wire. The wire was immersed in a container of

water which it heated. From the distance that the weight descended he

calculated the work done (the decrease in gravitational potential energy).

The product of the mass of the water and its temperature rise gave him a

measure of the amount of heat produced. In another experiment he

compressed gas in a bottle immersed in water, measuring the amount of

work done to compress the gas. He then measured the amount of heat

given to the water as the gas got hotter on compression.

But his most famous experiments involved an apparatus in which

slowly descending weights turned a paddle-wheel in a container of water.

Owing to the friction between the wheel and the liquid, work was done on

the hquid, raising its temperature.

Joule repeated this experiment many times, constantly irnpro\ang the

apparatus and refining his analysis of the data. He learned to take very

great care to insulate the container so that heat was not lost to the room.

He measured the temperature rise with a precision of a small fraction of a

degree. And he allowed for the small amount of kinetic energy the

descending weights had when they reached the floor.

Joule pubhshed his results in 1849. He reported:

1st. That the quantity of heat produced by the friction of

bodies, whether solid or liquid, is always proportional to the

quantity of [energy] expended. And 2nd. That the quantity of

heat capable of increasing the temperature of a pound of water

... by 1° Fahr. requires for its evolution the expenditure of a

mechanical energy represented by the fall of 772 lb through

the distance of one foot.

Joule used the word "force" in-

stead of "energy." The current

scientific vocabulary was still being

formed.

The first statement is the evidence that heat is a form of energ\',

contrary to the caloric theory. The second statement gives the numerical

magnitude of the ratio he had found. This ratio related a unit of

mechanical energy (the foot-pound) and a unit of heat (the heat required
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to raise the temperature of one pound of water by one degree on the

Fahrenheit scale).

In the mks system, the unit of heat is the kilocalorie and the unit of

mechanical energy is the joule. Joule's results are equivalent to the

statement that 1 kilocalorie equals 4,150 joules. Joule's paddle-wheel

experiment and other basically similar ones have since been performed

with great accuracy. The currently accepted value for the "mechanical

equivalent of heat" is

1 kilocalorie = 4,184 joules

We might, therefore, consider heat to be a form of energy. We will

consider the nature of the "internal" energy associated with temperature

further in Chapter 11.

Joule's finding a value for the "mechanical equivalent of heat" made it

possible to describe engines in a new way. The concept of efficiency

applies to an engine or any device that transforms energy from one form

to another. Efficiency is defined as the percentage of the input energy that

appears as useful output. Since energy is conserved, the greatest possible

efficiency is 100%—when all of the input energy appears as useful output.

Obviously, efficiency must be considered as seriously as power output in

designing engines. However, there are theoretical limits on efficiency.

Thus, even a perfectly designed machine could never do work at 100%

efficiency. We will hear more about this in Chapter 11.

Q20 According to the caloric theory of heat, caloric

(a) can do work when it passes between two objects at the same

temperature

(b) is another name for temperature

(c) is produced by steam engines

(d) is a substance that is conserved

Q21 The kilocalorie is

(a) a unit of temperature

(b) a unit of energy

(c) 1 kilogram of water at 1°C

(d) one pound of water at 1°F

Q22 In Joule's paddle-wheel experiment, was all the change of

gravitational potential energy used to heat the water?

This unit is called a British Thermal
Unit (BJy)).

SG 10.27, 10.28

A kilocalorie is what some
dictionaries call Marge calorie." It is

the amount of heat required to raise

the temperature of 1 kilogram of

water by 1 Celsius ("centigrade").

This unit is identical to the "Calorie"

(with a capital C) used to express the

energy content of foods in dietetics.

The efficiency of a steam engine is

roughly 15-20%; for an automobile

it is about 22%: and for a diesel

engine it is as high as 40%.

In Sec. 10.10 we mention some
qualifications that must be placed

on the simple idea of heat as a

form of energy.

10.8 Energy in biological systems

All living things need a supply of energy to maintain life and to carry

on their normal activities. Human beings are no exception; bke all

animals, we depend on food to supply us with energy.

Most human beings are omnivores; that is, they eat both animal and

plant materials. Some animals are herbivores, eating only plants, while

others are carnivores, eating only animal flesh. But all animals, even

carnivores, ultimately obtain their food energy from plant material. The
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Carbohydrates are molecules made
of carbon, hydrogen, and oxygen

A simple example is the sugar gib

cose, the chemical formula for which

is C-,H, .0,..

animal eaten by the lion has previously dined on plant material, or on

another animal which had eaten plants.

Green plants obtain energy from sunhght. Some of that energy is used

by the plant to perform the functions of life. Much of the energy is used

to make carbohydrates out of water (H2O) and carbon dioxide (CO2). The

energy used to synthesize carbohydrates is not lost; it is stored in the

carbohydrate molecules as chemical energy.

The process by which plants synthesize carbohydrates is called

photosynthesis. It is still not completely understood and research in this

field is lively. We know that the synthesis takes place in many small steps,

and many of the steps are well understood. It is conceivable that we may

learn how to photosynthesize carbohydrates without plants thus producing

food economically for the rapidly increasing world population. The overall

process of producing carbohydrates (the sugar glucose, for example) by

photosynthesis can be represented as follows:

carbon dioxide + water + energy glucose + oxygen

Piif

mm..
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Electron micrograph of an energy-

converting mitochondrion in a bat

cell (200,000 times actual size).

The energy stored in the glucose molecules is used by the animal that

eats the plant. This energy maintains the body temperature, keeps its

heart, lungs, and other organs operating, and enables various chemical

reactions to occur in the body. The animal also uses it to do work on

external objects. The process by which the energy stored in sugar

molecules is made available to the cell is very complex. It takes place

mostly in tiny bodies called mitochondria, which are found in all cells.

Each mitochondrion contains enzymes which, in a series of about ten

steps, split glucose molecules into simpler molecules. In another sequence

of reactions these molecules are oxidized (combined with oxygen), thereby

releasing most of the stored energy and forming carbon dioxide and water.

glucose + oxygen carbon dioxide + water + energy

Proteins and fats are used to build and restore tissue and enzymes,

and to pad delicate organs. They also can be used to pro\1de energy. Both

proteins and fats can enter into chemical reactions which produce the

same molecules as the split carbohydrates. From that point, the energy-

releasing process is the same as in the case of cai'bohydrates.

The released energy is used to change a molecule called adenosine

diphosphate (ADP) into adenosin triphosphate (ATP). In short, chemical

energy originally stored in glucose molecules in plants is eventually stored

as chemical energy in ATP molecules in animals. The ATP molecules pass

out of the mitochondrion into the body of the cell. Wherever energy is

needed in the cell, it can be supplied by an ATP molecule. As it releases

its stored energy, the ATP changes back to ADP. Later, back in a

mitochondrion, the ADP is reconverted to energy-rich ATP.

The overall process in the mitochondrion involves breaking glucose, in

the presence of oxygen, into carbon dioxide and water. The energy

released is transferred to ATP and stored there until needed by the

animal's body.
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The chemical and physical operations of the living body are in some
ways like those in an engine. Just as a steam engine uses chemical
energy stored in coal or oil, the body uses chemical energy stored in food.

In both cases the fuel is oxidized to release its stored energy. The
oxidation is vigorous in the steam engine, and gentle, in small steps, in

the body. In both the steam engine and the body, some of the input

energy is used to do work; the rest is used up internally and eventually

"lost" as heat to the surroundings.

Some foods supply more energy per unit mass than others. The
energy stored in food is usually measured in kilocalories. (1 kilocalorie =
10^ calories). However it could just as well be measured in joules or foot-

pounds or British Thermal Units. The table in the margin gives the

energy content of some foods. (The "calorie" or "large calorie" used by

dieticians, is identical to what we have defined as the kilocalorie.)

Much of the energy you obtain from food keeps your body's internal

"machinery" running and keeps your body warm. Even when asleep your
body uses about one kilocalorie every minute. This amount of energy is

needed just to keep alive.

To do work, you need more energy. Yet only a fraction of this energy
can be used to do work; the rest is wasted as heat. Like any engine, the

body of humans or other animals is not 100% efficient. Its efficiency when
it does work varies with the job and the physical condition and skill of the

worker. But efficiency probably never exceeds 25%, and usually is less.

Studies of this sort are earned out in bioenergetics, one of the many
fascinating and useful fields where physics and biology overlap.

The table in the margin gives the results of experiments done in the

United States of the rate at which a healthy young person of average build

and metabohsm uses energy in various activities. The estimates were
made by measuring the amount of carbon dioxide exhaled. Thus, they

show the total amount of food energy used, including the amount
necessary just to keep the body functioning.

According to this table, if the subject did nothing but sleep for eight

hours a day and lie quietly the rest of the time, he would still need at

least 1,700 kilocalories of energy each day. There are countries where
large numbers of working people exist on less than 1,700 kilocalories a

day. The U.N. Yearbook of National Accounts Statistics for 1964 shows
that in India the average food intake was about 1,600 kilocalories per day.

The United States average was 3,100 kilocalories per day. About half the

population of Southeast Asia is at or below the stanation line. Vast

numbers of people elsewhere in the world, including some parts of the

United States, are also close to that line. It is estimated that if the

available food were equally distributed among all the earths inhabitants,

each would have about 2,400 kilocalories a day on the average. This is

only a little more than the minimum required by a working person.

It is now estimated that at the current rate of increase, the population

of the world may double in 30 years. Thus by the year 2000 it would be 7

biUion or more. Furthermore, the rate at which the population is

increasing is itself increasing! Meanwhile, the production of food supply

per person has not increased markedly on a global scale. For example, in

Approximate Energy Content of

Various Foods (In Calories per

kilogram)

Butter
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The physics of energy transforma-

tions in biological processes is one

example of a lively interdisciplinary

field, namely biophysics (where

physics, biology, chemistry, and

nutrition all enter). Another connec-

tion to physics is provided by the

problem of inadequate world food

supply: here, too. many physicists,

with others, are presently trying to

provide solutions through work

using their special competence.

the last ten years the increase in crop yield per acre in the poorer

countries has averaged less than one percent per year, far less than the

increase in population. The problem of supplying food energ>' for the

world's hungry is one of the most difficult problems facing humanity

today.

In this problem of Ufe-and-death importance, what are the roles

science and technology can play? Obviously, better agricultural practice

should help, both by opening up new land for farming and by increasing

production per acre on existing land. The application of fertilizers can

increase crop yields, and factories that make fertihzers are not too difficult

to build. But right here we meet a general law on the use of applications

of scienc'e through technology: Before applying technology, study all the

consequences that may be expected; otherwise you may create two new

problems for every old one that you wish to "fix."

In any particular country, the questions to ask include these: How
will fertihzers interact with the plant being grown and with the soU? Will

some of the fertilizer run off and spoil rivers and lakes and the fishing

industry in that locality? How much water will be required? What variety

of the desired plant is the best to use within the local ecological

framework? How will the ordinary farmer be able to learn the new
techniques? How will he be able to pay for using them?

Upon study of this sort it may turn out that in addition to fertibzer, a

country may need just as urgently a better system of bank loans to small

farmers, and better agricultural education to help the farmer. Such

training has played key roles in the rapid rise of productivity in the richer

countries. Japan, for example, produces 7,000 college graduate

agriculturalists each year. All of Latin America produces only 1,100 per

year. In Japan there is one farm adxisor for each 600 farms. Compare this

with perhaps one advisor for 10,000 farms in Colombia, and one advisor

per 100,000 farms in Indonesia.

But for long-run solutions, the problem of increasing food production

in the poorer countries goes far beyond changing agricultural practices.

Virtually all facets of the economies and cultures of the affected countries

are involved. Important factors range from international economic aid and

internal food pricing policies to urbanization, industrial growth, public

health, and family planning practice.

Where, in all this, can the research scientist's contribution come in to

help? It is usually true that one of the causes of some of the worse social

problems is ignorance, including the absence of specific scientific

knowledge. For example, knowledge of how food plants can grow-

efficiently in the tropics is lamentably sparse. Better ways of removing salt

from sea water or brackish ground water are needed to allow irrigating

fields with water from these plentiful sources. But before this wiD be

economically possible, more basic knowledge will be needed on just how
the molecules in hquids are structured, and how molecules move through

membranes of the sort usable in de-salting equipment. Answers to such

questions, and many like them, can only come through research in "pure"

science, from trained research workers having access to adequate research

facilities.
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"The Repast of the Lion"

by Henri Rousseau
The Metropolitan Museum of Art

Q23 Animals obtain the energy they need from food, but plants

(a) obtain energy from sunlight

(b) obtain energy from water and carbon dioxide

(c) obtain energy from seeds

(d) do not need a supply of energy

Q24 The human body has an efficiency of about 20%. This means

that

(a) only one-fifth of the food you eat is digested

(b) four-fifths of the energy you obtain from food is destroyed

(c) one-fifth of the energy you obtain from food is used to run the

"machinery" of the body

(d) you should spend 80% of each day lying quiedy without working

(e) only one-fifth of the energy you obtain from food can be used to

enable your body to do work on external objects

Q25 Explain this statement: "The repast of the lion is sunlight."
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Joule began his long series of

experiments by investigating the

duty' of electric motors. In this

case duty was measured by the

work the motor could do when a

certain amount of zinc was used up

in the battery that ran the motor.

Joule's interest was to see whether

motors could be made economically

competitive with steam engines.

10.9 Arriving at a general law

In Section 10.3 we introduced the law of conservation oi mechanical

energy. This law apphes only in situations where no mechanical energy is

transformed into heat energy or vice versa. But early in the nineteenth

century, developments in science, engineering and philosophy suggested

new ideas about energy. It appeared that all forms of energy (including

heat) could be transformed into one another with no loss. Therefore the

total amount of energy in the universe must be constant.

Volta's invention of the electric battery in 1800 showed that chemical

reactions could produce electricity. It was soon found that electric currents

could produce heat and light. In 1820, Hans Christian Oersted, a Danish

physicist, discovered that an electric current produces magnetic effects.

And in 1831, Michael Faraday, the great English scientist, discovered

electromagnetic induction: the effect that when a magnet moves near a

coil or a wire, an electric current is produced in the coil or wire. To some

thinkers, these discoveries suggested that all the phenomena of nature

were somehow united. Perhaps all natural events resulted from the same

basic "force." This idea, though vague and imprecise, later bore fruit in

the form of the law of conservation of energy. AH natural events involve a

transformation of energy from one form to another. But the total quantity

of energy does not change during the transformation.

The invention and use of steam engines helped to establish the law of

conservation of energy by showing how to measure energy changes.

Almost from the beginning, steam engines were rated according to a

quantity termed their "duty." This term referred to how heavy a load an

engine could lift using a given supply of fuel. In other words, the test was

how much work an engine could do for the price of a ton of coal. This

very practical approach is typical of the engineering tradition in which the

steam engine was developed.

The concept of work began to develop about this time as a measure of

the amount of energy transformed from one form to another. (The actual

words "work" and "energy" were not used until later.) This made possible

quantitative statements about the transformation of energy. For example.

Joule used the work done by descending weights as a measure of the

amount of gravitational potential energv' transformed into heat energy.

In 1843, Joule had stated that whenever a certain amount of

mechanical energy seemed to disappear, a definite amount of heat always

appeared. To him, this was an indication of the conservation of what we

now call energy. Joule said that he was

. . . satisfied that the grand agents of nature are by the

Creator's fiat indestructible; and that, wherever mechanical

[energy] is expended, an exact equivalent of heat is always

obtained.

Having said this. Joule got back to his work in the laboratorv-. He was

basically a practical man who had litde time to speculate about a deeper

philosophical meaning of his findings. But others, though using

speculative arguments, were also concluding that the total amount of
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energy in the universe is constant.

A year before Joule's remark, for example, Julius Robert Mayer, a

German physician, had proposed a general law of conservation of energy.

Unlike Joule, Mayer had done no quantitative experiments. But he had

observed body processes involving heat and respiration. And he had used

other scientists' published data on the thermal properties of air to calculate

the mechanical equivalent of heat. (Mayer obtained about the same value

that Joule did.)

Mayer had been influenced strongly by the German philosophical

school now known as Naturphilosophie or "nature-philosophy." This

movement flourished in Germany during the late eighteenth and early

nineteenth centuries. (See also the Epilogue to Unit 2.) Its most
influential leaders were Johann Wolfgang von Goethe and Friedrich von

Schelling. Neither of these men is known today as a scientist. Goethe is

generally considered Germany's greatest poet and dramatist, while

Schelling is remembered as a minor philosopher. But both men had great

influence on the generation of German scientists educated at the

beginning of the nineteenth century. The nature-philosophers were closely

associated with the Romantic movement in literature, art, and music. The
Romantics protested against the idea of the universe as a great machine.

This idea, which had arisen after Newton's success in the seventeenth

century, seemed morally empty and artistically worthless to them. The
nature-philosophers also detested the mechanical world view. They refused

to beheve that the richness of natural phenomena—including human
intellect, emotions, and hopes—could be understood as the result of the

motions of particles.

At first glance, nature-philosophy would seem to have little to do with

the law of conservation of energy. That law is practical and quantitative,

whereas nature-philosophers tended to be speculative and qualitative. But

nature-philosophy did insist on the value of searching for the underlying

reality of nature. And this attitude did influence the discovery of the law

of conservation of energy. Also, the nature-philosophers believed that the

various phenomena of nature—gravity, electricity, magnetism, etc.—are

not really separate from one another. Rather, they are simply different

forms of one basic "force." This philosophy encouraged scientists to look

for connections between different "forces" (or, in modern terms, between

different forms of energy). It is perhaps ironic that in this way, it

stimulated the experiments and theories that led to the law of conservation

of energy.

The nature-philosophers claimed that nature could be understood as it

"really" is only by direct observation. But no comphcated "artificial"

apparatus must be used—only feelings and intuitions. Goethe and

Schelling were both very much interested in science and thought that

their philosophy could uncover the hidden, inner meaning of nature. For

Goethe the goal was "That I may detect the inmost force which binds the

world, and guides its course."

By the time conservation of energy was established and generally

accepted, however, nature-philosophy was no longer popular. Scientists

who had previously been influenced by it, including Mayer, now strongly

Johann Wolfgang von Goethe (1749-

1832)

Goethe thought that his color theory

(which most modern scientists con-

sider useless) exceeded in importance
all his literary works.

J'

Friedrich von Schelling (1775-1854)
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Hermann von Helmholtz (1821-1894)

Helmholtz's paper, "Zur Erhaltung

der Kraft. ' was tightly reasoned

and mathematically sophisticated.

It related the law of conservation of

energy to the established principles

of Newtonian mechanics and thereby

helped make the law scientifically

respectable.

SG 10.33

opposed it. In fact, some hard-headed scientists at first doubted the law of

conservation of energy simply because of their distrust of nature-

phUosophy. For example, William Barton Rogers, founder of the

Massachusetts Institute of Technology, wrote in 1858:

To me it seems as if many of those who are discussing this

question of the conservation of force are plunging into the fog

of mysticism.

However, the law was so quickly and successfully put to use in physics

that its philosophical origins were soon forgotten.

This episode is a reminder of a lesson we learned before: In the

ordinary day-to-day work of scientists, experiment and mathematical theory

are the usual guides. But in making a truly major advance in science,

philosophical speculation often also plays an important role.

Mayer and Joule were only two of at least a dozen people who,

between 1832 and 1854, proposed in some form the idea that energy is

conserved. Some expressed the idea vaguely; others expressed it quite

clearly. Some arrived at their belief mainly through philosophy: others

from a practical concern with engines and machines, or from laboratory

investigations; still others from a combination of factors. Many,

including Mayer and Joule, worked quite independently of one another.

The idea of energy conservation was somehow "in the air," leading to

essentially simultaneous, separate discovery.

The wide acceptance of the law of conservation of energy owes much
to the influence of a paper published in 1847. This was two years before

Joule published the results of his most precise experiments. The author, a

young German physician and physicist named Hermann von Helmholtz,

entitled his work "On the Conservation of Force." Helmholtz boldly

asserted the idea that others were only vaguely expressing; namely, "that

it is impossible to create a lasting motive force out of nothing." He
restated this theme even more clearly many years later in one of his

popular lectures:

We arrive at the conclusion that Nature as a whole possesses a

store of force which cannot in any way be either increased or

diminished, and that, therefore, the quantity of force in Nature

is just as eternal and unalterable as the quantity of matter.

Expressed in this form, I have named the general law 'The

Principle of the Conservation of Force.'

Any machine or engine that does work (provides energy) can do so

only by drawing from some source of energy. The machine cannot supply

more energy than it obtains from the source. When the source runs out.

the machine will stop working. Machines and engines can only transform

energy; they cannot create it or destroy it.

Q26 The significance of German nature philosophy in the history of

science is that it

(a) was the most extreme form of the mechanistic viewpoint

(b) was a reaction against excessive speculation
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(c) stimulated speculation about the unity of natural phenomena

(d) delayed progress in science by opposing Newtonian mechanics

Q27 Discoveries in electricity and magnetism early in the nineteenth

century contributed to the discovery of the law of conservation of energy

because

(a) they attracted attention to the transformation of energy from one

form to another

(b) they made it possible to produce more energy at less cost

(c) they revealed what happened to the energy that was apparendy

lost in steam engines

(d) they made it possible to transmit energ)' over long distances

Q28 The development of steam engines helped the discovery' of the

law of conservation of energy because

(a) steam engines produce a large amount of energy

(b) the caloric theory could not explain how steam engines worked

(c) the precise idea of work was developed to rate steam engines

(d) the internal energy of a steam engine was always found to be

conserved

10.10 A precise and general statement of energy conservation

If you do not want to know what the

detailed difficulties are, you can skip

to the conclusion in the last

paragraph on the next page.

The word 'heat" is used rather

loosely, even by physicists. This

restriction on its meaning is not

necessary in most contexts, but it

is important for the discussion in

this section.

We can now try to pull many of the ideas in this chapter together into

a precise statement of the law of conservation of energy. It would be

pleasingly simple to call heat "internal" energy associated with

temperature. We could then add heat to the potential and kinetic energy

of a system, and call this sum the total energy that is conserved. In fact

this works well for a great variety of phenomena, including the

experiments of Joule. But difficulties arise with the idea of the heat

"content" of a system. For example, when a solid is heated to its melting

point, further heat input causes melting without increasing the

temperature. (You may have seen this in the experiment on Calorimetry.)

So simply adding the idea of heat as one form of a systems energy will

not give us a complete general law. To get that, we must invent some

additional terms with which to think.

Instead of "heat," let us use the idea of an internal energy, an energy

in the system that may take forms not directly related to temperature. We
can then use the word "heat" to refer only to a transfer of energy between

a system and its surroundings. (In a similar way, the term work is not

used to describe something contained in the system. Rather, it describes

the transfer of energy from one system to another.)

Yet even these definitions do not permit a simple statement hke "heat

input to a system increases its internal energy, and work done on a

system increases its mechanical energy." For heat input to a system can

have effects other than increasing inteniiil energy. In a steam engine, for

example, heat input increases the mechanical energy of the piston.

Similarly, work done on a system can have effects other than increasing
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mechanical energy. In rubbing your hands together, for example, the work

you do increases the internal energy of the skin of your hands.

Therefore, a general conservation law of energy must include both

work and heat transfer. Further, it must deal with change in the total

energy of a system, not with a "mechanical" part and an "internal" part.

As we mentioned before in discussing conservation laws, such laws

can be expressed in two ways: (a) in terms of an isolated system, in

which the total quantity of something does not change, or (b) in terms of

how to measure the increases and decreases of the total quantity in an

open (or non-isolated) system. The two ways of expressing the law are

logicaDy related by the definition of "isolated." For example, conservation

of momentum can be expressed either: (a) If no net outside force acts on

a system, then the total mv of the system is constant; or (b) If a net

outside force F acts on a system for a time At, the change in the total

mv of the system is f^ x A^ In (a), the absence of the net force is a

condition of isolation. In (b), one describes how the presence of a net

force affects momentum. Form (b) is obviously more generally useful.

A similar situation exists for the law of conservation of energy. We
can say that the total energy of a system remains constant if the system is

isolated. (By isolated we mean that no work is done on or by the system,

and no heat passes between the system and its surroundings.) Or we can

say that the change in energy of a now -isolated system is equal to the net

work done on the system plus the net heat added to it. More precisely, we

can let AW stand for the net work on the system, which is all the work

done on the system minus all the work done by the system. We can let

AH represent the net heat transfer to the system, or the heat added to the

system minus the heat lost by the system. Then the change in total

energy of the system, A£, is given by

Special case of an isolated system:

In general

AW

/̂

\

A£ AW + AH

, AH

\

AE = AW -^AH 1

/

\ /

This is a simple and useful form of the law of conservation of energy, and

is sometimes called the first law of thermodynamics.

This general expression includes as special cases the preliminary

versions of the conservation law given earlier in the chapter. If there is no

heat transfer at all, then AH = 0, and so A£ = AW. In this case, the

change in energy of a system equals the net work done on it. On the other

hand, if work is done neither on nor by a system, then AW = 0, and AE --

A H. Here the change in energy of a system is equal to the net heat

transfer.

We still lack a description of the part of the total energy of a

system that we have called heat (or better, "internal" energy). So far we

have seen only that an increase in internal energy is sometimes associated

with an increase in temperature. We also mentioned the long-held

suspicion that internal energy involves the motion of the "smaD parts" of

bodies. We will take up this problem in detail in Chapter 11.

Thermodynamics is the study of the

relation between heat and mechani-
cal energy.

SG 10.34-10.38
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Q29 The first law of thermodynamics is

(a) true only for steam engines

(b) true only when there is no friction

(c) a completely general statement of conservation of energy

(d) the only way to express conservation of energy

Q30 Define A£, AW, and AH for a system.

Q31 What two ways are there for changing the total energy of a

system

10.11 Faith in the conservation of energy

For over a century, the law of conservation of energy has stood as

one of the most fundamental laws of science. We encounter it again and

again in this course, in studying electricity and magnetism, the structure

of the atom, and nuclear physics. Throughout the other sciences, from

chemistry to biology, and throughout engineering studies, the same law

applies. Indeed, no other law so clearly brings together the various

scientific fields, giving all scientists a common set of concepts.

The principle of conservation of energy has been immensely

successsful. It is so firmly believed that it seems almost impossible that

any new discovery could disprove it. Sometimes energy seems to appear or

disappear in a system, without being accounted for by changes in known

forms of energy. In such cases, physicists prefer to assume that some

hitherto unknown kind of energy is involved, rather than consider

seriously the possibility that energy is not conserved. We have already

pointed out Leibniz's proposal that energy could be dissipated among "the

small parts" of bodies. He advanced this idea specifically in order to

maintain the principle of conservation of energy in inelastic collisions and

frictional processes. His faith in energy conservation was justified. Other

evidence showed that "internal energy" changed by just the right amount

SG 10.39, 10.40 ^^ explain observed changes in external energy.

Another recent example is the "invention" of the neutrino by the

physicist Wolfgang Pauli in 1933. Experiments had suggested that energy

disappeared in certain nuclear reactions. But Paub proposed that a tiny

particle, named the "neutrino" by Enrico Fermi, was produced in these

reactions. Unnoticed, the neutrino carried off some of the energy.

Physicists accepted the neutrino theory for more than twenty years even

though neutrinos could not be detected by any method. Finally, in 1956,

neutrinos were detected in experiments using the radiation from a nuclear

reactor. (The experiment could not have been done in 1933, since no

nuclear reactor existed until nearly a decade later.) Again, faith in the law

of conservation of energy turned out to be justified.

The theme of "conservation" is so powerful in science that we
believe it will always be justified. We believe that any apparent exceptions

to the law will sooner or later be understood in a way which does not
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require us to give up the law. At most, they may lead us to discover new
forms of energy making the law even more general and powerful.

The French mathematician and philosopher Henri Poincare

expressed this idea back in 1903 in his book Science and Hypothesis:

. . . the principle of conservation of energy signifies simply

that there is something which remains constant. Indeed, no
matter what new notions future experiences will give us of the

world, we are sure in advance that there will be something

which will remain constant, and which we shall be able to call

energy.

Today it is agreed that the discovery of conservation laws was one

of the most important achievements of science. They are powerful and

valuable tools of analysis. All of them basically affirm that, whatever

happens within a system of interacting bodies, certain measurable

quantities will remain constant as long as the system remains isolated.

The list of known conservation laws has grown in recent years. The

area of fundamental (or "elementar>'") particles has yielded much of this

new knowledge. Some of the newer laws are imperfectly and

incompletely understood. Others are on uncertain ground and are still

being argued.

Below is a list of conservation laws as it now stands. One cannot

say that the list is complete or eternal. But it does include the

conservation laws that make up the working tool-kit of physicists today.

Those which are starred are discussed in the basic text portions of this

course. The others are treated in supplemental (optional) units, for

example, the Supplemental Unit entided Elementary Particles.

1. Linear momentum*
2. Energy (including mass)*

3. Angular momentum (including spin)

4. Charge'

5. Electron-family number

6. Muon-family number

7. Baryon-family number

8. Strangeness number

9. Isotopic spin

Numbers 5 through 9 result from work in nuclear physics, high

energy physics, or elementary or fundamental particle physics. If this

aspect interests you, you will find the essay "Conservation Laws" (in

the Reader entitled The Nucleus) worth reading at this stage. The first

seven of the laws in the above listing are discussed in this selection.



10.1 The Project Physics materials particularly
appropriate for Chapter 10 include:
Experiments
Conservation of Energy
Measuring the Speed of a Bullet
Temperature and Thermometers
Calorimetry
Ice Calorimetry

Activities

Student Horsepower
Steam Powered Boat
Predicting the Range of an Arrow

Film Loops
Finding the Speed of a Rifle Bullet -I
Finding the Speed of a Rifie Bullet- II

Recoil
Colliding Freight Cars
Dynamics of a Billiard Ball

A Method of Measuring Energy -Nail Driven
into Wood

Gravitational Potential Energy
Kinetic Energy
Conservation of Energy -Pole Vault
Conservation of Energy -Aircraft Takeoff

Reader Articles

The Steam Engine Comes of Age
The Great Conservation Principles

Transparencies
Slow Collisions

The Watt Engine

10.2 A man carries a heavy load across the level
floor of a building. Draw an aiTow to represent
the force he applies to the load, and one to rep-
resent the direction of his motion. By the definition
of work given, how much work does he do on the
load? Do you feel uncomfortable about this
result? Why?

10.3 The speed of an object is always relative —
that is. it will be different when measured from
different reference frames. Since kinetic energy
depends on speed, it too is only a relative quantity.
If you are interested in the idea of the relativity
of kinetic energy, consider this problem: An object
of mass m is accelerated uniformly by a force F
through a distance d. changing its speed from
f, to V.,. The work done. Fd. is equal to the change
in kinetic energy jmv.r-^mv,~. (For simplicity,
assume the case of motion in only one direction
along a straight line.) Now: describe this event
from a reference frame which is itself moving
with speed u along the same direction.

(a) What are the speeds as observed in the
new reference frame?

(b) Are the kinetic energies observed to
have the same value in both reference
frames?

(c) Does the change in kinetic energy have the
same value?

(d) Is the calculated amount of work the same?
Hint: by the Galilean relativity principle,
the magnitude of the acceleration -and
therefore force -will be the same when

viewed from frames of reference moving
uniformly relative to each other.)

(e) Is the change in kinetic energy still equal
to the work done?

(f ) Which of the following are invariant" for
changes in reference frame (moving uni-
formly relative to one another)?
i. the quantity -rmv-
ii. the quantity Fd
iii. the relationship Fd = M^rnv'-)

(g) Explain why it is misleading to consider
kinetic energy as something a body has.
instead of only a quantity calculated from
measurements.

10.4 An electron of mass about 9.1 x lO^" kg is

traveling at a speed of about 2 x lO" m sec toward
the screen of a television set. What is its kinetic
energy? How many electrons like this one would
be needed for a total kinetic energy of one joule?

10.5 Estimate the kinetic energy of each of the
following: (a) a pitched baseball (b) a jet plane
(c) a sprinter in a 100-yard dash (d) the earth in
its motion around the sun.

10.6 A 200-kilogram iceboat is supported by a
smooth surface of a frozen lake. The wind exerts
on the boat a constant force of 400 newtons
while the boat moves 900 meters. Assume that
frictional forces are negligible, and that the boat
starts from rest. Find the speed attained at the
end of a 900 meter run by each of the following
methods:

(a) Use Newton's second law to find the ac-
celeration of the boat. How long does it take
to move 900 meters? How fast will it be
mo\ing then?

(b) Find the final speed of the boat by equating
the work done on it by the wind and the
increase in its kinetic energy. Compare your
result with your answer in (a).

10.7 A 2-gram bullet is shot into a tree stump.
It enters at a speed of 300 m sec and comes to
rest after having penetrated 5 cm in a straight
line.

(a) What was the change in the bullets kinetic
energy?

(b) How much work did the tree do on the
bullet?

(c) What was the average force during impact?

10.8 Refer back to SG 9.20. How much work
does the golf club do on the golf ball? How much
work does the golf ball do on the golf club?

10.9 A penny has a mass of about 3.0 grams
and is about 1.5 millimeters thick. You have 50
pennies which you pile one abo\ e the other.

(a) How much more gra\ itational potential
energy has the top penny than the bottom
one?

(b) How much more ha\e all 50 pennies to-

gether than the bottom one alone?

10.10 (a) How high can you raise a book weigh-
ing 5 newtons if you have available one
joule of energy?
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(b) How many joules of energy are needed
just to lift a 727 jet airliner weighing
7 X 10^ newtons (fully loaded) to its

cruising altitude of 10,000 meters?

10.11 As a home experiment, hang weights on a
rubber band and measure its elongation. Plot

the force vs. stretch on graph paper. How could
you measure the stored energy?

10.12 For length, time and mass there are
standards (for example, a standard meter). But
energy is a "derived quantity," for which no
standards need be kept. Nevertheless, assume
someone asks you to supply him one joule of
energy. Describe in as much detail as you can
how you would do it.

10.13 (a) Estimate how long it would take for

the earth to fall up 1 meter to a 1-kg
stone if this stone were somehow
rigidly fixed in space,

(b) Estimate how far the earth will actually
move up while a 1-kg stone falls 1

meter from rest.

10.14 The photograph below shows a massive
lead wrecking ball being used to demolish a wall.

Discuss the transformations of energy involved.

10.15 This discussion will show that the PE of

an object is relative to the frame of reference in

which it is measured. The boulder in the photo-

graph on page 37 was not lifted to its perch-
rather the rest of the land has eroded away,
leaving it where it may have been almost since

the formation of the earth. Consider the question
"What is the gravitational potential energy of the

system boulder + earth?" You can easily calculate

what the change in potential energy would be if

the rock fell — it would be the product of the

rock's weight and the distance it fell. But would
that be the actual value of the gravitational energy
that had been stored in the boulder-earth system?
Imagine that there happened to be a deep mine
shaft nearby and the boulder fell into the shaft.

It would then fall much farther reducing the

gravitational potential energy much more. Ap-
parently the amount of energy stored depends on
how far you imagine the boulder can fall.

(a) What is the greatest possible decrease in

gravitational potential energy the isolated

system boulder + earth could have?
(b) Is the system earth + boulder really isolated?

(c) Is there a true absolute bottom of gravita-

tional potential energy for any system that

includes the boulder and the earth?

These questions suggest that potential energy,
like kinetic energy, is a relative quantity. The
value of PE depends on the location of the (resting)

frame of reference from which it is measured.
This is not a serious problem, because we are
concerned only with changes in energy. In any
given problem, physicists will choose some
convenient reference for the "zero-level" of
potential energy, usually one that simplifies

calculations. What would be a convenient zero-
level for the gravitational potential energy of

(a) a pendulum?
(b) a roller coaster?

(c) a weight oscillating up and down a spring?
(d) a planet in orbit around the sun?

10.16 The figure below (not drawn to scale) shows
a model of a carnival "loop-the-loop." A car
starting from a platform above the top of the

loop coasts down and around the loop without
falling off the track. Show that to traverse the

loop successfully, the car must start from a

height at least one-half a radius above the top

of the loop. Hint: The car's weight must not be
greater than the centripetal force required to keep
it on the circular path at the top of the loop.

10.17 Discuss the conversion between kinetic and
potential forms of energy in the system of a comet
orbiting around the sun.

10.18 Sketch an addition to one of the steam
engine diagrams of a mechanical linkage that
would open and close the valves automatically.
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10.19 Show that if a constant propelling force F
keeps a vehicle moving at a constant speed v
(against the friction of the surrounding) the
power required is equal to Fv.

10.20 The Queen Mary, one of Britain's largest
steamships, has been retired to a marine museum
on our west coast after completing 1,000 crossings
of the Atlantic. Her mass is 81,000 tons (75
million kilograms) and her maximum engine
power of 234,000 horsepower (174 million watts)
allows her to reach a maximum speed of 30.63
knots (16 meters per second).

(a) What is her kinetic energy at full speed?
(b) Assume that at maximum speed all the

power output of her engines goes into over-
coming water drag. If the engines are
suddenly stopped, how far will the ship
coast before stopping? (Assume water drag
is constant.)

(c) What constant force would be required to
bring her to a stop from full speed within
1 nautical mile (2000 meters)?

(d) The assumptions made in (b) are not valid
for the following reasons:
1. Only about 60% of the power deUvered to

the propellor shafts results in a forward
thrust to the ship; the rest results in
friction and turbulence, eventually
warming the water.

2. Water drag is less for lower speed than
for high speed.

3. If the propellers are not free-wheeling,
they add an increased drag.

Which of the above factors tend to increase,
which to decrease the coasting distance?

(e) Explain why tugboats are important for
docking big ships.

10.21 Devise an experiment to measure the
power output of

(a) a man riding a bicycle
(b) a motorcycle
(c) an electric motor.

10.22 Refer to the table of "Typical Power
Ratings" on p. 46.

(a) What advantages would Newcomen's engine
have over a "turret windmill"?

(b) What advantage would you expect Watt's
engine (1778) to have over Smeaton's
engine (1772)?

10.23 Besides horsepower, another term used in
Watt's day to describe the performance of steam
engines was duty. The duty of a steam engine
was defined as the distance in feet that an engine
can lift a load of one million pounds, using one
bushel of coal as fuel. For example, Newcomen's
engine had a duty of 4.3: it could perform 4.3
million foot-pounds of work by burning a bushel
of coal. Which do you think would have been
more important to the engineers building steam
engines -increasing the horsepower or increasing
the duty?

10.24 A modern term that is related to the "duty"
of an engine is efficiency. The efficiency of an

engine (or any device that transforms energy
from one form to another) is defined as the
percentage of the energy input that appears as
useful output.

(a) Why would it have been impossible to find
a value for the efficiency of an engine before
Joule?

(b) The efficiency of "internal combustion"
engines is seldom greater than 10%. For
example, only about 10% of the chemical
energy released in burning gasoline in an
automobile engine goes into moving the
automobile. What becomes of the other 90%?

10.25 Engine A operates at a greater power than
engine B does, but its efficiency is less. This
means that engine A does (a) more work with
the same amount of fuel, but more slowly (b) less
work with the same amount of fuel, but more
quickly (c) more work with the same amount of
fuel and does it faster (d) less work with the same
amount of fuel and does it more slowly.

10.26 A table of rates for truck transportation is
given below. How does the charge depend on the
amount of work done?

Truck Transportation (1965)

Weight
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horsepower of one of the activities Usted in the

table on p. 53.

10.30 About how many kilograms of hamburgers
would you have to eat to supply the energy for a
half-hour of digging? Assume that your body is

20% efficient.

10.31 When a person's food intake supplies less

energy than he uses, he starts "burning" his own
stored fat for energy. The oxidation of a pound
of animal fat provides about 4,300 kilocalories of

energy. Suppose that on your present diet of 4,000
kilocalories a day you neither gain nor lose

weight. If you cut your diet to 3,000 kilocalories

and maintain your present physical activity, how
long would it take to reduce your mass by 5

pounds?

10.32
jjj order to engage in normal light work, a

person in India has been found to need on the

average about 1,950 kilocalories of food energy a
day, whereas an average West European needs
about 3.000 kilocalories a day. Explain how each
of the following statements makes the difference

in energy need understandable.

(a) The average adult Indian weighs about 110
pounds; the average adult West European
weighs about 150 pounds.

(b) India has a warm climate.

(c) The age distribution of the population for

which these averages have been obtained

is different in the two areas.

10.33 jsjq other concept in physics has the

economic significance that "energy" does. Discuss
the statement: "We could express energy in dollars

just as weU as in joules or calories."

'^^^^ Show how the conservation laws for

energy and for momentum can be applied to a

rocket during the period of its lift off.

10.35 Discuss the following statement: "During
a typical trip, all the chemical energy of the

gasoline used in an automobile is used to heat

up the car, the road and the air."

10.36 Show how all the equations we have given

in Chapter 10 to express conservation of energy are

special cases of the general statement AE = AW
+ AH. Hint: let one or more of the terms equal

zero.)

10.37 (a) Describe the procedure by which a

space capsule can be changed from a

high circular orbit to a lower circular

orbit.

(b) How does the kinetic energy in the
lower orbit compare with that in the
higher orbit?

(c) How does the gravitational potential

energy for the lower orbit compare with
that of the higher orbit?

(d) It can be shown (by using calculus)

that the change in gravitational

potential energy in going from one
circular orbit to another will be twice
the change in kinetic energy. How,
then, will the total energy for the lower
circular orbit compare with that for

the higher orbit?

(e) How do you account for the change in

total energy?

10.38 Any of the terms in the equation A£ = AH
+ AW can have negative values.

(a) What would be true for a system for which
i. A£ is negative?
ii. AH is negative?

iii. AW is negative?

(b) Which terms would be negative for the

following systems?
i. a man digging a ditch

ii. a car battery while starting a car

iii. an electric light bulb just after it is

turned on
iv. an electric light bulb an hour after it is

turned on
V. a running refrigerator

vi. an exploding firecracker

10.39 In each of the following, trace the chain
of energy transformations from the sun to the

energy in its final form:
(a) A pot of water is boiled on an electric

stove.

(b) An automobile accelerates from rest on
a level road, climbs a hill at constant
speed, and comes to stop at a traffic

light.

(c) A windmill pumps water out of a flooded

field.

10.40 Show how the law of conservation of

energy applies to the motion of each of the

situations listed in SG 9.39 and 9.40, p. 27.
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CHAPTER ELEVEN

The Kinetic Tlieory of Gases

11.1 An overview of the chapter

During the 1840's, many scientists recognized that heat is not a

substance, but a form of energy which can be converted into other forms.

Two of these scientists, James Prescott Joule and Rudolf Clausius, went a

step further. They based this advance on the fact that heat can produce

mechanical energy and mechanical energy can produce heat. Therefore,

they reasoned, the "heat energy" of a substance is simply the kinetic

energy of its atoms and molecules. In this chapter we will see that this

idea is largely correct. It forms the basis of the kinetic-molecular theory of

heat.

However, even the idea of atoms and molecules was not completely

accepted in the nineteenth century. If such small bits of matter really

existed, they would be too small to observe even in the most powerful

microscopes. Since scientists could not observe molecules, they could not

check directly the hypothesis that heat is molecular kinetic energy.

Instead, they had to derive from this hypothesis predictions about the

behavior of measurably large samples of matter. Then they could test

these predictions by experiment. For reasons which we will explain, it is

easiest to test such hypotheses by observing the properties of gases.

Therefore, this chapter deals mainly with the kinetic theory as applied to

gases.

The development of the kinetic theory of gases in the nineteenth

century led to the last major triumph of Newtonian mechanics. The

method involved using a simple theoretical model of a gas. Newton's laws

of motion were applied to the gas molecules assumed in this model as if

they were tiny billiard balls. This method produced equations that related

the easily observable properties of gases—such as pressure, density, and

temperature—to properties not directly observable—such as the sizes and

speeds of molecules. For example, the kinetic theory:
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(1) explained rules that had been found previously by trlal-and-error

methods. (An example is "Boyle's law," which relates the pressure and the

volume of a gas.)

(2) predicted new relations. (One surprising result was that the

friction between layers of gas moving at different speeds increases with

temperature, but is independent of the density of the gas.)

(3) led to values for the sizes and speeds of gas molecules.

Thus the successes of kinetic theory showed that Newtonian

mechanics provided a way for understanding the effects and behavior of

invisible molecules.

But applying Newtonian mechanics to a mechanical model of gases

resulted in some predictions that did not agree with the facts. That is, the

model is not valid for all phenomena. According to kinetic theory, for

example, the energy of a group of molecules should be shared equally

among all the different motions of the molecules and their atoms. But the

properties of gases predicted from this "equal sharing" principle clearly

disagreed with experimental evidence. Newtonian mechanics could be

applied successfully to a wide range of motions and collisions of molecules

in a gas. But it did not work for the motions of atoms inside molecules. It

was not until the twentieth century that an adequate theor>' of the

behavior of atoms— "quantum mechanics"—was developed. (Some ideas

from quantum mechanics are discussed in Unit 5.)

Kinetic theory based on Newtonian mechanics also had trouble

dealing with the fact that most phenomena are not reversible. An inelastic

collision is an irreversible process. Other examples are the mixing of two

gases, or scrambling an egg. In Newtonian theory, however, the reverse of

any event is just as reasonable as the event itself Can irreversible

processes be described by a theory based on Newtonian theory? Or do

they involve some new fundamental law of nature? In discussing this

problem from the viewpoint of kinetic theory, we will see how the concept

of "randomness" entered physics.

Modem physicists do not take too seriously the "billiard ball" idea of

gas molecules—nor did most nineteenth centur\' physicists. All models

oversimplify the actual facts. Therefore, the simple assumptions of a model

often need adjustment in order to get a theory that agrees well with

experimental data. Nevertheless the kinetic theor\' is still ven,' useful.

Physicists are fond of it, and often present it as an example of how a

physical theory should be developed. Section 11.5 gives one of the

mathematical derivations from the model used in kinetic theory. This

derivation is not given to be memorized in detail; it simply illustrates

mathematical reasoning based on models. Physicists have found this

method very useful in understanding many natural phenomena.

Q1 Early forms of the kinetic molecular theory were based on the

assumption that heat energy is

(a) a liquid

(b) a gas

(c) the kinetic energy of molecules

(d) made of molecules
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Q2 True or false: In the kinetic theor\' of gases, as developed in the

nineteenth centur>', it was assumed that Newton's laws of motion apply to

the motion and collisions of molecules.

Q3 True or false: In the twentieth century, Newtonian mechanics

was found to be applicable not only to molecules but also to the atoms

inside molecules.

11.2 A model for the gaseous state

What are the differences between a gas and a hquid or solid? We
know by observation that hquids and solids have definite volume. Even if

their shapes change, they still take up the same amount of space. A gas,

on the other hand, will expand to fill any container (such as a room). If

not confined, it will leak out and spread in all directions. Gases have low

densities compared to liquids and solids—typically about 1,000 times

smaller. Gas molecules are usually relatively far apart from one another,

and they only occasionally collide. In the kinetic theory model, forces

between molecules act only over very short distances. Therefore, gas

molecules are considered to be moving freely most of the time. In liquids,

the molecules are closer together; forces act among them continually and

keep them from flying apart. In solids the molecules are usually even

closer together, and the forces between them keep them in a definite

orderly arrangement.

The initial model of a gas is a very simple model. The molecules are

considered to behave like miniature billiard balls—that is, tiny spheres or

clumps of spheres which exert no force at all on each other except when

they make contact. Moreover, all the collisions of these spheres are

assumed to be perfectly elastic. Thus, the total kinetic energy of two

spheres is the same before and after they collide.

Note that the word "model" is used in two different senses in science.

In Chapter 10, we mentioned the model of Newcomen's engine which

James Watt was given to repair. That was a working model. It actually did

function, although it was much smaller than the original engine, and

contained some parts made of different materials. But now we are

discussing a theoretical model of a gas. This model exists only in our

imagination. Like the points, lines, triangles, and spheres studied in

geometry, this theoretical model can be discussed mathematically. The

results of such a discussion may help us to understand the real world of

experience.

In order to emphasize that our model is a theoretical one, we will use

the word "particle" instead of "atom" or "molecule." There is now no

doubt that atoms and molecules exist and have their own definite

properties. The particles in the kinetic theory model, on the other hand,

are idealized and imaginary. We imagine such objects as perfectly elastic

spheres, whose supposed properties are hopefully similar to those of actual

atoms and molecules.

Our model represents the gas as consisting of a large number of very

Balloon for carrying apparatus used

for weather forecasting.

Gases can be confined without a

container. A star, for example, is a

mass of gas confined by gravita-

tional force. Another example is the

earths atmosphere.

Liquid

^t
SM
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A very simplified "model" of the three

states of matter:

(From General Chemistry, second edition,

by Linus Pauling, W. H. Freeman and Com-

pany, © 1953.)



72 Unit 3 The Kinetic Theory of Gases

The word gas" was originally

derived from the Greek word
chaos: it was first used by the

Belgian chemist Jan Baptista van
Helmont (1580-1644).

On the opposite page you will find

a more detailed discussion of the

idea of random fluctuations.
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The idea of disorder is elaborated in

the Reader 3 articles "The Law of

Disorder," "The Law," "The Arrow
of Time," and "Randomness in the

Twentieth Century."

small particles in rapid, disordered motion. Let us define some of these

terms. "A large number" means something hke a billion billion (lO^^) or

more particles in a sample as small as a bubble in a soft drink. "Very

small" means a diameter about a hundred-millionth of a centimeter (10"^°

meter). "Rapid motion" means an average speed of a few hundred miles

per hour. What is meant by "disordered" motion? Nineteenth-century
kinetic theorists assumed that each individual molecule moved in a

definite way, determined by Newton's laws of motion. Of course, in

practice it is impossible to follow a billion billion particles at the same
time. They move in all directions, and each particle changes its direction

and speed during collision with another particle. Therefore, we cannot
make a definite prediction of the motion of any one individual particle.

Instead, we must be content with describing the average behavior of large

collections of particles. We still believe that from moment to moment each
individual molecule behaves according to the laws of motion. But it turns
out to be easier to describe the average behavior if we assume complete
ignorance about any individual motions. To see why this is so, consider
the results of flipping a large number of coins all at once. It would be very-

hard to predict how a single coin would behave. But if you assume they
behave randomly, you can confidently predict that flipping a million coins
will give approximately 50% heads and 50% tails. The same principle

applies to molecules bouncing around in a container. You can safely bet

that about as many are moving in one direction as in another. Further,

the particles are equally likely to be found in any cubic centimeter of

space inside the container. This is true no matter where such a region is

located, and even though we do not know where a given particle is at any
given time. "Disordered," then, means that velocities and positions are

distributed randomly. Each molecule is just as hkely to be moving to the
right as to the left (or in any other direction). And it is just as bkely to be
near the center as near the edge (or any other position).

In summary, we are going to discuss the properties of a model of a

gas. The model is imagined to consist of a large number of very small

particles in rapid, disordered motion. The particles move freely most of the

tinie, exerting forces on one another only when they collide. The model is

designed to represent the structure of real gases in many ways. However,
it is simplified in order to make calculations manageable. By comparing
the results of these calculations with the observed properties of gases, we
can estimate the speeds and sizes of molecules.

Q4 In the kinetic theory, particles are thought to exert significant

forces on one another

(a) only when they are far apart

(b) only when they are close together

(c) all the time

(d) never

Q5 Why was the kinetic theory first applied to gases rather than to

liquids or solids?



Averages and Fluctuations

Molecules are too small, too numerous, and

too fast for us to measure the speed of any one

molecule, or its kinetic energy, or how far it moves
before colliding with another molecule. For this

reason the kinetic theory of gases concerns itself

with making predictions about average values. The

theory enables us to predict quite precisely the

average speed of the molecules in a sample of

gas, or the average kinetic energy, or the average

distance the molecules move between collisions.

Any measurement made on a sample of gas

reflects the combined effect of billions of

molecules, averaged over some interval of time.

Such average values measured at different times,

or in different parts of the sample, will be slightly

different. We assume that the molecules are

moving randomly. Thus we can use the

mathematical rules of statistics to estimate just

how different the averages are likely to be. We will

call on two basic rules of statistics for random

samples:

1

.

Large variations away from the average are

less likely than small variations. (For example,

if you toss 1 coins you are less likely to get 9

heads and 1 tail than to get 6 heads and 4

tails.)

2. Percentage variations are likely to be

smaller for large samples. (For example, you

are likely to get nearer to 50% heads by

flipping 1 ,000 coins than by flipping just 10

coins.)

A simple statistical prediction is the statement

that if a coin is tossed many times, it will land

"heads" 50 percent of the time and "tails" 50

percent of the time. For small sets of tosses there

will be many "fluctuations" (variations) to either

side of the predicted average of 50% heads. Both

statistical rules are evident in the charts at the

right. The top chart shows the percentage of heads

in sets of 30 tosses each. Each of the 10 black

squares represents a set of 30 tosses. Its position

along the horizontal scale indicates the percent of

heads. As we would expect from rule 1 , there are

more values near the theoretical 50% than far from

it. The second chart is similar to the first, but here

each square represents a set of 90 tosses. As

before, there are more values near 50% than far

from it. And, as we would expect from rule 2, there

are fewer values far from 50% than in the first

chart.

The third chart is similar to the first two, but

now each square represents a set of 180 tosses.

Large fluctuations from 50% are less common still

than for the smaller sets.

Statistical theory shows that the average

fluctuation from 50% shrinks in proportion to the

square root of the number of tosses. We can use

this rule to compare the average fluctuation for

sets of, say, 30,000,000 tosses with the average

fluctuation for sets of 30 tosses. The 30,000,000-

toss sets have 1,000,000 times as many tosses as

the 30-toss sets. Thus, their average fluctuation in

percent of heads should be 1,000 times smaller!

These same principles hold for fluctuations

from average values of any randomly-distributed

quantities, such as molecular speed or distance

between collisions. Since even a small bubble of

air contains about a quintillion (10^^) molecules,

fluctuations in the average value for any isolated

sample of gas are not likely to be large enough to

be measurable. A measurably large fluctuation is

not impossible, but extremely unlikely.

i<? 72^3-3E^

am— JUL
30 % /so ^//EApi

^D TiP^e-sm

-\ 1 1 1
i i

—

'

I

— 1-

D 16 to So Ao 50 (fi To Jb QO /DO 'fonefips

i
//^ m-ierh

ISS
10 3c 3o ^o Ju (p To 10 (io lot i^HAiA



74 Unit 3 The Kinetic Theory of Gases

11.3 The speeds of molecules

The basic idea of the kinetic theory is that heat is related to the

kinetic energy of molecular motion. This idea had been frequently

suggested in the past. However, many difficulties stood in the way of its

SG 11.3 general acceptance. Some of these difficulties are well worth mentioning.

They show that not all good ideas in science (any more than outside of

science) are immediately successful.

In 1738, the Swiss mathematician Daniel Bernoulli showed how a

kinetic model could explain a well-known property of gases. This property

is described by Boyle's law: as long as the temperature does not change,

the pressure of a gas is proportional to its density. BemouUi assumed that

Pressure is defined as the perpen- the pressure of a gas is simply a result of the impacts of individual

dicular force on a surface divided molecules striking the wall of the container. If the density of the gas were
by the area of the surface. twice as great there would be twice as many molecules per cubic

centimeter. Thus, BemouUi said, there would be twice as many molecules

striking the wall per second, and hence twice the pressure. Bernoulli's

proposal seems to have been the first step toward the modern kinetic

theory of gases. Yet it was generally ignored by other scientists in the

eighteenth century. One reason for this was that Newton had proposed a

different theory in his Principia (1687). Newton showed that Boyle's law
could be explained by a model in which particles at rest exert forces that

repel neighboring particles. Newton did not claim that he had proved that

gases really are composed of such repelling particles. But most scientists,

impressed by Newton's discoveries, simply assumed that his treatment of

gas pressure was also right. (As it turned out, it was not.)

The kinetic theory of gases was proposed again in 1820 by an English

physicist, John Herapath. Herapath rediscovered Bernoulli's results on the

relations between pressure and density of a gas and the speeds of the

particles. But Herapath's work also was ignored by most other scientists.

His earlier writings on the kinetic theory had been rejected for pubhcation

by the Royal Society of London. Despite a long and bitter battle Herapath
did not succeed in getting recognition for his theory.

James Prescott Joule, however, did see the value of Herapath's work.

In 1848 he read a paper to the Manchester Literary and Philosophical

Society in which he tried to revive the kinetic theory. Joule showed how
the speed of a hydrogen molecule could be computed (as Herapath had
done). He reported a value of 2,000 meters per second at 0°C, the freezing

temperature of water. This paper, too, was ignored by other scientists. For

one thing, physicists do not generally look in the publications of a "hterary

and philosophical society" for scientifically important papers. But evidence
for the equivalence of heat and mechanical energy continued to mount.
Several other physicists independently worked out the consequences of the

hypothesis that heat energy in a gas is the kinetic energy' of molecules.

Rudolf Clausius in Germany pubhshed a paper in 1856 on "The Nature of

the Motion we call Heat." This paper established the basic principles of

kinetic theory essentially in the form we accept today. Soon afterward,

James Clerk Maxwell in Britain and Ludwig Bolzmann in Austria set forth

the full mathematical details of the theory.
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The Maxwell velocity distribution. It did not seem likely that all

molecules in a gas would have the same speed. In 1859 Maxwell applied

the mathematics of probability to this problem. He suggested that the

speeds of molecules in a gas are distributed over all possible values. Most

molecules have speeds not very far from the average speed. But some
have much lower speeds and some much higher speeds.

A simple example will help you to understand Maxwell's distribution

of molecular speeds. Suppose a marksman shoots a gun at a practice

target many times. Some bullets will probably hit the bullseye. Others will

miss by smaller or larger amounts, as shown in (a) in the sketch below.

We count the number of bullets scattered at various distances to the left

and right of the bullseye in (b). Then we can make a graph showing the

number of bullets at these distances as shown in (c).

TARGET PRACTICE EXPERIMENT
(a) Scatter of holes in target; (b) target

marked off in distance intervals left

and right of center; (c) graph of num-
ber of holes per strip to left and right

of center; (d) For a very large number
of bullets and narrov^/ strips, the en-

velope of the graph often closely

approximates the mathematical curve

called the "normal distribution" curve.

This graph showing the distribution of hits illustrates a general

principle of statistics, namely, if any quantity varies randomly about an

average value, the graph showing the distribution of variations will

resemble the one shown in (d) above in the margin. There will be a peak

at the average value and a smooth decline on either side. A similar "bell-

shaped curve," as it is called, describes the distribution of many kinds of

physical measurements. The normal distribution law applies even to large

groups of people. For example, consider the distribution of heights in a

large crowd. Such a distribution results from the combined effect of a

great many independent factors. A person's height, for example, depends

upon many independent genes as well as environmental factors. Thus the

distribution of heights will closely follow a normal distribution. The

velocity of a gas molecule is determined by a very large number of

independent collisions. So the distribution of velocities is also smoothly

"bell-shaped."

Maxwell's distribution law for molecular velocities in a gas is shown

in the margin in graphical form for three different temperatures. The

curve is not symmetrical since no molecule can have less than zero speed,

but some have very large speeds. For a gas at any given temperature, the

"tail" of each curve is much longer on the right (high speeds) than on the

left (low speeds). As the temperature increases, the peak of the curve

Maxwell's distribution of speeds in

gases at different temperatures.
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shifts to higher speeds. Then the speed distribution becomes more broadly

spread out.

What evidence do we have that Maxwell's distribution law really

applies to molecular speeds? Several successful predictions based on this

law gave indirect support to it. But not until the 1920's was a direct

experimental check possible. Otto Stern in Germany, and later Zartmann
in the United States, devised a method for measuring the speeds in a

beam of molecules. (See the illustration of Zartmann's method on the next

page.) Stern, Zartmann, and others found that molecular speeds are

indeed distributed according to Maxwell's law. Virtually all of the

individual molecules in a gas change speed as they collide again and
again. Yet if a confined sample of gas is isolated, the distribution of

speeds remains very much the same. For the tremendous number of

SG 11.4 molecules in almost any sample of gas, the average speed has an

SG 11.5 extremely stable value.

Q6 In the kinetic theory of gases, it is assumed that the pressure of

a gas on the walls of the container is due to

(a) gas molecules colliding with one another

(b) gas molecules colliding against the walls of the container

(c) repelling forces exerted by molecules on one another

Q7 The idea of speed distribution for gas molecules means that

(a) each molecule always has the same speed

(b) there is a wide range at speeds of gas molecules

(c) molecules are moving fastest near the center of the gas

11.4 The sizes of molecules

Is it reasonable to suppose that gases consist of molecules moving at

speeds up to several hundred meters per second? If this model were

correct, gases should mix with each other very rapidly. But anyone who
has studied chemistry knows that they do not. Suppose hydrogen sulfide

or chlorine is generated at the end of a large room. Several minutes may
pass before the odor is noticed at the other end. But according to our

kinetic-theory calculations, each of the gas molecules should have crossed

the room hundreds of times by then. Something must be wrong with our

kinetic-theory model.

Rudolf Clausius recognized this as a valid objection to his own version

of the kinetic theory. His 1856 paper had assumed that the particles are

so small that they can be treated hke mathematical points. If this were
true, particles would almost never collide with one another. However, the

observed slowness of diffusion and mixing convinced Clausius to change
his model. He thought it likely that the molecules of a gas are not

vanishingly small, but of a finite size. Particles of finite size moving very

rapidly would often collide with one another. An individual molecule might
have an instantaneous speed of several hundred meters per second. But it

changes its direction of motion every time it collides with another

molecule. The more often it collides with other molecules, the less likely it
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Direct Measurement of Molecular Speeds

A narrow beam of molecules is formed by letting molecules of a hot gas

pass through a series of slits. In order to keep the beam from spreading out,

collisions with randomly moving molecules must be avoided. Therefore, the

source of gas and the slits are housed in a highly evacuated chamber. The

molecules are then allowed to pass through a slit in the side of a cylindrical

drum which can be spun very rapidly. The general scheme is shown in the

drawing above.

As the drum rotates, the slit moves out of the beam of molecules. No

more molecules can enter until the drum has rotated through a whole

revolution. Meanwhile the molecules in the drum continue moving to the right

some moving fast and some moving slowly.

Fastened to the inside of the drum is a sensitive film which acts as a

detector. Any molecule striking the film leaves a mark. The faster molecules

strike the film first, before the drum has rotated very far.

The slower molecules hit the film later, after the drum has rotated farther,

in general, molecules of different speeds strike different parts of the film. The

darkness of the film at any point is proportional to the number of molecules

which hit it there. Measurement of the darkening of the film shows the relative

distribution of molecular speeds. The speckled strip at the right represents the

unrolled film, showing the impact position of

molecules over many revolutions of the drum. The

heavy band indicates where the beam struck the

film before the drum started rotating. (It also marks

the place to which infinitely fast molecules would

get once the drum was rotating.)

A comparison of some experimental results

with those predicted from theory is shown in the

graph. The dots show the experimental results and

the solid line represents the predictions from the

kinetic theory.

ySfTeJ)\
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X'.

The larger the molecules are, the more

likely they are to collide with each

other.

SG 11.6

is to move very far in any one direction. How often collisions occur

depends on how crowded the molecules are and on their size. For most

purposes one can think of molecules as being relatively far apart and of

very small size. But they are just large enough and crowded enough to get

in one another's way. Realizing this, Clausius could modify his model to

explain why gases mix so slowly. Further, he derived a precise

quantitative relationship between the molecule's size and the average

distance they moved between collisions.

Clausius now was faced with a problem that plagues every- theoretical

physicist. If a simple model is modified to explain better the observed

properties, it becomes more complicated. Some plausible adjustment or

approximation may be necessary in order to make any predictions from the

model. If the predictions disagree with experimental data, one doesn't

know whether to blame a flaw in the model or calculation error introduced

by the approximations. The development of a theory often involves a

compromise between adequate explanation of the data, and mathematical

convenience.

Nonetheless, it soon became clear that the new model was a great

improvement over the old one. It turned out that certain other properties

of gases also depend on the size of the molecules. By combining data on

several such properties it was possible to work backwards and find fairly

reliable values for molecular sizes. Here we can only report the result of

these calculations. Typically, the diameter of gas molecules came out to be

of the order of lO"^** meters to 10~^ meters. This is not far from the

modem values—an amazingly good result. After all, no one previously had

known whether a molecule was 1,000 times smaller or bigger than that.

In fact, as Lord Kelvin remarked:

The idea of an atom has been so constantly associated with

incredible assumptions of infinite strength, absolute rigidity,

mystical actions at a distance and indivisibility, that chemists

and many other reasonable naturalists of modem times, losing

all patience with it, have dismissed it to the realms of

metaphysics, and made it smaller than 'anything we can

conceive.'

SG 11.7

SG 11.8

Kelvin showed that other methods could also be used to estimate the

size of atoms. None of these methods gave results as reliable as did the

kinetic theory. But it was encouraging that they all led to the same order

of magnitude (within about 50%).

Q8 In his revised kinetic-theory model Clausius assumed that the

particles have a finite size, instead of being mathematical points, because

(a) obviously everything must have some size

(b) it was necessary to assume a finite size in order to calculate the

speed of molecules.

(c) the size of a molecule was already well known before Clausius'

time

(d) a finite size of molecules could account for the slowness of

diffusion.
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11.5 Predicting the behavior of gases from the kinetic theory

One of the most easily measured characteristics of a confined gas is

pressure. Our experience with baUoons and tires makes the idea of air

pressure seem obvious; but it was not always so.

Galileo, in his book on mechanics, Two New Sciences (1638), noted

that a lift-type pump cannot raise water more than 34 feet. This fact was

well known. Such pumps were widely used to obtain drinking water from

wells and to remove water from mines. We already have seen one

important consequence of this limited ability of pumps to lift water out of

deep mines. This need provided the initial stimulus for the development of

steam engines. Another consequence was that physicists became curious

about why the lift pump worked at all. Also, why should there be a limit

to its ability to raise water?

Air Pressure. The puzzle was solved as a result of experiments by

Torricelli (a student of GaUleo), Guericke, Pascal, and Boyle. By 1660, it

was fairly clear that the operation of a "lift" pump depends on the

pressure of the air. The pump merely reduces the pressure at the top of

the pipe. It is the pressure exerted by the atmosphere on the pool of water

below which forces water up the pipe. A good pump can reduce the

pressure at the top of the pipe to nearly zero. Then the atmospheric

pressure can force water up to about 34 feet above the pool—but no

higher. Atmospheric pressure at sea level is not great enough to support a

column of water any higher. Mercury is almost 14 times as dense as

water. Thus, ordinary pressure on a pool of mercury can support a column

only T4 as high, about 2j feet (0.76 meter). This is a more convenient

height for laboratory experiments. Therefore, much of the seventeenth-

century research on air pressure was done with a column of mercury, or

mercury "barometer." The first of these was designed by Torricelli.

The height of the mercury column which can be supported by air

pressure does not depend on the diameter of the tube. That is, it depends

not on the total amount of mercury, but only on its height. This may seem

strange at first. To understand it, we must understand the difference

between pressure and force. Pressure is defined as the magnitude of the

force acting perpendicularly on a surface divided by the area of that

surface: P = FJA. Thus a large force may produce only a small

pressure if it is spread over a large area. For example, you can walk on

snow without sinking in it if you wear snowshoes. On the other hand, a

small force can produce a very large pressure if it is concentrated on a

small area. Women's spike heel shoes have ruined many a wooden floor or

carpet. The pressure at the place where the heel touched the floor was

greater than that under an elephant's foot.

In 1661 two English scientists, Richard Towneley and Henry Power,

discovered an important basic relation. They found that the pressure

exerted by a gas is directly proportional to the density of that gas. Using

P for pressure and D for density, we can write this relationship as P ^ D
or P -kD where k is some constant. For example, if the density of a

given quantity of air is doubled (say by compressing it), its pressure also

doubles. Robert Boyle confirmed this relation by extensive experiments. It

is an empirical rule, now generally known as Boyle's Law. But the law

SG 11.9

SG 11.10

.76 m

c-r ^ c-j 0.0 m

Torricelli's barometer is a glass tube

standing in a pool of mercury. The
top most part of the tube is empty of

air. The air pressure on the pool sup-

ports the weight of the column of

mercury in the tube up to a height of

about 27 feet (0.76 meter).
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holds true only under special conditions.

The effect of temperature on gas pressure. Boyle recognized that if the

temperature ofa gas changes during an experiment, the relation P = kD

no longer applies. For example, the pressure exerted by a gas in a

closed container increases if the gas is heated, even though its density stays

constant.

Many scientists throughout the eighteenth century investigated the

expansion of gases by heat. The experimental results were not consistent

enough to estabhsh a quantitative relation between density (or volume) and

temperature. But eventually, evidence for a surprisingly simple general law

appeared. The French chemist Joseph-Louis Gay-Lussac (1778-1850) found

that all the gases he studied—air, oxygen, hydrogen, nitrogen, nitrous oxide,

ammonia, hydrogen chloride, sulfur dioxide, and carbon dioxide—changed

their volume in the same way. If the pressure remained constant, then the

change in volume was proportional to the change in temperature. On the

other hand, if the volume remained constant, the change in pressure was

proportional to the change in temperature.

A single equation summarizes all the experimental data obtained by

Boyle, Gay-Lussac, and many other scientists. It is known as the ideal gas

law:

P = kD(t + 273°)

On the Celsius scale, water freezes

at and boils at 100 . when the

pressure is equal to normal atmos-

pheric pressure. On the Fahrenheit

scale, water freezes at 32 and

boils at 212 . Some of the details

involved in defining temperature

scales are part of the experiment

Hotness and Temperature in the

Handbook.

Here t is the temperature on the Celsius scale. The proportionality constant k

depends only on the kind of gas (and on the units used for P, D and 0-

We call this equation the ideal gas law because it is not completely

accurate for real gases except at very low pressures. Thus, it is not a law of

physics in the same sense as the law of conservation of momentum. Rather,

it simply gives an experimental and approximate summary of the observed

properties of real gases. It does not apply when pressure is so high, or

temperature so low, that the gas is nearly changing to a liquid.

Why does the number 273 appear in the ideal gas law? Simply because

we are measuring temperature on the Celsius scale. If we had chosen to use

the Fahrenheit scale, the equation for the ideal gas law would be

P = k'D(t + 460°)

If the pressure were kept constant,

then according to the ideal gas law

the volume of a sample of gas

would shrink to zero at - 273 C.

where t is the temperature measured on the Fahrenheit scale. In other

words, the fact that the number is 273 or 460 has no great importance. It just

depends on our choice ofa particular scale for measuring temperature.

However, it is important to note what would happen if ( were decreased to

-273°C or -460°F. Then the entire factor invohing temperature would be

zero. And, according to the ideal gas law, the pressure of any gas would also

fall to zero at this temperature. The chemical properties of the gas no longer

makes sense. Real gases become liquid long before a temperature of -273°C

is reached. Both experiment and thermodynamic theory indicate that it is

impossible actually to cool anything—gas, liquid, or solid—down to precisely
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this temperature. However, a series of cooling operations has produced

temperatures less than 0.0001 degree above this limit.

In view of the unique meaning of this lowest temperature, Lord Kelvin

proposed a new temperature scale. He called it the absolute temperature

scale, and put its zero at -273°C. Sometimes it is called the Kelvin scale. The
temperature of -273°C is now referred to as 0°K on the absolute scale, and is

called the absolute zero of temperature.

The ideal gas law may now be written in simpler form:

P = kDT

T Is the temperature in degrees Kelvin and k is the proportionality constant.

The equation P = kDT summsLnzes experimental facts about gases.

Now we can see whether the kinetic-theory model offers a theoretical

explanation for these facts.

Kinetic explanation ofgas pressure. According to the kinetic theory, the

pressure of a gas results from the continual impacts of gas particles against

the container wall. This explains why pressure is proportional to density: the

greater the density, the greater the number of particles colliding with the

wall. But pressure also depends on the speed of the individual particles. This

speed determines the force exerted on the wall during each impact and the

frequency of the impacts. If the collisions with the wall are perfectly elastic,

the law of conservation of momentum will describe the results of the impact.

The detailed reasoning for this procedure is worked out on pages 82 and 83.

This is a beautifully simple application of Newtonian mechanics. The result

is clear: applying Newtonian mechanics to the kinetic molecular model of

gases leads to the conclusion that P = hDiv^)^^ where (i^^)av is the average of

the squared speed of the molecules.

So we have two expressions for the pressure of a gas. One summarizes

the experimental facts, P = kDT. The other is derived by Newton's laws

from a theoretical model, P = W(v^)ay. The theoretical expression will agree

with the experimental expression only if kT = K^^)av This would mean
that the temperature ofa gas is proportional to (v^)av The mass m of each

molecule is a constant, so we can also say that the temperature is

proportional to hm(v^)ay. In equation form, T ^ 2"z(i'^)av You should recall

that hm(v^) is our expression for kinetic energy. Thus, the kinetic theory

leads to the conclusion that the temperature of a gas is proportional to the

average kinetic energy of its molecules! We already had some idea that

raising the temperature of a material somehow affected the motion of its

"small parts." We were aware that the higher the temperature of a gas, the .

more rapidly its molecules are moving. But the conclusion T « 2^(x^^)av is a

precise quantitative relationship derived from the kinetic model and

empirical laws.

Many different kinds of experimental evidence support this conclusion,

and therefore also support the kinetic-theory model. Perhaps the best

evidence is the motion of microscopic particles suspended in a gas or liquid.

This "absolute zero" point on the

temperature scale has been found

lo be 273.16 Celsius (459.69 F).

For our purposes it is sufficiently

accurate to say the absolute tem-

perature of any sample (symbolized

by the letter T and measured in

degrees Kelvin, or K) is equal to

the Celsius temperature ( plus 273 :

Tt' 273

The boiling point of water, for

example, is 373 K on the absolute

scale.
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Deriving an Expression For Pressure

From the Kinetic Theory

We begin with the model of a gas described in

Section 11 .2: "a large number of very small

particles in rapid, disordered motion." We can

assume here that the particles are points with

vanishingly small size, so that collisions between

them can be ignored. If the particles did have finite

size, the results of the calculation would be slightly

different. But the approximation used here is

accurate enough for most purposes.

The motions of particles moving in all

directions with many different velocities are too

complex as a starting point for a model. So we fix

our attention first on one particle that is simply

bouncing back and forth between two opposite

walls of a box. Hardly any molecules in a real gas

would actually move like this. But we will begin

here in this simple way, and later in this chapter

extend the argument to include other motions. This

later part of the argument will require that one of

the walls be movable. So let us arrange for that

wall to be movable, but to fit snugly into the box.

In SG 9.24 we saw how the laws of

conservation of momentum and energy apply to

cases like this. When a very light particle hits a

more massive object, like our wall, very little kinetic

energy is transferred. If the collision is elastic, the

particle will reverse its direction with very little

change in speed. In fact, if a force on the outside of

the wall keeps it stationary against the impact from

inside, the wall will not move during the collisions.

Thus no work is done on it, and the particles

rebound without any change in speed.

How large a force will these particles exert on

the wall when they hit it? By Newton's third law the

average force acting on the wall is equal and

opposite to the average force with which the wall

acts on the particles. The force on each particle is

equal to the product of its mass times its

acceleration {P ^ ma), by Newton's second law.

As shown in Section 9.4, the force can also be

written as

P =
At

where limv) is the change in momentum. Thus, to

find the average force acting on the wall we need

to find the change in momentum per second due to

molecule-wall collisions.

Imagine that a particle, moving with speed v^

(the component of 7 in the x direction) is about to

collide with the wall at the right. The component of

the particle's momentum in the x direction \smv^.

Since the particle collides elastically with the wall, it

rebounds with the same speed. Therefore, the

momentum in the x direction after the collision is

m{-v^) = -TJ^x- The change in the

momentum of the particle as a result of this

collision is

final



sign respectively.

Now think of a single particle of mass m
moving in a cubical container of volume L^ as

shown in the figure.

The time between collisions of one particle

with the right-hand wall is the time required to

cover a distance 2L at a speed of v^; that is,

2Uv^. If 2L/v^ = the time between collisions,

2

then vJ2L = the number of collisions per

second. Thus, the change in momentum per

second is given by

(change in

momentum per

second)

(change in (number of

momentum in x collisions =

one collision) per second)

{-2mv^) X {vJ2L) =

The net force equals the rate of change of

momentum. Thus, the average force acting on

the molecule (due to the wall) is equal to

-mv^^L; and by Newton's third law, the average

force acting on the wall (due to the molecule) is

equal to +mv^^/L. So the average pressure on

the wall due to the collisions made by one

molecule moving with speed v^ is

p _ F _ F _ mvl _ mv\

order to find the pressure they exert. More

precisely, we need the average of the square of

their speeds in the x direction. We call this

quantity (i/x^)av The pressure on the wall due to

N molecules will be N times the pressure due to

one molecule, or

P =
V

In a real gas, the molecules will be moving

in all directions, not just in the x direction. That
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SG 11.15

Brownian motion was named after

the English botanist. Robert Brown

who in 1827 observed the phenome
non while looking at a suspension

of the microscopic grains of plant

pollen. The same kind of motion of

particles ("thermal motion ) exists

also in liquids and solids, but there

the particles are far more con-

strained than in gases.

This phenomenon can be

demonstrated by means of the

expansion cloud chamber, cooling of

CO2 fire extinguisher, etc. The "wall"

is here the air mass being pushed
away.

Diesel engines have no spark plugs;

ignition is produced by temperature

rise during the high compression of

the air-fuel vapor mixture.

called Brownian, Movement . The gas or liquid molecules themselves are too

small to be seen directly. But their effects on a larger particle (for example, a

particle of smoke) can be observed through the microscope. At any instant,

molecules moving at very different speeds are striking the larger particle

from all sides. Nevertheless, so many molecules are taking part that their

total effect nearly cancels. Any remaining effect changes in magnitude and

direction from moment to moment. Hence the impact of the invisible

molecules makes the visible particle "dance" in the viewfield of the

microscope. The hotter the gas, the more lively the motion, as the equation

Ta: h'm(v^)av prcdicts.

This experiment is simple to set up and fascinating to watch. You should

do it as soon as you can in the laboratory. It gives visible evidence that the

smallest parts of all matter in the universe are in a perpetual state of hvely,

random motion. In the words of the twentieth-century' physicist Max Bom,

we live in a "restless universe."

But we need a more extensive argument in order to make confident

quantitative predictions from kinetic theor)'. We know by experience that

when a gas is compressed or expanded very slowly, its temperature changes

hardly at all. Thus Boyle's simple law (P = kD) applies. But when a gas is

compressed or condensed rapidly, the temperature does change. Then, only

the more general gas law (P = kDT) applies. Can our model explain this?

In the model used on the special pages, particles were bouncing back

and forth between the walls of a box. Every collision with the wall was

perfectly elastic, so the particles rebounded with no loss in speed. Suppose

we suddenly reduce the outside force that holds one wall in place. What will

happen to the wall? The force exerted on the wall by the collisions of the

particles will now be greater than the outside force. Therefore, the wall will

move outward.

As long as the wall was stationary, the particles did no work on it, and

the wall did no work on the particles. But now the wall moves in the same

direction as the force exerted on it by the particles. Thus, the particles must

be doing work on the wall. The energy needed to do this work must come

from somewhere. But the only available source of energy here is the kinetic

energy (hmv^) of the particles. In fact, we can show that molecules

colliding perfecdy elastically with a receding wall rebound with slighdy less

speed (see SG 11.16). Therefore the kinetic energy of the particles must

decrease. But the relationship T »: 2»i(^^)av imphes that the temperature of

the gas will then drop. And this is exactly what happens!

If we increase the outside force on the wall instead of decreasing it. just

the opposite happens. The gas is suddenly compressed as the wall moves

inward, doing work on the particles and increasing their kinetic energy. As

kmv^ goes up, we expect the temperature of the gas to rise—which is just

what happens when we compress a gas quickly.

The model also predicts that, for slow motion of the wall, Boyle's law

applies. However, the gas must not be insulated from its surroundings.

Suppose we keep the suiToundings of the gas at a constant temperature—for

example, by immersing the gas container in a large water bath. Small

changes in the temperature of the gas will then be cancelled by exchange of

heat with the surroundings. Whenever the kinetic energy of the molecules
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momentarily decreases (as during expansion), the temperature of the gas wilJ

drop below that of its surroundings. Unless the walls of the container are

heat insulators, heat will then flow into the gas until its temperature rises to

that of the surroundings. Whenever the kinetic energy momentarily

increases (as during compression), the temperature of the gas will rise above
that of its surroundings. Heat will then flow out of the gas until its

temperature falls to the temperature of the surroundings. This natural

tendency of heat to flow from hot bodies to cold bodies explains why the

average kinetic energy of the particles remains nearly constant when gas is

slowly compressed or expanded. SG1117-1122

Q9 The relationship between the density and pressure of a gas

expressed by Boyle's law, P = kD, holds true

(a) for any gas under any conditions

(b) for some gases under any conditions

(c) only if the temperature is kept constant

(d) only if the density is constant

Q1 If a piston is pushed rapidly into a container of gas, what will

happen to the kinetic energy of the molecules of gas? What will happen to

the temperature of the gas?

Q1 1 Which of the following conclusions result only when the ideal gas

law and the kinetic theory model are both considered to apply?

(a) P is proportional to T.

(b) P is proportional to (i'^)av.

(c) (i^2)av is proportional to T.

11.6 The second law of thermodynamics and the dissipation of energy

We have seen that the kinetic-theory model can explain the way a gas

behaves when it is compressed or expanded, warmed or cooled. In the late

nineteenth century, the model was refined to take into account many

effects we have not discussed. There proved to be limits beyond which the

model breaks down. For example, radiated heat comes to us from the sun

through the vacuum of space. This is not explainable in terms of the

thermal motion of particles. But in most cases the model worked

splendidly, explaining the phenomena of heat in terms of the ordinary
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SG 11.23

"Our life runs down in sending up

the clock.

The brook runs down in sending

up our life.

The sun runs down in sending up

the brook.

And there is something sending

up the sun.

It is this backward motion toward

the source.

Against the stream, that most we
see ourselves in.

It is from this in nature we are

from.

It is most us.

[Robert Frost, West-Running Brook]

Sadi Carnot (1796-1832)

Modern steam engines have a

theoretical limit of about SS^'c

efficiency-but in practice they

seldom have better than 20°:.

motions of particles. This was indeed a triumph of Newtonian mechanics.

It fulfilled much of the hope Newton had expressed in the Principia: that

all phenomena of nature could be explained in terms of the motion of the

small parts of matter. In the rest of this chapter we will touch briefly on

the further development of thermodynamic theory. (Additional discussion

appears in several articles in Reader 3.)

The first additional concept arose out of a basic philosophical theme of

the Newtonian cosmology: the idea that the world is like a machine whose

parts never wear out, and which never runs down. This idea inspired the

search for conservation laws applying to matter and motion. So far in this

text, it might seem that this search has been successful. We can measure

"matter" by mass, and "motion" by momentum or by kinetic energy. By

1850 the law of conservation of mass had been firmly estabhshed in

chemistry. In physics, the laws of conservation of momentum and of

energy had been equally well established.

Yet these successful conservation laws could not banish the suspicion

that somehow the world is running down, the parts of the machine are

wearing out. Energy may be conserved in burning fuel, but it loses its

usefulness as the heat goes off into the atmosphere. Mass may be

conserved in scrambling an egg, but its organized structure is lost. In

these transformations, something is conserved, but something is also lost.

Some processes are irreversible—they will not run backwards. There is no

way to z/rjscramble an egg, although such a change would not \1olate

mass conservation. There is no way to draw smoke and hot fumes back

onto a blackened stick, forming a new, unbumed match.

The first attempts to find quantitative laws for such irreversible

processes were stimulated by the development of steam engines. During

the eighteenth and nineteenth centuries, engineers steadily increased the

efficiency of steam engines. Recall that efficiency refers to the amount of

mechanical work obtainable from a given amount of fuel energy. (See

Section 10.6.) In 1824 a young French engineer, Sadi Carnot, published a

short book entitled Reflections on the Motive Power of Fire. Carnot raised

the question: Is there a maximum possible efficiency of an engine?

Conservation of energy, of course, requires a limit of 100%, since energy

output can never be greater than energy input. But, by analyzing the flow

of heat in engines, Carnot proved that the maximum efficiency actually is

always less than 100%. That is, the useful energy output can never even

be as much as the input energy. There is a fixed bmit on the amount of

mechanical energy obtainable from a given amount of heat by using an

engine. This limit can never be exceeded regardless of what

substance—steam, air, or anything else—is used in the engine.

In addition to this limit on efficiency even for ideal engines, real

engines operate at still lower efficiency in practice. For example, heat

leaks from the hot parts of the engine to the cooler parts. Usually, this

heat bypasses the part of the engine where it could be used to generate

mechanical energy.

Carnot's analysis of steam engines shows that there is an unavoidable

waste of mechanical energy, even under ideal circumstances. The total
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amount of energy in the high-temperature steam is conserved as it passes

through the engine. But while part of it is transformed into useful

mechanical energy', the rest is discharged in the exhaust. It then joins the

relatively low temperature pool of the surrounding world. Carnot reasoned

that there always must be some such "rejection" of heat from any kind of

engine. This rejected heat goes off into the surroundings and becomes

unavailable for useful work.

These conclusions about heat engines became the basis for the

Second Law of Thermodynamics . This law has been stated in various

ways, all of which are roughly equivalent. It expresses the idea that it is

impossible to convert a given amount of heat fully into work.

Carnot's analysis implies more than this purely negative statement,

however. In 1852, Lord Kelvin asserted that the second law of

thermodynamics applies even more generally. There is, he said, a

universal tendency in nature toward the "degradation" or "dissipation" of

energy. Another way of stating this principle was suggested by Rudolph

Clausius, in 1865. Clausius introduced a new concept, entropy (from the

Greek word for transformation). In thermodynamics, entropy is defined

quantitatively in terms of temperature and heat transfer. But here we will

find it more useful to associate entropy with disorder. Increases in entropy

occur with increasing disorder of motion in the parts of a system.

For example, think of a falling ball. If its temperature is very low, the

random motion of its parts is very low too. Thus, the motion of all

particles during the falling is mainly downward (and hence "ordered").

The ball strikes the floor and bounces several times. During each bounce,

the mechanical energy of the ball decreases and the ball warms up. Now
the random thermal motion of the parts of the heated ball is far more

vigorous. Finally, the ball as a whole lies still (no "ordered" motion). The

disordered motion of its molecules (and of the molecules of the floor

where it bounced) is all the motion left. According to the entropy concept,

all motion of whole bodies will run down like this. In other words, as with

the bouncing ball, all motions tend from ordered to disordered. In fact,

entropy can be defined mathematically as a measure of the disorder of a

system (though we will not go into the mathematics here). The general

version of the second law of thermodynamics, as stated by Clausius, is

therefore quite simple: the entropy of an isolated system always tends to

increase.

Irreversible processes are processes for which entropy increases. For

example, heat will not flow by itself from cold bodies to hot bodies A ball

lying on the floor will not somehow gather the kinetic energy of its

randomly moving parts and suddenly leap up. An egg will not unscramble

itself An ocean liner cannot be powered by an engine that takes heat

from the ocean water and exhausts ice cubes. All these and many other

events could occur without violating any principles of Newtonian

mechanics, including the law of conservation of energy. But they do not

happen; they are "forbidden" by the second law of thermodynamics. (We

say "forbidden" in the sense that Nature does not show that such things

happen. Hence, the second law, formulated by the human mind, describes

The first law of thermodynamics,

or the general law of conservation

of energy, does not forbid the full

conversion of heat into mechanical

energy. The second law is an

additional constraint on what
can hapoen in nature

SG 11.24-11.26
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Two illustrations from Flammarion's

novel, Le Fin du Monde.

"La miserable race humaine perira

par le froid."

'Ce sera la fin."

SG 11.27

well what Nature does or does not do.)

We haven't pointed it out yet, but all familiar processes are to some

degree irreversible. Thus, Lord Kelvin predicted that all bodies in the

universe would eventually reach the same temperature by exchanging

heat with each other. When this happened, it would be impossible to

produce any useful work from heat. After all, work can only be done by

means of heat engines when heat flows from a hot body to a cold body.

Finally, the sun and other stars would cool, all hfe on earth would cease,

and the universe would be dead.

This general "heat-death" idea, based on predictions from

thermodynamics, aroused some popular interest at the end of the

nineteenth century. It appeared in several books of that time, such as H.

G. Wells' The Time Machine. The French astronomer Camille Flammarion

wrote a book describing ways in which the world would end. The

American historian Henry Adams had learned about thermodynamics

through the writings of one of America's greatest scientists, J. Willard

Gibbs. Adams attempted to extend the application of the second law from

physics to human history in a series of essays entided The Degradation of

the Democratic Dogma.

Q12 The presumed "heat death of the universe" refers to a state

(a) in which all mechanical energy has been transformed into heat

energy

(b) in which all heat energy has been transformed into other forms of

energy

(c) in which the temperature of the universe decreases to absolute

zero

(d) in which the supply of coal and oil has been used up.

Q13 Which of the following statements agrees with the second law

of thermodynamics?

(a) Heat does not naturally flow from cold bodies to hot bodies.

(b) Energy tends to transform itself into less useful forms.

(c) No engine can transform all its heat input into mechanical

energy.

(d) Most processes in nature are reversible.

11.7 Maxwell's demon and the statistical view of the second law of

thermodynamics

Is there any way of avoiding the "heat death?" Is irreversibility a basic

law of physics, or only an approximation based on our limited experience

of natural processes?

The Austrian physicist Ludwig Boltzmann investigated the theory of
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irreversibility. He concluded that the tendency toward dissipation of energy

is not an absolute law of physics that holds rigidly always. Rather, it is

only a statistical law. Think of a can of air containing about lO^^

molecules. Boltzmann argued that, of aU conceivable arrangements of the

gas molecules at a given instant, nearly all would be almost completely

"disordered." Only a relatively few aiTangements would have most of the

molecules moxing in the same direction. And even if a momentarily

ordered arrangement of molecules occurred by chance, it would soon

become less ordered by collisions, etc. Fluctuations from complete disorder

will of course occur. But the greater the fluctuations, the less likely it is to

occur. For collections of particles as large as 10^2, the chance of a

fluctuation large enough to be measurable is vanishingly small. It is

conceivable that a cold ketde of water will heat up on its own after being

struck by only the most energetic molecules in the surrounding air. It is

also conceivable that air molecules will "gang up" and strike only one side

of a rock, pushing it uphill. But such events, while conceivable, are

utterly improbable.

For small collections of particles, however, it is a different stor\'. For

example, it is quite probable that the average height of people on a bus

will be considerably greater or less than the national average. In the same

way, it is probable that more molecules will hit one side of a microscopic

particle than the other side. Thus we can observe the "Brownian

movement" of microscopic particles. Fluctuations are an important aspect

of the world of ver\' small particles. But they are virtually undetectable for

any large collection of molecules familiar to us in the everyday world.

Still, the second law is different in character from all the other

fundamental laws of physics we have studied so far. The difference is that

it deals with probabilities, not uncertainties.

Maxwell proposed an interesting "thought experiment" to show how

the second law of themodynamics could be violated or disobeyed. It

involved an imaginary being who could observe individual molecules and

sort them out in such a way that heat would flow from cold to hot.

Suppose a container of gas is divided by a diaphragm into tvvo parts, A
and B. Initially the gas in A is hotter than the gas in B. This means that

the molecules in A have greater average KE and therefore greater average

speeds than those in B. However, the speeds are distributed according to

Consider also a pool table—the

ordered motion of a cue ball moving
into a stack of resting ones gets soon
"randomized."

To illustrate Boltzmann s argument,

consider a pack of cards when it is

shuffled. Most possible arrange-

ments of the cards after shuffling

are fairly disordered. If we start

with an ordered arrangement — for

example, the cards sorted by suit

and rank — then shuffling would

almost certainly lead to a more
disordered arrangement. (Never-

theless it does occasionally happen
that a player is dealt 13 spades-
even if no one has stacked the

deck.)

Drawing by Steinberg; © 1953, The New Yorker Magazine, Inc.

SrBiy££/:^
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How Maxwell's "demon" could use a

small, massless door to increase the

order of a system and make heat flow

from a cold gas to a hot gas.

A
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molecules (CO2, H2O). For example, to maintain a healthy

human being at constant weight for one year requires the

degradation of about 500 kilograms (one half ton) of food, and
the diffusion into the surroundings (from the human and the

food) of about 500,000 kilocalories (two million kilojoules) of

energy. The "order" in the human may stay constant or even

increase, but the order in the surroundings decreases much,
much more. Maintenance of life Is an expensive process in

terms of generation of disorder, and no one can understand the

full impUcations of human ecolog>' and environmental pollution

without understanding that first.

Q14 In each of the following pairs, which situation is more ordered?

(a) an unbroken egg; a scrambled egg.

(b) a glass of ice and warm water; a glass of water at uniform

temperature.

Q15 True or false?

(a) Maxwell's demon was able to get around the second law of

thermodynamics.

(b) Scientists have made a Maxwell demon.

(c) Maxwell believed that his demon actually existed.

James Clerk Maxwell (1831-1879)

11.8 Time's arrow and the recurrence paradox

Late in the nineteenth century, a small but influential group of

scientists began to question the basic philosophical assumptions of

Newtonian mechanics. They even questioned the very idea of atoms. The

Austrian physicist Ernst Mach argued that scientific theories should not

depend on assuming the existence of things (such as atoms) which could

not be directly obsened. Typical of the attacks on atomic theory was the

argument used by the mathematician Ernst Zermelo and others against

kinetic theory. Zermelo believed that: (1) The second law of

thermodynamics is an absolutely valid law of physics because it agrees

with all the experimental data. However, (2) kinetic theory allows the

possibility of exceptions to this law (due to large fluctuations). Therefore,

(3) kinetic theory must be wrong. It is an interesting historical episode on

a point that is still not quite setded.

The critics of kinetic theory pointed to two apparent contradictions

between kinetic theory and the principle of dissipation of energy. These

were the reversibility paradox and the recurrence paradox. Both

paradoxes are based on possible exceptions to the second law; both could

be thought to cast doubt on the kinetic theory.

The reversibility paradox was discovered in the 1870's by Lord Kelvin

and Josef Loschmidt, both of whom supported atomic theory. It was not

regarded as a serious objection to the kinetic theory until the 1890's. The

paradox is based on the simple fact that Newton's laws of motion are

reversible in time. For example, if we watch a motion picture of a

The reversibility paradox: Can a model

based on reversible events explain a

world in which so many events are irre-

versible'' (Also see photographs on next

page.)
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bouncing ball, it is easy to tell whether the film is being run forward or

backward. We know that the collisions of the ball with the floor are

inelastic, and that the ball rises less high after each bounce. If, however,

the ball made perfectly elastic bounces, it would rise to the same height

after each bounce. Then we could not tell whether the film was being run

forward or backward. In the kinetic theory, molecules are assumed to make

perfectly elastic collisions. Imagine that we could take a motion picture of

gas molecules colliding elastically according to this assumption. When
showing this motion picture, there would be no way to tell whether it was

being run forward or backward. Either way would show valid sequences of

collisions. But—and this is the paradox—consider motion pictures of

interactions involving large objects, containing many molecules. One can

immediately tell the difference between forward (true) and backward

(impossible) time direction. For example, a smashed lightbulb does not

reassemble itself in real life, though a movie run backward can make it

appear to do so.

The kinetic theory is based on laws of motion which are reversible for

each individual molecular interaction. How, then, can it explain the

existence of irreversible processes on a large scale? The existence of such

processes seems to indicate that time flows in a definite direction—^fi"om

past to future. This contradicts the possibility implied in Newton's laws of

motion: that it does not matter whether we think of time as flowing

forward or backward. As Lord Kehin expressed the paradox.

If . . . the motion of every particle of matter in the universe

were precisely reversed at any instant, the course of nature

would be simply reversed for ever after. The bursting bubble of

foam at the foot of a waterfall would reunite and descend into

the water; the thermal motions would reconcentrate their

energy, and throw the mass up the fall in drops reforming into

a close column of ascending water. Heat which had been
generated by the friction of solids and dissipated by

conduction, and radiation with absorption, would come again to

the place of contact, and throw the moving body back against

the force to which it had previously yielded. Boulders would
recover fi-om the mud the materials required to rebuild them
into their previous jagged forms, and would become reunited

to the mountain peak from which they had formerly broken

away. And if also the materialistic hypothesis of life were true,

living creatures would grow backwards, with conscious

knowledge of the future, but no memory of the past, and
would become again unborn. But the real phenomena of life

infinitely transcend human science; and speculation regarding

consequences of their imagined reversal is utterly unprofitable.

Kelvin himself, and later Boltzmann, used statistical probability to explain

why we do not observe such lai-ge-scale reversals. There are almost

infinitely many possible disordered arrangements of water molecules at the

bottom of a waterfall. Only an extremely small number of these

arrangements would lead to the process described above. Reversals of this



Section 11.8 Unit 3 93

kind are possible in principle, but for all practical purposes they are out of

the question.

The answer to Zermelo's argiynent is that his first claim is incorrect.

The second law of thermodynamics is not an absolute law, but a statistical

law. It assigns a very low probability to ever detecting any overall increase

in order, but does not declare it impossible.

However, another small possibility allowed in kinetic theory leads to a

situation that seems unavoidably to contradict the dissipation of energy.

The recurrence paradox revived an idea that appeared frequendy in

ancient philosophies and present also in Hindu philosophy to this day: the

myth of the "eternal return." According to this myth, the long-range

history of the world is cyclic. All historical events eventually repeat

themselves, perhaps many times. Given enough time, even the matter that

people were made of will eventually reassemble by chance. Then people

who have died may be born again and go through the same life. The

German philosopher Friedrich Nietzsche was convinced of the truth of

this idea. He even tried to prove it bv appealing to the principle of

conservation of energy. He wrote:

If the universe may be conceived as a definite quantity of

energy, as a definite number of centres of energy—and every

other concept remains indefinite and therefore useless—it

foUows therefrom that the universe must go through a

calculable number of combinations in the great game of

chance which constitutes its existence. In infinity [of time], at

some moment or other, every possible combination must once

have been realized; not only this, but it must have been

realized an infinite number of times.

SG 11.29

The Worlds great age begins anew.
The golden years return.

The earth doth like a snake renew
His winter weeds outworn . . .

Another Athens shall arise

And to remoter time

Bequeath, like sunset to the skies,

The splendour of its prime . . .

[Percy Bysshe Shelley, "Hellas'

(1822)]

Lord Kelvin (1824-1907)

If the number of molecules is finite, there is only a finite number of

possible arrangements of molecules. Hence, somewhere in infinite time

the same combination of molecules is bound to come up again. At the

same point, all the molecules in the universe would reach exactly the

same arrangement they had at some previous time. All events following

this point would have to be exactly the same as the events that followed it

before. That is, if any single instant in the history of the universe is ever

exacdy repeated, then the entire history of the universe will be repeated.

And, as a little thought shows, it would then be repeated over and over

again to infinity. Thus, energy would not endlessly become dissipated.

Nietzsche claimed that this view of the eternal return disproved the "heat

death" theory. At about the same time, in 1 889, the French mathematician

Henri Poincare pubfished a theorem on the possibility of recurrence in

mechanical systems. According to Poincare, even though the universe might

undergo a heat death, it would ultimately come alive again:

SG 11.30-11.32

A bounded world, governed only by the laws of mechanics, will

always pass through a state very close to its initial state. On the

other hand, according to accepted experimental laws (if one
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attributes absolute validity to them, and if one is willing to press

their consequences to the extreme), the universe tends toward a

certain final state, from which it will never depart. In this final

state, from which will be a kind of death, all bodies wiD be at rest

at the same temperature.

. . . the kinetic theories can extricate themselves from this

contradiction. The world, according to them, tends at first toward

a state where it remains for a long time without apparent change;

and this is consistent with experience; but it does not remain
that way forever; ... it merely stays there for an enormously long

time, a time which is longer the more numerous are the

molecules. This state will not be the final death of the universe,

but a sort of slumber, from which it will awake after millions of

centuries.

According to this theory, to see heat pass from a cold body to

a warm one, it will not be necessary to have the acute vision, the

intelligence, and the dexterity of Maxwell's demon; it will suffice

to have a httle patience.

SG 11.33

Record of a particle in Brownian

motion. Successive positions, record-

ed every 20 seconds, are connected by

straight lines. The actual paths be-

tween recorded positions would be

as erratic as the overall path.

Poincare was willing to accept the possibility of a violation of the second law

after a very long time. But others refused to admit even this possibility. In

1896, Zermelo published a paper attacking not only the kinetic theory but

the mechanistic world view in general. This view, he asserted, contradicted

the second law. Boltzmann replied, repeating his earlier explanations of the

statistical nature of irreversibility.

The final outcome of the dispute between Boltzmann and his critics was

that both sides were partly right and partly wrong. Mach and Zermelo were

correct in believing that Newton's laws of mechanics cannot fully describe

molecular and atomic processes. (We will come back to this subject in Unit

5.) For example, it is only approximately valid to describe gases in terms of

collections of frantic little bilhard balls. But Boltzmann was right in

defending the usefulness of the molecular model. The kinetic theory is very

nearly correct except for those properties of matter which involve the

structure of molecules themselves.

In 1905, Albert Einstein pointed out that the fluctuations predicted by

kinetic theory could be used to calculate the rate of displacement for particles

in "Brownian" movement. Precise quantitative studies of Brownian

movement confirmed Einstein's theoretical calculations. This new success of

kinetic theory—along with discoveries in radioactivity and atomic

physics—persuaded almost all the critics that atoms and molecules do exist.

But the problems of irreversibility and of whether the laws of physics must

distinguish between past and future survived. In new form, these issues still

interest physicists today.

This chapter concludes the application of Newtonian mechanics to

individual particles. The story was mainly one of triumphant success. Toward

the end, however, we have hinted that, like all theories, Newtonian

mechanics has serious Umitations. These will be explored later.

The last chapter in this unit covers the successful use of Newtonian

mechanics in the case of mechanical wave motion. This will complete the list

of possibilities of particle motion. In Unit 1 we treated the motion of single

particles or isolated objects. The motion of a system of objects bound by a
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force of interaction, such as the Earth and Sun, was treated in Unit 2 and in

Chapters 9 and 10 of this unit. In this chapter we discussed the motions of a

system of a very large number of separate objects. Finally, in Chapter 12 we
will study the action of many particles going back and forth together as a

wave passes.

SG 11.34

SG 11.35

Ql 6 The kinetic energy of a falling stone is transformed into heat

when the stone strikes the ground. Obviously this is an irreversible process;

we never see the heat transform into kinetic energy of the stone, so that the

stone rises off the ground. We belie\e that the process is irreversible because

(a) Newton's laws of motion prohibit the reversed process.

(b) the probability of such a sudden ordering of molecular motion is

extremely small.

(c) the reversed process would not conserve energy.

(d) the reverse process would violate the second law of thermodynamics.

The ruins of a Greek temple at Delphi

are as elegant a testimony to the con-

tinual encroachment of disorder, as is

the tree to the persistent development

of islands of order by living organisms.



''•'' The Project Physics materials particularly
appropriate for Chapter 11 include:
Experiments

Monte Carlo Experiment on Molecular
Collisions

Behavior of Gases
Activities

Drinking Duck
Mechanical Equivalent of Heat
A Diver in a Bottle

Rockets
How to Weigh a Car with a Tire Pressure Gauge
Perpetual-Motion Machines

Film Loop
Reversibility of Time

Reader Articles

The Barometer Story
The Great Molecular Theory of Gases
Entropy and the Second Law of Thermo-
dynamics

The Law of Disorder
The Law
The Arrow of Time
James Clerk Maxwell
Randomness and the Twentieth Century

11.2 The idea of randomness can be used in

predicting the results of flipping a large number
of coins. Give some other examples where
randomness is useful.

11.3 xhe examples of early kinetic theories given

in Sec. 11.3 include only quantitative models.
Some of the underlying ideas are thousands of

years old. Compare the kinetic molecular theory

of gases to these Greek ideas expressed by the

Roman poet Lucretius in about 60 B.C.:

If you think that the atoms can stop and by
their stopping generate new motions in things,

you are wandering far from the path of truth.

Since the atoms are moving freely through the

void, they must all be kept in motion either by

their own weight or on occasion by the impact
of another atom. For it must often happen that

two of them in their course knock together and
immediately bounce apart in opposite directions,

a natural consequence of their hardness and
solidity and the absence of anything behind to

stop them ....

It clearly follows that no rest is given to the

atoms in their course through the depths of

space. Driven along in an incessant but

variable movement, some of them bounce far

apart after a collision while others recoil only

a short distance from the impact. From those

that do not recoil far, being driven into a closer

union and held there by the entanglement of

their own interlocking shapes, are composed
firmly rooted rock, the stubborn strength of

steel and the like. Those others that move
freely through larger tracts of space, springing

far apart and carried far by the rebound —
these provide for us thin air and blazing
sunlight. Besides these, there are many other

atoms at large in empty space which have been
thrown out of compound bodies and have
nowhere even been granted admittance so as
to bring their motions into harmony.

1 1 -4 Consider these aspects of the curves showing
Maxwell's distribution of molecular speeds:

(a) All show a peak.

(b) The peaks move toward higher speed at

higher temperatures.
(c) They are not symmetrical, like normal

distribution curves.
Explain these characteristics on the basis of the
kinetic model.

11.5 The measured speed of sound in a gas turns
out to be nearly the same as the average speed
of the gas molecules. Is this a coincidence?
Discuss.

Il-S How did Clausius modify the simple kinetic

model for a gas? What was he able to explain
with this new model?

H-^ Benjamin Franklin observed in 1765 that

a teaspoonful of oil would spread out to cover
half an acre of a pond. This helps to give an
estimate of the upper limit of the size of a mole-
cule. Suppose that one cubic centimeter of oil

forms a continuous layer one molecule thick that
just covers an area on water of 1000 square
meters.

(a) How thick is the layer?

(b) What is the size of a single molecule of the
oil (considered to be a cube for simplicity)?

Il-S Knowing the size of molecules allows us to

compute the number of molecules in a sample of
material. If we assume that molecules in a solid

or liquid are packed close together, something
like apples in a bin, then the total volume of a
material is approximately equal to the volume of
one molecule times the number of molecules in

the material.

(a) Roughly how many molecules are there in 1

cubic centimeter of water? (For this approx-
imation, you can take the volume of a
molecule to be d^ if its diameter is d.)

(b) The density of a gas (at 1 atmosphere
pressure and 0°C) is about 1/1000 the
density of a liquid. Roughly how many mole-
cules are there in 1 cc. of gas? Does this

estimate support the kinetic model of a gas

as described on p. 82?

11-9 How high could water be raised with a lift

pump on the moon?

11.10 At sea level, the atmospheric pressure of

air ordinarily can balance a barometer column of
mercury of height 0.76 meters or 10.5 meters of

water. Air is approximately a thousand times less

dense than liquid water. What can you say about
the minimum height to which the atmosphere
goes above the Earth?

^1-^^ How many atmospheres of pressure do you
exert on the ground when you stand on flat-heeled
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shoes? skis? skates? (1 atmosphere is about
15 lbs/in.)

11.12 From the definition of density, D = MIV
(where M is the mass of a sample and V is its

volume), write an expression relating pressure P
and volume V of a gas.

11.13 Show how all the proportionalities describ-
ing gas behavior on p. 79 are included in the
ideal gas law: P = kD (t + 273°)

11.14 The following information appeared in a
pamphlet published by an oil company:

HOW'S YOUR TIRE PRESSURE?
If you last checked the pressure in your tires

on a warm day, one cold morning you may find

your tires seriously underinflated.
The Rubber Manufacturers Association warns

that tire pressures drop approximately one
pound for every 10-degree dip in outside air. If

your tires register 24 pounds pressure on an
80-degree day, for example, they'll have only
19 pounds pressure when the outside air
plunges to 30° Fahrenheit.

If you keep your car in a heated garage at
60°, and drive out into a 20 degrees-below-zero
morning, your tire pressure drops from 24
pounds to 18 pounds.
Are these statements consistent with the ideal

gas law? (Note: The pressure registered on a
tire gauge is the pressure above normal atmos-
pheric pressure of about 15 pounds/sq. in.)

11-15 Distinguish between two uses of the word
"model" in science.

11.16 If a light particle rebounds from a massive,
stationary wall with almost no loss of speed, then,
according to the principle of Galilean relativity, it

would still rebound from a moving wall without
changing speed as seen in the frame of reference
of the moving piston. Show that the rebound
speed as measured in the laboratory would be
less from a retreating wall (as is claimed at the
bottom of p. 84).

(Hint: First write an expression relating the
particle's speed relative-to-the-wall to its speed
relative-to-the-laboratory.)

11.1 / What would you expect to happen to the
temperature of a gas that was released from a

.



11.23 In the Principia Newton expressed the

hope that all phenomena could be explained in

terms of the motion of atoms. How does Newton's
view compare with this Greek view expressed
by Lucretius in about 60 B.C.?

I will now set out in order the stages by which
the initial concentration of matter laid the

foundations of earth and sky, of the ocean
depths and the orbits of sun and moon. Certainly

the atoms did not post themselves purposefully
in due order by an act of intelligence, nor did

they stipulate what movements each should

perform. But multitudinous atoms, swept along
in multitudinous courses through infinite time
by mutual clashes and their own weight, have
come together in every possible way and
realized everything that could be formed by
their combinations. So it comes about that a
voyage of immense duration, in which they
have experienced every variety of movement
and conjunction, has at length brought to-

gether those whose sudden encounter normally
forms the starting-point of substantial fabrics —
earth and sea and sky and the races of living

creatures.

11.24 Clausius' statement of the second law of

thermodynamics is: "Heat will not of its own
accord pass from a cooler to a hotter body." Give
examples of the operation of this law. Describe
how a refrigerator can operate, and show that it

does not contradict the Clausius statement.

11.25 There is a tremendous amount of internal

energy in the oceans and in the atmosphere. What
would you think of an invention that purported

to draw on this source of energy to do mechanical
work? (For example, a ship that sucked in sea

water and exhausted blocks of ice, using the heat

from the water to run the ship.)

11.26 Imagine a room that is perfectly insulated

so that no heat can enter or leave. In the room is

a refrigerator that is plugged into an electric

outlet in the wall. If the door of the refrigerator

is left open, what happens to the temperature of

the room?

11.27 Since there is a tendency for heat to flow

from hot to cold, will the universe eventually

reach absolute zero?

11.28 Does Maxwell's demon get around the

second law of thermodynamics? List the assump-
tions in Maxwell's argument. Which of them do
you believe are likely to be true?

11.29 Since all the evidence is that molecular
motions are random, one might expect that any
given arrangement of molecules will recur if one
just waited long enough. Explain how a paradox
arises when this prediction is compared with the
second law of thermodynamics.

11.30 (a) Explain what is meant by the statement
that Newton's laws of motion are time-

reversible,

(b) Describe how a paradox arises when
the time-reversibility of Newton's laws
of motion is compared with the second
law of thermodynamics.

11.31 If there is a finite probability of an exact

repetition of a state of the universe, there is also

a finite probability of its exact opposite — that is,

a state where molecules are in the same position

but with reversed velocities. What would this

imply about the subsequent history of the universe?

11.32 List the assumptions in the "recurrence"
theory. Which of them do you believe to be true?

1''.3? Some philosophical and religious systems
of the Far East and the Middle East include the

ideas of the eternal return. If you have read about
some of these philosophies, discuss what analogies

exist with some of the ideas in the last part of

this chapter. Is it appropriate to take the existence

of such analogies to mean there is some direct

connection between these philosophical and
physical ideas?

11.34 Where did Newtonian mechanics run into

difficulties in explaining the behavior of mole-
cules?

11.35 What are some advantages and dis-

advantages of theoretical models?

Unit 3 99



12.1 Introduction

12.2 Properties of waves

12.3 Wave propagation

12.4 Periodic waves

12.5 When waves meet: the superposition principle

12.6 A two-source interference pattern

12.7 Standing waves

12.8 Wave fronts and diffraction

12.9 Reflection

12.10 Refraction

12.11 Sound Waves

101

102

105

106

109

110

115

120

122

126

128



CHAPTER TWELVE

Waves

12.1 Introduction

The world is continually criss-crossed by waves of all sorts. Water

waves, whether giant rollers in the middle of the ocean or gently-formed

rain ripples on a still pond, are sources of wonder or pleasure. If the

earth's crust shifts, violent waves in the solid earth cause tremors

thousands of miles away. A musician plucks a guitar string and sound

waves pulse against our ears. Wave disturbances may come in a

concentrated bundle like the shock front from an airplane flying at

supersonic speeds. Or the disturbances may come in succession like the

train of waves sent out from a steadily vibrating source, such as a bell or a

string.

All of these are mechanical waves, in which bodies or particles

physically move back and forth. But there are also wave disturbances in

electric and magnetic fields. In Unit 4, you will learn that such waves are

responsible for what our senses experience as light. In all cases involving

waves, however, the effects produced depend on the flow of energy as the

wave moves forward.

So far in this text we have considered motion in terms of individual

particles. In this chapter we begin to study the cooperative motion of

collections of particles in "continuous media" moving in the form of

mechanical waves. We will see how closely related are the ideas of

particles and waves which we use to describe events in nature.

A comparison will help us here. Look at a black and white photograph

in a newspaper or magazine with a magnifying glass. You will see that the

picture is made up of many little black dots printed on a white page (up

to 20,000 dots per square inch). Without the magnifier, you do not see the

individual dots. Rather, you see a pattern with all possible shadings

between completely black and completely white. These two views

emphasize different aspects of the same thing. In much the same way,

the physicist can sometimes choose between two (or more) ways of

viewing events. For the most part, a particle view has been emphasized in

SG 12.1

A small section from the lower right

of the photograph on the opposite

page.
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Waves should be studied in the

laboratory. Most of this chapter is

only a summary of some of what
you will learn there. The articles

'Waves" and "What is a Wave" in

Reader 3 give additional discussion

of wave behavior. Transparencies

and film loops on waves are listed

in SG 12.1. The Programmed
Instruction booklets Waives 1 and
Waves 2 may help you with the

mathematics of periodic waves
(see Sec. 12.4) and wave super-

position (see Sec. 12.5).

g
Th« Project Physics Coui

the first three units of the Text. In Unit 2 for example, we treated each

planet as a particle undergoing the sun's gravitational attraction. We
described the behavior of the solar system in terms of the positions,

velocities, and accelerations of point-like objects. For someone interested

only in planetary motions, this is fine. But for someone interested in, say,

the chemistry of materials on Mars, it is not very helpful.

In the last chapter we saw two different descriptions of a gas. One
was in terms of the behavior of the individual particles making up the gas.

We used Newton's laws of motion to describe what each individual

particle does. Then we used average values of speed or energy to describe

the behavior of the gas. But we also discussed concepts such as pressure,

temperature, heat, and entropy. These refer directly to a sample of gas as

a whole. This is the viewpoint of thermodynamics, which does not depend

on assuming Newton's laws or even the existence of particles. Each of

these viewpoints served a useful purpose and helped us to understand

what we cannot directly see.

Now we are about to study waves, and once again we find the

possibility of using different points of view. Most of the waves discussed in

this chapter can be described in terms of the behavior of particles. But we
also want to understand waves as disturbances traveling in a continuous

medium. We want, in other words, to see both the forest and the

trees—the picture as a whole, not only individual dots.

12.2 Properties of waves

Suppose that two people are holding opposite ends of a rope. Suddenly

one person snaps the rope up and down quickly once. That "disturbs" the

rope and puts a hump in it which travels along the rope toward the other

person. We can call the traveling hump one kind of a wave, a pulse.

OriginaUy, the rope was motionless. The height of each point on the

rope depended only upon its position along the rope, and did not change

in time. But when one person snaps the rope, he creates a rapid change

in the height of one end. This disturbance then moves away from its

source. The height of each point on the rope depends upon time as well

as position along the rope.

The disturbance is a pattern of displacement along the rope. The

motion of the displacement pattern from one end of the rope toward the

other is an example of a wave. The hand snapping one end is the source

of the wave. The rope is the medium in which the wave moves. These

four terms are common to all mechanical wave situations.

Consider another example. When a pebble falls into a pool of still

liquid, a series of circular crests and troughs spreads over the surface.

This moving displacement pattern of the liquid surface is a wave. The

pebble is the source, the moving pattern of crests and troughs is the wave,

and the liquid surface is the medium. Leaves, sticks, or other objects

floating on the surface of the liquid bob up and down as each wave

passes. But they do not experience any net displacement on the average.
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No material has moved from the wave source, either on the surface or

among the particles of the hquid. The same holds for rope waves, sound

waves in air, etc.

As any one of these waves moves through a medium, the wave

produces a changing displacement of the successive parts of the medium.

Thus we can refer to these waves as waves of displacement. If we can see

the medium and recognize the displacements, then we can see waves. But

waves also may exist in media we cannot see (such as air). Or they may
form as disturbances of a state we cannot detect with our eyes (such as

pressure, or an electric field).

You can use a loose spring coil to demonstrate three different kinds of

motion in the medium through which a wave passes. First, move the end

of the spring from side to side, or up and down as in sketch (a) in the

margin. A wave of side-to-side or up-and-down displacement will travel

along the spring. Now push the end of the spring back and forth, along

the direction of the spring itself, as in sketch (b). A wave of back-and-

forth displacement will travel along the spring. Finally, twist the end of

the spring clockwise and counterclockwise, as in sketch (c). A wave of

angular displacement will travel along the spring. Waves like those in (a),

in which the displacements are perpendicular to the direction the wave

travels, are called transverse waves. Waves like those in (b), in which the

displacements are in the direction the wave travels, are called longitudinal

waves. And waves like those in (c), in which the displacements are

twisting in a plane perpendicular to the direction the wave travels, are

called torsional waves.

All three types of wave motion can be set up in solids. In fluids,

however, transverse and torsional waves die out very quickly, and usually

cannot be produced at all. So sound waves in air and water are

longitudinal. The molecules of the medium are displaced back and forth

along the direction that the sound travels.

It is often useful to make a graph of wave patterns in a medium.

However, a graph on paper always has a transverse appearance, even if it

represents a longitudinal or torsional wave. For example, the graph at the

right represents the pattern of compressions in a sound wave in air. The

sound waves are longitudinal, but the graph line goes up and down. This

is because the graph represents the increasing and decreasing density of

the air. It does not represent an up-and-down motion of the air.

To describe completely transverse waves, such as those in ropes, you

must specify the direction of displacement. Longitudinal and torsional

waves do not require this specification. The displacement of a longitudinal

wave can be in only one direction—along the direction of travel of the

wave. Similarly, the angular displacements of a torsional wave can be

around only one axis—the direction of travel of the wave. But the

displacements of a transverse wave can be in any and all of an infinite

number of directions. The only requirement is that they be at right angles

to the direction of travel of the wave. You can see this by shaking one end

of a rope randomly instead of straight up and down or straight left and

right. For simplicity, our diagrams of rope and spring waves here show

transverse displacements consistently in only one of all the possible planes.

When the displacement pattern of a transverse wave does he in a

|) ^^v:> "1 RANSVfcRSE

m" 'v?^, .^(Mlff (a)

lOr^GITLIDINAL

in mmmK<i\iK' (c)

"Snapshots" of three types of waves.

In (c), small markers have been put

on the top of each coil in the spring.

(a)

r(b)

(a) "Snapshot" representation of

a sound wave progressing to the

right. The dots represent the density

of air molecules, (b) Graph of air

pressure P vs. position x at the in-

stant of the snapshot.
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Three of the infinitely many different

polarization planes of a transverse

v\/ave.

single plane, we say the wave is polarized. For waves on ropes and

springs, we can observe the polarization directly. Thus, in the photograph

on the previous page, the waves the person makes are in the horizontal

plane. However, whether we can see the wave directiy or not, there is a

general test for polarization. The test involves finding some effect of the

wave which depends on the angular position of a medium or obstacle

through which it travels. An example of the principle is illustrated in the

diagram below. Here, the transmission of a rope wave depends on the

angle at which a slotted board is held. Each of the three sketches begins

with the same wave approaching the obstacle (top line). Whether the

wave passes through (bottom line) depends on the angle the slot makes

with the plane of the rope's mechanical motion.

The same short wave train on the rope

approaches the slotted board in each

of the three sketches (top). Depending

on the orientation of the slot, the train

of waves (a) goes entirely through the

slot; (b) is partly reflected and partly

transmitted with changed angles of

rope vibration; or (c) is completely

reflected.

VVV-.
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Q1 What kinds of mechanical waves can propagate in a solid?

Q2 What kinds of mechanical waves can propagate in a fluid?

Q3 What kinds of mechanical waves can be polarized?

Q4 Suppose that a mouse runs along under a rug, causing a bump
in the rug that travels with the mouse across the room. Is this moving

disturbance a propagating wave?

12.3 Wave propagation

Waves and their behavior are perhaps best studied by beginning with

large mechanical models and focusing our attention on pulses. Consider

for example a freight train, with many cars attached to a powerful

locomotive, but standing still. If the locomotive now starts abruptly, it

sends a displacement wave running down the line of cars. The shock of

the starting displacement proceeds from locomotive to caboose, clacking

through the couplings one by one. In this example, the locomotive is the

source of the disturbance, while the freight cars and their coupUngs are

the medium. The "bump" traveling along the line of cars is the wave. The

disturbance proceeds all the way from end to end, and with it goes energy

of displacement and motion. Yet no particles of matter are transferred that

far; each car only jerks ahead a bit.

How long does it take for the effect of a disturbance created at one

point to reach a distant point? The time interval depends upon the speed

with which the disturbance or wave propagates. That, in turn, depends

upon the type of wave and the characteristics of the medium. In any case,

the effect of a disturbance is never transmitted instantly over any distance.

Each part of the medium has inertia, and each portion of the medium is

compressible. So time is needed to transfer energy from one part to the

next.

A very important point: energy
transfer can occur without matter

transfer.

An engine starting abruptly can start

a displacement wave along a line of

cars.
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^U.
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H

A rough representation of the forces

at the ends of a small section of rope

as a transverse pulse moves past.

SG 12.2

The exact meaning of stiffness and
density factors is different for

different kinds of w/aves and
different media. For tight strings,

for example, the stiffness factor is

the tension T in the string, and the

density factor is the mass per unit

length, m/l. The propagation speed
V is given by

The same comments apply also to transverse waves. The series of

sketches in the margin represents a wave on a rope. Think of the sketches

as frames of a motion picture film, taken at equal time intervals. The

material of the rope does not travel along with the wave. But each bit of

the rope goes through an up-and-down motion as the wave passes. Each

bit goes through exactly the same motion as the bit to its left, except a

little later.

Consider the small section of rope labeled X in the diagrams. When
the pulse traveling on the rope first reaches X, the section of rope just to

the left of X exerts an upward force on X. As X is moved upward, a

restoring downward force is exerted by the next section. The further

upward X moves, the greater the restoring forces become. Eventually X
stops moving upward and starts down again. The section of rope to the

left of X now exerts a restoring (downward) force, while the section to the

right exerts an upward force. Thus, the trip down is similar, but opposite,

to the trip upward. Finally, X returns to the equilibrium position and both

forces vanish.

The time required for X to go up and down—the time required for the

pulse to pass by that portion of the rope—depends on two factors. These

factors are the magnitude of the forces on X, and the mass of X. To put it

more generally: the speed with which a wave propagates depends on the

stiffness and on the density of the medium. The stiffer the medium, the

greater will be the force each section exerts on neighboring sections.

Thus, the greater will be the propagation speed. On the other hand, the

greater the density of the medium, the less it will respond to forces. Thus,

the slower will be the propagation. In fact, the speed of propagation

depends on the ratio of the stiffness factor and the density factor.

Q5 What is transferred along the direction of wave motion?

Q6 On what two properites of a medium does wave speed depend?

12.4 Periodic waves

Many of the disturbances we have considered up to now have been

sudden and short-lived. They were set up by a single disturbance like

snapping one end of a rope or suddenly bumping one end of a train. In

each case, we see a single wave running along the medium with a certain

speed. We call this kind of wave a pulse.

Now let us consider periodic waves—continuous regular rhythmic

disturbances in a medium, resulting from periodic vibrations of a source.

A good example of a periodic vibration is a swinging pendulum. Each

swing is virtually identical to every other swing, and the swing repeats

over and over again in time. Another example is the up-and-down motion

of a weight at the end of a spring. The maximum displacement from the

position of equilibrium is caUed the amplitude A, as shown on page 107.

The time taken to complete one vibration is called the period T. The

number of vibrations per second is called the frequency f.
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What happens when such a vibration is appUed to the end of a rope?

Suppose that one end of a rope is fastened to the oscillating (vibrating)

weight. As the weight vibrates up and down, we observe a wave

propagating along the rope. The wave takes the form of a series of moving

crests and troughs along the length of the rope. The source executes

"simple harmonic motion" up and down. Ideally, every point along the

length of the rope executes simple harmonic motion in turn. The wave

travels to the right as crests and troughs follow one another. But each

point along the rope simply oscillates up and down at the same frequency

as the source. The amplitude of the wave is represented by A. The
distance between any two consecutive crests or any two consecutive

troughs is the same all along the length of the rope. This distance, called

the wavelength of the periodic wave, is represented by the Greek letter \

(lambda).

If a single pulse or a wave crest moves fairly slowly through the

medium, we can easily find its speed. In principle all we need is a clock

and a meter stick. By timing the pulse or crest over a measured distance,

we get the speed. But it is not always simple to observe the motion of a

pulse or a wave crest. As is shown below, however, the speed of a periodic

wave can be found indirectly from its frequency and wavelength.

As a wave progresses, each point in the medium oscillates with the

frequency and period of the source. The diagram in the margin illustrates

a periodic wave moving to the right, as it might look in snapshots taken

every ^ period. Follow the progress of the crest that started out from the

extreme left at t - 0. The time it takes this crest to move a distance of

one wavelength is equal to the time required for one complete oscillation.

That is, the crest moves one wavelength \ in one period of oscillation T.

The speed v of the crest is therefore

distance moved \

-^^
J>.

corresponding time interval T

All parts of the wave pattern propagate with the same speed. Thus the

speed of any one crest is just the speed of the wave. We can say,

therefore, that the speed v of the wave is

wavelength k

period of oscillation T

But T =1//, where/ = frequency (see Text, Chapter 4, page 108).

Therefore v = f\, or wave speed - frequency x wavelength.

We can also write this relationship as X = v/f or/ == v/k. These

expressions imply that, for waves of the same speed, the frequency and

wavelength are inversely proportional. That is, a wave of twice the

frequency would have only half the wavelength, and so on. This inverse

relation of frequency and wavelength will be useful in other parts of this

course.

The diagram below represents a periodic wave passing through a

medium. Sets of points are marked which are moving "in step" as the

periodic wave passes. The crest points C and C have reached maximum

The wave generated by a simple

harmonic vibration is a sine wave.
A "snapshot ' of the displacement
of the medium would show it has
the same shape as a graph of the

sine function familiar in trigonom-

etry. This shape is frequently

referred to as "sinusoidal.'
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displacement positions in the upward direction. The trough points D and

D' have reached maximum displacement positions in the downward

direction. The points C and C have identical displacements and velocities

at any instant of time. Their vibrations are identical, and in unison. The

same is true for the points D and D'. Indeed there are infinitely many

such points along the medium which are vibrating identically when this

wave passes. Note that C and C are a distance k apart, and so are D and

D'.

A "snapshot" of a periodic wave mov-
ing to the right. Letters indicate sets

of points with the same phase.

'P,/'^"*^v

./.

Points that move "in step" such as C and C, are said to be in phase

with one another. Points D and D' also move in phase. Points separated

from one another by distances of X, 2A., 3X, . . . and nk (where n is any

whole number) are all in phase with one another. These points can be

anywhere along the length of the wave. They need not correspond with

only the highest or lowest points. For example, points such as P, P', P".

are all in phase with one another. Each is separated from the next by a

distance k.

Some of the points are exactly out of step. For example, point C

reaches its maximum upward displacement at the same time that D
reaches its maximum downward displacement. At the instant that C

begins to go down, D begins to go up. Points such as these are caDed one-

half period out of phase with respect to one another; C and D' also are

one-half period out of phase. Any two points separated from one another

by distances of A/2, 3X/2, 5X/2, . . . are one-half period out of phase.

Q7 Of the wave variables—frequency, wavelength, period, amplitude

and polarization—which ones describe

(1) space properties of waves?

(2) time properties of waves?

08 A wave with the displacement as smoothly and simply varying

firom point to point as that shown in the last illustration above is called a

sine wave. How might the "wavelength" be defined for a periodic wave

that isn't a sine wave?

Q9 A vibration of 100 cycles per second produces a wave.

(1) What is the wave frequency?

(2) What is the period of the wave?

(3) If the wave speed is 10 meters per second what is the

wavelength? (If necessary, look back to find the relationship you need to

answer this.)

Q10 If points X and Y on a periodic wave are one-half period "out of

phase" with each other, which of the following must he true?
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(a) X oscillates at half the frequency at which Y osciUates.

(b) X and Y always move in opposite directions.

(c) X is a distance of one-half wavelength from Y.

12.5 When waves meet: the superposition principle

So far, we have considered single waves. What happens when two

waves encounter each other in the same medium? Suppose two waves

approach each other on a rope, one traveling to the right and one traveling

to the left. The series of sketches in the margin shows what would

happen if you made this experiment. The waves pass through each other

without being modified. After the encounter, each wave looks just as it did

before and is traveling just as it was before. This phenomenon of passing

through each other unchanged can be observed with aU types of waves.

You can easily see thai it is true for surface ripples on water. (Look back,

for example to the opening photograph for the chapter.) You could reason

that it must be true fot sound waves also, since two conversations can

take place across a table without distorting each other. (Note that when
particles encounter each oiber, they collide. Waves can pass through each

other.)

But what happens during the time when the two waves overlap? The

displacements they provide add up. At each instant, the displacement of

each point in the overlap region is just the sum of the displacements that

would be caused by each of the two waves separately. An example is

shown in the margin. Two waves travel toward each other on a rope. One

has a maximum displacement of 0.4 cm upward and the other a

maximum displacement of 0.8 cm upward. The total maximum upward

displacement of the rope at a point where these two waves pass each

other is 1.2 cm.

What a wonderfully simple behavior, and how easy it makes

everything! Each wave proceeds along the rope making its own

contribution to the rope's displacement no matter what any other wave is

doing. We can easily determine what the rope looks hke at any given

instant. AU we need to do is add up the displacements caused by each

wave at each point along the rope at that instant. This property of waves

is called the superposition principle. Another illustration of wave

superposition is shown on page 110. Notice that when the displacements

are in opposite directions, they tend to cancel each other. One of the two

directions of displacement may always be considered negative. Check the

diagrams with a ruler. You will find that the net displacement (solid line)

is just the sum of the individual displacements (broken lines).

The superposition principle applies no matter how many separate

waves or disturbances are present in the medium. In the examples just

given, only two waves are present. But we would find by experiment that

the superposition principle works equally well for three, ten, or any

number of waves. Each wave makes its own contribution, and the net

result is simply the sum of all the individual contributions.

We can turn the superposition principle around. If waves add as we

The superposition of two rope waves
at a point. The dashed curves are the

contributions of the individual waves.

\
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have described, then we can think of a complex wave as the sum of a set

of simpler waves. In the diagram below (right), a complex pulse has been
analyzed into a set of three simpler pulses. In 1807 the French

mathematician Jean-Baptiste Fourier advanced a very useful theorem.

Fourier stated that any continuing periodic oscillation, however complex,

could be analyzed as the sum of simpler, regular wave motions. This, too,

can be demonstrated by experiment. The sounds of musical instruments

have been analyzed in this way also. Such analysis makes it possible to

"imitate" instruments electronically by combining just the right

proportions of simple vibrations.

SG 12.4-12.8

Q11 Two periodic waves of amplitudes Aj and A^ pass through a

point P. What is the greatest displacement of P?

Q12 What is the displacement of a point produced by two waves
together if the displacements produced by the waves separately at that

instant are +5 cm and -6 cm?

12.6 A two-source interference pattern

The photograph at the right (center) shows ripples spreading from a

vibrating source touching the water surface in a "ripple tank." The
drawing to the left of it shows a "cut-away" view of the water level pattern

at a given instant.

The third photograph (far right) introduces a phenomenon which will

play an important role in later parts of the course. It shows the pattern of

ripples on a water surface which is disturbed by two vibrating sources.

The two small sources go through their up and down motions together.

That is, they are in phase. Each creates its own set of circular, spreading

ripples. The photograph catches the pattern made by the overlapping sets

of waves at one instant. It is called an interference pattern.



The ripple tank shown in the photb-

graph at the left is being used by

students to observe a circular pulse

spreading over a thin layer of water.

When a vibrating point source is im-

mersed at the edge of the tank, it

produces periodic wave trains of

crests and troughs, somewhat as

shown in the "cut-away" drawing

at the left below. The center figure

below is an instantaneous photograph

of the shadows of ripples produced

by a vibrating point source. The crests

and troughs on the water surface

show up in the image as bright and

dark circular bands. Below right,

there were two point sources vibrat-

ing in phase. The overlapping waves

create an interference pattern.



(«.) o o

Pattern produced when two circular

pulses, each of a crest and a trough,

spread through each other. The small

circles indicate the net displacement:

• = double height peak

® = average level

O = double depth trough

Diagram representing the separate

pulses superposing as in the Figure

at the left. The top sketch illustrates

two crests about to arrive at the

vertical line. The bottom sketch illus-

trates a crest about to arrive together

with a trough.
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We can interpret what we see in this photograph in terms of what we
already know about waves. And we can predict how the pattern will

change with time. First, tilt the page so that you are viewing the

interference pattern from a glancing direction. You will see more clearly

some nearly straight gray bands. This feature can be explained by the

superposition principle.

Suppose that two sources produce identical pulses at the same

instant. Each pulse contains one crest and one trough. (See page 112 at

the left.) In each pulse the height of the crest above the undisturbed or

average level is equal to the depth of the trough below. The sketches

show the patterns of the water surface after equal time intervals. As the

pulses spread out, the points at which they overlap move too. In the figure

we have placed a completely darkened circle wherever a crest overlaps

another crest. A half-darkened circle marks each point where a crest

overlaps a trough. A blank circle indicates the meeting of two troughs.

According to the superposition principle, the water level should be highest

at the completely darkened circles (where the crests overlap). It should be

lowest at the blank circles, and at average height at the half-darkened

circles. Each of the sketches on page 112 represents the spatial pattern of

the water level at a given instant.

At the points marked with darkened circles in (a), the two pulses

arrive in phase, as indicated in (b). At points indicated by blank circles,

the pulses also arrive in phase. In either case, the waves reinforce each

other, causing a greater amplitude of either the crest or the trough. Thus,

they are said to interfere constructively . In this case, all such points are at

the same distance from each source. As the ripples spread, the region of

maximum disturbance moves along the central dotted line in (a).

At the points in (a) marked with half-darkened circles, the two pulses

arrive completely out of phase, as shown in (c). Here the waves cancel

and so are said to interfere destructively, leaving the water surface

undisturbed. The lines N in (a) show the path along which the

overlapping pulses meet when they are just out of phase. All along these

lines there is no change or displacement of the water level. Note that all

points on these lines are one-crest-trough distance (^A) further from one

source than from the other.

When periodic waves of equal amplitude are sent out instead of single

pulses, overlap occurs all over the surface. All along the central dotted hne

there is a doubled disturbance amplitude. AU along the side lines the

water height remains undisturbed. Depending on the wavelength and the

distance between the sources, there can be many such lines of

constructive and destructive interference.

Now we can interpret the ripple tank interference pattern on page

111. The "gray bands" are areas where waves cancel each other, called

nodal lines. These bands correspond to lines N in the simple case of

pulses instead of periodic waves. Between these bands are other bands

where crest and trough follow one another, where the waves reinforce.

These are called antinodal lines.

Look closely at the diagram on page 114. It explains what is

happening in the lower right hand photograph on page 111. Notice its

symmetry. The central band labeled A o is an antinode where
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Analysis of interference pattern similar

to that of the lower right photograph

on p. 1 1 1 set up by two in-phase peri-

odic sources. (Here S, and S. are

separated by four wavelengths.) The
letters A and N designate antinodal

and nodal lines. The dark circles in-

dicate where crest is meeting crest,

the blank circles where trough is

meeting trough, and the half-dark

circles where crest is meeting trough.

SG 12.9

reinforcement is complete. The other lines of maximum constructive

interference are labeled A^, A2, A3, etc. Points on these lines move up and

down much more than they would because of waves from either source

alone. The lines labeled N,, N2, etc. represent bands along which there is

maximum destructive interference. Points on these lines move up and

down much less than they would because of waves from either source

alone. Compare the diagram with the photograph and identify antinodal

lines and nodal lines.

Whenever we find such an interference pattern, we know that it is set

up by overlapping waves from two sources. For water waves, the

interference pattern can be seen directly. But whether visible or not, all

waves can set up interference patterns—including earthquake waves,

sound waves, or x rays. For example, suppose two loudspeakers are

working at the same frequency. By moving about and listening in front of

the loudspeakers, you can find the nodal regions where destructive

interference causes only little sound to be heard. You also can find the

antinodal regions where a strong signal comes through.

The beautiful symmetry of these interference patterns is not

accidental. Rather, the whole pattern is determined by the wavelength k

and the source separation S^S-z- From these we could calculate the angles

at which the nodal and antinodal lines radiate out to either side of Aq.

Conversely, we might know 5,82 and might have found these angles by

probing around in the two-source interference pattern. If so, we can

calculate the wavelength even if we can't see the crests and troughs of

the waves directly. This is very useful, for most waves in nature can't be

directly seen. So their wavelength has to be found in just this way: letting

waves set up an interference pattern, probing for the nodal and antinodal

lines, and calculating A. from the geometry.
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The figure at the right shows part of the pattern of the diagram on

the opposite page. At any point P on an antinodal hne, the waves from

the two sources arrive in phase. This can happen only if P is equally far

from Si and S^, or if P is some whole number of wavelengths farther from

one source than from the other. In other words, the difference in

distances (S^P - S2P) must equal n\, \ being the wavelength and n being

zero or any whole number. At any point Q on a nodal line, the waves from

the two sources arrive exactly out of phase. This occurs because Q is an

odd number of half-wavelengths (^\, |X, |X, etc.) farther from one source

than from the other. This condition can be written S^Q -S-^Q =(n +5) A..

The distance from the sources to a detection point may be much larger

than the source separation d. In that case, there is a simple relationship

between the node position, the wavelength A, and the separation d. The

wavelength can be calculated from measurements of the positions of nodal

lines. The details of the relationship and the calculation of wavelength are

described on the next page.

This analysis allows us to calculate from simple measurements made on

an interference pattern the wavelength of any wave. It applies to water

ripples, sound, light, etc. You will find this method very useful in later units.

One important thing you can do now is find \ for a real case of interference

of waves in the laboratory. This practice will help you later in finding the

wavelengths of other kinds of waves.

s,«.

\
9 ^z

^

^ i

S,P-S.2P = n\

S.Q - S^Q = (n+ i)X

Since the sound wave patterns in

space are three-dimensional, the

nodal or antinodal regions in this

case are two-dimensional surfaces.

For example thev are olanes. not

lines.

Q1 3 Are nodal lines in interference patterns regions of cancellation or

reinforcement?

Q14 What are antinodal lines? antinodal points?

Q15 Nodal points in an interference pattern are places where

(a) the waves arrive "out of phase"

(b) the waves arrive "in phase"

(c) the point is equidistant from the wave sources

(d) the point is one-half wavelength from both sources.

Q16 Under what circumstances do waves from two in-phase sources

arrive at a point out of phase?

12.7 Standing waves

If both ends of a rope are shaken with the same frequency and same

amplitude, an interesting thing happens. The interference of the identical

waves coming from opposite ends results in certain points on the rope not

moving at all! In between these nodal points, the rope oscillates up and

down. But there is no apparent propagation of wave patterns in either

direction along the rope. This phenomenon is called a standing wave or

stationary wave. (With the aid of Transparency T-27, using the

superposition principle, you can see that this effect is just what would be

expected from the addition of the two oppositely traveling waves.) The

important thing to remember is that the standing oscillation we observe is



Calculating k from an Interference Pattern

d = (S1S2) = separation between Si and S2.

(Si and S2 may be actual sources that are

in phase, or two slits through which a

previously prepared wave front passes.)

^ = 00 = distance fronn sources to a far-off

line or screen placed parallel to the two

sources.

X = distance from center axis to point P

along the detection line.

L = OP = distance to point P on detection

line measured from sources.

Waves reaching P from Si have traveled

farther than waves reaching P from S2. If the

extra distance is k (or 2A, 3\, etc.), the waves

will arrive at P in phase. Then P will be a point

of strong wave disturbance. If the extra distance

is hk (or |A., lA., etc.), the waves will arrive out of

phase. Then P will be a point of weak or no

wave disturbance.

With P as center we draw an arc of a circle

of radius PS2; it is indicated on the figure by the

dotted line S2M. Then line segment PS2 = line

segment PM. Therefore the extra distance that

the wave from S travels to reach P is the length

of the segment SM.

Now if d is very small compared to f, as we
can easily arrange in practice, the circular arc

S2M will then be a very small piece of a large

diameter circle—or nearly a straight line. Also,

the angle S1MS2 is very nearly 90°. Thus, the

triangle S1S2/W can be regarded as a right

thangle. Furthermore, angle S1S2/W is equal to

angle POO. Then right triangle S1S2/W is a

similar triangle POO.

S,M _ X

SiS.,~OP
or

S,/W

If the distance € is large compared to x, the

distances /: and L are nearly equal, and we can

write

S,M
~d~

But S^M is the extra distance traveled by the

wave from source Si. For P to be a point of

maximum wave disturbance, S:M must be equal

to nk (where n = if P is at 0, and r? = I if P

is at the first maximum of wave disturbance

found to one side of 0, etc.). So the equation

becomes

and

nk _x
~d~l

ne

This important result says that if we measure

the source separation d, the distance/, and the

distance x from the central line to a wave
disturbance maximum, we can calculate the

wavelength k.

d

S, \

1
\

\

M

.\>

i
Q

.\::^

1

i
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really the effect of two traveling waves.

To make standing waves on a rope, there do not have to be two people

shaking the opposite ends. One end can be tied to a hook on a wall. The train

of waves sent down the rope by shaking one end will reflect back from the

fixed hook. These reflected waves interfere with the new, oncoming waves

and can produce a standing pattern of nodes and oscillation. In fact, you can

go further and tie both ends of a string to hooks and pluck (or bow) the

string. From the plucked point a pair of waves go out in opposite directions

and then reflect back from the ends. The interference of these reflected

waves traveling in opposite directions can produce a standing pattern just as

before. The strings of guitars, violins, pianos, and all other stringed

instruments act in just this fashion. The energy given to the strings sets up

standing waves. Some of the energy is then transmitted from the vibrating

string to the body of the instrument. The sound waves sent forth from there

are at essentially the same frequency as the standing waves on the string.

The vibration frequencies at which standing waves can exist depend on

two factors. One is the speed of wave propagation along the string. The other

is the length of the string. The connection between length of string and

musical tone was recognized over two thousand years ago. This relationship

contributed greatly to the idea that nature is built on mathematical

principles. Early in the development of musical instruments, people learned

how to produce certain pleasing harmonies by plucking strings. These

harmonies result if the strings are of equal tautness and diameter and if their

lengths are in the ratios of small whole numbers. Thus the length ratio 2:1

gives the octave, 3:2 the musical fifth, and 4:3 the musical fourth. This

striking connection between music and numbers encouraged the

Pythagoreans to search for other numerical ratios or harmonies in the

universe. The Pythagorean ideal strongly affected Greek science and many

centuries later inspired much of Kepler's work. In a general form, the ideal

flourishes to this day in many beautiful appfications of mathematics to

physical experience.

Using the superposition principle, we can now define the harmonic

relationship much more precisely. First, we must stress an important fact

about standing wave patterns produced by reflecting waves from the

boundaries of a medium. We can imagine an unlimited variety of waves

traveling back and forth. But, in fact, only certain wavelengths (or

frequencies) can produce standing waves in a given medium. In the example

of a stringed instrument, the two ends are fixed and so must be nodal points.

This fact puts an upper limit on the length of standing waves possible on a

fixed rope of length L. Such waves must be those for which one-half

wavelength just fits on the rope (L = X/2). Shorter waves also can

produce standing patterns having more nodes. But always, some whole

number of one-half wavelengths must just fit on the rope (L = A./2).

We can turn this relationship around to give an expression for all

possible wavelengths of standing waves on a fixed rope:

A vibrator at the left produces a wave
train that runs along the rope and re-

flects from the fixed end at the right.

The sum of the oncoming and the re-

flected waves is a standing wave
pattern.

Lyre player painted on a Greek vase

in the 5th century B.C.

SG 12.13

n
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Or simply. A.,, « 1/n. That is, if Aj is the longest wavelength possible, the other

possible wavelengths will be ^X,, 3X1, . 1/^A.i. Shorter wavelengths

correspond to higher frequencies. Thus, on any bounded medium, only

certain frequencies of standing waves can be set up. Since frequency/ is

inversely proportional to wavelength,/ 3c 1/A., we can rewrite the expression

for all possible standing waves as

/n=^n

Film Loops 38—43 show a

variety of standing waves, including

waves on a string, a drum, and in a

tube of air.

Mathematically inclined students are

encouraged to pursue the topic of

waves and standing waves, for

example, Science Study Series

paperbacks Waves and the Ear and

Horns, Strings and Harmony.

See the Reader 3 articles "Musical

Instruments and Scales" and
"Founding a Family of Fiddles."

SG 12.16

The lowest possible frequency of a standing wave is usually the one most

strongly present when the string vibrates after being plucked or bowed. If/,

represents this lowest possible frequency, then the other possible standing

waves would have frequencies 2/,, Sf^, . . . nfy These higher frequencies are

called "overtones" of the "fundamental" frequency/,. On an "ideal" string,

there are in principle an unlimited number of such frequencies, all simple

multiples of the lowest frequency.

In real media, there are practical upper limits to the possible

frequencies. Also, the overtones are not exactly simple multiples of the

fundamental frequency. That is, the overtones are not strictly "harmonic."

This effect is still greater in more comphcated systems than stretched

strings. In a saxophone or other wind instrument, an air column is put into

standing wave motion. The overtones produced may not be even

approximately harmonic.

As you might guess from the superposition principle, standing waves of

different frequencies can exist in the same medium at the same time. A

plucked guitar string, for example, oscillates in a pattern which is the

superposition of the standing waves of many overtones. The relative

oscillation energies of the different instruments determine the "quality" of

the sound they produce. Each type of instrument has its own balance of

overtones. This is why a violin sounds different from a trumpet, and both

sound different from a soprano voice—even if all are sounding at the same

fundamental frequency.

Q17 When two identical waves of same frequency travel in opposite

directions and interfere to produce a standing wave, what is the motion of the

medium at

(1) the nodes of the standing wave?

(2) the places between nodes, called "antinodes" or loops, of the

standing wave?

Q18 If the two interfering waves have wavelength \, what is the

distance between the nodal points of the standing wave?

Q19 What is the wavelength of the longest travehng waves which can

produce a standing wave on a string of length L?

Q20 Can standing waves ofany frequency, as long as it is higher than

the fundamental, be set up in a bounded medium?



In the Film Loop Vibration of a Drum, a

marked rubber "drumhead" is seen vi-

brating in several of its possible modes.

Below are pairs of still photographs from

three of the symmetrical modes and

from an antisymmetrical mode.



Diffraction of ripples around the edge
of a barrier.

P«

Diffraction of ripples through a nar-

row opening.

Diffraction of ripples through two
narrow openings.
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12.8 Wave fronts and diffraction

Waves

Waves can go around corners. For example, you can hear a voice coming

from the other side of a hiU, even though there is nothing to reflect the sound

to you. We are so used to the fact that sound waves do this that we scarcely

notice it. This spreading of the energy of waves into what we would expect to

be "shadow" regions is called diffraction.

Once again, water waves will illustrate this behavior most clearly. From

among all the arrangements that can result in diffraction, we will

concentrate on two. The first is shown in the second photograph in the

margin at the left. Straight water waves (coming from the top of the picture)

are diffracted as they pass through a narrow slit in a straight barrier. Notice

that the slit is less than one wavelength wide. The wave emerges and spreads

in all directions. Also notice the pattern of the diffracted wave. It is basically

the same pattern a vibrating point source would set up if it were placed

where the slit is.

The bottom photograph shows the second barrier arrangement we want

to investigate. Now there are two narrow slits in the barrier. The pattern

resulting from superposition of the diffracted waves from both slits is the

same as that produced by two point sources vibrating in phase. The same

kind of result is obtained when many narrow slits are put in the barrier. That

is, the final pattern just matches that which would appear if a point source

were put at the center of each sbt, with all sources in phase.

We can describe these and all other effects of diffraction if we

understand a basic characteristic of waves. It was first stated by Christian

Huygens in 1678 and is now known as Huygens' principle. But in order to

state the principle, we first need the definition of a wave front.

For a water wave, a wave front is an imaginary line along the water's

surface. Every point along this line is in exactly the same stage of

vibration. That is, all points on the line are in phase. Crest Lines are wave

fronts, since all points on the water's surface along a crest Line are in

phase. Each has just reached its maximum displacement upward, is

momentarily at rest, and will start downward an instant later.

The simplest wave fronts are straight lines parallel to each other, as in

the top part of the center photograph at the left. Or they may be circular,

as in the bottom part of the same photograph. Sound waves are somewhat

different. Since a sound wave spreads not over a surface but in three

dimensions, its wave fronts become very nearly spherical surfaces. At large

distances from the source, however, the radius of a spherical wave front is

also large. Thus, any small section of the wave front is nearly flat. AH

circular and spherical wave fronts become virtually straight-line or flat-

plane fronts at great distances from their sources.

Now Huygens' principle, as it is generally stated today, is that every

point on a wave front may be considered to behave as a point source for

waves generated in the direction of the wave's propagation. As Huygens

said:

There is the further consideration in the emanation of

these waves, that each particle of matter in which a wave

spreads, ought not to communicate its motion only to the next
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particle which is in the straight hne drawn from the (source),

but that it also imparts some of it necessarily to all others

which touch it and which oppose themselves to its movement.
So it arises that around each particle there is made a wave of

which that particle is the center.

The diffraction patterns seen at sbts in a barrier are certainly

consistent with Huygens' principle. The wave arriving at the barrier

causes the water in the sht to oscillate. The oscillation of the water in the

slit acts as a source for waves traveling out from it in all directions. When
there are two sbts and the wave reaches both shts in phase, the oscillating

water in each slit acts like a point source. The resulting interference

pattern is similar to the pattern produced by waves from two point sources

oscillating in phase.

Or consider what happens behind a breakwater wall as in the aerial

photograph of the harbor below. By Huygens' principle, water oscillation

near the end of the breakwater sends circular waves propagating into the

"shadow" region.

We can understand all diffraction patterns if we keep both Huygens'

principle and the superposition principle in mind. For example, consider a

sht wider than one wavelength. In this case the pattern of diffracted

waves contains nodal lines (see the series of four photographs in the

margin).

The figure on p. 122 helps to explain why nodal lines appear. There

must be points Like P that are just A. farther from side A of the slit than

from side B. That is, there must be points P for which AP differs from BP

Each point on a wave front can be
thought of as a point source of waves.
The waves from all the point sources
interfere constructively only along
their envelope, which becomes the

new wave front.

WAVES^ BREAKWATER:

Vf^'7rS' '»' />i/}.*il//' WAVES
!

iiiiiii: ^

When part of the wave front is blocked,

the constructive interference of waves

from points on the wave front extends

into the "shadow" region.

When all but a very small portion of a

wave front is blocked, the wave propa-

gating away from that smail portion

is nearly the same as from a point

source.
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by exactly \. For such a point, AP and OP differ by one-half wavelength,

A./2. By Huygens' principle, we may think of points A and O as in-phase

point sources of circular waves. But since AP and OP differ by XJ2, the

two waves will arrive at P completely out of phase. So, according to the

superposition principle, the waves from A and O will cancel at point P.

But this argument also holds true for the pair of points consisting of

the first point to the right of A and the first to the right of O. In fact, it

holds true for each such matched pair of points, all the way across the slit.

The waves originating at each such pair of points all cancel at point P.

Thus, P is a nodal point, located on a nodal line. On the other hand, if the

slit width is less than A., then there can be no nodal point. This is obvious,

since no point can be a distance k farther from one side of the sht than

from the other. Slits of widths less than k behave nearly as point sources.

The narrower they are, the more nearly their behavior resembles that of

point sources.

We can easily compute the wavelength of a wave from the

interference pattern set up where diffracted waves overlap. For example,

we can analyze the two-slit pattern on page 120 exactly as we analyzed

the two-source pattern in Section 12.6. This is one of the main reasons for

our interest in the interference of diffracted waves. By locating nodal lines

formed beyond a set of slits, we can calculate k even for waves that we

cannot see.

For two-slit interference, the larger the wavelength compared to the

distance between sbts, the more the interference pattern spreads out. That

is, as k increases or d decreases, the nodal and antinodal lines make

increasingly large angles with the straight-ahead direction. Similarly, for

single-slit diffraction, the pattern spreads when the ratio of wavelength to

the slit width increases. In general, diffraction of longer wavelengths is

more easily detected. Thus, when you hear a band playing around a

corner, you hear the bass drums and tubas better than the piccolos and

cornets—even though they actually are playing equally loud.

Q21 What characteristic do all points on a wave front have in

common?
Q22 State Huygens' principle.

Q23 Why can't there be nodal lines in a diffraction pattern from an

opening less than one wavelength wide?

Q24 What happens to the diffraction pattern from an opening as the

wavelength of the wave increases?

Q25 Can there be diffraction without interference? Interference

without diffraction?

12.9 Reflection

We have seen that waves can pass through one another and spread

around obstacles in their paths. Waves also are reflected, at least to some
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degree, whenever they reach any boundary of the medium in which they

travel. Echoes are familiar examples of the reflection of sound waves. All

waves share the property of reflection. Again, the superposition principle

will help us understand what happens when reflection occurs.

Suppose that one end of a rope is tied tighdy to a hook securely

fastened to a massive wall. From the other end, we send a pulse wave
down the rope toward the hook. Since the hook cannot move, the force

exerted by the rope wave can do no work on the hook. Therefore, the

energy carried in the wave cannot leave the rope at this fixed end.

Instead, the wave bounces back—is reflected—^ideally with the same
energy.

What does the wave look like after it is reflected? The striking result

is that the wave seems to flip upside down on reflection. As the wave

comes in from left to right and encounters the fixed hook, it pulls up on

it. By Newton's third law, the hook must exert a force on the rope in the

opposite direction while reflection is taking place. The details of how this

force varies in time are complicated. The net effect is that an inverted

wave of the same form is sent back down the rope.

Two-dimensional water-surface waves exhibit a fascinating variety of

reflection phenomena. There may be variously shaped crest lines, variously

shaped barriers, and various directions from which the waves approach the

barrier. If you have never watched closely as water waves are reflected

from a fixed barrier, you should do so. Any still pool or water-filled wash

basin or tub will do. Watch the circular waves speed outward, reflect from

rocks or walls, run through each other, and finally die out. Dip your

fingertip into and out of the water quickly, or let a drop of water fall from

your finger into the water. Now watch the circular wave approach and

then bounce off a straight wall or a board. The long side of a tub is a

good straight barrier.

The sketches in the margin picture the results of reflection from a

straight wall. Three crests are shown. You may see more or fewer than

three clear crests in your observations, but that does not matter. In the

upper sketch, the outer crest is approaching the barrier at the right. The

next two sketches show the positions of the crests after first one and then

--" / I

SG 12.21
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two of them have been reflected. Notice the dashed curves in the last

sketch. They attempt to show that the reflected wave appears to originate

from a point S ' that is as far behind the barrier as S is in front of it. The

imaginary source at point S' is called the image of the source S.

We mention the reflection of circular waves first, because that is what

one usually notices first when studying water waves. But it is easier to see

a general principle for explaining reflection by obser\ang a straight wave

front, reflected from a straight barrier. The ripple-tank photograph at the

left shows one instant during such a reflection. (The wave came in from

the upper left at an angle of about 45°.) The sketches below show in more

detail what happens as the wave crests reflect from the straight barrier.

The first sketch shows three crests approaching the barrier. The last

sketch shows the same crests as they move away from the barrier after

the encounter. The two sketches between show the reflection process at

two different instants during reflection.

SG 12.22

The description of wave behavior is often made easier by drawing

lines perpendicular to the wave fronts. Such lines, called rays, indicate the

direction of propagation of the wave. Notice the drawing at the left, for

example. Rays have been drawn for a set of wave crests just before

reflection and just after reflection from a barrier. The straight-on direction,

perpendicular to the reflecting surface, is shown by a dotted line. The ray

for the incident crests makes an angle d^ with the straight-on direction.

The ray for the reflected crests makes an angle ^r with it. The angle of

reflection 6^ is equal to the angle of incidence 6^ : that is, dj. = d^. This is

an experimental fact, which you can verify for yourself.

Many kinds of wave reflectors are in use today, from radar antennae

to infrared heaters. Figures (a) and (b) below show how straight-line

waves reflect from two circular reflectors. A few incident and reflected

rays are shown. (The dotted fines are perpendicular to the barrier surface.)

Rays reflected from the half circle (a) head off in all directions. However,

rays reflected from a small segment of the circle (b) come close to

SG 12.23-12.25
obok
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meeting at a single point. And a barrier with the shape of a parabola (c)

focuses straight-line waves precisely at a point. Similarly, a parabolic

surface reflects plane waves to a sharp focus. An impressive example is a

radio telescope. Its huge parabolic surface reflects faint radio waves from

space to focus on a detector.

The wave paths indicated in the sketches could just as well be

reversed. For example, spherical waves produced at the focus become

plane waves when reflected from a parabolic surface. The flashlight and

automobile headlamp are familiar applications of this principle. In them,

white-hot wires placed at the focus of parabolic reflectors produce almost

parallel beams of light.

Q26 What is a "ray"?

Q27 What is the relationship between the angle at which a wave

front strikes a barrier and the angle at which it leaves?

Q28 What shape of reflector can reflect parallel wave fronts to a

sharp focus?

Q29 What happens to wave fronts originating at the focus of such a

reflecting surface?

Above: A ripple tank siiadow showing

how circular waves produced at the

focus of a parabolic wall are reflected

from the wall into straight waves.

Left: the parabolic surface of a radio

telescope reflects radio waves from

space to a detector supported at the

focus.

Below: the filament of a flashlight

bulb is at the focus of a parabolic

mirror, so the reflected light forms

a nearly parallel beam.
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Pulses encountering a boundary be-

tween two different media. The speed

of propagation is less in medium 2.

\,

12.10 Refraction

What happens when a wave propagates from one medium to another

medium in which its speed of propagation is different? We begin with the

simple situation pictured in the margin. Two one-dimensional pulses

approach a boundary separating two media. The speed of the propagation

in medium 1 is greater than it is in medium 2. We might imagine the

pulses to be in a light rope (medium 1) tied to a relatively heavy rope

(medium 2). Part of each pulse is reflected at the boundary. This reflected

component is flipped upside down relative to the original pulse. You will

recall the inverted reflection at a hook in a wall discussed earher. The

heavier rope here tends to hold the boundary- point fixed in just the same

way. But we are not particularly interested here in the reflected wave. We
want to see what happens to that part of the wave which continues into

the second medium.

As shown in the figure, the transmitted pulses are closer together in

medium 2 than they are in medium 1. Is it clear why this is so? The

speed of the pulses is less in the heavier rope. So the second pulse is

catching up with the first while the second pulse is still in the light rope

and the first is already in the heavy rope. In the same way, each separate

pulse is itself squeezed into a narrower form. That is, while the front of

the pulse is entering the region of less speed, the back part is still moving

with greater speed.

Something of the same sort happens to a periodic wave at such a

boundary. The figure at the left pictures this situation. For the sake of

simplicity, we have assumed that all of the wave is transmitted, and none

of it reflected. Just as the two pulses were brought closer and each pulse

was squeezed narrower, the periodic wave pattern is squeezed together

too. Thus, the wavelength X2 of the transmitted wave is shorter than the

wavelength \i of the incoming, or incident, wave.

Although the wavelength changes when the wave passes across the

boundary, the fi"equency of the wave cannot change. If the rope is

unbroken, the pieces immediately on either side of the boundary' must go

up and down together. The frequencies of the incident and transmitted

waves must, then, be equal. So we can simply label both of them /.

We can write our wavelength, frequency, and speed relationship for

both the incident and transmitted waves separately:

Continuous wave train crossing the

boundary between two different me-
dia. The speed of propagation is less

in medium 2.

\if = I'l. and ^2/ = V2

If we divide one of these equations by the other, eliminating the/'s, we
get

SG 12.26
X,

This equation tells that the ratio of the wavelengths in the two media

equals the ratio of the speeds.

The same sort of thing happens when water ripples cross a boundary.
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Experiments show that the ripples move more slowly in shallower water. A
piece of plate glass is placed on the bottom of a ripple tank to make the

water shallower there. This creates a boundary between the deeper and

shallower part (medium 1 and medium 2). Figure (a) below shows the

case where this boundary is parallel to the crest lines of the incident

wave. As with rope waves, the wavelength of water waves in a medium is

proportional to the speed in that medium.

Water waves offer a possibility not present for rope waves. We can

arrange to have the crest lines approach the boundary at any angle, not

only head-on. The photograph below right shows such an event. A ripple

tank wave approaches the boundary at the angle of incidence 0,. The

wavelength and speed of course change as the wave passes across the

boundary. But the direction of the wave propagation changes too. Figure

(d) in the margin shows how this comes about. As each part of a crest

line in medium 1 enters medium 2, its speed decreases and it starts to lag

behind. In time, the directions of the whole set of crest lines in medium 2

are changed from their directions in medium 1.

This phenomenon is called refraction. It occurs whenever a wave

passes into a medium in which the wave velocity is reduced. The wave

fronts are turned (refracted) so that they are more nearly parallel to the
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Aerial photograph of the refraction

of ocean waves approaching shore.

The slow^ing of star light by

increasingly dense layers of the

atmosphere produces refraction

that changes the apparent position

of the star.

boundary. (See the photographs at the bottom of the previous page.) This

accounts for something that you may have noticed if you have been at an

ocean beach. No matter in what direction the waves are moving far from

the shore, when they come near the beach their crest-lines are nearly

parallel to the shorehne. A wave's speed is steadily reduced as it moves

into water that gets gradually more shallow. So the wave is refracted

continuously as if it were always crossing a boundary between different

media, as indeed it is. The refraction of sea waves is so great that wave

crests can curl around a small island with an all-beach shoreline and

provide surf on all sides. (See the photograph on page 139.)

Q30 If a periodic wave slows down on entering a new medium, what

happens to (1) its frequency? (2) its wavelength? (3) its direction?

Q31 Complete the sketch in the margin to show roughly what

happens to a wave train that enters a new medium where its speed is

greater.

Look again at the bottom figure in the

margin of p. 103.

12.11 Sound waves

Sound waves are mechanical disturbances that propagate through a

medium, such as the air. Typically, sound waves are longitudinal waves,

producing changes of density and pressure in the medium through which

they travel. The medium may be a solid, liquid, or gas. If the waves strike

the ear, they can produce the sensation of hearing. The biology and

psychology of hearing, as well as the physics of sound, are important to

the science of acoustics. But here, of course, we will concentrate on sound

as an example of wave motion. Sound has all the properties of wave

motion that we have considered so far It exhibits refraction, diffraction.



Section 12.11 unit 3 129

and the same relations among frequency, wavelength, and propagation

speed and interference. Only the property of polarization is missing,

because sound waves are longitudinal, not transverse.

Vibrating sources for sound waves may be as simple as a tuning fork

or as complex as the human larynx with its vocal cords. Tuning forks and
some special electronic devices produce a steady "pure tone." Most of the

energy in such a tone is in simple harmonic motion at a single frequency.

The "pitch" of a sound we hear goes up as the frequency of the wave

increases.

People can hear sound waves with frequencies between about 20 and

20,000 cycles per second. Dogs can hear over a much wider range (15-

50,000 cps). Bats, porpoises, and whales generate and respond to

frequencies up to about 120,000 cps.

Loudness (or "volume") of sound is, like pitch, a psychological

variable. Loudness is strongly related to the intensity of the sound. Sound
intensity is a physical quantity. It is defined in terms of power flow , such

as the number of watts per square centimeter transmitted through a

surface perpendicular to the direction of motion of a wave front. The
human ear can perceive a vast range of intensities of sound. The table

below illustrates this range. It begins at a level of lO"'*^ watts per square

centimeter (relative intensity = 1). Below this "threshold" level, the normal

ear does not perceive sound.

RELATIVE INTENSITY SOUND
1 Threshold of hearing

10' Normal breathing

10^ Leaves in a breeze
103

10'*

.

Library

10^ Quiet restaurant

10® Two-person conversation

10^
. Busy traffic

10* Vacuum cleaner

10* Roar of Niagara Falls

10'" Subway train

10"
10'^ Propeller plane at takeoff

10'^ Machine-gun fire

10'^ Small jet plane at takeoff

10'^

10'« Wind tunnel

10'" Space rocket at lift-off

Levels of noise intensity about 10^^ times threshold intensity can be felt as

a tickling sensation in the ear. Beyond 10^^ times threshold intensity, the

sensation changes to pain and may damage the unprotected ear.

It has always been fairly obvious that sound takes time to travel from

source to receiver. Light and sound are often closely associated in the

same event—lightning and thunder, for instance. In all such cases, we

perceive the sound later. By timing echoes over a known distance, the

French mathematician Marin Mersenne in 1640 first computed the speed

SG 12.32



Noise and the Sonic Boom

The world seems to be increasingly loud with

unpleasant, manmade noise. At worst it is a

major nuisance and may be tiring, painful, and

sometimes even physically harmful. Loud,

prolonged noise can produce temporary

deafness. Very loud noise, kept up for a long

time, can produce some degree of permanent

deafness, especially deafness with respect to

high-frequency sounds.

Often the simplest way of reducing noise is

by absorbing it after it is produced but before it

reaches your ears. Like all sound, noise is the

energy of back and forth motion of the medium

through which the noise goes. Noisy machinery

can be muffled by padded enclosures in which

the energy of noise is changed to heat energy,

which then dissipates. In a house, a thick rug on

the floor can absorb 90% of room noise. (A foot

of fresh snow is an almost perfect absorber of

noise outdoors. Cities and countrysides are

remarkably hushed after a snowfall.)

In the last few years a new kind of noise

has appeared: the sonic boom. An explosion-like

sonic boom is produced whenever an object

travels through air at a speed greater than the

speed of sound (supersonic speed). Sound

travels in air at about 700 miles per hour. Many

types of military airplanes can travel at two or

three times this speed. Flying at such speeds,

the planes unavoidably and continually produce

sonic booms. SST (Supersonic Transport) planes

are now in civilian use in some countries. The

unavoidable boom raises important questions.

What is the price of technological "progress"?

Who gains, and what fraction of the population?

Who and how many pay the price? Must we pay

it—must SST's be used? How much say has the

citizen in decisions that affect his environment so

violently?

The formation of a sonic boom is similar to

the formation of a wake by a boat. Consider a

simple point source of waves. If it remains in the

same position in a medium, the wave it produces

spreads out symmetrically around it, as in

diagram 1 . But if the source of the disturbance is

moving through the medium, each new crest

starts from a different point, as in diagram 2.

Notice that the wavelength has become

shorter in front of the object and longer behind it.

(This is called the Doppler effect.) In diagram 3,

the source is moving through the medium faster

tfian the wave speed. Thus the crests and the

corresponding troughs overlap and interfere with

one another. The interference is mostly

destructive everywhere except on the line tangent

to the wave fronts, indicated in diagram 4. The

result is a wake that spreads like a wedge away

from the moving source, as in the photograph

below.
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All these concepts apply not only to water

waves but also to sound waves, including

those disturbances set up in air by a moving

plane as the wind and body push the air out of

the way. If the source of sound is moving

faster than the speed of sound wave, then

there is a cone-shaped wake (in 3-dimensions)

that spreads away from the source.

Actually two cones of sharp pressure

change are formed: one originating at the

front of the airplane and one at the rear, as

indicated in the graph at the right.

Because the double shock wave follows

along behind the airplane, the region on the

ground where people and houses may be struck

by the boom (the "sonic-boom carpet," or

"bang-zone"), is as long as the supersonic flight

path itself. In such an area, typically thousands

of miles long and 50 miles wide, there may be

millions of people. Tests made with airplanes

flying at supersonic speed have shown that a

single such cross-country flight by a 350-ton

supersonic transport plane would break many
thousands of dollars worth of windows, plaster

walls, etc., and cause fright and annoyance to

millions of people. Thus the supersonic flight

of such planes may have to be confined to

over-ocean use — though it may even turn out

that the annoyance to people on shipboard, on

islands, etc., is so great that over-ocean flights,

too, will have to be restricted.
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This curve represents the typical sonic boom
from an airplane flying at supersonic speed
(speed greater than about 700 mph). The pres-

sure rises almost instantly, then falls relatively

slowly to below-normal pressure, then rises

again almost instantaneously. The second pres-

sure rise occurs about 0.1 second after the

first one, making the boom sound "double."

Double-cone shock wave, or sonic boom, pro-

duced by an airplane that is travelling (at 13-

mile altitude) at three times the speed of sound.

Building B is just being hit by shock wave,

building A was struck a few seconds ago, and
building C will be hit a few seconds later.
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The article Silence, Please" in

Reader 3 is an amusing fantasy

about wave superposition.

The acoustic properties of a hall

filled with people are very different

from those of the empty hall.

Acoustical engineers sometimes fill

the seats with felt-covered

sandbags while making tests.

of sound in air. But it took another seventy years before William Derham
in England, comparing the flash and noise from cannons across 12 miles,

came close to the modern measurements.

Sound in air at 68°F moves at 1,125 feet per second (about 344

meters per second or 770 mph). As for all waves, the speed of sound

waves depends on the properties of the medium—the temperature, density,

and elasticity. Sound waves generally travel faster in liquids than in gases,

and faster still in solids. In sea water, their speed is about 4,890 ft/sec; in

steel, about 16,000 ft/sec; in quartz, about 18,000 ft/sec.

Interference of sound waves can be shown in a variety of ways. In a

large hall with hard, sound-reflecting surfaces, there will be "dead" spots.

At these spots, sound waves coming together after reflection cancel each

other. Acoustic engineers must consider this in designing the shape,

position, and materials of an auditorium. Another interesting and rather

different example of sound interference is the phenomenon known as

beats. When two notes of shghtly different frequency are heard together,

they interfere. This interference produces beats, a rhythmic pulsing of the

sound. Piano tuners and string players use this fact to tune two strings to

the same pitch. They simply adjust one string or the other until the beats

disappear.

Refraction of sound by different layers of air explains why we
sometimes see hghtning without hearing thunder. Similar refraction of

sound occurs in layers of water of different temperatures. .This sometimes

causes problems in using sonar (sound navigation and ranging) devices at

sea. Sonic refraction is used for a variety of purposes today. Geologists use

them to study the earth's deep structure and to locate fossil fuels and

minerals. Very intense sound waves are produced in the ground (as by

dynamite blasts). The sound waves travel through the earth and are

received by detection devices at different locations. The path of the waves,

as refracted by layers in the earth, can be calculated from the relative

intensities of sound received. From knowledge of the paths, estimates can

be made of the composition of the layers.

We have already mentioned diffraction as a property of sound waves.

Sound waves readily bend around corners and barriers to reach the

listener within range. Sound waves reflect, as do rope or water waves,

wherever they encounter a boundary between different media. Echo
chamber effects (which can be artificially produced by electronics) have

become famihar to listeners who enjoy popular music. The "live" sound of

a bare room results from multiple reflections of waves which normally

would be absorbed by furniture, rugs, and curtains. The architechtural

accidents called "whispering galleries" show vividly how sound can be

focused by reflection from curved surfaces. Laboratory rooms which

greatly reduce reflections are called anechoic chambers. All these effects

are of interest in the study of acoustics. Moreover, the proper acoustical

design of public buildings is now recognized as an important function by

most good architects.

In this chapter we have explained the basic phenomena of mechanical

waves, ending with the theory of sound propagation. These explanations

were considered the final triumph of Newtonian mechanics as applied to

the transfer of energy of particles in motion. Most of the general principles
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An anechoic chamber being used for research in

acoustics. Sound is almost completely absorbed
during multiple reflections among the wedges of soft

material that cover the walls.

The concert hall of the University of Illinois Krannert

Center for the Performing Arts was accoustically de-

signed for unamplified performances.

of acoustics were discovered in the 1870's. Since then the study of

acoustics has become involved with such fields as quantum physics. But

perhaps its most important influence on modern physics has been its

effect on the imagination of scientists. The successes of acoustics

encouraged them to take seriously the power of the wave viewpoint—even

in fields far from the original one, the mechanical motion of particles that

move back and forth or up and down in a medium.

Q32 List five wave behaviors that can be demonstrated with sound

waves.

Q33 Why can't sound waves be polarized?
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EPILOGUE Seventeenth-century scientists thought they could eventually

explain all physical phenomena by reducing them to matter and motion.

This mechanistic viewpoint became known as the Newtonian worldview or

Newtonian cosmology, since its most impressive success was Newton's

theory of planetary motion. Newton and other scientists of his time

proposed to apply similar methods to other problems, as we mentioned in

the Prologue to this unit.

The early enthusiasm for this new approach to science is vividly

expressed by Henry Power in his book Experimental Philosophy (1664).

Addressing his fellow natural philosophers (or scientists, as we would now

call them), he wrote:

You are the enlarged and elastical Souls of the world, who,

removing all former rubbish, and prejudicial resistances, do

make way for the Springy Intellect to flye out into its desired

Expansion . . .

. . . This is the Age wherein (me-thinks) Philosophy comes
in with a Spring-tide ... I see how all the old Rubbish must be

thrown away, and carried away with so powerful an Inundation.

These are the days that must lay a new Foundation of a more

magnificent Philosophy, never to be overthrown: that will

Empirically and Sensibly canvass the Phaenomena of Nature,

deducing the causes of things from such Originals in Nature, as

we observe are producible by Art, and the infallible

demonstration of Mechanicks; and certainly, this is the way, and

no other, to build a true and permanent Philolophy.

In Power's day there were many people who did not regard the old

Aristotelian cosmology as rubbish. For them, it provided a comforting sense

of unity and interrelation among natural phenomena. They feared that this

unity would be lost if everything was reduced simply to atoms moving

randomly through space. The poet John Donne, in 1611, complained

bitterly of the change already taking place in cosmology:

And new Philosophy calls all in doubt.

The Element of fire is quite put out;

The Sun is lost, and th' earth, and no man's wit

Can well direct him where to looke for it.

And freely men confesse that this world's spent,

When in the Planets, and the Firmament

They seeke so many new; then see that this

Is crumbled out againe to his Atomies.

Tis all in peeces, all coherence gone;

All just supply, and all Relation. . .

Newtonian physics provided powerful methods for analyzing the world

and uncovering the basic principles of motion for individual pieces of

matter. But the richness and complexity of processes in the real world

seemed infinite. Could Newtonian physics deal as successfully with these

real events as with ideal processes in a hypothetical vacuum? Could the

perceptions of colors, sounds, and smells really be reduced to 'nothing
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but" matter and motion? In the seventeenth century, and even in the

eighteenth century, it was too soon to expect Newtonian physics to answer

these questions. There was still too much work to do in establishing the

basic principles of mechanics and applying them to astronomical problems.

A full-scale attack on the properties of matter and energy had to wait until

the nineteenth century.

This unit covered several successful applications and extensions of

Newtonian mechanics which were accomplished by the end of the

nineteenth century. For example, we discussed the conservation laws, new
explanations of the properties of heat and gases, and estimates of some
properties of molecules. We introduced the concept of energy, linking

mechanics to heat and to sound. In Unit 4 we will show similar links to

light, electricity, and magnetism. We also noted that applying mechanics on

a molecular level requires statistical ideas and presents questions about the

direction of time.

Throughout most of this unit we have emphasized the application of

mechanics to separate pieces or molecules of matter. But scientists found

that the molecular model was not the only way to understand the behavior

of matter. Without departing from basic Newtonian cosmology, scientists

could also interpret many phenomena (such as sound and light) in terms of

wave motions in continuous matter. By the middle of the nineteenth century

it was generally believed that all physical phenomena could be explained

by a theory that was built on the use of either particles or waves. In the

next unit, we will discover how much or how little validity there was in this

belief. We will begin to see the rise of a new viewpoint in physics, based

on the field concept. Then, in Unit 5, particles, waves, and fields will come

together in the context of twentieth-century physics.
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12.1 The Project Physics materials particularly

appropriate for Chapter 12 include:

Experiments
Sound

Activities

Standing Waves on a Drum and a Violin

Moire' Patterns

Music and Speech Activities

Measurement of the Speed of Sound
Mechanical Wave Machines

Film Loops
Superposition

Standing Waves in a String

Standing Waves in a Gas
Four loops on vibrations

Reader Articles

Silence, Please
Frontiers of Physics Today: Acoustics
Waves
What is a Wave
Musical Instruments and Scales
Founding a Family of Fiddles

'^^ Some waves propagate at such a high
speed that we are usually not aware of any
delay in energy transfer. For example, the delay
between the flash and the "bang" in watching
lightning or fireworks seems peculiar, because the
propagation time for sounds produced near us is

not noticeable. Give an example of a compression
wave in a solid, started by an action at one end,
that propagates so quickly that we are not
aware of any delay before an effect at the
other end.

"'2.3 Describe the differences in phase of
oscillation of various parts of your body as you
walk. What points are exactly in phase? Which
points are exactly 2" cycle out of phase? Are
there any points i cycle out of phase?

'2-* Pictured are two pulse waves (A and B) on
a rope at the instants before and after they

plot the shape of the rope at the end of each
interval.

12 5
Repeat Exercise 12.3 for the two pulses

(A and C) pictured at the top.

12.6 Yhe wave below propagates to the right

along a rope. What is the shape of the wave
propagating to the left that could for an instant

cancel this one completely?

>

overlap (t, and t,). Divide the elapsed time
between t, and tj into four equal intervals and

1 ? 7 The velocity of a portion of rope at some
instant as transverse waves are passing through
it is the superposition of the velocities of waves
passing through that portion. Is the kinetic energy
of a portion of the rope the superposition of the
kinetic energies of waves passing through that

region? Justify your answer.

'^" Graphically superpose the last three curves
of the figure on p. 1 10 to find their sum (which
should be the original curve).

^® What shape would the nodal regions have
for sound waves from two loudspeakers?

"'•^" Imagine a detection device for waves is

moved slowly to either the right or left of the

point labeled A„ in the figure on p. 114. Describe
what the detection device would register.

•
2.

1

I What kind of interference pattern would
you expect to see if the separation between two
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in-phase sources were less than the wavelength
X? Where would the nodal and antinodal lines be
if the two in-phase sources were separated by
the distance X? By X/2? Convince yourself that
one additional nodal line appears on each side of
the central antinodal line whenever the separatior
between the two in-phase sources is increased by
one wavelength.

12.12 Derive an equation, similar to nkl = dx„,

for nodal points in a two-source interference
pattern (where d is the separation of the sources,
I the distance from the sources, and x„ the
distance of the n"" node from the center line).

12.13 If you suddenly disturbed a stretched
rubber hose or slinky with a frequency that

precisely matched a standing wave frequency,
would standing waves appear immediately? If

not, what factors would determine the time delay?

12.14 Different notes are sounded with the same
guitar string by changing its vibrating length
(that is, pressing the string against a brass

ridge). If the full length of the string is L, what
lengths must it be shortened to in order to sound
(a) a "musical fourth," (b) a "musical fifth,"

(c) an "octave"?

12.15 Standing sound waves can be set up in the
air in an enclosure (like a bottle or an organ pipe).

In a pipe that is closed at one end, the air

molecules at the closed end are not free to be
displaced, so the standing wave must have a
displacement node at the closed end. At the open
end, however, the molecules are almost com-
pletely free to be displaced, so the standing waves
must have an antinode near the open end.

(a) What will be the wavelength of the funda-
mental standing wave in a pipe of length L closed

at one end? (Hint: What is the longest wave that

has a node and an antinode a distance L apart?)

(b) What is a general expression for possible

wavelengths of standing waves in a pipe closed

at one end?
(c) Answer (a) and (b) for the case of a pipe open
at both ends.

12.16 Imagine a spherical blob of jello in which
you can set up standing vibrations. What would
be some of the possible modes of vibration?

(Hint: what possible symmetrical nodal surfaces

could there be?)

12.17 Suppose that straight-line ripple waves
approach a thin straight barrier which is a few
wavelengths long and which is oriented with its

length parallel to the wavefronts. What do you
predict about the nature of the diffraction pattern

along a straight line behind the barrier which is

perpendicular to the barrier and passes through

the center of the barrier? Why do people who
design breakwaters need to concern themselves
with diffraction effects?

12.18 A megaphone directs sound along the

megaphone axis if the wavelength of the sound is

small compared to the diameter of the opening.
Estimate the upper limit of frequencies which are

diffracted at a cheerleader's megaphone opening.
Can you hear what a cheerleader shouts even
though you are far off the axis of the megaphone?

12.19 Explain why it is that the narrower a slit

in a barrier is, the more nearly it can act like a
point source of waves.

12.20 If light is also a wave, then why have you
not seen light being diffracted by the slits, say
those of a picket fence, or diffracted around the
comer of houses?

12.21 By actual construction with a ruler and
compass on a tracing of the photograph on p. 127,

show that rays for the reflected wave front appear
to come from S'. Show also that this is consistent
with 6, = 6,.

12.22 A straight-line wave approaches a right-

angle reflecting barrier as shown in the figure.

Find the shape, size, and direction of propagation
of the wave after it has been completely reflected

by the barrier.

12.23 With ruler and compass reproduce part (b)

of the figure at the bottom of p. 124 and find the
distance from the circle's center to the point P in

terms of the radius of the circle r. Make the

radius of your circle much larger than the one in

the figure. (Hint: the dotted lines are along radii.)

12.24 Convince yourself that a parabolic reflector

will actually bring parallel wave-fronts to a sharp
focus. Draw a parabola y = kx- (choosing any
convenient value for k) and some parallel rays
along the axis as in part (c) of the Figure at the

bottom of p. 124. Construct line segments per-

pendicular to the parabola where the rays hit it,

and draw the reflected rays at equal angles on the

other side of these lines.

12.25 The /oca/ length of a curved reflector is the
distance from the reflector to the point where
parallel rays are focused. Use the drawing in

SG 12.24 to find the focal length of a parabola
in terms of k.

12.26 Recalling that water surface waves travel

slower in shallow water, what would you expect to

happen to the shape of the following wave as it
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continues to the right? Pay particular attention to

the region of varying depth. Can you use the line

of reasoning above to give at least a partial ex-

planation of the cause of breakers near a beach?

12.27 A straight-line wave in a ripple tank

approaches a boundary between deep and shallow

water as shown. Describe the shape of the wave
as it passes through the boundary and then as it

continues in the shallow water.

#;%:,

12.28 On the opposite page is an aerial photograph

of ocean waves entering from the upper right and
encountering a small island. Describe the wave
phenomena demonstrated by this encounter.

12.29 The diagram below shows two successive

positions, AB and CD, of a wave train of sound
or light, before and after crossing an air-glass

boundary. The time taken to go from AB to DC is

one period of the wave.

6

air

3I ass

(a) Indicate and label an angle equal to angle
of incidence 6^.

(b) Indicate and label an angle equal to angle
of refraction 0^.

(c) Label the wavelength in air X,.

(d) Label the wavelength in glass K^^.

(e) Show that vjv^ = Xa/^h-

(f) If you are familiar with trigonometry, show
that sin 6Jsin 6^ = A. JX,,.

12.30 A periodic ripple-tank wave passes through
a straight boundary between deep and shallow
water. The angle of incidence at the boundary is

45° and the angle of refraction is 30°. The
propagation speed in the deep water is 0.35 m/sec.

and the frequency of the wave is 10 cycles per
sec. Find the wavelengths in the deep and
shallow water.

12.31 Look at Figure (d) on p. 127. Convince
yourself that if a wave were to approach the

boundary between medium 1 and medium 2 from
below, along the same direction as the refracted

ray in the figure, it would be refracted along the

direction of the incident ray in the figure. This is

another example of a general rule: if a wave
follows a set of rays in one direction, then a wave
can follow the same set of rays in the opposite

direction. In other words, wave paths are

reversible.

12.32 Suppose that in an extremely quiet room
you can barely hear a buzzing mosquito at a

distance of one meter.

(a) What is the sound power output of the
mosquito?
(b) How many mosquitoes would it take to supply
the power for one 100-watt reading lamp?
(c) If the swarm were at ten meters" distance,
what would the sound be like? (Sound intensity

diminishes in proportion to the square of the

distance from a point source.)

12.33 How can sound waves be used to map the

floors of oceans?

12.34 Estimate the wavelength of a 1000 cycles

per second sound wave in air; in water; in steel

(refer to data in text). Do the same if/= 10.000
cps. Design the dimensions of an experiment to

show two-source interference for 1000 cps sound
waves.

12.35 Waves reflect from an object in a definite

direction only when the wavelength is small

compared to the dimensions of the object. This is

true for sound waves as well as for any other.

What does this tell you about the sound fre-

quencies a bat must generate if it is to catch a
moth or a fly? Actually some bats can detect

the presence of a wire about 0.12 mm in

diameter. Approximately what frequency does
that require?
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Refraction, reflection, and diffraction of waves around Farallon Island,

California. There are breakers all around the coast. The swell coming from

top right rounds both sides of the island, producing a crossed pattern

below. The small islet radiates' the waves away in all directions. (U.S.

Navy photograph.)
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meeting at a single point. And a barrier with the shape of a parabola (c)

focuses straight-line waves precisely at a point. Similarly, a parabolic

surface reflects plane waves to a sharp focus. An impressive example is a

radio telescope. Its huge parabolic surface reflects faint radio waves from

space to focus on a detector.

The wave paths indicated in the sketches could just as well be

reversed. For example, spherical waves produced at the focus become

plane waves when reflected from a parabolic surface. The flashhght and

automobile headlamp are familiar applications of this principle. In them,

white-hot wires placed at the focus of parabolic reflectors produce almost

parallel beams of light.

Q26 What is a "ray"?

Q27 What is the relationship between the angle at which a wave

front strikes a barrier and the angle at which it leaves?

Q28 What shape of reflector can reflect parallel wave fronts to a

sharp focus?

Q29 What happens to wave fronts originating at the focus of such a

reflecting surface?

Above: A ripple tank shadow shovying

how circular waves produced at the

focus of a parabolic wall are reflected

from the wall into straight waves.

Left: the parabolic surface of a radio

telescope reflects radio waves from

space to a detector supported at the

focus.

Below: the filament of a flashlight

bulb is at the focus of a parabolic

mirror, so the reflected light forms

a nearly parallel beam.
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of propagation is less in medium 2.
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12.10 Refraction

What happens when a wave propagates from one medium to another

medium in which its speed of propagation is different? We begin with the

simple situation pictured in the margin. Two one-dimensional pulses

approach a boundary separating two media. The speed of the propagation

in medium 1 is greater than it is in medium 2. We might imagine the

pulses to be in a light rope (medium 1) tied to a relatively heavy rope

(medium 2). Part of each pulse is reflected at the boundary. This reflected

component is flipped upside down relative to the original pulse. You will

recall the inverted reflection at a hook in a wall discussed earlier. The

heavier rope here tends to hold the boundary- point fixed in just the same

way. But we are not particularly interested here in the reflected wave. We
want to see what happens to that part of the wave which continues into

the second medium.

As shown in the figure, the transmitted pulses are closer together in

medium 2 than they are in medium 1. Is it clear why this is so? The

speed of the pulses is less in the heavier rope. So the second pulse is

catching up with the first while the second pulse is still in the light rope

and the first is already in the heavy rope. In the same way, each separate

pulse is itself squeezed into a narrower form. That is, while the front of

the pulse is entering the region of less speed, the back part is still moving

with greater speed.

Something of the same sort happens to a periodic wave at such a

boundary. The figure at the left pictures this situation. For the sake of

simplicity, we have assumed that all of the wave is transmitted, and none

of it reflected. Just as the two pulses were brought closer and each pulse

was squeezed narrower, the periodic wave pattern is squeezed together

too. Thus, the wavelength A2 of the transmitted wave is shorter than the

wavelength \i of the incoming, or incident, wave.

Although the wavelength changes when the wave passes across the

boundary, the frequency of the wave cannot change. If the rope is

unbroken, the pieces immediately on either side of the boundary must go

up and down together. The frequencies of the incident and transmitted

waves must, then, be equal. So we can simply label both of them /.

We can write our wavelength, frequency, and speed relationship for

both the incident and transmitted waves separately:

Continuous wave train crossing the

boundary between two different me-

dia. The speed of propagation is less

in medium 2.

^1/ - ^1- arid \2/ = ^2

If we divide one of these equations by the other, eliminating the/'s, we

get

SG 12.26
X2 ^2

This equation tells that the ratio of the wavelengths in the two media

equals the ratio of the speeds.

The same sort of thing happens when water ripples cross a boundary.
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Experiments show that the ripples move more slowly in shallower water. A

piece of plate glass is placed on the bottom of a ripple tank to make the

water shaDower there. This creates a boundary between the deeper and

shallower part (medium 1 and medium 2). Figure (a) below shows the

case where this boundary is parallel to the crest lines of the incident

wave. As with rope waves, the wavelength of water waves in a medium is

proportional to the speed in that medium.

Water waves offer a possibility not present for rope waves. We can

arrange to have the crest lines approach the boundary at any angle, not

only head-on. The photograph below right shows such an event. A ripple

tank wave approaches the boundary at the angle of incidence 0j. The

wavelength and speed of course change as the wave passes across the

boundary. But the direction of the wave propagation changes too. Figure

(d) in the margin shows how this comes about. As each part of a crest

line in medium 1 enters medium 2, its speed decreases and it starts to lag

behind. In time, the directions of the whole set of crest lines in medium 2

are changed from their directions in medium 1.

This phenomenon is called refraction. It occurs whenever a wave

passes into a medium in which the wave velocity is reduced. The wave

fronts are turned (refracted) so that they are more nearly parallel to the

—

1
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Aerial photograph of the refraction

of ocean waves approaching shore.

The slowing of star light by

increasingly dense layers of the

atmosphere produces refraction

that changes the apparent position

of the star.

boundary. (See the photographs at the bottom of the previous page.) This

accounts for something that you may have noticed if you have been at an

ocean beach. No matter in what direction the waves are moving far from

the shore, when they come near the beach their crest-lines are nearly

parallel to the shoreline. A wave's speed is steadily reduced as it moves

into water that gets gradually more shallow. So the wave is refracted

continuously as if it were always crossing a boundary between different

media, as indeed it is. The refraction of sea waves is so great that wave

crests can curl around a small island with an all-beach shoreline and

provide surf on all sides. (See the photograph on page 139.)

Q30 If a periodic wave slows down on entering a new medium, what

happens to (1) its frequency? (2) its wavelength? (3) its direction?

Q3-| Complete the sketch in the margin to show roughly what

happens to a wave train that enters a new medium where its speed is

greater.

Look again at the bottom figure in the

margin of p. 103.

12.11 Sound waves

Sound waves are mechanical disturbances that propagate through a

medium, such as the air. Typically, sound waves are longitudinal waves,

producing changes of density and pressure in the medium through which

they travel. The medium may be a sohd, hquid, or gas. If the waves strike

the ear, they can produce the sensation of hearing. The biology and

psychology of hearing, as well as the physics of sound, are important to

the science of acoustics. But here, of course, we will concentrate on sound

as an example of wave motion. Sound has all the properties of wave

motion that we have considered so far. It exhibits refraction, diffraction.
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and the same relations among frequency, wavelength, and propagation

speed and interference. Only the property of polarization is missing,

because sound waves are longitudinal, not transverse.

Vibrating sources for sound waves may be as simple as a tuning fork

or as complex as the human larynx with its vocal cords. Tuning forks and
some special electronic devices produce a steady "pure tone." Most of the

energy in such a tone is in simple harmonic motion at a single frequency.

The "pitch" of a sound we hear goes up as the frequency of the wave
increases.

People can hear sound waves with frequencies between about 20 and

20,000 cycles per second. Dogs can hear over a much wider range (15-

50,000 cps). Bats, porpoises, and whales generate and respond to

frequencies up to about 120,000 cps.

Loudness (or "volume") of sound is, like pitch, a psychological

variable. Loudness is strongly related to the intensity of the sound. Sound
intensity is a physical quantity. It is defined in terms of power flow , such

as the number of watts per square centimeter transmitted through a

surface perpendicular to the direction of motion of a wave front. The
human ear can perceive a vast range of intensities of sound. The table

below illustrates this range. It begins at a level of 10~'^ watts per square

centimeter (relative intensity ^ 1). Below this "threshold" level, the normal

ear does not perceive sound.

RELATIVE INTENSITY SOUND
1 Threshold of hearing

10' Normal breathing

10^ Leaves in a breeze
10=^

10^ Library

10^ Quiet restaurant

10* Two-person conversation

10' Busy traffic

10^ Vacuum cleaner

10" Roar of Niagara Falls

10'° Subway train

10"

10'- Propeller plane at takeoff

10'^ Machine-gun fire

10'^ Small jet plane at takeoff

lO's

10"^ Wind tunnel

10'" Space rocket at lift-off

Levels of noise intensity about lO^^ times threshold intensity can be felt as

a tickling sensation in the ear. Beyond 10^^ times threshold intensity, the

sensation changes to pain and may damage the unprotected ear.

It has always been fairly obvious that sound takes time to travel from

source to receiver. Light and sound are often closely associated in the

same event—lightning and thunder, for instance. In all such cases, we

perceive the sound later. By timing echoes over a known distance, the

French mathematician Marin Mersenne in 1640 first computed the speed

SG 12.32



Noise and the Sonic Boom

The world seems to be increasingly loud with

unpleasant, manmade noise. At worst it is a

major nuisance and may be tiring, painful, and

sometimes even physically harmful. Loud,

prolonged noise can produce temporary

deafness. Very loud noise, kept up for a long

time, can produce some degree of permanent

deafness, especially deafness with respect to

high-frequency sounds.

Often the simplest way of reducing noise is

by absorbing it after it is produced but before it

reaches your ears. Like all sound, noise is the

energy of back and forth motion of the medium

through which the noise goes. Noisy machinery

can be muffled by padded enclosures in which

the energy of noise is changed to heat energy,

which then dissipates. In a house, a thick rug on

the floor can absorb 90% of room noise. (A foot

of fresh snow is an almost perfect absorber of

noise outdoors. Cities and countrysides are

remarkably hushed after a snowfall.)

In the last few years a new kind of noise

has appeared: the sonic boom. An explosion-like

sonic boom is produced whenever an object

travels through air at a speed greater than the

speed of sound (supersonic speed). Sound

travels in air at about 700 miles per hour. Many

types of military airplanes can travel at two or

three times this speed. Flying at such speeds,

the planes unavoidably and continually produce

sonic booms. SST (Supersonic Transport) planes

are now in civilian use in some countries. The

unavoidable boom raises important questions.

What is the price of technological "progress"?

Who gains, and what fraction of the population?

Who and how many pay the price? Must we pay

it—must SST's be used? How much say has the

citizen in decisions that affect his environment so

violently?

The formation of a sonic boom is similar to

the formation of a wake by a boat. Consider a

simple point source of waves. If it remains in the

same position in a medium, the wave it produces

spreads out symmetrically around it, as in

diagram 1 . But if the source of the disturbance is

moving through the medium, each new crest

starts from a different point, as in diagram 2.

Notice that the wavelength has become

shorter in front of the object and longer behind it.

(This is called the Doppler effect.) In diagram 3,

the source is moving through the medium faster

than the wave speed. Thus the crests and the

corresponding troughs overlap and interfere with

one another. The interference is mostly

destructive everywhere except on the line tangent

to the wave fronts, indicated in diagram 4. The

result is a wake that spreads like a wedge away

from the moving source, as in the photograph

below.
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All these concepts apply not only to water

waves but also to sound waves, including

those disturbances set up in air by a moving

plane as the wind and body push the air out of

the way. If the source of sound is moving

faster than the speed of sound wave, then

there is a cone-shaped wake (in 3-dimensions)

that spreads away from the source.

Actually two cones of sharp pressure

change are formed: one originating at the

front of the airplane and one at the rear, as

indicated in the graph at the right.

Because the double shock wave follows

along behind the airplane, the region on the

ground where people and houses may be struck

by the boom (the "sonic-boom carpet," or

"bang-zone"), is as long as the supersonic flight

path itself. In such an area, typically thousands

of miles long and 50 miles wide, there may be

millions of people. Tests made with airplanes

flying at supersonic speed have shown that a

single such cross-country flight by a 350-ton

supersonic transport plane would break many

thousands of dollars worth of windows, plaster

walls, etc., and cause fright and annoyance to

millions of people. Thus the supersonic flight

of such planes may have to be confined to

over-ocean use — though it may even turn out

that the annoyance to people on shipboard, on

islands, etc., is so great that over-ocean flights,

too, will have to be restricted.

AIR
PRESSURE

normal ''

10 30 30 40 so iO 10 g^ 10 l«0 do

mi Mi seconds

This curve represents the typical sonic boom
from an airplane flying at supersonic speed

(speed greater than about 700 mph). The pres-

sure rises almost instantly, then falls relatively

slowly to below-normal pressure, then rises

again almost instantaneously. The second pres-

sure rise occurs about 0.1 second after the

first one, making the boom sound "double."

Double-cone shock wave, or sonic boom, pro-

duced by an airplane that is travelling (at 13-

mile altitude) at three times the speed of sound.

Building B is just being hit by shock wave,

building A was struck a few seconds ago, and

building C will be hit a few seconds later.



132 Unit 3 Waves

SG 12.33-12.35

The article Silence, Please" in

Reader 3 is an amusing fantasy

about wave superposition.

The acoustic properties of a hall

filled with people are very different

from those of the empty hall.

Acoustical engineers sometimes fill

the seats with felt-covered

sandbags while making tests.

of sound in air. But it took another seventy years before William Derham

in England, comparing the flash and noise from cannons across 12 miles,

came close to the modern measurements.

Sound in air at 68°F moves at 1,125 feet per second (about 344

meters per second or 770 mph). As for all waves, the speed of sound

waves depends on the properties of the medium—the temperature, density,

and elasticity. Sound waves generally travel faster in liquids than in gases,

and faster still in solids. In sea water, their speed is about 4,890 ft/sec; in

steel, about 16,000 ft/sec; in quartz, about 18,000 ft/sec.

Interference of sound waves can be shown in a variety of ways. In a

large hall with hard, sound-reflecting surfaces, there will be "dead" spots.

At these spots, sound waves coming together after reflection cancel each

other. Acoustic engineers must consider this in designing the shape,

position, and materials of an auditorium. Another interesting and rather

different example of sound interference is the phenomenon known as

beats. When two notes of slightly different frequency are heard together,

they interfere. This interference produces beats, a rhythmic pulsing of the

sound. Piano tuners and string players use this fact to tune two strings to

the same pitch. They simply adjust one string or the other until the beats

disappear.

Refraction of sound by different layers of air explains why we

sometimes see lightning without hearing thunder. Similar refraction of

sound occurs in layers of water of different temperatures. .This sometimes

causes problems in using sonar (sound navigation and ranging) devices at

sea. Sonic refraction is used for a variety of purposes today. Geologists use

them to study the earth's deep structure and to locate fossil fuels and

minerals. Very intense sound waves are produced in the ground (as by

dynamite blasts). The sound waves travel through the earth and are

received by detection devices at different locations. The path of the waves,

as refracted by layers in the earth, can be calculated from the relative

intensities of sound received. From knowledge of the paths, estimates can

be made of the composition of the layers.

We have already mentioned diffraction as a property of sound waves.

Sound waves readily bend around corners and barriers to reach the

listener within range. Sound waves reflect, as do rope or water waves,

wherever they encounter a boundary between different media. Echo

chamber effects (which can be artificially produced by electronics) have

become famfliar to Hsteners who enjoy popular music. The "live" sound of

a bare room results from multiple reflections of waves which normally

would be absorbed by furniture, rugs, and curtains. The architechtural

accidents called "whispering galleries" show vividly how sound can be

focused by reflection from curved surfaces. Laboratory rooms which

greatly reduce reflections are called anechoic chambers. All these effects

are of interest in the study of acoustics. Moreover, the proper acoustical

design of public buildings is now recognized as an important function by

most good architects.

In this chapter we have explained the basic phenomena of mechanical

waves, ending with the theory of sound propagation. These explanations

were considered the final triumph of Newtonian mechanics as applied to

the transfer of energy of particles in motion. Most of the general principles
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An anechoic chamber being used lor research in

acoustics. Sound is almost completely absorbed
during multiple reflections among the wedges of soft

material that cover the walls.

The concert hall of the University of Illinois Krannert

Center for the Performing Arts was accoustically de-

signed for unamplified performances.

of acoustics were discovered in the 1870's. Since then the study of

acoustics has become involved with such fields as quantum physics. But

perhaps its most important influence on modern physics has been its

effect on the imagination of scientists. The successes of acoustics

encouraged them to take seriously the power of the wave viewpoint—even

in fields far from the original one, the mechanical motion of particles that

move back and forth or up and down in a medium.

Q32 List five wave behaviors that can be demonstrated with sound

waves.

Q33 Why can't sound waves be polarized?
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EPILOGUE Seventeenth-century scientists thought they could eventually

explain all physical phenomena by reducing them to matter and motion.

This mechanistic viewpoint became known as the Newtonian worldview or

Newtonian cosmology, since its most impressive success was Newton's

theory of planetary motion. Newton and other scientists of his time

proposed to apply similar methods to other problems, as we mentioned in

the Prologue to this unit.

The early enthusiasm for this new approach to science is vividly

expressed by Henry Power in his book Experimental Philosophy (1664).

Addressing his fellow natural philosophers (or scientists, as we would now

call them), he wrote:

You are the enlarged and elastical Souls of the world, who,

removing all former rubbish, and prejudicial resistances, do

make way for the Springy Intellect to flye out into its desired

Expansion . . .

. . . This is the Age wherein (me-thinks) Philosophy comes
in with a Spring-tide ... I see how all the old Rubbish must be

thrown away, and carried away with so powerful an Inundation.

These are the days that must lay a new Foundation of a more

magnificent Philosophy, never to be overthrown: that will

Empirically and Sensibly canvass the Phaenomena of Nature,

deducing the causes of things from such Originals in Nature, as

we observe are producible by Art, and the infallible

demonstration of Mechanicks; and certainly, this is the way, and

no other, to build a true and permanent Philolophy.

In Power's day there were many people who did not regard the old

Aristotelian cosmology as rubbish. For them, it provided a comforting sense

of unity and interrelation among natural phenomena. They feared that this

unity would be lost if everything was reduced simply to atoms moving

randomly through space. The poet John Donne, in 1611, complained

bitterly of the change already taking place in cosmology:

And new Philosophy calls all in doubt.

The Element of fire is quite put out;

The Sun is lost, and th' earth, and no man's wit

Can well direct him where to looke for it.

And freely men confesse that this world's spent.

When in the Planets, and the Firmament

They seeke so many new; then see that this

Is crumbled out againe to his Atomies.

Tis all in peeces, all coherence gone;

All just supply, and all Relation. . .

Newtonian physics provided powerful methods for analyzing the world

and uncovering the basic principles of motion for individual pieces of

matter. But the richness and complexity of processes in the real world

seemed infinite. Could Newtonian physics deal as successfully with these

real events as with ideal processes in a hypothetical vacuum? Could the

perceptions of colors, sounds, and smells really be reduced to "nothing
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but" matter and motion? In the seventeenth century, and even in the

eighteenth century, it was too soon to expect Newtonian physics to answer

these questions. There was still too much work to do in establishing the

basic principles of mechanics and applying them to astronomical problems.

A full-scale attack on the properties of matter and energy had to wait until

the nineteenth century.

This unit covered several successful applications and extensions of

Newtonian mechanics which were accomplished by the end of the

nineteenth century. For example, we discussed the conservation laws, new

explanations of the properties of heat and gases, and estimates of some

properties of molecules. We introduced the concept of energy, linking

mechanics to heat and to sound. In Unit 4 we will show similar links to

light, electricity, and magnetism. We also noted that applying mechanics on

a molecular level requires statistical ideas and presents questions about the

direction of time.

Throughout most of this unit we have emphasized the application of

mechanics to separate pieces or molecules of matter. But scientists found

that the molecular model was not the only way to understand the behavior

of matter. Without departing from basic Newtonian cosmology, scientists

could also interpret many phenomena (such as sound and light) in terms of

wave motions in continuous matter. By the middle of the nineteenth century

it was generally believed that all physical phenomena could be explained

by a theory that was built on the use of either particles or waves. In the

next unit, we will discover how much or how little validity there was in this

belief. We will begin to see the rise of a new viewpoint in physics, based

on the field concept. Then, in Unit 5, particles, waves, and fields will come

together in the context of twentieth-century physics.
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The Project Physics materials particularly

appropriate for Chapter 12 include:

Experiments
Sound

Activities

Standing Waves on a Drum and a Violin

Moire' Patterns

Music and Speech Activities

Measurement of the Speed of Sound
Mechanical Wave Machines

Film Loops
Superposition

Standing Waves in a String

Standing Waves in a Gas
Four loops on vibrations

Reader Articles

Silence, Please
Frontiers of Physics Today: Acoustics
Waves
What is a Wave
Musical Instruments and Scales
Founding a Family of Fiddles

^^•^ Some waves propagate at such a high
speed that we are usually not aware of any
delay in energy transfer. For example, the delay
between the flash and the "bang" in watching
lightning or fireworks seems peculiar, because the
propagation time for sounds produced near us is

not noticeable. Give an example of a compression
wave in a solid, started by an action at one end,
that propagates so quickly that we are not
aware of any delay before an eff'ect at the
other end.

12.3 Describe the differences in phase of
oscillation of various parts of your body as you
walk. What points are exactly in phase? Which
points are exactly 7 cycle out of phase? Are
there any points 7 cycle out of phase?

'2-^ Pictured are two pulse waves (A and B) on
a rope at the instants before and after they

plot the shape of the rope at the end of each
interval.

12 5
Repeat Exercise 12.3 for the two pulses

(A and C) pictured at the top.

12.6 'Yhe wave below propagates to the right

along a rope. What is the shape of the wave
propagating to the left that could for an instant

cancel this one completely?

overlap (t, and t.^). Divide the elapsed time
between t, and t^ into four equal intervals and

12 7 The velocity of a portion of rope at some
instant as transverse waves are passing through
it is the superposition of the velocities of waves
passing through that portion. Is the kinetic energy
of a portion of the rope the superposition of the

kinetic energies of waves passing through that

region? Justify your answer.

12s
Graphically superpose the last three curves

of the figure on p. 1 10 to find their sum (which
should be the original curve).

^•^ What shape would the nodal regions have
for sound waves from two loudspeakers?

'^•'*' Imagine a detection device for waves is

moved slowly to either the right or left of the

point labeled A„ in the figure on p. 114. Describe

what the detection device would register.

12.11 What kind of interference pattern would
you expect to see if the separation between two
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in-phase sources were less than the wavelength
X? Where would the nodal and antinodal lines be
if the two in-phase sources were separated by
the distance X? By \/2? Convince yourself that
one additional nodal line appears on each side of
the central antinodal line whenever the separatior
between the two in-phase sources is increased by
one wavelength.

12.12 Derive an equation, similar to nkl = dx„,

for nodal points in a two-source interference
pattern (where d is the separation of the sources,
I the distance from the sources, and x„ the
distance of the n"" node from the center line).

12.13 If you suddenly disturbed a stretched

rubber hose or slinky with a frequency that

precisely matched a standing wave frequency,
would standing waves appear immediately? If

not, what factors would determine the time delay?

12.14 Different notes are sounded with the same
guitar string by changing its vibrating length

(that is, pressing the string against a brass

ridge). If the full length of the string is L, what
lengths must it be shortened to in order to sound
(a) a "musical fourth," (b) a "musical fifth,"

(c) an "octave"?

12.15 Standing sound waves can be set up in the
air in an enclosure (like a bottle or an organ pipe).

In a pipe that is closed at one end, the air

molecules at the closed end are not free to be
displaced, so the standing wave must have a

displacement node at the closed end. At the open
end, however, the molecules are almost com-
pletely free to be displaced, so the standing waves
must have an antinode near the open end.

(a) What will be the wavelength of the funda-
mental standing wave in a pipe of length L closed

at one end? (Hint: What is the longest wave that

has a node and an antinode a distance L apart?)

(b) What is a general expression for possible

wavelengths of standing waves in a pipe closed

at one end?
(c) Answer (a) and (b) for the case of a pipe open
at both ends.

12.16 Imagine a spherical blob of jello in which
you can set up standing vibrations. What would
be some of the possible modes of vibration?

(Hint: what possible symmetrical nodal surfaces

could there be?)

12.17 Suppose that straight-line ripple waves
approach a thin straight barrier which is a few
wavelengths long and which is oriented with its

length parallel to the wavefronts. What do you

predict about the nature of the diffraction pattern

along a straight line behind the barrier which is

perpendicular to the barrier and passes through

the center of the barrier? Why do people who
design breakwaters need to concern themselves

with diffraction effects?

12.18 A megaphone directs sound along the

megaphone axis if the wavelength of the sound is

small compared to the diameter of the opening.
Estimate the upper limit of frequencies which are
diffracted at a cheerleader's megaphone opening.
Can you hear what a cheerleader shouts even
though you are far off the axis of the megaphone?

12.19 Explain why it is that the narrower a slit

in a barrier is, the more nearly it can act like a
point source of waves.

12.20 If light is also a wave, then why have you
not seen light being diffracted by the slits, say
those of a picket fence, or diffracted around the

comer of houses?

12.21 By actual construction with a ruler and
compass on a tracing of the photograph on p. 127,

show that rays for the reflected wave front appear
to come from S'. Show also that this is consistent
with 0. =

6»i.

12.22 A straight-line wave approaches a right-

angle reflecting barrier as shown in the figure.

Find the shape, size, and direction of propagation
of the wave after it has been completely reflected

by the barrier.

12.23 With ruler and compass reproduce part (b)

of the figure at the bottom of p. 124 and find the

distance from the circle's center to the point P in

terms of the radius of the circle r. Make the

radius of your circle much larger than the one in

the figure. (Hint: the dotted lines are along radii.)

12.24 Convince yourself that a parabolic reflector

will actually bring parallel wave-fronts to a sharp
focus. Draw a parabola y = kx- (choosing any
convenient value for k) and some parallel rays
along the axis as in part (c) of the Figure at the

bottom of p. 124. Construct line segments per-

pendicular to the parabola where the rays hit it,

and draw the reflected rays at equal angles on the

other side of these lines.

12.25 The /oca/ length of a curved reflector is the

distance from the reflector to the point where
parallel rays are focused. Use the drawing in

SG 12.24 to find the focal length of a parabola
in terms of k.

12.26 Recalling that water surface waves travel

slower in shallow water, what would you expect to

happen to the shape of the following wave as it

"v.

iM^^!*'?*??^!;^-'
'".T^y^T '.'.'

vitrr
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continues to the right? Pay particular attention to

the region of varying depth. Can you use the line

of reasoning above to give at least a partial ex-

planation of the cause of breakers near a beach?

12.27 A straight-line wave in a ripple tank

approaches a boundary between deep and shallow

water as shown. Describe the shape of the wave
as it passes through the boundary and then as it

continues in the shallow water.

Sho^liovj

12.28 On the opposite page is an aerial photograph

of ocean waves entering from the upper right and
encountering a small island. Describe the wave
phenomena demonstrated by this encounter.

12.29 The diagram below shows two successive

positions, AB and CD, of a wave train of sound
or light, before and after crossing an air-glass

boundary. The time taken to go from AB to DC is

one period of the wave.

B

our

^lass

/

(a) Indicate and label an angle equal to angle
of incidence d^.

(b) Indicate and label an angle equal to angle

of refraction ^b-

(c) Label the wavelength in air \i.

(d) Label the wavelength in glass X,,.

(e) Show that vJVf^ = >^^/K
(f) If you are familiar with trigonometry, show

that sin 0Jsin 0^ = X\; A.,,.

12.30 A periodic ripple-tank wave passes through

a straight boundary between deep and shallow

water. The angle of incidence at the boundary is

45° and the angle of refraction is 30°. The
propagation speed in the deep water is 0.35 m, sec.

and the frequency of the wave is 10 cycles per

sec. Find the wavelengths in the deep and
shallow water.

12.31 Look at Figure (d) on p. 127. Convince
yourself that if a wave were to approach the

boundary between medium 1 and medium 2 from
below, along the same direction as the refracted

ray in the figure, it would be refracted along the

direction of the incident ray in the figure. This is

another example of a general rule: if a wave
follows a set of rays in one direction, then a wave
can follow the same set of rays in the opposite

direction. In other words, wave paths are

reversible.

12.32 Suppose that in an extremely quiet room
you can barely hear a buzzing mosquito at a

distance of one meter.

(a) What is the sound power output of the

mosquito?
(b) How many mosquitoes would it take to supply
the power for one lOO-watt reading lamp?
(c) If the swarm were at ten meters' distance,
what would the sound be like? (Sound intensity

diminishes in proportion to the square of the

distance from a point source.)

12.33 How can sound waves be used to map the

floors of oceans?

12.34 Estimate the wavelength of a 1000 cycles

per second sound wave in air; in water; in steel

(refer to data in text). Do the same if/= 10,000
cps. Design the dimensions of an experiment to

show two-source interference for 1000 cps sound
waves.

12.35 Waves reflect from an object in a definite

direction only when the wavelength is small

compared to the dimensions of the object. This is

true for sound waves as well as for any other.

What does this tell you about the sound fre-

quencies a bat must generate if it is to catch a

moth or a fly? Actually some bats can detect

the presence of a wire about 0.12 mm in

diameter. Approximately what frequency does
that require?

138 Unit 3



Refraction, reflection, and diffraction of waves around Farallon Island,

California. There are breakers all around the coast. The swell coming from

top right rounds both sides of the island, producing a crossed pattern

below. The small islet radiates' the waves away in all directions. (U.S.

Navy photograph.)
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Unit 3/4 EXPERIMENTS
EXPERIMENT 3-1 COLLISIONS
IN ONE DIMENSION—

I

In this experiment you will investigate the

motion of two objects interacting in one dimen-

sion. The interactions (explosions and colli-

sions in the cases treated here) are called

one-dimensional because the objects move
along a single straight line. Your purpose is to

look for quantities or combinations of quanti-

ties that remain unchanged before and after

the interaction—that is, quantities that are

conserved.

Your experimental explosions and colli-

sions may seem not only tame but also artificial

and unUke the ones you see around you in

everyday life. But this is typical of many
scientific experiments, which simplify the

situation so as to make it easier to make mean-

ingful measurements and to discover patterns

in the observed behavior. The underlying laws

are the same for all phenomena, whether or not

they are in a laboratory.

Two different ways of observing interac-

tions are described here (and two others in Ex-

periment 3-2). You will probably use only one of

them. In each method, the friction between the

interacting objects and their surroundings is

kept as small as possible, so that the objects

are a nearly isolated system. Whichever

method you do follow, you should handle your

results in the way described in the final sec-

tion: Analysis of data.

Method A—Dynamics Carts

"Explosions" are easily studied using the low-

friction dynamics carts. Squeeze the loop of

spring steel flat and slip a loop of thread over it,

to hold it compressed. Put the compressed loop

between two carts on the floor or on a smooth

IS

Fig. 1

table (Fig. 1). When you release the spring by

burning the thread, the carts fly apart with ve-

locities that you can measure from a strobe

photograph or by any of the techniques you

learned in earUer experiments.

Load the carts with a variety of weights to

create simple ratios ofmasses, say 2 to 1 or 3 to

2. Take data for as great a variety of mass

ratios as time permits. Because friction will

gradually slow the carts down, you should

make measurements on the speeds im-

mediately after the explosion is over (that is,

when the spring is through pushing).

Since you are interested only in comparing

the speeds of the two carts, you can express

those speeds in any units you wish, without

worrying about the exact scale of the photo-

graph and the exact strobe rate. For example,

you can use distance units measured directly

from the photograph (in millimeters) and use

time units equal to the time interval between

strobe images. If you follow that procedure, the

speeds recorded in your notes will be in

mm/interval.

Remember that you can get data from the

negative of a Polaroid picture as well as from

the positive print.

Method B—Air Track

The air track allows you to observe collisions

between objects
—"ghders"—that move with

almost no friction. You can take stroboscopic

photographs of the gUders either with the

xenon strobe or by using a rotating slotted disk

in front of the camera.

The air track has three ghders: two small

ones with the same mass, and a larger one

which has just twice the mass of a small one. A
small and a large ghder can be coupled to-

gether to make one glider so that you can have

colhsions between gliders whose masses are in

the ratio of 1:1, 2:1, and 3:1. (If you add hght

sources to the gliders, their masses will no

longer be in the same simple ratios. You can

find the masses from the measured weights of

the ghder and light source.)

You can arrange to have the gliders bounce

apart after they colhde (elastic colhsion) or

stick together (inelastic collision). Good tech-



Experiment 3-2 Unit 3/5



Unit 3/6 Experiment 3-2

For each event you should find the speeds

of the balls before and after collision. From the

values for mass and speed of each ball, you

should calculate the total momentum before

and after collision. You will use the same val-

ues to calculate the total kinetic energy before

and after collision.

You should read Section I, before analyz-

ing any of the events, in order to find out what

measurements to make and how the colUsions

were produced. After you have made your

measurements, turn to Section II for questions

to answer about each event.

/. The Measurements You Will Make
To make the necessary measurements you will

need a metric ruler marked in millimeters,

preferably of transparent plastic with sharp

scale markings. Before starting your work,

consult Fig. 1 for suggestions on improving

your measuring technique.

main tma.rk5
, fj. .

end rclioLble.'^ too thick r , r 7

-l.?%^^m\

\

Fig. 1

Fig. 2 shows schematically that the collid-

ing balls were hung from very long wires. The
balls were released from rest, and their

double-wire (bifilar) suspensions guided them
to a squarely head-on colhsion. Stroboscopes il-

luminated the 3 X 4 ft rectangle that was the

field of view of the camera. The stroboscopes

are not shown in Fig. 2.

Notice the two rods whose tops reach into

the field of view. These rods were 1 meter (± 2

milUmeters) apart, measured from top center

of one rod to top center of the other. The tops of

these rods are visible in the photographs on

Fig. 2 Set-up for photographing one-dimensional

collisions.

which you will make your measurements. This

enables you to convert your measurements to

actual distances if you wish. However, it is

easier to use the lengths in milUmeters mea-

sured directly off the photograph if you are

merely going to compare momenta.
The balls speed up as they move into the

field of view. Likewise, as they leave the field of

view, they slow down. Therefore successive

displacements on the stroboscopic photograph,

each of which took exactly the same time, will

not necessarily be equal in length. Check this

with your ruler.

As you measure a photograph, number the

position ofeach ball at successive flashes of the

stroboscope. Note the interval during which
the colhsion occurred. Identify the clearest

time interval for finding the velocity of each

ball (a) before the colhsion and (b) after the

collision. Then mark this information close on

each side of the interval.
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II. Questions to be Answered about
Each Event

After you have recorded the masses (or relative

masses) given for each ball and have recorded

the necessary measurements of velocities,

answer the following questions.

1. What is the total momentum of the system

of two balls before the colUsion? Keep in mind
here that velocity, and therefore momentum,
are vector quantities.

2. What is the total momentum of the system

of two balls after the collision?

3. Was momentum conserved within the

Umits of precision of your measurements?

Event 1

The photographs of this Event 1 and all the

following events appear below as Figs. 10 to

16. This event is also shown as the first exam-

ple in Film Loop LI 8, "One-Dimensional Colli-

sions I."

Figure 3 shows that ball B was initially at

rest. After the colUsion both balls moved off to

the left. The balls are made of steel.

&VENT 1

before

fe

3.-ft-e

350 grams 552 ^rams

Fig. 3

Event 2

This event, the reverse of Event 1, is shown as

the second example in Film Loop LI 8, "One-

Dimensional Colhsions I."

Fig. 3 shows that ball B came in from the

left and that ball A was initially at rest. The

collision reversed the direction of motion of ball

B and sent ball A off to the right. (The balls are

of hardened steel.)

As you can tell by inspection, ball B moved

slowly after collision, and thus you may have

trouble getting a precise value for its speed.

This means that your value for this speed is the

&V&NT 2.

be-fore C3

—

>

350 ^ram^ 532 ^ra,ms>

Fig. 4
O

least reliable ofyour four speed measurements.

Nevertheless, this fact has only a small

influence on the reliability of your value for the

total momentum after colhsion. Can you ex-

plain why this should be so?

Why was the direction of motion of ball B

reversed by the collision?

If you have already studied Event 1, you

will notice that the same balls were used in

Events 1 and 2. Check your velocity data, and

you will find that the initial speeds were nearly

equal. Thus, Event 2 was truly the reverse of

Event 1. Why, then, was the direction of mo-

tion of ball A in Event 1 not reversed although

the direction of ball B in Event 2 was reversed?

Event 3

This event is shown as the first example in

Film Loop L19, "One-Dimensional Collisions

n." Event 3 is not recommended unless you

also study one of the other events. Event 3 is

especially recommended as a companion to

Event 4.

Fig. 5 shows that a massive ball (A) en-

tered from the left. A less massive ball B came

in from the right. The directions of motion of

both balls were reversed by the colhsion. (The

balls were made of hardened steel.)

When you compare the momenta before

and after the colhsion you will probably find

that they differed by more than any other event

so far in this series. Explain why this is so.

Event 4

This event is also shown as the second ex-



Unit 3/8 Experiment 3-2

be-Pore

Fig. 5

l,80 kilogK-atn 532 g trains

O o
ample in Film Loop LI 9, "One-Dimensional

Collisions II."

Fig. 6 shows that two balls came in from

the left, that ball A was far more massive than

ball B, and that ball A was moving faster than

ball B before collision. The colhsion occurred

when A caught up with B, increasing B's speed

at some expense to its own speed. (The balls

were made of hardened steel.)

Each ball moved across the camera's field

from left to right on the same line. In order to

be able to tell successive positions apart on a

stroboscopic photograph, the picture was taken

&VB-NT A-

O o
Fig. 6

twice. The first photograph shows only the

progress of the large ball A because ball B had
been given a thin coat of black paint (of negh-

gible mass). Ball A was painted black when the

second picture was taken. It wUl help you to

analyze the collision if you actually number
white-ball positions at successive stroboscope

flashes in each picture.

Event 5

This event is also shown as the first example in

Film Loop L20, "Inelastic One-Dimensional

Collisions." You should find it interesting to

analyze this event or Event 6 or Event 7, but it

is not necessary to do more than one.

E-V^NT 5

before

& A

o

a-Fte^ -O
Fig. 7

Fig. 7 shows that ball A came in from the

right, striking ball B which was initially at rest.

The balls were made of a soft material (plas-

ticene). They remained stuck together after the

collision and moved off to the left as one. A
colhsion of this type is called "perfectly

inelastic
."

Event 6

This event is shown as the second example in

Fibn Loop L20, "Inelastic One-Dimensional

Collisions."

Fig. 8 shows that balls A and B moved in

from the right and left, respectively, before col-

lision. The balls were made of a soft material

(plasticene). They remained stuck together

after the collision and moved off together to the

left. This is another "perfectly inelastic" colh-

sion, like that in Event 5.

This event was photographed in two parts.

The first print shows the conditions before col-

lision, the second print, after collision. Had the

picture been taken with the camera shutter

open throughout the motion, it would be

difficult to take measurements because the

combined balls (A + B)—after collision—re-

traced the path which ball B followed be-

fore collision. You can number the positions of

each ball before collision at successive flashes

of the stroboscope (in the first photo); and you

can do likewise for the combined balls (A + B)

after the colhsion in the second photo.
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B A

bc-for«i /^'^—^ „

445 grams GG2 grams

A-+- B

Fig.8

A &

4.79 kilogra^nr^ GfeO grams

A+ B

af-tcr

Fig. 9

Event 7

Fig. 9 shows that balls A and B moved in from

opposite directions before colhsion. The balls

are made of a soft material (plasticene). They
remain stuck together after colhsion and move
off together to the right. This is another so-

called "perfectly inelastic'' collision.

This event was photographed in two parts.

The first print shows the conditions before col-

lision, the second print, after colhsion. Had the

picture been made with the camera shutter

open throughout the motion, it would be

difficult to take measurements because the

combined balls (A + B) trace out the same path

as incoming ball B. You can number the posi-

tions of each ball before colhsion at successive

flashes of the stroboscope (in the first photo-

graph), and you can do likewise for the com-
bined balls (A -I- B) after collision in the second

photograph.

Photographs of the Events

The photographs of the events are shown in

Fig. 10 through 16.

Fig. 10 Event 1,10 flashes/sec
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before

after

Fig. 11 Event 2, 10 flashes/sec

before

after

Fig. 12 Event 3. 10 flashes/sec
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ball A

ball B

Fig. 13 Event 4, 10 flashes/sec

Fig. 14 Event 5, 10 flashes/sec
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before

after

Fig. 15 Event 6, 10 flashes/sec

before

after

Fig. 16 Event 7, 10 flashes/sec
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EXPERIMENT 3-3 COLLISIONS
IN TWO DIMENSIONS—

I

Collisions rarely occur in only one dimension,
that is, along a straight line. In billiards, bas-

ketball, and tennis, the ball usually rebounds
at an angle to its original direction; and ordi-

nary explosions (which can be thought of as

collisions in which initial velocities are all

zero) send pieces flying off in all directions.

This experiment deals with colhsions that

occur in two dimensions—that is, in a single

plane—instead of along a single straight line. It

assumes that you know what momentum is

and understand what is meant by "conserva-

tion of momentum" in one dimension. In this

experiment you will discover a general form of

the rule for one dimension that applies also to

the conservation ofmomentum in cases where
the parts of the system move in two (or three)

dimensions.

Two methods of getting data on two-

dimensional colhsions are described below
(and two others in Experiment 3-4), but you
will probably want to follow only one method.
Whichever method you use, handle your re-

sults in the way described in the last section.

Method A—Colliding Pucfcs

On a carefully leveled glass tray covered with a
sprinkhng of Dyhte spheres, you can make
pucks coast with almost uniform speed in any
direction. Set one puck motionless in the center
of the table and push a second similar one to-

ward it, a little off-center. You can make excel-

lent pictures of the resulting two-dimensional
glancing collision with a camera mounted di-

rectly above the surface.

To reduce reflection from the glass tray,

the photograph should be taken using the

xenon stroboscope with the hght on one side

and almost level with the glass tray. To make
each puck's location clearly visible in the

photograph, attach a steel ball or a small white
Styrofoam hemisphere to its center.

The large puck has twice the mass of the

small puck. You can get a greater variety of

masses by stacking pucks one on top of the

other and fastening them together with tape

(but avoid having the colhsions cushioned by
the tape).

Two people are needed to do the experi-

ment. One experimenter, after some prelimi-

nary practice shots, launches the projectile

puck while the other experimenter operates the

camera. The resulting picture should consist of

a series of white dots in a rough "Y" pattern.

Using your picture, measure and record all

the speeds before and after colhsion. Record
the masses in each case too. Since you are in-

terested only in comparing speeds, you can use
any convenient speed units. You can simplify

your work if you record speeds in mm/dot in-

stead of trying to work them out in cm/sec. Be-

cause friction does slow the pucks down, find

speeds as close to the impact as you can. You
can also use the "puck" instead of the kUogram
as your unit of mass.
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Method B-—Colliding
Disk Magnets

Disk magnets will also slide freely on Dylite

spheres as described in Method A.

The difference here is that the magnets
need never touch during the "colUsion." Since

the interaction forces are not really instan-

taneous as they are for the pucks, the magnets
follow curving paths during the interaction.

Consequently the "before" velocity should be

determined as early as possible and the "after"

velocities should be measured as late as possi-

ble.

Following the procedure described above
for pucks, photograph one of these "collisions."

Again, small Styrofoam hemispheres or steel

balls attached to the magnets should show up
in the strobe picture as a series of white dots.

Be sure the paths you photograph are long

enough so that the dots near the ends form
straight lines rather than curves.

Using your photograph, measure and re-

cord the speeds and record the masses. You can
simplify your work if you record speeds in

mm/dot instead of working them out in cm/sec.

You can use the disk instead of the kilogram as

your unit of mass.

Analysis of Data

Whichever procedure you used, you should

analyze your results in the following way. Mul-
tiply the mass of each object by its before-the-

collision speed, and add the products.

1 . Do the same thing for each of the ob-

jects in the system after the collision, and add

the after-the-collision products together. Does

the sum before the colUsion equal the sum
after the colHsion?

Imagine the collision you observed was an

explosion of a cluster of objects at rest; the

total quantity mass-times-speed before the

explosion will be zero. But surely, the mass-

times-speed of each of the flying fragments

after the explosion is more than zero! "Mass-

times-speed" is obviously not conserved in an

explosion. You probably found it wasn't con-

served in the experiments with pucks and
magnets, either. You may already have sus-

pected that you ought to be taking into account

the directions of motion.

To see what is conserved, proceed as fol-

lows.

Use your measurements to construct a

drawing like Fig. 1 , in which you show the di-

rections of motion of all the objects both before

and after the collision.

^
\

-^

Fig. 1

Have all the direction lines meet at a

single point in your diagram. The actual paths
in your photographs will not do so, because the

pucks and magnets are large objects instead of

points, but you can still draw the directions of

motion as lines through the single point P.

On this diagram draw a vector arrow
whose magnitude (length) is proportional to

the mass times the speed of the projectile

before the collision. (You can use any conve-
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5

nient scale.) In Fig. 2, this vector is marked
rrij^Vf,. Before an explosion there is no motion at

all, and hence, no diagram to draw.

Fig. 2

Below your first diagram draw a second
one in which you once more draw the direc-

tions of motion of all the objects exactly as

before. On this second diagram construct the

vectors for mass-times-speed for each of the

objects leaving P after the collision. For the

colhsions of pucks and magnets your diagram
will resemble Fig. 3. Now construct the "after

the colhsion" vector sum.

^aV,

/^/T^/r p

Fig. 3

The length of each of your arrows is given

by the product of mass and speed. Since each

arrow is drawn in the direction of the speed,

the arrows represent the product of mass and

velocity mv which is called moTnentum. The
vector sums "before" and "after" collision

therefore represent the total momentum of the

system of objects before and after the colhsion.

If the "before" and "after" arrows are equal,

then the total momentum of the system of in-

teracting objects is conserved.

2. How does this vector sum compare

with the vector sum on your before-the-

colhsion figure? Are they equal within the

uncertainty?

3. Is the principle of conservation of

momentum for one dimension different from
that for two, or merely a special case of it?

How can the principle of conservation of

momentum be extended to three dimensions?

Sketch at least one example.

4. Write an equation that would express

the principle of conservation of momentum
for collisions of (a) 3 objects in two dimen-
sions, (b) 2 objects in three dimensions, (c) 3

objects in three dimensions.

jmm

A 3,000-pound steel ball swung by a crane against the

walls of a condemned building. What happens to the

momentum of the ball?
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EXPERIMENT 3-4 COLLISIONS IN

TWO DIMENSIONS— II

Method A^Film Loops

Several Film Loops (L21, L22, L23, L24, and

L25) show two-dimensional collisions that you

cannot conveniently reproduce in the labora-

tory. Notes on these films appear on pages 77-

79. Project one of the loops on the chalkboard

or on a sheet of graph paper. Trace the paths of

the moving objects and record their masses

and measure their speeds. Then go on to the

analysis described in the notes for Film Loop

L21 on p. 77.

Method BStroboscopic
Photographs
Stroboscopic photographs* of seven different

two-dimensional colhsions in a plane are used

in this experiment. The photographs (Figs. 5 to

12) are shown on the pages immediately fol-

lowing the description of these events. They
were photographed during the making of Film

Loops L21 through L25.

/. Material Needed
1. A transparent plastic ruler, marked in mil-

limeters.

2. A large sheet of paper for making vector

diagrams. Graph paper is especially conve-

nient.

3. A protractor and two large drawing trian-

gles are useful for transferring direction vec-

tors from the photographs to the vector dia-

grams.

//. How the Collisions were
Produced
Balls were hung on 10-meter wires, as shown
schematically in Fig. 1 . They were released so

as to collide directly above the camera, which

was facing upward. Electronic strobe lights

(shown in Fig. 4) illuminated the rectangle

shown in each picture.

Two white bars are visible at the bottom of

each photograph. These are rods that had their

tips 1 meter (± 2 millimeters) apart in the ac-

tual situation. The rods make it possible for you

"Reproduced by permission of National Film Board of

Canada

Fig. 1 Set-up for photographing two-dimensional
collisions.

to convert your measurements to the actual

distance. It is not necessary to do so, if you

choose instead to use actual on-the-photograph

distances in milhmeters as you may have done

in your study of one-dimensional collisions.

Since the balls are pendulum bobs, they

move faster near the center of the photographs

than near the edge. Your measurements,

therefore, should be made near the center.

///. A Sample Procedure
The purpose of your study is to see to what ex-

tent momentum seems to be conserved in

two-dimensional colhsions. For this purpose

you need to construct vector diagrams.

Consider an example: in Fig. 2, a 450 g and
a 500 g ball are moving toward each other.

Ball A has a momentum of 1.8 kg-m/sec, in

the direction of the ball's motion. Using the

scale shown, you draw a vector 1.8 units long,

parallel to the direction of motion of A. Simi-

larly, for ball B you draw a momentum vector

of 2.4 units long, parallel to the direction of

motion of B.
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A50

\

6<sa(e

Fig. 2 Two balls moving in a plane. Their individual

momenta, which are vectors, are added together vector-

ially in the diagram on the lower right. The vector sum is

the. total momentum of the system of two balls. (Your
own vector drawings should be at least twice this size.)

\
\

A -/

A. 9 m/sec

'

/

> ^

^

Scale
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3-0 rr\/6<SC

The system oftwo balls has a total momen-
tum before the collision equal to the vector sum
of the two momentum vectors for A and B.

The total momentum after the colhsion is

also found the same way, by adding the

momentum vector for A after the colhsion to

that for B after the collision (see Fig. 3).

This same procedure is used for any event

you analyze. Determine the momentum (mag-

nitude and direction) for each object in the

system before the collision, graphically add

them, and then do the same thing for each

object after the collision.

For each event that you analyze, consider

whether momentum is conserved.

Events 8, 9, 10, and 11

Event 8 is also shown as the first example in

be-Fore af-ter

Fig. 3 The two balls collide and move away. Their indi-

vidual momenta after collision are added vectorially.

The resultant vector is the total momentum of the sys-

tem after collision.
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Fibn Loop L22, "Two-Dimensional Collisions:

Part II," as well as on Project Physics Trans-

parency T-20.

Event 10 is also shown as the second ex-

ample in Film Loop L22.

Event 11 is also shown in Film Loop L21,

"Two-Dimensional Colhsions: Part I," and on
Project Physics Transparency T-21 .

These are all elastic collisions. Events 8

and 10, are simplest to analyze because each
shows a colUsion of equal masses. In Events 8

and 9, one ball is initially at rest.

A small sketch next to each photograph in-

dicates the direction ofmotion ofeach ball. The
mass of each ball and the strobe rate are also

given.

Events 12 and 13

Event 12 is also shown as the first example in

Film Loop L23, "Inelastic Two-Dimensional
Collisions."

Event 13 is also shown as the second ex-

ample in Film Loop L23. A similar event is

shown and analyzed in Project Physics Trans-

parency T-22.

Since Events 12 and 13 are similar, there

is no need to do both.

Events 12 and 13 show inelastic collisions

between two plasticene balls that stick to-

gether and move off as one compound object

after the collision. In 13 the masses are equal;

in 12 they are unequal.

Caution: You may find that the two objects

rotate sUghtly about a common center after the

colhsion. For each image after the collision,

you should make marks halfway between the

centers of the two objects. Then determine the

velocity of this "center of mass," and multiply

it by the combined mass to get the total

momentum after the colUsion.

Event 14

Do not try to analyze Event 14 unless you have
done at least one of the simpler events 8

through 13.

Event 14 is also shown on Film Loop L24
"Scattering of a Cluster of Objects."

Figure 4 shows the setup used in photo-

graphing the scattering of a cluster of balls.

The photographer and camera are on the floor,

and four electronic stroboscope Ughts are on

tripods in the lower center of the picture.

You are to use the same graphical methods

as you used for Events 8 through 13 to see if the

conservation of momentum holds for more
than two objects. Event 14 is much more com-

plex because you must add seven vectors,

rather than two, to get the total momentum
after the colhsion.

In Event 14, one ball comes in and strikes a

cluster of six balls of various masses. The balls

were initially at rest. Two photographs are in-

cluded: Print 1 shows only the motion of ball A
before the event. Print 2 shows the positions of

all seven balls just before the colhsion and the

motion of each of the seven balls after the colli-

sion.

You can analyze this event in two different

ways. One way is to determine the initial

momentum of ball A from measurements
taken on Print 1 and then compare it to the

total final momentum of the system of seven

balls from measurements taken on Print 2. The
second method is to determine the total final

momentum of the system of seven balls

Fig. 4 Catching the seven scattered balls to avoid
tangling in the wires from which they hang. The photog-
rapher and the camera are on the floor. The four strobo-

scopes are seen on tripods in the lower center of the

picture.
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on Print 2, predict the momentum of ball A,

and then take measurements of Print 1 to see

whether ball A had the predicted momentum.
Choose one method.

The tops of prints 1 and 2 lie in identical

positions. To relate measurements on one print

to measurements on the other, measure a ball's

distance relative to the top ofone picture with a

rule; the ball would lie in precisely the same
position in the other picture if the two pictures

could be superimposed.

There are two other matters you must con-

sider. First, the time scales are different on the

two prints. Print 1 was taken at a rate of 5

flashes/second, and Print 2 was taken at a rate

of 20 flashes/second. Second, the distance

scale may not be exactly the same for both

prints. Remember that the distance from the

center of the tip of one of the white bars to

center of the tip of the other is 1 meter (± 2

mm) in real space. Check this scale carefully

on both prints to determine the conversion

factor.

The stroboscopic photographs for Events

8 to 14 appear in Figs. 5 to 12.

AQ3G73
H'

B O ^'^^ 9

Fig. 5 Event 8, 20 flashes/sec

BQ 540c\

Fig. 6 Event 9, 20 flashes/sec
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2>G7g 5G7g

Fig. 7 Event 10, 20 flashes/sec

5593 2)GI_3

Fig. 8 Event 1 1 , 20 flashes/sec

559 c»

A B

Fig. 9 Event 12, 20 flashes/sec
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5COg
500g

Fig. 10 Event 13, 10 flashes/sec

AjO. 6OO3

Fig. 11 Event 14, print 1, 5

flashes/sec

1
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EXPERIMENT 3-5

CONSERVATION OF ENERGY—

I

In the previous experiments on conservation of

momentum, you recorded the results of a

number of coUisions involving carts and glid-

ers having different initial velocities. You
found that within the limits of experimental

uncertainty, momentum was conserved in

each case. You can now use the results of these

colhsions to learn about another extremely

useful conservation law, the conservation of

energy.

Do you have any reason to believe that the

product ofw and v is the only conserved quan-

tity? In the data obtained from your photo-

graphs, look for other combinations of quan-

tities that might be conserved. Find values for

m/v, m'h), and mv'^ for each cart before and after

collision, to see if the sum of these quantities

for both carts is conserved. Compare the re-

sults of the elastic collisions with the inelastic

ones. Consider the "explosion" too.

Is there a quantity that is conserved for one

type of collision but not for the other?

There are several alternative methods to

explore further the answer to this question; you

will probably wish to do just one. Check your

results against those of classmates who use

other methods.

Method A—Dynamics Carts

To take a closer look at the details of an elastic

colhsion, photograph two dynamics carts as

you may have done in the previous experiment.

Set the carts up as shown in Fig. 1.

The mass of each cart is 1 kg. Extra mass
is added to make the total masses 2 kg and 4

kg. Tape a light source on each cart. So that

you can distinguish between the images
formed by the two lights, make sure that one of

the bulbs is slightly higher than the other.

Place the 2-kg cart at the center of the

table and push the other cart toward it from the

left. If you use the 12-slot disk on the strobo-

scope, you should get several images during

the time that the spring bumpers are touching.

You will need to know which image of the

right-hand cart was made at the same instant

as a given image of the left-hand cart. Match-
ing images will be easier if one of the twelve

slots on the stroboscope disk should be sUghtly

more than half-covered with tape. (Fig. 2.) Im-

ages formed when that slot is in front of the

lens will be fainter than the others.

^^.
'O

/V

-"'X-

^un o-f{ in cthfer^ of h.hk \ \

r-iv r'd

y

Fig. 1
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Fig. 2

Compute the values for the momentuni,
(mv), for each cart for each time interval while

the springs were touching, plus at least three

intervals before and after the springs touched.

List the values in a table, making sure that you
pair off the values for the two carts correcdy.

Remember that the lighter cart was initially at

rest while the heavier one moved toward it.

This means that the first few values ofmv for

the lighter cart will be zero.

On a sheet of graph paper, plot the momen-
tum of each cart as a function of time, using

the same coordinate axes for both. Connect

each set of values with a smooth curve.

Now draw a third curve which shows the

sum of the two values ofmv, the total momen-
tum of the system for each time interval.

1. Compare the final value ofmv for the

system with the initial value. Was momen-
tum conserved in the colUsion?

2. What happened to the momentum of

the system while the springs were touching

—was momentum conserved during the

collision?

Now compute values for the scalar quan-

tity mv"^ for each cart for each time interval,

and add them to your table. On another sheet of

graph paper, plot the values of mv^ for each

cart for each time interval. Connect each set of

values with a smooth curve.

Now draw a third curve which shows the

sum of the two values ofmv'^ for each time in-

terval.

3. Compare the final value ofmv"^ for the

system with the initial value. Is mv^ a con-

served quantity?

4. How would the appearance of your

graph change if you multiphed each quantity

by i? (The quantity ^v"^ is called the kinetic

energy of the object of mass m and speed v.)

Compute values for the scalar quantity

imi;^ for each cart for each time interval. On a

sheet of graph paper, plot the kinetic energy of

each cart as a function of time, using the same
coordinate axes for both.

Now draw a third curve which shows the

sum of the two values of ^v^, for each time

interval.

5. Does the total amount of kinetic

energy vary during the collision? If you found

a change in the total kinetic energy, how do

you explain it?

Method B—Magnets
Spread some Dyhte spheres (tiny plastic beads)

on a glass tray or other hard, flat surface. A
disc magnet will shde freely on this low-

friction surface. Level the surface carefully.

Put one magnet puck at the center and

push a second one toward it, shghtly off center.

You want the magnets to repel each other with-

out actually touching. Try varying the speed

and direction of the pushed magnet until you

find conditions that make both magnets move
off after the collision with about equal speeds.

To record the interaction, set up a camera
directly above the glass tray (using the motor-

strobe mount if your camera does not attach

directly to the tripod) and a xenon stroboscope

to one side as in Fig. 3. Mount a steel ball or

Styrofoam hemisphere on the center of each

disk with a small piece of clay. The ball will

give a sharp reflection of the strobe Ught.

Take strobe photographs of several inter-

actions. There must be several images before

and after the interaction, but you can vary

the initial speed and direction of the moving

magnet, to get a variety of interactions. Using

your photograph, calculate the "before" and

"after" speeds of each disk. Since you are

interested only in comparing speeds, you can

use any convenient units for speed.
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1. Is m^i^ a conserved quantity? Is iwz;2 a

conserved quantity?

If you find there has been a decrease in the

total kinetic energy of the system ofinteracting

magnets, consider the following: the surface is

not perfectly frictionless and a single magnet
disk pushed across it wiU slow down a bit.

Make a plot of iwi;^ against time for a moving
puck to estimate the rate at which kinetic

energy is lost in this way.

2. How much of the loss in \vnv'^ that you
observed in the interaction can be due to

friction?

3. What happens to your results if you
consider kinetic energy to be a vector quan-
tity?

When the two disks are close together (but

not touching) there is quite a strong force be-

tween them pushing them apart. If you put the

two pucks down on the surface close together

and release them, they will fly apart: the kinet-

ic energy of the system has increased.

If you have time to go on, you should try to

find out what happens to the total quantity

imf^ of the disks while they are close together

during the interaction. To do this you will need

to work at a fairly high strobe rate, and push

the projectile magnet at fairly high speed

—without letting the two magnets actually

touch, of course. Close the camera shutter be-

fore the disks are out of the field of view, so that

you can match images by counting backward

from the last images.

Now, working backward from the last in-

terval, measure v and calculate ^v^ for each

puck. Make a graph in which you plot ^v^ for

each puck against time. Draw smooth curves

through the two plots.

Now draw a third curve which shows the

sum of the two ^mv^ values for each time inter-

val.

4. Is the quantity imf ^ conserved during

the interaction, that is, while the repelling

magnets approach very closely?

Try to explain your observations.

Method C—Inclined Air TraclfS

Suppose you give the glider a push at the bot-

tom of an inclined air track. As it moves up the

slope it slows down, stops momentarily, and
then begins to come back down the track.

Clearly the bigger the push you give the

glider (the greater its initial velocity vO, the

higher up the track it will chmb before stop-

ping. From experience you know that there is

some connection between i^j and d, the dis-

tance the ghder moves along the track.

According to physics texts, when a stone is

thrown upward, the kinetic energy that it has

initially (imf i^) is transformed into gravita-

tional potential energy (mUgh) as the stone

moves up. In this experiment, you will test to

see whether the same relationship apphes to

the behavior of the ghder on the inchned air

track. In particular, your task is to find the ini-

tial kinetic energy and the increase in potential

energy of the air track ghder and to compare
them.

The purpose of the first set of measure-
ments is to find the initial kinetic energy ^i^,^

You cannot measure v^ directly, but you can
find it from your calculation of the average
velocity v^^ as follows. In the case of uniform

acceleration v^v = K^i + vd, and since t;, = at

the top of the track, fgv = ^Vi or u, = 2rav Re-

member that f av = Ad/At, sof, = 2Ad/At; Ad and
At are easy to measure with your apparatus.
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To measure Ad and M three people are

needed: one gives the ghder the initial push,
another marks the highest point on the track

that the glider reaches, and the third uses a
stopwatch to time the motion from push to rest.

Raise one end of the track a few centime-

ters above the tabletop. The launcher should

practice pushing until he can reproduce a push
that will send the ghder nearly to the raised

end of the track.

Record the distance traveled and time

taken for several trials, and weigh the ghder.

Determine and record the initial kinetic

energy.

To calculate the increase in gravitational

potential energy, you must measure the verti-

cal height h through which the ghder moves
for each push. You will probably find that you

need to measure from the tabletop to the track

Fig. 4

at the initial and final points of the gUder's mo-
tion (see Fig. 4), since h =hf-h,. Calculate the

potential energy increase, the quantity maji
for each of your trials.

For each trial, compare the kinetic energy

loss with the potential energy increase. Be sure

that you use consistent units: m in kilograms, v

in meters/second, a^ in meters/second^, h in

meters.

1

.

Are the kinetic energy loss and the po-

tential energy increase equal within your ex-

perimental uncertainty?

2. Explain the significance ofyour result.

Here are more things to do ifyou have time

to go on:

(a) See if your answer to 1 continues to be true

as you make the track steeper and steeper.

(b) When the ghder rebounds from the rubber

band at the bottom of the track it is momentar-

ily stationary—its kinetic energy is zero. The

same is true of its gravitational potential

energy, ifyou use the bottom of the track as the

zero level. And yet the ghder will rebound from

the rubber band (regain its kinetic energy) and

go quite a way up the track (gaining gravita-

tional potential energy) before it stops. See if

you can explain what happens at the rebound
in terms of the conservation of mechanical
energy.

(c) The ghder does not get quite so far up the

track on the second rebound as it did on the

first. There is evidently a loss of energy. See if

you can measure how much energy is lost each
time.

EXPERIMENT 3-6

CONSERVATION OF ENERGY—II

Method A—Film Loops
You may have used one or more of Film Loops
L18 through L25 in your study of momentum.
You will find it helpful to view these slow-

motion films of one and two-dimensional colh-

sions again, but this time in the context of the

study of energy. The data you collected previ-

ously will be sufficient for you to calculate the

kinetic energy of each ball before and after the

colhsion. Remember that kinetic energy imv^ is

not a vector quantity, and hence, you need only

use the magnitude of the velocities in your cal-

culations.

On the basis ofyour analysis you may wish

to try to answer such questions as these: Is

kinetic energy consumed in such interactions?

If not, what happened to it? Is the loss in ki-

netic energy related to such factors as relative

speed, angle of impact, or relative masses of

the colhding balls? Is there a difference in the

kinetic energy lost in elastic and inelastic colh-

sions?

The film loops were made in a highly con-

trolled laboratory situation. After you have de-

veloped the technique of measurement and
analysis from film loops, you may want to turn

to one or more loops deahng with things out-

side the laboratory setting. Film Loops L26
through L33 involve freight cars, bilhard balls,

pole vaulters, and the like. Suggestions for

using these loops can be found on pages
81-87.

Method B—Stroboscopic
Photographs of Collisions

When studying momentum, you may have
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taken measurements on the one-dimensional

and two-dimensional collisions shown in

stroboscopic photographs on pages 9-12

and 19-21. If so, you can now easily re-

examine your data and compute the kinetic

energy ^v^ for each ball before and after the

interaction. Remember that kinetic energy is a

scalar quantity, and so you will use the mag-
nitude of the velocity but not the direction in

making your computations. You would do well

to study one or more of the simpler events (for

example. Events 1, 2, 3, 8, 9, or 10) before at-

tempting the more complex ones involving in-

elastic colhsions or several balls. Also you may
wish to review the discussions given earUer for

each event.

If you find there is a loss of kinetic energy

beyond what you would expect from measure-

ment error, try to explain your results. Some
questions you might try to answer are these:

How does kinetic energy change as a function

of the distance from impact? Is it the same be-

fore and after impact? How is energy conserva-

tion influenced by the relative speed at the time

of colUsion? How is energy conservation

influenced by the angle of impact? Is there a

difference between elastic and inelastic in-

teractions in the fraction of energy conserved?

EXPERIMENT 3-7 MEASURING
THE SPEED OF A BULLET
In this experiment you will use the principle of

the conservation of momentum to find the

speed of a bullet. Sections 9.2 and 9.3 in the

Text discuss colhsions and define momentum.
You will use the general equation of the

principle of conservation of momentum for
—

^

-> —

*

two-body collisions: WaI^a + ^b^b = 'm.fjJ'h +

The experiment consists of firing a projec-

tile into a can packed with cotton or a heavy
block that is free to move horizontally. Since all

velocities before and after the collision are in

the same direction, you may neglect the vector

nature of the equation above and work only

with speeds. To avoid subscripts, call the mass
of the target M and the much smaller mass of

the projectile m. Before impact the target is at

rest, so you have only the speed v of the projec-

tile to consider. After impact both target and

embedded projectile move with a common
speed v' . Thus the general equation becomes

or
mv =(M -\- m)v'

y _ (M + m)v'
m

Both masses are easy to measure. Therefore, if

the comparatively slow speed v' can be found

after impact, you can compute the high speed v

of the projectile before impact. There are at

least two ways to find v'

.

Method A^Air Track

The most direct way to find f ' is to mount the

target on the air track and to time its motion

after the impact. (See Fig. 1.) Mount a small

can, lightly packed with cotton, on an air-track

ghder. Make sure that the glider will still ride

freely with this extra load. Fire a "bullet" (a

pellet fi-om a toy gun that has been checked for

safety by your instructor) horizontally, parallel

to the length of the air track. If M is large

Fig. 1

enough, compared to m, the ghder's speed will

be low enough so that you can use a stopwatch
to time it over a meter distance. Repeat the

measurement a few times until you get consis-

tent results.

1. What is your value for the bullet's

speed?

2. Suppose the collision between bullet

and can was not completely inelastic, so that

the bullet bounced back a little after impact.

Would this increase or decrease your value for

the speed of the bullet?

3. Can you think of an independent way
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to measure the speed of the bullet? Ifyou can,

go on and make the independent measure-
ment. Then see if you can account for any
differences between the two results.

Method B—Ballistic Pendulum
This was the original method of determining

the speed of bullets, invented in 1742 and is

still used in some ordnance laboratories. A
movable block is suspended as a freely swing-

ing pendulum whose motion reveals the bul-

let's speed.

Obtaining the Speed Equation

The collision is inelastic, so kinetic energy is

not conserved in the impact. But during the

nearly frictionless swing of the pendulum after

the impact, mechanical energy is conserved

—that is, the increase in gravitational potential

energy of the pendulum at the end of its

upward swing is equal to its kinetic energy

immediately after impact. Written as an equa-

tion, this becomes

(M + m)a^ JM^jn)v:!

where h is the increase in height of the pen-

dulum bob.

Solving this equation for v' gives:

V' = V2aji

Substituting this expression for v' in the

momentum equation above leads to

')V2a^

Now you have an equation for the speed v of

the bullet in terms of quantities that are known
or can be measured.

A Useful Approximation

The change h in vertical height is hard to

measure accurately, but the horizontal dis-

placement d may be 10 centimeters or more

and can be found easily. Therefore, let's see if

h can be replaced by an equivalent expression

involving d. The relation between h and d can

be found by using a little plane geometry.

In Fig. 2, the center of the circle, O, repre-

sents the point from which the pendulum is

hung. The length of the cords Is l.

Fig. 2
D

In the triangle OBC,

P =d' + (I - hy
so l^ =d^ + P - 2lh + h'

and 2lh =d' + h^

For small swings, h is small compared with /

and d, so you may neglect h'^ in comparison

with d^, and write the close approximation

2lh = d^

or h = dy2l

Putting this value of h into your last equation

for V above and simpUfylng gives:

V = (M + m)d

If the mass of the projectile is small com-

pared with that of the pendulum, this equation

can be simplified to another good approxima-

tion. How?

Finding the Projectile's Speed
Now you are ready to turn to the experiment.

The kind of pendulum you use will depend on

the nature and speed of the projectUe. If you

use pellets from a toy gun, a cylindrical card-

board carton stuffed lightly with cotton and

suspended by threads from a laboratory stand

will do. If you use a good bow and arrow, stuff
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6lio(ihft

and explain any difference between the two v

values.

r 1^

-J>
Fig. 3

straw into a fairly stiff corrugated box and

hang it from the ceiling. To prevent the target

pendulum from twisting, hang it by parallel

cords connecting four points on the pendulum
to four points directly above them, as in Fig. 3.

To measure d, a hght rod (a pencil or a soda

straw) is placed in a tube clamped to a stand.

The rod extends out of the tube on the side to-

ward the pendulum. As the pendulum swings,

it shoves the rod back into the tube so that the

rod's final position marks the end of the swing

of the pendulum. Of course the pendulum must
not hit the tube and there must be sufficient

friction between rod and tube so that the rod

stops when the pendulum stops. The original

rest position of the pendulum is readily found

so that the displacement d can be measured.

Repeat the experiment a few times to get

an idea ofhow precise your value for d is. Then
substitute your data in the equation for v, the

bullet's speed.

1. What is your value for the bullet's

speed?

2. From your results, compare the kinet-

ic energy of the bullet before impact with

that of the pendulum after impact. Why is

there such a large difference in kinetic

energy?

3. Can you describe an independent

method for finding v? If you have time, try it,

EXPERIMENT 3-8 ENERGY
ANALYSIS OF A PENDULUM
SWING

According to the law of conservation of energy,

the loss in gravitational potential energy of a

simple pendulum as it swings from the top of

its swing to the bottom is completely trans-

ferred into kinetic energy at the bottom of the

swing. You can check this with the following

photographic method. A one-meter simple

pendulum (measured from the support to the

center of the bob) with a 0.5 kg bob works well.

Release the pendulum from a position where it

is 10 cm higher than at the bottom of its swing.

To simplify the calculations, set up the

camera for 10: 1 scale reduction. Two different

strobe arrangements have proved successful:

(1) tape an AC blinky to the bob, or (2) attach

an AA cell and bulb to the bob and use a

motor-strobe disk in front of the camera lens.

In either case you may need to use a two-string

suspension to prevent the pendulum bob from

Fig. 1

spinning while swinging. Make a time expo-

sure for one swing of the pendulum.

You can either measure directly from your

print (which should look something like the

one in Fig. 1), or make pinholes at the center of

each image on the photograph and project the

hole images onto a larger sheet of paper. Cal-

culate the instantaneous speed i^ at the bottom
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of the swing by dividing the distance traveled

between the images nearest the bottom of the

swing by the time interval between the images.

The kinetic energy at the bottom of the swing
^mv'-, should equal the change in potential

energy from the top of the swing to the bottom.

If Ah is the difference in vertical height be-

tween the bottom of the swing and the top,

then

V = V2a,Ah

If you plot both the kinetic and potential

energy on the same graph (using the bottom-

most point as a zero level for gravitational po-

tential energy), and then plot the sum ofKE +

PE, you can check whether total energy is con-

served during the entire swing.

EXPERIMENT
ENERGY

3-9 LEAST

Concepts such as momentum, kinetic energy,

potential energy, and the conservation laws

often turn out to be unexpectedly helpful in

helping us to understand what at first glance

seem to be unrelated phenomena. This exper-

iment offers just one such case in point: How

Fig. 1

can we explain the observation that if a chain

is allowed to hang freely from its two ends,

it always assumes the same shape? Hang a

three-foot length ofbeaded chain, the type used

on hght sockets, from two points as shown in

Fig. 1. What shape does the chain assume? At

first glance it seems to be a parabola.

Check whether it is a parabola by finding

the equation for the parabola which would go

through the vertex and the two fixed points.

Determine other points on the parabola by

using the equation. Plot them and see whether

they match the shape of the chain.

The following example may help you plot

the parabola. The vertex in Fig. 1 is at (0,0) and

the two fixed points are at (-8, 14.5) and (8,

14.5). All parabolas symmetric to the y axis

have the formula y = kx^, where fe is a con-

stant. For this example you must have 14.5 =

k(8y, or 14.5 = 64/?. Therefore, k = 0.227, and

the equation for the parabola going through the

given vertex and two points is y = 0.227x^ By
substituting values for x, we calculated a table

of X and y values for our parabola and plotted

it.

A more interesting question is why the

chain assumes this particular shape, which is

called a catenary curve. You will recall that the

gravitational potential energy of a body mass m
is defined as mUgh, where Ug is the acceleration

due to gravity, and h the height of the body

above the reference level chosen. Remember
that only a difference in energy level is mean-

ingful; a different reference level only adds a

constant to each value associated with the

original reference level. In theory, you could

measure the mass of one bead on the chain,

measure the height of each bead above the ref-

erence level, and total the potential energies

for all the beads to get the total potential

energy for the whole chain.

In practice that would be quite tedious, so

you will use an approximation that will still

allow you to get a reasonably good result. (This

would be an excellent computer problem.)

Draw vertical parallel lines about 1-inch apart

on the paper behind the chain (or use graph

paper). In each vertical section, make a mark

beside the chain in that section (see Fig. 2 on

the following page.)
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Fig. 2

The total potential energy for that section

of the chain will be approximately Magh„^,,

where h,„, is the average height which you

marked, and M is the total mass in that section

of chain. Notice that near the ends of the chain

there are more beads in one horizontal interval

than there are near the center of the chain. To
simplify the solution further, assume that M is

always an integral number of beads which you

can count.

In summary, for each interval multiply the

number of beads by the average height for that

interval. Total all these products. This total is a

good approximation to the gravitational poten-

tial energy of the chain.

After doing this for the freely hanging
chain, pull the chain with thumbtacks into

such different shapes as those shown in Fig. 3.

Calculate the total potential energy for each

Fig. 3

shape. Does the catenary curve (the freely-

formed shape) or one of these others have the

minimum total potential energy?

If you would like to explore other instances

of the minimization principle, we suggest the

following:

1

.

When various shapes ofwire are dipped into

a soap solution, the resulting film always forms

so that the total surface area of the film is a

minimum. For this minimum surface, the total

potential energy due to surface tension is a

minimum. In many cases the resulting surface

is not at all what you would expect. An excel-

lent source of suggested experiments with soap

bubbles, and recipes for good solutions, is the

paperback Soap Bubbles and the Forces that

Mould Them, by C. V. Boys, Doubleday Anchor

Books. Also see "The Strange World of Surface

Film," The Physics Teacher, Sept., 1966.

2. Rivers meander in such a way that the work
done by the river is a minimum. For an expla-

nation of this, see "A Meandering River," in

the June 1966 issue of Scientific American.

3. Suppose that points A and B are placed in a

vertical plane as shown in Fig. 4, and you want
to build a track between the two points so that

a ball will roll from A to B in the least possible

Fig. 4

time. Should the track be straight or in the

shape of a circle, parabola, cycloid, catenary,

or some other shape? An interesting property of

a cycloid is that no matter where on a cycloidal

track you release a ball, it will take the same
amount of time to reach the bottom of the

track. You may want to build a cycloidal track

in order to check this. Don't make the track so

steep that the ball sUps instead of roUing.

A more complete treatment of "The Princi-

ple of Least Action" is given in the Feynman
Lectures on Physics, Vol. II, p. 19-1.
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EXPERIMENT 3-10
TEMPERATURE AND
THERMOMETERS
You can usually tell just by touch which of two
similar bodies is the hotter. But if you want to

tell exactly how hot something is or to com-
municate such information to somebody else,

you have to find some way of assigning a

number to "hotness." This number is called

temperature, and the instrument used to get

this number is called a thermometer.

It's not difficult to think of standard units

for measuring intervals of time and distance

—the day and the foot are both familiar to us.

But try to imagine yourself living in an era be-

fore the invention of thermometers and tem-

perature scales, that is, before the time of

Galileo. How would you describe, and if possi-

ble give a number to, the "degree ofhotness" of

an object?

Any property (such as length, volume,

density, pressure, or electrical resistance) that

changes with hotness and that can be mea-

sured could be used as an indication of tem-

perature; and any device that measures this

property could be used as a thermometer.

In this experiment you wUl be using ther-

mometers based on properties of liquid-

expansion, gas-expansion, and electrical resis-

tance. (Other common kinds of thermometers

are based on electrical voltages, color, or gas-

pressure.) Each of these devices has its own
particular merits which make it suitable, from

a practical point of view, for some applications,

and difficult or impossible to use in others.

Of course it's most important that readings

given by two different types of thermometers

agree. In this experiment you will make your

own thermometers, put temperature scales on

them, and then compare them to see how well

they agree with each other.

Defining a Temperature Scale

How do you make a thermometer? First, you

decide what property (length, volume, etc.)

of what substance (mercury, air, etc.) to use

in your thermometer. Then you must decide

on two fixed points in order to arrive at the

size of a degree. A fixed point is based on a

physical phenomenon that always occurs at

the same degree of hotness. Two convenient

fixed points to use are the melting point of

ice and the boiling point of water. On the

Celsius (centigrade) system they are assigned

Any quantity that varies with hotness can be used to establish a temperature scale

(even the time it takes for an alka seltzer tablet to dissolve in water!). Two "fixed

points" (such as the freezing and boiling points of water) are needed to define the

size of a degree.
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the values 0°C and 100°C at ordinary atmo-

spheric pressure.

When you are making a thermometer of

any sort, you have to put a scale on it against

which you can read the hotness-sensitive

quantity. Often a piece of centimeter-marked

tape or a short piece of ruler will do. Submit

your thermometer to two fixed points of hot-

ness (for example, a bath ofboiling water and a

bath of ice water) and mark the positions on

the indicator.

The length of the column can now be used

to define a temperature scale by saying that

equal temperature changes cause equal

changes along the scale between the two

fixed-point positions. Suppose you marked the

length of a column of liquid at the freezing

point and again at the boiling point of water.

You can now divide the total increase in length

into equal parts and call each of these parts

"one degree" change in temperature.

On the Celsius scale the degree is 1/100 of

the temperature range between the boiling and

freezing points of water.

To identify temperatures between the fixed

points on a thermometer scale, mark off the

actual distance between the two fixed points on

the vertical axis of a graph and equal intervals

for degrees of temperature on the horizontal

axis, as in Fig. 1. Then plot the fixed points (x)

on the graph and draw a straight line between

them.

Now, the temperature on this scale, cor-

responding to any intermediate position 1, can

be read off the graph.

Other properties and other substances can

T 100

Fig. 1

be used (the volume of different gases, the

electrical resistance of different metals, and so

on), and the temperature scale defined in the

same way. All such thermometers will have to

agree at the two fixed points—but do they agree

at intermediate temperatures?

If different physical properties do not

change in the same way with hotness, then the

temperature values you read from thermome-

ters using these properties will not agree. Do
similar temperature scales defined by different

physical properties agree anywhere besides at

the fixed points? That is a question that you

can answer from this lab experience.

Comparing Thermometers
You will make or be given two "thermometers"

to compare. Take readings of the appropriate

quantity—length of liquid column, volume

of gas, electrical resistance, thermocouple

voltage, or whatever—when the devices are

placed in an ice bath, and again when they are

placed in a boiling water bath. Record these

values. Define these two temperatures as 0°

and 100° and draw the straight-Line graphs that

define intermediate temperatures as described

above.

Now put your two thermometers in a series

of baths of water at intermediate tempera-

tures, and again measure and record the

length, volume, resistance, etc. for each bath.

Put both devices in the bath at the same time

in case the bath is cooHng down. Use your

graphs to read off the temperatures of the

water baths as indicated by the two devices.

Do the temperatures measured by the two

devices agree?

If the two devices do give the same read-

ings at intermediate temperatures, then you

could apparently use either as a thermometer.

But if they do not agree, you must choose only

one of them as a standard thermometer. Give

whatever reasons you can for choosing one

rather than the other before reading the follow-

ing discussion. If possible, compare your re-

sults with those of classmates using the same
or different kinds of thermometers.

There will of course be some uncertainty
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in your measurements, and you must decide

whether the differences you observe between

two thermometers might be due only to this

uncertainty.

The relationship between the readings

from two different thermometers can be dis-

played on another graph, where one axis is the

reading on one thermometer and the other axis

is the reading on the other thermometer. Each
bath will give a plot point on this graph. If the

points fall along a straight Une, then the two

thermometer properties must change with

both in the same way. If, however, a fairly reg-

ularly smooth curve can be drawn through the

points, then the two thermometer properties

probably depend on hotness in different ways.

(Figure 2 shows possible results for two ther-

mometers.)
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Discussion

If we compare many gas thermometers—at

constant volume as well as pressure, and use

different gases, and different initial volumes

and pressures—we find that they all behave

quantitatively in very much the same way with

respect to changes in hotness. If a given hot-

ness change causes a 10% increase in the pres-

sure of gas A, then the same change will also

cause a 10% increase in gas B's pressure. Or, if

the volume of one gas sample decreases by

20% when transferred to a particular cold

bath, then a 20% decrease in volume will also

be observed in a sample of any other gas. This

means that the temperatures read from differ-

ent gas thermometers all agree.

This sort of close similarity of behavior be-

tween different substances is not found as con-

sistently in the expansion ofhquids or sohds, or

in their other properties—electrical resistance,

etc.—and so these thermometers do not agree,

as you may have just discovered.

This suggests two things. First, that there

is quite a strong case for using the change in

pressure (or volume) of a gas to define the

temperature change. Second, the fact that in

such experiments all gases do behave quan-

titatively in the same way suggests that there

may be some underlying simphcity in the be-

havior of gases not found in liquids and sohds,

and that if one wants to learn more about the

way matter changes with temperature, one

would do well to start with gases.

EXPERIMENT 3-11 CALORIIVIETRY

Speedometers measure speed, voltmeters mea-

sure voltage, and accelerometers measure

acceleration. In this experiment you wOl use a

device called a calorimeter. As the name sug-

gests, it measures a quantity connected with

heat.

Unfortunately heat energy cannot be

measured as directly as some of the other

quantities mentioned above. In fact, to mea-

sure the heat energy absorbed or given off by a

substance you must measure the change in

temperature of a second substance chosen as a

standard. The heat exchange takes place in-

side a calorimeter, a container in which mea-

sured quantities of materials can be mixed to-

gether without an appreciable amount of heat

being gained from or lost to the outside.

A Preliminary Experiment

The first experiment will give you an idea of

how good a calorimeter's insulating ability

really is.

Fill a calorimeter cup about half full of ice

water. Put the same amount of ice water with

one or two ice cubes floating in it in a second

cup. In a third cup pour the same amount of

water that has been heated to nearly boiling.

Measure the temperature of the water in each
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cup, and record the temperature and the time

of observation.

Repeat the observations at about five-

minute intervals throughout the period. Be-

tween observations, prepare a sheet of graph

paper with coordinate axes so that you can

plot temperature as a function of time.

Mixing Hot and Cold Liquids

(You can do this experiment while continuing

to take readings of the temperature of the

water in your three cups.) You are to make sev-

eral assumptions about the nature of heat.

Then you will use these assumptions to predict

what will happen when you mix two samples

that are initially at different temperatures. If

your prediction is correct, then you can feel

some confidence in your assumptions—at

least, you can continue to use the assumptions

untU they lead to a prediction that turns out to

be wrong.

First, assume that, in your calorimeter,

heat behaves like a fluid that is conserved

—that is, it can flow from one substance to

another but the total quantity of heat H present

in the calorimeter in any given experiment is

constant. This implies that heat lost by warm
object just equals heat gained by cold object.

Or, in symbols

^H, = ^H,

Next, assume that, if two objects at differ-

ent temperatures are brought together, heat

will flow from the warmer to the cooler object

until they reach the same temperature.

Finally, assume that the amount of heat

fluid AH which enters or leaves an object is

proportional to the change in temperature AT
and to the mass of the object, m. In symbols,

AH = cmAT

where c is a constant of proportionality that

depends on the units—and is different for dif-

ferent substances.

The units in which heat is measured have

been defined so that they are convenient for

calorimeter experiments. The calorie is defined

as the quantity of heat necessary to change the

temperature of one gram of water by one Cel-

sius degree. (This definition has to be refined

somewhat for very precise work, but it is ade-

quate for your purpose.) In the expression

AH = cmAT

when m is measured in grams of water and T
in Celsius degrees, H will be the number of
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calories. Because the calorie was defined this

way, the proportionality constant c has the

value 1 cal/gC° when water is the only sub-

stance in the calorimeter. (The calorie is

1/1000 of the kilocalorie—or Calorie.)

Checking the Assumptions
Measure and record the mass of two empty
plastic cups. Then put about ^ cup of cold water
in one and about the same amount of hot water

in the other, and record the mass and tempera-

ture of each. (Don't forget to subtract the mass
of the empty cup.) Now mix the two together in

one of the cups, stir gently with a thermome-
ter, and record the final temperature of the

mixture.

Multiply the change in temperature of the

cold water by its mass. Do the same for the hot

water.

1. What is the product (mass x tempera-

ture change) for the cold water?

2. What is this product for the hot water?

3. Are your assumptions confirmed, or

is the difference between the two products

greater than can be accounted for by un-

certainties in your measurement?

Predicting from the Assumptions
Try another mixture using different quantities

of water, for example } cup of hot water and ^

cup of cold. Before you mix the two, try to pre-

dict the final temperature.

4. What do you predict the temperature

of the mixture will be?

5. What final temperature do you ob-

serve?

6. Estimate the uncertainty of your

thermometer readings and your mass mea-

surements. Is this uncertainty enough to ac-

count for the difference between your pre-

dicted and observed values?

7. Do your results support the assump-

tions?

measurable change in temperature by this

time. If you are to hold to your assumption of

conservation of heat fluid, then it must be that

some heat has gone from the hot water into the

room and from the room to the cold water.

8. How much has the temperature of the

cold water changed?

9. How much has the temperature of the

water that had ice in it changed?

IVIelting

The cups you filled with hot and cold water at

the beginning of the period should show a

The heat that must have gone from the

room to the water-ice mixture evidently did not

change the temperature of the water as long as

the ice was present. But some of the ice melted,

so apparently the heat that leaked in was used

to melt the ice. Evidently, heat was needed to

cause a "change of state" (in this case, to melt

ice to water) even if there was no change in

temperature. The additional heat required to

melt one gram of ice is called "latent heat of

melting." Latent means hidden or dormant.

The units are cal/g—there is no temperature

unit here because no temperature change is

involved in latent heat.

Next, you will do an experiment mixing

materials other than liquid water in the

calorimeter to see if your assumptions about

heat as a fluid can still be used. Two such ex-

periments are described below, "Measuring

Heat Capacity" and "Measuring Latent Heat."

If you have time for only one of them, choose

either one. Finally, do "Rate of Cooling" to

complete your preliminary experiment.

Measuring Heat Capacity

(While you are doing this experiment, continue

to take readings of the temperature of the

water in your three test cups.) Measure the

mass of a small metal sample. Put just enough

cold water in a calorimeter to cover the sample.

Tie a thread to the sample and suspend it in a

beaker of boiling water. Measure the tempera-

ture of the boiling water.

Record the mass and temperature of the

water in the calorimeter.

When the sample has been immersed in

the boiling water long enough to be heated

uniformly (2 or 3 minutes), hft it out and hold
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it just above the surface for a few seconds to let

the water drip off, then transfer it quickly to

the calorimeter cup. Stir gently with a ther-

mometer and record the temperature when it

reaches a steady value.

10. Is the product of mass and tempera-

ture change the same for the metal sample

and for the water?

11. If not, must you modify the assump-

tions about heat that you made earUer in the

experiment?

In the expression Mi - cm^T, the constant

of proportionality c (called the "specific heat

capacity") may be different for different mate-

rials. For water the constant has the value

1 cal/gC°. You can find a value of c for the

metal by using the assumption that heat

gained by water equals the heat lost by sample.

Or, writing subscripts w and s for water and

metal sample, AH^, = -AH,.

Then

and

c^,m„,,At^, = -Csm.Ms

-c„m„At„.
c. = -^'"''if'-"'a'

Tn,,At.,

12. What is your calculated value for the

specific heat capacity c^ for the metal sample

you used?

If your assumptions about heat being a

fluid are valid, you now ought to be able to pre-

dict the final temperature of any mixture of

water and your material.

Try to verify the usefulness of your value.

Predict the final temperature of a mixture of

water and a heated piece of your material,

using different masses and different initial

temperatures.

13. Does your result support the fluid

model of heat?

Measuring Latent Heat
Use your calorimeter to find the "latent heat of

melting" of ice. Start with about i cup of water

that is a little above room temperature, and re-

cord its mass and temperature. Take a small

piece of ice from a mixture of ice and water

that has been standing for some time; this will

assure that the ice is at 0°C and will not have to

be warmed up before it can melt. Place the

small piece of ice on paper toweling for a mo-

ment to dry off water on its surface, and then

transfer it quickly to the calorimeter.

Stir gently with a thermometer until the

ice is melted and the mixture reaches an

equilibrium temperature. Record this tempera-

ture and the mass of the water plus melted ice.

14. What was the mass of the ice that you

added?

The heat given up by the warm water is:

AH„. = c,,Tn„,At„,I „. V^y.IIl.y.<.*«,^.

The heat gained by the water formed by the

melted ice is:

H, = Cu-WjAt,

The specific heat capacity c„. is the same in

both cases—the specific heat of water.

The heat given up by the warm water first

melts the ice, and then heats the water formed

by the melted ice. If we use the symbol AH^ for

the heat energy required to melt the ice, we can

write:

-AH,, = AH;. + AH,

So the heat energy needed to melt the ice is

AHt = -AH„.-AH,

The latent heat of melting is the heat en-

ergy needed per gram of ice, so

latent heat of melting = AH,
m

15. What is your value for the latent heat

of melting of ice?

When this experiment is done with ice

made from distilled water with no inclusions of

liquid water, the latent heat is found to be 80

calories per gram of ice. How does your result

compare with the accepted value?
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Rate of Cooling

If you have been measuring the temperature of

the water in your three test cups, you should

have enough data by now to plot three curves

of temperature against time. Mark the temper-

ature of the air in the room on your graph too.

16. How does the rate at which the hot

water cools depend on its temperature?

17. How does the rate at which the cold

water heats up depend on its temperature?

Weigh the amount of water in the cups.

From the rates of temperature change (de-

grees/minute) and the masses of water, cal-

culate the rates at which heat leaves or enters

the cups at various temperatures. Use this in-

formation to estimate the error in your earUer

results for latent or specific heat.

EXPERIMENT 3-12 ICE
CALORIMETRY
A simple apparatus made up of thermally in-

sulating styrofoam cups can be used for doing

some ice calorimetry experiments. Although

the apparatus is simple, careful use will give

you excellent results. To determine the heat

transferred in processes in which heat energy

is given off, you will be measuring either the

volume of water or the mass of water from a

melted sample of ice.

You will need either three cups the same

size (8 oz or 6 oz), or two 8 oz and one 6 oz cup.

Also have some extra cups ready. One large

cup serves as the collector, A, (Fig. 1), the sec-

ond cup as the ice container, I, and the smaller

cup (or one of the same size cut back to fit in-

C^P .1^

Fig. 1 Fig. 2

side the ice container as shown) as the cover,

K.

Cut a hole about i-inch in diameter in the

bottom of cup I so that melted water can drain

out into cup A. To keep the hole from becoming
clogged by ice, place a bit of window screening

in the bottom of I.

In each experiment, ice is placed in cup I.

This ice should be carefully prepared, free of

bubbles, and dry, if you want to use the known
value of the heat of fusion of ice. However, you

can use ordinary crushed ice, and, before doing

any of the experiment, determine experimen-

tally the effective heat of melting of this non-

ideal ice. (Why should these two values differ?)

In some experiments which require some
time to complete (such as Experiment b), you

should set up two identical sets of apparatus

(same quantity of ice, etc.), except that one

does not contain a source of heat. One will

serve as a fair measure of the background ef-

fect. Measure the amount of water collected in

it during the same time, and subtract it from

the total amount of water collected in the ex-

perimental apparatus, thereby correcting for

the amount of ice melted just by the heat leak-

ing in from the room. An efficient method for

measuring the amount of water is to place the

arrangement on the pan of a balance and lift

up cups I and K at regular intervals (about 10

min.) whUe you weigh A with its contents of

melted ice water.

(a) Heat of melting of ice. Fill a cup about Ho 4

full with crushed ice. (Crushed ice has a larger

amount of surface area, and so will melt more
quickly, thereby minimizing errors due to heat

from the room.) Bring a small measured
amount of water (say about 20 cc) to a boil in a

beaker or large test tube and pour it over the ice

in the cup. Stir briefly with a poor heat conduc-

tor, such as a glass rod, until equilibrium has

been reached. Pour the ice-water mixture

through cup I. Collect and measure the final

amount of water (wif) in A. If tuo is the original

mass of hot water at 100°C with which you

started, then Wf - rwo is the mass of ice that was
melted. The heat energy absorbed by the melt-

ing ice is the latent heat of melting for ice, Li,
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times the mass of melted ice: Li(mf-mo). This

will be equal to the heat energy lost by the boil-

ing water cooling from 100°C to 0°C, so we can

write

LiirUf - rrio) = nioAT

and Li = nic

rrif - TUo
100C°

Note: This derivation is correct only if

there is still some ice in the cup afterwards. If

you start with too little ice, the water will come
out at a higher temperature.

For crushed ice which has been standing

for some time, the value of Lj will vary between

70 and 75 calories per gram.

(b) Heat exchange and transfer by conduction

and radiation. For several possible experi-

ments you will need the following additional

apparatus. Make a small hole in the bottom of

cup K and thread two wires, soldered to a light-

bulb, through the hole. A flashlight bulb which
operates with an electric current between 300
and 600 milhamperes is preferable; but even a

GE #1130 6-volt automobile headUght bulb

(which draws 2.4 amps) has been used with

success. (See Fig. 2.) In each experiment, you

are to observe how different apparatus affects

heat transfer into or out of the system.

1

.

Place the bulb in the ice and turn it on for 5

minutes. Measure the ice melted.

2. Repeat 1, but place the bulb above the ice

for 5 minutes.

3. and 4: Repeat 1 and 2, but cover the inside

of cup K with aluminum foil.

5. and 6: Repeat 3 and 4, but in addition cover

the inside of cup I with aluminum foil.

7. Prepare "heat absorbing" ice by freezing

water to which you have added a small amount
of dye, such as India ink. Repeat any or all of

experiments 1 through 6 using this "specially

prepared" ice.

Some questions to guide your observations:

Does any heat escape when the bulb is im-

mersed in the ice? What arrangement keeps in

as much heat as possible?

EXPERIMENT 3-13

MONTE CARLO EXPERIMENT
ON MOLECULAR COLLISIONS

A model for a gas consisting of a large number
of very small particles in rapid random motion

has many advantages. One of these is that it

makes it possible to estimate the properties of a

gas as a whole from the behavior of a compara-

tively small random sample of its molecules. In

this experiment you will not use actual gas par-

ticles, but instead employ analogs of molecular

collisions. The technique is named the Monte
Carlo method after that famous (or infamous)

gambling casino in Monaco. The experiment

consists of two games, both of which involve

the concept of randomness. You will probably

have time to play only one.

Game I Collision Probability for a
Gas of Marbles
In this part of the experiment, you will try to

find the diameter of marbles by rolling a "bom-

barding marble" into an array of "target mar-

bles" placed at random positions on a level

sheet of graph paper. The computation of

the marble diameter will be based on the

proportion of hits and misses. In order to as-

sure randomness in the motion of the bom-

barding marble, start at the top of an inclined

board studded with nails spaced about an

inch apart—a sort of pinball machine (Fig. 1).

Fig. 1
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To get a fairly even, yet random, distribution

of the bombarding marble's motion, move its

release position over one space for each release

in the series.

First you need to place the target marbles
at random. Then draw a network of crossed

grid Unes spaced at least two marble diameters
apart on your graph paper. (If you are using
marbles whose diameters are half an inch,

these grid hnes should be spaced 1.5 to 2
inches apart.) Number the grid hnes as shown
in Fig. 2.
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Fig. 2 Eigiit consecutive two-digit numbers in a

table of random numbers were used to place the

marbles.

One way of placing the marbles at random
is to turn to the table ofrandom numbers at the

end of this experiment. Each student should

start at a different place in the table and then

select the next eight numbers. Use the first two

digits of these numbers to locate positions on

the grid. The first digit of each number gives

the X coordinate, the second gives the y

coordinate—or vice versa. Place the target

marbles in these positions. Books may be

placed along the sides of the graph paper and

across the bottom to serve as containing walls.

With your array of marbles in place, make
about fifty trials with the bombarding marble.
From your record of hits and misses compute
R, the ratio between the number of runs in

which there are one or more hits to the total

number of runs. Remember that you are count-
ing "runs with hits," not hits, and hence, sev-

eral hits in a single run are still counted as

"one."

inferring the size of the marbies. How does the

ratio R lead to the diameter of the target ob-

ject? The theory applies just as well to deter-

mining the size of molecules as it does to mar-
bles, although there would be lO^** or so

molecules instead of 8 "marble molecules."
If there were no target marbles, the bom-

barding marble would get a clear view of the

full width, sayD, of the back wall enclosing the

array. There could be no hit. If, however, there

were target marbles, the 100% clear view
would be cut down. If there were N target mar-
bles, each with diameter d, then the clear path
over the width D would be reduced by N x d.

It is assumed that no target marble is hid-

ing behind another. (This corresponds to the

assumption that the sizes of molecules are ex-

tremely small compared with the distances be-

tween them.)

The blocking effect on the bombarding
marble is greater than just Nd, however. The
bombarding marble will miss a target marble
only if its center passes more than a distance of
one radius on either side of it. (See Fig. 3 on
next page.) This means that a target marble
has a blocking effect over twice its diameter
(its own diameter plus two radii), so the total

blocking effect of N marbles is 2Nd. There-

fore the expected ratio R of hits to total trials

is 2NdlD (total blocked width to total width).

Thus:

R _2Nd

which we can rearrange to give an expression

for d:

d = RD
2N
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d
1

Fig. 3 « >
A projectile will clear a target only if it passes outside

a center-to-center distance d on either side of it.

Therefore, thinking of the projectiles as points, the

effective blocking width of the target is 2d.

To check the accuracy of the Monte Carlo

method compare the value for d obtained from

the formula above with that obtained by direct

measurement of the marbles. (For example,

hne up your eight marbles against a book.

Measure the total length of all ofthem together

and divide by eight to find the diameter d ofone

marble.)

1. What value do you calculate for the

marble diameter?

2. How well does your experimental pre-

diction agree with direct measurement?

Game II Mean Free Path Between
Collision Squares
In this part of the experiment you play with

blacked-in squares as target molecules in place

of marble molecules in a pinball game. On a

sheet of graph paper, say 50 units on a side

(2,500 squares), you will locate by the Monte
Carlo method between 40 and 100 molecules.

Each student should choose a different number
of molecules.

You will find a table of random numbers
(from to 50) at the end of this experiment.

Begin anywhere you wish in the table, but then

proceed in a regular sequence. Let each pair of

numbers be the x and y coordinates of a point

on your graph. (Ifone of the pair is greater than

49, you cannot use it. Ignore it and take the

next pair.) Then shade in the squares for which

these points are the lower left-hand corners.

You now have a random array of square target

"molecules."

Fig. 4 (03j 02)

Rules of the game. The way a bombarding par-

ticle passes through this array, it is bound to

colhde with some of the target particles. There
are five rules for this game of collision. All of

them are illustrated in Fig. 5.

(a) The particle can travel only along lines of

the graph paper, up or down, left or right. They
start at some point (chosen at random) on

r—

r

Fig. 5
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the left-hand edge of the graph paper. The par-

ticle initially moves horizontally from the start-

ing point until it colhdes with a blackened

square or another edge of the graph paper.

(b) If the particle strikes the upper left-hand

corner of a target square, it is diverted upward
through a right angle. If it should strike a low-

er left-hand comer it is diverted downward,
again through ninety degrees.

(c) When the path of the particle meets an

edge or boundary of the graph paper, the parti-

cle is not reflected directly back. (Such a rever-

sal of path would make the particle retrace its

previous paths.) Rather it moves two spaces to

its right along the boundary edge before re-

versing its direction.

(d) There is an exception to rule (c). Whenever
the particle strikes the edge so near a corner

that there isn't room for it to move two spaces

to the right without meeting another edge of

the graph paper, it moves two spaces to the left

along the boundary.

(e) Occasionally two target molecules may oc-

cupy adjacent squares and the particle may hit

touching corners of the two target molecules at

the same time. The rule is that this counts as

two hits and the particle goes straight through

without changing its direction.

Finding the "mean free path." With these colli-

sion rules in mind, trace the path of the particle

as it bounces about among the random array of

target squares. Count the number of collisions

with targets. Follow the path of the particle

until you get 51 hits with target squares (colli-

sions with the edge do not count). Next, record

the 50 lengths of the paths of the particle be-

tween collisions. Distances to and from a

boundary should be included, but not distances

along a boundary (the two spaces introduced to

avoid backtracking). These 50 lengths are the

free paths of the particle. Total them and di-

vide by 50 to obtain the mean free path, L, for

your random two-dimensional array of square

molecules.

In this game your molecule analogs were

pure points, i.e., dimensionless. In his inves-

tigations Clausius modified this model by

giving the particles a definite size. Clausius

showed that the average distance L a molecule

travels between collisions, the so-called "mean
free path," is given by

L = V
Na

where V is the volume of the gas, N is the

number of molecules in that volume, and a is

the cross-sectional area of an individual

molecule. In this two-dimensional game, the

particle was moving over an area A, instead

of through a volume V, and was obstructed

by targets of width d, instead of cross-section-

al area a. A two-dimensional version of

Clausius's equation might therefore be:

L =
2Nd

where N is the number of blackened square

"molecules."

3. What value of L do you get from the

data for your runs?

4. Using the two-dimensional version of

Clausius's equation, what value do you esti-

mate for d (the width of a square)?

5. How does your calculated value of d

compare with the actual value? How do you

explain the difference?
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TABLE OF 1000 RANDOM TWO-DIGIT NUMBERS
(FROM to 50)

03 47
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EXPERIMENT 3-14 BEHAVIOR
OF GASES
Air is elastic or springy. You can feel this when
you put your finger over the outlet of a bicycle

pump and push down on the pump plunger.

You can tell that there is some connection be-

tween the volume of the air in the pump and

the force you exert in pumping, but the exact

relationship is not obvious. About 1660, Robert

Boyle performed an experiment that disclosed

a very simple relationship between gas pres-

sure and volume, but not until two centuries

later was the kinetic theory of gases developed,

which accounted for Boyle's law satisfactorily.

The purpose of these experiments is not

simply to show that Boyle's Law and Gay
Lussac's Law (which relates temperature and

volume) are "true." The purpose is also to show
some techniques for analyzing data that can

lead to such laws.

/. Volume and Pressure

Boyle used a long glass tube in the form of a J

to investigate the "spring of the air." The short

arm of the J was sealed, and air was trapped in

it by pouring mercury into the top of the long

arm. (Apparatus for using this method may be

available in your school.)

A simpler method requires only a small

plastic syringe, calibrated in cc, and mounted
so that you can push down the piston by piling

weights on it. The volume of the air in the

syringe can be read directly from the calibra-

tions on the side. The pressure on the air due to

Fig. 1

the weights on the piston is equal to the force

exerted by the weights divided by the area of

the face of the piston:

P — w
" A

Because "weights" are usually marked
with the value of their mass, you will have to

compute the force from the relation Fgrav =

magrav (It will help you to answer this question

before going on: What is the weight, in new-

tons, of a 0.1 kg mass?)

To find the area of the piston, remove it

from the syringe. Measure the diameter (2R) of

the piston face, and compute its area from the

familiar formula A = ttR^.

You wUl want to both decrease and in-

crease the volume of the air, so insert the pis-

ton about halfway down the barrel of the

syringe. The piston may tend to stick shghtly.

Give it a twist to free it and help it come to its

equilibrium position. Then record this position.

Add weights to the top of the piston and

each time record the equilibrium position, after

you have given the piston a twist to help over-

come friction.

Record your data in a table with columns

for volume, weight, and pressure. Then re-

move the weights one by one to see if the vol-

umes are the same with the piston coming up

as they were going down.

If your apparatus can be turned over so

that the weights pull out on the plunger, obtain

more readings this way, adding weights to in-

crease the volume. Record these as negative

forces. (Stop adding weights before the piston

is puUed all the way out of the barrel!) Again

remove the weights and record the values on

returning.

Interpreting your results. You now have a set of

numbers somewhat like the ones Boyle re-

ported for his experiment. One way to look for a

relationship between the pressure P„. and the

volume V is to plot the data on graph paper,

draw a smooth simple curve through the

points, and try to find a mathematical expres-

sion that would give the same curve when plot-

ted.
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Plot volume V (vertical axis) as a function

of pressure P^, (horizontal axis). If you are will-

ing to believe that the relationship between ?„.

and V is fairly simple, then you should try to

draw a simple curve. It need not actually go

through all the plot points, but should give an

overall "best fit."

Since V decreases as P^ increases, you can

tell before you plot it that your curve represents

an "inverse" relationship. As a first guess at

the mathematical description of this curve, try

the simplest possibility, that 1/V is proportional

to Pu,. That is, IfV oc P,,,. A graph of proportional

quantities is a straight hne. If lA^ is propor-

tional to P„„ then a plot of W value against

P^, will he on a straight hne.

Add another column to your data table for

values of IfV and plot this against P^..

1. Does the curve pass through the

origin?

2. If not, at what point does your curve

cross the horizontal axis? (In other words,

what is the value of P„, for which 1/V would be

zero?) What is the physical significance of the

value of P,„?

In Boyle's time, it was not understood that

air is really a mixture of several gases. Do you

believe you would find the same relationship

between volume and pressure if you tried a va-

riety of pure gases instead of air? If there are

other gases available in your laboratory, flush

out and refill your apparatus with one of them
and try the experiment again.

3. Does the curve you plot have the same
shape as the previous one?

//. Volume and Temperature

Boyle suspected that the temperature of his air

sample had some influence on its volume, but

he did not do a quantitative experiment to find

the relationship between volume and tempera-

ture. It was not until about 1880, when there

were better ways of measuring temperature,

that this relationship was established.

You could use several kinds of equipment

to investigate the way in which volume

changes with temperature. Such a piece of

equipment is a glass bulb with a J tube of mer-

cury or the syringe described above. Make sure

the gas inside is dry and at atmospheric pres-

sure. Immerse the bulb or syringe in a beaker

of cold water and record the volume of gas and

temperature of the water (as measured on a

suitable thermometer) periodically as you

slowly heat the water.

A simpler piece of equipment that will give

just as good results can be made from a piece of

glass capillary tubing.

Equipment note: assembling a
constant-pressure gas
thermometer
About 6" of capillary tubing makes a ther-

mometer ofconvenient size. The dimensions of

the tube are not critical, but it is very important

that the bore be dry. It can be dried by heating,

or by rinsing with alcohol and waving it

frantically—or better still, by connecting it to a

vacuum pump for a few moments.

Filling with air. The dry capillary tube is dipped

into a container of mercury, and the end sealed

with fingertip as the tube is withdrawn (Fig. 2),

so that a pellet of mercury remains in the lower

end of the tube.

Fig. 2
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Fig. 3

The tube is held at an angle and the end

tapped gently on a hard surface until the mer-

cury pellet sUdes to about the center of the tube

(Fig. 3).

One end of the tube is sealed with a dab of

silicone sealant; some of the sealant will go up
the bore, but this is perfectly all right. The
sealant is easily set by immersing it in boil-

ing water for a few moments.

Taking measurements. A scale now must be

positioned along the completed tube. The scale

will be directly over the bore if a stick is placed

as a spacer next to the tube and bound together

with rubber bands (Fig. 4). (A long stick makes
a convenient handle.) The zero of the scale

should be ahgned carefully with the end of the

gas column, that is, the end of the silicone seal.

Fig. 5

In use, the thermometer should be com-

pletely immersed in whatever one wishes to

measure the temperature of, and the end

tapped against the side of the container gently

to allow the mercury to slide to its final resting

place (Fig. 5).

Filling with some other gas. To use some gas

other than air, begin by connecting a short

length of rubber tubing to a fairly low-pressure

supply of gas. As before, trap a pellet of mer-

cury in the end of a capillary tube, but this time

do not tap it to the center. Leave it flat so that

it will be pushed to the center by the gas pres-

sure (Fig. 6). Open the gas valve shghtly for

a moment to flush out the rubber tube. With

your finger tip closing off the far end of the

capillary tube to prevent the mercury being

Fig. 4 Fig. 6
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Fig. 7

blown out, work the rubber connecting tube

over the capillary tube. Open the gas valve

slightly, and very cautiously release your finger

very slightly for a brief instant until the pellet

has been pushed to about the middle of the

tube.

Remove from the gas supply, seal off as be-

fore (the end that was connected to gas sup-

ply), and attach scale. Plot a graph of volume

against temperature.

Interpreting your results.

5. With any of the methods mentioned

here, the pressure of the gas remains con-

stant. If the curve is a straight line, does this

"prove" that the volume of a gas at constant

pressure is proportional to its temperature?

6. Remember that the thermometer you

used probably depended on the expansion of a

liquid such as mercury or alcohol. Would your

graph have been a straight line if a different

type of thermometer had been used?

7. If you could continue to cool the air,

would there be a lower limit to the volume it

would occupy?

Draw a straight line as nearly as possible

through the points on your V-T graph and ex-

tend it to the left until it shows the approximate

temperature at which the volume would be

zero. Of course, you have no reason to assume
that gases have this simple linear relationship

all the way down to zero volume. (In fact, air

would change to a liquid long before it reached

the temperature indicated on your graph for

zero volume.) However, some gases do show

this linear behavior over a wide temperature

range, and for these gases the straight Hne al-

ways crosses the T-axis at the same point.

Since the volume of a sample of gas cannot be

less than 0, this point represents the lowest

possible temperature of the gases—the "abso-

lute zero" of temperature.

8. What value does your graph give for

this temperature?

///. Questions for Discussion

Both the pressure and the temperature of a gas

sample affect its volume. In these experiments

you were asked to consider each of these fac-

tors separately.

9. Were you justified in assuming that

the temperature remained constant in the

first experiment as you varied the pressure?

How could you check this? How would your

results be affected if, in fact, the temperature

went up each time you added weight to the

plunger?

10. In the second experiment the gas

was at atmospheric pressure. Would you ex-

pect to find the same relationship between

volume and temperature if you repeated the

experiment with a different pressure acting

on the sample?

Gases such as hydrogen, oxygen, nitrogen,

and carbon dioxide are very different in their

chemical behavior. Yet they all show the same
simple relationships between volume, pres-

sure, and temperature that you found in these

experiments, over a fairly wide range of pres-

sures and temperatures. This suggests that

perhaps there is a simple physical model that

will explain the behavior of all gases within

these limits of temperature and pressure.

Chapter 11 of the Text describes just such a

simple model and its importance in the de-

velopment of physics.
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EXPERIMENT 3-15 WAVE
PROPERTIES
In this laboratory exercise you will become
familiar with a variety of wave properties in

one- and two-dimensional situations.' Using
ropes, springs, Slinkies, or a ripple tank, you
can find out what determines the speed of

waves, what happens when they collide, and
how waves reflect and go around corners.

Waves in a Spring

Many waves move too fast or are too small to

watch easily. But in a long "soft" spring you

can make big waves that move slowly. With a

partner to help you, pull the spring out on a

smooth floor to a length of about 20 to 30 feet.

Now, with your free hand, grasp the stretched

spring two or three feet from the end. Pull the

two or three feet of spring together toward the

end and then release it, being careful not to let

go of the fixed end with your other hand!

Notice the single wave, called a pulse, that

travels along the spring. In such a longitudi-

nal pulse the spring coils move back and forth

along the same direction as the wave travels.

The wave carries energy, and hence, could be

used to carry a message from one end of the

spring to the other.

You can see a longitudinal wave more eas-

ily if you tie pieces of string to several of the

loops of the spring and watch their motion

when the spring is pulsed.

A transverse wave is easier to see. To

make one, practice moving your hand very

quickly back and forth at right angles to the

stretched spring, until you can produce a pulse

that travels down only one side of the spring.

This pulse is called "transverse" because the

individual coils of wire move at right angles to

(transverse to) the length of the spring.

Perform experiments to answer the follow-

ing questions about transverse pulses.

1. Does the size of the pulse change as it

travels along the spring? If so, in what way?
2. Does the pulse reflected from the far

end return to you on the same side of the

spring as the original pulse, or on the opposite

side?

3. Does a change in the tension of the

spring have any effect on the speed of the

pulses? When you stretch the spring farther,

in effect you are changing the nature of the

medium through which the pulses move.

Next observe what happens when waves
go from one material into another—an effect

called refraction. To one end of your spring at-

tach a length of rope or rubber tubing (or a dif-

ferent kind of spring) and have your partner

hold the end of this.

4. What happens to a pulse (size, shape,

speed, direction) when it reaches the bound-
ary between the two media? The far end of

your spring is now free to move back and forth

at the joint which it was unable to do before

because your partner was holding it.

Have your partner detach the extra spring

and once more grasp the far end of your origi-

nal spring. Have him send a pulse on the same
side, at the same instant you do, so that the two

pulses meet. The interaction of the two pulses

is called interference.

*Adapted from R. F. Brinckerhoff and D. S. Taft, Modern
Laboratory Experiments in Physics, by permission of Sci-

ence Electronics, Nashua, N.H.

5. What happens (size, shape, speed, di-

rection) when two pulses reach the center of

the spring? (It will be easier to see what hap-

pens in the interaction if one pulse is larger

than the other.)

6. What happens when two pulses on op-

posite sides of the spring meet?

As the two pulses pass on opposite sides of

the spring, can you observe a point on the

spring that does not move at all?

7. From these two observations, what
can you say about the displacement caused by

the addition of two pulses at the same point?
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By vibrating your hand steadily back and
forth, you can produce a train of pulses, a

periodic wave. The distance between any two
neighboring crests on such a periodic wave is

the wavelength. The rate at which you vibrate

your hand will determine the frequency of the

periodic wave. Use a long spring and produce

short bursts of periodic waves so you can ob-

serve them without interference by reflections

from the far end.

8. How does the wavelength seem to de-

pend on the frequency?

You have now observed the reflection, re-

fraction, and interference of single waves, or

pulses, traveling through different materials.

These waves, however, moved only along one

dimension. So that you can make a more realis-

tic comparison with other forms of traveling

energy, in the next experiment you will turn to

these same wave properties spread out over a

two-dimensional surface.

EXPERIMENT 3-16
RIPPLE TANK

WAVES IN A

In the laboratory one or more ripple tanks will

have been set up. To the one you and your

partner are going to use, add water (if neces-

sary) to a depth of 6 to 8 mm. Check to see that

the tank is level so that the water has equal

depth at all four corners. Place a large sheet of

white paper on the table below the ripple tank,

and then switch on the hght source. Distur-

bances on the water surface are projected onto

the paper as hght and dark patterns, thus al-

lowing you to "see" the shape of the distur-

bances in the horizontal plane.

To see what a single pulse looks Hke in a

ripple tank, gently touch the water with your

fingertip—or, better, let a drop of water fall into

it from a medicine dropper held only a few mil-

limeters above the surface.

For certain purposes it is easier to study

pulses in water if their crests are straight. To
generate single straight pulses, place a three-

quarter-inch dowel, or a section of a broom
handle, along one edge of the tank and roll it

backward a fraction of an inch. A periodic

wave, a continuous train of pulses, can be

formed by rolling the dowel backward and for-

ward with a uniform frequency.

Use straight pulses in the ripple tank to ob-

serve reflection, refraction, and diffraction,

and circular pulses from point sources to ob-

serve interference.

Reflection

Generate a straight pulse and notice the direc-

tion of its motion. Now place a barrier in the

water so that it intersects that path. Generate

new pulses and observe what happens to the

pulses when they strike the barrier. Try differ-

ent angles between the barrier and the incom-

ing pulse.

1. What is the relationship between the

direction of the incoming pulse and the

reflected one?

2. Replace the straight barrier with a

curved one. What is the shape of the reflected

pulse?

3. Find the point where the reflected

pulses run together. What happens to the

pulse after it converges at this point? At this

point—called the focus—start a pulse with

your finger, or a drop of water. What is the

shape of the pulse after reflection from the

curved barrier?

Refraction

Lay a sheet of glass in the center of the tank,

supported by coins if necessary, to make an

area of very shallow water. Try varying the

angle at which the pulse strikes the boundary

between the deep and shallow water.

4. What happens to the wave speed at the

boundary?

5. What happens to the wave direction at

the boundary?

6. How is change in direction related to

change in speed?

Interference
Arrange two point sources side by side a few
centimeters apart. When tapped gently, they

should produce two pulses on the spring. You
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will see the action of interference better if you

vibrate the two point sources continuously

with a motor and study the resulting pattern of

waves.

diffraction pattern depend on the length of

the waves?

7. How does changing the wave fre-

quency affect the original waves?
Find regions in the interference pattern

where the waves from the two sources cancel

and leave the water undisturbed. Find the re-

gions where the two waves add up to create a

doubly great disturbance.

8. Make a sketch of the interference pat-

tern indicating these regions.

9. How does the pattern change as you

change the wavelength?

Diffraction

With two-dimensional waves you can observe a

new phenomenon—the behavior of a wave
when it passes around an obstacle or through

an opening. The spreading of the wave into the

"shadow" area is called diffraction. Generate

a steady train of waves by using the motor driv-

en straight-pulse source. Place a small barrier

in the path of the waves so that it intercepts

part but not all of the wave front. Observe what
happens as the waves pass the edge of the bar-

rier. Now vary the wavelength of the incoming

wave train by changing the speed of the motor

on the source.

10. How does the interaction with the

obstacle vary with the wavelength?

Place two long barriers in the tank, leav-

ing a small opening between them.

11. How does the angle by which the

wave spreads out beyond the opening depend

on the size of the opening?

12. In what way does the spread of the

EXPERIMENT 3-17 MEASURING
WAVELENGTH
There are three ways you can conveniently

measure the wavelength of the waves gener-

ated in your ripple tank. You should try them
all, if possible, and cross-check the results. If

there are differences, indicate which method
you believe is most accurate and explain why.

A. Direct

Set up a steady train of pulses using either

a single point source or a straightline source.

Observe the moving waves with a stroboscope,

and then adjust the vibrator motor to the low-

est frequency that will "freeze" the wave pat-

tern. Place a meter stick across the ripple tank

and measure the distance between the crests of

a counted number of waves.

B. Standing Waves
Place a straight barrier across the center of

the tank parallel to the advancing waves.

When the distance of the barrier from the

generator is properly adjusted, the superposi-

tion of the advancing waves and the waves
reflected from the barrier will produce stand-

ing waves. In other words, the reflected waves
are at some points reinforcing the original

waves, while at other points there is always

cancellation. The points of continual cancella-

tion are called nodes. The distance between

nodes is one-half wavelength.

C. Interference Pattern

Set up the ripple tank with two point

sources. The two sources should strike the

water at the same instant so that the two

waves will be exactly in phase and of the same
frequency as they leave the sources. Adjust

the distance between the two sources
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Fig. 1 An interference pattern in water. Two point

sources vibrating in phase generate waves in a ripple

tank. A and C are points of maximum disturbance (in

opposite directions) and B is a point of minimum distur-

bance.

and the frequency of vibration until a distinct

pattern is obtained, such as in Fig. 1.

As you study the pattern of ripples you will

notice hnes along which the waves cancel al-

most completely so that the ampUtude of the

disturbance is almost zero. These lines are

called nodal lines, or nodes. You have already

seen nodes in your earUer experiment with

standing waves in the ripple tank.

At every point along a node the waves ar-

riving from the two sources are half a

wavelength out of step, or "out of phase." This
,

means that for a point (such as B in Fig. 1)

to be on a line of nodes it must be i or li or

2i . . . wavelengths farther from one source

than from the other.

Between the hnes of nodes are regions of

maximum disturbance. Points A and C in Fig.

1 are on lines down the center of such re-

gions, called antinodal lines. Reinforcement of

waves from the two sources is a maximum
along these lines.

For reinforcement to occur at a point, the

two waves must arrive in step or "in phase."

This means that any point on a hne of an-

tinodes is a whole number of wavelengths 0, 1,

2, . . . farther from one source than from the

other. The relationship between crests,

troughs, nodes and antinodes in this situation

is summarized schematically in Fig. 2.

Fig. 2

Analysis of interference pattern similar to that of Fig. 1

at the top of the left column set up by two in-phase

periodic sources. (Here S, and Sj are separated by four

wavelengths.) The letters A and N designate antinodal

and nodal lines. The dark circles indicate where crest is

meeting crest, the blank circles where trough is meeting

trough, and the half-dark circles where crest is meeting

trough.
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Most physics textbooks develop the mathe-
matical argument of the relationship of wave-
length to the geometry of the interference

pattern. (See, for example, p. 119 in Unit 3 of

the Project Physics Text.) If the distance be-

tween the sources is d and the detector is at

a comparatively greater distance L from the

sources, then d, L, and k are related by the

equations

or ^ _xd

where x is the distance between neighboring

antinodes (or neighboring nodes).

You now have a method for computing the

wavelength \ from the distances that you can

measure precisely. Measure x, d, and L in your

ripple tank and compute K.

EXPERIMENT 3-18 SOUND
In previous experiments you observed how
waves of relatively low frequency behave in

different media. In this experiment you wdll try

to determine to what extent audible sound ex-

hibits similar properties.

At the laboratory station where you work
there should be the following: an oscillator, a

power supply, two small loudspeakers, and a

group of materials to be tested. A loudspeaker

is the source of audible sound waves, and your

ear is the detector. First connect one of the

loudspeakers to the output of the oscillator and

adjust the oscillator to a frequency of about

4000 cycles per second. Adjust the loudness so

that the signal is just audible one meter away
from the speaker. The gain-control setting

should be low enough to produce a clear, pure

tone. Reflections from the floor, tabletop, and

hard-surfaced walls may interfere with your

observations so set the sources at the edge of a

table, and put soft material over any unavoid-

ably close hard surface that could cause

reflective interference.

You may find that you can locahze sounds

better if you make an "ear trumpet" or stetho-

scope from a small funnel or thistle tube and a

short length of rubber tubing (Fig. 1). Cover

Fig. 1. Sound from the speaker can be detected by

using a funnel and rubber hose, the end of which is

placed to the ear. The Oscillator's banana plug jacks

must be inserted into the -8V, +8V and ground holes of

the Power Supply. Insert the speaker's plugs into the

sine wave—ground receptacles of the Oscillator. Select

the audio range by means of the top knob of the Oscil-

lator and then turn on the Power Supply.

the ear not in use to minimize confusion when
you are hunting for nodes and maxima.

Transmission and Refiection

Place samples of various materials at your sta-

tion between the speaker and the receiver to

see how they transmit the sound wave. In a

table, record your quaUtative judgments as

best, good, poor, etc.

Test the same materials for thefr ability to

reflect sound and record your results. Be sure

that the sound is really being reflected and is

not coming to your detector by some other path.

You can check how the intensity varies at the

detector when you move the reflector and ro-

tate it about a vertical axis (see Fig. 2).

Fig. 2
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If suitable materials are available to you, also

test the reflection from curved surfaces.

1. On the basis of your findings, what
generalizations can you make relating

transmission and reflection to the properties

of the test materials?

Refraction

You have probably observed the refraction or

"bending" of a wave front in a ripple tank as

the wave slowed down in passing from water of

one depth to shallower water.

You may observe the refraction of sound

waves using a "lens" made of gas. Inflate a

spherical balloon with carbon dioxide gas to a

diameter of about 4 to 6 inches. Explore the

area near the balloon on the side away from the

source. Locate a point where the sound seems

loudest, and then remove the balloon.

2. Do you notice any difference in loud-

ness when the balloon is in place? Explain.

Diffraction

In front of a speaker set up as before place a

thick piece of hard material about 25 cm long,

mounted vertically about 25 cm directly in

front of the speaker. Slowly probe the area

about 75 cm beyond the obstacle.

3. Do you hear changes in loudness? Is

there sound in the "shadow" area? Are there

regions of silence where you would expect to

hear sound? Does there seem to be any pat-

tern to the areas of minimum sound?

For another way to test for diffraction, use

a large piece of board placed about 25 cm in

front of the speaker with one edge aligned with
the center of the source. Now explore the area

inside the shadow zone and just outside it.

Describe the pattern of sound interference

that you detect.

4. Is the pattern analogous to the pattern

you observed in the ripple tank?

Wavelength
(a) Standing wave method Set your

loudspeaker about i meter above and facing

toward a hard tabletop or floor or about that

distance from a hard, smooth plaster wall or

other good sound reflector (see Fig. 3). Your

ear is most sensitive to the changes in intensity

of faint sounds, so be sure to keep the volume

low.

Explore the space between the source and

reflector, listening for changes in loudness.

Record the positions of minimum loudness, or

at least find the approximate distance between

two consecutive minima. These minima are

located i wavelength apart.

5. Does the spacing of the minima de-

pend on the intensity of the wave?
Measure the wavelength of sound at sev-

eral different frequencies.

6. How does the wavelength change

when the frequency is changed?

(h) Interference Method Connect the two loud-

speakers to the output of the oscillator and

mount them at the edge of the table about 25

cm apart. Set the frequency at about 4,000

cycles/sec to produce a high-pitched tone. Keep
the gain setting low during the entire experi-

ment to make sure the oscillator is producing

a pure tone, and to reduce reflections that

would interfere with the experiment.

Move your ear or "stethoscope" along a hne
parallel to, and about 50 cm from, the line join-

ing the sources. Can you detect distinct max-
ima and minima? Move farther away from the

sources; do you find any change in the pattern

spacing?
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7. What effect does a change in the

source separation have on the spacing of the

nodes?

8. What happens to the spacing of the

nodes if you change the frequency of the

sound? To make this experiment quantita-

tive, work out for yourself a procedure similar

to that used with the ripple tank. (Fig. 2.)

Measure the separation d of the source

centers and the distance x between nodes and

use this data to calculate the wavelength k.

9. Does the wavelength change with fre-

quency? If so, does it change directly or in-

versely?

Calculating the Speed of Sound

The relationship between speed v, wave-

length X, and frequency / is i; = \f. The os-

cillator dial gives a rough indication of the

frequency (and your teacher can advise you on

how to use an oscilloscope to make precise fre-

quency settings). Using your best estimate of X,

calculate the speed of sound. If you have time,

extend your data to answering the following

questions:

10. Does the speed of the sound waves

depend on the intensity of the wave?

11. Does the speed depend on the fre-

quency?

EXPERIMENT 3-19 ULTRASOUND
The equipment needed for this experiment is

an oscillator, power supply, and three ul-

trasonic transducers—crystals that transform

electrical impulses into sound waves (or vice

versa), and several materials to be tested. The
signal from the detecting transducer can be

displayed with either an oscilloscope (as in Fig.

1) or an amplifier and meter (Fig. 2). One or

two of the transducers, driven by the oscillator

are sources of the ultrasound, while the third

transducer is a detector. Before you proceed,

have the teacher check your setup and help you

Fig. 1 Complete ultrasound equipment. Plug the +8v,

-8v, ground jacks from the Amplifier and Oscillator

into the Power Supply. Plug the coaxial cable attached

to the transducer to the sine wave output of the Oscil-

lator. Plug the coaxial cable attached to a second
transducer into the input terminals of the amplifier. Be
sure that the shield of the coaxial cable is attached

to ground. Turn the oscillator range switch to the 5K-

50K position. Turn the horizontal frequency range

switch of the oscilloscope to at least 10kHz. Turn on
the Oscillator and Power Supply. Tune the Oscillator

for maximum reception, about 40 kilocycles.

get a pattern on the oscilloscope screen or a

reading on the meter.

The energy output of the transducer is

highest at about 40,000 cycles per second, and

Fig. 2 Above, ultrasound transmitter and receiver. The

signal strength is displayed on a microammeter con-

nected to the receiver amplifier. Below, a diode con-

nected between the amplifier and the meter, to rectify

the output current. The amplifier selector switch should

be turned to ac. The gain control on the amplifier should

be adjusted so that the meter will deflect about full-scale

for the loudest signal expected during the experiment.

The offset control should be adjusted until the meter

reads zero when there is no signal.
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the oscillator must be carefuUy "tuned" to that

frequency. Place the detector a few centime-

ters directly in front of the source and set the

oscillator range to the 5-50 kilocycle position.

Tune the oscillator carefully around 40,000

cycles/second for maximum deflection of the

meter or the scope track. If the signal output is

too weak to detect beyond 25 cm, plug the de-

tector transducer into an amplifier and connect

the output of the amplifier to the oscilloscope or

meter input.

Transmission and Reflection

Test the various samples at your station to see

how they transmit the ultrasound. Record your

judgments as best, good, poor, etc. Hold the

sample of the material being tested close to the

detector.

Test the same materials for their ability to

reflect ultrasound. Be sure that the ultrasound

is really being reflected and is not coming to

your detector by some other path. You can

check this by seeing how the intensity varies at

the detector when you move the reflector.

Make a table of your observations.

1. What happens to the energy of ul-

trasonic waves in a material that neither

reflects nor transmits well?

Diffraction

To observe diffraction around an obstacle, put

a piece of hard material about 3 cm wide 8 or

10 cm in front of the source (see Fig. 3.) Ex-

plore the region 5-10 cm behind the obstacle.

2. Do you find any signal in the "shadow"

area? Do you find minima in the regions

where you would expect a signal to be? Does

there seem to be any pattern relating the

areas of minimum and maximum signals?

Put a larger sheet of absorbing material 10

cm in front of the source so that the edge ob-

structs about one-half of the source.

Again probe the "shadow" area and the

area near the edge to see if a pattern ofmaxima
and minima seems to appear.

Measuring Wavelength
(a) Standing Wave Method

Investigate the standing waves set up be-

tween a source and a reflector, such as a hard

tabletop or metal plate. Place the source about

10 to 15 cm from the reflector with the detec-

tor.

3. Does the spacing of nodes depend on

the intensity of the waves?

Find the approximate distance between
two consecutive maxima or two consecutive

minima. This distance is one half the wave-

length.

(b) Interference Method For sources, connect

two transducers to the output of the oscillator

and set them about 5 cm apart. Set the oscil-

lator switch to the 5-50 kilocycle position. For a

detector, connect a third transducer to an oscil-

Flg. 3 Detecting diffraction of ultrasound around a
barrier.

Fig. 4 Set-up for determination of wavelength by the

interference method.
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loscope or amplifier and meter as described in

Part A of the experiment. Then tune the oscil-

lator for maximum signal from the detector

when it is held near one of the sources (about

40,000 cycles/sec). Move the detector along a

line parallel to and about 25 cm in front of a

line connecting the sources. Do you find dis-

tinct maxima and minima? Move closer to the

sources. Do you find any change in the pattern

spacing?

4. What effect does a change in the sep-

aration of the sources have on the spacing of

the nulls?

To make this experiment quantitative,

work out a procedure for yourself similar to

that used with the ripple tank. Measure the ap-

propriate distances and then calculate the

wavelength using the relationship

derived earher for interference patterns in a

ripple tank.

5. In using that equation, what assump-

tions are you making?

The Speed of Ultrasound

The relationship between speed v, wavelength

A., and frequency / is i; = \f. Using your best

estimate of \, calculate the speed of sound.

6. Does the speed of the ultrasound

waves depend on the intensity of the wave?

7. How does the speed of sound in the in-

audible range compare with the speed of au-

dible sound?
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ACTIVITIES

IS MASS CONSERVED?
You have read about some of the difficulties in

establishing the law of conservation of mass.

You can do several different experiments to

check this law.

Alka-Seltzer.

You will need the following equipment: Alka-

Seltzer tablets; 2-liter flask, or plastic one-

gallon jug (such as is used for bleach, distilled

water, or duplicating fluid); stopper for flask or

jug; warm water; balance (sensitivity better

than 0.1 g) spring scale (sensitivity better than

0.5 g).

Balance a tablet and 2-liter flask contain-

ing 200-300 cc of water on a sensitive balance.

Drop the tablet in the flask. When the tablet

disappears and no more bubbles appear, read-

just the balance. Record any change in mass.

If there is a change, what caused it?

Repeat the procedure above, but include

the rubber stopper in the initial balancing.

Immediately after dropping in the tablet, place

the stopper tightly in the mouth of the flask.

(The pressure in a 2-liter flask goes up by no

more than 20 per cent, so it is not necessary to

tape or wire the stopper to the flask. Do not use

smaller flasks in which proportionately higher

pressure would be built up.) Is there a change
in mass? Remove the stopper after all reaction

has ceased; what happens? Discuss the differ-

ence between the two procedures.

Brightly Colored Precipitate.

You will need: 20 g lead nitrate; 1 1 g potassium

iodide; Erlenmeyer flask, 1000 cc with stopper;

test tube, 25 x 150 mm; balance.

Place 400 cc of water in the Erlenmeyer
flask, add the lead nitrate, and stir until dis-

solved. Place the potassium iodide in the test

tube, add 30 cc of water, and shake until dis-

solved. Place the test tube, open and upward,

carefully inside the flask and seal the flask

with the stopper. Place the flask on the balance

and bring the balance to equilibrium. Tip the

flask to mix the solutions. Replace the flask on

the balance. Does the total mass remain con-

served? What does change in this experiment?

Magnesium Flash Bulb.

On the most sensitive balance you have avail-

able, measure the mass of an unflashed mag-

nesium flash bulb. Repeat the measurement
several times to make an estimate of the preci-

sion of the measurement.

Flash the bulb by connecting it to a battery.

Be careful to touch the bulb as little as possi-

ble, so as not to wear away any material or

leave any fingerprints. Measure the mass of

the bulb several times, as before. You can get a

feeling for how small a mass change your bal-

ance could have detected by seeing how large a

piece of tissue paper you have to put on the

balance to produce a detectable difference.

EXCHANGE OF MOMENTUM
DEVICES
The four situations described below are more
complex tests for conservation of momentum,
to give you a deeper understanding of the gen-

erality of the conservation law and of the im-

portance of your frame of reference, (a) Fasten

a section of HO gauge model railroad track to

two ring stands as shown in Fig. 1. Set one

truck of wheels, removed from a car, on the

track and from it suspend an object with mass
roughly equal to that of the truck. Hold the

truck, pull the object to one side, parallel to the

track, and release both at the same instant.

What happens?"

Fig. 1
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Predict what you expect to see happen if

you released the truck an instant after releas-

ing the object. Try it.

Try increasing the suspended mass,

(b) Fig. 2 shows a similar situation, using an

air track supported on ring stands. An object

of 20 g mass was suspended by a 50 cm string

from one of the small air-track gliders. (One

student trial continued for 166 swings.)

w.mf —111

(c) Fasten two dynamics carts together with

four hacksaw blades as shown in Fig. 3. Push
the top one to the right, the bottom to the left,

and release them. Try giving the bottom cart a

push across the room at the same instant you

release them.

What would happen when you released the

two if there were 10 or 20 bearing balls or small

wooden balls hung as pendula from the top

cart?

Fig. 3

(d) Push two large rubber stoppers onto a short

piece of glass tubing or wood (Fig. 4). Let the

"dumbbell" roll down a wooden wedge so that

the stoppers do not touch the table until the

dumbbell is almost to the bottom. When the

dumbbell touches the table, it suddenly in-

creases its hnear momentum as it moves off

along the table. Principles of rotational mo-

mentum and energy are involved here that

are not covered in the Text, but even without

Fig. 4

extending the Text, you can deal with the

"mysterious" increase in hnear momentum
when the stoppers touch the table.

Using what you have learned about con-

servation of momentum, what do you think

could account for this increase? (Hint: set the

wedge on a piece of cardboard supported on

plastic beads and try it.)

STUDENT HORSEPOWER
When you walk up a flight of stairs, the work

you do goes into frictional heating and in-

creasing gravitational potential energy. The

A(PE)grav, in joules, is the product of your

weight in newtons and the height of the stairs

in meters. (In foot-pounds, it is your weight in

pounds times the height of the stairs in feet.)

Your useful power output is the average

rate at which you did the hfting work—that is,

the total change in (PEjgrav, divided by the time

it took to do the work.

Walk or run up a flight of stairs and have

someone time how long it takes. Determine the

total vertical height that you lifted yourself by

measuring one step and multiplying by the

number of steps.

Calculate your useful work output and

your power, in both units of watts and in horse-

power. (One horsepower is equal to 550

foot-pounds/sec which is equal to 746 watts.)

STEAM-POWERED BOAT
You can make a steam-propelled boat that will

demonstrate the principle of Heron's steam

engine (Text Sec. 10.5) from a small tooth-

powder or talcum-powder can, a piece of can-

dle, a soap dish, and some wire.

Place the candle in the soap dish. Punch

a hole near the edge of the bottom of the can

with a needle. Construct wire legs which are

long enough to support the can horizontally
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over the candle and the soap dish. Rotate the

can so that the needle-hole is at the top. Half

fill the can with water, replace the cover, and

place this "boiler" over the candle and Ught the

candle. If this boat is now placed in a large pan

of water, it will be propelled across the pan.

Can you explain the operation of this boat

in terms of the conservation of momentum? of

the conservation of energy?

PROBLEMS OF SCIENTIFIC AND
TECHNOLOGICAL GROWTH
The Industrial Revolution of the eighteenth

and nineteenth centuries is rich in examples of

man's disquiet and ambivalence in the face of

technological change. Instead of hving among

pastoral waterwheel scenes, men began to live

in areas with pollution problems as bad or

worse than those we face today, as is shown in

the scene at Wolverhampton, England in 1866.

As quoted in the Text, WiUiam Blake lamented

in "Stanzas from Milton,"

And did the Countenance Divine

Shine forth upon our clouded hills?

And was Jerusalem builded here

Among these dark Satanic mills?

Ever since the revolution began, we have

profited from advances in technology. But we
also still face problems like those of pollution

and of displacement of men by machines.

One of the major problems is a growing

lack of communication between people work-

ing in science and those working in other

fields. When C. P. Snow published his book

The Two Cultures and the Scientific Revolu-

tion in 1959, he initiated a wave of debate

which is still going on.

In your own community there are probably

some pollution problems of which you are

aware. Find out how science and technology

A portrayal of the scene near Wolverhampton, England in 1866, called "Black Country."
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"Honk, honk, honk, honk, honk, honk, honk. cough, cough, cough, cough, cough, cough, cough. honk, honk, honk, honk, honk, honk, honk."

may have contributed to these problems—and
how they can contribute to solutions!

PREDICTING THE RANGE OF AN
ARROW
If you are interested in predicting the range of

a projectile from the work you do on a sling-

shot while drawing it back, ask your teacher

about it. Perhaps he will do this with you or tell

you how to do it yourself.

Another challenging problem is to estimate

the range of an arrow by calculating the work
done in drawing the bow. To calculate work,

you need to know how the force used in draw-

ing the string changed with the string dis-

placement. A bow behaves even less according

to Hooke's law than a slingshot; the force vs.

displacement graph is definitely not a straight

line.

To find how the force depends on string

displacement, fasten the bow securely in a vise

or some soUd mounting. Attach a spring bal-

ance to the bow and record values of force (in

newtons) as the bowstring is drawn back one

centimeter at a time from its rest position

(without having an arrow notched). Or, have

someone stand on a bathroom scale, holding

the bow, then pull upwards on the string; the

force on the string at each position will equal

this apparent loss of weight.

Now to calculate the amount of work done,

plot a force vs. displacement graph. Count

squares to find the "area" (force units times

displacement units) under the graph; this is

the work done on the bow—equal to the elastic

potential energy of the drawn bow.

Assume that all the elastic potential

energy of the bow is converted into the kinetic

energy of the arrow and predict the range of the

arrow by the same method used in predicting

the range of a shngshot projectile.

A recent magazine article stated that an

alert deer can leap out of the path of an ap-

proaching arrow when he hears the twang of

the bowstring. Under what conditions do you

think this is possible?

DRINKING DUCK
A toy called a Drinking Duck (No. 60,264

in Catalogue 671, about $1.00, Edmund
Scientific Co., Barrington, New Jersey 08007)

demonstrates very well the conversion of heat

' "What's this scheme of yours for on economical method
of launching a satellite?"
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energy into energy of gross motion by the proc-

esses of evaporation and condensation. The
duck will continue to bob up and down as long

as there is enough water in the cup to wet his

beak.

Rather than dampen your spirit of adven-
ture, we won't tell you how it works. First, see

if you can figure out a possible mechanism for

yourself. If you can't, George Gamow's book.

The Biography of Physics, has a very good ex-

planation. Gamow also calculates how far the

duck could raise water in order to feed himself.

An interesting extension is to replace the water
with rubbing alcohol. What do you think will

happen?

Lest you think this device useful only as a

toy, an article in the June 3, 1967, Saturday
Review described a practical apphcation being
considered by the Rand Corporation. A group of
engineers built a 7-foot "bird" using Freon 11

as the working fluid. Their intention was to in-

vestigate the possible use of large-size ducks
for irrigation purposes in the Nile River Valley.

MECHANICAL EQUIVALENT
OF HEAT
By dropping a quantity of lead shot from a
measured height and measuring the resulting

change in temperature of the lead, you can get

a value for the ratio of work units to heat
units—the "mechanical equivalent of heat."

You will need the following equipment:

Cardboard tube Lead shot (1 to 2 kg)

Stoppers Thermometer

Close one end of the tube with a stopper,

and put in 1 to 2 kg lead shot that has been

cooled about 5°C below room temperature.

Close the other end of the tube with a stopper in

which a hole has been drilled and a thermome-
ter inserted. Carefully roll the shot to this end

of the tube and record its temperature. Quickly

invert the tube, remove the thermometer, and
plug the hole in the stopper. Now invert the

tube so the lead falls the fuU length of the tube

and repeat this quickly one hundred times.

Reinsert the thermometer and measure the

temperature. Measure the average distance

the shot falls, which is the length of the tube

minus the thickness of the layer of shot in the

tube.

If the average distance the shot falls is h
and the tube is inverted N times, the work you
did raising the shot of mass m is:

AW ^ N X mag x h

The heat AH needed to raise the temperature of

the shot by an amount AT is:

AH = cmAT

where c is the specific heat capacity of lead,

0.031 cal/gC°.

The mechanical equivalent of heat is

AW/AH. The accepted experimental value is

4.184 newton-meters per kilocalorie.

A DIVER IN A BOTTLE
Descartes is a name well known in physics.

When we graphed motion in Text Sec. 1.5, we
used Cartesian coordinates, which Descartes
introduced. Using Snell's law of refraction,

Descartes traced a thousand rays through a
sphere and came up with an explanation of the

rainbow. He and his astronomer friend Gas-
sendi were a bulwark against Aristotehan

physics. Descartes belonged to the generation

between Galileo and Newton.
On the lighter side, Descartes is known for

a toy called the Cartesian diver which was very

popular in the eighteenth century when very

elaborate ones were made. To make one, first

you will need a column of water. You may
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find a large cylindrical graduate about the

laboratory, the taller the better. If not, you can
improvise one out of a gallon jug or any other

tall glass container. FUl the container almost to

the top with water. Attach a piece of glass tub-

ing that has been fire-pohshed on each end.

Lubricate the glass tubing and the hole in the

stopper with water and carefully insert the

glass tubing. Fit the rubber stopper into the top

of the container as shown in Fig. 1.

Next construct the diver. You may limit

yourself to pure essentials, namely a small pill

bottle or vial, which may be weighted with

wire and partially filled with water so it just

barely floats upside down at the top of the

water column. If you are so inclined, you can
decorate the bottle so it looks like a real under-

water swimmer (or creature, if you prefer). The
essential things are that you have a diver that

just floats and that the volume of water can be

changed.

Now to make the diver perform, just blow

momentarily on the rubber tube. According to

Boyle's law, the increased pressure (trans-

mitted by the water) decreases the volume of

trapped air and water enters the diver. The

buoyant force decreases, according to Archi-

medes' principle, and the diver begins to sink.

If the original pressure is restored, the

diver rises again. However, if you are lucky,

you will find that as you cautiously make him
sink deeper and deeper down into the column
of water, he is more and more reluctant to re-

turn to the surface as the additional surface

pressure is released. Indeed, you may find a

depth at which he remains almost stationary.

However, this apparent equilibrium, at which
his weight just equals the buoyant force, is un-

stable. A bit above this depth, the diver will

fireely rise to the surface, and a bit below this

depth he will sink to the bottom of the water

column from which he can be brought to the

surface only by vigorous sucking on the tube.

If you are mathematically inclined, you

can compute what this depth would be in terms

of the atmospheric pressure at the surface, the

volume of the trapped air, and the weight of the

diver. If not, you can juggle with the volume of

the trapped air so that the point of unstable

X
rubber tufce.

'1^ rubber stopper

If p'li! bottle.

Qir

ujire weio'i"^ to k?ep

6i\it<- naiit- sidfe up

Fig. 1

equilibrium comes about halfway down the

water column.

The diver raises interesting questions.

Suppose you have a well-behaved diver who
"floats" at room temperature just halfway

down the water column. Where will he "float"

if the atmospheric drops? Where will he "float"

if the water is cooled or is heated? Perhaps the

ideal gas law is not enough to answer this

question, and you may have to do a bit of read-

ing about the "vapor pressure" of water.

After demonstrating the performance of

your large-scale model by blowing or sucking

in the rubber tube, you can mystify your audi-

ence by making a small scale model in a bottle.

A plastic bottle with flat sides can act Uke a

diaphragm which increases the pressure with-

in as the sides are pushed together. The bottle
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and diver are tightly sealed. In this case, add a

rubber tube leading to a holeless stopper. Your

classmates blowing as hard as they will cannot

make the diver sink; but you, by secredy

squeezing the bottle, can make him perform at

your command.

ROCKETS
If it is legal to set off rockets in your area, and

their use is supervised, they can provide excel-

lent projects for studying conversion from

kinetic to potential energy, thrust, etc.

Ask your teacher for instructions on how to

build small test stands for taking thrust data to

use in predicting the maximum height, range,

etc. of the rockets. (Estes Industries, Box 227,

Penrose, Colorado 81240, will send a very

complete free catalogue and safety rules on re-

quest.)

HOW TO WEIGH A CAR WITH A
TIRE PRESSURE GAUGE
Reduce the pressure in all four of your auto

tires so that the pressure is the same in each

and somewhat below recommended tire pres-

sure.

Drive the car onto four sheets of graph

paper placed so that you can outline the area of

the tire in contact with each piece of paper.

The car should be on a reasonably flat surface

(garage floor or smooth driveway). The

flattened part of the tire is in equilibrium be-

tween the vertical force of the ground upward

and the downward force of air pressure wdthin.

Measure the air pressure in the tires, and

the area of the flattened areas. If you use inch

graph paper, you can determine the area in

square inches by counting squares.

Pressure P (in pounds per square inch) is

defined as F/A, where F is the downward force

(in pounds) acting perpendicularly on the

flattened area A (in square inches). Since the

tire pressure gauge indicates the pressure

above the normal atmospheric pressure of 15

Ib/in^ you must add this value to the gauge

reading. Compute the four forces as pressure

times area. Their sum gives the weight of the

car.

PERPETUAL-MOTION MACHINES?
You must have heard of "perpetual-motion"

machines which, once started, will continue

running and doing useful work forever. These

proposed devices are inconsistent with laws of

thermodynamics. (It is tempting to say that

they violate laws of thermodynamics—but this

implies that laws are rules by which Nature

must run, instead of descriptions men have

thought up.) We now believe that it is in princi-

ple impossible to buUd such a machine.

But the dream dies hard! Daily there are

new proposals. Thus S. Raymond Smedile, in

Perpetual Motion and Modern Research for

Cheap Power (Science Publications of Boston,

1962), maintains that this attitude of "it can't

be done" negatively influences our search for

new sources of cheap power. His book gives

sixteen examples of proposed machines, of

which two are shown here.

Number 5 represents a wheel composed of

twelve chambers marked A. Each chamber

contains a lead ball B, which is free to roll. As

the wheel turns, each ball rolls to the lowest

level possible in its chamber. As the balls roll

out to the right edge of the wheel, they create a

preponderance of turning effects on the right

side as against those balls that roll toward the

hub on the left side. Thus, it is claimed the

wheel is driven clockwise perpetually. If you

think this will not work, explain why not.

Number 7 represents a water-driven wheel

marked A. D represents the buckets on the

perimeter of the waterwheel for receiving

water draining from the tank marked F. The

waterwheel is connected to pump B by a belt

and wheel. As the overshot wheel is operated

by water dropping on it, it operates the pump
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Number 5 Number 7

which sucks water into C from which it enters

into tank F. This operation is supposed to go on

perpetually. If you think otherwise, explain

why.

If such machines would operate, would the

conservation laws necessarily be wrong?
Is the reason that true perpetual motion

machines are not found due to "theoretical" or

"practical" deficiencies?

STANDING WAVES ON A DRUM
AND A VIOLIN
You can demonstrate many different patterns

of standing waves on a rubber membrane
using a method very similar to that used in

Film Loop 42, "Vibrations of A Drum." If you

have not yet seen this loop, view it if possible

before setting up the demonstration in your

lab.

The cartoons above (and others of the same style which are scattered through the

Handbook) were drawn in response to some ideas in the Project Physics Course by a

cartoonist who was unfamiliar with physics. On being informed that the drawing on the

left did not represent conservation because the candle wasn't a closed system, he

offered the solution at the right. (Whether a system is "closed " depends, of course,

upon what you are trying to conserve.)
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Fig. 1 shows the apparatus in action, pro-

ducing one pattern of standing waves. The

Fig. 1

drumhead in the figure is an ordinary 7-inch

embroidery hoop with the end of a large balloon

stretched over it. If you make your drumhead
in this way, use as large and as strong a balloon

as possible, and cut its neck off with scissors. A
flat piece of sheet rubber (dental dam) gives

better results, since even tension over the en-

tire drumhead is much easier to maintain if the

rubber is not curved to begin with. Try other

sizes and shapes of hoops, as well as other

drumhead materials.

A 4-inch, 45-ohm speaker, lying under the

drum and facing upward toward it, drives the

vibrations. Connect the speaker to the output

of an oscillator. If necessary, ampUfy the oscil-

lator output.

Turn on the oscillator and sprinkle salt or

sand on the drumhead. If the frequency is near

one of the resonant frequencies of the surface,

standing waves will be produced. The salt will

collect along the nodes and be thrown off from

the antinodes, thus oudining the pattern of the

vibration. Vary the frequency until you get a

clear pattern, then photograph or sketch the

pattern and move on to the next frequency

where you get a pattern.

When the speaker is centered, the vibra-

tion pattern is symmetrical around the center

of the surface. In order to get antisymmetric

modes of vibration, move the speaker toward

the edge of the drumhead. Experiment with

the spacing between the speaker and the

drumhead until you find the position that gives

the clearest pattern; this position may be dif-

ferent for different frequencies.

Ifyour patterns are distorted, the tension of

the drumhead is probably not uniform. If you

have used a balloon, you may not be able to

remedy the distortion, since the curvature of

the balloon makes the edges tighter than the

center. By pulling gently on the rubber, how-

ever, you may at least be able to make the ten-

sion even all around the edge.

A similar procedure, used 150 years ago

and still used in analyzing the performance of

violins, is shown in these photos reprinted from

Scientific American, "Physics and Music."

MOIRE PATTERNS
You are probably noticing a disturbing visual

effect from the patterns in Figs. 1 and 2 on the

opposite page. Much of "op art" depends on

similar effects, many of which are caused by

moire patterns.

If you make a photographic negative of

the pattern in Fig. 1 or Fig. 2 and place it

on top of the same figure, you can use it to
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Chladni Plates indicate the vibration of the body of a violin. These patterns were

produced by covering a violin-shaped brass plate with sand and drawing a violin

bow across its edge. When the bow caused the plate to vibrate, the sand concentrated

along quiet nodes between the vibrating areas. Bowing the plate at various points,

indicated by the round white marker, produces different frequencies of vibration

and different patterns. Low tones produce a pattern of a few large areas; high tones

a pattern of many small areas. Violin bodies have a few such natural modes of vibra-

tion which tend to strengthen certain tones sounded by the strings. Poor violin bodies

accentuate squeaky top notes. This sand-and-plate method of analysis was devised

150 years ago by the German acoustical physicist Earnst Chladni.

study the interference pattern produced by two

point sources. The same thing is done on

Transparency 28, Two Slit Interference.

Long before op art, there was an increasing

number of scientific apphcations of moire

patterns. Because of the great visual changes

caused by very small shifts in two regular over-

lapping patterns, they can be used to make
measurements to an accuracy of + 0.000000 1%

.

Some specific examples of the use of moire

patterns are visuahzation of two- or multiple-

source interference patterns, measurement of

Fig. 1 Fig. 2
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small angular shifts, measurements of diffu-

sion rates of solids into liquids, and representa-

tions of electric, magnetic, and gravitation

fields. Some of the patterns created still cannot

be expressed mathematically.

Scientific American, May 1963, has an ex-

cellent article; "Moire Patterns" by Gerald

Oster and Yasunori Nishijima. The Science of

Moire Patterns, a book by G. Oster, is avail-

able from Edmund Scientific Co., Barrington,

N.J. Edmund also has various inexpensive sets

of different patterns, which save much draw-

ing time, and that are much more precise than

hand-drawn patterns.

MUSIC AND SPEECH ACTIVITIES

(a) Frequency ranges: Set up a microphone

and oscilloscope so you can display the pres-

sure variations in sound waves. Play different

instruments and see how "high C" differs on

them.

(b) Some beautiful oscilloscope patterns result

when you display the sound of the new com-

putermusic records which use sound-synthe-

sizers instead of conventional instruments.

(c) For interesting background, see the follow-

ing articles in Scientific American: "Physics

and Music," July 1948; "The Physics of Vio-

lins," November 1962; "The Physics of Wood
Winds," October 1960; and "Computer Music,"

December 1959.

(d) The Bell Telephone Company has an in-

teresting educational item, which may be

available through your local Bell Telephone

office. A 33i LP record, "The Science of

Sounds," has ten bands demonstrating differ-

ent ideas about sound. For instance, racing

cars demonstrate the Doppler shift, and a so-

prano, a piano, and a factory whistle all sound
alike when overtones are filtered out electroni-

cally. The record is also available on the Folk-

ways label FX 6136.

MEASUREMENT OF THE SPEED
OF SOUND
For this experiment you need to work outside in

the vicinity of a large flat wall that produces a

good echo. You also need some source of loud

pulses of sound at regular intervals, about one

a second or less. A friend beating on a drum or

something with a higher pitch will do. The im-

portant thing is that the time between one

pulse and the next doesn't vary, so a met-

ronome would help. The sound source should

be fairly far away from the wall, say a couple of

hundred yards in front of it.

Stand somewhere between the reflecting

wall and the source of pulses. You will hear

both the direct sound and the sound reflected

from the wall. The direct sound will reach you

first because the reflected sound must travel

the additional distance from you to the wall

and back again. As you approach the wall, this

additional distance decreases, as does the time

interval between the direct sound and the

echo. Movement away from the wall increases

the interval.

If the distance from the source to the wall

is great enough, the added time taken by the

echo to reach you can amount to more than the

time between drum beats. You will be able to

find a position at which you hear the echo of

one pulse at the same time you hear the direct

sound of the next pulse. Then you know that

the sound took a time equal to the interval be-

tween pulses to travel from you to the wall and

back to you.

Measure your distance from the source.

Find the time interval between pulses by

measuring the time for a large number of

pulses. Use these two values to calculate the

speed of sound.

(If you cannot get far enough away from

the wall to get this synchronization, increase

the speed of the sound source. If this is impos-

sible, you may be able to find a place where you

hear the echoes exactly halfway between the

pulses as shown at the top of the opposite page.

You will hear a pulse, then an echo, then the

next pulse. Adjust your position so that these

three sounds seem equally spaced in time. At
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J U
this point you know that the time taken for the

return trip from you to the wall and back is

equal to ha// the time interval between pulses.)

MECHANICAL WAVE MACHINES
Several types of mechanical wave machines

are described below. They help a great deal in

understanding the various properties ofwaves.

(a) Slinky

The spring called a SHnky behaves much bet-

ter when it is freed of friction with the floor or

table. Hang a Slinky horizontally from strings

at least three feet long tied to rings on a wire

stretched from two soUd supports. Tie strings

to the Slinky at every fifth spiral for proper

support.

Fasten one end of the Slinky securely and

then stretch it out to about 20 or 30 feet. By
holding onto a ten-foot piece of string tied to the

end of the Slinky, you can illustrate "open-

ended" reflection of waves.

See Experiment 3-15 for more details on

demonstrating the various properties of waves.
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(b) Rubber Tubing and Welding Rod
Clamp both ends of a four-foot piece of rubber

tubing to a table so it is under slight tension.

Punch holes through the tubing every inch

with a hammer and nail. (Put a block of wood
under the tubing to protect the table.)

Put enough one-foot lengths of welding rod

for all the holes you punched in the tubing. Un-

clamp the tubing, and insert one rod in each of

the holes. Hang the rubber tubing vertically, as

shown below, and give its lower end a twist to

demonstrate transverse waves. Performance

and visibility are improved by adding weights

to the ends of the rods or to the lower end of the

tubing.

(c) A Better Wave Machine
An inexpensive paperback. Similarities in

Wave Behavior, by John N. Shive of Bell Tele-

phone Laboratories, has instructions for build-

ing a better torsional wave machine than that

described in (b) above. The book is available

from Garden State-Novo, Inc., 630 9th Avenue,

New York, N.Y. 10036.

s/;^jkV
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Resource Letter TLA-1 on Technology, Literature, and Art *

since World War II

William H. Davenport

Department of Humanities, Harvey Mudd College, Claremont, California 91711

(Received 10 December 1969)

I. INTRODUCTION

This resource letter lists materials for collateral

reading in classes in physics and other sciences as

well as in new cross-discipline courses; it also offers

professors and students alike an opportunity to

see how modern science and technology appear to

artists and writers—in other words, to see them-

selves as others see them. A sampling of books and

articles in the increasingly publicized area of cross

relationships between technology and society in

general would require a separate resource letter,

which may one day materialize. The reader will

note that the proper distinctions between science

and technology are often blurred, as indeed they

are daily by the public. The basic hope in this

letter is to promote the mutual communication

and understanding between disciplines so neces-

sary for personal growth and so vital in such areas

as top-level decision making.

As an earlier letter has said, the following

listings are suggestions, not prescriptions. They are

samplings guided by personal taste and experi-

ence, offered with the notion of tempting readers to

go farther and deeper on their own.

By agreement with the editors, the listings

contain a minimum of overlap with earlier letters,

two of which are cited below; indeed, they are

intended to pick up where the former left off.

Anyone wishing bibliography on the "Two
Cultures" argument, missing the presence of

earlier "must" items by Mumford, Giedion,

Holton, Bronowski, Barzun et al., or seeking

historical material can probably find what he

wants in the earlier letters. This bibliography is

arranged alphabetically by author or editor,

except where no such identification exists; in the

* Prepared at the request of the Committee on Resource

Letters of the American Association of Physics Teachers,

supported by a grant from the National Science Founda-

tion and published in the American Journal of Physics,

Vol. 38, No. 4, April 1970, pp. 407-414.

latter instances, titles are listed in the appropriate

alphabetical sequence.

II. RELEVANT RESOURCE LETTERS

1. "Science and Literature" (SL-1). Marjorib Nicol-
SON. Amer. J. Phys. 33, 175 (1965).

2. "Resource Letter CoIR-1 on Collateral Reading for

Physics Courses," Alfred M. Bork and Arnold B.

Arons. Amer. J. Phys. 35, 71 (1967).

m. TECHNOLOGY, LITERATURE, AND ART
SINCE WORLD WAR II: INTERPLAY

AND CROSS RELATIONS

1. "Two Cultixres in Engineering Design," Anonymous.
Engineering 197, 373 (13 Mar. 1964). A model essay

demonstrating that dams and highway-lighting

standards can be and should be both useful and beauti-

ful.

2. Poetics of Space. Gaston Bachelard. (Orion Press,

New York, 1964). A physicist-philosopher justifies

poetry as an answer to technology and formulas. In a

provocative discussion of the "spaceness" of cellars,

attics, and closets and of their relative effects on us, of

which we are generally unaware, the author makes us

see the familiar in a new light. He offers stimulating

contrasts with common notions of space in physics and

in the public mind, as influenced by Apollo missions.

3. "Science: Tool of Culture," Cyril Bibby. Saturday

Rev. 48, No. 23, 51 (6 June 1964). Pits the scientists

and creative artists against the purely verbal scholars,

asks for more science (better taught) in schools, and

appeals to adminbtrators to change their methods of

training teachers, so that science will appear not as

an ogre but as a fairy godmother.

4. Voices from the Crowd (Against the H-Bomb). David

Boulton, Ed. (Peter Owen, London, 1964.) This

anthology of poetry and prose, stemming from the

Campaign for Nuclear Disarmament, is a good

example of direct testimony of the effect of the Bomb
on thinking and writing. Among the literary people

included: Priestley, Comfort, Russell, Read, Osborne,

Braine (Room at the Top).

5. Poetry and Politics: 1900-1960. C. M. Bowra. (Uni-

versity Press, Cambridge, England, 1966.) Discusses

in part the effect of Hiroshima on poets, notably Edith

Stilwell, whose form and vision were radically affected

by the event, and the Russian, Andrei Voznesensky,

whose poem on the death of Marilyn Monroe foresaw a

universal disaster.
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6. "Science as a Humanistic Discipline," J. Bronowski.
Bull. Atomic Scientists 24, No. 8, 33 (1968). The
author of Science and Human Values here covers the

history of humanism, values, choice, and man as a

unique creature. It is the duty of science to transmit

this sense of uniqueness, to teach the world that man
is guided by self-created values and thus comfort it

for loss of absolute purpose.

7. "Artist in a World of Science," Pearl Buck. Saturday

Rev. 41, No. 38, 15-16, 42-44 (1958). Asks for artists

to be strong, challenges writers to use the findings of

science and illuminate them so that "human beings

will no longer be afraid."

8. The Novel Now. Anthony Burgess. (W. W. Norton

and Co., -New York, 1967.) Prominent British novelist

discusses the aftermath of nuclear war as a gloomy

aspect of fictional future time and advances the thesis

that comparatively few good novels came out of the

war that ended with Hiroshima, although a good deal

of ordinary fiction has the shadow of the Bomb in it.

9. Beyond Modem Sculpture: Effects of Science &
Technology on the Sculpture of this Centxiry. Jack

BuRNHAM. (George BrazUler Inc., New York, 1969.)

"Today's sculpture is preparing man for his replace-

ment by information-processing energy " Bumham
sees an argument for a mechanistic teleological

interpretation of life in which culture, including art,

becomes a vehicle for qualitative changes in man's

biological status. [See review by Charlotte Willard in

Saturday Rev. 52, No. 2, 19 (1969).]

10. Cultures in Conflict. David K. Cornelius and

Edwin St. Vincent, Eds. (Scott, Foresman and

Company, Glenview, 111., 1964). A useful anthology

of primary and secondary materials on the con-

tinuing C. P. Snow debates.

11. "The Computer and the Poet," Norman Cousins.

Saturday Rev. 49, No. 30, 42 (23 July 1966). Suggests

editorially (and movingly) that poets and program-

mers should get together to "see a larger panorama of

possibilities than technology alone may inspire" and

warns against the "tendency to mistake data for

wisdom."

12. Engineers and Ivory Towers. Hardy Cross. Robert

C. Goodpasture, Ed. (McGraw-Hill Book Co.,

New York, 1952). A sort of common-sense bible

covering the education of an engineer, the full life,

and concepts of technological art.

13. Engineering: Its Role and Function in Himian

Society. William H. Davenport and Daniel

Rosenthal, Eds. (Pergamon Press, Inc., New York,

1967). An anthology with four sections on the view-

point of the humanist, the attitudes of the engineer,

man and machine, and technology and the future.

Many of the writers in this bibliography are repre-

sented in an effort to present historical and con-

temporary perspectives on technology and society.

14. "Art and Technology—The New Combine," Douglas

M. Davis. Art in Amer. 56, 28 (Jan.-Feb. 1968).

Notes a new enthusiasm among many modern artists

because of the forms, effects, and materials made
possible by the new technology. Envisions full

partnership between artist and machine in the

creative process.

15. So Human an Animal. Ren^ Dubcs. (Charles

Scribner's & Sons, New York, 1968). Dubos, a promi-

nent microbiologist, won a Pulitzer Prize for this work,

and it deserves wide reading. Motivated by humanistic

impulses, writing now like a philosopher and again

like a poet, he disciLsses man'.s threatened dehuman-
ization under technological advance. Man can adjust,

Dubos says—at a price But first he mu.st understand

himself as a creature of heredity and environment
and then learn the .science of life, not merely science.

16. The Theatre of the Absurd. Martin E.sslin. (Anchor

Books-Doubleday and Co., Inc., Garden City, N. J.,

1961). The drama director for the British Broad-

casting Company explains the work of Beckett,

lonesco, Albee, and others a.s a reaction to loss of

values, reason, and control in an age of totalitarianism

and of that technological development, the Bomb.
17. Engineering and the Liberal Arts. Samuel C. Flor-

MAN. (McGraw-Hill Book Co., New York, 1968).

The subtitle tells the story: A Technologist's Guide to

History, Literature, Philosophy, Art, and Music.

Explores the relationships between teclinology and the

liberal arts—historical, aesthetic, functional. Useful

reading lists are included.

18. The Creative Process. Brewster Ghiseun, Ed.

(University of California Press, Berkeley, 1952;

Mentor Books, The New American Library, Inc.,

New York, paperback, 1961). Mathematicians,

musicians, painters, and poets, in a symposium on the

personal experience of creativity. Of use to those

interested in the interplay between science and art.

19. Postwar British Fiction: New Accents and Attitudes.

James Gindin. (University of California Press,

Berkeley, 1963). Traces the comic or existentialist

view of the world in recent British novels as resulting

in part from the threat of the hydrogen bomb.

20. The Poet and the Machine. Paul Ginestier. Martin

B. Friedman, Transl. (University of North Carolina

Press, Chapel Hill, 1961; College and University

Press, New Haven, Conn., paperback, 1964). Con-

siders through analysis of generous examples from

modern and contemporary poetry the effect of the

machine on subject matter, form, and attitude. An

original approach to the value, meaning, and influence,

as the author puts it, of the poetry of our technology-

oriented era.

21. "Nihilism in Contemporary Literature," Charles I.

Glicksberg. Nineteenth Century 144, 214 (Oct.,

1948). An example of the extreme view that man is

lost in a whirlpool of electronic energy, that cosmic

doubts, aloneness, and fear of cataclysmic doom have

led to a prevailing mood of nihilism in writing.

22. "Impact of Technological Change on the Humanities,"
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Maxwell H. Goldberg. Educational Record 146,

No. 4, 388-399 (1965). It is up to tlie humanities to

soften the impact of advancing technology upon the

pressured individual. One thing they can do is to

help us pass the almost unlimited leisure time proph-

esied for the near future under automation and, thus,

to avoid Shaw's definition of hell.

23. "A Poet's Investigation of Science," Robert Graves.

Saturday Rev. 46, 82 (7 Dec. 1963). The dean of

English poets in a lecture at the Massachusetts

Institute of Technology takes technologists to task

good-humoredly but with a sting, too. He is concerned

about the upset of nature's balance, the weakening of

man's powers through labor-saving devices, synthetic

foods, artificial urban life, dulling of imagination by
commercialized art, loss of privacy—^all products or

results of technology. Graves finds no secret mystique

among advanced technologists, only a sense of fate

that makes them go on, limited to objective views and

factual accuracy, forgetting the life of emotions and

becoming diminished people.

24. Social History of Ait. Arnold Hauser. (Vintage

Books, Random House, Inc., 4 vols.. New York,

1951). In the fourth volume of this paperback edition

of a standard work, considerable space is given to the

cultural problem of technics and the subject of film

and technics.

25. "Automation and Imagination," Jacquetta Hawkes.
Harper's 231, 92 (Oct. 1965). Prominent archaeologist

fears loss of man's imaginative roots under years of

technical training. While the technological revolution

sweeps on toward a total efficiency of means, she says,

we must control the ends and not forget the sig-

nificance of the individual.

26. The Future as Nightmare. Mark R. Hillegas.

(Oxford University Press, New York, 1967). A study

that begins with Wells and ends with recent science

fiction by Ray Bradbury, Kurt Vonnegut, and Walter

Miller, Jr. The latter three are worried about the

mindless life of modern man with his radio, TV, and

high-speed travel; the need to learn nothing more than

how to press buttons; the machine's robbing man of

the pleasure of working with his hands, leaving him
nothing useful to do, and lately making decisions

for him; and, of course, the coming nuclear holocaust.

27. Science and Culture. Gerald Holton, Ed. (Beacon

Press, Boston, 1967). Almost all of the 15 essays in

this outstanding collection appeared, several in

different form, in the Winter 1965 issue of Daedalus.

Of particular relevance to the area of this bibliography

are Herbert Marcuse's view of science as ultimately

just technology; Gyorgy Kepes' criticism of modern
artists for missing vital connections with technological

reality; Ren6 Dubos' contention that technological

applications are becoming increasingly alienated

from human needs; and Oscar Handlin's documenta-

tion of the ambivalent attitude of modern society

toward technology.

28. "The Fiction of Anti-Utopia," Irving Howe. New
Republic 146, 13 (23 Apr. 1962). An analysis of the

effect on modern fiction of the splitting apart of

technique and values and the appearance of technical

means to alter human nature, both events leading to

the American dream's becoming a nightmare.

29. The Idea of the Modern. Irving Howe, Ed. (Horizon

Press, New York, 1967). A perspective on post-

Hiroshima literature and its relation to technology

calls for a frame of reference on modernism in art and

literature in general. A useful set of ideas is contained

in this volume, the summing-up of which is that

"nihilism lies at the center of all that we mean by
modernist literature."

30. The Machine. K. G. P. Hult6n, Ed. (Museum d
Modern Art, New York, 1968) . A metal-covered book

of pictorial reproductions with introduction and

running text, actually an exhibition catalogue, offering

clear visual evidence of the interplay of modern art and

modern technology in forms and materials.

31. Literature and Science. Aldous Huxley. (Harper &
Row, Publishers, New York, 1963). A literary and

highly literate attempt to show bridges between the

two cultures. Technological know-how tempered by

human understanding and respect for nature will

dominate the scene for some time to come, but only if

men of letters and men of science advance together.

32. The Inland Island. Josephine Johnson. (Simon &
Schuster, Inc., New York, 1969). One way to avoid

the evils of a technological society is to spend a year on

an abandoned farm, study the good and the cruel

aspects of nature, and write a series of sketches about

the experience. Escapist, perhaps, but food for

thought.

33. The Sciences and the Himianities. W. T. Jones.

(University of California Press, Berkeley, 1965). A
professor of philosophy discusses conflict and recon-

ciliation between the two cultures, largely in terms of

the nature of reality and the need to understand each

other's language.

34. "The Literary Mind," Alfred Kazin. Nation 201,

203 (20 Sept. 1965). Advances the thesis that it is

more than fear of the Bomb that produces absurdist

and existentialist writing, it is dissatisfaction that

comes from easy self-gratifications: "Art has become

too easy."

35. "Imagination and the Age," Alfred Kazin. Reporter

34, No. 9, 32 (5 May 1966). Analyzes the crisis

mentality behind modern fiction, the guilt feelings

going back to Auschwitz and Hiroshima. Salvation

from the materialism of modem living lies in language

and in art.

36. New Landscape in Science and Art. Gyorgy Kepes.

(Paul Theobald, Chicago, 1967). Like the earlier

Vision in Motion by L. Moholy-Nagy (Paul Theobald,

Chicago, 1947), this work will make the reader see

more, better, and differently. Essays and comments by

Gabo, Giedion, Gropius, Rossi, Wiener, and others
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37.

39

plus lavish illustration assist Kepes, author of the

influential Language of Vision and head of the
program on advanced visual design at the Massachu-
setts Institute of Technology, to discuss morphology
in art and science, form in engineering, esthetic

motivation in science—in short, to demonstrate that

science and its applications belong to the humanities,

that, in Frank Lloyd Wright's words, "we must look

to the artist brain ... to grasp the significance to

society of this thing we call the machine."

"If You Don't Mind My Saying So . . .," Joseph
Wood Krutch. Amer. Scholar 37, 572 (Autumn,
1968). Expresses fear over extending of experimenta-

tion with ecology and belief that salvation does not lie

with manipulation and conditioning but may come
from philosophy and art.

38. The Scientist vs the Humanist. George Levine and
Owen Thomas, Eds. (W. W. Norton, New York,

1963). Among the most relevant items are I. I.

Rabi's "Scientist and Humanist"; Oppenheimer's

"The Tree of Knowledge"; Howard Mumford Jones's

"The Humanities and the Common Reader" (which

treats technological jargon) ; and P. W. Bridgman's

"Quo Vadis."

Death in Life: Survivors of Hiroshima. Robert J.

LiFTON. (Random House, Inc., New York, 1967).

Chapter 10, "Creative Response: A-Bomb Litera-

ture," offers samples of diaries, memoirs., and poems
by survivors, running the gamut from protest to re-

construction. See, also, Lifton's "On Death and Death

Symbolism: The Hiroshima Disaster" in Amer.

Scholar 257 (Spring, 1965).

"The Poet and the Press," Archibald MacLeish.

Atlantic 203, No. 3, 40 (March, 1959). Discusses the

"divorce between knowing and feeling" about

Hiroshima as part of a social crisis involving the decay

of the life of the imagination and the loss of individual

freedom. The danger here is growing acquiescence to a

managed order and satisfaction with the car, TV, and

the material products of our era.

"The Great American Frustration," Archibald

MacLeish. Saturday Rev. 51, No. 28, 13 (13 July

1968). Prior to Hiroshima, it seemed that technology

would serve human needs; after the event, it appeared

tliat technology is bound to do what it can do. We
are no longer men, but consumers filled with frustra-

tions that produce the satirical novels of the period.

We must try to recover the management of tech-

nology and once more produce truly educated men.

"The New Poetry," Frank MacShane. Amer. Scholar

37, 642 (Autumn, 1968). Frequently, the modern poet

writes of confrontation of man and machine. He is

both attracted and repelled by technological change,

which both benefits and blights.

The Machine in the Garden: Technology and the

Pastoral Ideal in America. Leo Marx. (Oxford

University Press, New York, 1964; Galaxy, Oxford

Univ. Press, New York, paperback, 1967). One of the

three most significant contemporary works on the

40

41

42

43

interplay of literature and technology [along with

Sussman (69) and Sypher (72)], this study concen-

trates on 19th-century American authors and their

ambivalent reactions to the sudden appearance of the

machine on the landscape. Whitman, Emerson,
Thoreau, Hawthorne, Melville, and others reveal,

under Marx's scrutiny, the meaning inherent in

productivity and power. Whitman assimilated the

machine, Emerson welcomed it but disliked ugly

mills, Thoreau respected tools but hated the noise and
smoke, Hawthorne and Melville noted man's growing
alienation with the green fields gone, Henry Adams set

the theme for the "ancient war between the kingdom of

love and the kingdom of power . . . waged endlessly

in American writing ever since." The domination of

the machine has divested of meaning the older notions

of beauty and order, says Marx, leaving the American

hero dead, alienated, or no hero at all. Aptly used

quotations, chronological order, and clarity of per-

spective and statement (with which all may not agree)

make this a "must" for basic reading in this special

category. Furthermore, there are links to Frost,

Hemingway, Faulkner, and other modern writers.

44. Technology and Culture in Perspective. Ilene
Montana, Ed. (The Church Society for College Work,

Cambridge, 1967). Includes "Technology and Democ-
racy" by Ilarvey Cox, "The Spiritual Meaning of

Technology and Culture," by Walter Ong, and

"The Artist's Response to the Scientific World," by

Gyorgy Kepes.

45. "Science, Art and Technology," Charles Morris.

Kenyon Rev. 1, No. 4, 409 (Autumn, 1939). A tight

study of three forms of discourse—scientific, aesthetic,

and technological and a plea that the respective

users acquire vision enough to see that each comple-

ments the other and needs the other's support.

46. "Scientist and Man of Letters," Herbert J. Muller.
Yale Rev. 31, No. 2, 279 (Dec, 1941). SimUarities and
differences again. Science has had some bad effects on
literature, should be a co-worker; literature can give

science perspective on its social function.

47. The Myth of the Machine. Lewis Mumford. (Har-

court, Brace & World, Inc., New York, 1967).

Important historical study of human cultural develop-

ment, that shows a major shift of emphasis from

human being to machine, questions our commitment
to technical progress, and warns against the down-
playing of literature and fine arts so vital to complete

life experience. See also his earlier Art and Technics

(Columbia University Press, New York, 1952).

48. "Utopia, the City, and the Machine," Lewis Mum-
ford. Daedalus 94, No. 2, of the Proceedings of the

American Academy of Arts and Sciences, 271 (Spring,

1965). The machine has become a god beyond chal-

lenge. The only group to understand the dehumanizing
effects and eventual price of technology are the

avant-garde artists, who have resorted to caricature.

49. "Utopias for Reformers," Francois Bloch-Laine.
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Daedalus 94, No. 2, 419 (1965). DLsciLsses the aim of

two Utopias—technological and democratic—to in-

crease man's fulfillment by different approaches,

which mu.st be combined.

50. "Utopia and the Good Life," George Kateb,

Daedalus 94, No. 2, 454 (1965). Describes the thrust

of teclmology in freeing men from routine drudgery

and setting up leisure and abundance, with attendant

problems, however.

51. Utopia and Utopian Thought. Frank Manuel, Ed.

(Houghton Mifflin Co., Boston, 1966). A gathering of

the preceding three, and other materials in substan-

tially the s;ime form.

52. Aesthetics and Technology in Building. Pier Luigi

Nkrvi. (Harvard University Pres.s, Cambridge,

Mass., 1965). "Nervi's thesis is that good architecture

is a synthesis of technology and art," according to an

expert review by Carl W. Condit, in Technol. and

Culture 7, No. 3, 432 (Summer, 1966), which we also

recommend.

53. Liberal Learning for the Engineer. Sterling P.

Olmsted. (Amer. Soc. Eng. Educ, Washington, D. C,
1968). The most recent and comprehensive report on

the state of liberal studies in the engineering and

technical colleges and institutes of the U. S. Theory,

specific recommendations, bibliography.

54. Road to Wigan Pier. George Orwell. (Berkley

Publishing Corporation, New York, 1967). A paper-

back rei.ssue of the 1937 work by the author of 1984.

Contains a 20-page digression, outspoken and con-

troversial, on the evils of the machine, which has made
a fully human life impossible, led to decay of taste,

and acquired the status of a god beyond criticism.

55. "Art and Technology: 'Cybernetic Serendipity',"

S. K. OvERBECK. The Alicia Patterson Fund, 535

Fifth Ave., New York, N. Y., 10017, SKO-1 (10 June

1968). The first of a dozen illustrated newsletter-

articles by Overbeck that are published by the Fund.

The series (space limitations forbid separate listings)

describes various foreign exhibitions of computer
music, electronic sculpture, and sound and light,

which, in turn, recall "Nine Evenings: Theater and
Engineering" staged in New York, fall 1966, by
Experiments in Art and Technology, with outside

help, "to familiarize the artist with the realities of

technology while indulging the technician's penchant
to transcend the mere potentialities of his discipline."

56. "Myths, Emotions, and the Great Audience," James
Parsons. Poetry 77, 89 (Nov., 19.50). Poetry is

important to man's survival because it is a myth
maker at a time when "it is the developing r.ationale of

as.sembly-linc production that all society be hitched

to the machine."

57. "Public and Private Problems in Modem Drama,"
Ronald Peacock. Tulane Drama Rev. 3, No. 3, 58
(March, 1959). The dehumanizing effects of techno-

cratic society as seen in modern plays going back as

far as Georg Kaiser's Gas (1918).

58. "The American Poet in Relation to Science," Norman
Holmes Pearson. Amer. Quart. 1, No. 2, 116

(Summer, 1949). Science and technology have done a

service to poets by forciiig them into new modes of ex-

pression; however, the poet remains the strongest force

in the preservation of the freedom of the individual.

59. Science, Faith and Society. Michael Polanyi. (Uni-

versity of Chicago Press, Chicago, 1964). Originally

published by Oxford University Press, London,

in 1946, this work appears in a new format with a

new introduction by the author, which fits the present

theme, inasmuch as it considers the idea that all great

discoveries are beautiful and that scientific discovery

is like tlie creative act in the fine arts.

60. Avant-Garde: The Experimental Theater in France.

Leonard C. Pronko. (University of California Press,

Berkeley, 1966). A keen analysis of the work of

Beckett, lonesco. Genet, and others, which no longer

reflects a rational world but the irrational world of the

atom bomb.

61. "Scientist and Humanist: Can the Minds Meet?"
I. I. Rabi. Atlantic 197, 64 (Jan., 1956). Discusses

modern antiintellectualism and the urge to keep up

with the Russians in technology. Calls for wisdom,

which is unobtainable as long as sciences and human-

ities remain separate disciplines.

62. "Integral Science and Atomized Art," Eugene
Rabinowitch. Bull. Atomic Scientists 15, No. 2, 65

(February, 1959). Through its own form and expres-

sion, art could help man find the harmony now
threatened by the forces of atomism and fear of

nuclear catastrophe.

63. "Art and Life," Sir Herbert Read. Saturday

Evening Post 232, 34 (26 Sept. 1959). Modern
violence and restlessness stem in great part from a

neurosis in men who have stopped making things by

hand. Production, not grace or beauty, is the guiding

force of technological civilization. Recommends the

activity of art to release creative, rather than de-

structive, forces.

64. The New Poets: American and British Poetry Since

World War II. M. L. Rosenthal. (Oxford University

Press, New York, 1967). Detects a dominant concern

among contemporary poets with violence and war and

links it to a general alienation of sensibility, due in

great part to the fact that human values are being

displaced by technology.

65. "The Vocation of the Poet in the Modem Worid,"

Delmore Schwartz. Poetry 78, 223 (July, 1951).

The vocation of the poet today is to maintain faith in

and love of poetry, until he is destroyed as a human
being by the doom of a civilization from which he has

become alienated.

66. "Science and Literature," Elizabeth Sewell.

Commonweal 73, No. 2, 218 (13 May 1966). Myth
and the simple affirmation of the human mind

and body are the only two forms of imagination

capable of facing modern enormities. The two terminal

points of our technological age were Auschwitz and
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Hiroshima; in literature about them, we may yet see

"the affirmation of simple humanity."

67. "Is Technology Taking Over?" Charles E. Silber-

MAN. Fortune 73, No. 2, 112 (Feb., 1966). A brisk

discussion of familiar topics: art as defense; technology

as an end; dehumanization and destruction; mass

idleness; meaninglessness. Technology may not deter-

mine our destiny, but it surely affects it and, in

enlarging choice, creates new dangers. As the author

points out, however, borrowing from Whitehead,

the great ages have been the dangerous and distxirbed

ones.

68. "One Way to Spell Man," Wallace Stegner.

Saturday Rev. 41, No. 21, 8; 43 (24 May 1958).

Finds a real quarrel between the arts and technology

but not between the arts and science, the latter two

being open to exploitation by the technology of mass

production. Reminds us that nonscientific experience

is valid, and nonverifiable truth important.

69. Victorians and the Machine : The Literary Response to

Technology. Herbert L. Sussman. (Harvard Uni-

versity Press, Cambridge, Mass., 1968). Does for

English writers of the 19th century what Leo Marx

[43] did for the Americans, with substantially similar

conclusions. Writers stressed are Carlyle, Butler,

Dickens, Wells, Ruskin, Kipling, and Morris, whose

thought and art centered on the effects of mechaniza-

tion on the intellectual and aesthetic life of their day.

A major study of the machine as image, symbol,

servant, and god—something feared and respected,

ugly and beautiful, functional and destructive—as

seen by the significant Victorian literary figures, this

work also helps explain the thrust of much con-

temporary writing.

70. "The Poet as Anti-Specialist," May Swenson.

Saturday Rev. 48, No. 5, 16 (30 Jan. 1965). A poet

tells how her art can show man how to stay human in a

technologized age, compares and contrasts the

languages of science and poetry, wonders about the

denerving and desensualizing of astronauts "trained to

become a piece of equipment."

71. "The Poem as Defense," Wylie Sypher. Amer.

Scholar 37, 85 (Winter, 1967). The author is not

worried about opposition between science and art,

but about opposition between both of them together

and technology. Technique can even absorb criticism

of itself. Technological mentality kills the magic of

surprise, grace, and chance. If Pop art, computer

poetry, and obscene novels are insolent, society is even

more so in trying to engineer people.

72. Literature and Technology. Wylie Sypher. (Random

House, Inc., New York, 1968). The best, almost the

only, general study of its kind, to be required reading

along with Leo Marx [43] and Herbert Sussman [69].

Develops the thesis that technology dreads waste and,

being concerned with economy and precaution, lives

by an ethic of thrift. The humanities, including art,

exist on the notion that every full life includes waste—

of virtue, intention, thinking, and work. The thesis b

illustrated by examples from literature and art.

Although, historicallv, technology minimizes indi-

vidual participation and resultant pleasure, Sypher

concedes that lately "technology has been touched by

the joy of finding in its solutions the play of intellect

that satisfies man's need to invent."

73. Dialogue on Technology. Robert Theobald, Ed.

(The Bobbs-Merrill Co., Inc., Indianapolis, 1967).

Contains essays on the admiration of technique,

human imagination in the space age, educational

technology and value systems, technology and

theology, technology and art.

74. Science, Man and Morals. W. H. Thorpe. (Cornell

University Press, Ithaca, N. Y., 1965). Brings out

interplay among science, religion, and art, accenting an

over-all tendency toward wholeness and unity. Traces

modem plight in some degree to the Bomb.
75. "Modem Literature and Science," I. Traschen.

College English 25, 248 (Jan., 1964). Explores the

common interests of scientist and poet in their search

for truth as well as their differences, which produce

alienation and literary reaction.

76. "The New English Realism," Ossia Trilling. Tulane

Drama Rev. 7, No. 2, 184 (Winter, 1962). Ever since

Osborne's "Look Back in Anger," the modern British

theatre has shown a realism based on revolt against

class structure and the dilemma of threatening nuclear

destruction, although scarcely touching on the new
technology itself.

77. "The Poet in the Machine Age," Peter Viereck.

J. History Ideas 10, No. 1, 88 (Jan., 1949). A classifi-

cation of antimachine poets, who for esthetic, pious,

instinctual, or timid reasons have backed away, and

promachine poets, who, as materialists, cultists, or

adapters, have used the new gadgets to advantage.

We must try to unite the world of machinery and the

world of the spirit, or "our road to hell will be paved

with good inventions."

78. The Industrial Muse. With introduction by Jeremy

Warburg, Ed. (Oxford University Press, New York,

1958). An amusing and informative anthology of verse

from 1754 to the 1950's dealing in all moods with

engines, factories, steamboats, railways, machines,

and airplanes.

79. "Poetry and Industrialism," Jeremy Warburg.

Modem Language Rev. 53, No. 2, 163 (1958). Treats

the problem of imaginative comprehension as the

modem poet strives to assimilate the new technology,

make statements, and find terms for a new form of

expression.

80. Reflections on Big Science. Alvin Weinberg. (The

MIT Press, Cambridge, Mass., 1967). The director of

Oak Ridge National Laboratory devotes his first

chapter, "The Promise of Scientific Technology;

The New Revolutions," to nuclear energy, cheap

electricity, technology of information, the Bomb, and

dealing with nuclear garbage. He calls upon the

humanists to restore meaning and purpose to our lives.
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81. The Theater of Protest and Paradox. George Well-
WARTH, (New York University Press, 1964). A dis-

cussion of contemporary playwrights, e.g., lonesco,

who finds a machine-made preplanned city essentially

drab; and Dtirrenmatt, whose "The Physicists"

teaches the lesson that mankind can be saved only

through suppression of technical knowledge.

82. Flesh of Steel: Literature and the Machine in Ameri-

can Culture. Thomas Reed West. (Vanderbilt

University Press, Nashville, Tenn., 1967). A con-

sideration of the writings of Sherwood Anderson,

Dos Passes, Sandburg, Sinclair Lewis, Mumford, and

Veblen which, while conceding that most of them are

antimachine most of the time, preaches the positive

virtues of the Machine: law, order, energy, discipline,

which, at a price, produce a city like New York,

where artists and writers may live and work on their

own terms who could not exist if the machine stopped.

83. "The Discipline of the History of Technology,"

Lynn White, Jr. Eng. Educ. 54, No. 10, 349 (June,

1964). Technologists have begun to see that they

have an intellectual need for the knowledge of the

tradition of what they are doing. Engineers, too,

must meet the mark of a profession, namely, the

knowledge of its history. Even the humanists are

realizing what this explosive new discipline can con-

tribute to their personal awareness.

84. Drama in a World of Science. Glynne Wickham.
(University of Toronto Press, Toronto, Canada,

1962). Treats the renascence of English theatre in the

50's, the Bomb as topic, the individual confused by
technology and its tyranny as protagonist, and mass
conformity, violence, or apathy as themes.

85. "The Scientist and Society." J. Tuzo Wilson.
Imperial OU Rev., 20-22 (Dec, 1963). The humanist
who pretends to have no interest in science and the

technocrat who relies completely on science are

equally deluded. Calls for tolerance and under-

standing among all intellectual disciplines. The
scientist must reconsider his position vis-d-^s the

humanities and the arts.

86. "Science is Everybody's Business," J. Tuzo Wilson.
Amer. Scientist 52, 266A (1964). Includes new direc-

tions in technology.

87. "On the History of Science," J. Tuzo Wilson,
Saturday Rev. 47, No. 18, 50 (2 May 1964). Suggests

new university departments to train scientifically

literate humanists.

88. "The Long Battle between Art and the Machine."
Edgar Wind, Harper's 228, 65 (Feb., 1964). Con-
templation of fake-modem buildings, dehumanized
music, and mass-produced furniture raises once more
the old question of whether the artist uses the machine
or becomes its slave.

Postscript to Sec. m
Since most of the foregoing material is critical or

expository, except for quoted illustration, readers

may wish to make a start with firsthand creative

literary pieces. Here are some suggestions (unless

otherwise indicated, items are available in various

paperback editions; see the current issue of

Paperbound Books in Print, R. R. Bowker Co.,

New York)

.

Plays

On the theme of machine replacing man, there

are two early modern classics for background

:

89. R.U.R. Karel Capek.

90. The Adding Machine. Elmer Rice.

Three British plays deal directly with the Bomb,
and the fourth, the only one available in paper,

alludes to it

:

91. The Tiger and the Horse. Robert Bolt. In Three

Plays (Mercury Books, London, 1963).

92. The Offshore Island. Marghanita Laski. (Cresset

Press, London, 1959).

93. Each His Own Wilderness. Doris Lessing. In

New English Dramatists, E. Martin Browne, Ed.

(Penguin Plays, London).

94. Look Back in Anger. John Osborne.

Two recent plays dealing with physicists

:

95. The Physicists. Friedrich Durrenmatt.
96. In the Matter of J. Robert Oppenheimer. Heinar

KiPPHARDT.

Fiction

A quartet of Utopian or anti-Utopian novels

:

97. Brave New World. Aldous Huxley.
98. Nineteen Eighty-Four. George Orwell.
99. Walden II. B. F. Skinner.

100. We. E. Zamiatan.

A quartet of science fiction

:

101. Fahrenheit 4^1. Ray Bradbury.
102. Canticle for Leibowitz. Walter Miller, Jr.

103. Player Piano. Kurt Vonnegut, Jr.

104. Cat's Cradle. Kurt Vonnegut, Jr.

A trio of short stories :

105. "By the Waters of Babylon," Stephen V, Benet.
106. "The Portable Phonograph," Walter Van Tilburq

Clark, In The Art of Modem Fiction, R. West and R.

Stallman, Eds., alternate ed. (Holt, Rinehart, &
Winston, Inc., New York, 1949),

107. "The Machine Stops," E. M. Forster. In Modem
Short Stories, L. Brown, Ed. (Harcourt, Brace

A World, Inc., New York, 1937).
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Poetry

See Ginestier [20], Warburg [78], and Boulton

[4] above. Also:

108. The Modem Poets. John M. Brinnin and Bill

Read, Eds. (McGraw-Hill Book Co., New York,

1963). Contains poems by Hoffman, Lowell, Moss, and

Nemerov pertaining to the Bomb.

109. Weep Before God. John Wain. (The Macmillan

Company, London, 1961). Sections VI-VII consider

the Machine.

110. Wildtrack. John Wain. (The Macmillan Company,

London, 1965). Pages 10-12 satirize Henry Ford and

the assembly line.

HI. Today's Poets. Chad Walsh, Ed. (Charles Scrib-

ner's Sons, New York, 1964). The Introduction

mentions the Bomb, and a poem by Gil Orlovitz

spoofs the computer.
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FILM LOOP NOTES
FILM LOOP 18
ONE-DIMENSIONAL COLLISIONS I

Two different head-on collisions of a pair of

steel balls are shown. The balls hang from
long, thin wires that confine each ball's motion

to the same circular arc. The radius is large

compared with the part of the arc, so the curva-

ture is hardly noticeable. Since the collisions

take place along a straight line, they can be

caUed one-dimensional.

In the first example, ball B, weighing 350
grams, is initially at rest. In the second exam-
ple, ball A, with a mass of 532 grams, is the one
at rest.

With this film, you can make detailed

measurements on the total momentum and
energy of the balls before and after colhsion.

Momentum is a vector, but in this one-
dimensional case you need only worry about its

sign. Since momentum is the product of mass
and velocity, its sign is determined by the sign
of the velocity.

You know the masses of the baUs. Veloc-

ities can be measured by finding the distance
traveled in a known time.

After viewing the film, you can decide on
what strategy to use for distance and time
measurements. One possibility would be to

time the motion through a given distance with
a stopwatch, perhaps making two Unes on the
paper. You need the velocity just before and
after the collision. Since the balls are hanging

from wires, their velocity is not constant. On
the other hand, using a small arc increases the

chances of distance-time uncertainties. As
with most measuring situations, a number of

conflicting factors must be considered.

You will find it useful to mark the crosses

on the paper on which you are projecting,

since this will allow you to correct for projector

movement and film jitter. You might want to

give some thought to measuring distances. You
may use a ruler with marks in milHmeters, so

you can estimate to a tenth ofa milhmeter. Is it

wise to try to use the zero end of the ruler, or

should you use positions in the middle? Should
you use the thicker or the thinner marks on the

ruler? Should you rely on one measurement, or

should you make a number of measurements
and average them?

Estimate the uncertainty in distance and
time measurements, and the uncertainty in

velocity. What can you learn from this about
the uncertainty in momentum?

When you compute the total momentum
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before and after collision (the sum of the

momentum of each ball), remember that you
must consider the direction of the momentum.

Are the differences between the momen-
tum before and after coUision significant, or

are they within the experimental error already

estimated?

Save the data you collect so that later you

can make similar calculations on total kinetic

energy for both balls just before and just after

collision.

FILM LOOP 19 ONE-DIMENSION
COLLISIONS II

Two different head-on collisions of a pair of

steel balls are shown, with the same setup as

that used in Film Loop 18, "One-Dimensional

Collisions I."

In the first example, ball A with a mass of

1.8 kilograms collides head on with ball B, with

a mass of 532 grams. In the second example,

ball A catches up with ball B. The instructions

for Film Loop 18, "One-Dimension Collisions

I" may be followed for completing this inves-

tigation also.

FILM LOOP 20 INELASTIC
ONE-DIMENSIONAL COLLISIONS
In this film, two steel balls covered with plas-

ticene hang from long supports. Two collisions

are shown. The two balls stick together after

colhding, so the collision is "inelastic." In the

first example, ball A, weighing 443 grams, is at

rest when ball B, with a mass of 662 grams,

hits it. In the second example, the same two

balls move toward each other. Two other films,

"One-Dimensional Collisions I" and "One-

Dimensional Colhsions 11" show collisions

where the two balls bounce off each other.

What different results might you expect firom

measurements of an inelastic one-dimensional

coUision?

The instructions for Film Loop 18,

"One-Dimensional Collisions I" may be fol-

lowed for completing this investigation.

Are the differences between momentum
before and after colhsion significant, or are

they within the experimental error already es-

timated?

Save your data so that later you can make
similar calculations on total kinetic energy for

both balls just before and just after the colh-

sion. Is whatever difference you may have ob-

tained explainable by experimental error? Is

there a noticeable difference between elastic

and inelastic collisions as far as the conserva-

tion of kinetic energy is concerned?

FILM LOOP 21 TWO-
DIMENSIONAL COLLISIONS I

Two hard steel balls, hanging from long, thin

wires, collide. Unlike the collisions in Film

Loops 18 and 20, the balls do not move along

the same straight line before or after the colh-

sions. Although strictly the balls do not all

move in a plane, as each motion is an arc of a

circle, to a good approximation everything oc-

curs in one plane. Hence, the colhsions are

two-dimensional. Two colhsions are filmed in

slow motion, with ball A having a mass of 539
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grams, and ball B having a mass of 361 grams.

Two more cases are shown in Film Loop 22.

Using this film, you can find both the

momentum and the kinetic energy of each ball

before and after the colhsion, and thus study

total momentum and total kinetic energy con-

servation in this situation. Thus, you should

save your momentum data for later use when
studying energy.

Both direction and magnitude of momen-
tum should be taken into account, since the

balls do not move on the same line. To find

momentum you need velocities. Distance

measurements accurate to a fraction of a mil-

limeter and time measurements to about a

tenth of a second are suggested, so choose

measuring instruments accordingly.

You can project directly onto a large piece

of paper. An initial problem is to determine

lines on which the balls move. If you make
many marks at the centers of the balls, run-

ning the film several times, you may find that

these do not form a perfect hne. This is due

both to the inaccuracies in your measurements

and to the inherent difficulties of high speed

photography. Cameras photographing at a rate

of 2,000 to 3,000 frames a second "jitter," be-

cause the film moves so rapidly through the

camera that accurate frame registration is not

possible. Decide which line is the "best" ap-

proximation to determine direction for veloc-

ities for the balls before and after collision.

You will also need the magnitude of the

velocity, the speed. One possibihty is to mea-

sure the time it takes the ball to move across

two lines marked on the paper. Accuracy sug-

gests a number of different measurements to

determine which values to use for the speeds

and how much error is present.

Compare the sum of the momentum before

collision for both balls with the total momen-
tum after collision. If you do not know how to

add vector diagrams, you should consult your

teacher or the Programmed Instruction Book-

let Vectors II. The momentum of each object is

represented by an arrow whose direction is that

of the motion and whose length is proportional

to the magnitude of the momentum. Then, if

the head ofone arrow is placed on the tail ofthe

other, moving the hne parallel to itself, the vec-

tor sum is represented by the arrow which joins

the "free" tail to the "free" head.

What can you say about momentum con-

servation? Remember to consider measure-

ment errors.

FILM LOOP 22
TWO-DIMENSIONAL COLLISION 11

Two hard steel balls, hanging from long thin

wires, collide. Unhke the colUsions in Film

Loops 18 and 20, the balls do not move along

the sam.e straight line before or after the colli-

sions. Although the balls do not strictly all

move in a plane, as each motion is an arc of a

circle, everything occurs in one plane. Hence,

the colhsions are two-dimensional. Two colh-

sions are filmed in slow motion, with both balls

having a mass of 367 grams. Two other cases

are shown in Film Loop 21

.

Using this film you can find both the kinet-

ic energy and the momentum of each ball be-

fore and after the collision, and thus study total

momentum and total energy conservation in

this situation. Follow the instructions given for

Film Loop 21 , "Two-dimensional Colhsions I,"

in completing this investigation.

FILM LOOP 23 INELASTIC
TWO-DIMENSIONAL COLLISIONS
Two hard steel balls, hanging from long, thin

wires, colhde. Unhke the colhsions in Film

Loops 18 and 20, the balls do not move along

the sam^e straight hne before or after the colh-

sion. Although the balls do not strictly all move
in a plane, as each motion is an arc of a circle,

to a good approximation the motion occurs in

one plane. Hence, the collisions are two-

dimensional. Two collisions are filmed in slow

motion. Each ball has a mass of 500 grams.

The plasticene balls stick together after colli-

sion, moving as a single mass.

Using this fOm, you can find both the kinet-

ic energy and the momentum of each ball be-

fore and after the collision, and thus study total

momentum and total energy conservation in

this situation. Follow the instructions given
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{oTFilm Loop 21 , "Two-dimensional Collisions

I," in completing this investigation.

FILM LOOP 24 SCATTERING
OF A CLUSTER OF OBJECTS
This film and also Film Loop 3-8 each contain

one advanced quantitative problem. We rec-

ommend that you do not work on these loops

until you have analyzed one of the Events 8 to

13 of the series, Stroboscopic Still Photo-

graphs ofTwo-Dimensional Collisions, or one

of the examples in the film loops entitled

"Two-Dimensional Collisions: Part II," or "In-

elastic Two-Dimensional Collisions." All these

examples involve two-body collisions, whereas

the film here described involves seven objects

and Film Loop 25, five.

In this film seven balls are suspended from

long, thin wires. The camera sees only a small

portion of their motion, so the balls all move
approximately along straight Unes. The slow-

motion camera is above the balls. Six balls are

initially at rest. A hardened steel ball strikes

the cluster of resting objects. The diagram in

Fig. 1 shows the masses of each of the balls.

Fig. 1

Part of the film is photographed in slow

motion at 2,000 frames per second. By project-

ing this section of the film on paper several

times and making measurements of distances

and times, you can determine the directions

and magnitudes of the velocities of each of the

balls. Distance and time measurements are

needed. Discussions of how to make such

measurements are contained in the Film Notes

for one-dimensional and two-dimensional col-

hsions. (See Film Loops 18 and 21 .)

Compare the total momentum of the sys-

tem both before and after the collision. Re-

member that momentum has both direction

and magnitude. You can add momenta after

collision by representing the momentum of

each ball by an arrow, and "adding" arrows

geometrically. What can you say about the ac-

curacy of your calculations and measure-

ments? Is momentum conserved? You might

also wish to consider energy conservation.

FILM LOOP 25 EXPLOSION
OF A CLUSTER OF OBJECTS
Five balls are suspended independently firom

long thin wires. The balls are initially at rest,

with a small cylinder containing gunpowder in

the center of the group of balls. The masses

and initial positions of the ball are shown in

Fig. 2. The charge is exploded and each of the

balls moves off in an independent direction. In

the slow-motion sequence the camera is

mounted directly above the resting objects.

The camera sees only a small part of the mo-

tion, so that the paths of the balls are almost

straight lines.

In your first viewing, you may be interested
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Fig. 2

in trying to predict where the "missing" balls

will emerge. Several of the balls are hidden at

first by the smoke from the charge of powder.

All the balls except one are visible for some
time. What information could you use that

would help you make a quick decision about

where this last ball will appear? What physical

quantity is important? How can you use this

quantity to make a quick estimate? When you

see the ball emerge from the cloud, you can

determine whether or not your prediction was
correct. The animated elliptical ring identifies

this final ball toward the end of the film.

You can also make detailed measure-

ments, similar to the momentum conservation

measurements you may have made using other

Project Physics Film Loops. During the slow-

motion sequence find the magnitude and direc-

tion of the velocity of each of the balls after the

explosion by projecting the film on paper,

measuring distances and times. The notes on

previous films in this series. Film Loops 18

and 21 , wiU provide you with information

about how to make such measurements if you

need assistance.

Determine the total momentum of all the

balls after the explosion. What was the

momentum before the explosion? You may find

these results sHghtly puzzling. Can you ac-

count for any discrepancy that you find? Watch
the film again and pay close attention to what
happens during the explosion.

B.C.
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KINETIC ENERGY
CALCULATIONS
You may have used one or more of Film Loops

18 through 25 in your study of momentum.
You will find it helpful to view these slow-

motion films of one and two-dimensional colli-

sions again, but this time in the context of the

study of energy. The data you collected previ-

ously will be sufficient for you to calculate the

kinetic energy of each ball before and after the

colhsion. Remember that kinetic energy imi;^ is

not a vector quantity, and hence, you need only

use the magnitude of the velocities in your cal-

culations.

On the basis of your analysis you may wish

to try to answer such questions as these: Is

kinetic energy consumed in such interactions?

If not, what happened to it? Is the loss in ki-

netic energy related to such factors as relative

speed, angle of impact, or relative masses of

the colhding balls? Is there a difference in the

kinetic energy lost in elastic and inelastic col-

lisions?

FILM LOOP 26 FINDING THE
SPEED OF A RIFLE BULLET I

In this film a rifle bullet of 13.9 grams is fired

into an 8.44 kg log. The log is initially at rest,

and the bullet imbeds itself in the log. The two

bodies move together after this violent colh-

sion. The height of the log is 15.0 centimeters.

You can use this information to convert dis-

tances to centimeters. The setup is illustrated

in Fig. 1 and 2.

BALLISTIC
PENDULUM .f?^
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impact, calculate the bullet speed at the mo-

ment when it entered the log. What physical

laws do you need for the calculation? Calculate

the kinetic energy given to the bullet, and also

calculate the kinetic energy of the log after the

bullet enters it. Compare these two energies

and discuss any differences that you might

find. Is kinetic energy conserved?

A final sequence in the film allows you to

find a lower limit for the bullet's speed. Three

successive frames are shown, so the time be-

tween each is 1/2850 of a second. The frames

are each printed many times, so each is held on

the screen. How does this lower limit compare
with your measured velocity?

FILM LOOP 27 FINDING THE
SPEED OF A RIFLE BULLET II

The problem proposed by this film is that of

determining the speed of the bullet just before

it hits a log. The wooden log with a mass of

4.05 kilograms is initially at rest. A bullet fired

from a rifle enters the log. (Fig. 1.) The mass of

the bullet is 7. 12 grams. The bullet is imbedded
in the thick log and the two move together after

the impact. The extreme slow-motion se-

quence is intended for taking measurements.
The log is suspended from thin wires, so

that it behaves like a pendulum that is free to

swing. As the bullet strikes the log it starts to

rise. When the log reaches its highest point, it

Fig. 1

momentarily stops, and then begins to swing

back down. This point of zero velocity is visible

in the slow-motion sequence in the film.

The bullet plus the log after impact forms a

closed system, so you would expect the total

amount ofmechanical energy of such a system

to be conserved. The total mechanical energ>

is the sum of kinetic energy plus potential

energy. If you conveniently take the potential

energy as zero at the moment of impact for the

lowest position of the log, then the energy at

that time is all kinetic energy. As the log begins

to move, the potential energy is proportional to

the vertical distance above its lowest point,

and it increases while the kinetic energy, de-

pending upon the speed, decreases. The kinetic

energy becomes zero at the point where the log

reverses its direction, because the log's speed is

zero at that point. All the mechanical energy at

the reversal point is potential energy. Because

energy is conserved, the initial kinetic energy

at the lowest point should equal the potential

energy at the top of the swing. On the basis of

this result, write an equation that relates the

initial log speed to the final height of rise. You
might check this result with your teacher or

with other students in the class.

If you measure the vertical height of the

rise of the log, you can calculate the log's initial

speed, using the equation just derived. What is

the initial speed that you find for the log? Ifyou

wish to convert distance measurements to cen-

timeters, it is useful to know that the vertical

dimension of the log is 9.0 centimeters.

Find the speed of the rifle bullet at the

moment it hits the log, using conservation of

momentum.
Calculate the kinetic energy of the rifle bul-

let before it strikes and the kinetic energy of the

log plus bullet after impact. Compare the two

kinetic energies, and discuss any difference.

FILM LOOP 28 RECOIL
Conservation laws can be used to determine

recoil velocity of a gun, given the experimental

information that this film provides.

The preliminary scene shows the recoil of a

cannon firing at the fort on Ste. Helene Island,
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Fig. 1

near Montreal, Canada. (Fig. 1.) The small

brass laboratory "cannon" in the rest of the

film is suspended by long wires. It has a mass
of 350 grams. The projectile has a mass of 3.50

grams. When the firing is photographed in slow

motion, you can see a time lapse between the

time the fuse is Ughted and the time when the

bullet emerges from the cannon. Why is this

delay observed? The camera used here exposes

8000 frames per second.

Project the film on paper. It is convenient

to use a horizontal distance scale in centime-

ters. Find the bullet's velocity by timing the

bullet over a large fraction of its motion. (Only

relative values are needed, so it is not neces-

sary to convert this velocity into cm/sec.)

Use momentum conservation to predict

the gun's recoil velocity. The system (gun plus

bullet) is one dimensional; all motion is along

one straight hne. The momentum before the

gun is fired is zero in the coordinate system in

which the gun is at rest. So the momentum of

the cannon after colHsion should be equal and

opposite to the momentum of the buUet.

Test your prediction of the recoil velocity

by running the film again and timing the gun

to find its recoil velocity experimentally. What
margin of error might you expect? Do the pre-

dicted and observed values agree? Give

reasons for any difference you observe. Is ki-

netic energy conserved? Explain your answer.

FILM LOOP 29 COLLIDING
FREIGHT CARS
This film shows a test of freight-car coupling.

The colhsions, in some cases, were violent

enough to break the couplings. The "hammer
car" coasting down a ramp, reaches a speed of

about 6 miles per hour. The momentary force

between the cars is about 1,000,000 pounds.

The photograph below (Fig. 1) shows cou-

Fig. 1 Broken coupling pins from colliding freight cars.
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pling pins that were sheared off by the force

of the coUision. The slow-motion collision al-

lows you to measure speeds before and after

impact, and thus to test conservation of mo-

memtum. The collisions are partially elastic,

as the cars separate to some extent after col-

lision.

The masses of the cars are:

Hammer car: w, = 95,000 kg (210,000 lb)

Target car: m^ = 120,000 kg (264,000 lb)

To find velocities, measure the film time for the

car to move through a given distance. (You

may need to run the film several times.) Use

any convenient units for velocities.

Simple timing will give Vi and V2. The film

was made on a cold winter day and friction was
appreciable for the hammer car after collision.

One way to allow for friction is to make a veloc-

ity time graph, assume a uniform negative ac-

celeration, and extrapolate to the instant after

impact.

An example might help. Suppose the

hammer car coasts 3 squares on graph paper in

5 seconds after collision, and it also coasts 6

squares in 12 seconds after colhsion. The aver-

age velocity during the first 5 seconds was v^ =

(3 squares)/(5 sec) = 0.60 squares/sec. The av-

erage velocity during any short interval ap-

.70 .

1
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Fig. 1 Extrapolation backwards in tinne to allow for fric-

tion in estimating the value of v, immediately after the

collision.

proximately equals the instantaneous velocity

at the mid-time of that interval, so the car's

velocity was about i;, = 0.60 squares/sec att -

2.5 sec. For the interval 0-12 seconds, the ve-

locity was Vi = 0.50 squares/sec att = 6.0 sec.

Now plot a graph like that shown in Fig. 1.

This graph shows by extrapolation that v^ =

0.67 squares/sec at t = 0, just after the colh-

sion.

Compare the total momentum of the sys-

tem before collision with the total momentum
after colhsion. Calculate the kinetic energy of

the freight cars before and after colhsion. What
fraction of the hammer car's original kinetic

energy has been "lost"? Can you account for

this loss?

FILM LOOP 30 DYNAMICS OF
A BILLIARD BALL
The event pictured in this film is one you have

probably seen many times—the striking of a

ball, in this case a bilhard ball, by a second

ball. Here, the camera is used to "slow down"
time so that you can see details in this event

which you probably have never observed. The
ability of the camera to alter space and time is

important in both science and art. The slow-

motion scenes were shot at 3000 frames per

second.

The "world" of your physics course often

has some simphfications in it. Thus, in your

textbook, much of the discussion of mechanics

of bodies probably assumes that the objects are

point objects, with no size. But clearly these

massive billiard balls have size, as do all the

things you encounter. For a point particle we
can speak in a simple, meaningful way of its

position, its velocity, and so on.

But the particles photographed here are

billiard balls and not points. What information

might be needed to describe their positions and

velocities? Looking at the film may suggest

possibilities. What motions can you see besides

simply the linear forward motion? Watch each

ball carefully, just before and just after the

collision, watching not only the overall motion

of the ball, but also "internal" motions. Can
any of these motions be appropriately de-
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Billiard bails near impact. The two cameras tool< side

views of the collision, which are not shown in this

film loop.

scribed by the word "spin"? Can you distin-

guish the cases where the ball is rolling along

the table, so that there is no slippage between
the ball and the table, from the situations

where the ball is skidding along the table with-

out rolling? Does the first ball move im-

mediately after the colUsion? You can see that

even this simple phenomenon is a good bit

more complex than you might have expected.

Can you write a careful verbal description

of the event? How might you go about giving a

more careful mathematical description?

Using the slow-motion sequence you can

make a momentum analysis, at least partially,

of this collision. Measure the velocity of the cue

ball before impact and the velocity of both balls

after impact. Remember that there is friction

between the ball and the table, so velocity is

not constant. The balls have the same mass, so

conservation of momentum predicts that

velocity of cue

ball just before

collision

sum of velocities

of the balls just

after collision

How closely do the results of your measure-

ments agree with this principle? What reasons,

considering the complexity of the phenome-
non, might you suggest to account for any dis-

agreement? What motions are you neglecting

in your analysis?

FILM LOOP 31 A METHOD OF
MEASURING ENERGY—NAILS
DRIVEN INTO WOOD

Some physical quantities, such as distance,

can be measured directly in simple ways.

Other concepts can be connected with the

world of experience only through a long series

of measurements and calculations. One quan-

tity that we often would like to measure is

energy. In certain situations, simple and reli-

able methods of determining energy are possi-

ble. Here, you are concerned with the energy of

a moving object.

This film allows you to check the validity of

one way of measuring mechanical energy. If a

moving object strikes a naO, the object will lose

all of its energy. This energy has some effect, in

that the nail is driven into the wood. The
energy of the object becomes work done on the

nail, driving it into the block of wood.

The first scenes in the film show a con-

struction site. A pile driver strikes a pile over

and over again, "planting" it in the ground.

The laboratory situation duphcates this situa-

tion under more controlled circumstances.

Each of the blows is the same as any other be-

cause the massive object is always raised to

the same height above the nail. The nail is hit

ten times. Because the conditions are kept the

same, you expect the energy by the impact to

be the same for each blow. Hence, the work
from each blow is the same. Use the film to find

if the distance the nail is driven into the wood

is proportional to the energy or work. Or, bet-

ter, you want to know how you can find the

energy if you know the depth of penetration of

the nail.

The simplest way to display the measure-

ments made with this film may be to plot the

depth of nail penetration versus the number of

blows. Do the experimental points that you ob-

tain he approximately along a straight Une? If

the line is a good approximation, then the

energy is about proportional to the depth of

penetration of the nail. Thus, depth of penetra-

tion can be used in the analysis of other films to

measure the energy of the striking object.



Film Loop Notes

fliyinie.y df i>ioL^3

Fig. 1

If the graph is not a straight Une, you can

still use these results to calibrate your

energy-measuring device. By use of penetra-

tion versus the number of blows, an observed

penetration (in centimeters, as measured on

the screen), can be converted into a number of

blows, and therefore an amount proportional to

the work done on the nail, or the energy trans-

ferred to the nail. Thus in Fig. 1, a penetra-

tion of 3 cm signifies 5.6 units of energy.

FILM LOOP 32 GRAVITATIONAL
POTENTIAL ENERGY
Introductory physics courses usually do not

give a complete definition of potential energy,

because of the mathematics involved. Only
particular kinds of potential energy, such as

gravitational potential energy, are considered.

You may know the expression for the gravi-

tational potential energy of an object near the

earth—the product of the weight of the object

and its height. The height is measured firom a
location chosen arbitrarily as the zero level for

potential energy. It is almost impossible to

"test" a formula without other physics con-

cepts. Here we require a method of measuring
energy. The previous Film Loop 31 "A
Method of Measuring Energy," demonstrated
that the depth of penetration of a nail into

wood, due to a blow, is a good measure of the
energy at the moment of impact of the object.

Although you are concerned with potential

energy you will calculate it by first finding

kinetic energy. Where there is no loss ofenergy

through heat, the sum of the kinetic energy

and potential energy is constant. If you mea-

sure potential energy from the point at which

the weight strikes the nail, at the moment of

striking all the energy will be kinetic energy.

On the other hand, at the moment an object is

released, the kinetic energy is zero, and all the

energy is potential energy. These two must, by

conservation of energy, be equal.

Since energy is conserved, you can figure

the initial potential energy that the object had
from the depth of penetration of the nail by

using the results of the measurement connect-

ing energy and nail penetration.

Two types of measurements are possible

with this film. The numbered scenes are all

photographed from the same position. In the

first scenes (Fig. 1) you can determine how
gravitational potential energy depends upon

weight. Objects of different mass fall from the

same distance. Project the film on paper and

measure the positions of the nailheads before

and after the impact of the falling objects.

Fig. 1

Make a graph relating the penetration depth

and the weight mag. Use the results of the pre-

vious experiment to convert this relation into a

relation between gravitational potential energy

and weight. What can you learn from this

graph? What factors are you holding constant?

What conclusions can you reach from your

data?
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Later scenes (Fig. 2), provide information

for studying the relationship between gravita-

tional potential energy and position. Bodies of

equal mass are raised to different heights and
allowed to fall. Study the relationship between
the distance of fall and the gravitational poten-

tial energy. What graphs might be useful?

What conclusion can you reach from your

measurements?

Fig. 2

Can you relate the results of these mea-
surements with statements in your text con-

cerning gravitational potential energy?

FILM LOOP 33
ENERGY

KINETIC

In this film you can test how kinetic energy

(KE) depends on speed (v). You measure both

KE and v, keeping the mass m constant.

Penetration of a nail driven into wood is a

good measure of the work done on the nail, and

hence is a measure of the energy lost by what-

ever object strikes the nail. The speed of the

moving object can be measured in several

ways.

The preliminary scenes show that the ob-

ject falls on the nail. Only the speed just before

the object strikes the nail is important. The

scenes intended for measurement were photo-

graphed with the camera on its side, so the

body appears to move horizontally toward the

nail.

The speeds can be measured by timing the

motion of the leading edge of the object as it

moves from one reference mark to the other.

The clock in the film (Fig. 1) is a disk that ro-

tates at 3000 revolutions per minute. Project

the film on paper and mark the positions of the

clock pointer when the body crosses each ref-

erence mark. The time is proportional to the

angle through which the pointer turns. The
speeds are proportional to the reciprocals of the

times, since the distance is the same in each

case. Since you are testing only theform of the

kinetic energy dependence on speed, any con-

venient unit can be used. Measure the speed

for each of the five trials.

Fig. 1

The kinetic energy of the moving object is

transformed into the work required to drive

the nail into the wood. In Film Loop 31, "A

Method of Measuring Energy," you relate the

work to the distance of penetration. Measure

the nail penetration for each trial, and use your

results from the previous film.

How does KE depend on t;? The conserva-

tion law derived from Newton's laws indicates

that KE is proportional to v'^, the square of the

speed, not to v. Test this by making two graphs.

In one graph, plot KE vertically and plot v'^

horizontally. For comparison, plot KE versus i'.

What can you conclude? Do you have any as-

surance that a similar relation will hold, if the

speeds or masses are very different from those

found here? How might you go about determin-

ing this?

FILM LOOP 34 CONSERVATION
OF ENERGY—POLE VAULT
This quantitative film can help you study con-

servation of energy. A pole vaulter (mass 68 kg,

height 6 ft) is shown, first at normal speed
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and then in slow motion, clearing a bar at 11.5

ft. You can measure the total energy of the sys-

tem at two points in time just before the

jumper starts to rise and part way up, when the

pole has a distorted shape. The total energy of

the system is constant, although it is divided

differently at different times. Since it takes

work to bend the pole, the pole has elastic po-

tential energy when bent. This elastic energy

comes from some of the kinetic energy the

vaulter has as he runs horizontally before in-

serting the pole in the socket. Later, the elastic

potential energy of the bent pole is transformed

into some of the jumper's gravitational po-

tential energy when he is at the top of the

jump.

0.
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FILM LOOP 35 CONSERVATION
OF ENERGY—AIRCRAFT TAKEOFF
The pilot of a Cessna 150 holds the plane at

constant speed in level flight, just above the

surface of the runway. Then, keeping the throt-

tle fixed, he puUs back on the stick, and the

plane begins to rise. With the same throttle set-

ting, he levels off at several hundred feet. At

this altitude the aircraft's speed is less than at

ground level. You can use this film to make a

crude test of energy conservation. The plane's

initial speed was constant, indicating that the

net force on it was zero. In terms of an approx-

imation, air resistance remained the same

after lift-off. How good is this approximation?

What would you expect air resistance to de-

pend on? When the plane rose, its gravitational

potential energy increased, at the expense of

the initial kinetic energy of the plane. At the

upper level, the plane's kinetic energy is less,

but its potential energy is greater. According to

the principle of conservation of energy, the

total energy (KE + PE) remained constant, as-

suming that air resistance and any other simi-

lar factors are neglected. But are these negligi-

ble? Here is the data concerning the film and

the airplane:

Length of plane: 7.5 m (23 ft)

Mass of plane: 550 kg

Weight of plane:

550 kg X 9.8 m/sec- = 5400 newtons

(1200 lb)

Camera speed: 45 frames/sec

Project the film on paper. Mark the length

of the plane to calibrate distances.

Stop-frame photography helps you mea-

sure the speed of 45 frames per second. In

printing the measurement section of the film

only every third frame was used. Each of these

frames was repeated ("stopped") a number of

times, enough to allow time to mark a position

on the screen. The effect is one of "holding"

time, and then jumping a fifteenth of a second.

Measure the speeds in all three situations,

and also the heights above the ground. You
have the data needed for calculating kinetic

energy (^v^) and gravitational potential

energy (maji) at each of the three levels. Cal-

culate the total energy at each of the three

levels.

Can you make any comments concerning

air resistance? Make a table showing (for each

level) KE, PE, and £ total. Do your results sub-

stantiate the law of conservation of energy

within experimental error?

Steve Aacker of Wheat Ridge High School, Wheat

Ridge, Colorado, seems a bit skeptical about elastic

potential energy.
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FILM LOOP 36 REVERSIBILITY
OF TIME

It may sound strange to speak of "reversing

time." In the world of common experience we
have no control over time direction, in contrast

to the many aspects of the world that we can

modify. Yet physicists are much concerned

with the reversibility of time; perhaps no other

issue so clearly illustrates the imaginative and

speculative nature of modem physics.

The camera gives us a way to manipulate

time. If you project film backward, the events

pictured happen in reverse time order. This

film has sequences in both directions, some

shown in their "natural" time order and some

in reverse order.

The film concentrates on the motion of ob-

jects. Consider each scene from the standpoint

oftime direction: Is the scene being shown as it

was taken, or is it being reversed and shown
backward? Many sequences are paired, the

same film being used in both time senses. Is it

always clear which one is forward in time and

which is backward? With what types of events

is it difficult to tell the "natural" direction?

The Newtonian laws of motion do not

depend on time direction. Any filmed motion of

particles following strict Newtonian laws

should look completely "natural" whether seen

forward or backward. Since Newtonian laws

are "invariant" under time reversal, changing

the direction of time, you could not tell by ex-

amining a motion obeying these laws whether

the sequence is forward or backward. Any mo-

tion which could occur forward in time can

also occur, under suitable conditions, with the

events in the opposite order.

With more complicated physical systems,

with extremely large number of particles, the

situation changes. If ink were dropped into

water, you would have no difficulty in deter-

mining which sequence was photographed

forward in time and which backward. So cer-

tain physical phenomena at least appear to be

irreversible, taking place in only one time di-

rection. Are these processes fundamentally
irreversible, or is this only some limitation on

human powers? This is not an easy question to

answer. It could still be considered, in spite of a

fifty-year history, a frontier problem.

Reversibility of time has been used in

many ways in twentieth-century physics. For

example, an interesting way ofviewing the two

kinds of charge in the universe, positive and

negative, is to think of some particles as "mov-

ing" backward in time. Thus, if the electron is

viewed as moving forward in time, the positron

can be considered as exactly the same particle

moving backward in time. This backward mo-

tion is equivalent to the forward-moving parti-

cle having the opposite charge! This was one

of the keys to the development of the space-

time view of quantum electrodynamics which

R. P. Feynman described in his Nobel Prize

lecture.

For a general introduction to time reversi-

bility, see the Martin Gardner article, "Can

Time Go Backward?" originally published in

Scientific American January, 1967.

FILM LOOP 37 SUPERPOSITION
Using this film, you study an important physi-

cal idea—superposition. The film was made by

photographing patterns displayed on the face

of the cathode ray tube (CRT) of an oscillo-

scope, similar to a television set. You may have

such an oscilloscope in your laboratory.

Still photographs of some of these patterns

appearing on the CRT screen are shown in

Figs. 1 to 2. The two patterns at the top of the

screen are called sinusoidal. They are not just

any wavy lines, but lines generated in a precise

fashion. If you are famihar with the sine and

cosine functions, you will recognize them here.

The sine function is the special case where the

origin of the coordinate system is located

where the function is zero and starting to rise.

No origin is shown, so it is arbitrary as to

whether one calls these sine curves, cosine

curves, or some other sinusoidal type. What
physical situations might lead to curves of this

type? (You might want to consult books of

someone else about simple harmonic oscil-

lators.) Here the curves are produced by elec-

tronic circuits which generate an electrical

voltage changing in time so as to cause the

curve to be displayed on the cathode ray
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Fig. 1

Fig. 2

Fig. 3

tube. The oscilloscope operator can adjust the
magnitudes and phases of the two top func-
tions.

The bottom curve is obtained by a point-

by-point adding of the top curves. Imagine a
horizontal axis going through each of the two
top curves, and positive and negative distances

measured vertically from this axis. The bottom
curve is at each point the algebraic sum of the
two points above it on the top curves, as mea-
sured from their respective axes. This point-

by-point algebraic addition, when appHed to

actual waves, is called superposition.

Two cautions are necessary. First, you are

not seeing waves, hut models of waves. A wave
is a disturbance that propagates in time, but, at

least in some of the cases shown, there is no
propagation. A model always has some limita-

tions. Second, you should not think that all

waves are sinusoidal. The form of whatever
is propagating can be any shape. Sinusoidal

waves constitute only one important class of

waves. Another common wave is the pulse,

such as a sound wave produced by a sharp
blow on a table. The pulse is not a sinusoidal

wave.

Several examples of superposition are

shown in the film. If, as approximated in Fig.

1, two sinusoidal curves of equal period and
amplitude are in phase, both having zeroes at

the same places, the result is a double-sized

function of the same shape. On the other hand,

if the curves are combined out of phase, where
one has a positive displacement while the other

one has a negative displacement, the result is

zero at each point (Fig. 2). If functions of dif-

ferent periods are combined (Figs. 3, 4, and 5),

the result of the superposition is not sinusoidal,

but more complex in shape. You are asked to

interpret both verbally and quantitatively, the

superpositions shown in the film.

FILM LOOP 38 STANDING
WAVES ON A STRING
Tension determines the speed of a wave travel-

ing down a string. When a wave reaches a fixed

end of a string, it is reflected back again. The
reflected wave and the original wave are
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Fig. 4 Fig. 5

superimposed or added together. If the tension

(and therefore the speed) is just right, the re-

sulting wave will be a "standing wave." Cer-

tain nodes will always stand still on the string.

Other points on the string will continue to

move in accordance with superposition. When
the tension in a vibrating string is adjusted,

standing waves can be set up when the tension

has one of a set of "right" values.

In the film, one end of a string is attached

to a tuning fork with a frequency of 72 vibra-

tions per second. The other end is attached to a

cylinder. The tension of the string is adjusted

by sliding the cylinder back and forth.

Several standing wave patterns are shown.
For example, in the third mode the string vi-

brates in 3 segments with 2 nodes (points of

no motion) between the nodes at each end. The
nodes are half a wavelength apart. Between
the nodes are points of maximum possible vi-

bration called antinodes.

You tune the strings of a violin or guitar by
changing the tension on a string of fixed

length, higher tension corresponding to higher
pitch. Different notes are produced by placing

a finger on the string to shorten the vibrating

part. In this film the frequency of vibration of a
string is fixed, because the string is always

driven at 72 vib/sec. When the frequency re-

mains constant, the wavelength changes as

the tension is adjusted because velocity de-

pends on tension.

A high-speed snapshot of the string at any

time would show its instantaneous shape. Sec-

tions of the string move, except at the nodes.

The eye sees a blurred or "time exposure"

superposition of string shapes because of the

frequency of the string. In the film, this blurred

effect is reproduced by photographing at a slow

rate: Each frame is exposed for about 1/15 sec.

Some of the vibration modes are photo-

graphed by a stroboscopic method. If the string

vibrates at 72 vib/sec and frames are exposed

in the camera at the rate of 70 times per sec,

the string seems to go through its complete

cycle of vibration at a slower frequency when
projected at a normal speed. In this way, a

slow-motion effect is obtained.

FILM LOOP 39 STANDING
WAVES IN A GAS
Standing waves are set up in air in a large

glass tube. (Fig. 1.) The tube is closed at one

end by an adjustable piston. A loudspeaker at

the other end supphes the sound wave. The
speaker is driven by a variable-frequency oscil-

lator and amphfier. About 20 watts of au-

diopower are used, giving notice to everyone in

a large building that filming is in progress! The
waves are reflected from the piston.

A standing wave is formed when the fre-

quency of the oscillator is adjusted to one of

several discrete values. Most frequencies do

not give standing waves. Resonance is indi-
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cated in each mode of vibration by nodes and
antinodes. There is always a node at the fixed

end (where air molecules cannot move) and an

antinode at the speaker (where air is set into

motion). Between the fixed end and the

speaker there may be additional nodes and an-

tinodes.

The patterns can be observed in several

ways, two of which are used in the film. One
method of making visible the presence of a

stationary acoustic wave in the gas in the tube

is to place cork dust along the tube. At reso-

nance the dust is blown into a cloud by the

movement of air at the antinodes; the dust re-

mains stationary at the nodes where the air is

not moving. In the first part of the film, the

dust shows standing wave patterns for these

firequencies:

Frequency Number of half

(vib/sec) wavelengths

230
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Fig. 1

conditions" for motion require that, in any

mode, the fixed end of the wire is a node and

the free end is an antinode. (A horizontal plas-

tic rod is used to support the wire at another

node.) The wire is photographed in two ways:

in a blurred "time exposure," as the eye

sees it, and in "slow motion," simulated

through stroboscopic photography.

Study the location of the nodes and an-

tinodes in one of the higher modes of vibration.

They are not equally spaced along the wire, as

for vibrating string (see Film Loop 38). This

is because the wire is stiff whereas the string is

perfectly flexible.

In the second sequence, the wire is bent

into a horizontal loop, supported at one point

(Fig. 2). The boundary conditions require a

node at this point; there can be additional

nodes, equally spaced around the ring. Several

modes are shown, both in "time exposure" and

in "slow motion." To some extent the vibrating

circular wire is a helpful model for the wave
behavior ofan electron orbit in an atom such as

hydrogen; the discrete modes correspond to

discrete energy states for the atom.

FILM LOOP 41 VIBRATIONS
OF A RUBBER HOSE
You can generate standing waves in many
physical systems. When a wave is set up in a

medium, it is usually reflected at the bound-

aries. Characteristic patterns will be formed,

depending on the shape of the medium, the

frequency of the wave, and the material. At

certain points or lines in these patterns there

is no vibration, because all the partial waves

passing through these points just manage to

cancel each other through superposition.

Standing-wave patterns only occur for cer-

tain frequencies. The physical process selects a

spectrum of frequencies from all the possible

ones. Often there are an infinite number of

such discrete frequencies. Sometimes there

are simple mathematical relations between the

selected frequencies, but for other bodies the

relations are more complex. Several films in

this series show vibrating systems with such

patterns.

This film uses a rubber hose, clamped at

the top. Such a stationary point is called a

node. The bottom of the stretched hose is at-

tached to a motor whose speed is increased

during the film. An eccentric arm attached to

the motor shakes the bottom end of the hose.

Thus this end moves slightly, but this motion is

so small that the bottom end also is a node.

The motor begins at a frequency below that

for the first standing-wave pattern. As the

motor is gradually speeded up, the amphtude
of the vibrations increase until a well-defined

Fig. 1
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steady loop is formed between the nodes. This

loop has its maximum motion at the center.

The pattern is half a wavelength long. Increas-

ing the speed of the motor leads to other har-

monics, each one being a standing-wave pat-

tern with both nodes and antinodes, points of

maximum vibration. These resonances can be

seen in the film to occur only at certain sharp

frequencies. For other motor frequencies, no

such simple pattern is seen. You can count as

many as eleven loops with the highest fre-

quency case shown.

It would be interesting to have a sound

track for this film. The sound of the motor is by

no means constant during the process of in-

creasing the frequency. The stationary reso-

nance pattern corresponds to points where the

motor is running much more quietly, because

the motor does not need to "fight" against the

hose. This sound distinction is particularly

noticeable in the higher harmonics.

If you play a viohn cello, or other stringed

instrument, you might ask how the harmonies

observed in this film are related to musical

properties of vibrating strings. What can be

done with a violin string to change the fre-

quency of vibration? What musical relation ex-

ists between two notes if one of them is twice

the frequency of the other?

What would happen if you kept increasing

the frequency of the motor? Would you expect

to get arbitrarily high resonances, or would

something "give?"

FILM LOOP 42 VIBRATIONS
OF A DRUM
The standing-wave patterns in this film are

formed in a stretched circular rubber mem-
brane driven by a loudspeaker. The loud-

speaker is fed large amounts of power, about

30 watts, more power than you would want to

use with your Uving room television set or

phonograph. The frequency of the sound can

be changed electronically. The lines drawn on

the membrane make it easier for you to see the

patterns.

The rim of the drum cannot move, so in all

cases it must be a nodal circle, a circle that

does not move as the waves bounce back and

forth on the drum. By operating the camera at

a frequency only shghtly different from the res-

onant frequency, a stroboscopic effect enables

you to see the rapid vibrations as if in slow mo-

tion.

In the first part of the film, the loudspeaker

is directly under the membrane, and the vi-

bratory patterns are symmetrical. In the fun-

damental harmonic, the membrane rises and

falls as a whole. At a higher frequency, a sec-

ond circular node shows up between the center

and the rim.

In the second part of the film, the speaker

is placed to one side, so that a different set of

modes, asymmetrical modes, are generated in

the membrane. You can see an antisymmetri-

cal mode where there is a node along the

diameter, with a hill on one side and a valley on

the other.

Various symmetric and antisymmetric vi-

bration modes are shown. Describe each mode,

identifying the nodal lines and circles.

In contrast to the one-dimensional hose in

Film Loop 41 there is no simple relation of

the resonant frequencies for this two-dimen-

sional system. The frequencies are not integral

multiples of any basic frequency. There is a

relation between values in the frequency

spectrum, but it is more complex than that

for the hose.

FILM LOOP 43 VIBRATIONS
OF A METAL PLATE
The physical system in this film is a square

metal plate. The various vibrational modes

are produced by a loudspeaker, as with the

vibrating membrane in Film Loop 42. The

metal plate is clamped at the center, so that

point is always a node for each of the standing-

wave patterns. Because this is a stiff metal

plate, the vibrations are too shght in ampli-

tude to be seen directly. The trick used to make
the patterns visible is to sprinkle sand along

the plates. This sand is jiggled away firom the

parts of the plates which are in rapid motion,

and tends to fall along the nodal Unes, which

are not moving. The beautiful patterns of

sand are known as Chladni figures. These

patterns have often been much admired by
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artists. These and similar patterns are also

formed when a metal plate is caused to vibrate

by means of a violin bow, as seen at the end of
this film, and in the Activity, "Standing Waves
on a Drum and a Viohn."

Not all frequencies will lead to stable pat-

terns. As in the case of the drum, these har-

monic frequencies for the metal plate obey
complex mathematical relations, rather than
the simple arithmetic progression seen in a
one-dimensional string. But again they are

discrete events. As the frequency spectrum is

scanned, only at certain sharp well-defined fre-

quencies are these elegant patterns produced.



Answers to End-of-Section Questions (Continued)

Q10 Both will increase.

Q11 Answer (c)

Q12 Answer (a)

Q13 Answers a, b. c are correct

Q14 (a) unbroken egg
(b) a glass of ice and warm water

Q15 (a) True

(b) False

(c) False

Q16 Answer (b)

Chapter 12

Q1 Transverse, longitudinal and torsional

Q2 Longitudinal. Fluids can be connpressed but
they are not stiff enough to be bent or twisted.

Q3 Transverse

Q4 No. The movement of the bump in the rug

depends on the movement of the mouse; it does not

go on by itself.

Q5 Energy (Particles of the medium are not trans-

ferred along the direction of the wave motion.)

Q6 The stiffness and the density

Q7 (1) Wavelength, amplitude, polarization

(2) Frequency, period

Q8 The distance between any two successive points

that have identical positions in the wave pattern.

Q9 (1) 100 cps

1 ^ 1

/
~ 100 cps

i'i\ X -^ 10 m/sec - ^
(3) ^ - 7 = -rp^ = 0-1 meter

f 100 cps
Q10 Answer (b)

Q11 A, + A,

Q12 Yes. The resulting displacement would be
5 + (-6) = -1 cm
Q13 Cancellation

Q14 Antinodal lines are formed by a series of

antinodal points. Antinodal points are places where
waves arrive in phase and maximum reinforcement

occurs. (The amplitude there is greatest.)

Q15 Answer (a)

Q16 When the difference in path lengths to the two

sources is an odd number of half wavelengths (^\,

(2) T 0.01 sec.

3 5

Q17 (1) No motion at the nodes

(2) Oscillates with maximum amplitude

\

2

2L, so that one-half wavelength just fits on
the string.

Q20 No, only frequencies which are whole number
multiples of the fundamental freqi>ency are possible.

Q18

Q19

Q21 All points on a wave front have the same phase;
that is, they all correspond to crests or troughs (or

any other set of similar parts of the wavelength
pattern).

Q22 Every point on a wave front may be considered
to behave as a point source for waves generated in

the direction of the wave's propagation,

Q23 If the opening is less than one-half a wave-
length wide the difference in distance to a point P
from the two edges of the opening cannot be
equal to x/2.

Q24 As the wavelength increases, the diffraction

pattern becomes more spread out and the number of

nodal lines decreases until pattern resembles one
half of that produced by a point source oscillator.

Q25 Yes to both (final photograph shows diffraction

without interference; interference occurs whenever
waves pass each other).

Q26 A ray is a line drawn perpendicular to a wave
front and indicates the direction of propagation of

the wave.

Q27 The angles are equal.

Q28 Parabolic

Q29 The reflected wave fronts are parallel wave
fronts.

Q30 (1) Stays the same
(2) Becomes smaller

(3) Changes so that the wave fronts are more
nearly parallel to the boundary. (Or its

direction of propagation becomes closer to

the perpendicular between the media.)

Q31

Q32

033

(1) /\ V relationship

(2) Reflection

(3) Refraction

(4) Diffraction

(5) Interference

Sound waves are longitudinal.

A1



Brief Answers to Study Guide Questions

Chapter 9

9.1 Information

9.2 Discussion

9.3 (a) Yes

(b) The solar system

9.4 Discussion

9.5 No
9.6 Discussion

9.7 (a) 220.2 g

(b) 20.2 g

9.8 Derivation

9.9 (a) All except v^a' (which = Vu')

m.K + mn
(c) 0.8 m/sec

9.10 Dictionary comment
9.11 3.3 X 10 « kg

9.12 Discussion

9.13 Derivation

9.14 Discussion

9.15 (a) 0.2 sec

(b) About 0.05 m
(c) 5 X 10-1' m/sec
(d)2.5 X 10-15 m
(e) About 15 X 1 0*^ m2 or a square of about

40 km on a side

9.16 Yes

9.17 Derivation

9.18 Discussion

9.19 1.2 X 10^ kg m/sec; 4 x 10^ newtons;

30 meters

9.20 (a) about 100 m/sec
(b) about 4.6 kg m/sec
(c) less than 0.003 sec

(d) at least 1.5 x 10' newtons

9.21 Yes

9.22 Derivation

9.23 (a) M = —^—= •'

(b) m {v., — v)

9.24 Derivation

9.25 10 m/sec
9.26 10.5 x 10** kg m/sec
9.27 Discussion

9.28 Discussion

9.29 Discussion

9.30 Discussion

9.31 Discussion

9.32 (a) 0.8 x mass of ball

(b) -0.8 X mass of bail

(c) 1.6 X mass of ball

(d) Depends on system considered

9.33 Discussion

9.34 Derivation

9.35 Table

9.36 Derivation

9.37 Both speeds = - but in opposite directions

9.38



10.32 Discussion

10.33 Discussion

10.34 Discussion

10.35 Discussion

10.36 Discussion

10.37 (a) Discussion

(b) Greater in lower orbit

(c) Less

(d) Less

(e) Discussion

10.38 (a) Discussion

(b) i: all three, ii: all three, iii: AH, iv: ah,

v: all three, vi: AH
10.39 Discussion

10.40 Discussion

Chapter 11

11.1 Information

11.2 Discussion

11.3 Discussion

11.4 Discussion

11.5 No
11.6 Discussion

11.7 (a)10-"m

(b) 10 9 m
11.8 (a) 102'

(b) IQis

11.9 Zero meters

11.10 10.5 kilometers

11.11 Shoes—about 1/7 atm

Skis—about 1/60 atm

Skates—about 3 atm

11.12 Derivation

11.13 Discussion

11.14 Discussion

11.15 Discussion

11.16 Derivation

11.17 No change

11.18 Pressure, mass, volume, temperature

11.19 Discussion

11.20 Discussion

11.21 Discussion

11.22 Discussion

11.23 Discussion

11.24 Discussion

11.25 Discussion

11.26 Temperature will rise

11.27 No
11.28 Discussion

11.29 Discussion

11.30 Discussion

11.31 Discussion

11.32 Discussion

11.33 Discussion

11.34 Discussion

11.35 Discussion

Chapter 12

12.1 Information

12.2 Discussion

12.3 Discussion

12.4 Construction

12.5 Construction

12.6 Discussion

12.7 Discussion

12.8 Construction

12.9 Discussion

12.10 Discussion

12.11 Construction

12.12 Derivation

12.13 No; discussion

12.14 (a) 3/4/.

{b)2/3L

(c) 1/2 L

12.15 (a) \ = 4L

(b)X=
''

4L

n + l

12.16

12.17

12.18

12.19

12.20

12.21

12.22

12.23

12.24

12.25

12.26

12.27

2n + /

(c) X = 2L, \ =

Discussion

Maximum
100 and 1000 cps; yes

Discussion

Discussion

Construction

Straight line

R
2

Construction

_1_

4/c

Discussion

(n = 0, 1, 2, 3, etc.)

12.29

Two straight-line waves inclined toward

each other.

12.28 Discussion

(a) ^A = Z BAD
(b) Ok = ZCDA
(c) Xa = BD
(d) Xn = AC
(e) Derivation

(f) Derivation

Xp = 0.035 m
Xs = 0.025 m
Discussion

(a) 1.27 X 10" watts

(b) 8 X 10'- mosquitoes

(c) subway train

2d = vt

I air 1.125 ft

1000 cps:
I
sea water 4.8 ft

( steel 16 ft

One tenth of each of these values for 10,000 cps

Discussion

12.35 3 X 10'' cps

2.5 X 10" cps

12.30

12.31

12.32

12.33

12.34

A3



INDEX/TEXT
Absolute temperature scale, 81

Acoustics, 132-133

ADP (adenosine diphosphate), 52

Aeolipile, 40

Air pressure, and mercury barometer, 79

Anechoic chambers, 132

Antinodal lines, definition, 113

ATP (adenosine triphosphate), 52

Average values, 73

Bernoulli, Daniel, and kinetic theory of

gases, 74

Biological systems, energy in, 51-55

Biophysics, 54

Boltzmann, Ludwig, and irreversibility,

89, 94

Boyle, Robert, mechanistic viewpoint, 2

Boyle's law, and kinetic theory of gases,

74, 80

British Thermal Unit (BTU), 51

Brown, Robert, and Brownian

movement, 84

Brownian movement, 84, 94

Caloric theory, 50

Calorie, definition, 53

Carbohydrates, 52

Camot, Sadi, and engine efficiency,

86-87

Celestial equator, definition, 10

Chemical energy in food, 52-53

Circular reflectors, 124-125

Clausius, Rudolf, and entropy, 87

gas molecule size and, 76, 78

Collision(s), and conservation of

momentum, 9-16

elastic, 19-20

gas molecule, 71-72, 76, 78

in two dimensions, 23

Conservation of energy, 56-63
neutrino and, 62

Conservation of kinetic energy, 20

Conservation of mass, 5-8
Conservation of mechanical energy,

34-36

Conservation of momentum, 10-16, 61

Newton's laws and, 15-17

Conservation laws in science, 62-63

Descartes, Rene, 21

Diffraction, definition, 120

wave, 120-122, 132

Disordered motion, definition, 72

Displacement, waves of, 102-103

Doppler effect, 130

Drum, vibration of 119

Duty, of electric motors, 56

Earth, mass of 8

as open system, 8

energy conservation on, 59

Efficiency, definition, 51, 86

Einstein, Albert, and kinetic theory, 94

Elastic collision(s), 19-20

Elastic potential energy, 33

Electric battery, 56

Electric current(s), transfer of, 56

Electric motor, duty of, 56

Electric potential energy, 33

Electromagnetic induction, 56

Energy, in biological systems, 51-55

chemical, 52-53

conservation of 34-36, 56-63

conversion of 39-43

dissipation of, 85-88

heat, 39-42

internal, 60

mechanical, 34-36

potential, 31, 32-33

rates for human use of, 53

transfer of 105

transformation of 52-53, 56-58

work and, 29-31

Engine(s), efficiency of, 86-87
see also Steam engine(s)

Entropy, concept of, 87

Experimental Philosophy (Henry

Power), 134

Faraday, Michael, and electromagnetic

induction, 56

Fat(s), as energy source, 52

Feedback, definition, 42

First Law of Thermodynamics, 61

Food(s), as energy source, 52-53
world supply of 53-55

Foot pound, definition, 45

Force(s), gas pressure and, 79

work and, 37-38

see also Collision(s), Motion

Fourier, Jean-Baptiste, and

superposition principle, 110

Frequency, see Wavelength

Gas(es), density of 79-80

expansion of, 80

kinetic theory of 76, 78

nature of 71-72

predicting beha\aor of, 79-85
volume of 79-80

Gas molecule(s), motions of, 71-72

size of, 76, 78

speeds of, 74-77

Gas particle(s), see Gas molecule(s)

Gas pressure, 79- 85

effect of temperature on, 80-81

kinetic explanation of 81-85

Gaseous state, model for, 71-72

Gay-Lussac, Joseph- Louis, and gas

volume, 80

Glucose molecule, 52

Goethe, Johann Wolfgang von, and

nature philosophy, 57

Gravitational potential energy, 34

Guitar string, vibration of, 35

Harmony, and standing waves, 117-118

Heat, as energy, 39-42, 60-61, 69-70

loss of, 86-87

mechanical equivalent of, 51

as transfer of energy, 60-61

Heat death idea, 88

Heat energy, 39-42

Helmholtz, Hermann von, and

conservation of energy, 58

Herapath, John, and kinetic theory of

gases, 74

Horse power, definition, 45- 46

Huygens, Christian, and elastic

collisions, 20-21

wave diffraction and, 120-121

Huygens' principle, 120-121

Ideal gas law, 80-81

Industrial Revolution, and steam

engine, 46-47

Interference, sound wave, 132

Interference pattern, 110—115
definition, 110

Irreversible processes, 87-88

see also Second Law of

Thermodynamics

Isolated (closed) systems, 6-8, 18

energy conservation and, 61

Joule, definition, 31, 51

Joule, James Prescott, 49-51

conser\'ation of energy and, 56

duty of electric motors and, 56

heat energy experiments of, 50-51

kinetic theory of gases and, 74

Kehin, Lord, 93

absolute temperature scale and,

81

atom size and, 78

energy loss and, 87

reversibility paradox and, 91-92

Kelvin scale, 81

Kilocalorie(s), daily human requirement

of 53

definition, 51

Kinetic energy, conservation of 20

definition, 31

work and, 29-31

Kinetic theory, criticisms of 94, 96

Kinetic theory of gases, gas model,

71-72

gas pressure and, 81-85

history of 69-70
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molecule sizes and, 76, 78

molecule speeds and, lA-11

Newtonian mechanics and, 69-70

predicting gas behavior and, 79-85

Lavoisier, Antoine, and conservation of

mass, 6-7

Law(s), conservation, 63

see also individual laws

Law of Conservation of Energy, 20,

56-63

Law of Conservation of Mass, 7-8

Law of Conservation of Mechanical

Energy, 35-36

Law of Conservation of Momentum,
10-14

Leibnitz, Gottfried Wilhelm, and kinetic

energy, 21-22

Lift pump, and air pressure, 79

Longitudinal wave, definition, 103

Loschmidt, Josef, and reversibility

paradox, 91

Machine, see Engine

Magnetic energy, transfer of, 56

Magnetic potential energy, 33

Mass, conservation of, 5-8

Matter, gaseous state of, 71-72

states of, 71

Maxwell, James Clerk, 91

molecular velocities in a gas and,

75-76

Maxwell velocity distribution, 75-76

Maxwell's demon, 89-90

Mayer, Julius Robert, and conservation

of energy, 57

Mechanical energy, conservation of,

34-36

heat energy and, 40-43

loss of, 86-87

Mechanical equivalent of heat, 51

Mechanical waves, 101

Mechanics, Newtonian, 113

Mercury, effect of air pressure on, 79

Mersenne, Martin, and speed of sound,

129, 132

Mitochondria, 52

Mks system, 51

Model, gaseous state, 71-72

types of, 71

Molecule(s), definition, 69

gas, 71-72, 74-77

Momentum, conservation of, 10-16, 61

definition, 10

see also Motion

Motion, disordered, 72

momentum and, 15-17

Newton's theory of, 15-17

quantity of, 9-10

see also Momentum

Musical instruments, vibrations of, 35,

117-119

Nature Philosophers, and conservation

of energy, 57-58

Neutrino, discovery of, 62

Newcomen steam engine, 41-44

Newton, Isaac, 1-2

conservation of momentum and,

15-17

Newtonian mechanics, and kinetic

theory, 69-70

Newtonian physics, 134-135

Newtonian world machine, 1-2

Nietzsche, Friedrich, and recurrence

paradox, 93

NQdal Unes, definition, 113

Normal distribution law, 75

Oersted, Hans Christian, and energy

transfer, 56

Open system, and energy conservation

61

Orbit(s), satellite, 37

Parabolic reflectors, 125

Parsons turbine, 47-49

Particle point of view, 101-102

Pauli, Wolfgang, and neutrino, 62

Periodic vibration, 106-107

Periodic wave(s), 106-109

definition, 106

snapshot of, 108

speed of, 107-108

Photosynthesis, 52

Poincare, Henri, and recurrence

paradox, 93-94

Polarized wave, 104

Potential energy, forms of, 31, 32-33

Power, Henry, and gas pressure, 79

Newtonian physics and, 134

Pressure, air, 79

definition, 74, 79

force and, 79

gas, 79-84

Principia (Newton), 3

Principles of Philosophy (Descartes), 21

Propagation, of waves, 104-106,

126-127

Proteins, as energy source, 52

Pulse, wave, 102

Quantity of motion, 9-10

Recurrence paradox, 91, 93

Reflection, wave, 122-125, 132-133

Refraction, definition, 127

wave, 126-128, 132

Reversibility paradox, 91-93

Satellites, in orbit, 37

Savery steam engine, 40-41

Schelling, Friedrich von, and nature

philosophy, 57

Science, role in food production, 53-55

Second Law ofThermodynamics, 87-90

as statistical law, 88-90

Simple harmonic motion, 107

Sine wave, 107

Sonar, 132

Sonic boom, 130-131

Sound, loudness of, 129

Sound waves, definition, 128-129

snapshot representation of, 103

speed of, 129, 132

Speed-time graph, 25-27, 29-30

Standing (stationary) waves, 115-118

Star(s), globular clusters of, 1

Stationary (standing) waves, 115-118

Steam engine(s), 39-49, 56

efficiency of, 86

Newcomen, 41-44

Savery, 40-41

Watt, 44-46

Steam turbine, 47-49

Superposition principle, 109-110

Theoretical model, definition, 71

Thermodynamics, definidon, 61

First Law of, 61

Second Law of, 87-90

Thomson, William, see Kelvin

Time line. Watt, James, 95

Torricelll's barometer, 79

Torsional wave, definition, 103

Towneley, Richard, and gas pressure, 79

Transverse wave, definition, 103

polarization and, 104

Vibrations, of musical instruments,

117-119

periodic, 107-108

Volta, Alessandro, and electric battery,

56

Water, boiling point of, 80

fireezing point of 80

Watt, definition, 45

Watt, James, 43-49

time line, 95

Wave(s), calculating wavelength of,

115-116

definition, 105

diffracted, 120-122

displacement, 102-103

harmony and, 117-118

interference pattern of 110-115

longitudinal, 103

mechanical, 101

periodic, 106-109
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polarized, 104

propagation of, 104-106, 126-127

properties of, 102-105

pulse, 102

reflection of, 122-125

refraction of, 126-128

sine, 107

snapshots of, 103

sound, 103, 128-135

speed of, 126-128

standing, 115-118

stationary, 115-118

superposition principle of, 109-110

torsional, 103

transverse, 103-104

types of, 103

Wave front, definition, 120

diffraction patterns and, 120-122

Wave reflectors, 124-125

Wavelength, calculation of, 115-116

of periodic wave, 107

Work, concept of, 29-31

definition, 29-31

energy and, 29-31

energy transformation and, 56, 60-61

force and, 37-38

kinetic energy and, 29-31

on a sled, 32

as transfer of energy. 56, 60-61

Working model, definition, 71

Zermelo, Ernst, and kinetic theory,

91-94

INDEX/HANDBOOK
Activities

conservation of mass, 56

diver in a bottle, 60-62

exchange ofmomentum devices,

56-57

ice calorimetry, 37-38

measuring speed of sound, 66-67

mechanical equivalent of heat, 60

mechanical wave machines, 67

moire patterns, 64-66
music and speech, 66

perpetual motion machines, 62-63

predicting the range of an arrow, 59

problems of scientific and

technological growth, 58-59

rockets, 62

standing waves on a drum and violin,

63-64

steam-powered boat, 57-58

student horsepower, 57

weighing a car with a tire pressure

gauge, 62

Air, as a gas, 44-45

Air track in bullet speed experiment,

26-27

and collisions (experiment), 4-5

inclined, in energy conservation

experiment, 24-25

Aircraft takeoff, and conser\ation of

energy (film loop), 89

Alka-Seltzer, in mass conservation

activity, 56

Antinodal lines, 50

Arrow, predicting range of (activity), 59

Ballistic pendulum, 81

in bullet speed experiment, 27

Billiard ball, dynamics of (film loop),

84-85

Biography ofPhysics, The (George

Gamow), 60

Bullet, measuring speed of

(experiment), 26-28

(film loop), 81-82

Calorie, defined, 34-35

Calorimeter, 33-34

Calorimetry (experiment), 33-38

of ice, 37-38

"Can Time Go Backward?" (Martin

Gardner), 90

Cannon, recoil velocity of, 82-83

Car, weighing with tire pressure gauge

(activity), 62

Cartesian diver (activity), 60-62

Celsius (centigrade) scale, 31-32

Centigrade scale, 31-32

Chain, in least energy experiment,

29-30

Colliding disk magnets (experiment), 14

Colliding freight cars (film loop), 83-84

Colliding pucks (experiment), 13

Collisions, elastic, 4

inelastic. 4, 8-9

in one dimension (experiment), 4-12

in two dimensions (experiment),

13-21

perfectly inelastic. 8-9

Collision rules of a particle. 40-41

Collision squares, mean free

path between (experiment), 40-41

"Computer Music." Scientific American,

66

Conservation of energy (experiment).

22-26

and iurcraft takeoff (film loop). 89

and pole vault (film loop), 87-88

Conservation of mass (activity), 56

Conservation of momentum, 13

Constant pressure gas thermometer.

44-46

Descartes, Rene, 60

Diffraction, wave, 49, 52

Disk magnets, and conservation of

energy experiment, 23-24

and two-dimensional collision

experiment, 14

Diver in a bottle (activity). 60-62

Drinking duck (activity), 59-60
Drum, vibrations of (film loop), 95

Dynamics carts, and conservation of

energ>' experiment. 22-23

and "explosions'" experiment, 4

Dynamics of a billiard ball (film loop),

84-85

Elastic coUision. 4

Elastic potential energy, 59

Energy, conservation of (experiment),

22-26

(film loops). 87-89

elastic potential. 59

gravitational potential. 86-87

heat, 34-35

see also Calorie

kinetic, 81

(film loop), 81-87

mechanical, measurement of. 85-86

potential, 29-30. 82

Exchange of momentum de\ices

(activity), 56-57
Experiments

behavior of gases. 43-46

calorimetry, 33-37

collisions in one dimension, 4-12

collisions in two dimensions. 13-21
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conservation of energy, 22-26

energy analysis of a pendulum swing,

28-29

ice calorimetr>', 37-38

least energy, 29-30

measuring the speed of a bullet,

26-28

measuring wavelength, 49-51

Monte Carlo experiment on molecular

gases, 38-43

sound, 51-53

temperature and thermometers,

31-32

ultrasound. 53-55

wave properties, 47-48

waves in a ripple tank, 48-49

Explosion of a cluster of objects (film

loop), 79-80

Film loops

colliding freight cars, 83-84

conservation of energy - aircraft

takeoff, 89

conservation of energy - pole vault,

87-88

dynamics of a billiard ball, 84-85

explosion of a cluster of objects,

79-80

finding the speed of a rifle bullet 1 and

II, 81-82

gravitational potential energy, 86-87

inelastic two-dimensional coUisions,

77, 78-79

kinetic energy, 81, 87

method of measuring energy - nails

driven into wood, 85-86

one-dimensional coUisions I and II,

76-77

recoil, 82-83

reversibility of time, 90

scattering of a cluster of objects, 79

standing waves in a gas, 92-93

standing waves on a string, 91-92

superposition, 90-91

two-dimensional collisions 1 and II,

77-78

vibrations of a drum, 95

vibrations of a metal plate, 95-96

vibrations of a rubber hose, 94-95

vibrations of a wire, 93-94

Frequencies, 94-95

Gas(es), behavior of (experiment),

43-46

temperature of 44

volume and pressure (experiment),

43-44

volume and temperature

(experiment), 44

Gas thermometer, 44-46

Gay-Lussac's Law, relation between

temperature and volume, 43

Gravitational potential energy (film

loop), 86-87

Hanging chain, 29-30

Heat, conduction of 38

exchange and transfer, 38

of fusion of ice, 37-38

latent, of melting, 36

mechanical equivalent of (activity), 60
radiation, 38

Heat capacity, measurement of 35-36

Hooke's law, 59

Horsepower, student (activity), 57

Ice, calorimetry (experiment), 37-38

heat of fusion of, 37-38

Incbned air track in energy conservation

experiment, 24-25

Inelastic collision, 8-9

Inelastic two-dimensional collisions

(film loop), 77-79

Interference, wave, 48-49

Interference pattern, wave, 49-50

Kinetic energy (film loop), 81-87

see also Energy

Latent heat of melting, 37-38

Liquids, mixing hot and cold

(experiment), 34-35

Longitudinal wave, 47

Magnesium flash bulb, in mass

conservation activity, 56

Marbles, collision probability for a gas of

(experiment), 38-39

inferring size of, 39-40

Mass, computation of force from, 43

conservation of (activity), 56

Mean free path between coUision

squares (experiment), 40-41

Measurement(s), speed of a buUet

(experiment), 26-28

Mechanical energy, measurement of

(film loop), 85-86

Mechanics of the Pole Vault (R. V.

Ganslen), 88

Metal plate, vibrations of (film loop),

95-96

Moire patterns (activity), 64-66

"Moire Patterns" (G. Oster and Y.

Nishijima), 66

Molecular gases, Monte Carlo

experiment, 38-43

Momentum, conservation of 13-15,

26-28, 85

measurement of 76-77, 78

Motion, direction of, 14-15

Music and speech (activity), 66

Nails, in measurement of kinetic energy,

87

in measurement of mechanical

energy, 85

Nodal lines, 50

Nodes, 50

One-dimensional collisions I and II (film

loop), 76-77

Pendulum, ballistic, 81

Perfectly inelastic collision, 8-9

Periodic wave, 48

Perpetual Motion and Modem Research

for Cheap Power (S. R. SmedUe),

62

Perpetual motion machines (activity),

62-63

"Physics and Music," Scientific

American, 64, 66

"The Physics oiViohns," Scientific

American, 66

"The Physics ofWoodwinds, "Sc?entiyic

American, 66

Pole vaulter, 87-88

Potential energy, 29-30, 82

Precipitate, in mass conservation

activity, 56

Pressure, of gas, 43-44

Puck(s), in conservation of energy

experiment, 23-24

in two-dimensional collisions

experiment, 13

Pulses, 47-48

Radiation, heat, 38

Random numbers, 39-40

table of 42

Recoil (film loop), 82-83

Reflection, wave, 48, 51

Refraction, wave, 48

Rifle bullet, finding speed of (film loop),

81-82

Ripple tank, waves in, 48-49

Rockets (activity), 62

Rubber hose, vibrations of (film loop),

94-95

Scattering of a cluster of objects (film

loop), 79

Science of Moire Patterns (G. Oster). 66

"Science of Sounds" (Bell Telephone),

66

Scientific and technological growth.

problems of (activity), 58-59

Seventeenth-centurv' experiment,

56-57

Similarities in Wave Behavior (J. N.
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Shrive), 67

Sinusoidal wave patterns, 90-91

Slinky, 67

Snell's law of refraction, 60

Sound (experiment), 51-53

calculating speed of, 53

Sound waves, diffraction of, 52

interference, 52

pressure variations in, 53

reflection, 51

refraction, 52

standing wave, 52

transmission of 51-52

see also Waves
Specific heat capacity, 36

Spectrum(a), of wave frequencies,

93-94

Speech and music (activity), 66

Speed, of a bullet, 26-28

(film loop), 81-82

of sound, 53

(activity), 66-67

of ultrasound, 55

see also Velocity

Spring, waves in, 47-48

Standing sound waves, 52, 54

Standing waves, on a drum and violin,

63-64

in a gas (film loop), 92-93

on a string (film loop), 91-92

"Stanzas firom Milton" (William Blake),

58

Steam-powered boat, construction of

(activity), 57-58

Stroboscopic photographs, of one-

dimensional collisions, 5-6,

25-26

of two-dimensional collisions

(experiment), 16-21, 25-26

Stroboscopic Still Photographs ofTwo-

Dimensional Collisions, 79

Superposition (film loop), 90-91

Temperature, defined, 31-32

of a gas, 44

and thermometers (experiment),

31-32

Thermodynamics, laws of, 62

Thermometer(s), comparison of, 32-33

constant pressure gas, 44-46

making of, 31-32

and temperature (experiment), 31-32

Thin-film interference (activity), 32

Time, reversibility of (film loop), 90

Transmission, of sound waves, 51-52

Transverse wave, 47

Two Cultures and the Scientific

Revolution (C. P. Snow), 58

Two New Sciences (Galileo), 56

Two-dimensional collisions I and II (film

loop), 77-78

(experiment), 16-21

stroboscopic photographs of, 16-21,

25-26

Ultrasound (experiment), 53-55

speed of, 55

Vectors, 17, 76

quantity, 24

Velocity, 13-15, 76-77, 84

recoil, 82-83

see also Speed

Violin, vibrations of, 63-64

Volume, and pressure (experiment),

43-44

and temperature (experiment), 44-45

Water, measuring temperature of

(experiment), 33-38

Waves, diffraction, 49

properties (experiment), 47-48

reflection, 48

refraction 48

in ripple tank (experiment), 48-49

sinusoidal, 90-91

sound, see Sound waves

in spring, 47-48

standing, 49

transverse, 47

Wave machines, mechanical (activity),

67

Wavelength, measurement of

(experiment), 49-51

Wire, vibrations of (film loop), 93-94
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