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Science is an adventure of the whole human race to learn to live in

and perhaps to love the universe in which they are. To be a part of it is

to understand, to understand oneself, to begin to feel that there is a

capacity within man far beyond what he felt he had, of an infinite e;cten-

sion of human possibilities. . .

.

I propose that science be taught at whatever level, from the lowest to

the highest, in the humanistic way. It should be taught with a certain

historical understanding, with a certain philosophical understanding,

with a social understanding and a human understanding in the sense of
the biography, the nature of the people who made this construction, the

triumphs, the trials, the tribulations.

I. I. Rabi, Nobel Laureate in Physics

Preface
Back^ound
The Project Physics Course is based on the ideas and research of a national

curriculum development project that worked for eight years.

Preliminary results led to major grants fi^om the U.S. Office of Education and the

National Science Foundation. Invaluable additional financial support was also

provided by the Ford Foundation, the Alfred P. Sloan Foundation, the Carnegie

Corporation, and Haivard University. A large number of collaborators were brought

together from all parts of the nation, and the group worked together intensively for

over four years under the title Harvard Project Physics. The instructors serving as field

consultants and the students in the trial classes u^ere also of vital importance to the

success of Haivard Project Physics. As each successive experimental version of the

course was developed, it was tried out in schools throughout the United States and
Canada. The instiuctors and students reported their criticisms and suggestions to the

staff in Cambridge. These reports became the basis for the next year's revision. The
number of participating instrvictors during this period grew to over 100. Five thousand
students participated in the last year of tiyout in a large-scale formal research

program to evaluate the results achieved with the course materials. Thereafter, the

trial materials were again rewritten. The final version has been revised twice for new
editions.

Aims
From the beginning, Harvard Project Physics had three major goals in mind. These
were to design a humanistically oriented physics course, to attract more students to

the study of introductory physics, and to find out more about the factors that

influence the learning of science. The last of these goals involved extensive

educational research, and has been reported to the teaching profession in books imd
journals.

The challenge facing us was to design a humanistic course that would be useful

and interesting to students with widely differing skills, backgrounds, and career plans.

In practice, this meant designing a new couse that would have the following effects:

1. To help students increase their knowledge of the physical world by

concentrating on ideas that characterize physics as a science at its best, rather than

concentrating on isolated bits of infomiation.

2. To help students see physics as the wonderfully many-sided human activity that

it really is. This meant presenting the subject in historical and cultural perspective,
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and shov\ing that the ideas ot physics ha\'e a traditicjn as well as ways ol e\oluticjnaiy

adaptation and change.

3. To increase the opportunits' foi- t^ac'h student to ha\'e inimediatc'K' lenvaicling

experiences in science even v\hile gaining the knowUnlge and skill that will be useful

in the long run.

4. To make it possible for insti\ictots to adapt the courst; to the wide range of

interests and abilities of their students.

o. To take into account the impoilance of the instiiictoi- in \hv. educational process,

and the \'ast spectriim of teac^hing situations that pi(;\ail.

Unhappily, it is not feasible to list in detail the contributions of each person who
par'tiri[:)ated in some pari of Harvard Project Physics. Previous editions ha\'e included

a partial list of the contributor's. VVe take partic'irlar' pleasuix? in acknowl(Klging the;

assistance of I3i'. Andrew Ahlgr-en of the Unixersity of Minn(!S(jta. Dr-. /Xhlgren was
invaluable because of his skill as a physics instructor-, his editorial talent, his xer'satility

and energy, and above all, his commitment to the goals of Harvard Project Physics.

VV(! would also especially like to thank Ms. Joan Laws, whose administiati\e skills,

dep(Midabilit\', and thoughtfulness Cf)ntributed so much to our- work. Holt, Rinehart

and Winston, Publishers, of New Yor-k, provided the coordination, editorial sirpport,

and general backing necessary to the lar^ge under-taking of preparing the final version

of all components of the Project Physics Course. Damon-Educational Division located

in VV-estwood, Massachusetts, worked closely with us to improve the engineering

design of the authorized laboratory apparatus and to see that it was properly

integrated into the program.
Since their last use in experimental for^m, all of the instructional materials have

been more closely integrated and rewritten in final form. The course now consists of a

lar'ge variety' of coorxlinated learning materials of which this textbook is only one. With
the aid of these materials and the guidance of the insti'uctor-, with tin; student's own
interest and effort, every student can look forward to a successful and worthwhile
experience.

In the years ahead, the learning materials of the Project Physics Course will be
r-e\ised as often as is necessary' to r-emoxe r-emaining ambiguities, to clarify

instructions, and to continue to make the materials more inter^esting and relexant to

the students. We therefore urge all who use this course to send to us (in care of Holt,

Rinehart and Winston, Publishers, 383 Madison Avenue, New York, New York 10017)

an\ criticisms or" suggestions they may have. And now, welcome to the study of

physics!

F. James Rutherford
Gerald Holton

Fletcher G. Watson
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CHAPTER 1 The Language of Motion

CHAPTER 2 Free Fall: GalUeo Describes Motion

CHAPTER 3 The Birth of Dhmamics: Newton
Explains Motion

CHAPTER 4 Understanding Motion

y^DT

It is January 1934 in the city of

Paris. A husband and wife are at

work in a university laboratory. They are exposing a piece of

ordinary aluminum to a stream of tiny charged bits of matter

called alpha particles. Stated so simply, this hardly sounds like

an important e\/ent. But look more closely, for it is important

indeed. Later you will look at the technical details, but for now
they will not get in the way of the stoiy.

The story is something of a family affair. The husband and wife

are the French physicists Frederic Joliot and Irene Curie. The
alpha particles they are using in their experiment are shooting

from a piece of i"iaturally radioactive metal. This metal is

polonium, first identified 36 years before by Irene's parents,

Pierre and Marie Curie, the discoverers of radium. What Frederic

and Irene have found is that when common aluminum is

bombarded by alpha particles, it too becomes radioactive for a

short time.

This was a surprise. Until that moment, a familiar, everyday

substance becoming artificially radioactive had never been
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Physicist Enrico I'rnni tl30l-W54l.

obsei'V'ocl. But physicists in the laboratoiA (uinnot force new
phenomena on nature. They can only show nioie clearly what

nature is like. Scientists know now that this t\'pe of ladioactix ity

occurs quite often. It happens, for example, in stars and in the

atmosphere when it is bombarded by cosmic rays.

Though it made few, if any, newspaper headlines, the news
was exciting to scientists and traveled rapidly. Enrico Fermi, a

young physicist at the University of Rome, became intrigued b\'

the possibility of repeating the experiment. But Fermi added an

important alteration. The stoiy is told in the book /\f0/77 .s in the

Family, mitten by Enrico Fei'mi's wife, Laura.

. . . hv (l(!cidi;ci he would tiy to product; aitificial radioadiv itv'

with neutrons (instead of alpha particlesi. Having no electric

charge, neutrons are neither attracted by electrons nor re|)(!ll(ui

by nuclei; their path inside mattni- is much longer than that of

alpha particles; theii- spet^d and en(Mg\' remain higher; iheii-

chances of hitting a nucleus with full impact are much greater.

Usually a physicist is guided by some theory in setting up an

experiment. This time, no woikable theoiy had yet been

developed. Only through actual experiment could one tell

whether or not neutrons could trigger- artificial iadioacti\it\' in

the target nuclei. Fermi, already an outstanding theor'(!ti("al

physicist at age 33, decided to design some experiments that

could settle the issue. Mis first task was to obtain instruments

suitable for- detecting the j^ariicles emitted by radioacti\(^

materials. The best such laboratory instruments by far wer'e

Geiger- counter^s. But in 1934, Geiger- counter's wer-e still r'elatively

new anti not readilv axailable. Therefore, Feimi built his owii.

All quotations in the I^rologue ai'c

from Laur-a I'crnii, Atoms in the
Fanjily: My Life With Enrico Fermi,

L'iii\er\sity of (Ihicago F^i'ess, Chi-

cago, 19i^4 (available; as a papeiliack

book in the Phoenix Rooks series i.

Fermi was one of the major phy-
sicists of the twentieth centui-v.

The counters were soon in operation detecting the radiation

from radioactive materials. Fermi also needed a source of

neutrons. This he made by en(-losing berAilium pow(i(M' and the

radioactive gas radon in a glass tube. Alpha par tides from [hv

radon, striking the beryllium, caused it to emit neutrons, which

passed fr-eely thr'ough the glass tube.

Now Enrico was ready for- the fiist experiments. Being a man of

method, he did not star-t by bombar-ding substances at lanciom,

but proceeded in or-der-, star-ting from the lightest element,

hydrogen, and following the periodic tabk; orelemeiils.

Hydrogen gave no results: vvIkmi he boml)ar(ic(l water witb

neutrons, nothing happened. He tried lilhiuin next, but a^ain

without luck. He went to beryllium, then to boion, to carbon, to

nitrogen. None were a(;ti\'ated. Enrico wavered, discouraged,

and was on the point of giving up iiis researclies, but liis

stubbornness made him refuse to yield. He; would trv' one more

element. That oxygen would not become radioactive he kn(;w

already, for his first bombar'dment had been on water-. So be

irradiat(;d fluoiine;. Huriab! \lv was lewai'detl. Fluorine was

IMl PK()i.()(;( b



strongly activated, and so were other elements that came after

fluorine in the periodic table.

This field of investigation appeared so fruitful that Enrico not

only enlisted the help of Emilio Segre and of Edoardo Amaldi

but felt justified in sending a cable to Rasetti [a colleague then

in Morocco), to inform him of the experiments and advise him

to come home at once. A short while later a chemist, Oscar

D'Agostino, joined the group, and systematic investigation was
c'arried on at a fast pace.

With the help of his co-woi'kers, Fermi pursued his

experiments with high spirits, as Laura Femil's account shows:

. . . Irradiated substances were tested for radioactivity with

Geiger counters. The radiation emitted by the neutron source

would have disturbed the measurements had it reached the

counters. Therefore, the room where substances were irradiated

and the room with the counters were at the two ends of a long

corridor.

Sometimes the radioactivity produced in an element was of

short duration, and after less than a minute it could no longer

be detected. Then haste was essential, and the time to cover

the length of the corridor had to be reduc;ed l)y swift running.

Amaldi and Feinii prided themselves on being the fastest

runners, and theirs was the task of speeding short-lived

substances fi^om one end of the corridor to the other. They
always raced, and Enrico claims that he could run faster than

Edoardo. . .

.

And then, one morning in October 1934, a fateful discoveiy was
made. Two of Fermi's co-workers were irradiating a hollow

cylinder of silver to make it artificially radioactive. They were
using neutrons from a source placed at the center of the

cylinder. They found that the ainount of radioactixaty induced in

the silver depended on other objects that happened to be

present in the loom!

. . . The objects around the cylinder seemed to influence its

activity. If the cylinder had been on a wooden table while being

irradiated, its activity was greater than if it had been on a piece

of metal.

By now the whole group's interest had been aroused, and
everybody was paiticipating in the work. They placed the

neutron source outside the cylinder- and interposed objects

between them. A plate of lead made the activity increase

slightly. Lead is a heavy substance. "Let's try a light one next,"

Fermi said, "for instance, paraffin. " The most plentiful element

in paraffiri is hydrogen. Vhe experiment with paraffin was
performed on the morning of October- 22.

They took a big block of par-affin, dug a cavit\' in it, pirt the

neutron source inside the cavity, irradiated the silver- cylinder-,

and brought it to a Cieiger counter- to measur-e its actixity. The
counter- clicked madly. Ihe halls of the physics building

UMIT 1 / PROLOGUE
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resounded with loud exclamations: "F"antasticl Incredihli!! iilaek

Magic!" Paratlin incr(;as(!d tlie aitificially induced radioactivity

of silver up to one lumdiiHl times.

By the time Fei-nii cuinie hack tioni lunch, he had alreacK

found a theory to account Ibi- the stianfi;(> action ol the paraffin.

Because of Fermi's earlier experi-

ments, they knew the water would
not become artiticially radioactive.

Ho\\e\(;r, th(;\' now reasontid that

it would slow down ntuitrons and

so allow sil\(M- to become more
strongly ividioactixe.

Paraffin c;ontains a great deal of hydrogen. Hydrogen nuclei ai-e

protons, particles having the same mass as neutrons When the

source is enclosed in a paraftin block, the neution.s hit the

protons in the |)araffin bc^fore i-eaching the silver nucku. In the

collision with a [iroton, a iKuitron loses part of its (Mi(Mg\', in the

same manner as a billiard ball is slowed down when it hits a

ball of its same siz(\ v\'h(Meas it loses little spiuul if it is i(!tlected

off a mu('h heavier- ball, or- a solid wall. Before (^merging from

the paraffin, a neutron will have collided with many protons in

succession, and its velocity will be greatly reduced. This .s7ov\

neutron will have a mu(;h better chance of being captured by a

silver nucleus than a fast one, much as a slow golf ball has a

better chance of making a hole than one which zooms fast and

may bypass it.

if Enrico's explarnations wer"e correct, any other substance

containing a large proportion of hydrogen should have the

same effect as paraffin. "Let's try and see what a considerable

quantity of water" do(!s to the silver- activity, tnrico said on the

same afternoon.

There was no better place to find a "considerable (luantity of

water " than the goldfish fountain ... in the gar-den behind the

laboratorA'. . .

.

In that foirntain the jjhvsicists had sailed (-eitain small toy

boats that had suddenly invaded the Italian market. Each little

craft bore a tiny candle on its deck. When the candles were

lighted, the boats sp(;d and puffed on the water like r-eal

motor-boats. They were delightful. And the yoirng men, who had

never- been able to r-esist the charm of a new toy, had s|)ent

nuK-h time watching them run in the fountain.

It was natural that, when in need of a considerable amount

of water-, Fermi and his friends should think of that foirntain.

On that after-noon of October 22, they r-ushed their source of

neutrons and their silver cylirnder to that fourntain, and they

placed both under water. The goldfish, I am sur-e, r-etained their

calm and dignitv, despite the neutr-on shower-, more than did

the crowd oirtside. I he men's excitement was fed on the r-esirlts

of this experiment. It confirmed Fer-mi's theory. Water also

increased the artificial ladioactivitv of silver manv times.

Fermi and his co-workers had learned that slowed-dov\ n

neutrons can produce much stronger effects in making certain

atoms radioactive than can fast neutrons. This discovers turned

out to be a ciucial step toward further discoveries which, years

later, led Fenni and others to the controlie^d pr-oduction of

atomic ener-^v Ir-om uranium.
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Fermi and his associates did not give up in the face of

discouraging results. They showed imagination in the invention

of theories and experiments. They remained alert to the

appearance of unexpected results and resourceful in using the

material resources at hand. Moreover, they found joy in

discovering something new and important. These traits are of

value in pursuing scientific work no less than elsewhere in life.

Scientists build on what has been found out and reported by

other scientists in the past. Yet eveiy advance in science can

raise new scientific questions. The work of science is not to

produce some day a finished book that can be closed once and
for all. Rather, it is to cany investigation and imagination on into

fields whose importance and interest have not been realized.

Some work in science depends upon painstaking observation

and measurement. The results sometimes stimulate new ideas

and sometimes reveal the need to change or even completely

discard existing theories. Measurement itself, however, is usually

guided by a theoiy. One does not gather data just for their own
sake.

All these characteristics are true of science as a whole and not

of physics alone. This being a physics text, you may well ask,

"Yes, but just what is physics?" The question is fair enough, yet

there is no simple answer. Physics can be thought of as an

organized body of tested ideas about the physical world.

Information about this world is accumulating ever more rapidly.

The great achievement of physics has been to find a fairly small

number of basic principles which help to organize and to make
sense of certain parts of this flood of information.

The Fermi National Accelerator
Laboratory is e}<:ploring the value of
neutron irradiation in the treat-

ment of cancer. A beam ofprotons
from a linear accelerator is di-

rected onto a beryllium target.

Neutrons are produced as a result

of this collision; these neutrons
are used in the cancer therapv re-

search.
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yittse UpI
Our Place in Space and Time

Physics deals with those laws of the universe that

apply everywhere, from the largest to the smallest.



Physicists study phenomena in the extremes of time-space

and in the whole region between the longest and shortest.



The Language of Motion

If

1.1 The motion of things

1.2 A motion experiment that does not quite ivork

1.3 A better experiment

1.4 Leslie's siiim and the meaning ofat'erage speed
1.5 Graphing motion and finding the slope

1.6 Time out for a warning
1.7 Inst.intaneous speed
1.8 Acceleration bv comparison

l.l
I

The motion of things

The world is filled with things in motion, things as small as dust

and as large as galaxies, all continually moxing. Your book may
seem to be lying quietly on the desk, but each of its atoms is

constantly vibrating. The "still" air around you consists of

molecules tumbling wild at various speeds, most of them moving

as fast as rifle bullets. Light beams dart through the room,

covering the distance from wall to wall in about a hundred-

millionth of a second and making about 10 million vibiations

during that time. The whole eai-th, our spaceship itself, is moxing

at about 29 kilometers per second (km/secl around the sun.

There is an old maxim: "To be ignorant of motion is to be

ignorant of nature." So, from this swirling, wiiirling, \ibrating

world of ours let us first choose just one moving object for our

attention. Then let us describe its motion.

Shall we start with a machine, such as a rocket or a car?

Though made and controlled by humans, machines and their
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parts mov^e in fast and complicated ways. We really ought to start

with something simpler, something that our eyes can follow in

detail. How about a bird in flight? Or a leaf falling from a tree?

Surely, in all of nature there is no motion more ordinary than

that of a leaf fluttering down from a branch. Can you describe

how it falls or explain why it falls? You will quickly realize that,

while the motion is veiy "natural," it is also very complicated.

The leaf twists and turns, sails right and left, back and forth, as it

floats down. Even a motion as ordinaiy as this may turn out, on

closer examination, to be more complicated than the motion of

machines. And even if you could describe the motion of a leaf in

detail, what would you gain? No two leav^es fall in quite the same
way. Therefore, each leaf seems to require its owai detailed

description. This indi\aduality is typical of most events you see

occurring in nature.

And so we face a problem. We want to describe motion, but

the motions we encounter under ordinary circumstances appear

too complex. Also, from the separate obsen^ations we are not

likely to find general conclusions that apply to all motions. What
shall we do? The answer is that, at least for a while, we must go

into the physics laboratoiy. The laboratory is the place to

separate the simple ingredients that make up all complex natural

phenomena and to make those phenomena more easily visible

to our limited human senses.

Studyfor "Dynamism of a Cyclist"

(1913) by Umberto Boccioni. Cour-

tesy Yale University Art Gallery.

1«2
I

A motion experiment that does not
quite work

Having abandoned the fall of a leaf as the way to start on the

physics of motion, we might select a clearly simpler case: a

billiard ball, hit squarely in the center and speeding easily across

a tabletop in a straight line. An even simpler motion (simpler

because there is no rolling) can be obtained. Place a disk of what

is called "dry ice" on a smooth floor and give it a gentle push.

(Take care not to touch the extremely cold disk with bare hands

for more than a brief moment!) The disk will move slowly and

with veiy little friction, supported on its own vapor.

We did this in front of a camera to get a photograph that

would record the action for easier measurement later. While the

dry-ice disk was moving on the well-leveled surface, the shutter

of the camera was kept open; the resulting time-exposure shows

the path taken by the disk.

What can you learn about the disk's motion by examining the

photograph? As nearly as you can judge by placing a nailer on

the photograph, the disk moved in a straight line. This is a very

useful result, and you will see later that it is really quite

surprising. It shows how simple a situation can be made in the

laboratoiy; the kinds of motion vou ordinarily see are almost

"Dry ice" is really frozen carbon
dioxide, at -79°C.

CHAPTER 1 / THE LANGUAGE OF MOTION 9



Uiboruloiy sflup.

ne\'er that sim|jl(!. Bui did the disk nio\e steadiK , oi- did it slow

down? I'l'oni this j)h()t()giaph, we really eannot tell. We must

improve the experiment. Before we do so. however, we must

decide just how we |)laii to measure the speed.

Close-up of a diy-ice disk.

ruin; c\f)osurc of llw disk in mo-
tion.

From time to time you v\aU be re-

ferred to items in the Study Guide
found at the end of each chapter.

UsualJy the letters SG plus a num-
ber will indicate this. See SG 1 on
page 31 for more information on
how to study for this course; and on
the use of the Study Guide.

it would he nice; to use soiiKUliing like an aulomohiie

speedometer. A speedometer ean lell diieetK the s|jeed at which

a car is mo\dng at any time. We can say, for example, that a car

is moving at 100 kilometei"s jjer hour (km hri. This means that

if the car continues t(j moxe with the same speed it had at the

instant the speed reading was taken, the car would mo\ e a

distance of 100 km in a time intenal of 1.0 hr. Or we could say

that the car would mo\e 1.7 km in Vwi of an hour II minutel or

10 km in '/lo of an hour. In fact, we could use any distance and
time intervals foi- which the ratio of distance to time? is 100 km/

hr.

Of course, an automobile speedometer cannot be hooked to a

disk of diy ice, or to a bullet, or to many other objects. Howexor,

there is a rathei* sinijjle vva\ lo measure speeds, at least in most

cases that would interest us.

Think of what you could do if the speedometer in your car

were broken and voir still wanted to know xour- s|)eed as you

moved along a turnpike. You could do one ot two things (the

r-esirlt is the; same in eithcM' easel. Voir c^oirld count the number of

kilometer- markcMs [massed in one hour- lor- some known fraction

of an houi-i and find the aver'age speed by computing the ratio of

kilometers and hoiris. Or- voir coirld determine the fraction of an

hour- it takes to go Ir-om one kilometer- marker to the next (or- to
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another marker a known number of kilometers away) and again

find the average speed as a ratio of kilometers to hours.

Either method gives, of course, only the average speed for the

inteival during which speed is measured. That is not the same as

instantaneous speed. Instantaneous speed is the speed at any

given instant as a speedometer might register it. But average

speed is good enough for a start. After you understand average

speed, you will see a simple way of finding instantaneous

speeds.

To find the average speed of an object, measure the distance it

moves and the time it takes to move that distance. Then dixide

the distance by the time. The speed is in kilometers per hour or

meters per second, depending upon the units used to measure

the distance and time. With this plan of attack, we can return to

the experiment udth the diy-ice disk. Oui' task now is to tind the

speed of the disk as it movies along its straight-line path. If we
can do it for the disk, we can do it for many other objects as

well.

Note: There vvdll usually be one or more brief questions at the

end of each section in the text. Question 1, below, is the first.

The end-of-section questions are there for your use, to check on

your own progress. Answer the questions before continuing to

the next section. Check your answers to these end-of-section

questions. Whenever you find you did not get the correct answer,

study thiough the section again. Of course, if anything is still

unclear after you have tried to study it on your own or together

udth other students, then ask vour instructor.

The speed of an object is, of course,

how fast it moves from one place

to another. A more formal way to

say the same thing is: Speed is the

time rate ofchange ofposition. The
term "displacement" is often used

to refer to the straight-line distance

between the beginning and end
points of the change in position of

a moving object. We will use this

term in connection with vectors in

Chapter 3, and more often still with

wave motion in Chapter 12.

# 1. Why is it impossible to determine the speed of the diy-ice

disk from the time-e}iposure photograph on page 10?

1 .3
I

A better experiment

To find speed, you need to be able to measure both distance and

time. Repeat the experiment udth the diy-ice disk. First place a

meter stick (100 cm) on the table parallel to the expected path of

the disk. This is the photograph obtained:
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You now have a way of measuring th(! tiistan("e tra\ eled by the

disk. But you still need a way to measure the lime it takes the

disk to travel a given distance.

Ihis can be done in xaiious ways, but theie^ is a fine tiick that

you can Uy in the laboratory. The cam(;ia shutter" is again kejjt

open and everything else is the same as betor-e, except thai the

only sour'ce of light in the darkened room comers liom a

sti'oboscopic lamp. This lam|) pr'oduc(!s bright Hashers of light at

intervals which we can set as we please. Each pulse or- flash of

light lasts foi' only about 10 millionths of a sec'ond 110

microseconds). I'herefore, the mo\ing disk appears in a ser-ies of

separate, sharp exposur-es, r-athei' than as a continuous blur. Ihe

photograph below was made by using such a stroboscopic lamp

flashing 10 times per second, after- the disk hatl been gently

pushed as before.

This special setup enables us to r-ecor-d accurately a series of

positions of the mo\ ing object. The meter- stick helps us to

measure the distance moved by the front edge of the disk

between one light flash and the next. The time interAal between

images is, of course, equal to the time inters al between

stroboscopic lamp flashes [0.10 second (sec) in these photos].

You can now deter-mine the speed of the disk at the l)eginning

and end of its photographed path. The front edge of tiie second

clear image of the disk at the left is 19 cm from the zero niai k on

the meter stick. The front edge of the third image fr-om th(^ left

is at the 32-cm position. The distance traxeled during that time

was the difference between those two positions, or 13 cm. Ihe

cor-responding time interAal was 0.10 sec. Therefore, the speed

dur'ing the first part of the obserAation must hixve been 13

cm/0.10 sec, or 130 cm/sec.

Now look at the two images of the disk far'thest to th(> right in

the photograph. Here, too, th(^ distance triueled during 0.10 sec

was 13 cm. Thus, the speed at the right end was 13 cm/0.10 sec,

or 130 cm/sec.

The disk's motion was not measurabK' slower at the right end

than at the left end. Its speed was 130 cm/sec near the beginning

of the path and 130 cm/sec near- the end of the path. Howexei-,

this does not yd pr'oxe that the speed was (-onstant all th(^ way.
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You might well suspect that it was, and you can easily check to

find out. Since the time intervals between images are known to

be equal, the speeds will be equal if the distance inteivals are

equal to one another. Is the distance between images always 13

cm? Did the speed stay constant, as far as you can tell from the

measurement?

When you think about this result, there is something really

unusual in it. Cars, planes, and ships do not move in neat,

straight lines with precisely constant speed even when using

power. Yet this disk did it, coasting along on its own, without

any propulsion to keep it moving. You might consider this a rare

event which would not happen again. In any case, you should

try the experiment. The equipment you will need includes

cameras, strobe lamps lor mechanical strobes, which work just

as well), and low-friction disks of one sort or anothei-. Repeat the

experiment with different initial speeds. Then compare your

results with those found above.

You may have a serious reseivation about the experiment. You

might ask: 'How do you know that the disk did not slow dowoi

an amount too small to be detected by your measurements?"

The answer is that we do not know. All measurements involve

some uncertainty, though one which can usually be estimated.

With a meter stick, you can measure distances reliably to the

nearest 0.1 cm. If you had been able to measure to the nearest

0.01 cm or 0.001 cm, you might have detected some slowing

down. But if you again found no change in speed, you could still

raise the same objection. There is no way out of this dilemma.

We must simply acknowledge that no physical measurements are

ever perfectly precise. The results of any set of measurements are

acceptable within its own limits of precision, and you can leave

open the question of whether or not measurements made with

increased precision could reveal other results.

Briefly rexaew the results of this experiment. You devised a way
to measure the successive positions of a moving dry-ice disk at

known time intei^^als. From this you calculated first the distance

inteivals and then the speed between selected positions. You
soon discovered that (within the limits of precision of the

measurements) the speed did not change. Objects that move in

such a manner are said to have uniform speed, or constant speed.

You know now how to measure uniform speed.

But, of course, actual motions are seldom uniform. What about

the more usual case of nonuniform speed? That is our next

concern.

Uncertainty of measurement is

taken up in detail in the Handbook,
particularly in Experiment 3.

Some practice problems dealing
with constant speed are given in

Study Guide 3 (a, b, c, and d).

• 2. Suppose the circles on page 14 represent the successive

positions of a moving disk as photographed stroboscopicallv.

Did the object move with uniform speed? How do you know?
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oo oo o o
3. Give a general description of uniform speed, without

referring to dry-ice disks and strobe photography or to any

particular object or technique of measurement.

%

45 m/56.1 sec = 0.80 m/sec. That
is the equhalent of 2.9 km hr. i\o

great speed! A sailfish can do o\'er

60 kni hr. Rut hiinians are land an-

imals. E\en the fastest swimmers
are only ahout twice as fast as Les-

lie. For short distances, a person
can run up to ahout 30 km,hr. The
world's record for a 100-m run is

a bit more than 10 sec; the runner
thus had an axerage speed of 36
kni/hr.

1. ,4
I

Leslie's siiim and the meaning of
average speed

Consider the situation at a swimming meet. At the end of each

race, the name of the winner, the swimmer with the shortest

time, is announced. But in any given race, for example, the 100-

meter exent, eveiA' swimmer goes the same distance. Therefore,

the swimmer with the shortest time is also the one having the

highest average speed while covering the measured distance. The
ratio of the distance traveled to the elapsed time is the measure

of average speed. This relationship is expressed in the following

equation:

distance traveled
average speed — —

elapsed time of travel

which, in fact, is the definition of average speed. What
information does a knowledge of the average speed give you?

You can answer this question hv studying a real example.

Leslie is not the fastest woman freestyle swimmer in the world,

but Olympic speed is not necessaiy for this purfoose. Leslie was
timed while swimming two lengths of an old, indoor pool. The
pool is 22.5 meters (m) long, which makes it a bit too short for

Olympic events but good enough for many sports. It took Leslie

56.1 sec to swim the two lengths (45 m). Thus, her average speed

for the 45 m was

45 m
56.1 sec

= 0.80 msec

Did Leslie swim the two lengths of the pool at imiform (that is,

constant) speed? If not, when was she swimming the fastest?

What was her greatest speed? Did she take less time to swim out

than to return? How fast was she moving when she was one-

quarter or halfway down the pool? The answers to these

questions are useful to know when training for a meet.

So far you do not have a way to answer any of these questions,

but soon you will. L'ntil then, the average speed over the two

lengths (0.80 m/sec) is the best single value vou can use to

describe the whole of Leslie's swim.

To compare Leslie's speed at different points in the swim,

observe the times and distances covered as you did in

experimenting with the diy-ice disk. For this puipose, the event

was arranged as follows.
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Obseivers stationed at 4.6 m inteivals fiom the zero mark along

the length of the pool started their stopwatches when the

starting signal was given. Each obseiver had two watches. The

observers stopped one watch as Leslie passed them going down
the pool, and they stopped the other as she passed on hei-

return trip. The data are tabulated ne.xt to the photograjjh of this

experiment.

From these data, you can, for example, determine Leslie s

average speed for the first length (22.5 m) and for the last length

separately.

distance traveled
average speed for the first length =

j

—

\

elapseQ time

22.5 m
22.0 sec

average speed for the last length

= 1.02 m/sec

distance traveled

elapsed time

22.5 m
56.1 sec - 22.0 sec

22.5 m
34.1 sec

= 0.66 m/sec

It is now clear that Leslie did not swim with unifomi speed.

She swam the first length much faster (1.02 m/sec) than the

second length (0.66 m/sec). Notice that the overall average speed

(0.80 m/sec) does not describe either lap by itself veiy well.

In a moment we will continue our analysis of the data we have

obtained for Leslie's swim. This analysis is important because the

0.0m



v^^ is pronounced "vee av" or "vee

sub-av." Id is pronounced "delta

dee."

Practice problems on average speed
can bi' found in Study Guide 4 (e,

f, g. and h). Study (iuides 6, 8, and
10 otfcr- somewhat more challeng-

ing pr()i)lems. Some suggestions
for axcrage speeds to measure are

Iist(!d in Study Ciuidc; 9.

concepts we are developing for this exeiyday type of motion will

be needed later to discuss other motions, ranging from that of

planets to that of atoms.

The following shorthand notation will simplify the delinitif)n of

avenige speed:

average speed -
distance; traxeled

elapsed time

A more concise statement that says exactly the same thing is

Ad
v.. =

At

In this equation, v^,^ is the symbol lor the average speed, Ad is the

symbol for change in position, and A/ is the sxmbol foi- an

elapsed inteival of time. The symbol A is the fourth letter in the

Greek alphabet and is called delta. When A pi^ecedes another

symbol, it means "the change in ... .

' Thus, Ad does not mean 'A

multiplied by d." Rather, it means "the change in d" or "the

distance interval." Likewise, At stands for "the change in /" or

"the time inten^al."

You can now go back to the data and compute Leslie's average

speed for each 4.5-m interval, from beginning to end. This

calculation is easily made, especially if you reorganize the data

as showai in the table on page 19. The values of v.,^ calculated at

4.5-m intervals for the first lap are entered in the right-hand

column. (The values for the second lap ai'e left for you to

complete.)

Much more detail is emerging from the data. Looking at the

speed column, you see that Leslie's speed was greatest, as

expected, near the start. Hei- racing jump into the water gave her

extra speed at the beginning. In the middle of her first length,

she swam at a fairly steady rate, and she slowed dowTi coming

into the turn. Use your own calculations to see what happened

after the turn.

Although \'ou ha\(; detemiined Leslie's speeds at xarious

intervals along the path, you are still dealing with avcrnga

speeds. The inten^als during which you determine the average

speeds are smaller: 4.5 m rather than the entire 45 m. But you do

not know the details of what happened within any of the 4.5-m

inter\'als. Thus, you know that Leslie's average speed between the

13.5- and 18-m marks was 0.9 m/sec. You do not know \et how
to compute her speed at the veiy instant and point where she

was, say, 16.2 m or 18 m from the start. Even so, the average

speed for the 4.5-m intenal between the 13.5- and 18-m marks is

pi^obably a better estimate of her speed as she went through the

16.2-m mark than is the average speed for the whole 45 m, or for

either 22.5-m length. We will come back to this problem of

determining "sjjeed at a particular instant and point " in Sec 17

16 UNIT 1 / COXCEmS Ol iVIOl l()\



4. A hoy on his way to the store ahout 720 m from his home

stopped twice to tie his shoes and once to watch an airplane.

What was his average speed for the trip if he took 540 sec to

reach the store? In your own words, define the concept

"average speed.
"

5. Use the formula for average speed to determine how far

down the slope a skier will travel in 15 sec ifshe is moving at

a speed of 20 m/sec.

6. Ifyou have not already completed the table on page 19, do

so now before going on to the ne^t section.

\ ,5
\

Graphing motion and Uncling
the slope

You can look at the data from Leslie's swim another and more
informative way by plotting them on a graph instead of just

writing them down in a table. In the first graph on page 19,

the distance and time values that were measured for Leslie's

swim are shoum. (The circles around the points have been put in

only to make the points show up more clearly.) Each point on

the distance-time graph shows the distance Leslie covered up to

that particular time. We know that Leslie was in the pool

between our measured points as well, but we do not know
precisely where. The usual way to show this is to connect the

known points with some kind of line or cur\'e.

In the second graph we have done just that in the simplest

way, by drawing straight lines between points. Because we do

not know that Leslie was really "on " those lines between the

measured points, we have drawoi the line segments as broken

lines, with dashes, instead of as solid lines.

You can get a better approximation of Leslie's actual motion by

drawing one continuous 'smooth ' cuiA^e through all the data

points. One experimenter's idea of a good curve is shown in the

last graph. On first sight, this graph may not look veiy different

from the second graph, but a closer look will show differences in

detail. For example, in the second graph there is a rather sharp

kink at the point corresponding to 5.5 sec. This would imply that

Leslie changed her speed abruptly at that moment. We have no

reason to think this happened, and it does not show up on the

third graph. This is one of the reasons for preferring the third

graph.

What can you see (or "read ") on the last graph? Notice that the

line is steepest at the start. This is because there was a

comparatively large change in position in the first few seconds.

In other words, Leslie got off to a fast start. You can also
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If this concept is new to you or if

you wish to review it, turn now to

Study Guide 11 before continuing

here.

determine that from the table. After the third measured point,

the giaph becomes less steep. The time taken to eo\er the same
distance is longer; therefore, the speed is slower. Again this

agrees wath what you sec in the table of data and computations.

The steepness of the gnif)h line clearly indicates how fast Leslie

was moving. The faster she swam, the steeper is the line on the

graph. If you follow the line along, you see that Leslie slowed

down coming into the turn, had a brief spurt just after the turn,

and then slowed down steadily until the finish.

Looked at in this way, a graph proxides you at a glance with a

visual representation of motion which can be \eiy useful. But

this kind of representation does not tell directly what the actual

value of Leslie's speed was at an\' particular momcMit. For- this,

you need a way of measuiing the stt^^pness of the giaph line.

Here we can turn to mathematics for help, as we often shall.

There is an old method in geometiy for soK ing just this

problem. The steepness of a graph at any point is related to the

change in vertical direction (Ayl and the change in horizontal

direction lAy). By definition, the ratio of these fvvo changes (Ay/

A^l is the slope:

slope = -f-
A,v

Slope is a widely used mathematical concept. It can be used to

indicate the steepness of a line in any graph. In a distance-time

graph, like the one for Leslie's swim, the position, or distance

from the start, is usually plotted on the vertical axis id replaces y)

and time on the horizontal axis it replaces ;<). Therefore, in such

a graph, the slope of a straight line is given by

slope - —

-

At

This should remind you of the definition of average speed, v^^ =

Ad/A/. In fact, v'_^^ is numericalK ecjual to the slope! In other

words, the slope of any straight-line part of a graph of distance

versus time gives a measure of the average speed of the object

during that inteival.

When you measure slope on a graph, you do basically the

same thing that highway engineers do when they specih' the

steepness of a road. They simply measure the rise in the load

and divide that rise by the horizontal distanc'e one must go in

order- to achieve the rise. The only difference between this and

what we have done is that the highway engineers are concerned

with an actual physical slope. Thirs, on a graph of their- data, the

vertical axis and hoi-izontal iixis both show distance. We, on the

other- hand, ar-e using the niathenvitical concept of sloj^e as a

wav of e.xpr-essing distance measuicd against lime
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of the data takers? What was hei* speed as she crossed the

35-m mark? You can ansvvei- questions like these hv finding the

slope of a fairly straight jjortion of the graph line near the point

of interest. Tu'o examples have been worked out on the graph

shown below. For' each example, At was chosen to be a 4-sec

interval from 2 sec befor^e the point in question to 2 sec after' it.

Then the Ad for- that A/ was measur-ed.

50 r
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You can check the r-easonableness of using the graph in this

way by compar'ing the results v\ ith the \ alues listed in the table

on page 19. For example, the speed near- the 10-sec mark is

found from the gr^aph to be about 3.0 m/4.0 sec = 0.75 m/sec.

This result is somewhat less than the v alue of 0.8 m/sec given in

the table for the average speed for the time internal between t =

5.5 sec and t = 11 sec. This is just what you would expect,

because you can see that the smooth-cur^e graph does become
slightly less steep around the 10-sec point. If the smooth curve

r^eally describes Leslie's swimming better than the dashed

straight-line graph does, then you can get more infoi'iiiation from

that last graph than you can get just by looking at the data

themselves!

7. Turn buck to pni^e 12 unci dmw :i dislHiicc-Uiuc gr.i/;/? /or

the motion of the dry-ice disk.

8. Which of the two graphs in the ninrgin. for two ditfcrcnl

objects, has the greater slope?
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Close Upl
The Language of Motion

t = B. t = 19 mm C t = 36 mm D. t = 63 mm

Af = 19 mm At ^ 17 mm At = 27 mm

A. t = B. t = 17 hr C. t = 50 hr

These photographs show a stormy

outburst of incandescent gas at the

edge of the sun, a developmg chive

plant, and a glacier. From these

pictures and the time intervals given

between pictures, you can determine

the average speeds of: (1) the growth
of the solar flare with respect to the

sun's surface (radius of sun is about
691.200 km), (2) the growth of one of

the chive shoots with respect to the

graph paper behind it (large sguares
are 2.5 cm). (3) the moving glacier with

respect to its "banks."

At = 4 years
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1«T Instantaneous speed

Now let us summarize the chief lessons of this first chapter. In

Sec. 1.5 you saw that distance-time graphs could be veiy helpful

in describing motion. Near the end of the section, specific speeds

at particular points along the path ("the 35-m mark") and at

particular instants of time ("the instant 10 sec after the start")

were mentioned briefly. You may have been bothered by these

comments, since the only kind of speed you can actually

measure is average speed. To find average speed you need a

ratio of distance intervals and time inter\^als. A particular point

on the path, however, does not have any inten^al. Nevertheless, it

does make sense to speak about the speed at a point. The
follovvang is a summary of the reasons for using 'speed ' in this

way.

You remember that the answer to the question (page 19) "What

was Leslie's speed 10 sec after the start? ' was 0.75 m/sec. You
obtained that answer by finding the slope of a small portion of

the curve around the point P when t = 10 sec. That section of

the curve is reproduced in the margin here. Notice that the part

of the cuive used appears to be nearly a straight line. As the

table under the graph shows, the value of the slope for each

interx^al changes veiy little as the time inteival Af is decreased.

Below At = 4 sec, you keep getting the same value for Ad/Ar.

Correspondingly, the chosen segment of the line on which P sits

is more and more a straight line. Now imagine that you
continued to 700 m, where t — 10 sec, until the amount of cuive

remaining became vanishingly small. Can you safely assume that

the slope of that very small part of the cuive has the same value

as the slope of the short straight-line portion of which it seems

to be a part? It seems reasonable. In any case, it is up to you to

define what you mean by your concepts. That is why we took the

slope of the straight line from t — 8 sec to f = 12 sec and called

it the speed at the midpoint, t = 10 sec. The correct term for

this value is the instantaneous speed at the instant t = 10 sec.

Prevaously, you estimated Leslie's instantaneous speed at a

particular time by actually measuring the average speed over a

4.0-sec interval. This method can be modified so that it can be

used in many different contexts in the future. The instantaneous

speed at a particular instant has the same value as the average

speed, Ad/At, as long as tw^o conditions are met: First, the

particular instant must, of course, be included in At. Second, the

ratio, Ad/At must cover a small part of the curve, one that is as

nearly as possible a straight-line segment. LJnder this condition,

the ratio Ad/Af will not change noticeably when you compute
it again over a still smaller time inten^al.

A second example will help to explain the concept of

instantaneous speed. In the oldest known study of its kind, the
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French scientist de Montiieillard periodically recorded the height

of his son duiing the years 1759-1777. A graph of height \ersus

age for his son was published and is shown at the lower left.

From the graph, you can compute the average growth rate, or

average speed of growth \\\J oxer the entire 18-year inteival or

over any shorter time interval within that period. Suppose,

however, you wanted to know how fast the boy was growing just

as he reached his fifteenth l)iithday. The answer becomes

evident if you enlarge the graph in the vicinity of the fifteenth

year. His height at age 15 is indicated at point P, and the other

letters indicate instants of time on either side of P. The boy's

average growth rate over a 2-year inteival is given by the slope of

T

0.0C i or::

)

.'6 17 /6

the line AB. Oxer a 1-year interval, this average growth rate is

gixen by the slope CD. (See the thiid graph at the middle of this

page.) The slope of a straight line drawn ft^om E to F gi\'es the

a\'erage growth rate over 6 months, etc. The four lines, AB, CD,

EF, and GH, are not exactly parallel to each other, and so their

slopes are different. Howexer, the difference in slope gets smaller

and smaller. It is large xvhen you compare AB and CD, less if you

compare CD and EF, and still less between EF and GH. For

intervals less than Af = 1 year, the line segments do become
parallel to each other, as far as you can tell, and gradually merge

into the curve. For- xery small internals, you am jind the slope by

drawing a straight line tangent to this curve at P. This method
inx'olx'es placing a Riler parallel to line GH at P and extending it

on both sides.
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The values of the slopes of the straight-line segments in the

two right-hand graphs on page 24 have been computed for the

corresponding time intervals. These values appear in the table in

the margin at the right. Note that values of v^^ calculated for

shorter and shorter time inteivals approach closer and closer to

6.0 cm/yr. In fact, for any time inteival less than 2 months, v,^ will

be 6.0 cm/yr within the limits of accuracy of measuring height.

Thus, you can say that, on his fifteenth birthday, young de

Montbeillard was grovvang at a rate of 6.0 cm/yr. At that instant in

his life, t = 15.0 yr, this was his instantaneous growth rate. lYou

might also express it as instantaneous speed of his head vvdth

respect to his feet when he was lying still!)

Average speed over a time interval A^ as mentioned earlier, is

by definition the ratio of distance traveled to elapsed time. In

svmbols,

Line

between
points At Ad

Growth rate

Ad

AB



Close Upl
Photography, 1 609 to the Present

/ rdfis i^ireet scene, 18od. A daguerreotype

made by Louis Daguerre himself.

2 American street scene, 1859

1

.

Note the lone figure in ttie otfierwise empty street.

He was getting his shoes shined. The other

pedestrians did not remain in one place long

enough to have their images recorded. With

exposure times several minutes long, the outlook for

the possibility of portraiture was gloomy.

2. However, by 1859, improvements in photographic

emulsions and lenses made it possible not only to

photograph a person at rest, but also to capture

a bustling crowd of people, horses, and carriages.

(With a magnifying glass you can see the slight blur

of the jaywalker's legs.)

3. Today, one can "stop" action with an ordinary

camera.

4. A new medium—the motion picture. In 1873 a

group of California sports enthusiasts called in the

photographer Eadweard Muybridge to settle the

question, "Does a galloping horse ever have all four

feet off the ground at once?" Five years later he

answered the question with these photos. The five

3. The moving car is seen in focus in the

foreground, vjhile the stationary background
appears blurred

^^^Sg" ^^^Sff^ /^bSt^ 4'^HV^ ^^'^SBw

^ST^^Tk £^ .37 ?7^
4 '.'

, , s series. 1878
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pictures were taken with five cameras lined up

along the track. Each camera was triggered when
the horse broke a string that tripped the shutter. The

motion of the horse can be reconstructed by making

a flip pad of the pictures.

With the perfection of flexible film, only one

camera was needed to take many pictures in rapid

succession. By 1895, there were motion picture

parlors throughout the United States. Twenty four

frames each second were sufficient to give the

viewer the illusion of motion.

5. A light can be flashed successfully at a controlled

rate, and a multiple exposure (similar to the strobe

photos in this text) can be made. In this photo of

a golfer, the light flashed 100 times each second.

6. It took another 90 years after the time the

crowded street was photographed before a bullet in

flight could be "stopped." This remarkable picture

was made by Harold Edgerton of h/IIT, using a

brilliant electric spark which lasted for about 1

millionth of a second.

7. An interesting offshoot of motion pictures is the

high-speed motion picture. In the frames of the milk

drop series shown below, 1 ,000 pictures were taken

each second (by Harold Edgerton). The film was
whipped past the open camera shutter while the

milk was illuminated with a flashing light (similar to

the one used in photographing the golfer)

synchronized with the film. When the film Is

projected at the rate of 24 frames each second,

action that took place in 1 sec is spread out over 42

sec. Very high-speed photography was used to

make several of the Project Physics film loops.

It is clear that the eye alone cannot see the

elegant details of this event. This is precisely why
photography of various kinds is used in the

laboratory.



Unless noted otherwise, "rate of

change^' will always m(;an "rate of

change with respect to time.
"

1.8
I

Acceleration hy comparison

\ou can infei" troni the photograph at Ihe hottoiii ot this page of

a basehall rolling on an incline that the ball vvas changing sj^eed

(acceleratingi. Assuming the time between flashes to haxe been

constant, the incieasing distance between the images of the ball

give you this information. But how can \{)u tell how much
acceleration the ball has.^

To answer this question, you ha\e to \v.nm the definition of

acceleration. The definition itself is simple. 1 he real task is to

learn how to use it in situations like the one below. For the time

being, acceleration can be defined as rate ofchans,e of speed.

Later, this definition v\ill have to be modified somewhat when
you encounter motion in which change in direction becomes
impoilant. For now, you are dealing only with straight-line

motion. Therefore, you can equate the rate of change of speed

v\ith acceleration.

Some of the effects of acceleration are familiar to exciAone. It is

acceleration, not speed, that you notice when an elevator

suddenly starts up or slows down. The flutter in your stomach

comes only during the speeding up and slowing down. It is not

felt during most of the ride, when the elevator is moving at a

steady speed. Likewise, the excitement of the I'oUer coaster and

other rides at amusement parks results from their unexpected

accelerations. Speed by itself does not cause these sensations. If

it did, you would feel them during a smooth plane ride at 900

km/hr, or during the continuous motion of the earth around the

sun at 105,000 km/hr.

Simply stated, speed is a relationship between fwo objects.

One object is taken to be the leference object, while the other

moves with respect to it. Some examples are the speed of the

earth with respect to the sun, the speed of the swimmei' with

respect to the pool edge, the speed of the top of the growing

boy's head with respect to his feet. In a perfectly smooth-riding

train, you could tell that you were moving at a high speed only

by seeing the sceneiy speeding by. Vou would have just the same
experience if the train were somehow fixed and the earth, rails,

etc., were to speed by in the other direction. If you "lost the

reference object" (by pulling down the shades, say), you could

not tell whetheivou were moving or not. In contrast, vou "feel"
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accelerations. You do not need to look out the train window to

realize that the engineer has suddenly started the train or has

slammed on the brakes. You might be pushed against the seat, or

the luggage might fly from the rack.

All this suggests a profound physical difference between

motion at constant speed and accelerated motion. It is best to

learn about acceleration at first hand (in the laboratoiy and

through the film loops). But the main ideas can be summarized

here. For the moment, focus on the similarities between the

concepts of speed and acceleration. For motion in a straight line:

The rate of change of

position is called speed.

The rate of change of

speed is called

acceleration.

This similarity of form is veiy helpful. It enables you to use what

you have just learned about the concept of speed as a guide for

using the concept of acceleration. For example, you have learned

that the slope of a line of a distance-iime graph is a measure of

instantaneous speed. Similarly, the slope of a speed-time graph is

a measure of instantaneous acceleration.

This section concludes with a list of sbc statements about

motion along a straight line. The list has two purposes: (1) to

help you review some of the main ideas about speed presented

in this chapter, and (2) to present the corresponding ideas about

acceleration. For this reason, each statement about speed is

immediately followed by a parallel statement about acceleration.

1. Speed is the rate of change of position. y4cce/eran'on is the

rate of change of speed.

2. Speed is expressed in units of distance/time. Acce/eraf/on is

expressed in units of speed/time.

3. Average speed over any time interval is the ratio of the

change of position Ad to the time interval At:

Ad
"- ^ a7

Average acceleration over any time inteival is the ratio of the

change of speed Av to the time interval Af

:

a„ —
Av

Af

4. Instantaneous speed is the value approached by the average

speed as Af is made smaller and smaller. Instantaneous

acceleration is the value approached by the average acceleration

as Af is made smaller and smaller.

5. On a d/sfance-time graph, the instantaneous speed at any

instant is the slope of the straight line tangent to the cuiv/e at the

point of interest. On a speed-time graph, the instantaneous

For example, if an airplane changes

its speed from 800 km/hr to 850

km/hr in 10 min, its average accel-

eration would be

Av

At

850 km/hr - 800 km/hr

10 min

50 km/hr

= 5

10 min

km/hr

mm or 5 km/hr/min

That is, its speed changed at a rate

of 5 km/hr per minute which, ex-

pressed in a consistent system of

units, is about 0.08 km/min" or 300

km/hr". (If the speed was decreas-

ing, the value of the acceleration

would be negative.)

AC"

' At

AW{

'- > >

At
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Constant speed and constant accel-

eration are often called "uniform"

speed and "uniform" acceleration.

In the rest of this course!, we will

use the terms interchani'cahlv.

SG 21 provides an opportunity to

work with distance-time and
speed-time graphs and to see their

relationship to one another.

SG 22-25 are review problems for

this chapter. Some of these will test

how thoroughly you grasp the lan-

guage used for describing straight-

line motion.

acceleration at any instant is the slope of the straight line

tangent to the cune at the point of interest. See the giaphs in

the margin on page 29.

6. For the partieular case oi conslnnt speed, [hv. tiistance-time

graph is a stiaight line. Therefore, the instantaneous speed has

the same value at every point on the graph. Further, this value is

eciuai to the axeiage speed coniputeHJ loi- the whole trip. For the

partieular ease oi constant acceleration, the speed-time graph

is a straight line. Therefore, the instantaneous acceleration has

the same value at every point on the graph. Further, this xaiue is

equal to the axerage acceleration computed for the whole trip.

When speed is constant, its value can he found from any

corresponding Ad and Af. When acceleration is constant, its

valire can be Idirnd from any corresponding A\' and A/, i This is

useful to remember" because constant acceleration is the kind of

motion you will encounter most often in the following chapters.)

Vou now have most of the tools needed to get into some real

physics problems. The first such problem will inxoKe the

acceler'ated motion of bodies caused by gra\'itational attraction. It

was by studying the motion of falling obj(;cts that Cialileo, in the

early 1600s, first shed light on the nature of accelerated motion.

His work remains a wonderful example of how scientific theory,

mathematics, and actual measur'ements can be combined to

develop physical concepts. More than that, Galileo's work
opened one of the earliest and most inipoitant battles of the

scientific r^evolution. The specific ideas he introduced are even

today fundamental to the science of mechanics, the stud\ of

bodies in motion.

15. What is the average acceleration of an airplane that goes

from to 100 km/hr in 5 sec?

16. What is your average acceleration if, while walking, you

change your speedfrom 5 km/hr to 2 km hr in an inter\al of

15 min? Is your answer affected by how your change ofspeed

is distributed over the 15 min?

17. Using the formula for average acceleration, determine how
long it takes a bird startingfrom rest to reach a speed of 12

m/sec if it accelerates uniformly at 4 m/sec~.

18. If the bird in Ojiiestion 17 continued to accelerate at the

same rate, how much speed would it add in another 6 sec?
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study
guide
1. This book is probably different in many ways

from textbooks you have had in other courses.

Therefore, it might help to make some suggestions

about how to use it.

(a) If this is your own personal copy and you intend

to retain it after you have completed the course, in

short, if you are in a situation that permits you to

mark freely in the book, do so. You will note that

there are wide mai'gins to record questions or

statements as they occur to you. Mark passages that

you do not understand so that you can seek help

from your instructor.

(b) If you may not wiite in the textbook itself; try

keeping a notebook keyed to the text chapters. In

this study notebook, jot down the kinds of remarks,

questions, and answers that you would otherwise

write in the textbook as suggested above. Also, you

ought to write down the questions raised by the

other learning materials you wiU use, by the

experiments you do, by demonstrations or other

observations, and by discussions you may have with

fellow students and others with whom you talk

physics. Most students find such an informal

notebook to be enormously useful when studving, or

when seeking help from their instructors (or, for

that matter, from advanced students, scientists they

may know, or anyone else whose understanding of

physics they trust).

(c) Always try to answer the end-of-section rexaew

questions yourself first, and then check your

answers. If your answer agrees with the one in the

book, it is a good sign that you understand the main
ideas in that section (although it is true that you can

sometimes get the right answer for the wrong
reason). Also, sometimes there may be other answers

as good as (or better than!) those given in the book.

(d) There are many different kinds of items in the

Study Guide at the end of each chapter. It is not

intended that you should do eveiy item. Sometimes
material is included in the Study Guide which may
especially interest onlv some students. Notice also

that there are several kinds of problems. Some are

intended to give practice in the use of a particular

concept, while others are designed to help you bring

together several related concepts. Still other

problems are intended to challenge those students

who particularly like to work with numbers.

(e) This text is only one of the learning matericds of

the Project Physics course. The course includes

several other materiids, such as film loops and

filmstrips or transparencies. Use them if they are

available to you. Be sure to familiarize yourself also

with the Handbook for students, which describes

outside activities and laboratory experiments. Each of

these learning aids makes its oun contribution to

an understanding of physics, and all have been

designed to be used together.

Note: The Project Physics learning materials

particularly appropriate for Chapter 1 include:

Experiments (in the Handbook)
Naked Eye Astronomy

Regularity and Time
Variations in Data

Measuring Uniform Motion

2. Define, in words and symbols, the following

terms: speed, uniform motion, average speed, slope,

instantaneous speed, average acceleration. What does

the symbol "A" mean?

3. A goalie shoots a puck to his teammate 30 m
away. If the puck took 1.5 sec to cover the distance,

what was its average speed?

4. Some practice problems:

Situation Find

Speed uniform, distance

72 cm, time = 12 sec

Speed

b Speed uniform at 60 km/hr Distance traveled in

20 min

c Speed uniform at 36 m/min Time to move 9 m
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sg
d d, =

dj = 1 5 cm
d, = 30 cm

f, =
fj = 5.0 sec

U = ^0 sec

Speed and position at

8.0 sec

e You drive 240 km in 6.0 hr Average speed

f Same as e Speed and position

after 3.0 hr

g Average speed is 76 cm/sec,

computed over a distance

of 418 cm

Time taken

h Average speed is 44 m/sec,

computed over a time

interval of 0.20 sec

Distance moved

5. After the parachute opens, a sky diver falls v\ath

a roughly uniform speed of 12 m/sec. How long docs

it take her to fall 228 m? If she; ('ontinues to fall for

another 25 sec, what is the total distance she lias

fallen?

6. What is your average speed in each of these

cases?

la) Vou run 100 ni at a speed of 5.0 m/sec and then

you walk 100 m at a speed of l.O m/sec.

(b) You run for 100 sec at a speed of 5.0 nx'sec and

then you walk for 100 sec at a speed of 1.0 nVsec.

7. A rabbit and a turtle are practicing for their

race. The rabbit covers a 30-m course in 5 sec; the

turtle coxers the same distance in 120 sec. If the race

is run on a 96-m course;, l)y how many seconds will

the ral)bit beat tiie turtle?

8. A tsunami caused by an earthquake occurring

near Alaska in 1940 consisted of sexeral huge wa\'es

which were found to travel at the average speed of

790 km/hr. The first of the waves reached Hawaii 4

hr 34 min after the eai'thciuake occurred. From these

data, calculate how far the origin of the tsunami was
from Hawaii.

9. Design and describe experiments to enable you
to make estimates of the average speeds for some
of the following objects in motion.

(a) A baseball thrown from the outluild to home
plate

(b) the wiiKJ

(c) a cloud

Id) an ant walking

(e) a camera shutter opening and closing

(f) an eye blinking

(g) a whisker growing

10. Light and radio waves tra\'el through a vacuum
in a straight line at a speed of nearly 3 x uf m/sec.

(a) How long is a "light yeai'" I the distance light

travels in a year)?

(b) The nearest star, Alpha Ccntauri, is 4.0(S x lo"' m
distant from (;arth. If this star po.ss(!sses planets on

which highly int(;lligent beings li\e, how soon, at the

earliest, t;ould we expect to receive a reply after

sending them a radio or light signal strong enough to

be received there?

(c) Sound moves very quickly; it is hard to notice the

time elapsed between when you see somebody say

something and when you hear the sound.

(1) Can you think of situations when you can tell

that sound does not reach you virtually

instantaneously?

(2) Try to d(!sign an e\p(M'iment to measure the

speed of sound.

(3) The measurements made in many experiments

indicate that under ordinary' circumstances the

speed of sound in air is about 330 m/sec ( = 0.33

km/sec). The speed of light is about 300,000 km/
sec. Suppose lightning strikes 1 km away. How
long does it take before you see the flash? How
long before you hear the thunder?

(4) Can you use the known speeds of light and

sound to find the distance to any lightning stroke?

11. 'I\vo cyclists race with nearly uniform speed on

a 500-m course. The blue bic\'cle crosses the finish

line 20 sec ahead of the red bicycle. If the red bicycle

inaintained an average spe(!d of 10 m sec, what was

the average speed of tin; h\uv. bicycle?

12. /\fter starting from rest, a cai- reaches a speed of

30 m/sec in 5 sec. What is its average acceleration?

If the car accelerates at thai rale for an additional 5

sec, what is its final speed?
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13. The foUouing graph represents a jogger mo\dng

with uniform speed who passes posts at 20 ni,

30 m, and 50 m at 4 sec, 6 sec, and 10 sec,

respectively. The jogger's average speed over the

f i"me (sec)

SO

40 -

9 30

u
c

^20

10-
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(a) What is the instantaneous speed at the 10-sec

mark? At the 25-sec mark?

(b) What is the average acceleration hc^lween t = 10

sec and t = 25 sec?

50|-

45 -

40 -

56 -

1

20 '^

I

15 t-

10 -

5 -

O

'2.? sec

fc sec

-I J. ,-L-.,i .11
(O 15 20 i5 ?o ?.^ 4o -<5 50

16. W'orkl's 4UU-m swimming record in miniil(!s and

seconds for men and women:

U)2(i 4:.'j7.() Johnny W'cissmiiller

5:53.2 Gertrude Ederle

WMi 4:46.4 Syozo Makino
5:28.5 HehMie Madison

1946 4:46.4 1 1936 record uni)roken)

5:00.1 H. Hveger

1956 4:33.3 Hironoshin Furuhashi

4:47.2 Lorraine; C'rap|)

1966 4:11.1 Frank Weigand

4:38.0 Miutha Handidl

1976 3:15.9 Brian Goodell

4:09.8 Fetra Thumer

By aljout iiow many meters would Martha Handall

have beaten Johnny WeissmuUer if tliey had been

able to race each other? Could you prcuiict the 1986

records for the 400-m race i)y extrapolating the

graphs of world's records \s. dates up to the year

1986?

17. Using the graph on p. 20, find the instantaneous

speeds v at severjil points (0, 10, 20, 30, 40. and 50

sec, and near 0, or at other points of your choice) by

finding the slopes of lines tangent to the curve at

each of those points. Make a graph of i' \ersus /.

18. Discuss the following quotation from Mark
I\vain s iJJ'r on the Missi.ssiiipi 1 18751 as an example

of e\trapf)lation. "In IIk; space ofOne hundr(<d and

se\'enty-si\ years the Fower Mississippi has

shortened itself two hundred and forty-two miles.

That is an a\ erage of a triflf! over one; mih; and a

third p(M- y(;ai'. Thcrcdbn;. any calm pcM'son, who is

not blind or idiotic, can sv.r that in tlu; old Colitic

Silurian Period, just a million years ago next

November, the Lower Mississippi Biver was upward
of one; million three hundred thousand miles long,

anti stuck out o\er the (iulf of Mexico like; a iishing

rod. And by the same token any person can see that

seven hundred and forty-tvvo years from now the

Lower Mississippi Ki\'er will be only a mile and

three-quarters long, and ("airo and \(n\ Orh^ans will

ha\'e joined their streets together, and be plodding

comfortably along under a single mayor and a

mutuid board of aldermen. There is .something

fascinating about s( ienc(!. (Jne gets such wholesale

returns of conjecture; out of such trifling investment

of fact."

19. Careful analysis of a stroboscopic photograph of

a moving object yielded information that was plotted

on the graph below.

.CO
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(a) At what moment or interval was the speed

greatest? What was the speed at that time?

(b) At what moment or in which interval was the

speed least? What was it at that time?

(c) What was the speed at time t = 5.0 sec?

(d) What was the speed at time t = 0.5 sec?

(e) How far did the object move from time t = 7.0

sec to f = 9.5 sec?

20. A band of pioneers left St. Louis in their wagon
train. They traveled at a good rate for the first 2.5

weeks lAB), but slowed down as the initial excitement

wore off (BO. Then they picked up speed for a week
(CD) and really raced through dangerous country

(DE). They rested at a watering hole (EFI and finally

moved on (FG).

(a) By observing the graph, determine which intenal

was covered fastest; slowest.

(b) According to the information given, which

interval does not look as if it were drawn correctly?

What should it look like?

(c) Find the average speed over the whole trip.

(d) V\/hat are the instantaneous speeds at points P

and Q?

time (weeks)

ai. The data below show the instantaneous speeds

in a test run of a car starting from rest. Plot the

speed-time grapli, then derive data from it and plot

the acceleration-time graph.

(a) What is the speed at t = 2.5 sec?

(b) What is the maximum acceleration?

Time
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Free Fall

Galileo Describes lUlotion

A sketch of a medieval
world-svstem. SG 1

The Aristotelian theori' of motion
Galileo and his times

Galileo's Tit'o IVtnr Sciences

^^lA\ stufh' the motion ol' freeh- falling bodies?
Galileo chooses a definition of uniform acceleration

Galileo cannot test his Inpothesis directh-

Lookin^ for lo^ciil consequences of Galileo's hypothesis
Galileo tiu'ns to an indirect test

Doubts about Galileo's procedure

2.1

2J3

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10 Consequences of G<dileo\s itork on motion

2«1
I

The Aristotelian theori' of motion

In this chapter you will follow the de\elopnient ot an important

piece of basic research: Galileo's study of freely falling bodies.

The phenomenon of free fall is interesting in itself. But the

emphasis will be on the way Galileo, one of the fiist modern
scientists, presented his argument. His view of the world, way of

thinking, use of mathematics, and reliance upon experimental

te.xts set the style for modern science. These aspects of his work,

therefore, are as important as the actual results of his

inxestigation.

I'o understand the natuie and impoitancc of Galileo s work,

you must first examine the previous system of physical thought
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which his ideas eventually replaced. Medieval physical science,

as Galileo learned it at the University of Pisa, made a sharp

distinction between objects on the earth and those in the sky. All

terrestrial matter, matter on or near the earth, was believed to

contain a mixture of four "elements": Earth, Water, Air, and Fire.

These elements were not thought of as identical with the natural

materials for which they were named. Ordinary water, for

example, was thought to be a mixture of all four elements, but

mostly the ideal element Water. Each of the four elements was

thought to have a natural place in the terrestrial region. The

highest place was allotted to Fire. Beneath Fire was Air, then

Water, and finally, in the lowest position, Earth. Each was

thought to seek its own place. Thus, Fire, if placed below its

natural position, would tend to rise through Air. Similarly, Air

would tend to rise through Water, whereas Earth would tend to

fall through both Air and Water. The movement of any real object

depended on its particular mixture of these four elements and

on where it was in relation to the natural places of these

elements. When water boiled, for example, the element Water

would be joined by the element Fire, whose higher natural place

would cause the mixture to rise as steam. A stone, on the other

hand, was composed mainly of the element Earth. Therefore, a

stone would fall when released and would pass through Fire, Air,

and Water until it came to rest on the ground, its natural place.

Medieval thinkers also believed that stars, planets, and other

celestial (heavenly) bodies differed in composition and behavior

from objects on or near the earth. Celestial bodies were believed

to contain none of the four ordinaiy elements, but to consist

solely of a fifth element, the quintessence. The difference in

composition required a different physics. Thus, the natural

motion of celestial objects was thought to be neither rising nor

falling, but an endless revoking in circles around the center of

the universe. That center was considered to be identical with the

center of the earth. Heavenly bodies, although moving, were at

all times in their natural places. In this way, heavenly bodies

A good deal of common-sense ex-

perience supports this natviral-place

view. See SG 2.

From quinta essentia, meaning fifth

(quint) element [essence). In earlier

Greek writings the term for it was
aether (also written ether).

This painting, entitled "School of
Athens,' was done by Raphael in

the beginning of the sixteenth cen-

tury. It reflects a central aspect

of the Renaissance, the rebirth of
interest in classical Greek culture.

The central figures are Plato (on

the left, pointing to the heavens!

and Aristotle (pointing to the

ground).
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differed from terrestrial objects, which displayed natural iiiolion

only as they returned to their naliuai places fioni wliich tlic^y

had been displaced.

This theoiy, so widely held in Galileo's time, had (jriginatcHJ

almost 2,000 years before, in the fouilh centiA I5 c it is stated

clearly in the writings of the dreek philosopher .AristotUv iSee the

time chart on the opposite jJagei This phxsical science, built on

notions of cause, order, class, place, and purpose, seemed to fit

well with many exeiyday obsenations. Moieo\ei-, these ideas

about matter" and motion were part of an all-embracing unixersal

scheme, or cosmology. In this cosmology, Aristotle sought to

relate ideas which today are discussed separateK' under su("h

headings as science, poetiy, politics, ethics, and theolog\'.

Not very much is known of Aristotle's physical appearance or

life. It is thought that he was born in 384 H c: in the Greek

province of Macedonia. His father was the physician to the King

of Macedonia, so Aristotle's early childhood was spent in an

environment of court life. He studied in Athens with Plato and

later returned to Macedonia to become the pri\ate tutor to

Alexander the Great. In 335 B.C., Aristotle came back to Athens

and founded the Lyceum, a school and center of research.

After the decline of the ancient Greek civilization, Aristotle's

waitings remained almost unknown in VVestei'n Europe for 1,500

years. They were rediscovered in the thirteenth centuiy a.d. and

soon began to shape the thinking of Christian scholars and

theologians. Aristotle became such a dominant influence in the

late Middle Ages that he was refeired to simply as "The

Philosopher.

"

Unfortunately, Aristotle's physical theories had serious

limitations. (This does not, of course, detract from his great

achievements in other fields.) Accoixling to Aristotle, the fall of a

heavy object toward the center of the eaith is an example of

"natural " motion. He evidently thought that any object, after

release, quickly reaches some final speed of fall which it

maintains to the end of its path. What factors determine" th(! final

speed of a falling object? It is a common obseivation that a rock

falls faster than a leaf. Therefore, Aristotle reasoiK^l, weight is a

factor that governs the speed of fall. This fitted in vxell with his

idea that the cause of weight was the presence of the element

Earth, whose natural motion was to the center of the earth.

Thus, a heavier object, ha\ing a greater content of llaith, has a

stronger tendency to fall to its natural place. In turn, this

. stronger tendency creates a greater speed of falling.

Aristotle: Rate of fall is proportional I'he same object falls more slowly in v\ater than in air, so
to weight divided by resistance. Aristotle reasoned that the resistance of the medium must also

affect motion. Other factor's, such as the color* or- teiii|)(Miitur(! of

the falling object, also might change the rate of tall. Ikil Aristotle

de( id(Hl that such influences could not be im[i()r1aiit lie
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John Philoponus: Rate of fall is pro-

portional to weight minus resis-

tance.

SG 3

Qjualitativc refers to quality—the

sort of thing that happens. Ouan-
titHtivc refers to quantity—the
measurement or prediction of nu-

mcrinil \alues. Tliis distinction w ill

be made often in the course.

concludeci tiial the rate ol fall must increase in jjroportion to the

weight of the object and decrease in proportion to the resisting

force of the medium. The actual late of fall in any [particular case

would he found bv dixiding the weight by the resistance.

Aristotle also discussed "violent" motion, that is, an\' motion of

an object othei- than going fieely towaicl its 'natuial place." Such

motion, he argued, must always be caused by nforcc, and the

speed of the motion must increase as the force increases. When
the force is remoxed, the motion must stop. This theoiy agrees

with common experience, for example, in pushing a chair oi" a

table across the floor-. It does not woik ciuite so well for objects

thrown thiough the air, since they keep moving for a v\'hile even

aftei' you have stopped exerting a force on them. To explain this

kind of motion, Aristotle pi^oposed that the aii' itself somehow
exerts a force that keeps the object mo\ ing.

Later scientists suggested certain changes in Aristotle s theoiy

of motion. For example, in the fifth centuiy A.u. John Philoponus

of Alexandria argued that the s|)eed of an object in natural

motion should be found by subtractinu, the resistance of the

medium fiom the weight of the object. (Aristotle, you recall,

recommended dividing by the resistant'e.i Philoponus claimed

that his expeiimental work supported his theoiy, though he did

not report the details. He simply said that he dropped two

weights, one twice as hea\y as the other, and obsent^d that the

heavy one did not reach the ground in half the time taken by the

light one.

There were still other difficulties with Aristotle's theoiy of

motion. However, the knowledge that his teachings had faults

did little to lessen their influence in the universities of France

and Italy during the fifteenth and sixteenth centuries and during

Galileo's lifetime. Aristotle's theoiy of motion did, after all, fit

much of ordinaiy experience in a general, if qualitative, way.

Besides, the study of motion through space was of great interest

to only a few scholars, just as it hail been only a ven' small part

of Aristotle's own work.

I\vo other influences stood in the way of major changes in the

theoiy of motion. First, Aristotle beliexed that mathematics was

of littl(! \ aku! in describing terrestrial jjhenomena. Setxjnd, he put

great emphasis upon direct, qualitative observation as the basis

for forming theories. Simple qualitative obsenation was veiy

useful in Aristotle's biological studies. But as it turned out, real

progress in physics began only when scientists recognized the

value of mathematical prediction and detailed measurement.

A number of scholars in the fifteenth and sixteenth centuries

took part in this change to a new way of approaching science.

But of all these, Galileo was by far the best known and most

successful. He showed how to describ(> mathcmaticalK the

motions of simi^le, ordinaiy objects, such as falling stomas and
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balls rolling on an incline. Galileo's work paved the way for othei'

scholars to describe and explain the motion of eveiything from

pebbles to planets. It also began the intellectual revolution that

led to what is now considered modern science.

# 1. Which of the following properties do you believe might

affect the rate offall of an object: color, shape, size, or weight':'

How could vou determine ifyour answers are correct?

2. Describe two ways in which, according to the Aristotelian

view, terrestrial and celestial bodies differ from each other.

3. Which of these statements would be accepted in the

fifteenth and si;<teenth centuries by persons who believed in

the Aristotelian system of thought?

(a) Ideas of motion should fit in with poetry, politics, theology,

and other aspects ofhuman thought and activity.

(bj Heaxy objects fall faster than light ones.

(c) E}icept for motion toward their natural location, objects

will not move unless acted on violently by a force.

(d) Mathematics and precise measurement are especially

important in developing a useful theory of motion.

2»2
I

Galileo and his times

Galileo Galilei was born in Pisa in 1564, the year of

Michelangelo's death and Shakespeaie's birth. Galileo was the

son of a noble family from Florence, and he acquired his father's

active interest in poetiy, music, and the classics. His scientific

inventiveness also began to show itself early. For example, as a

young medical student, he constiTicted a simple pendulum-t>q3e

timing device for the accurate measurement of pulse rates.

After reading the classical Greek philosopher-scientists Euclid

and Archimedes, Galileo changed his interest from medicine to

physical science. He quickly became known for his unusual

scientific ability. At the age of 26, he was appointed Professor of

Mathematics at Pisa. There he showed an independence of spirit

unmellowed by tact or patience. Soon after his appointment, he

began to challenge the opinions of older professors, many of

whom became his enemies. He left Pisa before his term was
completed, appai'ently forced out by financial difficulties and by

his enraged opponents. Later, at Padua in the Republic of Venice,

Galileo began his work in astronomy. He supported the belief

that the earth moves around the sun. This belief brought him
additional enemies, but it also brought him immoital fame. That

part of his work will be covered in L'nit 2.

AUSTIfIA

h/UM&ftRY

mitfCdWSfCA

Ki^&DOIfi OF

SARDINIA

KIN'^&OIA OF SICILY

Italv about 1600.
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A generous offer of the Grand Duke drew Galileo back to his

native province of luscanv in 1610. He became Couit

Mathematician and Philosopher, a title which he chose himself.

From then until his death at 78, despite illness, family troubles,

occasional poverty, and quarrels with his enemies, Galileo

continued his research, teaching, and writing.

2*3
I

Galileo's Ttvo JVcw Sciences

Mechanics is the study of the behavdoi- of mattei' under the

influence of forces. Galileo's early writings on this subject follow

the standard medieval theories of physics, although he was

aware of some of the shortcomings of those theories. Duiing his

mature years his chief interest was in astronomy. However, his

important astronomical book Dialogue on the Two Great World

Systems (16321 was condemned by the hiquisition. Forbidden to

teach the "new" astronomy, Galileo decided to concentrate again

on mechanics. This woik led to his book Discourses and

Mathematical Demonstrations Concening l\vo New Sciences

Pertaining to Mechanics and Local \4otion (1638), usually referied

to as Two New Sciences. This book signaled the beginning of the

end of the medieval theoiy of mechanics and of the entire

Aristotelian cosmology.

Galileo was old, sick, and nearly blind at the time he u^rote

Two New Sciences. Yet, as in all his writings, his style is lively

and delightful. As he had in the l\vo Great World Systems, he

presented his ideas in the form of a conversation among three

speakers: Simplicio competently represents the Aristotelian vdew;

Salviati presents the new views of Galileo; and Sagredo is a man
of good will and open mind, eagei' to learn. Eventually, of course,

Salviati leads his companions to Galileo's views. Listen to

Galileo's three speakers as they discuss the problem of free fall:

Salviati: I greatly doubt tliat /Xiistotle ever tested by experiment

whether it is true that two stones, one weighing ten times as

muc:h as the other, if allowed to fall at the same instant from a

height of, say, 100 cubits, would so differ in speed that when
the heavier had reached the ground, the other would not have

fallen more than 10 culiits. |A "(-libit" is about 50 cm.]

Simplicio: His language would indicate tliat he had tried the

experiment, because he says: We see the heavier; now the woixl

see shows that he had made the experiment.

Sagredo: But, I, Simplicio, who hiwe made the test can assure

you that a cannon ball weighing one or two hundred pounds,

or even more, will not reach the ground by as much as a span

I hand-breadth) ahead of a musket ball weighing only half a

pound, provided both are diopped from a height of 200 cubits.

Frontispiece of the book Dialogue

on Two Great World Systems
(163ZI.

D I S C O R S I

DIMOSTRAZIONI
MATEMATICHE,

intorno a due nuoue fcicnz^e

Attcncnti alia

MeCANICA & i MOVIMENTI LOCALI,

delSignor

GALILEO GALILEI LINCEO,
Filolotoc M.itcniaticoprimariodcISercnilTimo

Grand Ducadi Tofcana.

Conx'na Apfendue ielcentro dignmti i'iUumSoltii

IN L E I D A,

AjiprcflTo gli Elfcvirii. .m. d. c. ,\x.vvni.

Title page of Discourses and Math-
ematical Demonstrations Concern-
ing two New Sciences Pertaining

to Mechanics and Local Motion
I1G3SI.
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Here, perhaps, one iniglit expeet a detailed repoit on an

experiment done by Galileo or one of his students. Instead,

Galileo uses a "thought exptMinient, " that is, an analysis ot what

would happen in an imaginaiy experiment, to cast doubt on

Aristotle's theoiv of motion:

delGaliieo. if

ytcm Ktafifirthtt it men , U fofn ica Jel Vtrui tjfuluH menic

f'f'if uti "> reUiictc it mule , aca vien Jtihmu , mii per dire

quel the fer 4ii»e»liirt felrehhtr rifpondere ifiitgU mlichi , teiii

meeliojifer^A^fiitinle eeaeUdj U dtmeUnziene d' AriiteleU^mi

Per (befifttrehhe uider eenire i i^li ejfuali di (fuell" , aef^ende^li

tmendut. £ qteale elfrim^ie ^rmdemenle dmhiu, the AnSle-

teU ntitf^ertmenteffe mei tjumlejii vere , (he due fitlre vnt fi»

peue dtit alire ditti velie Ufcitte nel medefime initenie teder

Jiim eliezziyV. ^r. di tenle hreciit fuffer lelmenle differenii

welle ler veleiiu , i)>e tit erriiit dtSi mtf^ier in terre Cellreflirt-

mtffe Hen htuert meeneefrfe died hreccit^

Simp. Si vede fare diUefieferele,! h' ei meflri tthiuerle/he-

rimeuiele,fercheeidiie: le^giameilfiii greue: her tjuel vederji

ettennt thxnemefiiilt tefperien':^.

Sa-.'r. hliieS Simp, the n'he/iiie U prene,vi efpcure, rhe in^i

telle eterlielterie » the prfttenie , du^ente , e Anteftii lihbre^ nun

eniitiberedt vntelmofoUmenle^errtuoin lerrt detlepetle dun

mefiheiie , the nefefi vne mez,ze , venende entt deli' ellez z,e di

dueente hrettie,

Salu. Mifint.' elire ejfitrien'!^ien hreue ,e etntludenle dime-

firezienefejpeme ehiiremeniepreuere nen effer lere.ihevn me-

tile pill greHefmueui piii veletemente duo eliro men grene , in-

tendende di mohili dell" iHe(fe meterle i (^ infumme di ijuelli de i

quell perle Jriileiele. Pert diiemi S. Simpfe vei emmetlete,(he

dl liefthedane tcrpo ^rtue tedenlefie vne de nelure determinete

veUeile \fiehe I iiirefcer^lieli ,edjminuirglieUnonfi pejjefe non

(en vfirgli vitiUnze, i eppergli ijuelihe impedimenle.

Simp. SenfpuidutilaTe, the riilejfo mobile neW isleffomez-

£# hehhie vne (letutte , e de nelure dttermtmte velettti, le t^ue-

U ni,n fr fji ptffe eetrefcere ft nen ten nuouo impiio tonferin.

^Im , e eiminuirglielefilue the eon quelthc imptdimenle the In ri-

lerdi.

Silu. ^iiend* dumqutnei heuejfme due mehili, le neiureli

A page from the original Italian

edition o/Two New Sciences,

showing statements that are trans-

lated in this te;<.t.

SaKiati: But, even without tuither ex[5eiiriK'iit, it is po.s.siblc to

prove cleai'ly, by means of a short and concliisi\(^ argument,

that a heavier body does not move more rapidly than a lighter-

one provided both bodies ar-e of the same material and in short

such as those mentioned bv Aristotle. But tell me, Simplicio,

whether- you admit that each falling bodv ac-cjuires a d(!finite

speed fixed by naturae, a velocity which cannot be incr-eased or-

diminished except by the use of violence or- r-esistance?

Simplicio: There can be no doubt but that one and the same
body moving in a single medium has a fixed velocity which is

determined by nature and which cannot be incr-(?ased except by

the addition of impetus or- diminished except by some
r-esistance which retai-ds it.

Salviati: If then we take two bodies whose natirral speeds are

different, it is clear that on uniting the two, the more rapid one

will be par-tly r-etarded by the slower, and the slower- will be

somewhat hastened by the swifter-. Do you not agree with me
in this opinion?

Simplicio: You ar-e unquestionably right.

Salviati: But if this is true, and if a lar-ge stone moves with a

speed of say, eight, while a smaller- moves with a speed of four-,

then when they are united, the system will move with a speed

less than eight; but the two stones when tied together make
a stone larger than that which before moved with a speed of

eight. Hence the heavier- body moves with less s|jeed than the

lighter one; an effect which is contrary to your- sirpposition.

Thus you see how, from your assumption that the heavier' body

moves more rapidly than the lighter- one, I infer- that the heavier-

bodv moves more slowly.

SG
Simplicio: I am all at sea.

compr-ehension. . .

.

. This is, indeed, quite beyond my

Simplicio r'eti^eats in confusion when Salviati shows that the

Aristotelian theory of fall contradicts itself. But while Simplicio

cannot refute Galileo's logic, his own eyes tell him that a heavy

object does fall faster than a light object:

Simplicio: V'our- discirssion is reallv admirable; vet I do not find

it easy to believe that a birdshot falls as swiftiv as a cannon ball.

Salviati: Why not say a grain of sand as rapidiv as a giindslone?

But, Simplicio, I trnjst you will not follow the example of many
other's who divert the discussion fr-om its main intent and

hasten upon some statement of mine that lacks a haiisbi-cadth
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of the truth, and under this hair hide the fault of another that

is as big as a ship's cable. Aristotle says that "an iron biiU of one

hundred pounds falling from a height of 100 cubits reaches the

ground before a one-pound ball has fallen a single cubit." I say

that they arrive at the same time. You tind, on making the

experiment, that the larger outstrips the smaller by two

fingerbreadths. . . . Now you would not hide behind these two

fingers the 99 cubits of Aristotle, nor would you mention my
small error and at the same time pass over in silence his veiy

large one.

This is a clear statement of an important principle: Even in

careful observation of a common natui^al event, a very minor

effect may distract the obseiver's attention. As a i^esult, a much
more important regularity niay be overlooked. Different bodies

falling in air from the same height, it is true, may not reach the

ground at exactly the same time. However, the important point is

not that the times of arrival are slightly different, but that they

are very nearly the samel Galileo regarded the failure of the

bodies to arrive at exactly the same time as a minor effect which

could be explained with a better understanding of motion in free

fall. He himself correctly attributed the observed results to

differences in the effect of air resistance on bodies of different

size and weight. A few years after his death, the invention of the

vacuum pump allowed others to show that Galileo was right. \n

one experiment, for example, a feather and a heavy gold coin

were di^opped from the same height at the same time inside a

container pumped almost empty of air. With the effect of air

resistance eliminated, the different bodies fell at the same rate

and struck the bottom of the container at the same instant. Long

after Galileo, scientists learned how to express the laws of air

resistance in mathematical form. With this knowledge, one can

understand exactly why and by how much a light object vvdll fall

more slowly than a heavier one.

Learning what to ignore has been almost as important in the

growth of science as learning what to take into account. In the

case of falling bodies, Galileo's explanation depended on his

being able to imagine how an object would fall if there were no

air resistance. His explanation seems simple today, when we
know about vacuum pumps. But in Galileo's time it was difficult

to accept. For most people, as for Aristotle, common sense said

that air resistance is always present in nature. Thus, a feather

and a coin could never fall at the same rate. Why talk about

motions in a vacuum, when a vacuum could not be shovvai to

exist? Physics, said Aristotle and his followers, should deal with

the world all around us that we can readily obseive. It should

not bother with imaginaiy situations which might never be seen

or which, like the vacuum, were considered impossible.

Aristotle's physics had dominated Europe since the thirteenth

centuiT. To manv scientists, it seemed to offer the most

A stroboscopic photograph of two

freely falling balls of unequal
weight. The picture shows the last

part of the total path. The balls had
been released simultaneously. The
time interval between images is

0.03 sec.

The phrase "ft^ee fall' as now used
in physics generally refers to fall

when the only force acting is grav-

ity, that is, when air friction is neg-

ligible.

One of the arguments against the

existence of a vacuum was deduced
from Aristotle's theory as follows:

If the final speed of faU is propor-
tional to the weight divided by the

resistance, then, since the resis-

tance in an assumed vacuum would
be zero, the final speed of fall of all

bodies must be infinite in a vac-

uum. But such a result was re-

garded as absurd, so the assump-
tion of a vacuum was believed to

have Ijcen showai to be impossible.
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reasonable method for describing natni ai phenomena. 1 o

overthrow such a finnly established doctrine required much
more than writing reasonable arguments. It e\en letiuircxi more

than clear experimental pioot, such as dicjpping hea\A and light

objects fiom a tall building. (Galileo is often said to have done

this from th(; top of the Leaning Tower of Pisa, but probably did

not.) It demanded Galileos unusual coml)ination of mathematical

talent, experimental skill, literaiy stv'le, and tireless campaigning

to disciedit Aristotle's theoiies and thus to begin the era of

modern physics.

Portrait of Galileo by Ottavio Leoni,

a contemporary of Galileo.

4. If a nail and a toothpick are dropped at the same time from

the same height, they do not reach the ground at eyactly the

same instant. (Try it with these or similar objects.) How would

Aristotelian theory csplain this? What was Galileo's

esplanation/

5. A paper bag containing a rock is dropped from a window.

Using Aristotle s theory, eyplain whv the bag aiui the rock

together fall slower than the rock would fall by itself, i'se the

same theory to e.xplain why the two together fall faster than

the rock alone.

"Aristotelian cosmology" refers to

the whole interlocking set of ideas

about tbe structure of tlie pliysical

iini\erse and th(! Ijebaxior of all tbe

objects in it. This was t)rie(ly men-
tioned in Sec. 2.1. Other aspects of

it will be presented in I nit 2.

In fact, more than mere "superti-

cial obsenations" iiad been made
long before (ialileo set to work. For
example, \icoIas Oresme and oth-

ers at the Uni\'ersity of Paris had l)y

1330 discovered a distance-time re-

lationship similar to that which
(ialileo was to announce for falling

bodies in two \cu Sciences. Some
of their reasoning is discussed in

SCi 7. It is, howe\'er, questional)ie

how much of this prior work influ-

enced (ialileo in d(!tail, rather tlian

just in spirit.

2.4 Uliv studi' the motion of freelv
falling bodies?

In Galileo's attack on the Aristotelian cosmologx , lew details were

actually new. Howexer, Galileo's approach and his findings

together provided the first woi'kable presentation of the science

of motion. Galileo realized that understanding free-fall motion

is the key to understanding all obsenable motions of all bodies

in nature. To know which was the ke\' phenomenon to study was

a gift of genius. But in many ways Galileo simply worked as do

scientists in general. His approach to the problem of motion

makes a good "case" to follow as an introduc^tion to stiategies of

incjuiiy that are still used in science.

Sexeral reasons for studying in detail Galileo's attack on the

problem of free fall ha\'e been mentioned. Galileo himself

recognized another reason: The study of motion which he

proposed was only the starting phase of a mightv field of

discoxeiy.

My purpose is to set forth a very new science dealing with a

\eiA' ancient subject. Ther'e is, in nature, per'haps nothing okler

than motion, concerning vvhit'b tiie hooks written h\'

pliilosophers are neither- few nor' small ; nevertheless, I have

ciiscovered some properti(\s of it that arc worth know ing that

have not hitherto bv,o,w either- oiisiM-vcd oi' denionstiated. Some
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supeiiicial observations have been made, as tor instance, that

the natural motion of a heavo' falling bodv is continuously

accelerated; but to just what extent this acceleration occurs has

not yet been announced. . .

.

Other facts, not few in number or less worth knowing 1 have

succeeded in proving; and, what I consider more important,

there have been opened up to this vast and most excellent

science, of which my work is merely the beginning, ways and
means by which other minds more acute than mine vvdll

explore its remote corners.

2»S
I

Galileo chooses a definition of uniform
acceleration

Two New Sciences deals directly with the motion of freely falling

bodies. In studying the following paragraphs from this work, you
must be alert to Galileo s overall plan. First he discusses the

mathematics of a possible, simple type of motion. (This motion is

now called uniform acceleration or constant acceleration.) Then
he proposes that heaw bodies actually fall v\dth just this kind of

motion. Next, on the basis of this pioposal, he makes certain

predictions about balls rolling down an incline. Finally, he shows
that experiments bear out these predictions.

The first part of Galileos presentation is a thorough discussion

of motion with uniform speed, similar to the discussion in

Chapter 1. This leads to the second part, where Salviati, one of

Galileo's characters, says:

When, therefore, I obseive a stone initially at rest falling fi^om

an elevated position and continually acquiring new increments

of speed, why should I not believe that such increases take

place in a manner which is exceedingly simple and rather

obvious to eveiybody? If now we examine the matter caiefully

we find no addition or increment more simple than that which
repeats itself always in the same manner. This we readily

understand when we consider the intimate relationship

between time and motion; for just as uniformity of motion is

defined by and conceived through equal times and equal

spaces (thus we call a motion uniform when equal distances

are traversed during equal time-intervals), so also we may, in a

similar manner, through equal time-intervals, conceive

additions of speed as taking place without (-omplication. . .

.

Hence the definition of motion which we are about to

discuss may be stated as follows:

A motion is said to be unifonnaly accelerated when, starting

from rest, it acquires during equal tinie-inten'als, equal

increments of speed.

Sagredo then questions whether Galileo's arbitrary definition of

acceleration actually corresponds to the way objects fall. Is

It will help you to have a plan
clearly in mind as you progress
through the I'est of this chapter. As

you study each succeeding section,

ask yourself whether Galileo is

presenting a definition

stating an assumption (or

hyi3othesis)

deducing predictions from his

hypothesis

experimentally testing the pre-

dictions

This is sometimes known as the
rule of j3ai\simony: Unless forced to

do otherwise, assume the simplest

possible hv]30thesis to explain nat-

ural events.

We can rephi'ase Galileo's defini-

tions, using the symbols from
Chapter 1, as follows: for uniform
motion, the r^atio i\d/At is constant;

for unifoi'mly accelerated motion,

the ratio Av/Af is constant. These
definitions are equivalent to those

given in Sees. 1.3 and 1.8. Other
ways of describing uniform accel-

eration are discussed in SG 8 and
9.
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Here Sahiati refers to the Aristote-

lian assumption that air propels an
object moving through it I see Sec.

2.1).

acceleration, as defined, really useful in desciibing their obseiAed

change ot motion? Sagredo wonders about a turther point, so tar

not laised by Galileo:

From these considerations perhaps we can oi)tain an answer to

a question that has been argued b\' philospheis, namely, whal

is the cmise of the natural motion of hea\y bodies. . .

.

But Salviati, the spokesman of Galileo, rejects the ancient

tendency to investigate phenomena by looking first for their

causes. As we would today, Sahiati says it is pointless to ask

about the cause of any motion until an accurate description of it

exists:

Sal\dati: The present does not seem [o be tlie proper lime to

investigate the cause of the acceleration of natural motion

concerning which various opinions have been expressed by

philosophers, some explaining it by attraction to the center,

others b\' repulsion b(M\\een the \'eiy small parts of the body,

while still others attribute it to a certain stress in the

surrounding medium which closes in behind the falling body

and drives it from one of its positions to another. Now, all these

fantasies, and others, too, ought to be examined; but it is not

reiilly worth while. At present it is the puipose of our Author

merely to investigate and to demonstrate some of the properties

of accelerated motion, whatever the cause of this acceleration

may be.

Galileo has now introduced two distinct piopositions: 111

"uniform" acceleration means that equal increases of speed Av

occur in equal time intervals At; and (2) things actually fcdl that

way.

First look more closely at Galileo's proposed definition. Is this

the only possible way of defining uniform acceleration? Not at

all! Galileo says that at one time he thought it would be more

useful to define uniform acceleration in terms of speed increase

in proportion to distance traveled Ad, rather than to time Af.

Notice that both definitions met (ialileo's re(|uirement of

simplicity. (In fact, both delinilions had been discussed since

eaily in the fourteenth centuiy.) Furtheimoi^, both definitions

seem to match the common sense idea of acceleiation. To say

that a body is "accelerating" seems to imply "the farther it goes,

the faster it goes " as well as "the longer time it goes, the faster

it goes." How should we choose between these two ways of

putting it? Which definition wall be more useftil in describing

nature?

This is where expeiimentation becomes important. Galileo

chose to define unifoi'm ac(;eleration as the motion in \\ hich the

change in speed Av is proportional to elapsed time It. He then

demonstrated that his definition matches the real behavior of

mcning bodi(;s, in laboiatoix' situations as well as in ordinaix
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"un-arranged" experience. As you will see later, he made the

right choice. But he was not able to prove his case by direct or

obvious means, as you will also see.

• 6. Describe uniform speed without referring to dry-ice disks

and strobe photography or to any particular object or

technique of measurement.

7. Express Galileo's definition of uniformly accelerated motion

in words and in the form ofan equation.

8. Use Galileo's definition of acceleration to calculate the

acceleration of a car that speeds up from 22 m/sec to 32 m/
sec in 5 sec. At this same acceleration, how much more time

would the car take to reach 40 m/sec?

9. What two conditions did Galileo want his definition of
uniform acceleration to meet?

2*G
I

Galileo cannot test his hypothesis directly

After Galileo defined uniform acceleration in terms that matched
the way he believed freely falling objects behaved, his next task

was to show that his definition actually was useful for describing

observed motions.

Suppose you drop a heavy object from several different

heights, for example, from udndows on different floors of a

building. You want to check whether the final speed increases in

proportion to the time the object falls; that is, you want to know The symbol « means "directly pro-

whether Av ^ At or, in other words, whether Av/Af is constant. In portional to/' or "changes with.

"

each trial you must observe the time of fall and the speed just

before the object strikes the ground. This presents a problem.
Even with modern instruments, it would be very difficult to make
a direct measurement of the speed reached by an object just

before striking the ground. Furthemiore, the entire time intervals

of fall (less than 3 sec from the top of a 10-story building) is

shorter than Galileo could have measured accurately udth the

clocks available to him. So a direct test of whether Av/Af is

constant was not possible for Galileo.

• 10. Which of these statements accurately explains why Galileo

could not test directly whether or not the final speed reached

by a freely falling object is proportional to the time of fall?

(a) His definition was wrong.

(b) He could not measure the speed attained by an object just

before it hit the ground. SG 10
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(c) He could not incusurc limes iiccurutcly ciiouu^h.

(d) He could not measure distances accurately enough.

(e) Esperinientation was not f)rin\itU'd in Italy.

More generally, the average speed
would be

V + V

Galileo used a geometrical argu-
ment. /Vlgebra was not used until

more tlian 100 vears later.

2*7
I

Looking for logical consequences of
Galileo's hipothesis

Galileo's inability to make direct measurements to test his

hypothesis that Av/Af is constant in free fall did not stop him. He
turned to mathematics to derive from this hspothesis some other

i^lationship that could be checked by measurements with

equipment available to him. You will see that in a few steps he

came much closer to a relationship he c:ould use to check his

hypothesis.

Large distances and large time intervals are, of coui-se, easier to

measure than the veiy small \ alues of Ac/ and It needed to find

the final speed just before a falling body hits. So Galileo tried to

determine, by reasoning, how total distance of fall would

increase with total time of fall if objects did fall with unifomi

acceleration. You already know how to find the total distance

from total time for motion at constant speed. Now you can derive

a new equation that relates total distance of fall to total time of

fall for motion at constant acceleration. In doing so, you will not

follow Galileo's own calculations exactly, but the results will be

the same. First, recall the definition of average speed as the

distance traveled Ad dixided by the elapsed time Af:

V,. =
Ad

^t

From this general definition you can compute the average speed

from measurement of Ad and A/, whethei- Ad and A/ are small

or large. You can rewrite the equation as

Ad = X At

This equation, really a definition of v_^^, is always tnje. For the

special case of motion at a constant speed v, v^^ — v, and

therefore, Ad = v x At. Suppose the \alue of v is known, for

example, w hen a car is driven with a steady reading of 96 km/hr

on the speedometer. Then you can use this equation to figure

out how far (Ad) the car would go in any given time interval {At}.

But in the case of unifomily accelerated motion the speed is

continually changing, rheiefore, what xalue can you use for v^^?

The answer involves just a bit of algebra and some reasonable

assumptions. Galileo reasoned (as others had before him) that

for any quantit\' that changes unifonnly, the average value is just

half\vay between the beginning value and the final value. For

uniformly accelerated motion starling ftom r-est, v.,,-,.,, = 0. Thus,
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the rule tells you that the average speed is halfway between
and Vp^^,; that is, v^^ = ^/^v^,,^,. If this reasoning is correct, it follows

that

1
Ad = -v« ,

X Af
2

final

for uniformly accelerated motion startingfrom rest.

This relation could not be tested directly either, because the

equation still contains a speed factor. What is needed is an SG 11, 12

equation relating total distance and total time, without any need
to measure speed.

Now look at Galileo's definition of uniform acceleration: a —

Av/Af. You can rewrite this relationship in the form Av = a x Af.

The value of Av is just v^^^^, -v.^^^^.^^, and v^,,,^^, = for motion that

begins from rest. Therefore, you can write

Av = a X Af

V'Hnal - ^.nmal = 3 X Af

v«„ai -^ a X Af

Now you can substitute this expression for v^^^, into the

equation for Ad above. Thus, //the motion starts from rest and if

it is uniformly accelerated (and //the average rule is correct; as

you have assumed), you can write

Ad



Galileo reached the same conclusion, though he did not use

algebraic forms to express it. Since you are dealing only with the

special situation in which acceleration a is constant, the quantity

Vza is constant also. Therefore, you can write the conclusion in

the form of a proportion: In uniform acceleration from rest, the

distance traveled is proportional to the square of the time

elapsed, or

^ t:

For example; if a uniformly accelerating car starting fi^om rest

moves 10 m in the first second, in twice the time it would move
four times as far, or 40 m during the first two seconds. In the

first three seconds it would move nine times as far, or 90 m.
Another way to express this relation is to say that the ratio

^finai to f^,,,, has a constant value, that is.

Because we will use the expression

'^nna/^inai rnaHV times, it is simpler to

write it as d/t\ It is understood that

d and t mean total distance and
time inter\'al of motion, starting

from rest.

Physics texts must be read with
pencil in hand. Go oxer each step

in this section, starting with the
definition of average speed. Make
a list of each simplifying assump-
tion and each new definition used
in the text.

= constant

This equation is a logical result of Galileo's original proposal for

defining uniform acceleration. This result can be expressed as

follows: If an object accelerates uniformly from rest the ratio d/t^

should be constant. Conversely, any motion for which this ratio

of d and r is constant for different distances and their

corresponding times is a case of uniform acceleration as defined

by Galileo.

Of course, you still must test the hypothesis that freely falling

bodies actually do exhibit just such motion. You know that you
cannot test directly whether Av/Af has a constant value. But a

constant value of Av/At means there will be a constant ratio of

to f^ ,. The values for total time and distance of fall d^
,final final
are

easier to measure than are the values for short intervals Ad and

At needed to find Av. However, even measuring the total time of

fall presented a difficult task in Galileo's time. So, instead of a

direct test of his hypothesis, Galileo went one step further and

deduced a clever indirect test.

52

% 11. Why was it more reasonable for Galileo to use the

1 .

equation d = - aV for testing his hypothesis thai} to use a =

Av/At.^

12. Ifyou simply combined the two equations A = \'At and Av
= aAt, it looks as ifyou might get the results Ad = aAt~. What

is wrong with doing this':*
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Galileo turns to an indirect test

Realizing that direct measurements involving a rapidly and freely

falling body would not be accurate, Galileo decided to test an

object that w^as moving less rapidly. He proposed a new
hypothesis: If a freely falling body has constant acceleration, then

a perfectly round ball rolling down a perfectly smooth inclined

plane will also have a constant, though smaller, acceleration.

Thus, Galileo claimed that if d/t^ is constant for a body falling

freely from rest, this ratio will also be constant, although smaller,

for a ball rolling from rest down a straight inclined plane.

Here is how Salviati described Galileo's own experimental test

in Two New Sciences:

Note the careful description of the

experimental apparatus. Today an
experimenter would add to his or

her verbal description any detailed

drawings, schematic layouts, or
photographs needed to make it

possible for other competent sci-

entists to duplicate the experiment.

Experiment 1.5 in the Handbook
is very similar to Galileo's test.

A piece of wooden moulding or scantling, about 12 cubits long,

half a cubit wide, and three finger-breadths thick, was taken;

on its edge was cut a channel a little more than one finger in

breadth; having made this groove very straight, smooth, and

polished, and having lined it with parchment, also as smooth

and polished as possible, we rolled along it a bard, smooth, and

very round bronze ball. Having placed this board in a sloping

position, by lifting one end some one or two cubits above the

other, we rolled the ball, as I was just saying, along the

channel, noting, in a manner presently to be described, the

time required to make the descent. We repeated this

experiment more than once in order to measure the time with

an accuracy such that the deviation between two observations

never exceeded one-tenth of a pulse beat. Having performed

this operation and having assured ourselves of its reliability, we
now rolled the ball only one-quarter of the length of the

channel; and having measured the time of its descent, we
found it precisely one-half of the former. Next we tried other

distances, comparing the time for the whole length with that

for the half, or with that for two-thirds, or three-fourths, or

indeed for any ft'action; in sucb experiments, repeated a full

This picture, painted in 1841 by G.

Bezzuoli, attempts to reconstruct

an experiment Galileo is alleged

to have made during his time as

lecturer at Pisa. Off to the left and
right are men of ill will: the blase

Prince Giovanni de Medici (Galileo

had shown a dredging-machine in-

vented by the prince to be unus-

able) and Galileo's scientific oppo-
nents. These were leading men of
the universities; thev are shown
here bending over a book ofAris-
totle, in which it is written in black

and white that bodies of unequal
weight fall with different speeds.

Galileo, the tallest figure left of
center in the picture, is sur-

rounded by a group of students
andfollowers.
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Spheres rolling down planes of in-

creasingly steep inclination. For
each angle, the acceleration has its

own constant value. At 90° the in-

clined plane situation looks almost
like free fall, except that the ball

would still be rolling. Galileo as-

sumed that the difference between

free fall and "rolling fall" is not

important. (In most real situations,

the ball would slide, not roll, down
the really steep inclines.)

hundred times, we always lound that the spaces traversed were

to each other as the squares of the times, and this was true for

all inclinations of the . . . channel along which we rolled the

ball. . .

.

Galileo has packed a great deal of information into these lines.

He describes his pro(;ediires and apparatus clearly enough to

allow others to repeat the experiment foi" themselves if they wish.

He indicates that consistent measurements can be made. Finally,

he restates the two chief experimental results which he believes

support his free-fall hypothesis. Examine the results carefully.

(a) First, Galileo found that when a ball rolled down the

incline, the ratio of the distance covered to the square of the

cori-esponding time was always the same. Foi' example, if d^, d^,

and d, represent distances measured from the same starting

point on the incline and f,, t.^, and r, represent the times taken to

roll down these distances, then

In general, for each angle of incline, the value of dJt^ was
constant. Galileo did not present his experimental data in the full

detail which since has become the custom. However, others have

repeated his experiment and have obtained results which

parallel his. (See data in SG 16.) You can perform this experiment

yourself with the help of one or two other students.

(b) Galileo's second experimental finding relates to what
happened when the angle of inclination of the plane was
changed. Whenever the angle changed, the ratio d/t^ took on a

new value, although for any one angle it remained constant

regardless of distance of roll. Galileo confirmed this by repeating

the experiment "a full hundred times " for each of the many
different angles. After finding that the ratio d/r was constant for

each angle at which t could be measured conveniently, Galileo

was willing to extrapolate. He concluded that the ratio d/f is a

constant even for steeper angles, wheie the ball moves too fast

for accurate measurement of t. Now, finally, Galileo was ready to

solve the problem that had started the whole argument: He
reasoned that when the angle of inclination became 90°, the ball

would move straight down as Si freely falling object. By his

reasoning, d/t^ would still be constant even in that extreme case,

although he couldn't say what the numerical value was.

Galileo already had deduced that a constant value of d/v was
characteristic of uniform acceleration. By extrapolation, he could

conclude at last that free fall was uniformlv accelerated motion.

• 13. U\ testing his hypothesis that free-fall niotion is unifonnly

accelerated, Galileo made the unproved assumption that
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(choose one or more):

(a) d/t" is constant.

(h) the acceleration has the same value for all angles of
inclination of the plane.

(c) the results for small angles of inclination can be

extrapolated to large angles.

(d) the speed of the ball is constant as it rolls.

(e) the acceleration of the rolling ball is constant if the

acceleration in free fall is constant, though the value of the two

constants is not the same.

14. Which of the following statements best summarizes the

work of Galileo on free fall when air friction is not a factor?

(Be prepared to defend your choice.) Galileo:

(a) proved that all objects fall at exactly the same speed

regardless of their weight.

(b) proved that for any freely falling object the ratio d/f is

constant for any distance of fall.

(c) proved that an object rolling down a smooth incline

accelerates in the same way, although more slowly than, the

same object falling jreely.

(d) supported indirectly his assertion that the speed of an

object falling freelyfrom rest is proportional to the elapsed

time.

(e) made it clear that until a vacuum could be produced, it

would not be possible to settle the freefall question once and

for all.

2*9
I

Doubts about Galileo's procedure

This whole process of reasoning and experiment appears long

and involved on first reading, and you may have some doubts

concerning it. For example, was Galileo's measurement of time

precise enough to establish the constancy of d/t^ even for a

slowly rolling object? In his book, Galileo tries to reassure

possible critics by providing a detailed description of his

experimental arrangement:

For the measurement of time, we employed a large vessel of

water placed in an elevated position; to the bottom of this

vessel was soldered a pipe of small diameter gi\ang a thin jet of

water, which we collected in a small cup during the time of

each descent, whether for the whole length of the channel or

for a part of its length; the water thus collected was weighed on

a very accurate balance; the differences and ratios of these

weights gave us the differences and ratios of the time intervals,

and this with such accuracy that, although the operation was

repeated many, many times, there was no appreciable

discrepancy in the results.

Galileo's technique for measuring
time is discussed in the next sec-

tion.

For problems that uill check and
extend your understanding of uni-

form acceleration, see SG 14 tlirough

21.

Earlv water clock.
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The water clock described by Galileo was not invented by him.

Indeed, water clocks existed in China as early as the sixth

century B.C. and probably were used in Babylonia and India even

earlier. In the early sixteenth century a good water* clock was the

most accurate instrument available for measuring shoii time

intervals. It remained so until shortly after- (ialileo's death, when
the work of Christian Huygens and others led to practical

pendulum clocks. When better clocks became available, Galileo's

results on inclined-plane motion were confirmed.

Another' reason for- questioning Galileo's results involved the

gr eat difference between fi^ee-fall and rolling motion on a slight

incline. Galileo does not repor-t what angles he used in his

experiment. However, as you may have fournd out from doing a

similar- experiment, the angles must be kept ratlier- small. As the

angle increases, the speed of the ball soon becomes so great that

it is difficult to measur-e the times involved. I'he largest usable

angle i-eported in a recent repetition of Galileo's experiment was

only 6°. It is not likely that Galileo worked with much larger

angles. This means that his extrapolation to free fall 190° incline)

was bold. A cautious person, or- one not already convinced of

Galileo's argument, might well doubt it.

There is still another- reason for questioning Galileo's results.

As the angle of incline is increased, there comes a point where

the ball starts to slide as well as roll. This change in behavior-

could mean that the motion is very different at large angles.

Galileo does not discuss these cases. If he had been able to use

frictionless blocks that slid down the plane instead of rolling, he

would have found that for sliding motion the ratio d/r is also a

constant, although having a different numerical value than for

r-olling at the same angle.

SG 22 • 15. Which of the following statements could be regarded as

major reasons for doubting the value of Galileo's procedure?

(a) His measurement of time was not accurate enough.

(b) He used too large an angle of inclination in his experiment.

(c) It is not clear that his results apply when the ball can slide

as well as roll.

(d) In Galileo's experiment the ball was rolling, and therefore

he could not extrapolate to the case offree fall where the ball

did not roll.

(e) d/t'' was not constant for a sliding object.

2.1.0
I

Consequences of Galileo's n^ork on
motion

Galileo seems to have understood that one cannot get the correct

numerical valire for- the acceleration ol n bodv in free fall sinipK
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by extrapolating through increasingly large angles of incline. He

did not attempt to calculate a numerical value for the

acceleration of freely falling bodies. For his purposes it was

enough that he could support the hypothesis that the

acceleration is constant for any given body, whether rolling or

falling. This is the first of Galileo's findings, and it has been fully

borne out by all following tests.

Second, spheres of different weights allowed to roll down an

inclined plane set at a given angle have the same acceleration.

We do not know how much experimental evidence Galileo

himself had for this conclusion, but it agrees with his

observations for fi^eely falling objects. It also agrees with the

"thought experiment " by which he argued that bodies of

different weights fall at the same rate (aside fi'om the effects of

air resistance). His results clearly contradicted what one would

have expected on the basis of Aristotle's theory of motion.

Third, Galileo developed a mathematical theory of accelerated

motion from which other predictions about motion could be

derived. Just one example is mentioned here: it will be veiy

useful in Unit 3. Recall that Galileo chose to define acceleration

as the rate at which the speed changes with time. He then found

by experiment that falling bodies actually do experience equal

changes of speed in equal times, and not in equal distances. Still,

the idea of something changing by equal amounts in equal

distances has an appealing simplicity. You might ask if there is

not some quantity that does change in that way during uniform

acceleration. In fact, there is. If follows without any new
assumptions that, during uniform acceleration from rest, the

square of the speed changes by equal amounts in equal

distances. There is a mathematical equation that expresses this

result: If v.^.^.^ — and a = constant, then

Scientists now know by measure-
ment that the magnitude of the ac-

celeration of gravity, symbol a,, is

about 9.8 m/sec per sec at the

earth's surface. The Project Physics

Handbook contains five different

experiments for finding a value of

a^. (For many problems, the ap-

proximate value 10 m/sec/sec is sat-

isfactoi'v.)

SG 23

v!. 2ad«

In other words: If an object moves from rest with uniform

acceleration, the square of its speed at any point is equal to

twice the product of its acceleration and the distance it has

moved. (You vvdll see the importance of this relation in Unit 3.)

These results of Galileo's work were most important to the

development of physics. But they could scarcely have brought

about a revolution in science by themselves. No sensible scholar

in the seventeenth centuiy would have given up a belief in

Aristotelian cosmology only because some of its predictions had
been disproved. Still, Galileos work on free-fall motion helped

to prepare the way for a new kind of physics, and indeed a new
cosmology, by planting the seeds of doubt about the basic

assumptions of Aristotelian science. For example, when it was
recognized that all bodies fall with equal acceleration if air

You can derive this equation. (See

SG 24.)

SG 25, 26
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friction is minor, the whole Aristotelian explanation of falling

motion iSec. 2.1) broke tlovvn.

The most disputed scientific problem during Galileo's lifetime

was not in mechanics but in astronomy. A central question in

cosmology was wheth(;i- the earth or the sun was the cent(;r of

the universe. Galileo supported the view that the earth and other

planets revolved around the sun, a \iew entirely contrary to

Aristotelian cosmolog\'. But to support such a \ iew recjuir ed a

physical theory of why and how the earth itself moved. Galileo's

work on fi'ee fall and other' motions turned out to be just what

was needed to begin constructing such a theory. His work did

not have its full effect, however, until it had been combined with

the studies of for^ces and motion by the English scientist Isaac

Newton. But as Newlon acknowledged, (Jalileo was the pioneer.

(In the next chapter, you will consider Newton's work on force

and motion. In Chapter- 8, you will see its application to the

motions in the heavens as well as the revolution it caused in

science.)

Galileo's work on motion introduced a new and important

method of doing scientilic research, ibis method is as effective

today as when Galileo demonstrated it. The basis of this

procedur^e is a cycle, repeated as often as necessary, entirely oi'

in pari, until a satisfactory theory has emerged. I'he cycle

roughly follows this foriii: general obser^^ation —> hvpothesis —>

mathematical analysis or- deduction from hvpothesis —

»

experimental test of deduction —* re\asion of hypothesis in light

of test, and so forth.

While the mathematical steps are detemiined mainly by 'cold

logic, " this is not so for the other parts of the process. A variety'

SG 27 of paths of thought can lead to a hypothesis in the fir^t place.

A new hypothesis might come from an inspired hunch based on

general knowledge of the experimental facts. Or- it might come
from a desire for mathematically simple statements, or from

modi^'ing a previous hvpothesis that failed. Moreoxer, there ar-e

no general rules about exactly how well experimental data must

agree with predictions based on theory. In some areas of science,

a theory is expected to be accurate to better- than 0.001%. In

other- ar eas, or at an early stage of any new work, one might be

delighted with an erixjr of only 50% . Finally, note that while

exper-iment has an impor-tant place in this process, it is not the

only or even the main element. On the contrary, expeiiments are

worthwhile only in combination with the other steps in the

process.

The general cycle of observation, hvpothesis, deduction, test,

re\asion, etc., so skillfully demonstrated by Galileo in the

seventeenth centuiy, commonly appears in the work of scientists

today. Though ther-e is no such thing as the scientific method,

some for-m of this cycle is almost always present in scientific
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research. It is used not out of respect for Galileo as a towering

figure in the histoiy of science, but because it works so well so

much of the time. What is too frequently underplayed is the

sheer creativity that enters into each of these phases. There are

no fixed rules for doing any one of them or for how to move

from one to the next.

Galileo himself was aware of the value of both the results and

the methods of his pioneering work. He concluded his treatment

of accelerated motion by putting the following words into the

mouths of the characters in his book:

Salviati: . . . we may say the door is now opened, for the first

time, to a new method ft'aught with numerous and wonderful

results which in future years will command the attention of

other minds.

Sagredo: I really believe that . . . the jorinciples which are set

forth in this little treatise will, when taken up by speculative

minds, lead to another more remarkable result; and it is to be

believed that it will be so on account of the nobility of the

subject, which is superior to any other in nature.

16. Which one of the following was not a result of Galileo's

work on motion?

(a) Determination of the correct numerical value of the

acceleration in free fall, obtained by extrapolating the results

for larger and larger angles of inclination.

(b) Ifan object starts from rest and moves with uniform

acceleration a through a distance d, then the square of its

speed will be proportional to d.

(c) Bodies rolling on a smooth inclined plane are uniformly

accelerated.

Many details of physics, mathemat-
ics, and history have appeared in

this chapter. For a review of the

most important ideas, see SG 28-32.
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study
guide

1. Note that at the beginning of each chapter in

this book there is a list of the section titles. This is a

sort of road map you can refer to from time to time

as you study the; chapter. It is important, especially

in a chapter such as this one, to know how the part

you are studying relates to w^hat preceded it and to

have some idea of where it is leading. For this same

reason , you will find it very helpful at first to skim

through the entire chapter, reading it rapidly and not

stopping to puzzle out parts that you do not quickly

understand. Then you should return to the beginning

of the chapter and work your way through it

carefully, section by section. Rememijer also to use

the end-of-section questions to check your progress.

The Project Physics learning materials particularly

appropriate for Chapter 2 include:

Experiments

A Seventeenth-Century Experiment

Twentieth Century Version of Galileo's Experiment

Measuring the Acceleration of Gravity, a

Film Loops
Acceleration Caused by Gravity. Method I

Acceleration Caused by Gravity. Method II

2. Aristotle's theoiy of motion seems to be

supported to a great extent by common sense

experience. For example, water bubbles up through

earth at springs. When sufficient fire is added to

water by heating it , the resulting mixture of elements

(what we call steam) rises through the air. Can you

think of other examples?

3. Compare Aristotle's hypothesis about falling rate

(weight divided by resistance) with Philoponus'

(weight minus resistance) for some extreme cases: a

very heaw body v\ith no resistance, a very light body

v\ith great resistance. Do the two hypotheses suggest

very different results?

4. Consider Aristotle's statement "A given weight

moves [falls] a given distance in a given time; a

weight which is as great and more moxes the same
distances in h;ss time, the times Ijcung in in\'erse

proportion to the weights. For instance, if one

weight is twice another, it will take half as long over

a given movement." (Dp ('ado)

Indicate what Simplicio and Sal\iati each would

predict for the falling motion in these cases:

(a) A 1-kg rock falls from a cliff and, while dropping,

breaks into two equal pieces.

(b) A 5-kg rock is dropped at Uie same time as a 4.5-

kg piece of the same ty|De of rock.

(c) A hundred 4.5-kg pieces of rock, falling from a

height, drop into a draw-string sack which closes,

pulls loose, and falls.

5. Tie two objects of greatly different weight (like a

book and a pencil) together with a piece of string

(see below). Drop the combination with different

orientations of objects. Watch the string. In a few

sentences summarize your results.

6. (a) A bicyclist starting from rest accelerated

uniformly at 2m/sec" for 6 sec. Vlliat distance did he

cover in that time? Calculate the average speed for

tliat time (B sec) by finding the average of the initial

speed and fined speed. What distance would the

bicyclist cover in 6 sec at this a\'erage speed? This

problem illustrates the Merton theorem (see

question 7).

(b) Only in the special case of uniform acceleration

does a simple arithmetic average of speeds give the

correct average speed. Elxplain why this is so.

7. A good deal of work on the topic of motion

preceded tliat of Galileo. In the period 1280-1340,

'^-
f

<-.^

^

l>
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mathematicians at Merton College, Oxford, carefully

considered different quantities that change with the

passage of time. One result that had profound

influence was a general theorem known as the

Merton theorem or mean speed rule.

This theorem might be restated in our language

and applied to uniform acceleration as follows: The
distance an object goes during some time while its

speed is changing uniformly is the same distance it

would go if it went at the average speed the whole

time.

(a) First show that the total distance traveled at a

constant speed can be expressed as the area under

the graph line on a speed-time graph. ("Area" must
be found in speed units x time units.)

(b) Assume that this area represents the total

distance even when the speed is not constant. Draw
a speed-time graph for uniformly increasing speed

and shade in the area under the graph line.

(c) Prove the Merton theorem by showing that the

area is equal to the area under a constant-speed line

at the average speed.

8. According to Galileo, uniform acceleration

means equal Av's in equal Af s. Which of the

following are other ways of expressing the same
idea?

(a) Av is proportional to Af

(b) Av/Af = constant

(c) the speed-time graph is a straight line

(d) V is proportional to t

9. In his discussion of uniformly accelerated

motion, Galileo introduced another relationship that

can also be put to experimental test. GalUeo found

that "the distances traversed by a body falling from
rest during successive intervals of equal times will be

in the ratios of the odd integers, 1:3:5:7. . .
."

Show that this experimentally testable result is in

accord with our definitions for v ^ and a for

uniformly accelerated motion. (Hint: One way is to

proceed as follows. For equal time intervals {At), the

final speed reached is successively aAf, 2aAf, ....

During each of these time intervals, the average

1 1
speeds are - (aAt), - (3aAf), . . . , and the

2 2

1 1
corresponding distances covered are - (aAf) • {At), —

^ 2

(3aAf) • {At),

{Note: You can also deduce this result from a

speed-time graph. Since the distance traversed is

just speed times time, that is, Ad = vAt, the area of

any slice of the v versus t graph that has a height

of V and a width At is just the distance traversed

during At. Using this idea, show that the distances,

Ad, traversed during equal Af's obey Galileo's rule,

quoted above.)

10. Using whatever modern equipment you wish,

describe how you could find an accurate value for

the speed of a falling object just before it strikes the

ground.

11. Show that the expression

+ V,.

is equivalent to the Merton theorem discussed in

SG 7.

12. For any quantity that changes uniformly , the

average is the sum of the initial and final values

divided by two. lYy it out for any quantity you may
choose. For example: What is the average age in a

group of five people having individually the ages of

15, 16, 17, 18, and 19 years? What is your average

earning power over 5 years if it grows steadily from

$8,000 per year at the start to $12,000 per year at the

end?

13. Lt. Col. John L. Stapp achieved a speed of 284

m/sec in an experimental rocket sled at the

HoUoman Air Base Development Center, Alamogordo,

New Mexico. Running on rails and propeUed by nine

rockets, the sled reached its top speed within 5 sec.

Stapp survived a maximum acceleration of 22 g's in

slowing to rest during a time interval of 1.5 sec. (One

g is an acceleration equal in magnitude to that due

to gravity; 22 g's means 22 x a .)

(a) Find the average acceleration in reaching

maximum speed.

(b) How far did the sled travel before attaining

maximum speed?

(c) Find the average acceleration while stopping.
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14. Indicate whether the follovxing statements are

true or false when applied to the strobe photo below

(you may assume that th(! strobe was flashing at a

constant rate):

(a) The speed of the ball is greater at the bottom

than at the top.

(b) This could be a freely falling object. (Make

measurements on photograph.)

(c) This could be a ball thrown straight upward.

(d) If (b) is true, the speed increases with time

because of the acceleration due to gravity.

(e) If (c) is true, the speed decreases with time

because of the effect of gravity; this effect could still

be called acceleration due to gra\aty.

15. rlic pliotograph above shows a ball falling next

to a vertical meter stick. The time interxal betwecni

strolje flashes was 0.035 sec. Use this information

to make graphs of d versus t and \ \(!rsiis /, and find

the a(-releration of the ball. (IMotc: The bottom of the

ball, just on release, was next to the zero point of

the meter stick. During the first few flashes, the

images of the falling ball may ha\ e been so

superposed as to be difficult to icsolxc. Ikit lor the

purjioses of this problem. \\(! can iicgh^ct the (earliest

part ol the fall, say. to 10 cm.)

16. rh(! photograph in the figure; on page; (i;j is ol a

l)all thrown upward. 1 In; accel(;ration due to gra\ily

increases the speed of the ball as it desceiuls fioni

its highest point (like any free-falling object I if air

friction is negligible. Rut the accehM-ation due to

gra\ity. which do(!s not change;, acts also while the

IkiII is still on its way up. and for that portion of the

path causes the ball to slow down as it ascends to

the top point, C.

VVlien there is both up and down motion, it will

help to adopt a sign convcMition, an arbitral' but

consistent set of rules, similar to designating the

height of a place with respect to sea le\el. To identify

distances measured above the point of initial release,

give them positive values; for example, the distance

at B or at L), measured from the release le\(;l. is

about +60 cm and +37 cm, respectively. If

measured below the release level, give them negative

values; for example, E is at -23 cm. /\lso. assign a

positive value to the speed of an object on its way up

to the top (about + 3 m/sec at A and a negative value

to a speed a body has on the way down after

reaching the top (about — 2 m/sec at D and -6 m/
sec at El.

(a) Fill in the table with + and — signs.

AT POSITION

SIGN GIVEN TO
VALUE OF

d V

(b) Show that it follows from this con\ention iind

from the definition of a = A\ Af that the \alue or

sign given to the acceleration due to gra\it\' is

negative, and for both parts of the path.

(c) What would the sign of acceleration due to

gra\ity be in each case if we had chosen the + and
- sign conventions just the other way, that is,

associating — with up, + with down?
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Stroboscopic photoi^raph of a ball

thrown into the air.

17. Draw a set of points (as they would appear in a

strobe photo) to show the successive positions of an

object that by our convention in SG 16 had a positive

acceleration, that is, "upward." Can you think of any

way to produce such an event physically?

18. Memorizing equations will not save you from
having to think your way through a problem. You
must decide if, when, and how to use equations. This

means analyzing the problem to make certain you
understand what information is given and what is to

be found. Test yourself on the following problem.

Assume that the acceleration due to gravity is equal

to 10 m/sec/sec.

Problem: A stone is dropped from rest from the

top of a high cliff.

(a) How far has it fallen after 1 sec?

(b) What is the stone's speed after 1 sec of fall?

(c) How far does the stone fall during the second

second (that is, from the end of the first second to

the end of the second second)?

19. From the definition for a, show it follows

directly that v^^^^ =
^,n,<,ai

+ ^^ ^'^^ motion with

constant acceleration. Using this relation and the

sign convention in SG 16, answer the questions

below. (Assume a = 10 m/sec/sec.) /\n object is

thrown upward with an initial speed of 20 m/sec.

(a) What is its speed after 1.0 sec?

(b) How far did it go in this first second?

(c) How long did the object take to reach its

maximum height?

(d) How high is this maximum height?

(e) When it descends, what is its final speed as it

passes the throwing point?

If you have no trouble with this, you may wish to try

problems SG 20 and 21.

20. A batter hits a pop fly that fravels straight

upward. The ball leaves the bat with an initial speed

of 40 m/sec. (Assume a =10 m/sec/sec.)

(a) What is the speed of the ball at the end of 2 sec?

(b) What is its speed at the end of 6 sec?

(c) When does the ball reach its highest point?

(d) How high is this highest point?

(e) What is the speed of the ball at the end of 10 sec?

(Graph this series of speeds.)

(f) What is its speed just before it is caught by the

catcher?

ai. A ball starts up an inclined plane with a speed of

4 m/sec, and comes to a halt after 2 sec.

(a) What acceleration does the ball experience?

(b) What is the average speed of the ball during this

interval?

(c) What is the ball's speed after 1 sec?

(d) How far up the slope will the ball travel?

(e) What will be the speed of the ball 3 sec after

starting up the slope?
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(f) what is the total time for a round trip to the top

and back to the start?

22. As Director of Research in your class, you

receive the following research proposals from

physics students wishing to improve upon Galileo's

free-fall experiment. Would you recommend support

for any of them? If you reject a proposal, you should

make it clear why you do so.

(a) "Historians believe that Galileo never dropped

objects from the Leaning Tower of Pisa. But such an

experiment is more direct and more fun than

inclined plane experiments, and of course, now that

accurate stopwatches are available, it can be carried

out much better than in Galileo's time. The

experiment involves dropping, one by one, different

size spheres made of copper, steel, and glass from

the top of the Leaning Tower and finding how long it

takes each one to reach the ground. Knowing d (the

height of the tower I and time of fall t, I will

substitute in the equation d = Vzat to see if the

acceleration a has the same value for each sphere."

(b) "An iron shot will be dropped from the roof of a

4-story building. As the shot falls, it passes a window
at each story. At each window there will be a student

who starts a stopwatch upon hearing a signal that

the shot has been released, and stops the watch as

the shot passes the window. Also, each student

records the speed of the shot as it passes. From
these data, each student will compute the ratio v/t. I

expect that all four students will obtain the same
numerical value of the ratio."

(c) "Galileo's inclined planes dilute motion all right,

but the trouble is that there is no reason to suppose

that a ball rolling down a board is beha\ing like a

ball fiilling straight dowoiward. A better way to

accomplish this is to use light, fluffy, cotton balls.

These will not fall as rapidly as metal spheres, and

therefore it would be possible to measure the time

of the fall / for different distances. The ratio d/r

could be determined for different distances to see if

it remained constant. The compactness of the cotton

ball could then be changed to see if a different value

was obtained for the ratio."

23. A student on the planet Arret in another solar

system dropped an object in order to determine the

acceleration due to gravity at that place. Hk;

following data are recorded (in local unitsi

TIME
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27. List the steps by which Galileo progressed from

his first definition of uniformly accelerated motion to

his final confirmation that this definition is useful

in describing the motion of a freely falling body.

Identify each step as a hypothesis, deduction,

observation, computation, etc. What limitations and

idealizations appear in the argument?

28. In these first two chapters we have been

concerned with motion in a straight line. We have

dealt with distance, time, speed, and acceleration,

and with the relationships among them.

Surprisingly, most of the results of our discussion

can be summarized in the following three equations.

Ad Av
d = Vzaf

Because these three equations are so useful, they are

worth remembering.

(a) State each of the three equations in words, and

state explicitly any limitations on when they apply.

(b) Make up a simple problem to demonstrate the

use of each equation. (For example: How long will it

take a jet plane to travel 3,200 km if it averages 1,000

km/hr?)

(c) Work out the solutions just to be sure the

problems can be solved.

29. What is wrong with the following common
statements? "The Aristotelians did not observe

natvire. They took their knowledge out of old books

which were mostly wrong. Galileo showed it was

wrong to trust authority in science. He did

experiments and showed everyone direcdy that the

old ideas on free fall motion were in error. He

thereby started science and also gave us the scientific

method."

30. (a) What is the acceleration of a car that

accelerates uniformly from 5 m/sec to 30 m/sec in 10

sec?

(b) How tall is a building if it takes an object 9.0 sec

to hit the ground after falling from the roof?

(c) A block slides down an inclined plane with a

constant acceleration of 2 m/sec'. How long will it

take the block to slide 20 m? How fast will the block

be moving at the end of that time?

(d) A particle with a velocity of 8 m/sec north starts

accelerating. It accelerates uniformly at 5 m/sec"^

north for 10 sec. How far does the particle travel in

10 sec? What is the speed of the particle after 10 sec?

(e) What is the final speed of a model train that

accelerates uniformly from rest at 2 m/sec' for a

distance of 4 m?

(f) A particle moving with a speed of 6 m/sec enters

a region 2 m long where it is uniformly accelerated

at 1 m/sec^. What is the speed of the particle at the

end of that region?

(g) What is the acceleration of a motor boat that

accelerates uniformly from 5 m/sec to 55 m/sec over

a distance of 100 m?

(h) A ball is dropped from the roof of a 125-m

building. At the same time, a second ball is thrown

straight up to collide with the first ball. What is the

initial speed of the second ball if the balls collide 45

m from the ground 4 sec after they were released?

{Hint: Some of this information is unnecessary.)

31. (a) Using the methods you learned in Chapter 1,

calculate the average speed of the object represented

by the graph shown below in sections AB and CD.

(b) Using the information from (a), calculate the

average speed and average acceleration in section BC.

(c) Discuss your results for (a) and (b).

30 r

time (sec)

32. You have probably noticed that uniform motion

is represented by a straight line on a distance 1/N

time graph while accelerated motion is represented

by a curved line.
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ss
(a) Describe the motion represented by each of the

graphs below.

(b) Identify the direction of motion in each graph.

t

(A)

t

(B)

t t
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The Birth of Bynsmiics
niemitoii EHplains Motion

3.1 ''Explanation" and the laivs of motion

3.2 The Aristotelian explanation of motion

3.3 Forces in equilibrium

3.4 About vectors

3.5 Neuton's first law of motion

3.6 The si^ificance of the first law
3.7 NcTiton's second law of motion

3.8 Mass, Yvei^t, and free fall

3.9 Nemton's third law of motion
3.10 Usin^ Newton's laivs of motion
3.11 Nature's basic forces

(gt^^PTl^

3.1
I

"Explanation" and the laws of motion

Kinematics is the study of how objects move, but not of why they

move. Galileo investigated many topics in kinematics with

insight, originality, and energy. The most valuable part of that

work dealt uath special types of motion, such as free fall. In a

clear and consistent way, he showed how to describe the motion

of objects with the aid of mathematical ideas.

Galileo had written that "the present does not seem to be the

proper time to investigate the cause of the acceleration of natural

motion " When Isaac New4on began his studies of motion in

the second half of the seventeenth century, that statement was

no longer appropriate. Indeed, because Galileo had been so

SG 1
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Soiiu! kiiinmatics roncrpts: posi-

tion, time, speed, acceleration.

Some dynamics concepts: mass,
force, momentum (Ch.9l, energy

(Ch. 10).

In (Chapter 4 we will take up motion
along cuncd paths.

\'ewtons First Law: Every object

continues in its state of rest or of

uniff)rm motion in a straight line

unless acted upon by an luihal-

anced force.

Newton s Second Law: I'he accel-

eration of an object is directly pro-

potional to, and in the same direc-

tion as, the unbalanc(;d force acting

on it, and in\ersely proportional to

the mass of the object.

\'ewton's Third Law: Vo e\erv ac-

tion there is always opposed an
equal reaction; or, mutuiU actions

of two bodies upon each other are

always equal and in opposite direc-

tions.

effective in describing motion, \e\\1on could turn his attention

to dynamics. Dynamics is the study of why an object moves the

way it does, for example, why it starts to mo\'e instead of

remaining at rest, why it speeds up or moves on a cuned path,

and why it comes to a stop.

How does dynamics differ from kinematics? As mentioned

above, kinematics treats the desciiption of motion, while

dynamics treats the causes of motion, tracing these causes back

to the play of forces. Each, of course, depends on the other in

order to describe a motion in a way that will make its

explanation as simple as possible. Conversely, given an idea for

an explanation, that idea can be used to suggest better methods
of description.

The study of kinematics in Chapters 1 and 2 revealed that an

object may: (a) remain at rest, (b) move uniformly in a straight

line, (cl speed up during straight-line motion, (di slow down
during straight-line motion. Because the last two situations are

examples of acceleration, the list could actually be reduced to: la)

rest, lb) unifomi motion, and (c) acceleration.

Rest, unifomi motion, and acceleration are therefore the

phenomena to explain. The word "explain" must be used with

care. To the physicist, an event is "explained" when it is shown
to be a logicid consequence of a law the physicist has reason to

believe is ti\ie. In other words, a physicist with faith in a general

law "explains" an exent by showing that it is consistent lin

agreement) with the law. An infinite number of separate,

different-looking events occur constantly all around you and

within you. In a sense, the physicist's job is to show how each of

these events results necessarily from certain general i\iles that

describe the way the world operates. This approach to

"explanation" is made possible by the fact that the number of

general laws of physics is surprisingly small. Ihis chapter will

discuss three such laws. Together with the mathematical

schemes of Chapters 1 and 2 for describing motion, they will

enable you to understand practically all motions that you can

easily observe. Adding one more law, the law of unixersal

gravitation (Unit 2i, you can explain the motions of stars, planets,

comets, and satellites. In fact, throughout physics one sees again

and again that nature has a manelous simplicity.

l"o explain rest, unifomi motion, and acceleration of any

object, you must be able to answer such questions as these: Why
does a vase placed on a table remain stationary? If a diy-ice disk

resting on a smooth, level surface is given a brief push, why does

it move with unifoim speed in a straight line? Why does it

neither slow down quickly nor cun^e to the right or left? These

and almost all other specific questions about motion can be

answered either directly or indirectly from Isaac i\ew1ons three

general "Laws of Motion." These laws appear in his famous book,
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Philosophise Naturalis Principia Mathematica (Mathematical

Principles ofNatural Philosophy, 1687), usually referred to simply

as the Principia. They remain among the most basic laws in

physics today.

This chapter will examine Newton's three laws of motion one

by one. If your Latin is fairly good, try to translate them from the

original, reproduced below. A modern, English version of

Newton's text of these laws appears in the margin on page 68.

Before taking up Newton's ideas, it is helpful to see how other

scientists of Newton's time, or earlier, might have answered

questions about motion. One reason for doing this now is that

many people who have not studied physics still tend to think a

bit like pre-Newtonians!

Pages 12 and 13 of the original

(Latin) edition of Newton's Philoso-

phiae Naturalis Principia Mathe-
matica (The Mathematical Princi-

ples of Natural Philosophy). These
pages contain the three laws of
motion and the parallelogram rule

for the addition offorces (see Sees.

3.3 and 3.4).

[ u ]

A X I O M A T A
siv£

LEGES MOTUS
Corpus mniie pcrfcvc!\iyc in jiMii [no ^jiin-Jt^-urli icl moz'cndi itinfur-

iiiitcr in dirciiiim, nifi jii.itcniu ii'iiihns imfreff's (og^iir Jijttuit

ilium iiiHlare.

PRojcfrilij pcrkvcrjnr in motibiisfiiis nifi quarcniis aicfiftcn-

ria acris rcr.iul.uuui Sc vi j;ra\it.ui^ imptlluntur dcoifiim.

Trtxiuia, niHh p.iircs tolivicmlo pcrpctiio rctraliuiit fcfe

a monlui- ficnlmci i-.on cdiat lor.iii nili i-;uarcmis ab acri- ic-

tarJatm. M • i ;,i jutcm I'lancraitiiii Jk Conictariimcoipora mo
ru^ luoi iv projuiHuj; & ciicularci ill fpatiis minus rcllftcntibiis

facto; conllrvant tliutiu--.

I.ex. II. .

hlii1.Ttioticni »i0!nr pioforlionnlem tffeiii inotna iwprelft, d,'- fierife-

cn>'d):iii Imfjiii recimii ijiut 'vts ilU imprimitiir.

Sm ,.!;]i unotuni (picmvis gtncrcr, cKipia dupliini, tiiplatri-

p!i.!iiL'ir.i-!,i!":- iTm. l":m!l& fcinil, fivcyia'Jarim&.- fiirctffivtijn-

prilli kiLiir. I [ lii( iiinir ijror.i.ini in caniiciii Ic-niiKT pl.ijjiam

cunn; L" mi.'t :n di tuinii.itui , li torpusantta movibarur, nio-

t'JU!'- . ', t;;,i'|.: .ir.ii.iJiiitiir, \(.l mnnaiio Uibdiltitui, vd obf>.

f]i',o t.l.]k]L,'_ ,, 'iiLitui; Ix Limi (.o U.vunduiii utriufipdctCTniinatio-

fK.m.iiinpoi.if.ii. Lex. Hi.

>

I '3 3
Lex. lU.

A^ioni contrariam femferdf- cdjHJem effc rcuBtoneni : fi've corporum

dmrrHm aSlio^ics m Ic mutiwjemptr tfjt; .t^Uiiles ^ in partes conlm-

rui dnigi.

Qiiicquid prcmit vtl nalik alttrimi, rantundcmab coprcmitur

vcl traliiciir. Siijui^ lapidcm digito picnnt, piitnirui & luijiis

digitus a lapide. Sieijimslapidem luni allegatuui rrahir, rclrahc-

tiucti.iin S^ c'i)in:saqualiftTinl.ipidtni:namluriiiirrini|.dirttimis

codeni nl.i\.ir.di li loiiatu iirgebit Kquuin vtilii' l.ipidcm, ac l.i-

piJini Mifu c\]mim, raiitunuj, iiiipc'Ji<.t pionrifiimitinius quaii-

tiiiii proiiiovct progulTuin .ilrciuis. Si coipiiv aliciiiod inccrpus

.iliud iiiipingms, niotumtjusvi lua qiuMnuiJoLunq: niut.ntjit, i-

dciiiquoqiit viciiTIm inniotti propiio c.mJcm niut.itioncm m pai-

rcm uiiitr.iii.uii \i altciius ( ob .vqu.ilil.ircm picnioiii- nnirui-J

fubibit. Hi .K'tmnibu' iqu^ili' tii lit irut.itionc^ nun MlocitatumM inoniniii,
!^ lulicct m coipoiilniMum .ilinndciinpiditi^ .^jMu-

tatioiKs cnini vclocitatum, in tontraiia> itidcni partes iafl-ar,quia

motiis .Kjii.ilitcr iiiurantur, Unit corpi)ribiii iiciprocc propottio-

ii.ik-.

Corol. I.

Corpus iiirihiis ronjiin^lis di.jroihiLm p.ir.iUcloirjnimi eudem tempore

dcjiribcrc^ ,jUo Ltlerd fcpjrjiis.

Si coipu; datotcmpoio, \iibla Af,

fcirtciir ab /I ail i>, 5c vi Tola ,V, ab
A ad C, compleatiir parallclogiani-

muin AliPC, &: vi iitiaq, fm tin id

ctidcm reinpon- ab A ad /). N.iin

qiionfain vii N ajjir ffrunduni Imcam
AC ipfi B D paialliliiii, hvt vi, niliil nnirabir vtlocifatcm accc-
dcndi ad lincain illani !> D a \i altera geiiitaiii. Aecedet iyiciu-

c^ipiis eodem tempore ad line.iiii H P l7Ce \i, N imprimanir,"/;\o
lion, atq, adeo in fine illiiis tenipons rqniietur aliciibi iii !inea

1. A baseball is thrown straight upward. Which of these

questions about the baseball's motion are kinematic and which

dynamic?

(a) How high will the ball go before coming to a stop and
starting downward?

(b) How long will it take to reach that highest point?

(c) What would be the effect of throwing it twice as hard?

(d) Which takes longer, the trip up or the trip down?

(e) Why does the acceleration remain the same whether the

ball is moving up or down?
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3.2
I

The Aristotelian explanation
of motion

Keeping an object in motion at u/i/-

form speed.

SG 2

The idea of force played a central role in the dynamics of

Aristotle 20 centuries before N'eulon. You will recall from

Chapter 2 that in Aristotle's physics there weve two types of

motion: "natural" motion and "violent motion. For example, a

falling stone was thought to be in "natural " motion (towards its

natural place i. On the other hand, a stone being steadily lifted

was thought to be in "\iolent ' motion (away from its natural

placel. To maintain this uniform \iolent motion, a force had to be

continuously applied. Anyone lifting a large stone is very much
aware of this force while straining to hoist the stone higher.

The Aristotelian ideas agreed with many common-sense
obseirations. But there were also difficulties. Take as a specific

example an arrow shot into the air. It cannot be in \iolent

motion without a moxer, or something pushing it. Aristotelian

physics required that the arrow be constantly propelled by a

force. If this propelling force were removed, the arrow should

immediately stop its flight and fall directly to the ground in

"natural" motion.

But, of course, an arrow does not fall to the ground as soon as

it loses diiect contact with the bowstring. What, then, is the force

that piopels the arrow? Here, the Aristotelians offered a clever

suggestion: The motion of the arrow through the air is

maintained by the air itself! As the arrow starts to mo\'e, the air

in front of it is pushed aside. More air rushes in to fill the space

being vacated by the arrow. This iiish of air- around the arr'ow

keeps it in flight.

Other ideas to explain motion were developed before the mid-

seventeenth Centura'. But in every case, a force was considered

necessary to sustain uniform motion. The explanation of unifor-m

motion depended on finding the force, and that was not always

easy. There were also other problems. For example, a falling

acor'n or stone does not move with unifomi speed. It accelerates.

How is acceleration explained? Some Aristotelians thought that

the speeding up of a falling object was connected with its

approaching arrival at its natural place, the earth. In other words,

a falling object was thought to be like a tir-ed horse that starts to

gallop as it nears the barii. Others claimed that when an object

falls, the weight of the air- above it incr-eases, pushing it harder.

Meanwhile, the column of air below it decreases^ thus offering

less resistance to its fall.

When a falling object finally reaches the ground, as close to

the center of the earth as it can get, it stops. And there, in its

"natual place," it remains. Rest, being regarded as the natural

state of objects on earth, required no firrther explanation. The

thr'ee phenomena of rest, uniform motion, and acceleration
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could thus be explained more or less reasonably by an

Aristotelian. Now examine the Newtonian explanation of the

same phenomena. The key to this approach is a clear

understanding of the concept of force.

# 2. According to Aristotle^ what is necessary to maintain

uniform motion?

3. Give an Aristotelian explanation of a dry-ice disk's uniform

motion across a tabletop.

3.3
I

Forces in equilibrium

The common-sense idea of force is closely linked with muscular

activity. You know that a sustained effort is required to lift and

support a heavy stone. When you push a lawn mower, row a

boat, split a log, or knead bread dough, your muscles indicate

that you are applying a force to some object. Force and motion

and muscular activity are naturally associated in our minds.

When you think of changing the shape of an object, or moving it,

or changing its motion, you automatically think of the muscular

sensation of applying a force to the object. You wdll see that

many, but not all, of your everyday, common-sense ideas about

force are useful in physics.

You know, without having to think about it, that forces can

make things move. Forces can also hold things still. The cable

supporting the main span of the Golden Gate Bridge is under the

influence of mighty forces, yet it remains at rest. Apparently,

more is required to start motion than just any application of

forces.

Of course, this is not suiprising. You have probably seen

children quarreling over a toy. If each child pulls with

determination in the opposite direction, the toy may go nowhere.

On the other hand, the tide of battle may shift if one of the

children suddenly makes an extra effort or if two children

cooperate and pull side by side against a third.

Likevvase, in a tug-of-war between two teams, large foices are

exerted on each side, but the rope remains at rest. We might say

that the forces "balance" or "cancel." A physicist would say that

the rope was in equilibrium. That is, the sum of all forces applied

to one side of the rope is just as great, though acting in the

opposite direction, as the sum of forces applied to the other side.

The physicist might also say the net force on the rope is zero.

Thus, a body in equilibrium cannot start to move. It starts to

move only when a new, "unbalanced" force is added, destroying

the equilibrium.
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This force is called tiie net force,

because it is the sum of all the

forces in one direction minus the

sum of all the forces in the oppo-

site direction.

Ca)

Jorce Fg force r,

<r ^

teom 2 team t

(b)

Cc)

F. K'-O

There are se\'eral ways of express-

ing the idea of unbalanc-ed force:

net force, resultnnt force, total force,

vector sum offorces. All mean the

same thing.

In all these examples, both the magnitude (size or amoimtl of

the forces and their directions are important. The eftect of a

force depends on the direction in vvhic-h it is a[)plied. You can

represent both the sizes and directions of foi-ces in a sketch by

using arrows. The direction in which an arrow points represents

the direction in which the force acts. The length of the arrow

represents how large the force is. For example, the force exerted

by a 10-kg bag of potatoes is shown by an arrow twice as long

as that for a 5-kg bag.

If you know separately each of the forces applied to any object

at rest, you can predict whether the object will remain at rest.

It is as simple as this: An object acted on by forces is in

equilibrium and remains at lest only if the arrows representing

the forces all total zero.

How do you "total" arrows? This can be done by means of a

simple technique. Take the tug-of-war as an example. Call the

force applied by the team pulling to the right F,. (The arrow over

the F indicates that you are dealing with a quantity for* which

direction is important.) The force applied to the rope by the

second team you can call F,. Figure (a) in the margin shows the

two arrows corresponding to the two forces, each applied to the

same rope, but in opposite directions. Assume that these forces,

F, and F^, were accurately and separately measured. For

example, you might let each team in turn pull on a spring

balance as hard as it can. You can then draw the arrows for F,

and F^ carefully to a chosen scale, such as 1 cm = 100 N. Thus,

a 200-N force in either direction would be represented by an

arrow 2 cm in length. Next, take the arrows F, and F^ and draw
them again in the correct directions and to the chosen scale.

This time, howevei", put them "head to tail" as in Figure (b).

Thus, you might dravv^ F, first, and then draw F^ with the tail of

F, starting from the head of F,. (Since they would, of course,

oveilap in this example, they are drawn slightly apart in Figure

(b) to show them both clearly.) The technique is this: If the head

end of the second arrow falls exactly on the tail end of the first,

then you know that the effects of F, and F^ balance each other.

The two forces, equally large and acting in opposite directions,

total zero. If they did not, the excess of one force over the other

would be the net force, and the rope would accelerate instead

of being at rest.

To be sure, this was an obvious case. But the "head-to-tail"

method, using drawings, also works in cases that are not as

simple. For example, apply the same procedure to a boat that is

secured by three ropes attached to different moorings. Suppose

F,, in this case, is a force of 24 N, F, is 22 N, and F., is 19 N, each

in the direction shown in the sketch on p. 73. (A good scale for

the magnitude of the forces here is 0.1 cm = 1 N of force.) Is the

boat in ecjuilibrium when it is acted on by the foices'.^ \'es, if the
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forces add up to zero. With iT-iler and protractor you can draw
the arrows to scale and in exactly the right directions. Adding Fj,

F,, and F3 head to tail, as in the diagram to the right of the

picture, you see that the head of the last arrow falls on the tail of

the first. The sum of the forces, or the net force, is indeed zero.

The forces are said to cancel, or to be balanced. Therefore, the

object (the boat) is in equilibrium. This method tells when an

object is in equilibrium, no matter how many different forces are

acting on it.

^--.^0

We are defining equilibrium with-

out worrying about whether the

object will rotate. For e^cample, the

sum of the forces on the plank in

the diagram is zero, but it is ob-

vious that the plank will rotate.

SG5

p . p r> = o

ii.i.i_iLiiJil-

We can now summarize our understanding of the state of rest

as follows: If an object remains at rest, the sum of all forces

acting on it must be zero. Rest is an example of the condition of

equilibrium, the state in which all forces on the object are

balanced.

An interesting case of equilibrium, different fi^om the tug-of-

war, is the last part of the fall of a skydiver. At the beginning, just

after the jump, the person is in just the sort of free-fall,

accelerated motion discussed in Chapter 2. But the force of air

friction on the skydiver increases with speed. Eventually, the

upward fHctional force becomes large enough to cancel the

downward force of gravity (which is the force you experience as

your weight). Under these conditions, the skydiver is in

equilibrium, going at a constant (terminal) speed, kept from

accelerating by friction with the air going by. The net force is

zero, just as it is when you are lying still in bed.

The speed at which this equilibrium occurs for a falling person

without a parachute is veiy high. When the parachute is opened,

its large area adds greatly to the friction, and therefore

equilibrium is established at a much smaller terminal speed.

-^"
^Jf.f^^^
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4. A vase is standing, at rest on a table. What forces would you

say are acting on the vase? Show how each force acts (to some
scale) by means of an arrow. Can you show that the sum of the

forces is zero?

5. In which of these cases do the forces cancel?

if

6. What is 3 plus 3? What is 3 north plus 3 south? What is 4

plus 2? What is 4 up plus 2 down? What is 4 in plus 2 in?

7. If an object esperiences forces of 5 N right and 3 \' left, is it

in equilibrium? What is the definition of equilibrium? Does an

object in equilibrium have to be at rest?

3«4r About vectors

The method for representing forces by arrows really can predict

whether the forces cancel and will leave the object in

equilibrium. It will also show whether any net force is left over,

causing the object to accelerate. You can demonstrate for

yourself the reliability of the addition rule by doing a few

experiments. For example, you could attach three spring scales

to a ring. Have three persons pull on the scales with forces that

just balance, keeping the ring at rest. While they are pulling, read

the magnitudes of the forces on the scales and mark the

directions of the pulls. Then make a sketch with arrows

representing the forces, using a convenient scale, and see

whether they total zero. Many different experiments of this kind

ought all to show a net force equal to zero.

It is not obvious that forces should behave like anT)ws. But

arrows drawn on paper happen to be useful for calculating how
forces add. (If they were not, we simply would look for other

svnnbols that did work.) Forces belong in a class of concepts

called vector quantities, or just vectors for short. Some
characteristics of vectors are easy to represent by arrows. In

particular, vector quantities have magnitude, which can be

represented by the length of an arrow drawn to scale. They also

have direction, which can be showii by the direction of an arrow.

By experiment, we find that vectors can be added in such a way
that the total effect of two or more can be represented b\' the

head-to-tail addition of arrows. This total effect is called the

vector resultant, or vector sum.

74 IMF 1 COVCKPiS ()l MOi l()\



In the example of the tug-of-war, you determined the total

effect of equally large, opposing forces. If two forces act in the

same direction, the resultant force is found in much the same
way, as shown below.

If two forces act as some angle to each other, the same type of

sketch is still useful. For example, suppose two forces of equal

magnitude are applied to an object at rest but free to move. One
force is directed due east and the other due north. The object

will accelerate in the northeast direction, the direction of the

resultant force. (See sketch in the margin.) The magnitude of the

acceleration is proportional to the magnitude of the resultant

force, shown by the length of the arrow representing the

resultant.

The same adding procedure works for forces of any magnitude

and acting at any angle to each other. Suppose one force is

directed due east and a somewhat larger force is directed

northeast. The resultant vector sum can be found as shown
below.

Any vector quantity is indicated by

a letter with an arrow over it, for

example, F, a, or v.

To summarize, a vector quantity has both direction and
magnitude. Vectors can be added by constructing a head-to-tail

arrangement of vector arrows (graphical method) or by an

equivalent technique known as the parallelogram method, which
is briefly explained in the marginal note at the right. (Vectors also

have other properties which you will study if you take further

physics courses.) By this definition, many important concepts in

physics are vectors, for example, displacement, velocity, and
acceleration. Some other physical concepts, including volume,

distance, and speed, do not require a direction, and so are not

vectors. Such quantities are called scalar quantities. When you
add 10 liters (L) of water to 10 L of water, the result is always 20

L; direction has nothing to do vWth this result. Similarly, the tenn

speed has no directional meaning; it is simply the magnitude of

the velocity vector. Speed is shown by the length of the vector

arrow, wdthout regard to its direction. By contrast, suppose you

You can use equally well a graphi-

cal construction called the "paral-

lelogram method." It looks differ-

ent from the "head-to-tail" method,
but is really exactly the same. In the

parallelogram construction, the

vectors to be added are represented

by arrows joined tail-to-tail instead

of head-to-tail, and the resultant is

obtained by completing the diago-

nal of the parallelogram. (See SG 6.1
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add two forces of 10 X each. The lesiiltant force may be

anwvhere between and 20 i\', depending on the direction of the

two indixidual forces.

In Sec. 1.8, acceleration was defined as the rate of change of

speed. That was onl\ partly correct because it was incomplete.

We must also consider- changes in the direction of motion as

well. Acceleration is best defined as the rate of change of velocity,

where velocitv is a vector- ha\ing both niiignitude and direction.

In symbols this definition may be written

- - ^
^" ~

At

where Av is the change in xelocity. Velocity' can change in two

ways: by changing its magnitude (speed) and by changing its

direction. In other' words, an object is acceler'ating when it

speeds up, slows down, or changes dir^ection. This definition and
its important uses will be explor^ed mor'e fully in later- sections.

Because constant \elocity means
both constant speed and constant

direction, we can write Mewlon's
first law more concisely:

V = constant

if and only if

F
,
=

net

This statement includes the condi-

tion of rest, since r'est is a speciiil

case of unchanging velocity, the

case where v = 0.

# 8. Classijy each of the following as vectors or scalars: (al 2 m
up; (b) volume; (c) 4 sec; (d) 3 m/sec west; ((e) 2 m/sec'; (f)

velocity.

9. List three properties of vector quantities.

10. How does the new definition of acceleration given above

differfrom the one used in Chapter 1?

3.S
I

Neivton's first laiv of motion

You probably were surprised when you first watched a moving

dry-ice disk or some other nearly frictionless objec't. Remember
how smoothly it glided along after the slightest .slio\e? How it

showed no sign of slowing douTi or speeding up? From your

everyday experience, you automatically think that some force is

constantly needed to keep an object mo\ ing. But the disk does

not act according to common-sense Aristotelian expectations. It

is always surpr-ising to see this for the first time.

In fact, the disk is beha\ing quite naturally. If the for^ces of

friction were absent,, a gentle push would send tables and chairs

gliding across the floor like drA'-ice disks. Neulon's fir-st law

directly challenges the Aristotelian idea of what is "natur-al." It

declares that the state of rest and the state of uniforrn,

unaccelerated motion in a straight line ar-e equalK' natural. Only

the existence of some force, friction for- example, keeps a moving

object from moving /brever! Newton's first law of motion can be

stated in modem language as follows:

E\'ety object continues in its state of rest or of uniform

rectilinear istraigbt-line) motion unless acted upon b\' an
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unbalanced force. Conversely, if an object is at rest or in

uniform rectilinear motion, the unbalanced force acting upon it

mvist be zero.

In order to understand the motion of an object, you must take

into account all the forces acting on it. If all forces (including

friction) are in balance, the body will be moving at constant v.

Although Newton was the first to express this idea as a general

law, Galileo had made similar statements 50 years before. Of

course, neither Galileo nor Newton had dry-ice disks or similar

devices. Therefore, they were unable to observe motion in which

friction had been reduced so greatly. Instead, Galileo devised a

thought experiment in which he imagined the friction to be zero.

This thought experiment w^as based on an actual observation.

If a pendulum bob on the end of a string is pulled back and

released from rest, it wall swing through an arc and rise to very

nearly its starting height. Indeed, as Galileo showed, the

pendulum bob will rise almost to its starting level even if a peg is

used to change the path as shown in the illustration below.

d-

A
/

O

SG 8

From this observation Galileo went on to his thought

experiment. He predicted that a ball released from a height on a

frictionless ramp would roll up to the same height on a similar

facing ramp. Consider the diagram at the top of the next page. As

the ramp on the right is changed fi^om position (a) to (b) and
then to (c), the ball must roll farther in each case to reach its

original height. It slows down moie gradually as the angle of the

incline decreases. If the second ramp is exactly level, as shown
in (d), the ball can never reach its original height. Therefore,

Galileo believed, the ball on this frictionless surface would roll on
in a straight line and at an unchanged speed forever. This could

be taken to mean the same as Newton's first law. Indeed, some
historians of science do give credit to Galileo for having come up
with this law first. Other historians, however, point out that

Galileo thought of the "rolling on forever " as "staying at a

constant height above the earth." He did not think of it as

"moving in a straight line through space."

This tendency of objects to maintain their state of rest or of

unifomi motion is sometimes called the principle of inertia.

Inside the laboratory there is no
detectable difference between a

straight (horizontal) line and a con-

stant height above the earth. But on
a larger scale, GalUeos eternal roll-

ing would become motion in a cir-

cle around the earth. Newton made
clear what is really important: In

the absence of the earth's gravita-

tional puU or other external forces,

the bfill's undisturbed path would
extend straight out into space.
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Newton's first law is therefore sometimes referred to as the law of
inertia. Inertia is a property of all objects. Material bodies have,

so to speak, a stubborn streak concerning their state of motion.

Once in motion, they continue to move with unchanging velocitv'

(unchanging speed and direction) unless acted on by some
unbalancx^l external force. If at rest, they i-emain at rest. This

tendency is what m^ikes seat belts so necessaiy when a car stops

very suddenly. It also explains why a car may not follow an icy

road around a turn, but tiaxcl a straightei' path into a field or

fence. Ihe greater the inertia of an object, the greater its

resistance to change in its state of motion. Therefore, the greater

is the force needed to produce a change in the state of its

motion. For example, it is more difficult to start a train or a ship

and to bring it up to speed than to keep it going once it is

mox'ing at the desired speed. (In the absence of frictiorn, it would

keep moving without any applied force at all.) For- the same
reason it is also difficult to bring it to a stop, and passengers and

cai^go keep going for-war'd if the xehicle is suddenK' br'aked.

Newton's first law says that if an object is mo\ing with a

constant speed in a straight line, the forces acting on it must be

balanced; that is, the object is in ecjuilibrium. Does this mean
that in Nevvlonian physics the state of rest and the state of

unifonn motion are equivalent? It does indeed! If a body is in

equilibrium, v = constant. Whether' the \alue of this constant is

zer o or- not depends in any case on the frame of reference foi-

measuring the magnitude of v. You can say whether a body is at

rest or- is moxing with constant v lar-ger than zei'o orily by

reference to some other- body.

Take, for example, a tug-of-war. The two teams are sitting on

the deck of a bar-ge that is dr-ifting with unifor-m \elocit\' down a

lazy river. An observer- on the same barge and one on the shore

repor^t on the incident. Each observes from a particular frame of

r-eference. The observer on the bar'ge repor^ts that the forces on

the rope are balanced and that it is at rest. The observer on the

shore reports that the forces on the rope are balanced and that il

is in unifor-m motion. Which observer- is right? They are both

light; Newton's fiist law of motion applies to both observations.

Whether a body is at rest or in unifbr-m motion depends on

which fr'arrie of r^efer-encx^ is used to obseiAe the event. In both

(-as(^s, the for-ces on the objec-t inx'ohed are balanc(Hi.
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11. How would Aristotle have explained the fact that a bicyclist

must keep pedaling in order to move with uniform speed? How
would Newton explain the same fact? IfAristotle's e^cplanation

is "wrong, " why do you think you study it?

12. What is the net force on the body in each of the four cases

sketched in the margin ofpage 80?

13. What may have been a difference between Nen^on's

concept of inertia and Galileo's?

3*6
I

The significance of the first law

Newton's laws invohe many deep philosophical concepts. (See

SG 7.) However, the laws are easy to use, and you can see the

importance of Newton's first law without going into any complex

ideas. For convenience, here is a list of the important insights the

first law provides.

1. It represents a break with Aristotelian physics: The 'natural"

motion, the motion that needs no further explanation, is not a

return to a position of repose at an appropriate place. It is^

rather, any motion that takes place with a uniform velocity.

2. It presents the idea of inertia, that is, of the basic tendency

of all objects to maintain their state of rest or uniform motion.

3. It says that, ft^om the point of view of physics, a state of rest

is equivalent to a state of unifomi motion at any speed in a

straight line. There is nothing "absolute " or specially

distinguished about any one of the states, uniform motion or

rest. This raises the need to specil\' a "frame of reference " for

describing motion, since an object that is stationarv' with respect

to one obseiA'er, or frame of reference, can be in motion v\ith

respect to another.

4. It, like the other physical law^s, is a universal law, claiming to

be valid for objects anvwhere in the universe. That is, the same
law applies on the earth, on the moon, throughout the galaxy,

and beyond, and the same law applies to the motions of atoms,

magnets, tennis balls, stars, and every other thing. (A rather

grand claim, but, as far as we can tell, a valid one.)

5. The first law describes the behavior of objects when no net

force acts on them. Thus, it sets the stage for the question:

Exactly what happens when an unbalanced force does act on an

object?

Of course , the idea of inertia does

not explain why bodies resist change
in their state of motion. It is simply
a term that helps us to talk about

this basic, e.xperimentaUy observed

fact of nature. (See SG 10.1

The correct reference frame to use

in our physics turns out to be any
reference frame that is at rest or in

uniform rectilinear motion with re-

spect to the stars. Therefore, the

rotating earth is, strictly speaking,

not allowable as a Newtonian ref-

erence frame; but for most pur-

poses the earth rotates so little dur-

ing an experiment that the rotation

can be neglected. (See SG 11.)

3.7 Newton's second laiv of motion
SG 12

In Sec. 3.1, we stated that a theoiy of dynamics must account for

rest, unifomi motion, and acceleration. So far, we have met two
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Feather foiling at nearly
constant- speed

Kite held suspended in the wlr>d

DRAG

PUSH

Athlete running against the
wind

of these three objectives: the explanation of rest and of uniform

motion. In terms of the first law, the states of rest and iiniibini

motion are equivalent.

Neuron's second law provides an answer to the question: What
happens when an unbalanced force acts on an obje(-t.^ Since we
think of the force as causing the resulting motion, this law is the

fundamental law of dvnamics.

In qualitatixe terms, the second lav\' of motion says little more
than this: The necessary and sufficient cause for a deviation fixDm

"natural" motion (that is, motion with a constant or zero velocitv)

is that a nonzero net force act on the object. However, the law

goes further and provides a simple quantitative relation between

the change in the state of motion and the net force. In order to

be as clear as possible about the meaning of the law, we will first

consider a situation in which different forces act on the same
object; we will then consider a situation in which the same force

acts on different objects; finally, we will combine these results

into a general relationship.

Force and acceleration: The acceleration of an object is directly

proportional to, and in the same direction as, the net force acting

on the object. Note that force and acceleration are both vector

quantities. Since acceleration is the rate at which velocity

changes, the force is proportional to the change in the velocity;

the faster or the greater the change, the larger the force must be.

If a stands for- the acceleration of the object and F
,^.,

stands for

the net force on it, the relationship is

I'his relationship is equivalent to the statement above if it is also

understood that when vectors are proportional, they must point

in the same direction as well as have proportional miignitudes.

To say that tvvo quantities are proportional means that if one

quantity is doubled lor multiplied by any numberl, the other-

(juantity is also doubled lor mirltiplied by the same number).

1 bus, for example, if a certain force produces a certain

acceleration, Uvice the force Ion the same object) v\'ill produce

twice as great an acceleration in the same direction. In symbols,

for the same object,

if F„,., will cause a, then

2 F
,^.,

will cause 2a

'/2F„g,will cause Vza

5.2 F„^, wall cause 5.2a

;cF„^,,will cause ^a

It is easy to perform a rough experiment to test this law . Place

a dry-ice disk or other nearly frictionless object on a flat table,

attach a spring balance, and pull with a steady for'ce so that it

accelerates continuously, i he pull registered In the balance is
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the only unbalanced force, so it is the net force on the object.

You can determine the acceleration by measuring the time to go

a fixed distance la oc y, t'}. Repetitions of this experiment should

show Fj^p, ^ a, to within experimental error; at least, they have

shown it whenever such an experiment was done in the past.

Mass and acceleration: The acceleration ofan object is inversely

proportional to the mass of the object; that is, the larger the mass

of an object, the smaller will be its acceleration if a given net

force is applied to it. The mass of an object is therefore what

determines how large a force is required to change its motion; in

other words, the mass of an object is a measure of its inertia. It SG 13

is sometimes called inertial mass, to emphasize that it measures

inertia. Mass is a scalar quantity (it has no direction), and it does What does it mean to say that mass

not affect the direction of the acceleration. is a scalar quantity?

The relation between acceleration and mass can be ua itten in

symbols. Let a stand for the acceleration (the magnitude of the

acceleration vector a) and m stand for mass. Then, See Sec. 3.4.

1
a a —

m

as long as the same net force is acting. Notice that an object with

twice (or three times . . .) the mass of another will experience one

half (or one third . . .) the acceleration if subjected to the same
net force; that is, for the same net force.

if



Since there are no otlier- factors to be (-onsidered, we can make
the proportionality into an equiility; that is, ue can write

m

= 1.

Actually, from a « ^'„,,/"i 't follows

that a = k (F_,./m), where k is a (;on- 3 =

stant. But by choosing tiie units for

a, F, and m pvopv.rW, we ha\(! set k ^he same relationship can, ot course, also l)c written as the

famous equation

In both these equations we have again written F,
.,
to emphasize

that it is the net for'ce that cl(!t(Mniin(!s the; acce^leration.

This relationship is probably tlu; most basic; e(}uation in

mechanics and, therefore, in physics. Without symbols we can

state it as follows. Newton's second hnv: The net force on an

object is numerically equal to, and in the same direction as, the

acceleration of the object multiplied by its mass. It does not

matter" whethtM' the; forcx^s that act are magnetic, gia\ itational,

simple pushes and pirlls, or- any comljination; whetiier- the

masses are those of electrons, atoms, stars, or cars; whether the

acceleration is large or- small, in this direction oi' that. The law-

applies universally.

Measuring mass andforce. We have already mentioned a

method of mcasirring for'ce and have used it in talking about

Newton's first law. The method is based on the fact that the

extension of a spr ing (as long as it is not stretched or bent out of

shape) is propor^tional to the for'ce. Thcr^efore, you can use a

spring balance to measure forces. A force that is twice as big as

another" will stretch the same spring twice as far". 1 he spring

balance must be c^aliljrated but that can be d(jn(> aft(M" the units

of mass have been detined.

Measuring mass lor inertia) is quite different fr"om measuring

forx;e. When you think of measuring mass, you might first think

of weighing it. But if you take apart a typical scale (the kitchen or"

bathroom variety, for example) you will find that it is usually just

a spr"ing balance. They measur"e a force and not the inertia of an

object. The force they measure, called weight, is the graxitational

force exerted on the object by the earth. If you stand on your

bathroom scale on the moon, it will show a much smaller weight,

but you will have just the same mass, or" inertia.

You will need to calibrate the spring balance, that is, to decide

how mu(ii stretch of the spring corresponds to one unit of for'ce.

In modern practice, this decision is made after- deciding how to

measure masses.

A reminder": When we sp(Mk of the mass of a IkkIv, we mean
its iner-tia, not its weight. The difference will be discussed in

more detail in Sec. 3.8 and Chapter 8. For now you can get a

quick feeling for" the difference berv\-c;en the two In thinking of an

expcM-imc;nt in a spacc^craft that is mo\ ing witb constant \cic)cit\ .

SG 15

SG 18
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far from the earth or other planets. Suppose you are trying to

move a puck on a table inside the spacecraft, as in the

experiment in the photograph on p. 11. You find that the push
needed to bring the puck up to a given speed on its table is just

the same as on earth. The mass of an object is a measure of its

inertia, its resistance to changes in motion; and that is the same
for that object everywhere . The weight, on the other hand,

depends on its location, for example, on how close the object is

to a planet that exerts the gravitational pull called weight. When
the spacecitift reaches outer space, the weight of an object

becomes negligible, but its mass or inertia remains the same.

This fact suggests that the wise thing to do is to choose the

unit of mass first, and let the unit of force follow later. The
simplest way to define a unit of mass is to choose some
convenient object as the universal standard of mass, and
compare the mass of all other objects with that one. What is

selected to seiA^e as the standard object is arbitrary. In

Renaissance England the standard used was a grain of barley

("from the middle of the ear"). The original metric commission in

France in 1799 proposed the mass of a cubic centimeter of water

as a standard. Today, for scientific puiposes, the standard mass
is a cylinder of platinum-iridium alloy kept at the International

Bureau of Weights and Measures near Paris. The mass of this

cylinder is defined to be 1 kilogram I kg), or 1,000 grams (g).

Accurately made copies of this cylinder are used in various

standards laboratories throughout the world to calibrate

precision equipment. Further copies are made from these for

distribution.

The same international agreements that have established the

kilogram as the unit of mass also established units of length and
time. The meter (m) was originally defined in terms of the

circumference of the earth, but modem measurement techniques

make it more precise to define the meter in tenns of the

wavelength of light, generated in a specific way. The second of

time (often abbreviated sec, the official svmbol is s) was also

originally defined with respect to the earth las a certain fraction

of the year), but it, too, is now more precisely defined in temis

of light waves emitted by a specific group of atoms. The meter
and second together determine the units of speed Im/sec) and
acceleration (m/sec^).

With these units, you can now go back and calibrate the spring

balances used for measuring force. The unit of force, 1 newton
(N), is defined to be the force required to give an acceleration of 1

m/sec" to a mass of 1 kg. Because of Neuron s second law (F,,^,

= ma],

1 N = 1 kg X 1 m/sec' = 1 kg m/sec""

Imagine now, step by step, how you would calibrate a spring

balance. To begin, take a 1-kg standard object. Put it on a

The standard kilogram at the U.S.

Bureau of Standards.

The mass of 1 cm' of water is 1

gram (g) (approximately). The mass
of 1 liter (L) of water is just about

1,000 g, or 1 kg.

SG 16

1 m/sec' is an acceleration of one
meter per second per second. For
comparison, note that the acceler-

ation in free fidl on earth is about
10 m/sec\ The sec' means that di-

vision by time units occurs twice.

SG 17, 18

In this equation we use only the
magnitudes; the direction is not
part of the definition of the unit of
force.
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frictionless horizontal surface. Attac^h the spring halance, and
pull hoiizontally. Ihe net force on the object, supplied by the

spring balance, is the net force. Pull steadily to get an

acceleration of 1 msec". Mark the place to which the pointer of

the stretched balance pointed as "1 i\.' Repeat the procedure

vvdth an acceleration of 2 m/sec", to get 2 N, etc. Of course, once

this is done, other spring balances can be more easily calibrated,

for example, by hooking a pair together, one of which is

calibrated, and pulling. (Complete this "thought experiment.")

SI stands for Systeme Internation- The kilogram, together with the meter and second, are the

3/e. fundamental units of the "mks' system of measurement; together

with units for light and electricity, the mks units form the

International System of units ISH. Other systems of units are

possible. But since the ratios between related units aie more
SG 19-22 convenient to use in a decimal system, all scientific and

technical work, and most industiial work, is now done with SI

units in most countries, including the United States.

P
# 14. What combination of the three fimdamental units is

represented by the newton, the unit offorce?

15. A net force of 10 N gives an object a constant acceleration

of 4 m/sec'. What is the mass of the object?

16. True or false? Newton's second law holds only when

frictional forces are absent.

17. A 2-kg object being pulled across thejloor with a speed of

10 m/sec is suddenly released and slides to rest in 5 sec. What

is the magnitude of the frictional force producing this

deceleration?

18. Newton's second law, a = F/m, claims that the

acceleration ofan object depends on three things. What are

they?

19. Complete the table below which lists some accelerations

resultingfrom applying equal forces to objects of different

mass.

MASS



3«8
I

Mass, iveight, and free fall

You will now examine some more details concerning the veiy

important topic of mass and weight and how they are related.

The idea of force in physics includes much more than muscular

pushes and pulls. Whenever you obsewe an acceleration, you

know that there is a force acting. Forces need not be

"mechanical" (exerted by contact only). They can also result fi'om

gravitational, electric, magnetic, or other actions. Newton's laws

hold true for all forces.

The force of gravity acts between objects even without direct

contact. Such objects may be separated by only a few meters of

air, as is the case with the earth and a falling stone. Or they may
be separated by many kilometers of empty space, as are artificial

satellites and the earth.

The symbol F^ is used for gravitational force. The magnitude of

the gravitational pull F^ is roughly the same anywhere on the

surface of the earth for a given object. When we wish to be veiy

precise, we must take into account the facts that the earth is not

exactly spherical and that there are irregularities in the makeup
of the earth's ciust. These factors cause slight differences (up to

0.5%) in the gravitational force on the same object at different

places on the earth. An object having a mass of 1 kg will

experience a gravitational force of 9.812 N in London, but only

9.796 N in Denver, Colorado. Geologists make use of these

variations in locating oil and othei- mineral deposits.

The term weight is sometimes used in eveiyday conversation

as if it meant the same thing as mass. This is quite wi^ong, of

course. In physics, the weight of an object is defined as the

magnitude of the gravitational force acting on the body. Your

weight is the downward force the planet exerts on you whether

you stand or sit, fly or fall, orbit the earth in a space vehicle, or

merely stand on a scale to "weigh ' yourself. Only in interstellar

space, far from planets, would you truly have no weight.

Think for a moment about what a scale does. The spring in it

compresses until it exerts on you an upward force strong

enough to hold you up. So what the scale registers is really the

force with which it pushes up on your feet. When you and the

scale stand still and are not accelerating, the scale must be

pushing up on your feet wdth a force equal in magnitude to your

weight. That is why you are in equilibrium. The sum of the

forces on you is zero.

Now imagine for a moment a ridiculous but instructive

thought experiment. As you stand on the scale, the floor (which,

while sagging slightly, has been pushing up on the scale)

suddenly gives way. You and the scale drop into a deep well in

free fall. At every instant, your fall speed and the scale's fall

speed will be equal, since you fall with the same acceleration.

Alice falling down the rabbit hole,

by Willy Pogany (19291.

In a few physics books, weight is

defined as the force needed to sup-

port an object. In that case, you
would be "weightless " if you were
falling freely. We avoid this usage.
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ConsidcM' SG 16 iigain.

Some books
stead of a .

use the sxanbol g in-

Vour feet now toiicli the scale only l)arel\ lif at alh. \ou look at

the dial and see that the scale registers zero. This does not mean
\oLi iia\e lost \'our weight: that could onl\ hapjjen if the earth

suddenly disapjjeared or if yon were snckientK renuned to deep

space. No, F^ still acts on you as hefore, accelerating you
downward. But since the scale is acc(!lerating with you, you are

no longer pushing dovxn on it, nor is it pushing up on voir

You can experience firsthand the difference between the

properties of WfMght and mass h\ h(jlding a hook. First, la\ the

hook on yuuv hand; \'ou feel th(^ weight of the hook acting dowii.

Next, grasp the hook and shake; it hack and forth. Wm still feel

the weight downward, hut xou also feel how hard it is to

acceleiate the hook bac'k and forth. This resistance to

acceleration is the book's iiKMtia. \ou couki Cancer [hv

sensation of tht> hook's \\riu,ht by hanging the book on a sti'ing,

but the sensation of its inertia as \ou shake it would remain the

same. Ibis is only a crude dcnnonstration. More elaborate

experiments would shov\', howexer, that weight can (change

without any change of mass. Thus, when an astronaut on the

moon's suiface uses a large (uuiiera, the camera is much easier

to hold than on earth. In terms of tbt; moon's gra\it\', the

camera's \veis,ht is an\y '/(; of its weight on earth. But its mass or

inertia is not less, so it is as hard to swing the camer-a around

suddenly into a new position on the moon as it is on earth.

You c;an nov\- understand more clearK' the rt^sirlts of Galileo's

experiment on falling objects. Galileo showed that any given

object (at a gixen localitx i falls with unifor-m acceleration, a„.

\\ hat is responsible tor- this uniform aci^eleration.^ Since the

object is in free fall, the onl\ force acting on it is F,, due to the

eaith's grax'ity. Nev\1on's second law allows us to relate this foi'ce

to the acceleration a^ of the object. Applying the eqiraticjn F,,^., =

nin to this case, where F^^,, = F^ and a and a^, we can write

We can, of course, r'ewrite this ec|uation as

From Newton's second law, \'ou can now see why the

acceleration of a body in free fall is ccjnstant. Vhc reason is that,

for- an object of gi\en mass ni, the graxitational force F^ oxer

normal distances of fall is nearly constant.

Cialileo, howexer-, did more than claim that exerA' object falls

xvith cnnstnnt acceleration. Ik; k)irnd that at an\ one place all

objects fall xxith the same uniform acc(;l(Mation. ScicMitists noxv

knoxv that at the earth's surface this acceleration has [Uv \alue of

[).H m/sec". Regardless of the mass m or xveight F^, all i)odi(;s in

free fall (in the same locality) have the same acceleration a^.
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Does this agree with the relation a^ = F^Jm? It does so only if

F^ is directly proportional to mass m for eveiy object. In other

words, if m is doubled, F^ must double; if m is tripled, F must
triple. This is an important result indeed. Weight and mass are

entirely different concepts. Weight is the gra\dtational force on an

object (thus, weight is a vector). Mass is a measure of the

resistance of an object to a change in its motion, a measure of

inertia (thus, mass is a scalar). Yet, you have seen that different

objects fall freely vvdth the same acceleration in any given locality.

Thus, in the same locality, the magnitudes of these two quite

different quantities are proportional.

• 20. What quality of an object is measured by weight; what

quality is measured by mass':^ Using both words and symbols,

define weight and mass.

21. The force pulling domi on a hammer is more than 20

times the force pulling down on a nail. Why, then, do a

hammer and a nail fall with nearly equal acceleration^

22. If a 30-N force is applied to an object whose mass is 3 kg,

what is the resulting acceleration^ If the same force is applied

to the object on the moon, where the object's weight is one

si}:th of its weight on earth, what is the acceleration':^ What is

the acceleration in deep space where the object's weight is

zero?

23. An astronaut has left the earth and is orbiting the earth

with a space vehicle. The acceleration due to gravity at that

distance is half its value on the surface of the earth. Which of

the following are true?

(a) The astronaut's weight is zero.

(b) The astronaut's mass is zero.

(c) The astronaut s weight is half its original value.

(d) The astronaut's mass is half its original value.

(e) The astronaut's weight remains the same.

(fj The astronaut's mass remains the same.

3.9
I

Newton's third laiv of motion

In his first law, Newton described the behavior of objects when
they are in a state of equilibrium, that is, when the net force

acting on them is zero. His second law explained how their

motion changes when the net force is not zero. Newton's third

law added a new and surprising insight into forces.

Consider this problem: In a 100-m dash, an athlete goes from

lest to nearly top speed in less than a second. We could measure

Wiliuii Ihidolph at ttie start of the

200-m sprint in which she set an

Olympic record of 23.2 sec.

CHAPTER 3 / THE BIRTH OF DYIVAMICS 87



The runner is, to be sure, pushing

against the ground, but thai is a

force acting un the ground.

the runner's mass before the dash, and we could use high-speed

photography to measure the initial acceleration. With mass and

acceleration known, we could use F,,,., = ma to find the force

acting on the injnner during the initial acceleration. But where

does the force come from? It must have something to do with

the iTjnner herself. Is it possible for her to exert a force on

herself as a whole? Can she, for example, ever lift herself by her

ov\Ti bootstraps?

Newton's third law of motion helps explain just such puzzling

situations. First, what does the third law claim? In \e\\1on's

words:

SG 27

In the collision between the tennis

ball and the racket, the force the

ball exerts on the racket is equal

and opposite to the force the

racket everts on the ball. Both the

racket and the ball are deformed
bv the forces acting on them (see

diagram).

To every action there is always opposed an equal reaction: or,

mutual actions of tvvo bodies upon each other are always equal

and directed to contrary parts.

This is a word-for-word translation fiom the Principia. In

modern usage, however, we would use force where Nev\^on used

the Latin word for action. So we could rewrite this passage as

follows: If one object exerts a force on another, then the second

also exerts a force on the first; these forces are equal in

magnitude and opposite in direction.

The most startling idea in this statement is that forces always

exist in mirror-twin pairs and act on two different objects.

Indeed, the idea of a single force acting without another force

acting somewhere else is without any meaning whatsoever.

Now apply this idea to the athlete. You now see that her act of

pushing with her feet back against the ground (call it the action)

also involves a push of the ground forward on her (call it the

reaction). It is this reaction that propels her forward. In this and

all other cases, it really makes no difference which force you call

the action and which the reaction, because they occur at exactly

the same time. The action does not "cause " the reaction. If the

earth could not "push back " on her feet, the athlete could not

push on the earth in the first place. Instead, she would slide

around as orn slippery ice. Action and reaction coexist. You

cannot have one without the other. Most important, the two

forces are not acting on the same body. In a way, they are like

debt and credit. One is impossible without the other; they ar^e

equally large but of opposite sign, and the\' happen to two

different objects.

OrT this point Newton wrote: "VVhatexer dr^aws or' pr'esses

another- is as much drawn or' pr'essed by that other-. If \'ou pi"ess

a stone with your finger, the finger is also pressed by the stone."

This statement suggests that for^ces always arise as a result of

nurtual actions ("interactions "i between objects. If object A
pushes or pulls on B, then at the same time object B pushes or

}3ulls with precisely equal for^ce on A. These pair-ed pulls and

pushes are always ecjual in magnitude, opjiosite in clireH'tioii <»/((/
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on two different objects. Using the efficient shorthand of algebra

to express this idea, whenever bodies A and B interact,

F„, =

This equation clearly sums up Newton's third law. A modern

way to express it is as follows: Whenever two bodies interact, the

forces thev e^iert on each other are equal in magnitude and

opposite in direction.

Every day you see hundreds of examples of this law at work. A
boat is propelled by the water that pushes forward on the oar

while the oar pushes back on the water. A car is set in motion by

the push of the ground on the tires as they push back on the

ground; when fiiction is not sufficient, the push on the tires

cannot start the car forward. While accelerating a bullet foiAvard,

a rifle experiences a recoil, or "kick. " A balloon shoots foiTvard

while the air spurts out from it in the opposite direction. Many
such effects are not easily observed. For example, when an apple

falls, pulled down by its attraction to the earth, i.e., by its weight,

the earth, in turn, accelerates upward slightly, pulled up by the

attraction of the earth to the apple.

Note what the third law does not say. The third law speaks of

forces, not of the effects these forces produce. Thus, in the last

example, the earth accelerates upward as the apple falls dovvTi.

The force on each is equally large. But the accelerations

produced by the forces are quite different. The mass of the earth

is enormous, and so the earth's upward acceleration is far too

small to notice. The third law also does not describe how the

push or pull is applied, whether by contact or by magnetic

action or by electrical action. Nor does the law require that the

force be either an attraction or repulsion. The third law in fact

does not depend on any particular kind of force. It applies

equally to resting objects and to moving objects, to accelerating

objects as well as to objects in uniform motion. It applies

whether or not there is fiiction present. This universal nature of

the third law makes it extremely valuable in physics.

Force on ba I) due
to racket

For'c$ on racket
due -to bull

.

foxi.e- on car'h force on mooh.

The force on the moon owing to

the earth is equal and opposite to

the force on the earth owing to

the moon.

Z4. Two objects are next to one another; one object everts a

force of 3 N to the right on the other object. Describe the

three qualities of the second force that is immediately present

according to Newton s third law.

25. Identify the forces that act according to Newton's third law

when a horse accelerates. When a swimmer moves at constant

speed.
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26. A piece of fishing line breaks if the force e^ierted on it is

greater than 500 A'. Will the line break if two people at

opposite ends of the line pull on it, each with a force of 300 N?

27. State Newton's three laws of motion as clearly as vou can

in your own words.

3.1.0
I

Using Neiiton's laivs of motion

Each of Newton's three laws of motion has heen discussed in

some detail. The first law emphasizes the modern point of view

in the study of motion. It states that what requires explanation is

not motion itself, but change of motion. The first law stresses that

one must account for why an object speeds up or slows down
or changes direction. The second law asserts that the rate of

change of velocity of an object is related to both the mass of the

object and the net force applied to it. In fact, the very meanings

of force and mass are shown by the second law to be closely

related to each other. The third law describes a relationship

SG 29-31, 34 between interacting objects.

Despite their individual importance, Newton's three laws are

most powerful when they are used together. The mechanics

based on Newton's laws was very successful. Indeed, until the

late nineteenth century it seemed that the entire univer'se must
be understood as "matter in motion. " Below are two specific

examples that illustrate the use of these laws.

E^cannple 1

On September 12, 1966, a dramatic experiment based on

Newton's second law was carried out high over the earth. From a

previous space flight, a spent piece of an Agena r'ocket was
quietly floating in its orbit ar^ound the Earth. In this experiment,

the mass of the Agena piece was detemiined by acceler ating it

with a push from a Gemini spacecraft. After the Gemini

spacecraft made contact with the Agena rocket case, the

thrusters on the Gemini were fired for 7.0 sec. These thrtisters

wer-e set to give an average thrusting force of 890 N. The change

in velocity of the spacecraft and Agena was found to be 0.93 m/
sec. The mass of the Gemini spacecr^aft was known to be about

3,400 kg. The question to be answered was: What is the mass of

the Agena?

(Actually, the mass of the Agena was known ahead of time,

from its constrtiction. But the purpose of the experiment was to

develop a method for- finding the unknown mass of a foreign

satellite in orbit.

I

In this case, a known force of magnitude 890 N was a( ting on

two objects in contact, with a total mass of m,
,,,,

where
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'^total ^Gemini """ ^Agena

= 3,400 kg + mAgena

The magnitude of the average acceleration produced by the

thrust is found as follows:



f„„. = o

I

'-y

^net =

(A) (B) (C)

(AJ At rest (Bl Accelerating upward
(C) Rising at constant speed

In Part IBI, since the man is accelerating upward, there must

be a net force upward on him. The unbalanced force is

^ne, = ^^up

= 100 kg X 2 m/sec'

= 200 N

SG 32 is an elaboration of a similar Clearly, the floor must be pushing up on him with a force 200 N
example. For a difficult, worked- greater than what is required just to balanc:e his weight.
out example, see SG 33.

Therefore, the total force upward on him is 1,200 N.

• 28. What force must the runner's legs produce in order to

accelerate a 70-kg runner at 3 m/sec'? (Ignore air resistance or

other effects.)

29. An object with a mass of 3 kg is pulled down with a force

of 29.4 N. What is the acceleration? What is the weight of the

object?

3*1.1. Nature's basic forces

The study of Newton's laws of motion has increased your

understanding of objects at rest, moxing uniformly, and

accelerating. However, you have learned much more in the

process. Newton's first law emphasized the importance of ftames

of reference. In fact, an undeistaiiding of the relationship
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between decriptions of the same event seen from different frames

of reference was the necessary first step toward the theory of

relativity.

Newton's second law shows the fundamental importance of

the concept of fo'^ce. It sayS; in effect, "When you observe

acceleration, find the force!" This is how scientists were first

made aware of gravitational force as an explanation of Galileo's

kinematics. They discovered that, at a given place, a^ is constant

for all objects. And since a = F^m by Newton's second law, the

magnitude of F^ is always proportional to m.

But this is only a partial solution. Why is F, proportional to m
for all bodies at a given place? How does F, change for a given

body as it is moved to places more distant ft^om the earth? Is

there a "force law" connecting F^, m, and distance? As Unit 2 will

show, there is indeed. Knowing that force law, you can

understand all gravitational interactions among objects.

Gravitational attraction is not the only basic force by which
objects interact. However, there appear to be very few such basic

forces. In fact, physicists now believe that eveiything obserx'ed

in nature results from only four basic types of interactions. In

terms of present understanding, all ev^ents of nature, from those

among subnuclear particles to those among vast galaxies, involve

one or more of only these few types of forces. There is, of course,

nothing sacred about the number four. New discoveries or

insights into present theories might increase or reduce the

number. For example, two lor more) of the basic forces might

someday be seen as arising from an even more basic force.

The first of the four interactions is the graxatational force. This

force becomes important only on a relatively large scale, when
tremendous numbers of atoms of matter are involved. Between

indi\ddual atoms, gravdtational force is extremely weak. But it is

this v^ery weak force that literally holds the universe together. The

second interaction involves electric and magnetic processes and

is most important on the atomic and molecular scale. It is chiefly

the electromagnetic force that holds together objects in the size

range between an atom and a mountain.

Scientists know the force laws governing gravitational and

electromagnetic interactions. Therefore, these interactions are

fairly well "understood. " Considerably less is known about the

tvvo remaining basic interactions. They are the subject of much
research today. The third interaction (the so-called 'strong

"

interaction) somehow holds the particles of the nucleus together.

The fourth interaction (the so-called 'weak" interaction) governs

certain reactions among subnuclear particles.

There are, of course, other names for forces, but each of these

forces belongs to one of the basic tv^Des. One of the most

common is the "ftictional " force. Friction is thought to be an

electrical interaction; that is, the atoms on the surfaces of the

Einstein spent most of the latter

hcdf of his life seeking a theory that

would express gravitational and
electromagnetic effects in a unified

way. A satisfactory "unified field

theory ' is stUl being sought.

Recently, however, some suc-

cesses have come in an entirely dif-

ferent direction. A theory that con-

siders electromagnetism and weak
interactions to be aspects of the

same fundamental force (in the

way that electricity and magnetism
are different aspects of the same
force) has led to some interesting

experimental predictions that have

been verified. The details must stiU

be worked out.
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"The Starr}' Night, " by Vincent Van

Gogh. The intuitive feeling that all

of nature's phenomena are interre-

lated on a grand scale is shared

bv scientists as well as artists.

objects sliding or rubbing against each other are believed to

interact electrically.

You will encounter these ideas again. The gravitational force is

covered in Unit 2, the electrical and magnetic forces in Units 4

and 5, and the forces between nucleai- paiticles in Unit 6. In all

of these cases, all objects subjected to a force behave in

agreement with Newton's laws of motion, no matter what kind of

force is involved.

The knowledge that there are so few basic interactions is both

surprising and encour^aging. It is surprising because, at first

glance, the events all around us seem so varied and complex. It

is encouraging because it makes the elusive goal of

understanding the events of nature look more attainable.
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stnily
guide

1. The Project Physics learning materials

particularly appropriate for Chapter 3 include the

following:

Experiments

Newton's Second Law
Mass and Weight

Activities

Checker Snapping

Beaker and hammer
Pulls and Jerks

Experiencing Newton's Second Law
Make One of These Accelerometers

Film Loops
Vector Addition: Velocity of a Boat

2. The Aristotelian explanation of motion should

not be dismissed lightly. Great intellects of the

Benaissance, such as Leonardo da Vinci, who among
other things designed devices for launching

projectiles, did not challenge such explanations. One
reason for the longevity of these ideas is that they

are so closely aligned with our common-sense ideas.

In what ways do your common-sense notions of

motion agree with the Aristotelian ones?

3. (a) Explain mechanics, dynamics, and

kinematics.

(b) Classify the followdng values as m, t, d, v, a, or/.

Indicate whether they are scalars or vectors.

(1) 5 m

(2) 2 kg • m/sec' up

(3) 10 m/sec

(4) -8N

(5) 5 kg

(6) 5 m west

(7) + 10 sec

(8) 6 m/sec' left

(9) 4 m/sec down

4. A man walked 3 blocks north, 4 blocks east, 5

blocks south, 1 block west, and 2 blocks north.

(a) Where did he end up?

(b) How far did he walk?

(c) Which part, (a) or (b), is a vector problem? Which
is a scalar problem?

5. Three ants are struggling with a breadcrumb.

One ant pulls toward the east v\ith a force of 8 units.

Another pulls toward the north with a force of 6

units, and the third puUs in a direction 30° south of

west with a force of 12 units.

(a) Using the "head-to-tail" construction of arrows,

find whether the forces balance, or whether there is

a net (unbalanced) force on the crumb.

(b) If there is a net force, you can find its direction

and magnitude by measuring the line drawn from

the tail of the first arrow to the head of the last

arrow. What is its magnitvide and direction?

6. Show why the pcirallelogram method of adding

arrows is geometrically equivalent to the head-to-

tail method.

7. A parachutist whose weight is 750 N falls with

uniform motion. What is the size and direction of

the force of air resistance? How do you know?

8. There are many familiar situations in which the

net force on a body is zero, and yet the body moves

with a constant velocity. One example of such

"dynamic equilibrium" is an automobile traveling at

constant speed on a straight road. The force the road

exerts on the tires is just balanced by the force of

air friction. If the gas pedal is depressed further, the

tires will push against the road harder, and the road

will push against the tires harder. The car vvtII

accelerate forward until the air friction builds up

enough to balance the greater drive force.

Give another example of a body moving with

constant velocity under balanced forces. Specify the

source of each force on the body and, as in the

automobile example, explain how these forces could

be changed to affect the body's motion.
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so
9. Aristotle thought that objects in any kind of

motion and objects at rest represented two different

dynamical situations and had to bo explained

separately. X'ewlon claimed tiiat oijjects in

"equilibrium," moving or not, represented one

dynamical situation.

(a) What is equilibrium?

(b) What are two possible states of motion for

objects in equilibrium?

10. (a) Vou exert a force on a box, but it does not

move. How would you explain this? How might an

Aristotelian explain it?

(b) Suppose now that you exert a greater force and

the box moves. Explain this from your (Newtonian)

point of view and from an Aristotelian point of view.

(c) You stop pushing on the box, and it quickly

comes to rest. Explain this from both the Newlonian

and the AiMstotelian points of view.

11. (a) Assume that the floor of a bus could be

made perfectly horizontc'U and perfectly smooth. A
dry-ice puck is placed on the lloor and given a small

push. Predict the way in which the puck would

move. How would this motion differ if the whole bus

were moving uniformly during the experiment? How
would it differ if the whole bus were accelerating

along a straight line? If the puck were seen to move
in a curved path along the floor, how would you

explain this? From these results, can you argue that

uniform motion and rest reidly represent the same
dynamical situation and are different from

accelerated motion?

(b) A man gently starts a dry-ice puck in motion

while both are on a rotating platform. What will he

report to be the motion he obsen'es as the platform

keeps rotating? How will he explain what he sees if

he believes he can use Nevvlon's first law to

understand observations made in a rotating

reference frame? Will he be right or v\Tong?

12. (a) In terms of Newton's first law, explain:

(1) why people in a moving car lurch forward

when the car suddenly slows dovvai.

(2) what happens to the passengers of a car that

makes a shaip, quick turn.

(b) When a coin is put on a phonograph turntable

and the motor is started, does the coin fly off when
the turntable reaches a certain speed? Why doesn't it

fly off sooner?

13. In an ac^tual experiment on applying the same
force to different masses, how would you know it

was the "same force"?

14. (a) What three things does Newton's second law

tell you about acceleration?

(b) The acceleration of an object is 10 msec" north.

In a second experiment, the force is divided in half

and turned to the east, and the mass is reduced to

one third. What is the object's acceleration now?

15. Several proportionalities can be combined into

an equation only if care is taken with the units in

which the factors are exjiressed. When we vvTote Ad
= V X Af in Chapter 1, we chose meters as units

for d, seconds as units for t, and then made sure

that the equation came out right by using meters per

second as units for v. In other words, we let the

equation define the unit for v. If we; had already

chosen some other units for v, s£iy miles per hour,

then we would have had to write instead something

like

Ad = /c X vAr

where k is a constant factor that matches up the

units of d, t, and v. What value would k have if d
were measured in miles, t in seconds, and i' in miles

per hour?

Writing a = F^^Jm before we have defined units of

F and m is not the very best mathematictd

procedure. To be perfectly correct in expressing

Newton's law, we would have had to write

P
a = k X ^^

m

where k is a universally constant factor that woidd

match up whatever units we choose for a, F, and m.

The SI units have been chosen so that k = \.

16. You can confirm the results of Example 2 in

Sec. 3.10 by taking a bathroom scale into an (^levator.

By how much does your registered "weight " seem
to be increased when the elevator starts to go up
(accelerates upward I? What happcms while it slows to

Ub (;HAi>ri:i{ ;{ sri l)^ (;i ini;



sg
a stop? What happens when it goes up or down at

constant speed? Does your weight recdly change? If

not, why does the scale show what it does?

How would all these measurements differ if this

elevator were in a space vehicle in interstellar space?

17. Ask your instructor for a simple spring balance,

and examine hovA' it works. Then describe as a

thought experiment how you could calibrate the

spring balance in force units. What practical

difficulties would you expect if you actually tried to

do the experiment?

IS. Hooke's law says that the force exerted by a

stretched or compressed spring is directly

proportional to the amount of the compression or

extension. As Robert Hooke put it in announcing his

discover}':

. . . the power of any spring is in tlie same
proportion with the tension thereof: that is, if one

power stretch or bend it one space, two will bend

it twO; three will bend it three, and so forward.

Now as the theor\' is very short, so the way of

trying it is ver\' easie.

You can probably think immediately of how to test

this law using springs and weights.

(a) Tr\' designing such an experiment; then after

checking with your instructor, carry it out. What

limitations do you find to Hooke's law?

(b) How could you use Hooke's law to simplify the

calibration procedure asked for in SG 17?

19. Complete this table:

NET FORCE
(N)

MASS
(kg)

RESULTING
ACCELERATION

(m/secf)

a



Si
sensation you would feel if you were truly without

weight, for example, deep in space far from any star

or planet. iVoii feel the same sensation on jumping

off a roof or a di\ing board, or when somt^one pulls

a chair out from under you.) Can you explain why
your insides react in the same w£iy to lack of \\'eight

and to free fall?

24. (a) A replica of the standard kilogram is

constructed in Paris and then sent to the \ationaI

Bureau of Standards near Washington, D.C.

Assuming that this secondary' standard is not

damaged in transit . what is

(1) its mass in Washington?

(2) its weight in I'aris and in Washington? (in Paris,

a, = 9.81 m/sec"; in Washington, a, = 9.80 m/sec~.l

(b) What is the change in your own weight as you

go from Paris to Washington?

25. You have probably seen signs that niisleadingly

convert people's weights from pounds to kilograms.

(a) Since the pound is a unit of force, why are these

signs wrong? Explain why they are only valid on

earth land then only approximately!.

(b) Calculate your mass in kilograms and your

weight in newtons.

(c) How much force is needed to accelerate you Im/

sec^? How many kilograms can you lift? How many
newtons of force must you apply to do this?

26. Why is it often said that astronauts in orbit

around a planet or satellite iire "weightless"?

27. Quite apart from pushing dov\Ti on the ground

owing to a runner's own weiglit, the sole of a

runner's shoe pushes on the earth in a horizontal

direction and the earth pushes with an eqiuil and

opposite force on the sole of the shoe. This latter

force has an accelerating effect on the runner, liut

what does the force acting on the earth do to the

earth? From N'evx'ton's second law, we would
conclude that such an unbalanced force would
accelerate the earth. The mass of the earth is xen'

great, however, so the acceleration caused by the

runner is very small. A reasonable value for the

average acceleration of a runner is 5m/sec" , and a

reasonable value for the runner's mass would be (SO

kg. The mass of the earth is approximated 60 x lO'^

kg.

(a) What acceleration of the earth would the runner

cause?

(b) If the acceleration lasts for 2 sec, what speed will

the runner have reached?

(c) What speed wiU the earth have reached?

28. A boy of mass 70 kg and a girl of mass 40 kg are

on ice skates holding opposite ends of a 10-m rope.

The boy pulls on tlu; rojje toward hims(;lf with a

force of 80 \. Assuming that there is \ irtually no

friction between the skates and the ice surface, what

is the girl's acceleration? According to Mewlon's third

law, what is the force on the box? What is his

acceleration?

29. In terms of X'ewlon's third law, assess the

following statements:

(a) You are standing perfectly still on the ground;

therefore you and the earth exert equal and opposite

forces on each other.

(b) The reason that a propeller airplane cannot fl\'

abo\e the atmosphere is that there is no air to push

one way while the plane goes the other.

(cl Object A rests on object B. The mass of object A
is 100 times as great as that of object B, but even so,

the force A exerts on B is no greater than the force

of B on A.

30. (Consider a tractor pulling a heavy log in a

straight line. On the basis of \ewtons third law, one

might argue that the log pulls back on the tractor

just as strongly as the tractor pulls the log. But why,

then, does the trat'tor move? (Make a large drawing

of the tractor, rop(!, log, and the earth, and (Miter

all the forc(;s acting on each.i

31. (Consider the system consisting of a 1.0-kg ball

and the earth. The ball is dropped from a short

distance above the ground and falls freely. .Assuming

that the mass of the earth is 0.0 x lO" kg.

(a) make a vector diagram illustrating the important

forces acting on each member of the system.

(b) calculate the acceleration of the earth in this

interaction.
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(c) find the ratio of the magnitude of the ball's

acceleration to that of the earth's acceleration iajaj.

(d) make a vector diagram as in (a) but shovAing the

situation when the ball has come to rest after hitting

the ground.

32. (a) A 75-kg person stands in an elevator. What
force does the floor exert on the person when the

elevator

(1) starts moving upward with an acceleration of

1.5 m/sec"?

(2) moves upward with a constant speed of 2.0 m/
sec?

(3) starts accelerating downward at 1.5 m/sec"?

(b) If the person were standing on a bathroom
(spring! scale during the ride, what readings would

the scale have under conditions (1), (21, and (3) above?

(c) It is sometimes said that the "apparent weight

"

changes when the elevator accelerates. What could

this mean? Does the weight really change?

33. Useful hints for solving problems about the

motion of an object and the forces acting on it:

(a) Make a light sketch of the physical situation.

lb) In heax/y line, indicate the liinits of the pai'ticular

object you are interested in, and draw all the forces

acting on that object. (For each force acting on it,

it wiU be exerting an opposite force on something

else, but you can ignore these forces.)

(c) Find the vector sum of all these forces, for

example, by graphical construction.

(d) Using Newton's second law, set this sum, F^^,

equal to ma.

(e) Solve the equation for the unknown quantity.

(f) Put in the numerical values you know, and
calculate the answer.

Example:

A ketchup bottle whose mass is 1.0 kg rests on a

table. If the friction force between the table and the

bottle is a constant 3 N, what horizontcil pull is

required to accelerate the bottle from rest to a speed

of 6 m/sec in 2 sec?

First, sketch the situation:

Second, draw in arrows to represent all the forces

'/:
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to accelerate the bottle is found from Mevvton's

second law:

I'he mass m is ^i\cn as 1.0 k^. i'lic; acceleration

iinoKcd in going from rest to 6.0 nVsec in 2 sec is

Ai' 6.0 m sec
a = — - = 3.0 m/sec"

Af 2 sec

So the net force required is

F .
= 1.0 kg X 3.0 m/sec^

= 3.0 kg m/sec'

= 3.0 N

If you consider toward the right to be the positi\ e

direction, F^
,
is 3.0 W and h], which is directed to

the left, is -3.0 \.

F ,
= F + F,

net p J

3.0 \' = F + (-3.0N)
I'

F = 3.0 N + 3.0 N
p

F = 6.0 i\
p

If you prefer not to use + and - signs, you can

work directly from your final diagram and use only

the magnitudes of the forces:

' >

^^

from which the magnitude of/-', is obviously 6.0 \.

34. (a) Two forces act on an object of 5 kg mass.

One force is 20 N right and the other is 5 N left. How
far mil the object move in 10 sec?

(b) A box weighing 500 i\ can be moved across the

floor in uniform motion by a force of 200 X. If the

force is suddenly increased to 1,200 \, what will be

tin; spe(!d of the box afteu- 20 s(u ?

(c) What is the net force on an object of 4 kg mass if

its speed is changed from 40 m/sec to 80 m/sec in

10 sec?

(d) A 40-N force acts on an object. This force

overcomes a li)-\ frictional force and accelerates the

object so that its speed increases by 55 m/sec in 1

1

sec. What is the mass of the object?

(e) A 5-kg object experiences an 80-i\ force on the

earth's surface. What is the acceleration of the

object? If the weight of the object is reduced by one

half, what is its acceleration gi\'en the same 80-\

force?

(f) 'I\vo wooden blocks resting on a table top ha\e a

coiled spring b(;tween them. When the spring is

released, it exerts a 40-\ force on each block. If one

block is three times as massive as the other block

(whose mass is 3 kg I how long will it take the blocks

to mo\'e 200 m apiirt? I The frictional force is

estimated at 4 N.I

(g) A 6-kg block is pulled along the floor whose

frictional force is estimated at 3 \. Forces of 18 i\

right and 15 N left are exerted on the block

simultiineously. What is the acceleration of the

block?
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A trip to the moon

Imagine a Saturn rocket taking off from its launching pad at the

Kennedy Space Flight Center on Cape Canaveral. It climbs above

the earth, passing through the atmosphere and beyond.

Successive stages of the rocket shut off, finally leaving a capsule

hurtling through the near-vacuum of space. Approximately 65

hr after takeoff, the capsule reaches its destination 384,000 km
away. It circles the moon and descends to its target, the center

of the lunar crater Copernicus.

The complexity of such a voyage is enormous. To direct and

guide the flight, a great number and variety of factors must be

taken into account. The atmospheric drag in the early part of the

flight depends upon the rocket's speed and altitude. The engine

thrust changes wdth time. The gravitational pulls of the sun, the

earth, and the moon change as the capsule changes its position

relative to them. The rocket's mass changes as it burns fuel.

Moreover, it is launched from a spinning earth, which in turn is

= -^ ^ --

In his science-fiction novels of
more than a hundred years ago,

the French author Jules Verne

(1828-1905) launched three space-

men to the moon by means of a

gigantic charge fised in a steel pipe

deep in the earth.

SG 1
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circling the sun. Meanwhile, the moon is moving around the

eailh at a speed of about 1,000 m/sec relative to the eai'th.

Yet, like almost any complex motion, the flight can be broken

down into small portions, each of which is relatively simple.

What you have learned in earlier chapters uill be useful in this

task.

In simplified form, the earth-moon trip can be divided into

eight pails or steps:

Step 1. The rocket accelerates vertically upward from the surface

of the earth. The force acting on the rocket is not really

constant, and the mass of the rocket decreases as the

fuel burns. The value of the acceleration at any instant

can be computed by using Newton's second law. The
value is given by the ratio of net force (thnjst minus

weight) at that instant to the mass at that instant.

Step 2. The rocket, still accelerating, follows a curved path as it is

"injected" into an orbit about the earth.

Step 3. In an orbit 185 km above the earth's surface, the capsule

moves in a nearly circular arc. Its speed is constant at

7,769 m/sec.

Step 4. The rocket engines are fired again, increasing the

capsule's speed so that it follows a much less cuived

path into space. (The minimum speed necessary to

escape the earth completely is 11,027 m/sec.)

\

Step 5. In the flight between the ear-th and moon, occasional

short bursts from the capsule's rockets keep it precisely

on course. Between these correction thrusts, the capsule
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moves under the influence of the gravitational forces of

earth, moon, and sun. You know from Newton's first law

that the capsule would move wdth constant velocity if it

were not for these forces.

Step 6. On nearing the moon, the rocket engines are fired again

to give the capsule the correct velocity to "inject " into a

circular orbit around the moon.

Step 7. The capsule moves with a constant speed in a nearly

circular path 80 km above the moon's surface.

Step 8. The rocket engines are fired into the direction of motion,

to reduce the speed. The capsule then accelerates

downward as it falls toward the surface of the moon. It

follows an arcing path toward a landing at the chosen

site. (Just before impact, the rocket engines fire a final

time to reduce speed of fall and prevent a hard landing.)

Motion along a straight line (as in Steps 1 and 5) is easy

enough to describe. However, it is useful to analyze in greater

detail other parts of this trip. Motion in a circular arc, as in Steps

3 and 7, and projectile motion, as in Step 8, are two important

cases.

How can you go about making this analysis? Followdng the

example of Galileo and Newton, you can learn about motions

beyond your reach, even on the moon or in the farthest parts of

the universe, by studying motions near at hand. If physics is the

same everywhere, the path of a lunar capsule moving as in Step

8 can be understood by studying a bullet fired ft^om a horizontal

rifle.

SG 2

4r.2
I

Prcijectile motion

Imagine an experiment in which a rifle is mounted on a tower

with its barrel parallel to the ground. The ground over which the

bullet will travel is level for a great distance. At the instant a

bullet leaves the rifle, an identical buUet is dropped from the

height of the rifle's barrel. This second bullet has no horizontal

motion relative to the ground; it goes only straight down. Which

bullet will reach the ground first?
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You do not need to know anv'thing about the speed of the

bullet or the height of the tower in order to answer this question.

Consider first the motion of the second bullet, the one that is

dropped. As a freely falling object, it accelerates toward the

ground with constant acceleration. As it falls, the elapsed time

inteival Af and the corresponding downward displacement Ay
are related by the equation

Ay = la^Af^

where a^ is the acceleration due to gravity' at that location.

Following usual practice, you can now drop the A S3anbols, but

keep in mind that y and t stand for displacement and time

interval, respectively. So you can write the last equation as

-ar

Nov\' consider the bullet that is fired horizontally from the rifle.

When the gun fires, the bullet is driven by the force of expanding

gases. It accelerates very rapidly until it reaches the muzzle of

the rifle. On reaching the muzzle, the gases escape and no longer

push the bullet. At that moment, however, the bullet has a great

horizontal speed, v^. The air slows the bullet slightly, but you can

ignore that fact and imagine an ideal case with no air friction.

As long as air ftiction is ignored, there is no horizontal force

acting on the projectile. Therefore, the horizontal speed will

remain constant. From the instant the bullet leaves the muzzle,

its horizontal motion is described by the following equation

involving the horizontal displacement A^c:

or again dropping the As,

A^: = V Af

?c = vj

These equations describe the forward part of the motion of the

bullet. There is, however, another part that becomes more and

more important as t increases. From the moment the bullet

leaves the gun, it falls toward the earth while it moves forward,
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like any other unsupported body. Can you use the same

equation to describe its fall that you used to describe the fall of

the dropped bullet? How will falling affect the bullet's horizontal

motion? These questions raise a more fundamental one which

goes beyond just the behavior of the bullets in this experiment.

Is the vertical motion of an object affected by its horizontal

motion or vice versa?

To answer these questions, you could carry out a real

experiment similar to the thought experiment. A special

laboratory device which fires a ball horizontally and at the same

moment releases a second ball to fall freely can be used. Set up

the apparatus so that both balls are the same height above a

level floor and release them at exactly the same time. Although

the motion of the balls may be too rapid to follow with the eye,

your ears will tell you that they do in fact reach the floor at the

same time. This result suggests that the vertical motion of the

projected ball is unaffected by its horizontal motion.

In the margin is a stroboscopic photograph of this experiment.

Equally spaced horizontal lines aid the examination of the two

motions. Look first at the ball on the left, the one that was

released without any horizontal motion. You can see that it

accelerates because it moves a greater distance between

successive flashes of the strobe's light. Careful measurement of

the photograph shows that the acceleration is constant, within

the uncertainty of the measurements.

Now, compare the vertical positions of the second ball, fired

horizontally, wdth the vertical positions of the ball that is falling

freely. The horizontal lines show that the distances of fall are the

same for corresponding time inteivals. The two balls obey the

same law for motion in a vertical direction. That is, at every

instant they both have the same constant acceleration a^, the

same downward velocity, and the same vertical displacement.

Therefore, the experiment supports the idea that the vertical

motion is the same whether or not the ball has a horizontal

motion also. The horizontal motion does not affect the vertical

motion.

You can also use the strobe photo to see if the vertical motion

of the projectile affects its horizontal velocity. Do this by

measuring the horizontal distance between images. You vvdll find

that the horizontal distances are practically equal. Since the time

intervals between images are equal, you can conclude that the

horizontal velocity v^ is constant. Therefore, the vertical motion

does not affect the horizontal motion.

The experiment shows that the vertical and horizontal parts,

or components, of the motion are independent of each other.

This experiment can be repeated from different heights and with

different horizontal velocities, but the results lead to the same

conclusion.

9r "*
^'<

'
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In one uf the most famous allegori-

cal frontispieces of Renaissance

science, from Nova Scientia (1537)

by Nicola Tartaglia, Euclid greets

students at the outer gate of the

circle of knowledge. The fired can-

non and mortar show the trajecto-

ries defined by Tartaglia. Plato and
Aristotle are shown in the inner

circle.

The two balls in this stroboscopic

photograph were released simulta-

neously. The one on the left was

simply dropped from a rest posi-

tion; the one on the right was given

an initial velocity in the horizontal

direction.
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The independence of horizontal and \ ertical motions has

important consequences. For example, it allows you to piedict

the displacement and the velocity of a projectile at any time

during its flight. You need merely to consider the horizontal and
vertical aspects of the motion separately, and then add the

results by the vector method. You can predict the magnitude of

the components of displacement ;c and y and the components of

velocity' v^ and v at any instant by applying the appropriate

equations. For the horizontal component of motion, the

equations are

constant

and

and for the vertical component of motion,

\

v^

1. tlow do you know that it is correct to simply break down
complicated motion into separate vertical and horizontal

components in the case described in Sec. 4.2?

2. If a body falls from rest with acceleration a^, with what

acceleration will it fall if it also has an initial horizontal

speed v^?

4.3
I

llliat is the path of a prcijectile?

it is easy to see that a thrown object, such as a lock, follows a

curved path. But it is not as easy to see just what kind of cuia e it

traces. Arcs of circles, ellipses, parabolas, hvperbolas, and

cycloids (to name only a few geometric figures i all pio\ide likely

looking cuived paths.

Eai'ly scientists gained better" knowledge about the path of a

pr'ojectile when they applied mathematics to the problem. This
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was done by deriving the equation that expresses the shape of

the path. Only a few steps are involved. First list equations you
already know for a projectile launched horizontally:

and

vt

V = -aj-

You could plot the shape of the path, or trajectory as it is often

called in physics, if you had an equation that gave the value ofy
for each value of ,y. You could find the fall distance y for any

horizontal distance ,v by combining these two equations in a way
that eliminates the time variable. Solving the equation ;c = vj for

t gives

t = —

Because t means the same in both equations, you can substitute

^/v for t in the equation for y:

y T^r

and thus,

y = -3«

This last equation is a specialized equation of the kind that

need not be memorized. It contains two variables of interest, ,v

and y. It also contains three constant quantities: the number V-i,

the unifomi acceleration of free fall a^, and the horizontal speed

v^, which is constant for any one flight, from launching to the

end. The vertical distance y that the projectile falls is thus a

constant times the square of the horizontal displacement ^. In

other words, the two quantities y and }C are proportional: y ^ }C.

Thus, there is a fairly simple relationship between x and y for

the trajectory. For example, when the projectile goes twice as far

horizontally from the launching point, it drops vertically four

times as far.

The mathematical curve represented by this relationship

between ;c and y is called a parabola. Galileo deduced the

parabolic shape of trajectories by an argument similar to the one

used here. (Even projectiles not launched horizontally, as in the

photographs on page 106, have parabolic trajectories.) This

discovery greatly simplified the study of projectile motion,

because the geometiy of the parabola had been established

centuries earlier by Greek mathematicians.
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Here is a clue to one of the important strategies in modern
science. Whenever possihle, scientists ^^\press the leatiii-es of a

phenomenon quantitatively and put the relations between them
into equation form. Then the rules of mathemati('s can be used

to shift and suljstitute terms, opening the way to unexpected

insights.

SJ^<^

m

trrrst

M,.ff.

The critics of Galileo claimed that

if the earth moved, a dropped
stone would be left behind and
land hevond the foot of the tower.

m

m

p3

Galileo argued that the falling

stone continued to share the mo-
tion of the earth, so that an ob-

ser\'er on earth could not tell

whether or not the earth moved by
watching the stone.

• 3. Rewrite the steps in Sec. 4.3 yourself, defining all the

variables and e;<plaining each step and each equation used.

4. Which of the conditions below must hold in order for the

relationship y ^ ^' to describe the path of a projectile? (a) a^ is

a constant (b) a^ depends on t (c) a^ is straight down (d) v^

depends on t (e) air friction is negligible

5. How far, vertically and horizontally, will a projectile travel

in 10 sec if it is launched with an initial horizontal speed of
4 m/sec? (For simplicity, use a_, as approximately 10 m/sec^.)

4.4
I

Moving frames of reference:
Galilean relativity

Galileo's work on projectiles leads to thinking about reference

frames. As you will see in Unit 2, Galileo strongly supporled the

idea that the proper reference frame for discussing motions in

our planetary system is one fixed to the sun, not the earth. From
that point of view, the earth both revolves around the sun and

rotates on its oun axis. For many scientists of Galileo's time, this

idea was impossible to accept, and they thought they could

prove their case. If the earth rotated, they said, a stone dropped

fi'om a tower would not land directly at the tower's base. For if

the earth rotates once a day, the tower would move onward
hundreds of meters for every second the stone is falling. The
stone would be left behind while falling through the air and so

would land far away from the base of the tower. But this is not

what happens. As nearly as one can tell, the stone lands directly

below the point of release. Therefore, many of Galileo s critics

believed that the tower and the earth could not possibly be in

motion.

To answer these arguments, Galileo used the same example to

support his own view. During the time of fall, Galileo said, the

tower and the ground supporting it move fonvaixi together with

the same unifomi velocity. While the stone is held at the top of

the tower, it has the same horizontal velocity as the tower.

Releasing the stone allows it to gain veitical speed. But by the

principle of independence of v^ and v; discussed in Sec. 4.2, this

vertical component does not diminish any horizontal speed the

stone had on being released. In other words, the falling stone

behaves like any other projectile. The horizontal and vcilical
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components of its motion are independent of each other. Since

the stone and tower continue to have the same v^ throughout,

the stone will not be left behind as it falls. Therefore, no matter

what the speed of the earth, the stone will land at the foot of the

tower. So the fact that falling stones are not left behind does not

prove that the earth is standing still.

Similarly, Galileo said, an object released from a crow's nest at

the top of a ship's mast lands at the foot of the mast, whether

the ship is standing still or moving with constant velocity in calm

water. This was actually tested by experiment in 1642 (and is also

the subject of three Project Physics film loops). Many everyday

observations support this view. For example, when you drop or

throw a book in a bus or train or plane that is moving with

constant velocity, you see the book move just as it would if the

vehicle were standing still. Similarly, if the udnd is small enough

not to interfere, an object projected vertically upward fi om inside

an open truck moving at constant velocity udll fall back into the

truck. A person in the truck sees the same thing happen whether

the truck is moving at constant velocity or standing still.

These and other observations lead to a valuable generalization:

If Newton's laws hold in any one laboratory, then they will hold

equally well in any other laboratoiy (or "reference frame ")

moving at constant velocity with respect to the first. This

generalization is called the Galilean relativity principle. It holds

true for all "classical " mechanical phenomena, that is,

phenomena where the relative velocities are in the range from

almost negligible up to millions of kilometers per hour.

Even if the laws of mechanics are the same for all reference

frames moving wdth constant velocity vvdth respect to each other,

a problem still arises. Namely, there is no way to find the speed

of one's own reference frame from any mechanical experiment

done within that frame. Nor can one pick out any one reference

frame as the 'true " frame, the one that is, say, at absolute rest.

Thus, there can be no such thing as the "absolute" velocity of a

body. All measured velocities are only relative.

What about observations of phenomena outside of one's own
frame of reference? Certainly some outside phenomena appear

differently to observers in different reference frames. For

example, the observed velocity of an airplane will have a value

when measured from the earth different from that when
measured from a moving ship. Other quantities, such as mass,

acceleration, and time interval, have the same values when
measured from different reference frames moving with constant

velocity with respect to one another. Moreover, certain

relationships among such measurements will be the same for

these different reference frames. Newton's laws of motion are

examples of such "invariant " relationships, and so are all the

laws of mechanics that follow from them.

At high speeds, air drag will affect

the results considerably. The situ-

ation is still distinguishable from a

car at rest, but in a high wind!
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when rclath'o speeds become u no-

ticeable fraction of the s|}eed of

light (approximately 300,000 km seel,

som(! {l(n iations from this simph;

relatix it\ i)rin(ipl(' begin to appeal'.

We will consider soriu; of them in

Unit 'i.

SG 11-13

Notice that the relativaty principle, even in this restricted,

classical foim, does not say "everything is relative. ' On the

contrary, it asks you to look for i elationships that do not change

when vou transfer vour attention from one frame to another.

• 6. If the laws of mechanics are found to be the same in two

reference frames, what must he true of the motions of those

frames?

7. An outfielder running at constant speed under a falling ball

sees the ball falling straight down to her. What is the path of

the ball as seen by someone in the stands? Explain how this

common experience supports (a) Galilean relativity and (b) the

breakdown ofprojectile motion into independent horizontal

and vertical parts.

In discussing circular motion it is

useful to keep clearly in mind a dis-

tinction between revolution and ro-

tation. We define these terms dif-

ferently: Re\'olution is the act of

traxeling along a circular or ellip-

tical path; rotation is the act of

spinning rather than traveling. A
point on th(' rim of a phonograph
turntable travels a long way; it is

revolving about the axis of the

turntable. But the turntable as a

unit does not move from place to

place; it merely rotates. In some
situations both processes occur si-

multan(!ously; for examph;, the

earth rotates about its own axis,

while it also rexohcs lin a nearly

circular path) around the sun.

4r.5
I

Circular motion

A pixjjectile launched horizontally from a tall tower strikes the

earth at a point determined by three factors. These factors are

the horizontal speed of the projectile, the height of the tower,

and the acceleration due to the force of gravity. As the

projectile's launch speed is increased, it strikes the earth at

points farther and farther from the tower's base. It is then no
longer true that the trajectory is a simple parabola, because the

force of gravity does not pull on the projectile in the same
direction throughout the path. Eventually, then, you would have

to consider a fourth factor: The earth is not flat but cuned. If the

launch speed were increased even more, the projectile would
strike the earth at points even farther from the tower, and at last

it would iTJsh around the earth in a nearly circular orbit. (See the

quotation from Neuron, page 112.) At the launching speed that

puts the projectile into orbit, the fall of the projectile away from

straight-line forward motion is just matched by the cuivature of

the earth's surface. Therefore, the projectile stays at a constant

distance above the surface.

What horizontal launch speed is required to put an object into

a circular orbit about the earth or the moon.'' Vou will be able to

answer this question quite easily after you have learned about

circular motion.

The simplest kind of circailar motion is uniform circular

motion, that is, motion in a circle at constant speed. If you are in

a car that goes around a perfectly circular track so that at eveiy

instant the speedometer reading is 64 km/hr, you are in unifomi

circular motion. This is not the case if the track is of any shape

other than circular or if your speed changes at an\' point.
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How can you find out if an object in circular motion is moving

at constant speed? You can apply the same test used in deciding

whether or not an object traveling in a straight line does so with

constant speed. That is, measure the instantaneous speed at

many different moments and see w^hether the values are the

same. If the speed is constant, you can describe the circular

motion of any object by means of two numbers: the radius R of

the circle and the speed v along the path. For regularly repeated

circular motion, you can use a quantity more easily measured

than speed: either the time required by an object to make one

complete revolution, or the number of revolutions the object

completes in a unit of time. The time required for an object to

complete one revolution in a circular path is called the period (T)

of the motion. The number of revolutions completed by the same
object in a unit time interval is called the ^equencv if) of the

motion.

An an example, these terms are used to describe a car moving

vWth uniform speed on a circular track. Suppose the car takes

20 sec to make one lap around the track. Thus, T - 20 sec. On
the other hand, the car makes three laps in 1 min. Thus,/ = 3

revolutions per minute, or/ = 1/20 revolution per second. The
relationship between frequency and period (when the same time

unit is used) is/ = 1/T. If the period of the car is 20 sec/rev, then

the frequency is given by11 1

f = = — rev/sec = — Hz
20 sec/rev 20 20

All units are a matter of convenience. Radius may be expressed

in terms of centimeters, kilometers, or any other distance unit.

Period may be expressed in seconds, minutes, years, or any other

time unit. Frequency may be expressed as "per second," "per

minute," "per year, " and so on. The most widely used units of

radius, period, and frequency in scientific work are, respectively,

meter, second, and hertz (or per second).

TABLE 4.1 COMPARISON OF THE FREQUENCY AND PERIOD FOR VARIOUS
KINDS OF CIRCULAR MOTION.

PHENOMENON



".
. . the greatejr the velocity . . . with

which [a stone] is projected, the

farther it goes before it falls to the

earth. We may therefore suppose
the velocity to be so increased, that

it would describe an arc of 1, 2, 5,

10, 100. 1000 miles before it ar-

rived at the earth, till at last, ex-

ceeding the limits of the earth, it

should pass into space without

touching it."—Newton, System ol

the World.

circular motion without difficulty. 1 he distance traveled in one
revolution is simply the perimeter of the circular path, that is,

ZtiH. The time for one revolution is by definition the period T.

For uniform motion along any path, it is always tn.ie that

speed =
distance traveled

time elapsed

By substitution,

V = 2tiR

T

To express this equation for circular motion in terms of the

frequency/ rewrite it as

Now, since by definition

= 2ttR X -
T

f =
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you can write

= 27Tfl X /

If the body is in uniform circular motion, the speed computed
by this equation is both the instantaneous speed and the average

speed. If the motion is not unifomi, the formula gives only the

average speed. The instantaneous speed for any point on the

circle can be determined if you find Ad/Af from measurements of

very small portions of the path.

How can you best use the last equation above? You can, for

example, calculate the speed of the tip of a helicopter rotor blade
in its motion around the central shaft. On one model, the main
rotor has a diameter of 7.50 m and a frequency of 480

revolutions/min under standard conditions. Thus, R = 3.75 m,
and so

V = ZTTRf

V = 2 (3.14) (3.75) I I nVsec
. 60

V = 189 m/sec

480

or about 680 km/hr.

8. If a phonograph turntable is running at 33.3 revolutions

per minute,

(a) what is its period (in minutes)?

(b) what is its period (in seconds)?

(c) what is its frequency in hertz?

9. What is the period of the minute hand ofan ordinary

clock? If the hand is 3.0 cm long, what is the speed of the tip

of the minute hand?

10. The terms frequency and period can also be usedfor any
other regular, repetitive phenomenon. For e^iample, if your
heart beats 80 times per minute, what are the frequency and
period for your pulse?

4,6
I

Centripetal acceleration and centripetal
force

The adjective "centripetcU" means
literally "moving, or directed, to-

ward the center."

Assume that a stone on the end of a string is whirling about udth
unifomi circular motion in a horizontal plane. The speed of the

stone is constant. The velocity, however, is always changing.

Velocity is a vector quantity which includes both speed and
direction. Up to this point, you have dealt with accelerations in

which only the speed was changing. In uniforai circular motion
the speed of the revolving object remains the same, while the

In uniform circular motion , the in-

stantaneous velocity and the cen-
tripetal force at any instant of time
are pei-pendicular, one being along
the tangent, the other along the ra-

dius. So instantaneous velocity and
the acceleration are also always at

right angles.
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a and F are parallel, but v is per-

pendicular to a and F . Note that

usually one should not draw differ

ent kinds of vector quantities on
the same drawina.

direction of motion changes continually. The top figure in the

margin shows the whirling stone at three successive moments in

its revolution. At any instant, the direction of the velocity vector

is tangent to the cumng path. Notice that the stone's speed,

represented by the leitgth of the velocity ariovv, does not change.

But its direction does change from moment to moment. Since

acceleration is defined as a change in velocity per unit time, the

stone is, in fact, accelerating.

To produce an acceleration, a net force is needed. In the case

of the whirling stone, a force is exerted on the stone by the

string. If you ignore the weight of the stone and air resistance,

this force is the net force. If the string were suddenly cut, the

stone would go flying off with the velocity it had at the instant

that the string was cut. Its path would stai1 off on a tangent to

the circular path. But as long as the string holds, the stone is

forced to move in the circular path.

rhe direction of this force which is holding the stone in its

circular path is along the string. Thus, the force vector always

points toward the center of rotation. This kind of force, which is

always directed toward the center of rotation, is called

centripetal force.

From Newton's second law, you know that net force and

corresponding acceleration are in the same direction. Iherefore,

the acceleration vector is also directed toward the center. This

acceleration is called centripetal acceleration and has the symbol

a^. Any object moving along a circular path has a centripetal

acceleration.

You know now the direction of centripetal acceleration. What
is its magnitude? An expression for a^ can be derived from the

definition of acceleration a^ = Av/Af . The details for- such a

derix'ation are given on the next page. The result shows that a,,

depends on v and H. In fact, the magnitude of a^ is given by

v^
a. =

You can verify this relationship with a numerical example. As

sketched in the diagram on page 116, a car goes around a

circular cuive of radius R = 100 m at a uniform speed of v = 20

m/sec. What is the car's centripetal acceleration a, toward the

center of curvature? By the equation deiived on the next page,

a., =
v^

R

(20 m/sec I

100 m
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Close Upl
Derivation of the Equation o^

Assume that a stone on the end of a string is

moving uniformly In a circle of radius R. You can

find the relationship between a^, v, and R by treating

a small part of the circular path as a combination

of tangential motion and acceleration toward the

center. To follow the circular path, the stone must

accelerate toward the center through a distance h

in the same time that it would move through a tan-

gential distance d. The stone, with speed v, would

travel a tangential distance d given by d = vAt. In

the same time At, the stone, with acceleration a
,' ' c'

would travel toward the center through a distance

h given by h = -a^Af. (You can use this last equa-

tion because a\ t = 0, the stone's velocity toward

the center is zero.)

You can apply the Pythagorean theorem to the

triangle in the figure below.

R^ + d' = {R + hf

= R^ + 2Rh + h^

When you subtract R^ from each side of the equa-

tion, you are left with

d' = 2Rh + h'

You can simplify this expression by making an ap-

proximation. Since h is very small compared to R,

ff will be very small compared to Rh. And since At

must be vanishingly small to get the instantaneous

acceleration, h^ will become vanishingly small com-

pared to Rh. So you can neglect if and write

d^ = 2Rli

K
Also, d = vAt and /7 = -a^Af, so you can substitute

for d^ and for in accordingly. Thus,

or

{vAtf = 2R '-a^iAtr

v'iAtf = Ra^(AtY

v' = Ra^

a„ =
R

The approximation becomes better and better as

At becomes smaller and smaller. In other words, v^/

R gives the magnitude of the instantaneous centri-

petal acceleration for a body moving on a circular

arc of radius R. For uniform circular motion, v^/R

gives the magnitude of the centripetal acceleration

at every point of the path. (Of course, it does not

have to be a stone on a string. It can be a small

particle on the rim of a rotating wheel, or a house

on the rotating earth, or a coin sitting on a rotating

phonograph disk, or a car in a curve on the road,

or an electron in its path through a magnetic field.)

The relationship between a^, v, and R was dis-

covered by Christian Huygens and was published

by him in 1673. Newton, however, must have known
it in 1 666, but he did not publish his proof until 1 687,

in the Pnncipia.

We can substitute the relation v = 2TTR/f or v

= 2ttR/T (derived in Chapter 3 for uniform circular

motion) into the equation for a :

V
a„ =

R

{27:Rf Y

R

2ttR

R

/ P- = 4 Tr'Rf
'

4'n'R

These two resulting expressions for a^ are entirely

equivalent.
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_ 400 mVsec^

100 ni

= 4.0 m/sec^ (about 0.4 g)

Does this make sense? You can check the result by going back

to the basic vector definition of acceleration: a^^ = Av/Af. You will

need a scale drawing of the car's velocity vector at two instants

a short time A/ apart. Then, you can measure the change in

velocity Av between these points, and divide the magnitude of Av

by Af to get a,^ over the interval.

Consider a time interval of Af = 1 sec. Since the car is moving

at 20 m/sec, its position will change 20 m during Af. Two
positions P and P', separated by 20 m, are marked in Diagram A.

Now, draw aiiows representing velocity vectors. If you choose

a scale of 1 cm = 10 m/sec, the velocity vector for the car will

be represented by an arrow 2 cm long. These are drav\Ti at P and
P' in Diagram B.

Now, put these two arrows together tail to tail as in Diagram C.

It is easy to see what the change in the velocity vector has been

during Af. Notice that if you had drawai Av halfway between P

and P', it would point directly toward the center of the curve. So

the average acceleration between P and P' is indeed directed

centripetally. The Av arrow in the diagram is 0.40 cm long, so it

represents a velocity change of 4.0 m/sec. This change occurred

during Ar = 1 sec, so the rate of change is 4.0 m/sec'^. This is the

same value found by using a^ = v^/fil

The relation a^. = \riR agrees completely with the mechanics

developed in Unit 1. You can show this by doing some
experiments to measure the centripetal force required to keep an

object moving in a circle. Return to the example of the car. If its

mass were 1,000 kg, you could find the (centripetal force acting

on it as follows:

F^ — m X a,,

= 1000 kg X 4.0 m/sec''

= 4000 kg m/sec^

= 4000 N

This force would be directed toward the center- of curvatur-e of

the road. That is, it would always be sideways to the direction

the car is moving. This for^ce is exerted on the tires by the road.

If the road is wet or icy and cannot exert the force of 4,000 N
sideways on the tires, the centripetal acceleration will be less

than 4.0 m/sec". I'hen the car will follow a less curbed path as

sketched in Diagram D. In situations where the cars path is less

curved than the road, you would say the car "left the road." Of

course, it might be just as appropriate to say the road loft the

car.
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11. Is a body accelerating when it

(a) moves with constant speed?

(b) moves in a circle with constant radius?

(c) moves with constant velocity?

12. A car of mass m going at speed v enters a curve of radius

R. What is the force required to keep the car curving with the

road?

13. A rock ofmass 1 kg is swung in a circle with a frequency

ofl revolution/sec on a string of length 0.5 m. What is the

magnitude of the force that the string e\erts on the rock?

What is the magnitude and direction of the force on the string

that must be present according to Newton's third law? If the

string were cut, what kind ofpath would the rock follow? How
fast would it move?

SG 17-20

4*T The motion of earth satellites

Nature and technology provide many examples of objects in

uniform circular motion. The wheel has been a main
characteristic of civilization, first appearing on crude carts and
later forming essential parts of complex machines. The historical

importance of rotary motion in the development of modem
technology has been described by the historian V. Gordon Childe

in The History of Technology:

Rotating machines for performing repetitive operations, driven

by water, by thenncd power, or by electrical energy, were the

most decisive factors of the industrial revolution, and, from the

first steamship till the invention of the jet plane, it is the

application of rotary motion to transport that has

revolutionized communications. The use of rotary machines, as

of any other human tools, has been cumulative and progressive.

The inventors of the eighteenth and nineteenth centuries were

merely extending the applications of rotaiy motion that had
been devised in previous generations, reaching back thousands

of years into the prehistoric past. . .

.

As you will see in Unit 2, there is another rotational motion that

has concerned scientists throughout recorded history. This

motion is the orbiting of planets around the sun and of the

moon around the earth.

The kinematics and d3^amics for any unifoiTn circular motion
are the same. Therefore, you can apply what you have learned

so far to the motion of artificial earth satellites in circular (or

nearly circular) paths. A typical illustration is Alouette I, Canada's

first satellite, which was launched into a nearly circular orbit.

SG25
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ALOUETTEII

The same equation iv = 27r/J/7') can

be used to find the speed of any sat-

ellite in nearly or fiilK' cii'cular or-

bit, for example, that of our moon.
The a\erag(; distance from the cen-

ter of the moon is approximately

3.82 X 10 km. and the moon takes

an a\erag(! of 27 days. 7 hr. 43 min
to complete one re\'olution around
the earth with respect to the fixed

stars. I'hus

_ 2-ITI3.82 X 10) km
3.93 X 10' min

= 61.1 km/min

or about 3,666 km/hr.

An artist s impression of the Space
Shuttle retrieving n sntcllile from
orbit. When operational, the Shut-

tle Orhiter will function as the

world s first reusable space cargo
plane.

SG 29

SG 30

Tracking stations located in many places around the world

maintain a record of anv satellite's position in the sky. Fixam the

position data, the satellite's period of revolution and its distance

aho\'e the eai-th at any time are found. By means of such

tracking, scientists know that Alouette I moves at an average

height of 1,010 km ahove sea level. It takes 105.4 min to complete

one revolution.

You can now quickly calculate the orhital speed and the

centripetal acceleration of Alouette I. rhe relation v = ZirB/T

gives the speed of any ohject moving uniformly in a circle if you
know its period T anci its distance B from the center of its path,

hi this case, the center of the path is the center of the earth. So,

adding 1,010 km to the earth's radius of 6,380 km, you get R =

7,390 km. Thus,

_ ZttH

^ ~ T

_ 2tt X 7390 km
105.4 min

46,432 km

6324 sec

= 7.34 km/sec

To calculate the centripetal acceleration of Alouette I, you can

use this value of v along with the relationship a^ = \^/B. Thus,

a = —
B

_ (7.34 km/sec)^

7390 km

= 0.0073 km/sec^

= 7.3 m/sec^

(You could just as well have used the values of B and T directly

in the relationship a,, = 4'n~B/T'.)

What is the origin of the force that gives rise to this

acceleration? You will not find a good argument for the answer

until Chapter 8, but you surely know already that it is due to the

earth's attraction. Exidently the centripetal acceleration a, of the

satellite is just the gravitational acceleration a, at that height.

(Note that a^ at this height has a value about 25% less than a^

very near the earth's surface.)

Earlier we asked the question, 'What speed is required for an

object to stay in a circular orbit about the earth? You can

answer this question now for an orbit 1,010 km above the earth's
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surface. To get a general answer, you need to know how the

acceleration due to gravaty changes with distance. Chapter 8 will

come back to the problem of injection speeds for orbits.

The same kind of analysis applies to an orbit around the

moon. For example, consider the first manned orbit of the moon.
The mission control group wanted to put the capsule into a

circular orbit 110 km above the lunar surface. They knew (from

other arguments) that the acceleration due to the moon's gravity

at that height would be a^ = 1.43 m/sec". What direction and
speed would they have had to give the capsule to inject it into

lunar orbit?

The direction problem is fairly easy to solve. To stay at a

constant height above the surface, the capsule would have to be

moving horizontally at the instant the orbit correction was
completed. So injection would have to occur just when the

capsule was moving on a tangent, at a height of 110 km, as

shown in the sketch in the margin. What speed (relative to the

moon, of course) would the capsule have to be given? The
circular orbit has a radius 110 km greater than the radius of the

moon, which is 1,740 km. So /? = 1,740 km + 110 km = 1,850

km = 1.85 X 10*^ m. The centripetal acceleration is just the

acceleration caused by gravity, namely, 1.43 m/sec^, so

a„ = a„

v"

\r = fia„

= V(1.85 X lO^m) X 1.43 m/sec'

= V2.65 X 10' mVsec'

Chariot, by the sculptor Alberto

Giacometti, 1950.

= 1.63 X 10 m/sec

The necessary speed for an orbit at 110 km above the surface is

1,630 m/sec. Knowing the capsule's speed, ground control could

calculate the speed changes needed to reach 1,630 m/sec.

Knowing the thrust force of the engines and the mass of the

capsule, they could calculate the time of thrust required to make
this speed change.

SG 31-33

Because the injection thrust is not

applied instantaneously, the details

are actually more difficult to cal-

culate.

• 14. What information was necessary to calculate the speed for

an orbit 110 km above the moon's surface?
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15. Ifyou know the period and speed of a satellite, you also

know the acceleration ofgravity at the height of the satellite.

Why?

16. What is the magnitude of the force that holds a 500-kg

satellite in orbit if the satellite circles the earth every 3 hr at a

height of 3,400 km above the surface?

TABLE 4.2 SOME INFORMATION ON A FEW EARLY ARTIFICIAL SATELLITES.

Name Launch Date Weight (kg) Period (min)

Height (km)

Perigee-Apogee
Remarks

(including purpose)

Sputnik 1

1957 (USSR)

Explorer 7

1958 (USA)

Lunik 3

1959 (USSR)

Vostok 1

1961 (USSR)

Midas 3

1961 (USA)

Telestar 1

1962 (USA)

Alouette 1

1962

(USA-Canada)

Luna 4

1963 (USSR)

Vostok 6

1963 (USSR)

Syncom 2

1963 (USA)

Oct. 4, 1957

Jan. 31, 1958

July 10, 1962

Sept. 29, 1962

July 26, 1963

83.4

14.0

Oct. 4, 1959 433

Apr. 12, 1961 4,613

July 12, 1961 1,590

77

145.3

Apr. 2, 1963 1,423

June 16, 1963 4,600

39

96.2 229-947 First earth satellite. Internal

temperature, pressure inside

satellite.

114.8 301-2,532 Cosmic rays,

micrometeorites, internal and
shell temperatures, discovery

of first Van Allen belts.

22,300



example is seen in playground swings or in vibrating guitar

strings. Such back and forth motion, or oscillation, about a center

position occurs when there is a force always directed toward the

center position. When a guitar string is pulled aside, for example,

a force arises which tends to restore the string to its undisturbed

center position. If it is pulled to the other side, a similar

restoring force arises in the opposite direction.

In very common types of such motion, the restoring force is

proportioned, or neariy proportional, to how far the object is

displaced. This is true for the guitar string, if the displacements

are not too large. Pulling the string aside 2 mm produces twice

the restoring force that pulling it aside 1 mm does. Oscillation

with a restoring force proportional to the displacement is called

simple harmonic motion. The mathematics for describing simple

harmonic motion is relatively simple, and many phenomena,

from pendulum motion to the vibration of atoms, have aspects

that are very close to simple harmonic motion. Consequently, the

analysis of simple harmonic motion is used very uddely in

physics. The Project Physics Handbook describes a variety of

activities you can do to become familiar with oscillations and

their description.

The dynamics discussed in this chapter will cover most

motions of interest. It provides a good start toward

understanding apparently very complicated motions such as

water ripples on a pond, a person nanning, the swaying of a tall

building or bridge in the vvdnd, a small particle zig-zagging

through still air, an amoeba seen under a microscope, or a high-

speed nuclear particle moving in the field of a magnet. The

methods developed in this unit give you the means for dealing

with any kind of motion whatsoever, on earth or anywhere in the

universe.

When you considered the forces needed to produce motion,

Newton's laws supplied the answers. Later, other motions,

ranging from motion of the planets to the motion of an alpha

particle passing near a nucleus inside an atom, will be discussed.

You wdll continue to find in Newton's laws the tools for

determining the magnitude and direction of the forces acting in

each case.

Ifyou know the magnitude and direction of the forces acting

on an object, you can determine what its change in motion will

be. If you also know the present position, velocity, and mass of

an object, you can reconstruct how it moved in the past and

predict how it will move in the future under these forces. Thus,

Newion's laws provide a neariy unlimited view of forces and

motion. It is not surprising that Newtonian mechanics became a

model for many other sciences. They seemed to provide a

method for understanding all motions, no matter how
mysterious the motions appeared to be.

SG 34

SG 35
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study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 4 include the

following:

Experiments

Curves of IVajectories

Prediction of IVajectories

Centripetal Force

Centripetal Force on a Turntable

Activities

Projectile Motion Demonstration

Speed of a Stream of Water

Photographing a Waterdrop Parabola

Ballistic Cart Projectiles

Motion in a Rotating Reference Frame
Penny and Coat Hanger

Measuring Unknown Frequencies

Film Loops
A Matter of Relative Motion

Galilean Relativity: Ball Dropped from Mast of Ship

Galilean Relativity: Projectile Fired V'ertically

Analysis of Hurdle Race. 1

Analysis of Hurdle Race. II

2. The thrust developed by a Saturn Apollo rocket

is 7370,()()0 N and its mass is 540,000 kg. What is the

acceleration of the vehicle relative to the earth's

surface at lift-off? How long would it take for the

vehicle to rise 50 m?
The acceleration of the vehicle increases greatly

with time (it is 47 m/sec^ at first stage burnout) even

though the thrust force does not increase

appreciably. Explain why the acceleration increases.

3. A person points a gun barrel directly at a bottle

on a distant rock. Will the bullet follow the line of

sight along the barrel? If the bottle falls off the rock

at the very instant of firing, will it then be hit by the

bullet? Explain.

4. It is helpful to consider the vertical and

horizontal motions of a projectile separately. You

can do the same for almost any motion, uniform or

accelerated.

(a) What are the pc and y displacements of a particle

that travels uniformly v\ith a velocity v^ = 4 m/sec

and a velocity v; = 3 m/sec after 2 sec of travel? Find

the displacements after 5 sec and 10 sec.

(b) Add the two displacement vectors pc and y that

you found in part (a) to determine the distance of

the particle from the origin after 2 sec, 5 sec, and 10

sec.

(c) Use your results from part (b) to find the velocity

of the particle along its path. Can you relate this

velocity to the velocity components v and v ?

5. If you like algebra, try this general proof: If a

body is launched with speed v at some angle other

than 0°, it will initially have both a horizontal speed

V and a vertical speed v . The equation for its

horizontal displacement is ;»: = vt, as before. But the

equation for its vertical displacement has an

additional term: y = vf + —af. Show that the
2 «

trajectory is still parabolic in shape.

6. A lunch pail is accidently kicked off a steel beam
on a skyscraper under construction. Suppose the

initial horizontal speed v^ is 1.0 m/sec. Where is the

pail (displacement!, and what is its speed and

direction (velocity) 0.5 sec after launching?

7. (a) A ball is thrown from a roof with a

horizontal speed of 10 m/sec toward a building 25 m
away. How long will it take the ball to hit the

building?

(b) How far will the ball have fallen when it hits the

building?

(c) If the roof ft'om which the ball is tlirown is 20 m
above the ground, what is the minimum speed with

which the ball must be throv\ii to hit the building?

8. A shingle slides down a roof having a 30° pitch

and falls off with a velocity of 2 m/sec. How long will

it take to hit the ground 45 m below? Why can you

ignore the horizontal velocity of the shingle in

calculating the answer?

9. A projectile is launched with a horizontal speed

of 8 m/sec.

(a) How much time will the projectile take to hit the

ground 80 m below?
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(b) How does this time change if the horizontal

speed is doubled?

(c) What is the vertical speed of the projectile when
it hits the ground?

(d) What is the horizontal speed of the projectile

when it hits the ground?

10. In Galileo's drawing on page 107, the distances

be, cd, de, etc., are equal. What is the relationship

among the distances bo, og, gl, and In?

11. You are inside a van that is moving with a

constant velocity. You drop a ball.

(a) What would be the ball's path relative to the van?

(b) Sketch its path relative to a person driving past

the van at a high uniform speed.

(c) Sketch its path relative to a person standing on

the road.

You are inside a moving van that is accelerating

uniformly in a straight line. When the van is traveling

at 10 km/hr (and still accelerating) you drop a ball

from near the roof of the van onto the floor.

(d) What would be the ball's path relative to the van?

(e) Sketch its path relative to a person driving past

the van at a high uniform speed.

(f) Sketch its path relative to a person standing on

the road.

12. Two persons watch the same object move. One
says it accelerates straight dovmward, but the other

claims it falls along a curved path. Describe

conditions under which each observation would be

correct.

13. An airplane has a gun that fires bullets straight

ahead at the speed of 1 ,000 km/hr while the plane

is stationary on the ground. The plane takes off and

flies due east at 1 ,000 km/hr. Which of the following

describes what the pOot of the plane will see? In

defending your answers, refer to the GalUean

relativity principle.

(a) When fired direcfly ahead, the bullets moved
eastward at a speed of 2,000 km/hr.

(b) When fired in the opposite direction, the bullets

dropped vertically downward.

(c) When fired vertically downward, the bullets

moved eastward at 1,000 km/hr while they fell.

Specify the frames of reference from which (a), (b),

and (c) are the correct observations.

14. Many commercial record turntables are

designed to rotate at frequencies of 16% rpm (called

transcription speed), 33'/3 rpm (long playing), 45 rpm
(pop singles), and 78 rpm (old fashioned). What is

the period corresponding to each of these

frequencies?

15. Passengers on the right side of the car in a left

turn have the sensation of being "thrown against the

door." Elxplain what actually happens to the

passengers in terms of force and acceleration.

16. The tires of the turning car in the example on

page 116 were being pushed sideways by the road

with a total force of 4 kN. Of course the tires would

be pushing on the road with a force of 4 kN also.

(a) What happens if the road is covered with loose

sand or gravel?

(b) How would softer (lower pressure) tires help?

(c) How would banking the road (that is, tilting the

surface toward the center of the curve) help? (Hint:

Consider the extreme case of banking in the bobsled

photo on p. 114.)

17. Using a full sheet of paper, make and complete

a table like the one below.

Name of

Concept
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what is the magnitude of the force acting on the

satellite? How long would it take to circle the moon?

39. If the earth had no atmosphere, what would be

the period of a satellite skimming just above the

earth's surface? What would its speed be?

30. Elxplain why it is impossible to have an earth

satellite orbit the earth in 80 min. Does this mean
that it is impossible for any object to go around the

earth in less than 80 min?

31. What was the period of the "110-km " Apollo 8

lunar orbit?

32. Knowing a near the moon's surface and the

orbital speed in an orbit near the moon's surface, we
can now work an example of Part 8 of the

earth-moon trip described in Sec. 4.1. The Apollo 8

capsule was orbiting about 100 km above the surface.

The value of a near the moon's surface is about 1.5

m/sec~.

If the rocket's retro-enj^ines are fired, it will slow

down. Consider the situation in which the rockets

fire long enough to reduce the capsule's horizontal

speed to 100 m/sec.

(a) About how long will the fall to the moon's

surface take?

(b) About how far will it have moved horizontally

during the fall?

(c) About how far in advance of the landing target

might the "braking" maneuver be performed?

33. Assume that a capsule is approaching the moon
along the right trajectory, so that it uill be moving

tangent to the desired orbit. Given the speed v^

necessary for orbit and the current speed v, how
long should the engine with thrust F fire to give the

capsule of mass m the right speed?

34. The intention of the first four chapters has been

to describe "simple" motions and to progress to the

description of more "complex" motions. Classify

each of the following examples as "simplest motion,"

"more complex," or "very complex." Be prepared

to defend your choices and state any assumptions

you made.

(a) helicopter landing

(b) "human cannon ball" in flight

(c) car going from 50 km/hr to a complete stop

(d) tree growing

(e) child riding a Ferris wheel

(f) rock dropped 3 km

(g) person standing on a moving escalator

(h) climber ascending Mt. Everest

(i) person walking

(j) leaf falling from a tree

35. Write a short essay on the physics involved in

the motions shoun in the picture below, using the

ideas on motion from Unit 1.

.n^^Li^

/
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This unit dealt v\ith the

fundamental concepts of

motion. We started by analyzing very simple kinds of motion.

\fter learning the "ABC's" of physics, we expected to be iible to

turn our attention to some of the more complex features of the

world. To what extent were our expectations fulfilled?

We did find that a lelatixely few basic concepts ga\e us a fairly

solid understanding of motion. We could describe many motions

of objects by using the concepts of distance, displacement, time,

speed, velocity, and acceleration. To these concepts we added
force and mass and the relationships expressed in Newton's

three laws of motion. With this knowledge, we found we could

describe most observed motion in an effective way. The
surprising thing is that these concepts of motion, which were

developed in very restricted circumstances, can be so widely

applied. For example, our discussion of motion in the laboratory

centered around the use of sliding dr\'-ice disks and steel balls

rolling down inclined planes. These are not objects ordinarily

found moving around in the everyday "natural" world. Yet we
found that the ideas obtained from those specialized

experiments led to an understanding of objects falling near the

earth's surface, of projectiles, and of objects moving in circular

paths. We star-ted by analyzing the motion of a disk of dry ice

moving across a smooth surface. We ended up analyzing the

motion of a space capsule as it circles the moon and descends

to its surface.

We have made quite a lot of progress in analyzing complex

motions. On the other harnd, we cannot be certain that we have

her-e all the tools needed to understand all the phenomena that

interest us. In Unit 3, we will add to our stock of fundamental

concepts a few additional ones, particularly those of momentum,
work, and ener'gy. They will help us when we turn our* attention

fr om interactions involving a relatively few objects of easily

measured size, to interactions involving countless numbers of

submicroscopic objects such as molecules and atoms.

In this unit, we have dealt mainly with concepts that ow e their

greatest debts to Galileo, Newion, and their- followers. If space

had permitted, we should also have included the contributions

of Rene Descartes and the Dutch scientist Christian Huygens.

The mathematician and philosopher A. N. Whitehead, in Science

and the Modern World, has summarized the role of these four

men and the importance of the concepts we have been studying

as follows:

This subject of the formation of the three laws of motion and of

the law of gravitation (which we sliall take up in Unit 2]

deserves critical attention. The whole development of thought

occupied exactly two generations. It commenced with Galileo

and ended with Nevvlon's Principia: and \ev\lon was born in
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the year that Galileo died. Also the lives of Descartes and

Huygens fall within the period occupied by these great terminal

figures. The issue of the combined labours of these four men
has some right to be considered as the greatest single

intellectual success which mankind has achieved.

The laws of motion that Whitehead mentions were the subject

of this unit. They u^ere important most of all because they

suddenly allowed a new understanding of celestial motion. For

at least 20 centuries people had been trying to reduce the

complex motions of the stars, sun, moon, and planets to an

orderly system. The genius of Galileo and Newton lay in their

studying the nature of motion as it occurs on earth, and then

assuming that the same laws would apply to objects in the

heavens beyond human reach.

Unit 2 is an account of the centuries of preparation that paved

the way for the great success of this idea. We will trace the line

of thought, starting with the formulation of the problem of

planetary motion by the ancient Greeks. We will continue

through the woi^k of Copernicus, Tycho Brahe, Kepler, and

Galileo to provide a planetary model and the laws of planetary

motion. Finally, we vvdll discover Newton's magnificent synthesis

of terrestrial and celestial physics through his law of universal

gravitation.
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CHAPTER 5 Where Is the Earth? ITie Greeks' Answers

CHAPTER 6 Does the Earth Move? The Work of

Copernieus and Tycho
CHAPTER 7 A New Universe Appears: The Work of

Kepler and GalUeo

CHAPTER 8 The Un% of Earth and Skv: The Work of

Newton

Astronomy, the oldest science,

deals with objects now known
to lie vast distances from the earth. To early observers, the sun,

moon, planets, and stars did not seem to be so far away. Yet

always, even today, the majesty of celestial events has fired our

imagination and curiosity. The ancients noted the gieat variety of

objects visible in the sky, the regularit\' of their motions, the

strangely slow changes in their position and brightness. This

whole mysterious pattern of motions required some reason,

some cause, some explanation.

To the eye, the stars and planets appear as very well-defined

pinpoints of light. Phey are easy to observe and follow precisely,

unlike most other natur^ally occurring phenomena. The sky

therefore pro\aded the natural "laboratory" for beginning a

science based on the abilitv to abstract, measure, and simpli^.
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Astronomical events not only affected the imagination of the

ancients, but also had a practical effect on everyday life. The

working day began when the sun rose, and it ended when the

sun set. Before electric lighting, human activity was dominated

by the presence or absence of daylight and the sun's wannth,

which changed season by season.

Of all time units commonly used, "one day " is probably the

most basic and surely the most ancient. For counting longer

intervals, a "moon " or month was an obvious unit. Over the

centuries, clocks were devised to subdivide days into smaller

units, and calendars were invented to record the passage of days

into years.

When the early nomadic tribes settled down to live in villages

some 10,000 years ago, they became dependent upon agriculture

for their food. They needed a calendar for planning their plowing

and sovvdng. Throughout recorded histoiy, most of the world's

population has been involved in agriculture and so has

depended on a calendar. If seeds were planted too early, they

might rot in the ground, or the young shoots might be killed by a

frost. If they were planted too late, the crops would not ripen

before winter came. Therefore, a knowledge of the best times for

planting and haivesting was important for sundval. Because

religious festivals were often related to the seasons, the job of

making and improving the calendar often fell to priests. Such

improvements required observation of the sun, planets, and stars.

The first astronomers, therefore, were probably priests.

Practical needs and imagination acted together to give

astronomy an early importance. Many of the great buildings of

ancient times were constructed and situated with a clear

awareness of astronomy. The great pyramids of Egypt, tombs of

the Pharaohs, have sides that run due north-south and

east-west. The awesome circles of giant stones at Stonehenge in

England appear to have been arranged about 2000 B.C. to permit

accurate observations of the positions of the sun and moon. The

Mayans and the Incas in America as well as the ancient

civilizations of India and China put enormous effort into

buildings from which they could measure changes in the

positions of the sun, moon, and planets. At least as early as 1000

B.C. the Babylonians and Egyptians had developed considerable

ability in timekeeping. Their recorded observations are still being

unearthed.

Thus, for thousands of years, the motions of the heavenly

bodies were carefully observed and recorded. In all science, no

other field has had such a long accumulation of data as

astronomy.

But our debt is greatest to the Greeks, who began trying to

deal in a new way udth what they saw. The Greeks recognized

the contrast between the apparently haphazard and short-lived

The Aztec calendar, carved over

100 years before our calendar was
adopted, divides the year into 18

months of 20 days each.

Even in modern times people who
live much in the open use the sun

by day and the stars by night as a

clock. True south can be deter-

mined from the position of the sun,

at local noon. The Pole Star gives a

bearing on true north after dark.

I he positions ofJupiterfrom I'SZ

B c to 60 B.C. are recorded on this

section of Babylonian clav tablet,

now in the British Museum.
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Stonchcnge, England, was appar
ently a prehistoric obser\'atory. motions of objects on earth and the unending cycles of the

heavens. About 600 b c: they began to ask new questions: How
can we explain these cyclic exents in the sky in a simple way?

What order and sense can we make of them? The Greeks'

answers, discussed in Chapter 5, had an important effect on

science. For example, the writings of Aristotle labout 330 B.C.)

became widely studied and accepted in Western Europe after

1200 A.n , and they were important factors in the scientific

revolution that followed.

After the conquests of Alexander the Great, the center of Greek

thought and science shifted to Eg\pt. At the new citA of

Alexandria, founded in 332 B.c:., a great museum similar to a

modern research institute was created. It flourished for many
centuries. But as Greek cixilization gradualK' declined, the

practical-minded Romans captured Egxpt, and interest in science

died out. In 640 A.D., Alexandria was captur-ed by the Muslims

as they swept along the souther n shor^e of the MediterTanean Sea

and moved northward through Spain to the Pvr-enees. Along the

way they seized and preserved many libraries of Greek

documents, some of which were later tr^anslated into Arabic and

carefully studied. During the tbilowing c'enturii^s, Muslim

scientists made new and better observations of the heavens.

However, they made no major- changes in the explanations or

theories of the (ireeks.

130 L!MT 2 PKOLOGIE



In Western Europe during this period, the works of tlie Greeks

were largely forgotten. Eventually Europeans rediscovered them
through Arabic translations found in Spain after the Muslims
were forced out. By 1130 A.D., complete manuscripts of at least

one of Aristotle's books were known in Italy and France. After the

founding of the University of Bologna in the late twelfth century,

and of the University of Paris around 1200, many other wi itings

of Aristotle were acquired. Scholars studied these writings both

in Paris and at the new English universities, Oxford and
Cambridge.

During the next century, the Dominican monk Thomas
Aquinas blended major elements of Greek thought and Christian

theology into a single philosophy. His work was widely studied

and accepted in Western Europe for several centuries. In

achieving this synthesis, Aquinas accepted the physics and
astronomy of Aristotle. Because the science was blended with

theology, any questioning of the science seemed also to question

the theology. Thus, for a time there was little effective criticism

of Aristotelian science.

The Renaissance movement, which spread out across Europe

from Italy, brought new art and music. It also brought new ideas

about the universe and humanity's place in it. Curiosity and a

questioning attitude became acceptable, even prized. Scholars

acquired a new confidence in their ability to learn about the

world. Among those whose work introduced the new age were

Columbus and Vasco da Gama, Gutenberg and da Vinci,

Michelangelo and Raphael, Erasmus and Vesalius, Luther, Calvin,

and Henry VIII. (The chart in Chapter 6 shows their life spans.)

Within this emerging Renaissance culture lived Niklas

Koppernigk, later called Copernicus, vv^hose reexamination of

astronomical theories is discussed in Chapter 6.

Further improvements in astronomical theory were made in

the seventeenth century by Kepler, mainly through mathematical

reasoning, and by Galileo, through his observations and writings.

These contributions are discussed in Chapter 7. Chapter 8 deals

with Newton's work in the second half of the seventeenth

century. Neuron's genius extended ideas about motion on earth

to explain motion in the heavens, a magnificent synthesis of

terrestrial and celestial dynamics. These men, and others like

them in other sciences such as anatomy and physiology, literally

changed the world. The results they obtained and the ways in

which they went about their work had effects so far-reaching

that we generally refer to their work as the Scientific Revolution.

Great scientific advances can, and often do, affect ideas outside

science. For example, Newton's work helped to create a new
feeling of self-confidence. It seemed possible to understand all

things in the heavens and on the earth. This great change in

attitude was a major characteristic of the eighteenth century.

In the twelfth century, the Muslim
scholar Ibn Rashd had attempted a

similar union of Aristotelianism and
Islam.
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llVbere Is the Earth?
The Greeks' Answers

5.1 Motions ofthe sun and stars

5.2 Motions ofthe moon
5.3 The 'Svandering" stars

5.4 Plato's problem
5.5 The Greek idea of "explanation"
5.6 The first earth-centered solution

5.7 A sun-centered solution

5.8 The geocentric system of Ptolemy
5.9 Successes and limitations of the Ptolemaic model

S.l
I

Motions of the sun and stars

The facts of eveiyday astronomy, the celestial events themselves,

are the same now as in the times of the ancient Greeks. You can

observe with your unaided eyes most of what these early

scientists saw and recorded. You can discover some of the long-

known cycles and rh34hms: the seasonal changes of the suns
height at noon, the monthly phases of the moon, and the

glorious spectacle of the slowly turning night sky. If you wash

only to forecast eclipses, planetary positions, and the seasons,

you could, like the Babylonians and Egyptians, focus your

attention on recording the details of the cycles and rhythms.

Suppose, however, like the Greeks, you wish to explain these

cycles. Then you must also use your data and imagination to

SG 1

The motions of these bodies, essen-

tially the same as they were thou-

sands of years ago, are not difficult

to observe. You should make a

point of doing so. The Handbook
has many suggestions for observing

the sky, both with the naked eye
and with a smaU telescope.
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The midr^ight sun, photographed at

5-min inten'als over the Ross Sea

in Antarctica.

This description is for observers in

the northern hemisphere. For ob-

ser\'ers south of the equator, ex-

change "north" and "south."

constiTJct some sort of simple model or theory with which you
can predict the obsen^ed variations. Before you explore sexeral

theories pioposed in the past, re\ievv the major obser\'iitions

which the theories tried to explain: the motions of the sun,

moon, planets, and stars.

The most basic celestial cycle as seen from the earth is, of

course, that of day and night. Each day tiie sun rises aboxe the

local horizon on the eastern side of the sky and sets on the

western side. The sun follows an arc across the sky, as is

sketched in part (ai of the diagram at the top of the next page. At

noon, halfway between sunrise and sunset, the sun is highest

above the horizon. Exeiy day, it follows a similar path from

sunrise to sunset, hideed all the objects in the sky show this

pattern of daily motion. They all rise in the east, reach a high

point, and drop lower in the west. iHowexer, some stars nexer

actually sink below the horizon.

I

As the seasons change, so do the details of the sun s path

across the sky. In the northern hemisphere duiing winter, the

sun rises and sets moie to the south. Its altitude at noon is

lower, and so its run across the sky lasts for a shorter period of

time. In summer' the sun rises and sets more toward the north.

Its height at noon is greater, and its track across the sky lasts a

longer time. The whole cycle takes a little less than 365 '/» days.

In the southern hemisphere the pattern is similar, but is

displaced bv' half a year.
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This year-long cycle north and south is the basis for the

seasonal or "solar" year. Apparently, the ancient Egyptians once

thought that the year had 360 days, but they later added five

feast days to have a year of 365 days. This longer year agreed

better with their observations of the seasons. Now^ we know that

the solar year is 365.24220 days long. The decimal fraction

0.24220 raises a problem for the calendar maker, who works with

whole days. If you used a calendar of just 365 days, after four

years New Year's Day would come early by one day. In a century,

you would be in error by almost a month. In a few centuries, the

date called Januaiy 1 would come in the summertime! In ancient

times, extra days or even vv^hole months were inserted from time

to time to keep a calendar of 365 days in fair agreement with the

seasons.

Such a makeshift calendar is, however, hardly satisfactory. In

45 B.C., Julius Caesar decreed a new 365-day calendar (the Julian

calendar) with one extra whole day (a "leap day") inserted each

fourth year. Over many years, the average would therefore be

365 V4 days per year. This calendar was used for centuries, during

which the small difference between '/t (0.25) and 0.24220 added

up to several days. Finally, in 1582 a.d. Pope Gregory announced

a new calendar (the Gregorian calendar). This calendar had only

97 leap days in 400 years, and the new approximation has lasted

satisfactorily to this day wdthout revision.

You may have noticed that a few stars are bright and many are

faint. The brighter stars may seem to be larger, but if you look

at them through binoculars, they still appear as points of light.

Some bright stars show colors, but most appear whitish. People

have grouped many of the brighter stars into patterns, called

constellations. Examples of constellations include the familiar Big

Dipper and Orion.

You may have also noticed a particular pattern of stars

overhead and then several hours later noticed it low in the west.

What was happening? More detailed observation, for example,

by taking a time-exposure photograph, would show that the

entire bowl of stars had moved from east to west. New stars had

risen in the east, and others had set in the west. As seen from

the northern hemisphere, during the night the stars appear to

move counterclockwdse around a point in the sky called the

north celestial pole. This stationary' point is near the fairly bright

star Polaris (see the photograph at the top of page 136).

Some star patterns, such as Orion (the Hunter) and Cygnus

(the Swan, also called the Nor^thern Cr^oss), wer^e described and

named thousands of yearns ago. Since the star patterns described

by the ancients still fit, we can conclude that the star positions

change very little, if at all, over the centuries. This constancy of

relative positions has led to the terTn "fixed stars.

'

Thus, we observe in the heavens unchanging relationships over

the centuries and smooth, orderly motions each day. But,

-«)A

rjjiiiiii

(a) Path of the sun through the sky

for one day ofsummer and one
day of winter.

(b) Noon altitude of the sun as seen

from St. Louis, Missouri, through-

out the year.

SG 2

SG3

To reduce the number of the leap

days from 100 to 97 in 400 years,

century years not divisible by 400

were omitted as leap years. Thus,

the year 1900 was not a leap year,

but the year 2000 will be a leap

year.

SG4

SG5

A very easy but precise way to time
the motions of the stars is ex-

plained in the Handbook.
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A combination trail and star photo-
graph of the constellation Orion.

The camera shutter was opened
for several hours while the stars

moved across the sky (leaving trails

on the photographic plate). Then
the camera was closedfor a few
minutes and reopened while the

camera was moved to follow the

stars.

Flight:

Time-exposure showing star trails

around the north celestial pole.

The diagonal line was caused by

the rapid passage of an artificial

earth satellite.

You can use a protractor to de-

termine the duration of the expo-
sure; the stars appear to move
about 15° per hour.

although the daily rising and setting cycles of the sun and stars

are similar, they are not identical. Unlike the sun's path, the

paths of the stars do not vary in altitude from season to season.

Also, stars do not have quite the same rhythm of rising and

setting as the sun, but go a little faster. Some constellations seen

high in the sky soon after sunset appear low in the west at the

same time several weeks later. As measured by sun-time, the

stars set about 4 minutes earlier each da\^

Thus far, the positions and motions of the sun and stars have

been described in relation to the observer's horizon. But different

obser\'ers have different horizons. Therefore, the horizon cannot

be used as a frame of reference from which all observers will see

the same positions and motions in the sky. However, the fixed

stars pro\ide a ft ame of reference which is the same for all

obsen^ers. The positions of these stars relative to one another do

not change as the observer moves over the earth. Also, their daily

• • •

URSA MAJOR URSA MINOR

• •

CASSIOPEIA CYGNUS LYRA »-. ORIW
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motions are simple circles with almost no changes during a year

or through the years. For this reason, positions in the heavens

are usually described in terms of a frame of reference defined by

the stars.

A description of the sun's motion must include the daily

crossing of the sky, the daily difference in rising and setting

times, and the seasonal change in noon altitude. You have

already seen that, as measured by sun-time, each star sets about

4 minutes earlier each day than it did the previous day; it goes

ahead of the sun toward the west. You can just as well say that,

measured by star-time, the sun sets about 4 minutes later each

day; that is, the sun appears gradually to slip behind the daily

east-to-west motion of the stars. In other words, the sun moves

very slowly eastward against a background of "fixed " stars.

The difference in noon altitude of the sun during the year

corresponds to a drift of the sun's path north and south on the

background of stars. In the first diagram below, the middle

portion of the sky is represented by a band around the earth.

The sun's yearly path against this background of stars is

represented by the dark line. If you cut and flatten out this band,

as showm in the second and third diagrams, you get a chart of

the sun's path during the year. (The 0° line is the celestial

equator, an imaginary line in the sky directly above the earth's

equator.) The sun's path against the background of the stars is

called the ecliptic. Its drift north and south of the celestial

equator is about 23.5°. You also need to define one point on the

ecliptic so you can locate the sun or other celestial objects along

it. For centuries this point has been the place where the sun

crosses the equator from south to north on about March 21. This

point is called the vernal (spring) equina^. It is the zero point

from which positions among the stars usually are measured.

Thus, there are three apparent motions of the sun: (1) its daily

westward motion across the sky, (2) its yearly drift eastward

among the stars, (3J its yearly cycle of north-south drift in noon

altitude. These cyclic events can be described by using a simple

model to represent them.

The differences between the two
frames of reference (the horizon

and the fixed stars) are the basis for

establishing a position on the earth,

as in navigation.

In New Me}iico, a construction of
stone slabs directs beams of sun-

light onto spiral carvings on a cliff

face. The light forms changing pat-

terns throughout the year and also

marks the solstices and equinoxes.

This unique astronomical marker
makes use of the changing height

of the midday sun throughout the

year; it was apparently built by the

Anasazi Indians. The above photo
shows the light pattern at 11:13

on the morning ofsummer sol-

stice.
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Motions of the moon
The moon shares the general east-to-west daily motion ot the

sun and stare. But the moon slips eastward against the

background of the stars faster than the sun does. Each night the

moon lises nearly 1 hour later. When the moon rises in the east

at sunset (opposite the sun in the sky', it is a bright, full disc (full

moon). Each day after that, it rises later and appears less round.

Finally, it wanes to a thin crescent low in the sky at davvii. After

about 14 days, the moon is passing near the sun in the sky and

rising with it. During this time (new mooni, you cannot see the

moon at all. After the new moon, you first see the moon as a thin

crescent low in the western sky at sunset. As the moon moves

rapidly eastward from the sun, its crescent fattens to a half disc

at first quarter. Within another week, it reaches full moon again.

After each full moon the cycle repeats itself.

The moon as it looks 26 days after

new moon (left); 1 7 days after new

moon (middle]; and 3 days after

new moon (right).

As early as 380 B.C., the Greek philosopher Plato recognized

that the phases of the moon could be explained by thinking of

the moon as a globe reflecting sunlight and moving around the

earth in about 29 days. Because the moon appears so big and
moves so rapidly compared to the stars, people in earl\' times

thought that it must be quite close to the eaith.

Ihe moons path around the sky is close to the yearly path of

the sun; that is, the moon is always near the ecliptic. But the

moon's path tilts a bit with respect to the sun's path. If it did

not, the moon would come e.xactK in front of the sun at e\'ery

new moon, causing an eclipse of the sun. It would be exactly

opposite the sun at e\'er\' full moon, moxing into the earth's

shadow and causing an e(li|)se of the moon.
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The motions of the moon have been studied with great care

for centuries, partly because of interest in predicting eclipses.

These motions are veiy complicated. The precise prediction of

the moon's position is an exacting test for any theory of motion

in the heavens. SG 6

# 4. Draw a rough diagram to show the relative positions of the

sun, earth, and moon during each of the moon s four phases.

5. Why do eclipses not occur each month?

6. (a) What are the observed motions of the moon during a

month?

(b)) How do these motions change during the year?

(c) What do you think is the origin of the word "month"? Look

it up in the dictionary.

S.3
I

The ''ivandering" stars

Without a telescope you can see, in addition to the sun and
moon, five rather bright objects that move among the stars. These

are the "wanderers, " or planets: Mercury, Venus, Mars, Jupiter,

and Saturn. With the aid of telescopes, three more planets have

been discovered: Uranus, Neptune, and Pluto. None of these

three planets were known until nearly a century after- the time of

Isaac Newton. Like the sun and moon, all the planets rise daily

in the east and set in the west. Also like the sun and moon, the

planets generally move slowly eastward among the starts. But

they have another^ r emarkable and puzzling motion of their own.

At certain times, each planet stops moving eastward among the

stars and for some months loops back westward. This westward

or "uTong-way " motion is called retrograde motion. The
retrograde loops made by Mercury, Mar s, and Saturn during 1

year are plotted on page 140.

PL^n&t E^rt-h

The paths of all the planets are close to the sun's path among
the stars—the ecliptic. Mercury and Venus are always fairly near

the sun. The greatest angular distance east or west of the sun

is 28° for Mercury and 48° for Venus. The westward, or

retrograde, motions of Mercury and Venus begin after the planets

are farthest east of the sun and visible in the evening sky. The
other planets may have any position relative to the sun. Their

westward retrograde motion occurs around the time when they

are opposite the sun (highest in the sky at midnight).

When a planet is observed directly

opposite the sun, the planet is said

to be in opposition. Retrograde
motions of Mars, Jupiter, and Sat-

urn are observed about the time

they are in opposition.
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Sun The ma;<.imum angles from the sun

at which Mercury and Venus can

be observed. Both planets can, at

timesi be observed at sunset or

at sunrise. Mercury is never more
than 28° from the sun, and Venus is

never more than 48° from the sun.

Earth

The planets change considerably in brightness. When Venus

first appears in the evening sky as the "evening star," it is only

fairly bright. During the folloudng 4-5 months, it moves farther

eastward from the sun. Gradually it becomes so bright that it

often can be seen in daytime if the air is clear. A few weeks later,

Venus moves westward toward the sun. It fades rapidly, passes

the sun, and soon reappears in the morning sky before sunrise

as the "morning star." Then it goes through the same pattern,

but in the opposite order: bright at first, then gradually fading.

Mercury follows much the same pattern. But because Mercuiy is

seen only near the sun (that is, only during twilight), its changes

are difficult to observe.

Mars, Jupiter, and Saturn are brightest about the time that they

are in retrograde motion and opposite the sun. Yet over many
years their maximum brightness differs. The change is most

obvious for Mars; the planet is brightest when it is opposite the

sun during August or September.

The sun, moon, and planets generally slip behind as the

celestial sphere goes around the earth each day, and thus they

appear to move eastward among the stars. Also, the moon and

planets (except Pluto) are always found vvdthin a band, called the

Zodiac, only 8° udde on either side of the sun's path.

These, then, are some of the main observations of celestial

phenomena. All of them were known to the ancients. In their day

as in ours, the puzzling regularities and variations seemed to cry

out for some explanation.

SG 7

• 7. In what part of the sky must you look to see the planets

Mercury and Venus?

8. In what part of the sky would you look to see a planet that

is in opposition to the sun?

9. When do Mercury and Venus show retrograde motion?
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10. when do Mars, Jupiter, and Saturn show retrograde

motion':'

11. Can Mars, Jupiter, and Saturn appear any place in the sky?

12. What are the obserx^ed niotions of the planets during the

year?

S.4r
I

Plato's problem

Several centuries later, a more ma-
ture Islamic culture led to extensive

study and scholarly commentan,'
on the remains of Greek thought.

Several centuries later still, a more
mature Clhristian culture used the

ideas preserved by the Muslims to

evolve early parts of modern sci-

ence.

In the fourth century B.C., Greek philosophers asked new
questions: How can we explain the cycles of changes obseived in

the sky? What model can consistently and accurately account

for the obseived motions? Plato sought a theory to explain what

u'as seen or, as he phrased it, "to save the appeai^ances." The
Greeks were among the first people to desire clear, rational

explanations for natural events. Their attitude was an important

step toward science as we know it today.

How did the Greeks begin their explanation of celestial

motion? What were their assumptions?

Any answer's to these questions must be partly guesswor'k.

Many scholar's oxer' the centuries ha\e dexoted themselves to the

study of Greek thought. But the documents on which our

knowledge ©f the Greeks is based ar'e mostly copies of copies and

translations of tr'anslations. Many error's and omissions occur.

In some cases, all we have are reports from later writer's on what

certain philosophers did or said. These accounts may be

distorted or incomplete. The historians s task is diflrcult. Most of

the original Greek writings were on papyr-us or cloth scrolls

which have decayed through the ages. Wars, plundering, and

burning have also destroyed many important documents.

Especialh' tragic was the burning of the famous library of

Alexandria in Egypt, which contained sexeral hundred thousand

documents. (It was bur'ned three times: in part by Caesar 's troops

in 47 B.C., in the fourth century a.d. by Christians, and about tS40

A.D. by early Muslims when they overran the country.! The
general pictur-e of Greek culture is fairly clear, but many
interesting details are missing.

The approach to celestial motion taken by the Greeks and their

intellectual followers for many centuries was outlined by Plato

in the fourth century B.C. He defined the problem to his students

in terms of order and status. The stars, Plato said, represent

eternal, divine, unc;hanging beings. They move at a unilbrm

speed around the earth in the most regular and perfect of all

paths, an endless circle. But the sun, moon, arid planets wander
across the sky by complex paths, including e\en letrogiade

motions. Yet, being heavenly bodies, surely they too are really

moving in a way that suits their high status. Their motions, if not

in a single perfect circle, must be in some combination of peifect
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circles. What combinations of circular motions at uniform speed

could account for these strange variations?

Notice that the problem deals only with the changing apparent

positions of the sun, moon, and planets. The planets appear to

be only points of light moving against the background of stars.

From tw^o obsen/ations at different times, an observer can obtain

a rate of motion—a value of so many degrees per day. The

problem then is to invent a "mechanism," some combination of

motions, that reproduces the obseiA^ed angular motions and

leads to accurate predictions. The ancient astronomers had no

data for the distance of the planets from the earth. All they had

were directions, dates, and rates of angular motion. They did

know that the changes in brightness of the planets were related

to their positions with respect to the sun. But these changes in

brightness were not included in Plato's problem.

Plato and many other Greek philosophers assumed that there

were only a few basic "elements." Mixed together, these few

elements gave rise to the great variety of materials obsen^ed in

the world. (See Unit 1, Chapter 2.) Perfection could only exist in

the heavens, which were separate from the earth, and were the

home of the gods. Just as motions in the heavens must be

eternal and perfect, the unchanging heavenly objects could not

contain elements normally found on or near the earth. Therefore,

they were supposed to consist of a changeless fifth element (or

quintessence)

.

Plato's problem in explaining the motion of planets remained

the most important problem in astronomy for nearly 2,000 years.

In later chapters, you wall explore the different interpretations

developed by Kepler, Galileo, and Newton. But in order to

appreciate these efforts, you must first examine the solutions

offered by the Greeks to Plato's problem. For their time, these

solutions were useful, intelligent, and, indeed, beautiful.

# 13. What was Plato's problem ofplanetary motion?

14. Why is our knowledge of Greek science incomplete?

15. Why did the Greeks feel that they should use only uniform

circular motions to explain celestial phenomena?

5.5
I

The Greek idea of "explanation"

Plato's statement of this historic problem of planetary motion

illustrates these major contributions of the Greek philosophers.

With slight changes, these concepts are still basic to an

understanding of the nature of physical theories:

1. A theory should be based on simple ideas. Plato regarded it

not merely as simple, but also as self-evident, that heavenly
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21 ^°

The annual north-south (seasonal)

motion of the sun was explained

by having the sun on a sphere
whose a^is was tilted 23.5° from
the a^is of the eternal sphere of
the stars.

bodies must move uniiomily along circular paths. Only in recent

centuries have scientists learned that such common-sense beliefs

may be misleading. While unproved assumptions are made at the

outset, they must be examined closely and never accepted

without reservation. As you will see often in this course, it has

been very difficult to identify hidden assumptions in science. Yet

in many cases, when the assumptions were identified and
questioned, entirely new theories followed.

2. Physical theory must agree with the measured results of

observation oi phenomena, such as the motions of the planets.

The purpose of a theory is to discover the uniformity of behavior,

the hidden simplicity underlying apparent irregularities. For

organizing obseivations, the language of numbers and geometry

has become useful. Plato stressed the ftmdamental role of

numerical data only in his astronomy, while Aristotle largely

avoided detailed measurements. This was unfortunate because,

as reported in the Prologue, Aristotle greatly influenced later

scholars. His arguments, which gave little attention to the idea of

measurement of change as a tool of knowledge, were adopted

centuries afterward by such important philosophers as Thomas
Aquinas.

3. To "explain" complex phenomena means to develop or

invent a physical model, or a geometrical or other mathematical

construction. This model must reproduce the same features as

the phenomena to be explained. For example, v\ith a model of

interlocking spheres, a point on one of the spheres must have

the same motions as the planet which the point represents.

^•6
I

The first earth-centered solution

The Greeks observed that the earth was large, solid, and
peiTnanent. Meanwhile the heavens seemed to be populated by

small, remote objects that were continually in motion. What was
more natural than to conclude that the big, heaw earth was the

steady, unmoving center of the universe? Such an earth-centered

viewpoint is called geocentric. From this viewpoint the daily

motion of the stars could be explained easily: The stars were

attached to, or were holes in, a large, dark, spherical shell

surrounding the earth. They were all at the same distance from

the earth. Daily, this celestial sphere turned once on an axis

through the earth. As a result, all the stars fixed on it moved in

circular paths around the pole of rotation. Thus, a simple model

of a rotating celestial sphere and a stationary earth could explain

the daily motions of the stars.

The three observ^ed motions of the sun required a somewhat

more complex model. To explain the sun's motion with respect

to the stars, a separate, imisible shell was imagined. This shell

was fixed to the celestial sphere and shared its daily motion. But
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it also had a slow, opposite motion of its own, amounting to one

360° cycle per year. The yearly north-south motion of the sun

was accounted for by tilting the axis of its sphere. This

adjustment matched the 23.5° tilt of the sun's path from the axis

of the dome of stars.

The motions of the visible planets (Mercury, Venus, Mars,

Jupiter, and Saturn) were more difficult to explain. These planets

share generally the daily motion of the stars, but they also have

peculiar motions of their own. Saturn moves most slowly among
the stars, revolving once in 30 years. Therefore, its sphere was

assumed to be largest and closest to the stars. Inside the sphere

of Saturn were spheres cariying the faster-moving Jupiter (12

years) and Mars (687 days). Since they all require more than a

year for a complete trip among the stars, these three planets

were believed to lie beyond the sphere of the sun. Venus,

Mercury^ and the moon were placed between the sun and the

earth. The fast-moving moon was assumed to reflect sunlight and

to be closest to the earth.

This imaginary system of transparent shells or spheres

provided a rough model for explaining the general motions of

heavenly objects. By choosing the sizes of the spheres and their

rates and direction of motions, one could roughly match the

model with the obseivations. If additional obseivations revealed

other cyclic variations, more spheres could be added to adjust

the model. (An interesting description of this general system of

cosmology appears in the Divine Comedy, written by the poet

Dante about 1300 a.d. This was shortly after Aristotle's wintings

became known in Europe.)

You may feel that Greek science was bad science because it

was different from our own or because it was less accurate. You

should understand from your study of this chapter that such a

conclusion is not justified. The Greeks were just beginning the

development of scientific theories. Naturally, they made
assumptions that appear odd or inaccurate to us today. Their

science was not 'bad science, " but in many ways it was a

different kind of science from ours. And our science is not the

last word, either. You must realize that to scientists 2,000 years

from now our efforts may seem clumsy and strange.

Even today's scientific theory does not and cannot claim to

account for every detail of every specific situation. Scientific

concepts are general ideas which treat only selected aspects of

observations. Thev do not cover the whole mass of raw data and

raw experience that e^cists in the universe. Also, each period in

history puts its own limits on the range of human imagination.

As you learned in Unit 1, important general concepts such as

force and acceleration were invented specifically to help organize

observations. Such concepts are human inventions.

The history of science contains many cases in which certain

factors overlooked by one researcher later turn out to be very

Dt X.// COS UOGK.ytr H.

La Figure & nombrc
dcs Sphacs.

Dcs Ccrclcs dc la Sphere. Chap. 1 1 I

Quelle chofe eft la Sphere.

Quelle choft eft 1 exieu dc la Sphere,

Li«,« dc U Sphm(com, Jicl D^odocliMJ <Ji U diamtnt J»i fof-

u ditntfn^erficc rondt,4U mitlieu
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A geocentric cosmological scheme.

The earth is fi^ed at the center of
concentric rotating spheres. The
sphere of the moon (lune) sepa-

rates the terrestrial region (com-

posed of concentric shells of the

four elements Earth, Water, Air,

and Fire) from the celestial region.

In the latter are the concentric

spheres carrying Mercury, Venus,

Sun, Mars, Jupiter, Saturn, and the

stars. To simplify the diagram, only

one sphere is shown for each

planet. (From the DeGolyer copy of
Petrus Apianus Cosmographia,
1551.)
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Sun

As the earth passes a planet in its

orbit around the sun, the planet

appears to move backwards in the

sh,'. The arrows show the sight

lines toward the planet for the dif-

ferent numbered positions of the

earth. The lower-numbered circles

symbolize the resulting apparent

positions of the planet when seen

against the background of the dis-

tant stars.

important. But how would better systems for making predictions

be developed without first trials? Theories are impro\ed through

tests and revisions, and sometimes are completely replaced by

better ones.

• 16. What is a geocentric system? How does it account for the

motions of the sun?

17. Describe the first solution to Plato's problem.

^•T
I

A sun-centered solution

For nearly 2,000 years after Plato and Aristotle, the basic

geocentric model was generally accepted, though scholai"s

debated certain details. But a veiy different model, based on
different assumptions, had been pro[)os(xl in the third ccmtury

B.C. The astronomer Aristarchus, peihaps influenced by the

earlier writings of Heracleides, offered this new model.

Aristarchus suggested that a simpler explanation of heavenly

motion would place the light-giving sun at the center, with the

earth, planets, and stars all revolving around it. A sun-centered

system is called heliocentric.

Aristarchus proposed that the celestial sphere is motionless

and that the earth rotates once daily on an axis of its own. He
believed that this assumption could explain all the daily motions

observed in the sky. In this heliocentric system, the apparent tilt

of the paths of the sun, moon, and all the planets results from

the tilt of the earth's own axis. The vearK' changes in the sky,

including retrograde motions of planets, are explained by

assuming that the earth and the planets revolve around the sun.

In this model, the motion previously assigned to the sun around

the earth is assigned to the earth moving around the sun. Also,

the earth becomes just one among several planets. The planets

are not the homes of gods, but are now considered to be bodies

rather like the earth.

The diagram in the margin shows how such a system can

explain the retrograde motions of Mais, Jupitei', and Saturn. ,An

outer planet and the earth are assumed to be moving around the

sun in circular orbits. The outer planet moves more slowly than

the earth. As a result, when the earth is diiectlv between the sun

and the planet, the earth moves lapidlv past the planet. To us

the planet appears for a time to be moving backward in

retrograde motion aci'oss the skv.

The interlocking sphei-es are no longer- needed. The

heliocentric hypothesis has one further advantage. It explains the

obserA'ation that the planets are bi ighter- dur ing retrograde

motion, since at tliat tinre the [)lanets are nearer to [he earth.
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Even so, the proposal by Aristarchus was severely criticized for

three basic reasons. The idea of a moving earth contradicted the

philosophical doctrines that the earth is different from the

celestial bodies and that its natural place is at the center of the

universe. In fact, his contemporaries considered Aristarchus

impious for even suggesting that the earth moved. Also, this new
picture of the solar system contradicted common sense and

everyday obseivations: The earth certainly seemed to be at rest

rather than rushing through space.

Another criticism was that expected motions of the stars were

not observed. If the earth moved in an orbit around the sun, it

would also move back and forth under the fixed stars. As shown

in the sketch in the margin, the angle from the vertical at which

any star is seen would be different for various points in the

earth's annual path. This shift is called paralla^. This difference

was not obsei-ved by the Greek astronomers. This awkward fact

could be explained in two ways: either (1) the earth does not go

around the sun and there is no shift, or (2) the earth does go

around the sun but the stars are so far away that the shift is too

small to observe. As the Greeks realized, for the shift to be too

small to detect, the stars must be enomiously far away.

Today, the annual shift of the stars can be observed with

telescopes; thus, Aristarchus' model is in fact useful. The shift is

so small that even with telescopes it was not measured until

1838. The largest annual shift is an angle of only 1/100 of the

smallest angle observable by the human eye. The shift exists, but

we can sympathize with the Greeks who rejected the heliocentric

theory partly because they could not observe the required shift.

Only Aristarchus imagined that the stars might be as immensely

distant as we now know them to be.

Finally, Aristar chus was criticized because he did not develop

his system in detail or use it to predict planetary positions. His

work seems to have been purely qualitative, a general scheme of

how things might be.

The geocentric and heliocentr ic systems offer ed two different

ways of explaining the same observations. The heliocentric

proposal required such a drastic change in people's image of the

universe that Aristarchus' hypothesis had little influence on

Greek thought. Fortunately, his arguments were recorded and

handed down. Eighteen centuries later, they gained new life in

the thoughts of Copernicus. Ideas are not bound by space or

time.

&«r-t.h

// the earth goes around the sun,

then the direction in which we have

to look for a star should change
during the year. A shift in the rela-

tive observed positions of objects

that is caused by a displacement of
the observer is called a parallax.

The greatest observed parallax of a

star caused by the earth's annual

motion around the sun is about
1/2400°. This is explained by the

fact that the distance to this near-

est star is not just hundreds of mil-

lions of kilometers but 40 million

million kilometers.

• 18. What two new assumptions were made by Aristarchus?

What simplification resulted?

19. How can the heliocentric model proposed by Aristarchus

explain retrograde motion?
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20. What change predicted by Aristarchus' theory was not

obscrx'cd by the Greeks':'

21. Why was Aristarchus considered impious? Why was his

system neglected?

5.8
I

The geocentric system of Ptolemy

Disregarding the heliocentric model suggested by Aristarchus,

the Greeks continued to develop their geocentric system. As

noted, the first solutions in terms of interiocking spheres lacked

accuracy. During the 500 years after Plato and Aristotle,

astronomers began to seek more accurate predictions. To fit the

obseived data, a complex mathematical theory was required for

each planet.

Several Greek astronomers made imporiant contributions,

which climaxed about 150 A.u. in the geocentric theoiy of

Claudius Ptolemy of Alexandria. Ptolemy's book on the motions

of heavenly objects is a masterpiece of analysis.

The Arabic title given to Ptolemy's Ptolemy wanted a system that would predict accurately the
book, the Almagest, means "the positions of each planet. The type of system and the motions he
°^^^ ^

' accepted were based on the assumptions of Aristotle. In the

preface of his Almagest, Ptolemy defined the problem and stated

his assumptions as follows:

. . . we wish to find the evident and certain appearances from

the observations of the ancients and our own, and applving the

consequences of these conceptions by means of geometrical

demonstrations.

And so, in general, vvc have to state, that tiie heavens are

spherical and move spherically; that the earth, in tigure, is

sensibly spherical . . .; in position, lies right in the middle of the

heavens, like a geometrical center; in magnitude and distance,

[the earth) lias the ratio of a point uith respect to the sphere of

the fixed stars, liaving itself no local motion at all.

Ptolemy then argued that each of these assumptions was
necessary and fit all the observations. The str^ength of his belief is

illustrated by his statement "... it is once for all clear from the

very appearances that the earth is in the middle of the world

and all weights move towards it." Notice that he supported his

interpretation of astr^onomical observations by citing the physics

of falling bodies. Later, Ptolemy applied this mixture of

astronomy and physics to the earth itself and to its place in the

scheme. In doing so, Ptolemy tried to disprove Aristarchus' idea

that the earth might rotate and revolve:

Now some people, although they lia\e nothing to oppose to

these arguments, agree on something, as they think, moi-e

plausible. And it seems to them there is nothing af^ainst their
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supposing, for instance, tlie heavens immobile and the earth as

turning on the same axis [as the stars] from west to east very

nearly one revolution a day. . .

.

But it has escaped their notice that, indeed, as far as the

appearances of the stars are concerned, nothin ' would perhaps

keep things ft cm being in accordance with this ;impler

conjecture, but that in the light of what happens around us in

the air such a notion would seem altogether absurd.

Ptolemy believed that if the earth rotated, it would not pull its

blanket of air around with it. As a result, all clouds would fly

past toward the west. All birds and other things in the air also

would be carried away to the west. Even if the earth did drag the

air along with it, objects in the air would still tend to be left

behind by the earth and air together.

The paragraphs quoted above contain a main theme of Unit 2.

Ptolemy recognized that the two systems were equally successful

in describing motion, that is, in terms of kinematics. He preferred

the geocentric theory because it fit better the causes of motion,

that is, the dynamics, as accepted at the time. Much later, when
Newton developed a completely different dynamics, the choice

fell the other way.

Ptolemy developed veiy clever and rather accurate procedures

for predicting the positions of each planet on a geocentric

model. He went far beyond the scheme of the earlier Greeks,

constnjcting a model out of circles and three other geometrical

devices. Each device provided for variations in .e rate of angular

motion as seen from the earth. In order to appi ;ciate Ptolemy's

solution, examine one of the very small variations he was

attempting to explain.

The sun's yearly 360° path across the background of stars can

be divided into four 90° parts. If the sun is at the zero point on

March 21, it will be 90° farther east on June 21, 90° farther still on

September 23, another 90° farther on December 22, and back at

the starting point on March 21, one whole year later. If the sun

moves uniformly on a circle around the earth, the times between

these dates ought to be equal. But, as you will find by consulting

a calendar, they are not equal. The sun takes a few days longer

to move 90° in spring or summer than it does in fall or vvdnter. So

any simple circular system based on motion vvdth constant speed

will not work for the sun.

The three devices that Ptolemy used to improve geocentric

theory were the eccentric, the epicycle, and the equant.

Agreeing with Plato, astronomers had held previously that a

celestial object must move at a unifomi angular rate and at a

constant distance from the center of the earth. Ptolemy, too,

believed that the earth was at the center of the universe. But he

did not insist that it stood at the geometrical centers of all the

perfect circles. He proposed that the center C of a circle could be

SG 8

PUan^t.

An eccentric

PLanet.

An epicycle
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off-center from the earth, in an eccentric position. Thus, motion

that was really uniform around the center C would not ap|3ear to

be uniform when observed from the earth. An eccentric oibit of

the sun would therefore account for the seasonal \ariation

obseived in the sun's rate of motion.

The eccentric can also account for small variations in the rate

of motion of planets. Howexer, it cannot describe such drastic

changes as retrograde motion of the planets. To account for

retrograde motion, Ptolemy used another device, the epicycle (see

the figure on page 1491. The planet is considered to be moxing at

a uniform rate on the small epicvle. The center of the epicvcle

moves at a uniforai rate on a large circle, called the deferent,

around the earth.

Retrograde motion created by a

simple epicycle machine: (a) Stro-

boscopic photograph of epicyclic

motion. The flashes were made
at equal time internals. Note that

the motion is slowest in the loop.

(b) Loop seen from near its plane.

SG 9

If a planet's speed on the epicycle is greater than the speed of

the epicycle on the large circle, the ]Dlanet as seen from above

the system appears to move through loops. When obsened from

a location near the center of the system, these loops look like the

retrograde motions actually obseived for planets. The

photographs above show two \iews of the motions pioduced b\'

a simple mechanical model, an "epicycle machine." A small light

takes the place of the planet. The photo on the left was taken

fi'om 'abo\'e," like the diagram on page 149. Ihe photo on the

right was taken "on edge," almost in the plane of the motion.

Thus, the loop looks much as it w ould if \iewed from near the

center.

With epicycles it was not loo difficult to produce a system that

had all the main features of obsened planetary motion. Ptolem\'

s

system included a unique pattern for the epicycles foi- the outer

planets. All had the same period, exactly 1 year! Moreover, the

positions of the outer planets on their epicx'cles alwaxs matched

the position of the sun relatixe to the earth. See the sketches ip.

151) for this matching of epicyles to the relative motion of sun

and earth. Fourteen centuries later, this peculiar feature became

a ke\' point of concern to Copernicus.
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Simplified representation of the

Ptolemaic system. The scale of the

upper drawing, which shows the

planets between the earth and the

sun, is eight times that of the lower

drawing, which shows the planets

that are beyond the sun. The
planets' epicycles are shown along

one straight line to emphasize the

relative sizes of the epicycles.

Mars plotted at 4-day intervals on
three consecutive oppositions.

Note the different sizes and shapes

of the retrograde curves.
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Ptolemy did not picture the plane-

tary motions as those of an inter-

locking machine in which each
planet determined the motion of

the next. Because there was no in-

formation about the distances of

the planets, Ptolemy adopted an old

order of distances from the ejirth:

stars being the most remote, then

Saturn, Jupiter, Mars, the sun, Ve-

nus, MercuPk', and the moon. The
orbits were usually shown nested

inside one another so that their epi-

cycles did not overlap.

An equant. C is the center of the

circle. The planet P moves at a uni-

form rate around the off-center

point C. The earth is also off cen-

ter.

SG 10

Astronomical observations were all

obsenations of angles. A small loop

in the sky could be a small loop

fairly near, or a lai'ger loop much
farther away.

SG 11

So far, the system of epicycles and deferents "works" well

enough. It explains not only letrograde motion, but also the

greater brightness of the planets when they are in retrograde

motion. Then a planet is closest to the eai'th, and so appears

brightest. This is an unexpected bonus, since the model was not

designed to explain the brightness change.

Even with combinations of eccentiics and epicycles, Ptolemy

could not fit the motions of the five planets exactly. For example,

as you see in the three figures on page 151, the retrograde

motion of Mars is not always of the same angular size or

duration. To allow for such difficulties, Ptolemy used a third

geometrical device, called the equant. The equant is a variation

of the eccentric with the uniform motion about an off-center

point C.

^•9
I

Successes and limitations of the Ptolemaic
model

Ptolemy's model always used a uniform rate of angular motion

around some center. To that extent, it stayed close to the

assumptions of Plato. But, to fit the observations, Ptolemy was
willing to displace the centers of motion from the center of the

earth as much as necessary. By combining eccentrics, epicycles,

and equants, he described the positions of each planet

separately. For each planet, Ptolemy found a combination of

motions that predicted its observed positions over long periods

of time. These predictions were accurate to within about 2°

Ir'oughH' four diameters of the moonj. This accuracy was a gr-eat

improvement over earlier systems.

Ptolemy's model was quite successful, especially in its

unexpected explanation of varying brightness. Such success

might be taken as proof that objects in the sky actually move on

epicycles and equants around off-center points. Ptolemy did not

believe he was pr oxiding an actual physical model of the

universe. He created a mathematical model, like equations, for

computing positions.

The Ptolemaic model was a series of mathematical dexices

meant to match and predict the motion of each planet

separ'ately. His geometrical analyses xvere like complicated

equations of motion for- each individual planet. But in the

following centuries most scholat^s, including the poet Dante,

accepted the model as r^eal. They actuallx' beliexed that the

planets mox'ed on transparent, inxisible spheres. Also, the}' felt

that somehow the motion of all these separ ate spheres should be

related. IrT Ptolemy's original work, each planet xvas independent

of the other s.

Ptolemy proposed his model of the planetary system in 150

AD. Although it is noxv discarded, it xvas used for- about 1,500

year's, iher'e xver-e good reasons lor- this long acceptance.
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1. It predicted fairly accurately the positions of the sun, moon,

and planets.

2. It explained why the fixed stars do not show an annual shift

(parallax) when obsen^ed with the naked eye.

3. It agreed in most details with philosophies developed by the

early Greeks, including the ideas of "natural motion" and

"natural place.

'

4. It had common-sense appeal to all who saw the sun, moon,

planets, and stars moving around them.

5. It agreed with the comforting assumption that we live on an

unmoxdng earth at the center of the universe.

6. Later, it fitted into Thomas Aquinas' widely accepted

synthesis of Christian belief and Aristotelian physics.

Yet Ptolemy's system eventually was displaced by a

heliocentric one. Why did this occur? What advantages did the

new theory have over the old? From this historic argument about

competing theories, w^hat can you learn about the relative value

of rival theories in science today? These are some of the

questions to consider in the next chapter. SG 12

Study
guide

1. The Project Physics learning materials

particularly appropriate for Chapter 5 include:

Experiments

Naked-Eye Astronomy
Size of the Earth

The Distance to the Moon
Height of Piton—A Mountain on the Moon
Retrograde Motion

Activities

Making Angular Measurements
Epicycles and Retrograde Motion

Celestial Sphere Model
How Long is a Sidereal Day?

Scale Model of the Solar System
Build a Sundial

Plot an Analemma
Stonehenge

Moon Crater Names
Literature

Film Strip

Retrograde Motion of Mars

Film Loops
Retrograde Motion—Geocentric Model

2. How could you use the shadow cast by a vertical

stick on horizontal ground to find

(a) the local noon?

(b) which day was June 21st?

(c) the length of a solar year?

3. What is the difference between 365.24220 days

and 365 '/i days (a) in seconds (bl in percent?

4. (a) List the observations of the motions of

heavenly bodies that you might make which would

also have been possible in ancient Greek times.

(b) For each observation, list some reasons why the

Greeks thought these motions were important.
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sg
5. Which of the apparent motions of the stars

could be exjjlained by a flat eiU'th and stars fixed to a

bowl that rotated around it?

6. Describe the obsened motion of the moon
during one month, using drawings. (Use your own
observations if possible.

i

7. Mercur\' and Venus show retrograde motion

after they ha\ e been farthest east of the sun and

visible in the evening sky. Then they quickly move

ahead westward toward the sun, pass it, and

reappear in the morning sky. During this motion

they are moving westward relative to the stars, as is

show II l)v the plot of Merruiy on page 140. Describe

the rest of the cyclic motion of Mercur\' and Venus.

8. Center a protractor on point C in the top

diagram on page 149 and measure the number of

degrecis in the four quadrants. Consider each 1°

around C as one day. Make a table of the days

needed for the planet to move through the four arcs

as seen from the earth.

9. (a) How many degrees of terrestrial longitude

does the sun move each hour?

(b) What rough value for the diameter of the earth

can you obtain from the following information:

(1) Washington, D.C., and San Francisco have

about the same latitude. How can one easily test

this?

(2) A nonstop jet plane, going up wind at a ground

speed of 800 km/hr from Washington, 13.C., to San

Francisco, takes 5 hr to get there.

(3) When it is just sunset in Washington, D.C., a

person th(!r(! turns on a 'l\' sv.\ to watch a l)a.sebcdl

game that is just beginning in San I'raiK isco. The

game goes into extra innings. /Vlter 3 hr the

announcer notes that the last out occurred just as

the sun set.

10. In Ptolemy's theory of the planetarv' motions

there were, as in all theories, a numl)er of

assumptions. Which of tiie follovxing did Ptolemy

assume?

(a) The vault of stfirs is spherical in form.

(b) The earth has no motions.

(c) The e£irth is spherical.

(d) The earth is at the center of the sphere of stars.

(e) The size of the earth is extremely small

compared to the distance to the stars.

(f) Uniform angular motion along circles (even if

measured from an off-center point i is the only

proper behavior for celestial objects.

11. As far as the Greeks were concerned, and indeed

as far as we are concerned, a reasonable argument

can be made for either the geocentric or the

heliocentric theorv' of the universe.

(a) In what ways were both ideas successful?

(b) In terms of Greek science, what are some
advantages and disadvantages of each system?

(c) What were the major contributions of Ptolemy?

12. Why was astronomy the first successful science,

rather than, for example, meteorology or zoology?
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Does the Earth Moue?
The Work of Copernicus and Tyoho

6.1 The Copernican svstem
6.2 Xen' conclusions

6.3 Ar^ments for the Copernican system
6.4 Ar^ments against the Copernican system
6.5 Historical consequences
6.6 Tycho Brahe
6.7 Tycho's observations

6.8 Tycho's compromise system

6.1.
I

The Copernican system

Nicolaus Copernicus (1473-1543) was a young student in Poland

when America was discovered by Europeans. An outstanding

astronomer and mathematician, Copernicus was also a talented

and respected churchman, jurist, administrator, diplomat,

physician, and economist. During his studies in Italy he read the

writings of Greek and other early philosophers and astronomers.

As Canon of the Cathedral of Frauenberg he was busy with civdc

and church affairs and also worked on calendar refomi. It is said

that on the day of his death in 1543, he saw the first copy of his

great book, on which he had worked most of his life. It was this

book which opened a whole new vision of the universe.

Copernicus titled his book De Revolutionibus Orbium
Coelestium, or On the Revolutions of the Heavenly Spheres. This

Nicolas Copernicus (1473-1543). (In

Polish his name was Koppernigk,
but, in keeping with the scholarly

tradition of the age, he gave it the

Latin form Copernicus.)

SG 1
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title suggests the early Greek notions of the spheres. Copernicus

was indeed concerned with the old problem of Plato: how to

construct a planetary system by combinations of the fewest

possible unifoiTH circular motions. He began his study to rid the

Ptolemaic system of the equants, which seemed contrary to

Plato's assumptions. In his words, taken from a short summary
written about 1512,

. . . the planetaiy theories of Ptolemy and most other

astronomers, although consistent with the numerical data,

seemed likewise to present no small difficulty. For these

theories were not adequate unless certain equants were also

conceived; it then appeared that a planet moved with uniform

velocity neither on its deferent nor about the center of its

epicycle. Hence a system of this sort seemed neither sufficiently

absolute nor sufficiently pleasing to the mind.

Having become aware of these defects, I often considered

whether there could perhaps be found a more reasonable

arrangement of circles, from which every apparent inequality

would be derived and in which everything would move
uniformly about its proper center.

In De Revolutionibus he wrote:

rF-T'3':

Copernicus' diagram of his helio-

centric system (from his manu-
script o/De Revolutionibus, 1543).

This simplified representation

omits the many small epicycles ac-

tually used in the system.

We must however confess that these luovements [of the sun,

moon, and planets] are circular or are composed of many
circular movements, in that they maintain these irregularities in

accordance with a constant law and with fixed periodic returns,

and that could not take place, if they were not circular. For it

is only the circle which can bring back what is past and over

with. . .

.

I found first in Cicero that Nicetas thought that the Earth

moved. And afterwards I found in Plutarch that there were

some others of the same opinion. . . . Therefore I also . . . began

to meditate upon the mobility of the Earth. And idtbough the

opinion seemed absurd, nevertheless, because I knew that

others before me bad been granted the liberty of constructing

whatever circles they pleased in order to demonstrate astral

phenomena, I thought that I too would be readily permitted to

test whether or not, by the laying down that the Earth had
some movements, demonstrations less shaky than those of my
predecessors could be found for the revolutions of the celestial

spheres I finally discovered by the help of long and
numerous observations that if the movements of the other

wandering stars are correlated with the circular movement of

the Earth, and if the movements are computed in accordance

with the revolution of each planet, not only do all their

phenomena follow from that but also this correlation binds

together so closely the order and magnitudes of all the planets

and of their' spheres or orbital circles and the heavens

themselves that nothing can be shifted around in any part of

them without disr-upting the remaining parts and the universe

as a whole.

The "wandering stars" are the

planets.
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In his final work, the result of nearly 40 years of study,

Copernicus proposed a system of more than 30 eccentrics and
epicycles. These would, he said, "suffice to explain the entire

structure of the universe and the entire ballet of the planets.
"

Like Ptolemy's Almagest, De Rcvoliitionibus uses long geometrical

analyses and is difficult to lead. Comparison of the two hooks

strongly suggests that Copernicus thought he was producing an

improved xersion of the Almagest. He used many of Ptolemy's

obsenations plus some more recent ones. Yet Copernicus'

system differed from Ptolemy's in several fundamental ways.

Above all, Copernicus adopted a sun-centered system which in

general matched that of Aristarchus.

Like all scientists, Copernicus made a number of assumptions

in his system. In his own words (using more modern temis in

several places!, his assumptions were:

L There is no precise, geometrical center of all tlic (-clestial

circles or spheres.

2. The center of the eailh is not the center of the uni\'erse, but

only of gra\itation and of the lunar sphere.

3. All the spheres revolve about the sun . . . and thei'efore the

sun has a central location in the universe.

4. The distance from the earth to the sun is \ eiy small in

comparison with the distance to the stars.

5. Whatever motion appears in the sky ai'ises not from any

motion of the sky, but from the earth's motion. The earth

together with its water and air performs a complete rotation on

its fixed poles in a daily motion, while the sky remains

unchanged.

6. What appears to us as motions of the sun arise not from its

motion but from the motion of [he eaith and . . . we ie\ol\'e about

the sun like any other planet. The earth has, then, nunc than

one motion.

7. The apparent retrograde motion of the planets arises not

from their motion but from the earth's. The motions of the earth

alone, therefore, are enough to explain man\' apparent motions

in the sky.

Compare this list with the assumptions of Ptolemy, given in

Chapter 5. You will see close similarities and important

differences. Notice that Copernicus proposed that the eailh

rotates daily. As Aristarchus and others had realized, this

rotation would explain all the daily risings and settings seen in

the sky. Copernicus also proposed, as had Aristarchus, that the

sun was stationary and stood at the center of the universe. The

eaiih and other planets each mo\(;d about a different central

point near the sun.

The figure at the left shows the main spheres earning the

planets around the sun I sol I. Copernicus' text explains the basic

features of his system:
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The ideas here stated are difficult, even almost impossible, to

accept; they are quite contrary to popular notions. Yet uath the

help of God, we will make even^hing as clear as day in what

follows, at least for those who are not ignorant of

mathematics. . .

.

The first and highest of all the spheres is the sphere of the

fixed stars. It encloses all the other spheres and is itself self-

contained; it is immobile; it is certainly the portion of the

universe with reference to which the movement and positions

of all the other heavenly bodies must be considered. If some
people are yet of the opinion that this sphere moves, we are of

contrary mind; and after deducing the motion of the earth, we
shall show why we so conclude. Saturn, first of the planets,

which accomplishes its revolution in thirty years, is nearest to

the first sphere. Jupiter, making its revolution in twelve years, is

next. Then comes Mars, revolving once in two years. The fourth

place in the series is occupied by the sphere which contains

the earth and the sphere of the moon, and which performs an

annual revolution. The fifth place is that of Venus, revohdng in

nine months. Finally, the sixth place is occupied by Mercuiy,

revolving in eighty days. ... In the midst of all, the sun reposes,

unmoving.

Already you can see an advantage in Copernicus' system that

makes it "pleasing to the mind." The rates of rotation for the

heavenly spheres increase progressiv^ely, fi^om the motionless

sphere of stars to speedy Mercury. SG 3

# 1. What reasons did Copernicus give for rejecting the use of
equants?

2. In the following list of propositions, mark with a P those

made by Ptolemy and with a C those made by Copernicus.

(a) The earth is spherical.

(bj The earth can be thought of as a point in reference to the

distance to the stars.

(c) The heavens rotate daily around the earth.

(d) The earth has one or more motions.

(e) Heavenly motions are circular.

(f) The observed retrograde motion of the planets results fi^om

the earth's motion around the sun.

6.2
I

Neir conclusions

A new w^ay of looking at old obseivations la new theory) can

suggest quite new kinds of obseivations to make, or new uses for

old data. Copernicus used his movdng-eaith model to obtain two

important results which were not possible with the Ptolemaic
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Close Upl
The Periods of Revolution of the Plonets

The problem is to find the rate at which a planet

moves around the sun by using observations made
from the earth, which is itself moving around the

sun. Say, for example, that a planet closer to the

sun than the earth is goes around the sun at the

frequency (rate) of 1 Va cycles per year. The earth

moves around the sun also, in the same direction,

at the rate of 1 cycle per year. Because the earth

follows along behind the planet, the planet's motion

around the sun. as seen from the earth, appears

to be at a rate less than 1 Va cycles per year. In fact,

as the diagrams below suggest, the planet's ap-

parent rate of motion around the sun equals the

difference between the planet's rate and the earth's

rate: VA cycle per year minus 1 cycle per year, or

Va cycle per year. In general, if an inner planet

moves around the sun at frequency f^ and the earth

moves around the sun with frequency f^, then the

planet's apparent rate of motion, f^^, as seen from

the earth, is given by f = f - f

.

^ •' pe p e

A similar argument holds for planets farther from

the sun than the earth is. (See Diagram B.) Since

these "outer planets" revolve about the sun more

slowly than the earth does, the earth repeatedly

leaves the planets behind. Consequently, for the

outer planets, the sign in the equation for f^^ is re-

versed: f = f + f

.

pe p e

The apparent frequency f^^ represents what is

actually observed. Since f^ is by definition 1 cycle

per year, either equation is easily solved for the

unknown actual rate f^:

For inner planets: f^ = 1 cycle/yr + f^^

For outer planets: f = 1 cycle yr - f

Earth

(A) A planet that is inside the Eanh's orbit

and moves 1 'A revolutions around the sun

in a year would, as seen from the earth, ap-

pear to have made only a 'A cycle relative

to the sun.

(B) A planet that is outside the Earth's orbit

and moves only % revolution around the sun
in a year would, as seen from the earth, ap-

pear to make about 7% revolutions relative

to the sun.

TABLE 6.1



theory. Copernicus was able to calculate: (a) the period of motion

of each planet around the sun, and (b) the sizes of each planet's

orbit compared to the size of the earth's orbit. These

calculations, for the first time, gave a scale for the dimensions of

the planetary system, based on observations.

To calculate the periods of the planets around the sun,

Copernicus used observations recorded over many centuries. The
method of calculation is similar to the "chase problem" of how
often the hands of a clock pass one another. The details of this

calculation are shouai on page 160. In Table 6.Z below,

Copernicus' results are compared with accepted values.

TABLE 6.2

Planet Copernicus' Value Modern Value

Mercury



Hiose upI
Changing Frame of Reference

from the Earth to the Sun

Sun

Earth

The change of viewpoint from Ptolemy's

system to Copemicus" involved what today

would be called a shift in frame of refer-

ence. The apparent motion previously at-

tributed to the deferent circles and epicy-

cles was attributed by Copernicus to the

earth's orbit and the planets' orbits around

the sun.

For example, consider the motion of

Venus. In Ptolemy's earth-centered sys-

tem, the center of Venus' epicycle was
locked to the motion of the sun, as shown

in the top diagram at the left. The size of

Venus' deferent circle was thought to be

smaller than the sun's. The epicycle was

thought to be entirely between the earth

and the sun. However, the observed mo-

tions to be explained by the system re-

quired only a certain relative size of epi-

cycle and deferent. The deferent could be

changed to any size, as long as the epi-

cycle was changed proportionally.

The first step toward a sun-centered

system was taken by moving the center of

Venus' 1-yr deferent out to the sun. Venus'

epicycle was enlarged proportionally, as

shown in the middle diagram at the left.

Now the planet moved about the sun, while

the sun moved about the earth. Tycho

Brahe later proposed such a system with

all visible planets moving about the moving

sun.

Copernicus went further. He accounted

for the relative motion of the earth and sun

by considering the earth to be moving
around the sun, instead of the sun moving

about the earth. In the Copernican system,

Venus' enlarged epicycle became its orbit

around the sun. Also, the sun's deferent

was replaced by the earth's orbit around

the sun. See the bottom diagram at the

left. All three systems, Ptolemy's, Coper-

nicus', and Tycho's, explain the same ob-

servations.



For the outer planets the argu-

ment was similar, but the roles of

epicycle and deferent circle were re-

versed. For the outer planets In the

Ptolemaic model, the epicycles in-

stead of the deferent circles had 1-

yr periods and moved in parallel with

the sun in its orbit. The sizes of the

deferents were chosen so that the

epicycle of each planet would just

miss the epicycles of the planets

next nearest and next farthest from

the sun. (This was a beautiful ex-

ample of a simplifying assumption.

It filled the space with no overlap and

no gaps.) This system is repre-

sented in the top diagram at the

right; the planets are shown in the

unlikely condition of having their epi-

cycle centers along a single line.

The first step in shifting to a sun-

centered view for these planets in-

volves adjusting the sizes of the de-

ferent circles, keeping the epicycles

in proportion. Eventually, the 1-yr

epicycles are the same size as the

sun's 1-yr orbit. See the middle dia-

gram at the right. Next, the sun's

apparent yearly motion around the

earth is explained just as well by

having the earth revolve around the

sun. Also, the same earth orbit would

explain the retrograde loops asso-

ciated with the outer planets' matched

1-yr epicycles. So all the matched

epicycles of the outer planets and
the sun's orbit are replaced by the

single device of the earth's orbit

around the sun. This shift is shown
in the bottom diagram at the right.

The deferent circles of the outer

planets become their orbits around

the sun.

SAt-urn

Jujoi-t-er Sat-urn



Notice that Copernicus now had one system which lelated the

size of each planet's orhit to the sizes ot all the other planets'

orbits. Contrast this to Ptolemy's solutions, which were

completely in(lep(>nclent foi- each planet. .\o wonder Copernicus

said that 'nothing can l)e shitted around in any part of them
without disrupting the remaining parts and the universe as a

SG 8 whole.

"

• 3. What new kinds of results did Copernicus obtain with a

moving-earth model which were not possible with a geocentric

model for the planetary system?

6.3
I

Ar^ments for the Copernican system

Copernicus knew that to many his work would seem absurd,

"nay, almost contrarv' to ordinary human understanding, " so he

tried in several ways to meet the old arguments against a mo\ing

earth.

1. Copernicus argued that his assumptions agreed with

religious doctrine at least as well as Ptolemy's. Copeiiiicirs' book

had many sections on the faults of the Ptolemaic system (most

of which had been known for centuries). To Copernicus, as to

many scholars, complex events wei'e merely symbols of God's

thinking. lo find order and symmetry in them was an act of

piety, for order and symmetry w^ere proofs of God's existence. As

a church official, Copernicus would have been stunned to think

that, in Galileo's time, his theory would contribute to the confiict

between religious doctrine and science.

2. Copernicus carefully calculated relatixe r-adii and speeds of

the circular motions in his system. Fr^om these data, tables of

planetaiy motion could be made. Actually, the theories of

Ptolemy and Copernicus wer^e about ecjually accurate in

predicting planetary positions. Both theories often diftered from

the observed positions by as much as 2° (about four diameters

of the moon I.

3. Copernicus tried to answer sever'al other objections. Most of

them had been raised against Aristarchus' heliocentric system

nearly 19 centuries earlier. One ar'gument h{>ld that a rapidly

rotating earth would sur^ely fly apart. Copernicus replied, 'Why

does the defender of the geocentric theory not fear the same fate

for" his rotating celestial spher'c—so mirch faster becairse so

much larger?" It was argued that birds and clouds in the sky

would be left behind by the earth's rotation and revolution.

Copernicus answered this objection In- indicating that the

atmospher'c is dr'agged along with \Uv cailh. I o \hv lack of
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observed annual shift for the fixed stars, he could only give the

same kind of answer that Aristarchus had proposed:

. . . though the distance from the sun to the earth appears very

large as compared with the size of the spheres of some planets,

yet compared with the dimensions of the sphere of the fixed

stars, it is as nothing.

4. Copernicus claimed that the greatest advantage of his

scheme was its simple description of the general motions of the

planets. There certainly is a basic overall simplicity to his system.

Yet for precise calculations, because Copernicus would not use

equants, he needed more small motions than did Ptolemy to

explain the observations. A diagram from Copernicus' manuscript

shows more detail (page 166).

5. Copernicus pointed out that the simplicity of his system was
not merely convenient, but also beautiful and "pleasing to the

mind. " The pleasure which scientists find in the simplicity of

their models is one of the most powerful experiences in science.

Far from being a "cold," merely logical exercise, scientific work

is full of such recognitions of harmony and beauty. Another sign

of beauty that Copernicus saw in his system was the central

place given to the sun, the biggest, brightest object in the

heavens and the giver of light, warmth, and life. As Copernicus

himself put it:

In the midst of all, the sun reposes, unmoving. Who, indeed, in

this most beautiful temple would place the light-giver in any

other part than whence it can illumine all other parts? So we
find underlying this ordination an admirable symmetry in the

Universe and a clear bond of the harmony in the motion and

magnitude of the spheres, such as can be discovered in no

other wdse.

Look again at SG 2.

4. Which of these arguments did Copernicus use in favor of his

system?

(a) It was obvious to ordinary common sense.

(b) It was consistent with Christian beliefs.

(c) It was much more accurate in predicting planet positions.

(d) Its simplicity made it beautiful.

(e) The stars showed an annual shift in position due to the

earth's motion around the sun.

5. What were the largest differences between observed

planetary positions and those predicted by Ptolemy? by

Copernicus?

6. Did the Copernican system allow simple calculations of

where the planets should be seen?
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This drawing in Copernicus rnnnu-

script ofDe Revolutionibus shows
details ofsome epicycles in his

model.

6.4
I

Arguments against the Copernican svstem

Copernicus' hopes for acceptance of his theory were not quickly

fulfilled. More than 100 years passed hefore the heliocentric

system was generally accepted even by astronomers. E\'en then,

the acceptance came on the basis of arguments quite different

from those of Copernicus. In the meantime, the theon' and its

few defenders met powerful opposition. Most of the criticisms

were the same as those used by Ptolemy against Aristarchus.

1. Apart from its apparent simplicity, the Copeinican sxstem

had no clear scientijic advantages over the geocentric theoiy. No
known observation was explained by one system and not by the

other. Copernicus had a different \iev\point. But he had no new
types of obseivations, no experimental data that could not be

explained by the old theory. Furthermore, the accuracy of his

predictions of planetaiy positions was little better than that of

Ptolemy's. As P'rancis Bacon wrote in the early seventeenth

century: "Now it is easy to see that both they who think the

eai1h revolves and they who hold the old constiTiction are about

equally and indifferently supported by the phenomena.

"

Basically, the rival systems differed in their choice of a

reference fiame for describing the observed motions. Copernicus

himself stated the problem clearly:

Ptolemy» too, had recognized the

possibilitv' of aJternatixe frames of

reference. (Reread the quotation on
page 148 in C:hapter 5.i Most of Ptol-

emy's followers did not share this

insight.

Although there are so many authorities for saying that the Earth

rests in the centre of the world that people think the contraiy

supposition . . . ridiculous; . . . if, liowever, we consider the thing

attentively, we will see that the question has not yet been

decided and accordingly is by no means to be scorned. For

every apparent change in place occurs on account of the

movement eithei' of the thing seen or of the spectator, or on

account of the necessarily unequal moxement of both. For no

movement is perceptible relatively to things moved equally in

the same directions— I mean relatively to the thing seen and

the spectator. Now it is from the Earth that tlie celestial circuit

is beheld and [presented to our sight. 1 herefore, if some
movement should belong to the Eaith ... it will appear, in the

parts of the universe which are outside, as the same movement
but in the opposite direction, as though the things outside were

passing over. And the daily revolution ... is such a mo\ ement.

Here Copernicus invites the reader to shift the frame of reference

from the earth to a remote position overlooking the whole system

with the sun at its center. As you may know liom personal

experience, such a shift is not easy. We can sympathize with

those who preferred to hold an earth-centered s\ stem for-

descr'ibing what they saw.
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Physicists now generally agree that any system of reference

may in principle be used for describing phenomena. Some
systems are easier and others more complex to use or think

about. Copernicus and those who followed him felt that the

heliocentric system was right in some absolute sense: that the

sun was really fixed in space. The same claim was made for the

earth by his opponents. The modern attitude is that the best

frame of reference is the one that allows the simplest discussion

of the problem being studied. You should not speak of reference

systems as being right or wrong, but rather as being convenient

or inconvenient. (To this day, navigators use a geocentric model

for their calculations. See the page of a navigation book in the

margin.)

2. The lack of an observable annual shift for the fixed stars was

contraiy to Copernicus' model. His only possible reply was

unacceptable because it meant that the stars were at an

enormous distance fi^om the earth. Naked-eye instiTiments

allowed positions in the sky to be measured to a precision of

about 0.10°. But for an annual shift to be less than 0.10°, the stars

would have to be more than 1,000 times farther from the sun

than the earth is! To us this is no shock, because we live in a

society that accepts the idea of enormous extensions in space

and in time. Even so, such distances strain the imagination. To

the opponents of Copernicus, such distances were absurd.

Indeed, even if an annual shift in star position had been

observable, it might not have been accepted as unmistakable

evidence against one and for the other theory. One can usually

modify a theoiy more or less pleasingly to fit in a bothersome

finding.

The Copernican system demanded other conclusions that

puzzled or threatened its critics. Copernicus determined the

distances between the sun and the planetaiy orbits. Perhaps,

then, the Copernican system was not just a mathematical model

for predicting the positions of the planets! Perhaps Copernicus

was describing a real system of planetary orbits in space (as he

thought he was). This would be difficult to accept, for the

described orbits were far apart. Ev^en the small epicycles which

Copernicus still used to explain variations in planetary motions

did not fill up the spaces between the planets. Then what did fill

up these spaces? Because Aristotle had stated that "nature

abhors a vacuum," it was agreed that something had to fill all

that space. Even many of those who believed in Copernicus'

system felt that space should contain something. Some of these

scholars imagined various invisible fluids to fill up the emptiness.

More recently, similar imaginaiy fluids were used in theories of

chemistry and of heat, light, and electricity.

3. No definite decision between the Ptolemaic and the

Copernican theories could be made based on the astronomical

ci:i.i':sTiAL
OItSl<:iiVATI(»NS

i;y PHILI1> KIsSAM, c, E.

/ro/.s,or oj Cvil E^sim-cri,,^.

l'ri,uclon r,ir.rrs,ly

I. Til*' I'riiiciplos iii>«>ii which
t-t'l<'stijil < >h.s<Tviiti<>iis jir<"

Kased.

A. CONCEPTS.

1. The Celestial .Siiliere. To simplify the
computations necessary for tiie determinations
of the direction of the meridian, of latitude, and
of longitude or time, certain concepts of the
heavens liavo been generally adopted. They are
the following:

a. The earth is stationary.

b. The heavenly bodies have been jjrojected
outward, along lines which extend from
the center of the earth, to a sphere of

infinite radius called the celestial sphere.

The celestial sphere has the following char-
acteristics:

a. Its center is at the center of"the earth.

1). Its equator is on the projection of the
earth's equator.

c. With respect to the earth, the celestial

si)here rotates from east to west about
a line which coincides with the earth's
axis. Accordingly, the poles of the celes-

tial sphere are at the l)rolongations of the
earth's Jxiles.

d. The speed of rotation of the celestial

sphere is .'!r>0 59.15' i)cr L'-l hours.

e. With the important exception of bodies--

in the solar system, which change position
slowly, all heavenly bodies remain prac-
tically fixed in their positions on the
celestial sphere, never changing more than
negligible amounts in 24 liours, and ac-
cordingly are often called Jind .ilara.

Celestial navigation involves com-
paring the apparent position of the

sun (or star) with the "actual' posi-

tion as given in a table called an

"ephemeris.' Above is an excerpt

from the introduction to the tables

in the Solar Ephemeris. (Keuffel

and Esser Co.)

SG 9

SG 10

Galileo had this experience (see

Chapter 7).
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evidence. Therefore, attention was focused on the argument

concerning the central, ininiovable position of the earth. Despite

his efforts, Copernicus could not persuade most of his i-eaders

that his heliocentric system reflected the mind of God as closely

as did the geocentric system.

4. The Copemican theory conflicted with the basic ideas of

Aristotelian physics. This conflict is well described by H.

Butterfield in Origins ofModcrn Science:

... at least some of the economy of the Copernican system is

rather an optical illusion of more recent centuries. We
nowadays may say that it requires smaller effort to mo\'e the

earth round upon its axis tlian to swing the v\holo univei-se in a

twentv'-four hour revolution about the earth; but in the

Aristotelian physics it required something colossal to shift the

heavy and sluggish earth, whUe all the skies were made of a

subtle substance that was supposed to have no weight, and

they were comparatively easy to turn, since turning was

concordant with their nature. Above all, if you grant Copernicus

a certain advantage in respect of geometrical simplicity, the

sacrifice that had to be made for the sake of this was
tremendous. You lost the whole cosmology associated with

Aiistotelianism—the whole intricately dovetailed sx'Stem in

which the nobility of the various elements and the hierarchical

arrangement of these had been so beautifully interlocked. In

fact, you had to throw overboard the very framework of existing

science, and it was here that Copernicus clearly failed to

discover a satisfactory alternative. He provided a neater

geometry of the heavens, but it was one which made nonsense

of the reasons and explanations that had pre\dously been given

to account for the movements in the sky.

All religious faiths in Europe, including the new Protestants,

opposed Copernicus. They used biblical quotations (for example,

Joshua 10:12-13) to assert that the Divine Architect must have

worked from a Ptolemaic blueprint. Indeed, Martin Luther called

Copernicus "the fool who would overturn the whole science of

astronomy."

Eventually, in 1616, more storm clouds were raised by the case

of Galileo. The Inquisition put De Revolutionibus on the Inde^c of

forbidden books as "false and altogether opposed to Holy

Scriptures." Some Jewish communities also prohibited the

teaching of Copemicus's theory. It seems that humanity,

believing itself central to God's plan, had to insist that the earth

stood at the center of the physical imi\erse.

The assumption that the earth was not the center of the

universe was offensive enough. Exen worse, the Copernican

system suggested that the other planets were similar to the

earth. Thus, the concept of the distinctly different heavenly

matter was threatened. What next? What if some rash person

suggested that the sun and possibK' e\cn the stars wpi(> made of
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earthly materials? If other celestial bodies were similar to the

earth, they might even be inhabited. And the inhabitants might

be heathens, or beings as well-beloved by God as humans,
possibly ev^en more beloved! Thus, the whole Copernican scheme
led to profound philosophical questions which the Ptolemaic

scheme avoided.

In short, the sun-centered Copernican scheme was
scientifically equivalent to the Ptolemaic scheme in explaining

astronomical observations. But, philosophically, it seemed false,

absurd, and dangerous. Most learned Europeans at that time

recognized the Bible and the wiitings of Aristotle as their two

supreme sources of authority. Both appeared to be challenged by

the Copernican system. Although the fieedom of thought that

marked the Renaissance was just beginning, the old image of the

universe provided security and stability to many. Belief in a sun-

centered rather than an earth-centered universe allowed a gain

in simplicity; but it also seemed to contradict all common sense

and observation. It required a revolution in philosophy, religion,

and the physical science of the time. No wonder Copernicus had
so few believers!

Conflicts between accepted beliefs and the philosophical

content of new scientific theories have occurred many times and
are bound to occur again. During the last centuiy there were at

least two such conflicts. Neither is completely resolved today. In

biology, the theory of evolution based on Darwin's work has

caused major philosophical and religious reactions. In physics,

developing theories of atoms, relativity, and quantum mechanics
have challenged long-held assumptions about the nature of the

world and our knowledge of reality. Units 4, 5, and 6 touch upon
these new theories. As the dispute between the Copernicans and
the Ptolemaists illustrates, the assumptions which "common
sense " defends so fiercely are often only the remains of an

earlier, less complete scientific theory. SG ii

• 7. Why were many people, such as Francis Bacon, undecided

about the correctness of the Ptolemaic and Copernican

systems?

8. How did the astronomical argument become involved with

religious beliefs?

9. From a modern viewpoint, was the Ptolemaic or the

Copernican system of reference more valid?

6.0
I

Historical consequences

Eventually Copernicus' moving-earth model was accepted. But

acceptance came veiy slowly. John Adams, who later became the
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second president of the I'nited States, wrote that he attended a

lecture at HaiAard College in which the correctness of the

Copernican viewpoint was debated on June 19, 1753!

The Copernican model with moving earth and fixed sun

opened a floodgate of new possibilities tor' anahsis and

description. According to this model the planets could be

thought of as real bodies mo\'ing along actiral or'bits. Xow Kepler

and others could consider" these planetary paths in quite new
ways. In science, the sweep of possibilities usually cannot be

for-eseen by those who begin the r^exolution or by their- critics.

SG 12 Today, Copernicus is honored not so much for* the details of

his theory, but for his successful challenge of the prevailing

world-picture. His theory became a major force in the intellectual

r'evolution which shook humanit)' out of its self-center ed \'iew

of the universe. As people gradually accepted the Copernican

system, they also had to accept the \ievv that the earth was only

one of sexeral planets cir'cling the sun. Thus, it became
increasingly difficult to believe that all creation centered on

human beings. At the same time, the new system stimulated a

new self-r^eliance and curiosity about the world.

Acceptance of a revolutionary idea based on (jirite new
assumptions, such as Copemicais' shift of the frame of r^eference,

is always slow. Sometimes compromise theories are pr'oposed

as attempts to unite conflicting theories, to "split the difference."

As you will see in later units, such compromises ar^e r'arely

successful. But often they do stimulate new observations and

concepts. In turn, these may lead to a xery useful development

or restatement of the original rexolutionary theorA'.

Such a restatement of the heliocentric theory came during the

150 years after Copernicus. Many scientists provided observations

and ideas. In Chapter^s 7 and 8, you uill see the major

contributions made by Kepler, Galileo, and Isaac X'ewton. First

we will consider the work of Tycho Biahe, who devoted his life

to impr (ning the precision with whit^h planetary positions wer'e

observed and to the working out of a compromise theory' of

planetary motion.

• 10. In terms of historical perspective, what were the greatest

contributions of Copernicus to modern planetary theory?

6.6
I

Tvcho Brahe

Tycho Brahe was born in 1546 of a noble, but not particular 1\'

rich, Danish family. By the time he was 13 or 14, he had become
intenseK' inter-ested in astronomy. Although he was studxing law,

Tycho secr-etK' spent his allowance on astrononiical tablets and
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books. He read the Almagest and De Hevolutionibus. Soon he

discovered that both Ptolemy and Copernicus had relied upon
tables of planetary positions that were inaccurate. He concluded

that astronomy needed new observ^ations of the highest possible

precision gathered over many years. Only then could a

satisfactory theory of planetary motion be created.

Tycho's interest in studying the heavens vv^as increased by an

exciting celestial event. Although the ancients had taught that

the stars were unchanging, a "new star" appeared in the

constellation Cassiopeia in 1572. It soon became as bright as

Venus and could be seen even during the daytime. Then over

several years it faded until it was no longer visible. To TVcho
these changes in the stariy sky were astonishing. Evidently at

least one assumption of the ancients was vvi ong. Perhaps other

assumptions were wrong, too.

After observing and waiting about the new star, Tycho traveled

through northern Europe. He met many other astronomers and
collected books. Apparently he was considering moving to

Germany or Switzerland where he could easily meet other

astronomers. To keep the young scientist in Denmark, King

Frederick II offered him an entire small island and also the

income from various farms. This income would allow Tycho to

build an observatory on the island and to staff and maintain it.

He accepted the offer, and in a few years Uraniborg ("Castle of

the Heavens") was built. It was an impressive structure with four

large observatories, a libraiy, a laboratoiy, shops, and living

quarters for staff, students, and obseivers. There was even a

complete printing plant. Tycho estimated that the obseiA^atory

cost Frederick II more than a ton of gold. For its time, this

magnificent laboratoiy was at least as important, complex, and
expensive as some of today's great research centers. Uraniborg

was a place where scientists, technicians, and students from

many lands could gather to study astronomy. Here, a group
effort under the leadership of an imaginative scientist was to

advance the boundaries of knowledge in one science.

In 1577, Tycho obseived a bright comet, a fuzzy object whose
motion seemed irregular, unlike the orderly motions of the

planets. To find the distance to the comet, Tycho compared its

position as observed from Denmark with its positions as

observed from elsewhere in Europe. Some of these obsei^ation

points lay hundreds of kilometers apart. Yet, at any given time,

all obseivers reported the comet as having the same position

with respect to the stars. By contrast, the moon's position in the

sky was measurably different w^hen obseived from places so far

apart. Therefore, Tycho concluded, the comet must be at least

several times farther away than the moon.
This was an important conclusion. Up to that time, people had

believed that comets were some sort of local event, like clouds

Although there were precision
sighting instruments, all observa-

tions were with the naked eye. The
telescope was not to be invented for

another 50 years.
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ttiose Up L

Tycho Drohe

At the top right is a plan of the observatory and gardens built

for Tycho Brahe at Uraniborg, Denmark.

The cross section of the observatory, above center, shows
where most of the important instruments, including large

models of the celestial spheres, were housed.

The picture at the left shows the room containing Tycho's

great quadrant. On the walls are pictures of some of his

instruments. He is making an observation, aided by assist-

ants.

Above IS a portrait of Tycho, painted about 1597
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The bright comet of 1965.

or lightning. Now comets had to be considered distant

astronomical objects from the realm of eternal things beyond the

moon. Stranger still, they seemed to move right through the

ciystalline spheres that were still generally believed to cany the

planets. Tycho's book on this comet was widely read and helped

to weaken old beliefs about the nature of the heavens. SG 13

• 11. What event stimulated Tycho's interest in astronomy?

12. In what ways was Tycho's observatory like a modern

research institute?

13. Why were Tycho's conclusions about the comet of 1577

important?

6.7
I

Tycho's observations

Tycho's fame results from his lifelong devotion to making

unusually accurate observations of the positions of the stars, sun,

moon, and planets. These observ^ations were made before the

telescope was invented. Over the centuries, many talented

observers had recorded the positions of the celestial objects. But

the accuracy of Tycho's w^ork was much greater than that of the

best astronomers before him. How was Tycho Brahe able to do

what no others had done before?

Singleness of purpose certainly aided Tycho. He knew that

highly precise obseivations must be made during many years.

For this he needed improved instruments that would give

consistent readings. Fortunately, he had the mechanical skill to

devise such instruments. He also had the funds to pay for their

construction and use.

Tycho's first improvement on the astronomical instruments of

the day was to make them larger. Most of the earlier instruments

had been rather small, of a size that could be moved by one

person. In comparison, TVcho's instruments were gigantic. For

instance, one of his early devices for measuring the angular

altitude of planets had a radius of about 1.8 m. This wooden
instrument, shovni in the etching on page 174, was so large that

it took several workers to set it into position. Tycho put his

For a more modern example of this

same problem of instrumentation,

you may wish to read about the de-

velopment and construction of the

500-cm Hale telescope on Mt. Pal-

omar.
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Johannes Hevelius and his wife

jointly using a quadrant in his oh-

ser\'ator\' in Danzig (seventeenth

centuryJ.

instruments on heaw, firm foimdations or attached them to a

wall that ran exactly noith-south. By fixing the instruments so

solidly» IVcho increased the reliability of the readings over long

periods of time. Throughout his career Tycho cieated better

sighting devices, more precise scales, and stronger support

systems. He made dozens of other changes in design which

increased the precision of the obsenations.

Tycho did more than just devise better instruments for making

his observations. He also determined and specified the actual

limits of precision of each instiimient. He realized that merely

making larger and larger instruments does not always result in

greater precision. In fact, the very size of the instrument can

cause errors, since the parts bend under their own weight.

Tycho tried to make his instruments as large and strong as he

could without introducing such errors. Furthermore, in modem
style, he calibrated each instrument and determined its range

of error. (Nowadays many commercial instrument makers supply

a measurement report with scientific instruments designed for

precision work. Such reports are usually in the form of a table of

small corrections that have to be applied to the direct readings.!

Like Ptolemy and the Muslim astronomers, Tycho knew that

the light coming from any celestial bod\' was bent dov\'nvvard by

the earth's atmosphere. He knew that this bending, oi- refraction,

increased as the celestial object neared the horizon. To improve

the precision of his observations, TVcho carefully determined the

amount of refraction involved. Thus, each observation could be

corrected for refraction effects. Such careful work was essential

to the making of improved records.

IVcho worked at Uraniborg from 1576 to 1597. After- the death

of King Frederick II, the Danish government became less

inter^ested in helping to pay the cost of Tycho's observatory. Yet

lycho was unudlling to corisider- any reductions in the cost of

his activities. Because he was promised support by Emperor
Rudolph of Bohemia, Tvcho moved his recor ds and several

instrximents to Prague. There, fortunately, he hir-ed as an

assistant an able, imaginative young man named Johannes

Kepler. After Tycho's death in 1601, Kepler- obtained all his

recor'ds of observations of the motion of Mars. /\s Chapter 7

reports, Kepler's analysis of lychos data solved many of the

ancient problems of planetary motion.

One of Tycho's sighting devices.

Unfortunately lychos instruments
were destroyed in 1619, during the

Thirtv Years' War.

14. What improvements did Tycho make in astronomical

instruments?

15. In what way did Tycho correct his ohsenations to provide

records of hie,her acciiracv?
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G*3 l\'cho's compromise svstem

Tycho hoped that his observ^ations would provide a basis for a

new theory of planetary motion, which he had outlined in an

early book. He saw the simplicity of the Copernican system, in

which the planets moved around the sun. Yet, because he

observed no annual parallax of the stars, he could not accept an

annual motion of the earth around the sun. In Tycho's system,

all the planets except the earth moved around the sun.

Meanw^hile, the sun moved around the stationaiy earth, as

shown in the sketch in the margin. Thus, Tycho devised a

compromise model which, as he said, included the best features

of both the Ptolemaic and the Copernican systems. However, he

did not live to publish quantitative details of his theory.

The compromise Tychonic system was accepted by only a few

people. Those who accepted the Ptolemaic model objected to

having the planets movdng around the sun. Those who accepted

the Copernican model objected to havdng the earth held

stationary. So the argument continued. Many scholars clung to

the seemingly self-evident position that the earth was stationary.

Others accepted, at least partially, the strange, exciting proposals

of Copernicus that the earth might rotate and revolve around the

sun. The choice depended mainly on one's philosophy.

All planetaiy theories up to that time had been developed only

to provdde some system for predicting the positions of the

planets fairly precisely. In the terms used in Unit 1, these would
be called kinematic descriptions. The causes of the motions, now
called dynamics, had not been considered in any detail. Aristotle

had described angular motions of objects in the heavens as

"natural. " Everyone, including Ptolemy, Copernicus, and Tycho,

agreed. Celestial objects were still considered to be completely

different from earthly materials and to behave in quite different

ways. That a single theory of dynamics could describe both

earthly and heavenly motions was a revolutionary idea yet to be

proposed.

As long as there was no explanation of the causes of motion, a

basic problem remained unsolved. Were the orbits proposed for

the planets in the various systems actual paths of real objects in

space? Or were they only convenient imaginary devices for

making computations? The status of the problem in the early

seventeenth century was later described Well by the English poet

John Milton in Paradise Lost:

... He his fabric of the Heavens

Hath left to their disputes, perhaps to move
His laughter at their quaint opinions wide
Hereafter, when they come to model Heaven
And calculate the stars, how they will wield

The mighty frame, how build, unbuild, contrive

Observed
I direction

1 of light path

; from star

Light path

-from star

Earth's atmosphere

Observer

Refraction, or bending, of light

from a star by the earth s atmos-
phere. The amount of refraction

shown in the figure is a great exag-

geration of what actually occurs.

Main spheres in Tycho Brahe's sys-

tem of the universe. The earth was
fixed and was at the center of the

universe. The planets revolved

around the sun, while the sun, in

turn, revolved around the fixed
earth.
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Giose Up
Observatories
Observing instruments have changed dramati-

cally in the years since Tycho's work at Uraniborg.

Kitt Peak National Observatory is located in the

mountains southwest of Tucson, Arizona. This cen-

ter for ground-based optical astronomy in the north-

ern hemisphere has the largest concentration of fa-

cilities for stellar, solar, and planetary research in

the world. The largest of Kitt Peak's 14 instruments

is the 4-m Mayall telescope, which is the second

largest reflecting telescope in the United States (the

largest is the 5-m Hale telescope on Palomar Moun-

tain). An almost identical 4-m telescope is located

at the Cerro Tololo Inter-American Observatory in

Chile. The location of this observatory in the Andes

Mountains provides a clear view of the southern sky

not visible from Kitt Peak and other northern hem-

isphere observatories. Technical improvements over

the 13 years necessary to design and build these

two telescopes have led to a significant increase in

the efficiency of the telescopes.

A different type of telescope is the Multiple Mirror

Telescope (MMT), also located in the Arizona des-

ert. The MMT represents the first major innovation

in telescope design in a century. Light is collected

by six 1 .8-m mirrors and brought to a common focus

(the alignment is corrected by lasers). Thus, the

MMT has the light-gathering capacity of a conven-

tional 4.5-m telescope making it the third largest

telescope in the world. The telescope is housed in

a four-story rotating structure, rather than the con-

ventional dome. Both the building and the telescope

move in unison when in operation.

The largest optical telescope in the world is the

6-m instrument located in the mountains of the

North Caucasus in the Soviet Union.

Above left: The eye end of the ^)il-

cm refractor at Lick Ohsenator'x'

show ins, the automatic camera for
direct photography.



To save appearances, how gird the sphere

With centric and eccentric scribbled o'er

Cycle and epicycle, orb in orb.

The eventual success of Newton's universal dynamics led to the

belief that scientists were describing the "real world. " This belief

was held confidently for about two centuries. Later chapters of

this text deal with recent discoveries and theories which have

lessened this confidence. Today, scientists and philosophers are

much less certain that the common-sense notion of "reality " is

very useful in science.

• 16. In what ways did Tycho's system for planetary niotions

resemble the Ptolemaic and the Copernican systems?

SG 14

This unit presents the first example
of the highly successful trend of

modern science toward synthesis,

that is, not two or more kinds of
science, but only one. For example,
not a separate physics of energy in

each branch, but one conservation

law; not separate physics for opti-

cal, heat, electric, magnetic phe-
nomena, but one (Maxwell's); not
two kinds of beings (animal and hu-
man) but one (in Darwinian views);

not space and time separately, but
space-time; not mass and energy
separately, but mass-energy, etc.

To a point, at least, the great ad-

vances of science are the results of

such daring extensions of one set

of ideas into new fields. The danger
is the false extrapolation that sci-

ence by itself can solve all prob-
lems, including political, health, or
educational, and "explain" all hu-
man emotions. The majority of sci-

entists do not believe this extrapo-

lation, but many nonscientists falsely

believe that all scientists do.

Study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 6 include the

following:

Experiments

The Shape of the Earth's Orbit

Using Lenses to Make a Telescope

Activity

Frames of Reference

Film Loop
Retrograde Motion: Heliocentric Model
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sg
2. The first diagram on the nv.\\ pag(! shows

numbered positions of the sun and Mars ion its

epicycle) at equal time intervals in their motion

around the earth, as described in the Ptolemaic

system. You can easily redraw the relative positions

to change from the earths frame of reference to the

suns. Mark a sun-sized circle in the middle of a thin

piece of paper; this will be a frame of reference

centered on the sun. Place the circle over each

successive position of the sun, and trace the

corres])onding numbered |Josition of Mars and the

position of the earth. I Be sure to keep the piece of

paper straight.) When you have done this for all 15

positions, you will have a diagram of the motions of

Mars and the earth as seen in the sun's frame of

reference.

time scal(! is indicatc^d at lO-day inteiTals along the

central line of the sun's position.

(a) Can you explain why Mercuiy and \'enus appear

to move from farthest east to farthest west more
quickly thiin from farthest west to farthest east?

(b) From this diagram, can you find a period for

Mercury's apparent position in the sky relative to the

sun?

(c) Can you derive a period for Mercury's actual

orbital motion around the sun?

(d) What are the major sources of uncertainty in the

results you derived?

(e) Similarly, can you estimate the orbital period of

Venus?

3. What reasons did Copernicus give for believing

that the sun is fixed at or near the center of the

planetaiy system?

4. Consider the short and long hands of a clock or

watch. If, starting from 12:00 o'clock, you rode on

the slow short hand, how many times in 12 hr would

the long hand pass you? If you are not certain

,

slowly turn the hands of a clock or watch, and keep

count. From this information, can you derive a

relation by which you could conclude that the period

of the long hand around the center is 1 hr?

5. Copernicus' theory is considered valuable

because it allows new predictions and conclusions.

What new conclusions resulted from Copernicms'

theory? Why do these conclusions make this theory

"better" than previous theories?

6. Section 6.4 states that Copernicus' heliocentric

theory is scientifically equivalent in many ways to

Ptolemy's geocentric theoiy and merely represents a

change in the frame of reference from a fixed earth

to a fixed sun. In what ways is the Copernican

system more than just "a change in the frame; of

reference"?

7. The diagram at the upper right section of the

next pag(; shows the motions of Mercury and X'enus

east and west of the sun as seen from the earth. 'I'Ik;

H. From the sequence of orbital radii from

Mercur\' to Saturn, estimate what the orbital radius

would Ije for a new planet if one were discovered.

What is the basis for your estimate?

9. The largest observed annual shift in star position

is about 1/2400 of a degree. What is the distance (in

iistronomical units I to this closest star?

10. How might a Ptolemaic astronomer have

inodified the geocentric system to account for

observed stellar parallax?

11. What conflicts between scientific theories and

common sense do you know of today?

12. How did the C'opernican system encourage the

suspicion that there might be life on objects other

than the earth? Is such a possibility seriously

considered today? What important questions would

such a possibility raise?

13. How can you explain the obsened motion of

Halley's comet during 1909-1910, as shown on the

star chart on the next page?

14. To what extent do you feel that the Copernican

system, with its many motions in eccentrics and

epicycles, revtuils r(!al paths in space, rather than

provides only another way of computing planetary

positions?
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Apparent motion ofMars and the

sun around the earth.

Position of Venus and
Mercury Relative +0
Sun, \<^b(>'G>7

Positions of Venus and Mercury
relative to the sun.

i ^

Sut"'^ posi+ion at
10- do-, intervals

• •

J i»
6h

SOUTH

24h 23h

Observed motion of Halley's comet
against the background of stars
during 1909-1910.
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A Hemr Uniuerse

Appears
The Work of Kepler and Galileo

7.1 The abandonment of uniform cireular motion

7.2 Kepler's lai«' of areas

7.3 Kepler's Ian' of elliptical orbits

7.4 Kepler's law of periods

7.5 The new- eoncept of phvsic<il law
7.6 Galileo and Kepler

7.7 The telescopic evidence

7.8 Galileo focuses the controi'ersy

7.9 Science and freedom

SG 1

7«1.
I

The abandonment of uniform cireular
motion

Kepler, who became Tycho's assistant, had the lifelong desire to

perfect the heliocentric theory. He vdevved the hamionx' and

simplicity of that theoiy with "incredible and raxishing delight."

To Kepler, such patterns of geometric order and numericcil

relation offered clues to God's mind. Kepler sought to unfold

these patterns fui'ther through the heliocentric thcoiA'. In his Hrst

major work, he attempted to explain the spacing of the planetary

orbits as calculated by Copernicus (page 161 of C'hapter 6i.

Kepler was searching for the I'easons wh\' there are just six
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visible planets (including the earth) and why they are spaced as

they are. These are excellent scientific questions, but even today

they are too difficult to answer. Kepler thought that the key lay

in geometry. He began to wonder whether there was any relation

between the six known planets and the five regular solids. A
regular solid is a polyhedron whose faces all have equal sides

and angles. From the time of the Greeks, it was known that there

are just five regular geometrical solids. Kepler imagined a model
in which these five regular solids nested one inside the other,

somewhat like a set of mixing bowls. Between the five solids

would be spaces for four planetary spheres. A fifth sphere could

rest inside the whole nest and a sixth sphere could lie around
the outside. Kepler then sought some sequence of the five solids

that, just touching the spheres, would space the spheres at the

same relative distance from the center as were the planetary

orbits. Kepler said:

I took the dimensions of the planetary orbits according to the

astronomy of Copernicus, who makes the sun immobile in the

center, and the earth movable both around the sun and upon
its own axis; and I showed that the differences of their orbits

corresponded to the five regular Pythagorean figures. . .

.

By trial and error Kepler found a way to arrange the solids so

that the spheres fit wdthin about 5% of the actual planetary

distances. We now know that this arrangement was entirely

accidental. But to Kepler it explained both the spacings of the

planets and the fact that there were just six. Also, it had the

unity he expected between geometiy and scientific observations.

Kepler's results, published in 1597, demonstrated his imagination

and mathematical ability. Furthemiore, his work came to the

attention of major scientists such as Galileo and Tycho. In 1600,

Kepler was invited to become one of Tycho s assistants at his

new observatory in Prague.

There, Kepler was given the task of determining in precise

detail the orbit of Mars. This unusually difficult problem had not

been solved by Tycho and his other assistants. As it turned out,

Kepler's study of the motion of Mars was only a starting point.

From it, he went on to redirect the study of celestial motion. In

the same way, Galileo used the motion of falling bodies to

redirect the study of terrestrial motion.

Kepler began by trying to fit the observed motions of Mars with

motions of an eccentric circle and an equant. Like Copernicus,

Kepler eliminated the need for the large epicycle by putting the

sun motionless at the center and ha\ang the earth move around
it (see page 157). But Kepler made an assumption which differed

from that of Copernicus. Recall that Copernicus had rejected the

equant as an improper type of motion, using small epicycles

instead. Kepler used an equant, but refused to use even a single

small epicycle. To Kepler the epicycle seemed 'unphysical. " He

The five 'regular solids " (also

called Pythagorean figures or Pla-

tonic solids I, taken fiom Kepler's

Harmonices Mundi (Harmony of
the World). The cube is a regular

solid with 6 square faces. The do-

decahedron has 12 five-sided faces.

The other three regular solids have

faces that are equilateral triangles.

The tetrahedron has 4 triangular

faces, the octahedron has 8 trian-

gular faces, and the icosahedron

has 20 triangular faces.

For Kepler, this geometric view was
related to ideas of harmonv.
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Kepler's model for c\[)Uiining the

spacing of the planetary orbits by

means of the regular geometrical

solids. Notice that the planetary

spheres were thick enough to in-

clude the small epicycle used by

Copernicus.

SG 2

In keeping with Aiistotelian phys-

ics. Kepler beliexed that force was
necessaiy to dri\ e the planets along

their circles, not to hold them in

circles.

Fortunately, Kepler had made a

major discovery earlier that was
crnciid to his later work. He found
that the orbits of the earth and
other planets were in planes that

passed through the sun. Ptolemy
and Copernicus required special

explanations for the motion of

planets north and south of the

ecliptic, but Kepler found that these

motions were simply the result of

the orbits lying in planes tilted to

the plane of the earth s orbit.

reasoned that the center of the epicycle was empty, and empty
space could not exert any force on a planet. I bus, from the start,

Kepler assumed that tiie orbits were real and that the motion

resulted from pbvsic;al causes, namely, the action offorces on

the planets. E\en bis beloved teacher, Maestlin, advised the

young man to stick to geometrical models and astronomical

obsei-xation and to a\oid physical assumptions. But Kepler

stubbornly stuck to bis idea that the motions must l)e produced

and explained by forces. When he finally published his results on
Mars in bis book Astronomia Nova (New AslronomyJ, it was
subtitled Celestial Physics.

For a year and a iialf Kepler struggled to fit bis findings with

TVcho's obsenations of Mars by xarious arrangements of an

eccentric and an equant. When, aftei" 70 trials, success finally

seemed near, be made a discouraging discovery. He could

represent faii'ly well the motion of Mars in longitude least and
west along the ecliptic), but be failed markedly with the latitude

(north and south of the ecliptic). Even in longitude his very best

predictions still differed by 8 min of arc from Tycho's obseiA'ed

positions.

Eight minutes of arc, about one-fourth of the moon's diameter,

may not seem like much of a difference. Others might ba\e been

tempted to explain it away as an obseiAational erioi\ But Kepler

knew that Tycho's instruments and observations were rarely in

error by even 2 min of ar'c. Those 8 min of ar c meant to Kepler

that bis best system, using the old, accepted de\ices of eccentric

and e(|uant, wcniid never- wor^k. In New Astronomy, Kepler- wrote:

Since divine kindness granted us T\'cho Brahe, the most

diligent obserAcr, by whose obser^ations an error of eight

minutes in the case of Mar-s is brought to light in this Ptolemaic

calculation, it is fitting that we recognize and honor this favor

of God with gratitude of mind. Let us certainly work it out, so

that we finally show the tr-ue form of the celestial motions (by

supporting ourselves with these proofs of the fallacy of the

suppositions assumed). 1 myself shall pr-epare this way for

other's in the following chapter-s according to my small abilities.

For if I thought that the eight minutes of longitude wer-e to be

ignored, I would already have corrected the hxpothesis which

he had made earlier in the book and which worked moderateK'

well. But as it is, because they could not be ignor-ed, these eight

minutes alone have pr-epared the way for reshapirig the whole

of astronomy, and they ar-e the material which is made into a

great pai't of this work.

Kepler concluded that the orbit was not a circle and that ther-e

was no point aroirnd whie^b the motion was unilorrn. Plato s idea

of fitting perfect circles to the heavens had guided astronomers

for 20 centuries. Now, Ke|)ler realized, this idea mirst be

abandoned. Kepler- bad in bis bands the firn^st observations ever
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made, but now he had no theoiy by which they could be

explained. He would have to start over facing two altogether new
questions. First, what is the shape of the orbit followed by Mars?
Second, how does the speed of the planet change as it moves
along the orbit?

1. When Keplerjoined lycho Brake what task was he assigned?

2. Why did Kepler reject the use of epicycles in his theory?

Why is this reason important?

3. Why did Kepler conclude that Plato s problem, to describe

the motions of the planets by combinations of circular

motions, could not be solved?

The diagram depicts a nearly edge-

on view of the orbital planes of
earth and Mars, both intersecting

at the sun.

7*2i
I

Kepler's law of areas

Kepler's problem was immense. To solve it would demand all of

his imagination and skill. As the basis for his study, Kepler had
Tycho's observed positions of Mars and the sun on certain dates.

But these observations had been made from a moving earth

whose orbit was not well knovvm. Kepler realized that he must
first determine more accurately the shape of the earth's orbit.

This would allow him to calculate the earth's location on the

dates of the various observations of Mars. Then he might be able

to use the observations to determine the shape and size of the

orbit of Mars. Finally, to predict positions for Mars, he would
need to discover how fast Mars moved along different parts of its

orbit.

MArs

As you follow this brilliant analysis here, and particularly ifyou
repeat some of his work in the laboratory, you will see the series

of problems that Kepler solved.

To find the earth's orbit he began by considering the moments
when the sun, earth, and Mars lie almost in a straight line

(Figure A). After 687 days, as Copernicus had found, Mars would
return to the same place in its orbit (Figure B). Of course, the

earth at that time would not be at the same place in its own
orbit as when the first observation was made. As Figures B and C

Ma.rs
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SG 3

l{^'

SG4
Another way to express this rela-

tionship for the nearest and far-

thest positions would he to say the

speeds were inversely proportional

to the distance; but this rule does

not generalize to any other points

on the orbit.

indicate, the directions to the sun and Mars, as seen from the

earth against the fixed stars, would be known. The crossing point

of the sight-lines to the sun and to Mars must be a point on the

earth's orbit. Kepler worked with several groups of obseivations

made 687 days apart lone Mars "year "). In the end, he

determined fairly accurately the shape of the earth's orbit.

The orbit Kepler found for the earth appeared to be almost a

circle, with the sun a bit off center. Knov\ing now the shape of

the earth's path and knowing also the recorded apparent

position of the sun as seen from the earth for each day of the

year, he could locate the position of the earth on its orbit and its

speed along the orbit. Now he had the oibit and the timetable

for the earth's motion. You may have made a similar plot in the

experiment 'The Shape of the Earth's Orbit."

Kepler's plot of the earth's motion revealed that the earth

moves fastest when nearest the sun. Kepler wondered why this

occurred. He thought that the sun might exert some force that

drove the planets along their orbits. This concern with the

physical cause of planetary motion marked the change in

attitude toward motion in the heavens.

The drawings at the left represent (with great exaggeration) the

earth's motion for two parts of its orbit. The different positions

on the orbit are separated by equal time inteivals. Between

points A and B there is a relatively large distance, so the planet is

moving rapidly. Between points C and D it moves more slowly.

Kepler noticed, however, that the two areas swept over by a line

from the sun to the planet are equal. It is believed that he

actually calculated such areas only for the nearest and farthest

positions of two planets, earth and Mars. Yet the beautiful

simplicity of the relation led him to conclude that it was

generally true for all parts of orbits. In its general form, the law of

areas states: The line from the sun to the moving planet sweeps

over areas that are proportional to the lime internals. Later, when
Kepler found the exact shape of orbits, his law of areas became
a powerful tool for predicting positions.

You may be surprised that the first lule Kepler found for the

motions of the planets dealt with the areas swept over by the

line from the sun to the planet. Scientists had been considering

circles, eccentric circles, epicycles, and equants. This was a quite

unexpected property: The area swept over per unit time is the

first property of the orbital motion to remain constant. (As you
will see in Chapter 8, this major law of nature applies to all

oibits in the solar system and also to double stars. i Besides being

new and difl'erent, the law of areas drew attention to the central

role of the sun. Thus, it strengthened Keplei's faith in the still

widely neglected Copernican idea of a heliocentric system.

As you will see, Kepler's other labors would have been of little

use without this basic discoveiy. However, the njle does not give
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any hint why such regularity exists. It merely describes the

relative rates at which the earth and Mars (and, Kepler thought,

any other planet) move at any point of their orbits. Kepler could

not fit the rule to Mars by assuming a circular orbit, so he set out

to find the shape of Mars' orbit.

• 4. What observations did Kepler use to plot the earth's orbit?

5. State Kepler's law of areas.

6. Where in its orbit does a planet move the fastest?

T«3
I

Kepler's laii" of elliptical orbits

Kepler knew the orbit and timetable of the earth. Now he could

reverse his analysis and find the shape of Mars' orbit. Again he

used obseivations separated by one Martian year. Because this

interval is somewhat less than two earth years, the earth is at

different positions in its orbit at the two times. Therefore, the

two directions from the earth to Mars differ. Where they cross is

a point on the orbit of Mars. From such pairs of observations

Kepler fixed many points on the orbit of Mars. The diagrams

below illustrate how two such points might be plotted. By

drawing a curve through such points, Kepler obtained fairly

\ Ma.r-»

Ea.rth

accurate values for the size and shape of Mars' orbit. Kepler saw
at once that the orbit of Mars was not a circle around the sun.

You will find the same result from the experiment, "The Orbit of

Mars. " What sort of path was this? How could it be described

most simply? As Kepler said, "The conclusion is quite simply

that the planet's path is not a circle—it curves inward on both

sides and outward again at opposite ends. Such a curve is called

an oval. " But what kind of oval?

Many different closed curves can be called ovals. Kepler

thought for a time that the orbit was egg-shaped. However, this

shape did not agree with his ideas of physical interaction

between the sun and the planet. He concluded that there must
be some better way to describe the orbit. For many months,
Kepler struggled with the question. Finally, he realized that the

orbit was a simple curve that had been studied in detail by the

Kepler's law of areas. A planet

moves along its orbit at a rate

such that the line from the sun to

the planet sweeps over areas which

are proportional to the time inter-

vals. The time taken to cover AB
is the same as that for BC, CD, etc.

SG 5
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In this esperiment, the orbit of
Mars was plottedfrom uwasure-
ments made on pairs of sky photo-

graphs taken 1 Martian year apart.

a
I

An ellipse showing the long

a^is a, the semiminor a;>iis b, and
the two foci F, and F,. The shape of
an ellipse is described by its eccen-

tricity e, where e = c/a.

S(. 6

SG 10

In the "Orbit of Mercury" Experi-

ment, you can plot the shape of

Mercury's very eccentric orbit ft'om

observational data. See also SG 13.

SG 13

Gi^eks 2,000 years before. Ihe curve is called an ellipse. It is the

shape you see when you view a circk; at a slant.

Ellipses can differ greatly in shape. Ihey haxe many interesting

properties. For example, you can draw an ellipse by looping a

piece of string around two thumbtacks pinned to a drawing

board at points F, and F^ as shown at the left. Full the loop taut

with a pencil point (P) and run the pencil around the loop. Vou

will have dr^awrr an ellipse, ilf the two thumb tacks had been

together, on the same point, what curve would you ha\e drawn?

What results do you get as you separate the two tacks more?)

Each of the points F, and F, is called a focus of the ellipse, the

greater the distance between F, and F^, the flatter, or more
eccentric the ellipse becomes. As the distance between F, and F,

shrinks to zer'o, the ellipse becomes more nearly circular'. A
measure of the eccentricity of the ellipse is the ratio of the

distance FjF, to the long axis. Since the distance between F, and

F, is c and the length of the long iixis is a, the eccentricity, e, is

defined by the equation e = c/a.

The eccentricities are given for each of the ellipses shown in

the mar^gin of the next page. You can see that a circle is the

special case of an ellipse with e = 0. Also, note that the greatest

possible eccentricity for an ellipse is e = 1.0

TABLE 7.1 THE ECCENTRICITIES OF PLANETARY ORBITS

Planet

Orbital

Eccentricity Notes

Mercury



Kepler's discovery that the orbit of Mars is an ellipse was
remarkable enough in itself. But he also found that the sun is at

one focus of the orbit. (The other focus is empty.) Kepler stated

these results in his law of elliptical orbits: The planets move in

orbits that are ellipses and have the sun at one focus.

As Table 7.1 shows, Mars has the largest orbital eccentricity of

any planet that Kepler could have studied. (The other planets

for which there were enough data at the time were Venus, Earth,

Jupiter, and Saturn.) Had he studied any planet other than Mars,

he might never have noticed that the orbit was an ellipse! Even

for Mars, the difference between the elliptical orbit and an off-

center circle is quite small. No wonder Kepler later wrote: "Mars

alone enables us to penetrate the secrets of astronomy which

otherwise would remain forever hidden from us."

Like Kepler, modern scientists believe that obseivations

represent some aspects of reality more stable than the changing

emotions of human beings. Like Plato and all scientists after him,

scientists assume that nature is basically orderly and consistent.

Therefore, it must be understandable in a simple way. This faith

has led to great theoretical and technical gains. Kepler's work
illustrates a basic scientific attitude: Wide varieties of phenomena
are better understood when they can be summarized by a simple

law, preferably expressed in mathematical form.

After Kepler's initial joy at discovering the law of elliptical

paths, he may have asked himself a question. Why are the

planetary orbits elliptical rather than in some other geometrical

shape? While Plato's desire for uniform circular motions is

understandable, nature's insistence on the ellipse is suiprising.

In fact, there was no satisfactory answer to this question for

almost 80 years until, at last. Neuron showed that elliptical orbits

were necessary r^esults of a more gener^al law of nature. You can

accept Kepler's laws as rules that contain the observed facts

about the motions of the planets. As empirical laws, they each

summarize the data obtained by obserAdng the motion of any

planet. The law of or^bits describes the paths of planets as

ellipses around the sun. It gives all the possible positions each

planet can have if the orbit's size and eccentricity are known.

However, it does not tell when the planet will be at any particular

position on its ellipse or how r^apidly it will be moving then. The
law of areas, on the other hand, does not specify the shape of

the orbit. But it does describe how the angular speed changes as

the distance fr^om the sun changes. Cleariy, these two laws

complement each other. Using them together, you can deterinine

both the position and angular speed of a planet at any time, past

or future. To do so, you need only to know the values for the

size and eccentricity of the orbit and to know the position of the

planet at any one time on its orbit. You can also find the earth's

position for the same instant. Thus, you can calculate the

Ellipses of dijferent eccentricities.

(The pictures were made by photo-

graphing a saucer at different an-

gles.!
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Empirical means based on obser-

vation, not derived from theor\'.

position of the planet as it would have been or uill be seen from

the eai-th.

The elegance and simplicity of Kepler's t\vo laws are

impressive. Surely Ptolemy and Copernicus would haxe been

amazed to see the problem of planetary motions solved in such

shor-t statements. You must remember, however, that these laws

wer-e distilled from Copernicus' idea of a moving ear1h and the

great labors that went into Tycho's fine observations, as well as

fr om the imagination and devotion of Kepler.

Conic sections, as shown in the

diagram, are figures produced by

cutting a cone with a plane. The

eccentricity of a figure is related to

the angle of the cut. In addition

to circles and ellipses, parabolas

and hyperbolas are conic sections,

with eccentricities greater than

ellipses. Newton eventually showed
that all of these shapes are possi-

ble paths for a body moving under

the gravitational attraction of the

sun.

7. Ifyou noticed a man walking to the store to buy a

newspaper at 8:00 A.M. for three days in a row, what empirical

law might you propose-' What is an empirical law? Ifyou later

found that the man did not go to the store on Sunday, what

conclusions could you make about empirical laws?

8. What special feature ofMars' orbit made Kepler's study of it

so fortunate?

9. If the average distance and eccentricity of a planet's orbit

are known, which of the following can be predicted from the

law of areas alone? fi"om the law of elliptical orbits alone?

Which require both?

(a) all possible positions in the orbit

(b) speed at any point in an orbit

(c) position at any given time

Ci'rcLe £LLi lose.

R3.ra.b0La. HvjpcrboLaL

T.4
I

Kepler's laiv of periods

As Einstein later put it: 'The Lord
is subtle, but He is not malicious.

'

Kepler published his fir^st two laws in 1609 in his book

Astronomia Nova. But he was still dissatisfied. He had not yet

found any relation among the motions of the differ^ent planets.

Each planet seemed to have its ouii elliptical orbit and speed.

There appear^ed to be no overall pattern relating all planets to

one another. Kepler had begun his career by trying to explain

the number of planets and their spacing. He was con\inced that

the observed or^jits and speeds could not be accidental. There

must he some regularity linking all the motions in the solar

system. His conviction was so strong that he spent years
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examining possible combinations of factors by trial and error.

Surely one combination would reveal a third law, relating all the

planetary orbits. His long, stubborn search illustrates a belief that

has run through the whole history of science: Despite apparent

difficulties in getting a quick solution, nature's laws are rationally

understandable. This belief is still a source of inspiration in

science, keeping up one's spirit in periods of seemingly fruitless

labor. For Kepler it made endurable a life of poverty, illness, and

other personal misfortunes. Finally, in 1619, he wrote

triumphantly in his Harmony of the World:

. . . after I had by unceasing toil through a long period of time,

using the observations of Bi ahe, discovered the true relation

. . . [It] overcame by storm the shadows of my mind, with such

fullness of agreement between my seventeen years' labor on the

observations of Brahe and this present study of mine that I at

first believed that I was dreaming. . .

.

Kepler's law of periods, also called the harmonic law, relates

the periods of planets to their average distances from the sun.

The period is the time taken to go once completely around the

orbit. The law states that the squares of the periods of the planets

are proportional to the cubes of their average distances fi^om the

sun. Calling the period T and the average distance R^^, this law

can be expressed as

T oc /i^ T- = kR'
T-

= k

where A: is a constant. This relation applies to all the planets as

well as to comets and other bodies in orbit around the sun. You
can use it to find the period of any planet if you know its average

distance from the sun, and xdce versa.

For the earth, T is 1 year. The av-

erage distance R^^ of the earth from
the sun is one astronomical unit (1

AU). So one way to express the
value of the constant k is k = 1

vearVAU'.

SG 15-18

TABLE 7.2 VERIFICATION OF KEPLER'S LAW OF PERIODS

Using Copernicus' Values Using Modern Values

Planet

Period T
(Years)

Average
^

Distance X.
RJAU) R3

Period T
(Years)

Average
Distance

RJAU)

Mercury



The tables, named for IVcho's and

Kepler's patron, Emperor Rudolph

II, were called the Hudulphinc ta-

bles. They were also important for

a quite different reason. In them,

Kepler pioneered in the use of log-

arithms for making rapid calcula-

tions and included a long section,

practically a textbook, on the na-

ture and use of logarithms (first de-

scribed in 1614 l)y Xapier in Scot-

land). Kepler's tables spread the

use of this computational iiid, widely

needed for nearly three centuries,

until modern computing machines
came into use.

You know (see Question 11) that

7^/fl^^ equals 1 for any object in or-

bit around the sun. Therefore, if T
— 5 years, then

= 1

R'^ = 25

fl^ = approximately 3 AU

Find R^^ for an object whose period

is 4 vears.

quantities are the size (long axis, a) and eccentricity (e) of the

orbit. Three others are angles that relate the plane of the orbit to

that of the earth's orbit. The si.xth quantity needed is the location

of the planet in its orbit on any one date. These quantities are

explained more fully in the Actixaties and Experiments listed in

the Handbook for Chapters 7 and 8.

In this manner, the past and future positions of each planet

and each comet can be found. Kepler's system was vastly simpler

and more precise than the multitude of geometrical devdces in

the planetary theories of Ptolemy, Copernicus, and Tycho. With

different assumptions and procedures Kepler had at last solved

the problem which had occupied so many great scientists over

the centuries. Although he abandoned the geometrical devices of

Copernicus, Kepler did depend on the Copernican viewpoint of

a sun-center ed universe. None of the eailh-centered models

could have led to Kepler's three laws.

In 1627, after many troubles v\ith his publishers and Tycho s

heirs, Kepler published a set of astronomical tables. These tables

combined TVcho's observations and the three laws in a way that

permitted accur^ate calculations of planetar\' positions for any

time, past or futurx\ These tables r^emained useful for a century,

until telescopic observations of greater precision replaced

I'ycho's data.

Kepler s scientific interest went beyond the planetary problem.

Like Tycho, who was fascinated by the new star of 1572, Kepler

observed and wrote about new starts that appeared in 1600 and

1604. His obserAations and comments added to the impact of

Tycho s earlier- statement that changes did occur in the starr\'

sky.

As soon as Kepler learned of the development of the telescope,

he spent most of a year studying how the images were formed.

He published his findings in a book titled Dioptrice (16111, which

became the standard work on optics for many years. Kepler

wrote other important books on mathematical and astronomical

problems. One u'as a popular and vxidely read descr iption of the

Copernican system as modified by his own discoveries. This book

added to the growing interest in and acceptance of the sun-

centered svstem.

10. State Kepler's law ofperiods.

11. Use the periods and average radii of Jupiter's and Saturn s

orbits to show that T^/Ri)^ is the same for both. What do all

objects in orbit around the sun have in common':'

12. What is the average orbital radius of a planetoid that

orbits the sun every 5 years':'

13. Why is it that none of the earth-centered models of the

solar system could have led to Kepler's law of periods'^
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T.5
I

The new concept of physical laiv

One general feature of Kepler's lifelong work greatly affected the

development of all the physical sciences. When Kepler began his

studies^ he still accepted Plato's assumptions about the

importance of geometric models. He also agreed with Aristotle's

emphasis on "natural place " to explain motion. But later he

came to concentrate on algebraic laws describing how planets

moved. His successful statement of empirical laws in

mathematical form helped to establish the equation as a normal

fomi of stating physical laws.

More than anyone before him, Kepler expected a theoiy to

agree with precise and quantitative observation. From Tycho's

observ^ations he learned to respect the power of precise

measurement. Models and theories can be modified by human
inventiveness, but good data endure regardless of changes in

assumptions or viewpoints.

Going beyond observation and mathematical description,

Kepler attempted to explain motion in the heavens in terms of

physical forces. In Kepler's system, the planets no longer moved
by some divine nature or influence, or in "natural " circular

motion caused by their spherical shapes. Rather, Kepler looked

for physical laws, based on obseived phenomena and describing

the whole universe in a detailed quantitative manner. In an early

letter to Henvart (1605), he expressed his guiding thought:

I am much occupied with the investigation of the physical

causes. My aim in this is to show that the celestial machine is

to be likened not to a divine organism but rather to a clockwork

. . . insofar as nearly all the manifold movements are carried out

by means of a single, quite simple magnetic force, as in the

case of a clockwork, all motions are caused by a simple weight.

Moreover, I show how this physical conception is to be

presented through calculation and geometry.

Kepler's likening of the celestial machine to a clockwork driven

by a single force was like a look into the future of scientific

thought. Kepler had read William Gilbert's work on magnetism,

published a few years earlier. Now he could imagine magnetic

forces from the sun driving the planets along their orbits. This

was a reasonable and promising hypothesis. As Newton later

showed (Chapter 8), the basic idea that a single kind of force

controls the motions of all the planets was correct. The force is

not magnetism, however, and does not keep the planets moving
forward, but rather bends their paths into closed orbits.

Even though Kepler did not understand correctly the nature of

the forces responsible for celestial motion, his work illustrates

an enonnous change in outlook that had begun more than two
centuries earlier. Although Kepler still shared the ancient idea
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that each planet liad a "soul, " he lelused to base his explanation

of planetaiy motion on this idea. Instead, he began to search for

physical causes. Copernicus and lycho were willing to settle for

geometrical models by which planetary positions could be

predicted. Kepler was one of the first to seek dynamic causes for

the motions. This new desire for physical explanations marked
the beginning of a chief characteristic of modern physical

science.

Kepler's statement of empirical laws reminds us of Galileo's

suggestion, made at about the same time. Galileo said that

science should deal first with the how of motion in free fall and
then with the why. A half-centuiy later, Nev\4on used the concept

of gravitational force to tie together Kepler's three planetaiy laws

with laws of terrestrial mechanics. This magnificent synthesis

will be the subject of Chapter 8.

14. In what ways did Kepler's work e^emplijy a "new" concept

ofphysical law?

T.6
I

Galileo and Kepler

One of the scientists with whom Kepler corresponded about

scientific developments was Galileo. Kepler's main contributions

to planetary theory were his empirical laws based on Tycho's

observations. Galileo contributed to both theory and observation.

As r^epor-ted in Chapters 2 and 3, Galileo based his theory of

motion on observations of bodies moving on the earth's surface.

His work in the new science of mechanics contradicted

Aristotelian assumptions about ph^'sics and the nature of the

heavens. Galileo's books and speeches triggered wide discussion

about the differences or similarities of earth and heaven. Interest

extended far outside of scientific circles. Some years after his visit

to Galileo in 1638, the poet John Milton wrote:

{Paradise Lost, Book V, line 574, . . . What if earth

published 1667.) Be but the shadow of Heaven, and things therein

Each to the other- like, more than on eaith is thought?

Galileo challenged the ancient interpretations of experience. As

stated earlier, he focused attention on new concepts: time and

distance, velocity and acceleration, forces and matter. In contrast,

the Aristotelians spoke of essences, final causes, and fixed

geometric models. In Galileo's study of lalling bodies, he insisted

on fitting the concepts to the observed facts. By seeking results

that could be expressed in algebraic for-m, he paralleled the new
stv'le being used by Kepler.

192 UMT 2 I MOnO.X li\ THE HliAVEVS



The sharp break between Galileo and most other scientists of

the time arose from the kind of questions he asked. To his

opponents, many of Galileo's problems seemed trivial. His

procedures for studying the world also seemed peculiar. What

was important about watching pendulums swing or rolling balls

down inclines when deep philosophical problems needed

solving?

Although Kepler and Galileo lived at the same time, their lives

were quite different. Kepler lived in near poverty and was driven

from city to city by the religious wars of the time. Few people,

other than a handful of friends and correspondents, knew of or

cared about his studies and results. He wrote long, complex

books that demanded expert knowledge from his readers.

Galileo, on the other hand, wrote his essays and books in

Italian. His language and style appealed to many readers who
did not know scholarly Latin. Galileo was a master at publicizing

his work. He wanted as many people as possible to know of his

studies and to accept the Copernican theoiy. He wrote not only

to small groups of scholars, but to the nobles and to civic and

religious leaders. His arguments included humorous attacks on

individuals or ideas. In return, Galileo's efforts to infoiTn and

persuade on such a 'dangerous " topic as cosmological theory

stirred up ridicule and even xaolence. Those who have a truly

new point of view often must face such a reaction.

In recent times, similar receptions

were initially given to such artists

as the painter Picasso, the sculptor

Giacometti, and the composers
Stravinsky and Schonberg. The same
has often been true in most fields,

whether literature, mathematics,
economics, or politics. While great

creative novelty is often attacked at

the start, it does not follow that,

conversely, everything that is at-

tacked must be creative.

15. Which of the following would you associate more with

Galileo's work than with that of his predecessors: qualities and

essences, popular language; concise mathematical e;>cpression;

final causes?

T.T
I

The telescopic evidence

Like Kepler, Galileo was surrounded by scholars who believed

the heavens were eternal and could not change. Galileo therefore

took special interest in the sudden appearance in 1604 of a new
star, one of those observed by Kepler. Where there had been

nothing visible in the sky, there was now a brilliant star. Like

Tycho and Kepler, Galileo realized that such events conflicted

with the old idea that the stars could not change. This new star

awakened in Galileo an interest in astronomy that lasted all his

life.

Four or 5 years later, Galileo learned that a Dutchman "had

constructed a spy glass by means of which visible objects,

though very distant from the eye of the observer, were distinctly

seen as if nearby. ' Galileo (as he tells it) quickly worked out some
of the optical principles involved. He then set to work to grind

Th'o of Galileo's telescopes, dis-

played at the Museum of Science
in Florence.
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Galileo meant that the area of the

object was nearly 1,000 times
greater. The area is proportionid to

the square of the magnification lor

"power") as we define it now.

Two of Galileo s early drawings of
the moon from Siderius Nuncius
rrhe Starry Messengers

the lenses and build su( h an insti\iment himself. Galileo's first

telescope made objects appeal' three times closer- than when
seen with the nciked eye. He reported on his third telescope in

his book The Starry Messenger:

Finally, sparing neither labor- nor expense, I succeeded in

constrxicting for- myself so excellent an instrxinient that objects

seen by means of it appeared nearly one thousand times larger

and over thirty times closer than when regarded with oirr

natural \ision.

What would you do if you were handed "so excellent an

instrument "? Like the scientists of Galileo's time, you probably

would put it to practical uses. 'It would be superfluous, " Galileo

agreed,

... to enumerate the number- and importance of the advantages

of such an instrument at sea as well as on land. But forsaking

terr-estrial observations, 1 turned to celestial ones, and first I

saw the moon trom as near- at hand as if it were scarceK' two

terrestrial radii away. After that I observed often witli wondering

delight both the planets and the fixed stars

In a few shor't weeks in 1609 and 1610, Galileo used his

telescope to make several major discoveines. First, he pointed his

telescope at the moon. What he saw conxined him that

. . . the surface of the moon is not smooth, uniform, and

precisely spherical as a great number of philosophers believe it

land other heavenly bodies) to be, but is uneven, rough, and

fuU of caxities and prominences, being not unlike the face of

the earth, relieved by chains of moirntains and deep \alleys.

Galileo did not stop with that simple obser\'ation, so contrary

to the Aristotelian idea of heaxenly perfection. He supported his

conclusions with sever al kinds of evidence, including cai'eful

measurement. For instance, he worked out a method for

detei'mining the height of mountains on the moon from the

length of their shadows. iHis value of about 6.4 km for' the height

of some lunar mountains is not far fixjm modern results. For

example, try the experiment, "The Height of Piton—A Mountain

on the Moon, ' in the Handbook.}

Next Galileo looked at the stars. To the naked eye, the Milky

Way had seemed to be a continuous blotchy band of light. But

through the telescope it was seen to consist of thousands of faint

stars. Wherever Galileo pointed his telescope in the sky, he saw
many moi^e stars than appeared to the unaided eye. This

obser^•ation clashed with the old argument that the stains were

created to help humans to see at night. By this argument, there

should not be star\s inxisible to the naked eye. But Galileo foirnd

thoirsands.
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Galileo soon made another discoveiy which, in his opinion,

"... deserves to be considered the most important of all—the

disclosure of four Planets never seen from the creation of the

world up to our time." He was referring to his discovery of four

of the satellites which orbit Jupiter. Here before his eyes was a

miniature solar system with its own center of revolution. Today,

as to Galileo so long ago, it is a sharp thrill to see the moons of

Jupiter through a telescope for the first time. Galileo's discoveiy

strikingly contradicted the Aristotelian notion that the earth is

the center of the universe and the chief center of revolution.

The manner in which Galileo discovered Jupiter's "planets " is

a tribute to his ability as an observer. On each clear night during

this period he was discovering dozens if not hundreds of new
stars never before seen. On the evening of January 7, 1610, he

was looking in the vicinity of Jupiter. He noticed "... that beside

the planet there were three starlets, small indeed, but veiy bright.

Though I believe them to be among the hosts of fixed stars, they

aroused my curiosity somewhat by appearing to lie in an exact

straight line. . .

.

" (The sketches in which he recorded his

observations are reproduced in the margin.) When Galileo looked

again on the following night, the "starlets ' had changed position

with reference to Jupiter. Each clear evening for weeks he

obsewed and recorded their positions in drawings. Within days

he had concluded that there were four "starlets " and that they

were indeed satellites of Jupiter. Galileo continued obsemng
until he could estimate their periods of revolution around

Jupiter.

Of all of Galileo's discoveries, that of the satellites of Jupiter

caused the most stir. His book The Starry Messenger was an

immediate success. Copies sold as fast as they could be printed.

For Galileo, the result was a great demand for telescopes and

great fame.

Galileo continued to use his telescope with remarkable results.

By projecting an image of the sun on a screen, he observed

sunspots. This seemed to indicate that the sun, like the moon,

was not perfect in the Aristotelian sense. It was disfigured rather

than even and smooth. Galileo also noticed that the sunspots

moved across the face of the sun in a regular pattern. He
concluded that the sun rotated with a period of about 27 days.

Galileo also found that Venus showed phases, just as the moon
does (see photos on page 196). Therefore, Venus could not stay

always between the earth and the sun, as Ptolemaic astronomers

assumed. Rather, it must move completely around the sun as

Copernicus and Tycho had believed. Saturn seemed to cany
bulges around its equator, as indicated in the drawings on the

next page. Galileo's telescopes were not strong enough to show
that these were rings. (He called them "ears .") With his

telescopes, Galileo collected an impressive array of new

Telescopic photograph of Jupiter

and its four bright satellites. This is

appro,xinjately what Galileo saw
and what you see through the sim-

ple telescope described in the

Handbook.

Jo.i,.**^'



SG 23
information about the heavens, all ot which seeniod to contraclicU

tiie basic assunijitions of the Ptolemaic world scheme.

Photographs of Venus at various

phtiscs with a constant magnifica-

tion.

Drawings of Saturn, made m the

seventeenth centurv.

? 16. Which commonly held beliefs of Gnlileo's contemporaries

were contradicted by these obscrxations of Galileo?

(a) A "new" star appeared in the heavens.

(b) The moon has mountains.

(c) There are many stars in dark areas of the sky.

(d) Jupiter has several satellites.

(e) The sun has spots and rotates.

(f) Venus has phases like the moon.

17. Could Galileo s observations of all phases of Venus support

the heliocentric theory, the lychonic system, or Ptolemaic

system?

18. In what way did telescopic observation of the moon and

sun weaken the earth-centered view of the universe?

r.8
I

Galileo focuses the controversy

Galileo's observations supported his belief in the heliocentric

Copernican system, but they were not the cause of his belief. His

great work. Dialogue Concerning the 7\vo Chief World Systems

11632), was based more on assumptions that seemed self-evident

to him than on observations. Galileo recognized, as Ptolemy and

Copernicus had, that the observed motions of planets do not

prove either the heliocentric or the geocentric hypothesis right

and the other one wrong. With proper adjustments of the

systems, said CJalileo, "The same phenomena would result from

either hypothesis." He accepted the earth's motion as real

because the heliocentric system seemed simpler and more
pleasing. 1 he sup|)oit foi' the heliocenti-ic view [ii-ovided by the

196 IMI I 2 / M(n lOIV IM THE HEAVENS



"observed facts" was of course necessary, but the "facts" by

themselves were not sufficient. Elsewhere in this course you will

find other cases like this. Scientists quite often accept or reject

an idea because of some strong belief or feeling that, at the time,

cannot be proved decisively by experiment.

In the Dialogue Concerning the Two Chief World Systems

,

Galileo presents his arguments in a systematic and lively way.

Like his later book, Discourses Concerning Two New Sciences,

mentioned in Chapter 2, it is in the form of a discussion between

three learned men. Salvdati, the voice of Galileo, udns most of the

arguments. His opponent is Simplicio, an Aristotelian who
defends the Ptolemaic system. The third member, Sagredo,

represents the objective and intelligent citizen not yet committed

to either system. However, Sagredo usually accepts Galileo's

arguments in the end.

In Two Chief World Systems, Galileo's arguments for the

Copernican system are mostly those given by Copernicus. Oddly

enough, Galileo made no use of Kepler's laws, although Galileo's

observations did proxdde new evidence for Kepler's laws. In

studying Jupiter's four moons, Galileo found that the larger the

orbit of the satellite, the longer was its period of revolution.

Copernicus had noted that the periods of the planets increased

with their average distances from the sun. Kepler's law of periods

had stated this relation in detailed, quantitative form. Now
Jupiter's satellite system showed a similar pattern, reinforcing

the challenge to the old assumptions of Plato, Aristotle, and

Ptolemy.

Two Chief World Systems relies upon Copernican arguments,

Galilean observations, and attacks on basic assumptions of the

geocentric model. In response, Simplicio desperately tries to

dismiss all of Galileo's arguments vvath a typical counter

argument:

. . . with respect to the power of the Mover, which is infinite, it

is just as easy to move the universe as the earth, or for that

matter a straw.

To this argument, Galileo makes a very interesting reply. Notice

how he quotes Aristotle against the Aristotelians:

. . . what I have been saying was with regard not to the Mover,

but only the movables . . . Giving our attention, then, to the

movable bodies, and not questioning that it is a shorter and
readier operation to move the earth than the universe, and
paying attention to the many other simplifications and
conveniences that follow from merely this one, it is much more
probable that the diurnal motion belongs to the earth alone

than to the rest of the universe excepting the earth. This is

supported by a very true maxim of Aristotle's which teaches

that ... "it is pointless to use many to accomplish what may be
done with fewer."
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Some of the arguments brought
forward against the new discover-

ies sound silly to the modern mind.

"One of his [Galileo's] opponents,

who admitted that the surface of

the moon looked rugged, main-
tained that it was actually quite

smooth and spherical as /Vristotle

had said, reconciling the two ideas

by saying that the moon was cov-

ered with a smooth transparent

materiiil through which mountains
and craters inside it could be dis-

cerned. Galileo, sarcastically ap-

plauding the ingenuity' of this con-

tribution, offered to accept it

gladly—pro\ided that his opjjonent

would do him the equal courtesy of

allowing him then to assert that the

moon was e\'en more rugged than

he had thought before, its surface

being covered with mountains and
craters of this invisible substance

ten times as high as any he had
seen." [Quoted from Uiscoverics

and Opinions of Galileo, by Still-

man Drake. J

Galileo thought his telescopic discoveries would soon

demolish the assumptions that prevented uide ac(;eptance ol the

Copernican theory. But people cannot believe what they are not

ready to believe. The Aristotelians firmly believed that the

heliocentric theory was obviously false and contrary to

obsen'ation and common sense. The evidences pro\aded by the

telescope could be distorted; after all, glass lenses change the

path of light rays. Even if telescopes secMiied to work on ear'th,

nobody could be sure they worked wIkmi pointed at the vastly

distant stars.

Most Aristotelians r eally could not even consider- the

Copernican system as a possible theory. To do so would involve

questioning too many of their own basic assumptions, as you
saw in Chapter- 6. It is nearly humanly impossible to gi\e up all

of one's common-sense ideas and find new bases for one's

r-eligious and moral doctrines. The Aristotelians would haxe to

admit that the earth is not at the center of creation. Then

per haps the universe was not created especially for humanity.

No wonder Galileo's arguments stinted up a storm of opposition!

Galileo's observations intrigued many, but were unacceptable

to Aristotelian scholars. Most of these critics had reasons one

can respect. But a few were driven to positions that must have

seemed silly even then. For example, the Flor-entine astronomer

Francesco Sizzi argued in 1611 that there could not possibly be

any satellites ar-ound Jupiter:

There are seven windows in the head, two nostrils, two ears,

two eyes and a mouth; so in the heavens ther-e ar-e two

favorable stars, two unpropitious, two luminaries, and Mercury

alone undecided and indifferent. From which and many other

similar phenomena of nature such as the seven metals, etc.,

which it were tedious to enumerate, we gather that the number
of planets is necessarily seven [including the sun and moon
but excluding the earth] Besides, the Jews and other ancient

nations, as well as modern Europeans, have adopted the

division of the week into seven days, and have named them

from the seven planets; now if we increase the number of

planets, this whole system falls to the ground Moreover-, the

satellites are invisible to the naked eye and therefore can have

no influence on the earth, and therefore u'ould be useless, and

therefore do not exist.

A year after his discoveries, Galileo wrote to Kepler:

You are the fii-st and almost the only pei-son who, even after a

but cursor^' investigation, has . . . gi\en entire credit to my
statements. . . . What do you say of the; leading philosophers

hei-e to whom I haxe offered a thousand times of my own
accord to show my studies, but who with the lazy obstinacy of

a sequent who has eaten his fill haxe never consented to look

at the jjlanets, oi- moon, or telescope?
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19. Did Galileo's telescopic observations cause him to believe

in the Copernican viewpoint?

ZO. What reasons did Galileo s opponents give for ignoring

telescopic observations?

T.9
I

Science and freedom

The political and personal tragedy that struck Galileo is

described at length in many books. Only some of the major

events are mentioned here. Galileo was warned in 1616 by the

highest officials of the Roman Catholic Church to cease teaching

the Copernican theory as true. It could be taught only as just

one of several possible methods for computing the planetary

motions. The Inquisitors held that the theory was contrary to

Holy Scripture. At the same time, Copernicus' book was placed

on the lnde}i ofForbidden Books "until corrected." As you saw
before, Copernicus had used Aristotelian doctrine whenever
possible to support his theory. Galileo had reached a new point

of view. He urged that the heliocentric system be accepted on

its merits alone. Although Galileo himself was a devoutly

religious man, he deliberately ruled out questions of religious

faith from scientific discussions. This was a fundamental break

with the past.

Cardinal Barberini, once a close friend of Galileo, was elected

in 1623 to be Pope Urban VIII. Galileo talked with him about the

decree against Copernican ideas. As a result of the discussion,

Galileo considered it safe to write again on the topic. In 1632,

having made some required changes, Galileo obtained consent to

publish Two Chief World Systems. This book presented very

persuasively the Ptolemaic and Copernican viewpoints and their

relative merits. After its publication, his opponents argued that

Galileo had tried to get around the warning of 1616. Furthermore,

Galileo sometimes spoke and acted vvdthout tact. This fact, and
the Inquisition's need to demonstrate its power over suspected

heretics, combined to mark Galileo for punishment.

Among the many factors in this complex story, it is important

to remember that Galileo considered himself religiously faithful.

In letters of 1613 and 1615, Galileo wrote that Gods mind
contains all the natural laws. Consequently, the occasional

glimpses of these laws that scientists might gain are direct

revelations of God, just as true as those in the Bible: 'From the

Divine Word, the Sacred Scripture and Nature did both alike

proceed. . . . Nor does God less admirably discover himself to us

in Nature's action than in the Scripture's sacred dictions. " These
opinions are held by many people today, whether scientists or

not. Few people think of them as conflicting vvath religion. In
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Pantheism refers to the idea that

God is no more (and no less) than

the forces and laws of nature.

According to a well-known, but
probably apocryphal story, at the

end of these proceedings (ialileo

muttered, ' E pur si miiovc' (but it

does move).

Over 200 years after his confine-

ment in Home, opinions had
changed so that Galileo was hon-

ored as in the fresco "Galileo pre-

senting his telescope to the Vene-

tian Senate,' by Luigi Sabatelli

(1772-1850).

Galileo's time, such ideas were widely regarded as symptoms of

pantheism. Pantheism was one of the religious "crimes " or

heresies for which Galileo's contemporary, Giordano Bruno, was

burned at the stake. The Inquisition was alamied by Galileo's

seeming denial of the Bible as a certain source of knowledge

about natural science. In reply, arrogant as Galileo often was, he

quoted Cardinal Baronius: "The Holy Spirit intended to teach us

how to go to hea\en, not how the heavens go
"

Though he was old and sick, Galileo was called to Rome and

confined for a few months. The records of his trial are still partK'

secret. It is known that he was tried, threatened with torture,

and forced to make a formal confession for holding and teaching

forbidden ideas. He was also forced to deny the Copernican

theory. In return for his confessions and denial, Galileo was
sentenced only to perpetual house arrest. Galileo's friends in

Italy did not dare to defend him publicly. His book was placed

on the Indcs- It remained there, along with that of Copernicus

and one of Kepler's, until 1835. Thus, Galileo was used as a

w^arning to all people that demands for spiritual conforniitv' also

required intellectual confor-mity.

Without intellectual freedom, science cannot flourish for long.

Italy had given the worid many outstanding scholars. But for 2

centuries after Galileo, Ital}' produced har'dly a single great

scientist, while elsewhere in Europe many appeared. Today,

scientists ar^e acutely aware of this famous part of the story of the

development of planetary theories. Teachers and scientists in our

time have had to face strong enemies of open-minded inquiry

and of unr^estricted teaching. Today, as in Galileo's time, men
and women who cr^eate or publicize new thoughts must be ready

to stand up for them. There still are people who fear and wish

to stamp out the open discussion of new ideas and new
evidence.

Plato knew that a government that wishes to control its people

totiilly is threatened by new ideas. To prevent the spr-ead of such

ideas, Plato recommended the now well-knowii treatment:

reeducation, prison, or death. Not long ago, Soviet geneticists

were required to discard well-established theories. They did so,

not on the basis of new scientific evidence, but because pari\'

"philosophers " accused them of conflicts with political doctrines.

Similarly, the theory of relativity was banned from textbooks in

Nazi Germany because Einstein's Jewish background was said to

make his work worthless. Another example of intolerance was

the prejudice that led to the "Monkey Trial " held in 1925 in

Tennessee. At that trial, the teaching of Darwin's theory of

biological evolution was attacked because it conflicted with

certain types of biblical interpretation.

On two points, one must be cautious not to romanticize the

lessons of this episode. First, while a Galileo sometimes still may
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be neglected or ridiculed, not eveiyone who feels neglected or

ridiculed is for that reason a Galileo. The person may in fact be

just wrong. Second, it has turned out that, at least for a time,

science in some form can continue to live in the most hostile

surroundings. When politicians decide what may be thought and
what may not, science will suffer like eveiything else. But it will

not necessarily be extinguished. Scientists can take comfort from

the judgment of histoiy. Less than 50 years after Galileo's trial,

Newton's great book, the Principia, appeared. Newton brilliantly

united the work of Copernicus, Kepler, and Galileo with his own
new statement of the principles of mechanics. Without Kepler

and Galileo, there probably could have been no Newton. As it

was, the work of these three, and of many others working in the

same spirit, marked the triumphant beginning of modern
science. Thus, the hard-won new laws of science and new \dews

of humanity's place in the universe were established. What
followed has been termed by historians The Age of

Enlightenment.

• 21. Which of the following appears to have contributed to

Galileo's being tried by the Inquisition?

(a) He did not believe in God.

(b) He was arrogant.

(c) He separated religious and scientific questions.

(d) He v^ote in Italian.

SG24

Palomar Observatory houses the

500-cm Hale reflecting telescope. It

is located on Palomar Mountain
in southern California.

CHAPTER 7 / A NEW UNIVERSE APPEARS 201



study
guide
1. The Project Physics learning materials

particuliirly appropriate for chapter 7 include the

following:

Experimente

The Orhit of Mars

Inclination of Mars' Orbit

The Orbit of Mercury

Actiiities

Three-Dimensional Models of Two Orbits

Demonstrating SateUite Orbits

Galileo

Conic-Section Models

Challenging Problems: Finding Earth-Siin Distance

Measuring Irregular Areas

Film Loop
Jupiter Satellite Orbit

2. How large is an error of 8 min of arc in

degrees? What fraction of the moons obsen'ed

diameter does 8 min of arc represent?

3. Summarize the steps Kepler used to determine

the orbit of the earth.

4. For the orbit positions nearest and farthest from

the sun, a planet's speeds are inversely proportioned

to the distances from the sun. What is the

percentage change between the earth's slowest speed

in July, when it is 1.02 AU from the sun, and its

greatest speed in Januarv'. when it is 0.98 AL' from

the sun?

5. Summarize the steps Kepler used to determine

the orbit of Mars.

6. In any ellipse , the sum of the distances from the

two foci to a point on the cur\'e equals the length

of the major axis, or (F, P + F,P) — 2a. This property

of ellipses allows us to draw them by using a loop

of string around two tacks at the foci. What should

the length of the looped string be?

7. Draw an ellipse by looping a siring around two

thumbtacks in a piece of paper and pulling th(' loop

taut with a pencil, if the two tacks were on the same
point, what kind of geometrical figure would \'ou

draw? As the two points arv. separated more and

more, what shapes do you draw?

8. What is the eccentricity of an ellipse if the tw o

points (foci) are 5 cm apart and the ellipse is 9 cm
long at its widest part?

9. (a) Draw an ellipse and label the following

distances: a, c, perihelion, aphelion.

(b) State the algebraic expression for c and a in

terms of the perihelion and aphelion; state the

expression for perihelion and aphelion in terms of a

and c.

(c) What is R,^ in terms of c and a? in terms of

perihelion and aphelion?

10. Kepler found that the sun is at one focus of the

ellipse that describes the orbit of a planet. What is

at the other focus?

11. In describing orbits around the sun, the point

nearest the sun is called the perihelion point, and the

point farthest from the sun is called the aphelion

point. The distances of these two points from the

sun are called the perihelion distance and the

aphelion distance, respectively. The terms perihelion

and aphelion come from the Greek, in which helios

is the sun, peri means near, and apo means away
from.

(a) List some other words in which the prefixes peri

and apo or ap have similar meanings.

(b) In describing earth satellite orbits, the terms

apogee and perigee are often used. What do they

mean?

(c) What would such points for satellites orbiting the

moon be called?
p
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12. (a) An ellipse is 5 cm from one focus at its

! farthest point and 2 cm from the same focus at its

' nearest point. Find c, a, and the eccentricity of the

ellipse.

(b) An ellipse has an eccentricity of 0.5 and a = 10

cm. What are the distances of nearest and farthest

I
approach from one of the foci?

I

(c) An ellipse is 5 cm from one of its foci at its

nearest approach and has an eccentricity' of 0.8.

. What is its greatest distance from that focus? Find c

and a for the ellipse.

13. For the planet Mercury, the perihelion distance

(closest approach to the sun) has been found to be

about 45.8 x lo'' km, and the aphelion distance

(greatest distance from the sun I about 70.0 x lo''

km. What is the eccentricity of the orbit of Mercury?

14. The eccentricity of Pluto's orbit is 0.254. What is

the ratio of the minimum orbital speed to the

maximum orbital speed of Pluto?

15. Halley's comet has a period of 76 years, and its

orbit has an eccentricity of 0.97.

(a) What is its average distance from the sun?

j'
(b) What is its greatest distance from the sun?

(' (c) What is its least distance from the sun?
t

II (d) How does its greatest speed compare udth its

least speed?

16. The mean distance of the planet Pluto from the

sun is 39.6 AU. What is the orbital period of Pluto?

17. Three major planets have been discovered since

Kepler's time. Their orbital periods and mean
distances from the sun are given in the table below.

Determine whether Kepler's law of periods holds for

these planets also.

Average Eccen-

Distance tricity

Discovery Orbital From of

Date Period Sun Orbit

Uranus 1781

Neptune 1846
Pluto 1930

84.013 yr 19.19 AU 0.047

164.783 30.07 0.009

248.420 39.52 0.249

18. Considering the data available to him, do you
think Kepler was justified in concluding that the

ratio T/Rl is a constant?

19. What is T^/Rl, for a satellite orbiting the earth if

the average orbital radius is 18,000 km and the

satellite orbits the earth every 380 min?

ao. A satellite already in orbit around a planet is put

into a new orbit whose radius is 4 times as large as

the old radius. How many times longer is the new
period than the old?

21. Using the value of T^/fi", tliat you found in

question 19, what is the average distance of a satellite

from the center of the earth if its period is 28 days?

22. Using the table of periods and orbital radii of

earth satellites on p. 120 of Chapter 4, verify that

Kepler's law of periods holds for these satellites.

23. The chart on p. 204 is reproduced from the

January, 1979, issue of Sky and Telescope.

(a) Make a sketch of how Jupiter and its satellites

appeared at one-week intervals, beginning with day
"0."

(b) Make measurements of the chart to find R^^ and

T for each satellite. (For this problem, fi
^
can be to

any convenient scale, such as centimeters on the

diagram.)

(c) Does Kepler's law of periods, T^/Rl,. = constant,

hold for Jupiter's satellites?

24. What are the current procedures by which the

public is informed of new scientific theories? Do you
think they are adequate? To what extent do news
media emphasize clashes of points of view? Bring in

some examples from news magazines.

25. Kepler discovered his three laws because he

believed that they should exist; that is, he believed

that nature exhibits simple uniformity in motion.

(a) Elxplain the hard work and courage that were

necessary for Kepler to be successful.

(b) Is it fair to say that Kepler was 'lucky" to have

studied Mars, whose orbit is the most elliptical?

(c) Discuss Kepler's reliance on the work of those

who preceded him, particularly Copernicus and
Brahe.

(d) In what ways was Kepler independent enough
not to rely completely on Copernicus and Brahe , but

to go beyond the limits of their work?
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26. List at least three ways in which Kepler's

approach to science differed from that of his

predecessors.

Z7. Kepler's laws are empirical laws. What is an

empirical law? What are its limitations? Why are

empirical laws important?

Jupiter s satellites. The four cun-
ing lines represent Jupiter's four

bright (Galilean) satellites: (!) lo, III)

Europa, (111) Ganymede, (I\0 Cal-

listo. The location of the planet's

disk is indicated by the pairs of
vertical lines. If a moon is invisible

because it is behind the disk (that

is, occulted by Jupiter), the curxe is

broken. For successive dates, the

horizontal lines mark O^ Universal

time, or 7 p.m. Eastern standard

time (or 4 p.m. Pacific standard

time) on the preceding date. Along

the vertical scale, 0.16 cm is al-

most 7 hours. In this chart, west is

to the left, as if} an iinerting tele-

scope for a northern hemisphere

observer. At the bottom, 'd" is the

point of disappearance of a satel-

lite in the shadow ofJupiter; "r" is

the point of reappearance. From
the American Ephemeris and
Nautical .\Jmanac.

bATKl-Ll'l>«S UF JUl'lTEK, IHT'J

CONKIGIIUATIONS OK SATELLITES I IV FOR NOVEMBER
UNIVRRSAI. TIME

PHASES OF THE ECLIPSES

C^
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The Unity of Earth anil Sky
The Work of lUewton

8.1 Neivton and seventeenth-centurr' science

8.2 Neivton's Principia

8.3 The inverse-square law of planetary force

8.4 Law of universal ^aiitation

8.5 Newton and hypotheses
8.6 The ma^itude of planetary force

8.7 Planetary motion and the ^avitational constant

8.8 The value of G and the actual masses of the planets

8.9 Further successes

8.10 Some effects and limitations of Neuton's ivork

8.1.
I

Neivton and seventeenth-century
science

Forty-five years passed between the death of Galileo in 1642 and

the publication of Newton's Principia in 1687. In those years,

major changes occurred in the social organization of scientific

studies. The new philosophy of experimental science, applied

with enthusiasm and imagination, produced a wealth of new
results. Scholars began to work together and organize scientific

societies in Italy, France, and England. One of the most famous,

the Royal Society of London for Improving Natural Knowledge,

was founded in 1662. Through these societies, scientific

experimenters exchanged information, debated new ideas,

argued against opponents of the new experimental activities, and

SG 1
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Isaac Newton (1642-1727)

^.T^'^-^4^//

In referring to the time period be-

tween 1500 and 1600, the forms
"1500's" and "sixteenth century"
are often used interchangeably, al-

though the latter is preferable.

published technical papers. Each society sought public support

for its work and published studies in widely read scientific

journals. Through the societies, scientific activities became well-

defined, strong, and international.

This development was part of the general cultural, political,

and economic change occurring in the sixteen! Ii and

seventeenth centuries. (See the time chart on page 207.1 Artisans

and people of wealth and leisure became in\ol\(ul in sc ientific

studies. Some sought to improve technological metliods and

products. Others found the study of nature through experiment

a new and exciting hobby. However, the availability of money and

time, the growing interest in science, and the creation of
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1642

1700 1750
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1727



Newton entered Trinity College,

Cambridge University, in 1661 at

the age of 18. He was doing experi-

ments and teaching while still a

student. This early engraving shows
the quiet student wearing a wig

and heavy academic robes, as was
customary.

This drawing of the reflecting tele-

scope he invented was done by

Newton while he was still a student.

organizations are not enough to explain the growing success of

scientific studies. This rapid growlh also depended upon able

scientists, vvell-tbiniulated piohlenis, and good experimental and

mathematical tools. Some of the important scientists who lived

between 1600 and 1750 are shown in the time chart for the Age

of Newton. The list includes amateuis as well as unixersity

professors.

Many well-formulated problems appear in the writings of

Galileo and Kepler. Theii- studies showed how useful

mathematics could be when combined with experimental

observation. Furthermore, their works raised exciting new
questions. For example, what forces act on the planets and cause

the paths actually observed? Why do objects fall as they do near

the earth's surface?

Good experimental and mathematical tools were being created.

With mathematics being applied to physics, studies in each field

stimulated development in the others. Similarly, the instiument

maker and the scientist aided each other.

Another factor of great importance was the rapid build-up of

scientific knowledge itself. From the time of Galileo, scientists

had reported repeatable experiments in books and journals.

Theories could now be tested, modified, and applied. Each study

built on those done previously.

Newlon, who lived in this new scientific age, is the central

person in this chapter. However, in science as in any other field.
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many workers made useful contributions. The structure of

science depends not only upon recognized geniuses, but also

upon many lesser-known scientists. As Lord Rutherford, one of

the founders of modern atomic theory, said:

It is not in the nature of things for any one man to make a

sudden violent discovery; science goes step by step, and every

man depends upon the work of his predecessors. . . . Scientists

are not dependent on the ideas of a single man, but on the

combined wisdom of thousands. . .

.

To tell the story properly, each scientist's debt to others who
worked previously and in the same age, and each scientist's

influence upon future scientists should be traced. Within the

space available, we can only briefly hint at these relationships.

Isaac Neuron was bor^n on Christmas Day, 1642, in the small

English vfllage of Woolsthorpe in Lincolnshire. He was a quiet

farm boy. Like young Galileo, Newton loved to build mechanical

gadgets and seemed to have a liking for mathematics. With

financial help from an uncle, he went to Trinity CoUege of

Cambridge University in 1661. There he enrofled in the study of

mathematics and was a successful student. In 1665, the Black

Plague swept through England. The college was closed, and

Newton went home to Woolsthorpe. There, by the time he was

24, he had made spectacular discoveries. In mathematics, he

developed the binomial theorem and diff'erential calculus. In

optics, he worked out a theory of colors. In mechanics, he

already had formulated a clear concept of the first two laws of

motion and the law of gravitational attraction. He also had

discovered the equation for centripetal acceleration. However^

Newton did not announce this equation untU many years after

Huygens' equivalent statement.

This period at Woolsthorpe must have been the time of the

famous and disputed fall of the apple. One version of the apple

story appears in a biography of Newton written by his friend

William Stukeley. In it we read that on a particular occasion

Stukeley was having tea udth Newton. They were sitting under

some apple trees in a garden, and Newton said that

... he was just in the same situation, as when formerly, the

notion of gravitation came into his mind. It was occasion 'd by

the fall of an apple, as he sat in a contemplative mood. Why
should that apple always descend perpendicularly to the

ground, thought he to himself. Why should it not go sideways

or upwards, but constantly to the earth's centre?

The main emphasis in this story probably should be placed on

the 'contemplative mood " and not on the apple. You have seen

this pattern before: A great puzzle (here, that of the forces acting

on planets) begins to be solved when a clear-thinking person
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contemplates a familiar event (the fall of an object on eai1h).

Where others had seen no relationship, Nevvlon did. Refening to

the plague yeais, NevMon once wrote;

I began to think of graxity extending to the oil) of the moon,
and . . . from Kepler's rule (third law, law of periods) ... I

deduced that the forces which kept the planets in their ort)s

must be reciprocally as the squares of their distances from the

centers about which they revoke: and thereby c-omijaied the

force requisite to keep tlie moon in her orb with the foi'ce of

gravity at the surface of the ecirth, and found them to answer

pretty nearly. All this was in the two plague years of 1665 and
1666, for in those days [at age 21 or 22] I was in the prime of

my age for invention, and minded mathematics and philosophy

more than at anv time since.

PHILOSOPHI.t^
' N A T U R. A [. I S

P R I N C I P I A
MATHEMATICA

Autorc JS. N ElfTON. Inn. CM. CmU. Sx. Miihifroi

ProfclTorc Lncifum, i- Socirfaiis Rrgjib Sodili.

IMPRIMATUR
P E P \ S, Kig. Soc. P R it S E S.

•J.U, 5. 1686.

L ti D I N I,

luff, Hcicljlil Kciit ac Typi« Jnfrfh SirtJUr. PioftJt apt

l-lu,, B.l.l,o|«,la^. ^,w MDCXXXW II.

Title page o/A'enton.s Piincipia

Mathematica. Because the Hoyal

Society sponsored the book, the ti-

tle page includes the name of the

Society's president, Samuel Pepys,

famous for his diary, which de-

scribes life during the seventeenth

centurx.

Soon after Newton's return to Cambridge, he was chosen to

follow his former teacher as professor of mathematics. X'evvlon

taught at the university and contributed papers to the Royal

Societv'. At first, his contributions were mainly on optics. His

Theory of Light and Colors, finally published in 1672, fired a long

and bitter controversy wdth certain other scientists. Newton, a

private and complex man, resoKed never to publish anything

more.

In 1684, Newton's devoted friend Halley, a noted astronomer,

came to ask his advice. Halley was inxolved in a controversy with

Christopher Wren and Robert Hooke about the force needed to

cause a body to move along an ellipse in accord with Kepler's

laws. This was one of the most debated and interesting scientific

problems of the time. Halley was pleasantly suiprised to learn

that Newton had already solved this problem I "and much other

matter"!. Halley then persuaded his friend to publish these

important studies. To encourage Newton, Hidley became
responsible for all the costs of publication. Less than 2 years

later, Newton had the Principia ready for the printer. Publication

of the Principia in 1687 quickly established Newton as one of the

greatest thinkers in histoiy.

Several years afterward, Newlon appears to ha\'e had a nen'ous

breakdown. He recovered, but from then until his death, 35 years

later, Newton made no major scientific discoveries. He rounded

out earlier studies on heat and optics and turned more and

mor^e to writing on theologv'. During those years, he receixed

many honors. In 1699, Newton was appointed Master of the Mint,

partly because of his gr^eat knowledge of the chemistrv' of metals.

In this position, he helped to reestablish the \alue of British

coins, in which lead and copper had been introduced in place of

silver and gold. In 1689 and 1701, Newlon represented

Cambridge University in Parliament, and he was knighted in 1705

by Queen Anne. He was president of the Royal Society from 1703

until his death in 1727. Newton is buried in Westminster Abbe\

.
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• 1. List five characteristics of the society during Newton's

lifetime that fostered scientific progress.

8.2
I

Newton's PtHncipia

The original preface to Neuron's Principia, parts of which you

have already studied, gives an outline of the book:

Since the ancients (as we are told by Pappus) esteemed the

science of mechanics of greatest importance in the investigation

of natural things, and the moderns, rejecting substantial forms

and occult qualities, liave endeavored to svibject the

phenomena of nature to the laws of mathematics, I have in this

treatise cultivated mathematics as far as it relates to philosophy

[we would say physical science) . . . for the whole burden of

philosophy seems to consist in this—from the phenomena of

motions to investigate [induce] the forces of nature, and then

from these forces to demonstrate [deduce] the other

phenomena, and to this end the general propositions in the

first and second Books are directed. In the third Book I give an

example of this in the explication of the system of the World;

for by the propositions mathematically demonstrated in the

former Books, in the third I derive from the celestial

phenomena the forces of gravity with which bodies tend to the

sun and the several planets. Then from these forces, by other

propositions which are also mathematical, I deduce the

motions of the planets, the comets, the moon, and the sea

[tides]

The work begins with the definitions of mass, momentum,
inertia, and force. Next come the three laws of motion and the

principles of addition for forces and velocities (discussed in Unit

1). Newton also included an equally important and remarkable

passage on "Rules of Reasoning in Philosophy." The four iTiles, or

assumptions, reflect Newton's profound faith in the unifomiity

of all nature. Newton intended the i^ules to guide scientists in

making hypotheses. He also wanted to make clear to the reader

his own philosophical assumptions. These rules had their roots

in ancient Greece and are still useful. The first has been called a

piinciple of pai simony, the second and third, principles of unity.

The fourth rule expresses a faith needed to use the process of

logic.

In a brief form, and using some modern language, Newton's

four rules of reasoning are:

1. "Nature does nothing ... in vain, and more is in vain when
less will serve." Nature is essentially simple. Therefore, scientists

ought not to introduce more hypotheses than are needed to

explain obseived facts. This fundamental faith of all scientists

These rules are stated by Newton at

the beginning of Book III of the

Principia.
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Notice that Newton's assumption
denies the distinction between ter-

restriiU and celestial matter.

You should restate these rules in

your ov\Ti words before going on to

the next section. lA good topic for

an essay would be whether New-
ton's rules of reasoning are appli-

cable outside of science.)

had been also expressed in Galileo's "Nature . . . does not that by

many things, which may be done by few. " Galileo in turn was
reflecting an opinion of Aristotle. Thus, the belief in simplicity

has a long histoiy.

2. "Therefore to the same natural effects wc must, as far as

possible, assign the same causes. As to respiration in a man and
in a beast; the descent of stones in Europe and in America; . .

.

the reflection of light in the earth, and in the planets.
'

3. Properties common to all bodies within reach of

experiments are assumed (imtil proved othenvise) to apply to all

bodies in general. For example, all physical objects known to

experimenters had always been found to have mass. So, by this

rule, Newton proposed that cvery^ object has mass, even those

beyond our reach in the celestial region.

4. In "experimental philosophy, ' hypotheses or generalizations

based on experience should be accepted as "accurately or veiy

nearly true, notwithstanding any contrary hvjDotheses that may
be imagined. ' Scientists must accept such hvpotheses until they

have additional exidence by which the hypotheses may be made
more accurate or revised.

The Principia is an extraordinaiy document. Its thici; main

sections contain a wealth of mathematical and physical

discoveries. Overshadowing eveiything else is the theoiy of

universal gravitation, with the proofs and arguments leading to it.

Newton used a form of argument patterned after that of Euclid.

You may have encountered this tvpe of proof in studying

geometiy. But the style of detailed geometrical steps used in the

Principia is unfamiliar today. Therefore, many of the steps

Newton used in his pioofs will be more understandable when
restated in modern terms.

The central idea of universal gr'a\dtation can be simply stated:

Every object in the universe attracts every other object. Moreover,

the amount of attr action depends in a simple way on the masses

of the objects and the distance between them.

This was Newton's great synthesis, boldly combining terrestrial

laws of for^ce and motion with astronomical laws of motion.

Gravitation is a universal forxe. It applies to the earth and apples,

to the sun and planets, and to all other bodies (such as comets)

moving in the solar- system. Heaven and earth wer'e united in one

grand system dominated by the law of universal gravitation. The

general astonishment and awe were reflected in the w(M'ds of the

English poet Alexander" Pope:

Nature and Naluie's laws ia\' hid in iiiglir:

God said, Let Newton bel and all wa.s ligiit.

The Principia, written in Latin, was lilled w ith long geometrical

arguments and was diflicirlt to read. Ila|ipilv, sineral giftt^d

writer's wr'ote summaries that allowed a wide* ( ircic of icadiMs to
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learn of Newton's arguments and conclusions. One of the most

popular of these books was published in 1736 by the French

philosopher and reformer Voltaire.

Readers of these books must have been excited and perhaps

puzzled by the new approach and assumptions. For 2,000 years,

ft om the time of the ancient Greeks until w^ell after Copernicus,

the ideas of natural place and natural motion had been used to

explain the general position and movements of the planets. From
the time of the Greeks, scholars had widely believed that the

planets' orbits w^ere their "natural motion. " However, to Neuron
the natural motion of a body was at a uniform rate along a

straight line. Motion in a curve showed that a net force was
continuously accelerating the planets away from their natural

straight-line motion. Yet the force acting on the planets was
entirely natural and acted between all bodies in heaven and on
earth. Furthemiore, it w^as the same force that caused bodies on

the earth to fall. What a reversal of the old assumptions about

what was "natural "I

2. Explain Newton's concept of the "whole burden of

philosophy, " that is, the job of the scientist.

3. In your own words, state Newton's four rules of reasoning

and give an example of each.

4. State, in your own words, the central idea of universal

gravitation.

5. How did Newton differfrom Aristotle, who believed that the

rules of motion on earth are different from the rules of motion

in the heavens?

8.3
I

The inverse-square lan^ of planetary force

Newton believed that the natural straight-line path of a planet

was forced into a curve by the influence of the sun. He
demonstrated that Kepler's law of areas could be true if, and
only if, forces exerted on the planets were always directed

toward a single point. (Details of his argument for this "central"

force are given on the special pages entitled "Motion under a

central force. ") New1:on also showed that the single point was the

location of the sun. The law of areas is obeyed no matter what
magnitude the force has, as long as the force is always directed

to the same point. Newton still had to show that a central

gravitational force would cause the exact relationship observed

between orbital radius and period. How great was the

gravitational force and how did it differ for different planets?
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The combination of Kepler's laws with Newton's laws provides

a fine example of the |)owei' of logical reasoning. Compare these

laws:

Newton's Laws Kepler's Laws
1. A body continues in a state 1. The planets move in orbits

of rest, or of uniform motion that are ellipses and have the

in a straight line, unless acted sun at one focus,

upon by a net force Haw of 2. The line from the sun to a

inertia). planet sweeps oxer areas that

Z. The net force acting on an are proportional to the time

object is directly proportional intervals.

to and in the same direction as 3. The squares of the periods

the acceleration. of the planets are proportional

3. To every action there is an to the cubes of their mean
equal and opposite reaction. distances ft'om the sun iT^ =

kHl).

According to Newton's first law, a change in motion, either in

direction or in magnitude Ispeedl, r'equires the action of a net

force. According to Kepler , the planets move in orbits that are

ellipses, that is, curved oi'bits. Thei'efore, a net for'ce must be

acting to change their motion. Notice that this conclusion does

not specify the type or direction of the net for ce.

Combining Newlon's second law with the first two laws of

Kepler clarifies the direction of the force. According to Newlon's

second law, the net force is exerted in the direction of the

observed acceleration. What is the dir^ection of the for^ce acting

on the planets? Neu'ton employed the geometrical analysis

described on pages 218-219, "Motion under* a central force.

"

Newton's analysis indicated that a body moving under a

centr'al for-ce will, when viewed from the center* of the force,

move according to Kepler's law of areas. Kepler's law of areas

relates to the distance of the planets fr'om the sun. Ther^efore,

Newton could conclude that the sun at one focus of each ellipse

was the source of the central force acting on the planets.

Newton then found that motion in an elliptical path would
occur only when the central force was an inverse-square force, F
oc 1/R^. Thus, only an inverse-square force exerted by the sun

would r'esult in the observed ellipitcal orbits described by Kepler.

Newton then pr^oved the argument by showing that such a for'ce

law would also r-esult in Kepler's third law, the law of periods,

T" = kR^.

From this analysis, Newton concluded that one general law of

universal gravitation applied to all bodies moving in the solar

system. This is the centr'al argument of Newlon's gr-eat synthesis.

Consider the motions of the sl\ then-known planets in terms

of their centripetal acceleration toward the sun. By Newton's

proof, mentioned above, this acceler^ation decr'eases inversely as

ai4 UNIT 2 / MOTION IN THE HEAVTINS



the square of the planets' average distances from the sun. The

proof for circular orhits is very short. The expression for

centripetal acceleration a^ of a body moving uniformly in a

circular path, in temis of the radius H and the period T, is

a = ——

(This expression was derived in Chapter 4.) Kepler's law of

periods stated a definite relation between the orbital periods of

the planets and their average distances from the sun:

—- = constant

Using the symbol k for constant,

T" = kR'
av

For circular orbits, fi,^ is just R. Substituting kR^ for T' in the

centripetal force equation gives

4'n'R 4iT'
a =

Since 4tt7/c is a constant,

kR' kK

1
a ot —

7

' R~

This conclusion follows necessarily from Kepler's law of periods

and the definition of acceleration. If Newton's second law, F ^

a, holds for planets as well as for bodies on earth, then there

must be a centripetal force F^ acting on a planet. Furthermore,

this force must decrease in proportion to the square of the

distance of the planet fiom the sun:

1
p cc

Newton showed that the same result holds for all ellipses.

Indeed, it holds for any object moving in an orbit around a

center of force. [The possible orbital shapes are circle, ellipse,

parabola, or hyperbola. These shapes are all conic sections (see

page 188)]. Any such object is being acted upon by a centripetal
j^^ Newton's time, four of Jupiter's

force that varies inversely with the square of the distance from satellites and four of Saturn's sat-

Ihe center of force. ellites had been observed.

Newton had still more evidence from telescopic observ^ations of

Jupiter's satellites and Saturn's satellites. The satellites of each SG 6

planet obeyed Kepler's law of areas around the planet as a

center. For Jupiter's satellites, Kepler's law of periods, T~/R^ —

constant, held. But the value of the constant was different from
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that for the planets around the sun. The law held also for

Saturn's satellites, but vvdth still a different constant. Therefore,

Jupiter's satellites were acted on by a central force directed

toward Jupiter and decreasing with the square of the distance

fi'om Jupiter. The same held true for Saturn's satellites and

Saturn. These observed interactions of astronomical bodies

supported Newton's proposed 1/R' central attractive force.

• 6. What can be provedfrom the fact that the planets sweep
out equal areas with respect to the sun in equal times?

7. With what relationship can T"/R^^ = constant be combined

to prove that the gravitational attraction varies as l/R'?

8. What simplijying assumption was made in the derivation

given in this section?

9. Did Newton limit his own derivation by the same
assumption?

10. If two objects are moved twice as far awayfrom one

another, by how much is the gravitational force between them

decreased? if they are moved three times as far? five times as

far? By how much is the gravitational force increased if the

objects are moved together to one-fourth their original

separation?

11. The moon is 60 times fartherfrom the center of the earth

than objects at the earth's surface. How much less is the

gravitational attraction of the earth acting on the moon than

on objects at its surface? E;<.press this value as a fraction of 9.8

m/sec^.

3•4:
I

Laiv of universal gravitation

Subject to further evidence, you can now accept the idea that a

central force is holding the planets in their orbits. Furthermore,

the strength of this central force changes inversely with the

square of the distance from the sun. This strongly suggests that

the sun is the source of the force but it does not necessarily

require this conclusion. Newton's results so far describe the force

in mathematical terms but do not provide any mechanism for

its transmission.

SG 7 The French philosopher Descartes (1596-16501 had proposed

that all space was filled with a thin, invisible fluid. This fluid

carried the planets around the sun in a huge whirlpool-like

motion. This interesting idea was widely accepted at the time.

However, Newton proved by a precise argument that this

mechanism could not explain the details of planetary motion

summarized in Kepler's laws.
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Kepler had made a different suggestion some years earlier. He

proposed that some magnetic force reached out from the sun

to keep the planets moving. Kepler was the first to regard the

sun as the controlling mechanical agent behind planetary

motion. But Kepler's magnetic model was inadequate. The

problem remained: Was the sun actually the source of the force?

If so, on what properties of the sun or planets did the amount

of the force depend?

As you read in Sec. 8.1, Newton had begun to think about

planetary force while living at home during the Black Plague.

There an idea came to him, perhaps when he saw an apple fall,

and perhaps not. Newton's idea was that the planetary force was

the same kind of force that caused objects near the earth's

surface to fall. He first tested this idea on the earth's attraction

for the moon. The data available to him fixed the distance

between the center of the earth and the center of the moon at

nearly 60 times the radius of the earth. Newton believed that the

attractive force varies as 1/R^. Therefore, the gravitational

acceleration the earth exerts on the moon should be only 1/(60)^

= 1/3,600 of that exerted upon objects at the earth's surface.

Observations of falling bodies had long established gravitational

acceleration at the earth's surface as about 9.80 m/sec/sec.

Therefore, the moon should fall at 1/3,600 of that acceleration

value: 9.80 m/sec' x (1/3,600) = 2.72 x 10"' m/sec'.

Newton started from the knowledge that the orbital period of

the moon was very nearly 27.33 days. The centripetal

acceleration a,, of a body moving uniformly with period T in a

circle of radius R is a^. = 47t"/J/7^. (This equation was developed

in Sec. 4.6, Unit 1.) When you insert values for the known
quantities R and T (in meters and seconds) and do the

arithmetic, you find that the observed acceleration is

To you, who have heard about grav-

ity from your earliest years, this

may not seem to have been a par-

ticularly clever idea. But in New-
ton's time, after centuries of believ-

ing celestial events to be completely

different from earthly events, it was
the mental leap of a genius. Newton
had already assumed the planets to

be subject to the earth's laws of

motion when he derived a 1/fl"

force law using the formula for a^.

It was a stm greater step to guess
that the force on planets was not

some special celestial force, but
nothing other than the earth's grav-

itational pull, which gave apples
and everything else on earth their

weight.

a^ = 2.74 X 10 m/sec"

This is in very good agreement with the value of 2.72 x 10"'

m/sec^ predicted above. From the values available to Newton,

which were close to these, he concluded that he had

. . . compared the force requisite to keep the moon in her orbit

with the force of gravity at the surface of the earth, and found
them to answer pretty nearly.

Therefore, the force by which the moon is retained in its

orbit becomes, at the very surface of the earth, equal to the

force of gravity which we observe in heavy bodies there. And,

therefore, (by rules of reasoning 1 and 2) the force by which the

moon is retained in its orbit is that very same force which we
commonly call gravity. . .

.

This was really a triumph. The same gravity that brings apples

down from trees also holds the moon in its orbit. This assertion
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Close UpI
Motion under o Centrol Force

How will a moving body respond to a central

force? In order to follow Newton's analysis, remem-

ber that the area of a triangle equals V2 base x

altitude. Any of the three sides can be chosen as

the base, and the altitude is the perpendicular dis-

tance to the opposite corner.

Suppose that a body passing some point P, was
moving at uniform speed v along the straight line

through PQ. (See Figure A below.) If it goes on with

no force acting, then in equal intervals of time It it

will continue to move equal distances, PQ, QR, RS,

etc.

(A^

How will its motion appear to an observer at some
point O? Consider the triangles OPQ and OQR in

Figure B below.

So, strange as it may seem at first, Kepler's law

of areas applies even to a body on which the net

force has the value zero and which therefore is

moving uniformly along a straight line.

Suppose that the object discussed in Figure A,

while passing through point Q, is briefly exposed to

a force, such as a blow. If this force is directed

toward point O, how will the object's motion change?

(Refer to Figure D below.)

The triangles have equal bases, PQ = QR =

RS, and also equal altitudes, ON, for all three.

Therefore, the triangles OPQ and OQR have equal

areas. And therefore the line drawn from an ob-

server at point to the body moving at a uniform

speed in a straight line PQR will sweep over equal

areas in eaual times.

o (0)

First, consider what happens if a body initially at

rest at point Q were exposed to the same blow. The

body would be accelerated during the blow toward

O. It would then continue to move toward O at con-

stant speed. After some definite time interval It, it

would have moved a definite distance to a new point

Q'. (See Figure E on the next page.)
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Now, consider the effect of the blow on the object

that was initially moving toward point R. The re-

sultant motion is the combination of these two com-

ponents, and the object moves to point R'. (See

Figure F below.)

Earlier we found that the areas of the triangles

OPQ and OQR were equal. Is the area of the tri-

angle OQR' the same? Both triangles OQR and

OQR' have a common base, OQ. Also, the altitudes

of both triangles are the perpendicular distance from

line OQ to line RR'. (See Figure G.) Therefore, the

areas of triangles OQR and OQR' are equal.

If another blow directed toward O were applied

at point R', the body would move to some point S",

(G)

as indicated in Figure H below. By a similar analysis

you can find that the areas of triangles OR'S" and

OR'S' are equal. Their areas also equal the area

of triangle OPQ.

o (H)

In this geometrical argument we have always ap-

plied the force toward the same point, O. A force

always directed toward a single point is called a

central force. (Notice that the proof has nothing to

do with the magnitude of the force or with how it

changes with distance from O.) Also, we have ap-

plied the force at equal intervals At. If each time

interval Af were made vanishingly small, the force

would appear to be applied continuously. The ar-

gument would still hold. We then have an important

conclusion: If a body is acted upon by any central

force, it will move in accordance with Kepler's law

of areas.
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The sun, moon, and earth each pull

on the other. The forces are in

matched pairs, in agreement with

Newton's third law of motion. As
the moon moves through space,

the gravitational attraction of the

earth causes the moon to fall"

toward the earth. The continuous

combination of its straight-line in-

ertial motion and its fall' pro-

duces the curved orbit.

is the first portion of what is knovvTi as {he law of iinixersal

gravitation: Every object in the universe attracts every other object

with a gravitational force. If this is so, there must be gravitational

forces not only between a lock and the earth, but also between

the earth and the moon, between Jupiter and its satellites, and
between the sun and each of the planets.

Newton did not stop at saying that a gravitational force exists

between the planets and the sun. He further claimed that the

force is exactly the right size to explain completely the motion of

every planet. No other mechanism iwhirlpools of imisible fluids

or magnetic forces! is needed. Gravitation, and gravitation alone,

underiies the dynamics of the heavens.

This concept is so commonplace that you might be in danger

of passing it by without really understanding what Newton was

claiming. First, he proposed a truly universal physical law.

Following his rules of reasoning, Newton extended to the whole

universe what he found tiue for its observable parts. He excluded

no object in the universe ftom the effect of gravity.

The idea that terrestrial laws and forces were the same as

those that regulated the whole universe had stunning impact.

Less than a centuiy before, it would have been dangerous even

to suggest such a thing. Kepler and Galileo had laid the

foundation for combining the physics of the heavens and earth.

Newton carried this work to its conclusion. Today, Newton s

extension of the mechanics of terrestrial objects to the motion of

celestial bodies is called the Newtonian synthesis.

Newton's claim that a planet's orbit is detemiined by the

gravitational attraction between it and the sun had another

effect. It moved science away from geometrical explanations and
towards physical ones. Most philosophers and scientists before

Newton had been occupied mainly with the question 'What are

the motions? " Nev\ton asked instead "What force explains the

motions?' In both the Ptolemaic and Copernican systems, the

planets moved about points in space rather than about objects.

The planets moved as they did because of their "nature " or

geometrical shape, not because forces acted on them. Newton,

on the other hand, spoke not of points, but of things, of objects,

of physical bodies. Unless the gravitational attraction to the sun

deflected them continuously from straight-line paths, the planets

would fly out into the darkness of deep space. Thus, it was the

physical sun that was important, not the point at which the sun

happened to be located.

Newton's synthesis centered on the idea of gravitational force.

By calling it a force of gravity, Nevvt(Hi knew that he was not

explaining why it existed. When you hold a stone above the

surface of the earth and release it, it accelerates to the ground.

The laws of motion tell you that there must be a force acting on

the stone to accelerate it. You know the direction of the force.
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/ / / / A drawing by which Descartes
' '/ (1596-1650) illustrated his theory of

space being filled with whirlpools

jf matter that drive the planets

along their orbits.

You can find the magnitude of thie force by multiplying the mass

of the stone by the acceleration. You know that this force is

weight, or gravitational attraction to the earth. But why such an

interaction between bodies exists remains a puzzle. It is still an

important problem in physics today.

12. What idea came to Newton while he was thinking about

filling objects and the moon's acceleration?

13. Kepler, too, believed that the sun e?certed forces on the

planets. How did his view differfrom Newton's?

14. The central idea of Chapter 8 is the "Newtonian synthesis."

What did Newton synthesize (bring together)?

3»S
I

Neivton and hypotheses

Newton's claim that there is a mutual force (gravitational

interaction) between a planet and the sun raised a new question:
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How can a planet and the sun act upon each other at enormous
distances without any \asible connections between them? On
earth you can exert a force on an object by pushing it or pulling

it. You are not surprised to see a cloud or a balloon drifting

across the sky, even though nothing seems to be touching it. Air

is inxisible, but you know that it is actually a material substance

that you can feel when it moves. Falling objects and iron objects

being attracted to a magnet are harder to explain, but the

distances are small. However', the earth is over 144 million

kilometers, and Saturn more than 1 billion kilometers, from the

sun. How could there possibly be any physical contact between

such distant objects? How can we account for such "action at

a distance"?

In Newton's time and for a long time afterwarxl, scholar's

advanced suggestions for solving this problem. Most solutions

involved imagining space to be filled with some invisible

substance (an "ether") that transmitted for^ce. Newton himself

piixately guessed that such an ether was involved. But he could

find no way to test this belief. Therefor e, at least in public, he

refused to speculate on possible mechanisms. As Neuron said in

a famous passage which he added in the second edition of the

Principia (17131:

. . . Hitherto I have not been able to discover the cause of those

properties of gia\ity from phenomena, and I frame no

hypotheses; for whatever is not deduced from [he phenomena
is to be called an hvpothesis; and hypotlieses, whether

metaphysical or physical, whether of occult qualities or

mechanical, have no place in experimental philosophy. . . . And
to us it is enough that gravity does really exist, and acts

according to tlie laws which we have explained, and

abundantly serves to account for- all the motions of the celestial

bodies, and of our sea.

Newton is quoted at length here because one particular phrase

is often taken out of context and misinterpreted. I'he original

Latin reads: hypotheses nonfingo. This means "I ftame no

hypotheses " or "I do not feign hypotheses." The sense is, "I do

not make false hypotheses." Newton in fact made many
hypotheses in his publications. Also, his letters to friends contain

many speculations which he did not publish. So his stern denial

of "framing" hypotheses must be properly interpreted.

The fact is that there are two main kinds of hypotheses or

assumptions. The most common hypothesis is a pr'oposal of

some hidden mechanism to explain observations. For- example,

you observe the moving hands of a watch. You might propose or

imagine some arrangement of gears and springs that cairses the

motion. This would be a hypothesis that is directly or indirectly

testable, at least in principle, by reference to phenomena. The
hypothesis about the watch, for example, can be tested h\
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opening the watch or by making an X-ray photograph of it. In

this context, consider an invisible fluid that transmitted

gravitational force, the so-called "ether." Newton and others

thought that certain direct tests might establish the presence of

this substance. Many experimenters tried to "catch" the ether.

A common approach involved pumping the air from a bottle.

Then tests were made to see if any wind, pressure, or ftiction

due to the ether remained to affect objects in the bottle. Nothing

of this sort worked (nor has it since). So Newton wisely avoided

making public any hypothesis for which he could not also

propose a test.

A quite different type of assumption is often made in

published scientific work. It involves a hypothesis which

everyone knows is not directly testable, but which still is

necessaryyusf to get started on one's work. An example is such a

statement as "nature is simple" or any other of Newton's four

rules of reasoning. Acceptance of either the heliocentric system

or the geocentric system is another example. In choosing the

heliocentric system, Copernicus, Kepler, and Galileo made the

hypothesis that the sun is at the center of the universe. They

knew that this hypothesis was not directly testable and that

either system seemed to explain "the phenomena" equally well.

Yet they adopted the point of view that seemed to them simpler,

more convincing, and more "pleasing to the mind. ' It was this

kind of hypothesis that Newton used vvdthout apology in his

published work. Every scientist's work involves both kinds of

hypothesis. The popular image of the scientist is of a person who
uses only deliberate, logical, objective thoughts, and immediately

tests them by definitive experiments. But, in fact, the working

scientist feels quite tree to entertain any guess, imaginative

speculation, or hunch, provable or not, that might be helpfiil.

(Sometimes these hunches are dignified by the phrase "working

hypotheses. " Without them there would be little progress!) Like

Newton, however, most scientists today do not like to publish

something that is still only an unproven hunch.

# 15. Did Newton explain the gravitational attraction of all

bodies?

16. What was the popular type of explanation for "action at a

distance "? Why did Newton not use this type of explanation?

17. What are two main types of hypotheses used in science?

18. Newton's claim to "frame no hypotheses" seems to refer to

hypotheses that cannot be tested. Which of the following

claims are not testable?

(a) Plants need sunlight to grow, even on other planets.

Stephen W. Hawking, an astrophysi-

cist at Cambridge University, is

considered by many scientists to

be the equal ofNewton and Ein-

stein. 'Professor Hawking is search-

ing for a quantum theory ofgravi-

tation by studying the phenomena
associated with black holes. The
achievement of such a theory

would be the last step in the theo-

retical unification of all the forces
in the universe.

CHAPTER 8 / THE UNITY OF EARTH AND SKY 223



The gravitational force on a planet

owing to the sun s pull is equal and
opposite to the gravitational force

on the sun owing to the planet.

(b) This bandage is guaranteed to be free from germs unless

the package is opened.

(c) Virtual particles e^ist for a time that is too short for them
to affect anything.

(d) Life exists in the distant galas^ies.

(e) The earth really does not move, since you wouldfeel the

motion if it did.

(f) Universal gravitation holds between every pair of objects in

the universe.

8.6
I

The magnitude of planetari' force

The general statement that gravitational forces exist universally

must now be turned into a quantitative law. An expression is

needed for both the magnitude and direction of the forces any

two objects exert on e ich other. It was not enough for Newlon to

asseit that a mutual gravitational attraction exists between the

sun and Jupiter. To be convincing, he had to specify what

quantitative factors determine the magnitudes of those mutual

forces. He had to show how they could be measured, either

directly or indirectly.

The first problem was defining precisely the distance R. Should

it, for example, be taken as the distance between the surface of

the earth and the surface of the moon? For many astronomical

problems, the sizes of the interacting bodies are extremely small

compared to the distances between them. In such cases,

the distance between the surfaces is practically the same as the

distance between the centers. (For the earth and the moon,

the distance between centers is only about 2% greater than the

distance between surfaces.) Yet, some historians believe Newton's

uncertainty' about a proper answer to this problem led him to

drop the study for many years.

Eventually, Neuron solved the problem. The gravitational force

exerted by a spherical body is the same as if all its mass were

concentrated at its center. The gravitational force exerted on a

spherical body by another body is the same as would be exerted

on it if all its mass were concentrated at its center. Therefore, the

distance R in the law of gravitation is the distance between

centers.

This was a very important discovery. The gravitational

attraction between spherical bodies can be considered as though

their masses were concentrated at single points. Thus, in

thought, the objects can be replaced by mass points.

Newton's third law states that action equals reaction. If tiiis is

universally true, the amount of force the sun exerts on a planet

must exactly equal the amount of force the planet exerts on the

sun. For such a veiy large mass and suc'h a relatively small mass,
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this may seem contrary to common sense. But the equality is

easy to prove. First, assume only that Newton's third law holds

between small pieces of matter. For example, a 1-kg piece of

Jupiter pulls on a 1-kg piece of the sun as much as it is pulled by

it. Now consider the total attraction between Jupiter and the sun,

whose mass is about 1,000 times greater than Jupiter's. As the

figure in the right margin indicates, you can consider the sun as

a globe containing 1,000 Jupiters. Define one unit of force as the

force that two Jupiter-sized masses exert on each other when
separated by the distance of Jupiter from the sun. Then Jupiter

pulls on the sun (a globe of 1,000 Jupiters) with a total force of

1,000 units. Each of the 1,000 parts of the sun cdso pulls on the

planet Jupiter with 1 unit. Therefore, the total pull of the sun on

Jupiter is also 1,000 units. Each part of the massive sun not only

pulls on the planet, but is also pulled upon by the planet. The

more mass there is to attract, the more there is to be attracted.

(Although the mutual attractive forces are equal in magnitude,

the resulting accelerations are not. Jupiter pulls on the sun as

hard as the sun pulls on Jupiter, but the sun responds to the

pull with only 1/1,000 of the acceleration, because its inertia is

1,000 times Jupiter's.)

Sec. 3.8 of Unit 1 explained why bodies of different mass fall

wdth the same acceleration near the earth's surface. The greater

the inertia of a body, the more strongly it is acted upon by

gravity; that is, near the earth's surface, the gravitational force on

a body is directly proportional to its mass. Like Nevvl^on, extend

this earthly effect to all gravitation. You then can assume that the

gravitational force exerted on a planet by the sun is proportional

to the mass of the planet. Similarly, the gravitational force

exerted on the sun by the planet is proportional to the mass of

the sun. You have just seen that the forces the sun and planet

exert on each other are equal in magnitude. It follows that the

magnitude of the gravitational force is proportional to the mass

of the sun and to the mass of the planet; that is, the gravitational

attraction between two bodies is proportional to the product of

their masses. If the mass of either body is tripled, the force is

tripled. If the masses of both bodies are tripled, the force is

increased by a factor of 9. Using the symbol F for the

magnitude of the forces, F^,,, oc m^,,,,,,., m,,„.

The conclusion is that the amount of attraction between the

sun and a planet is proportional to the product of their masses.

Earlier you saw that the attraction also depends on the square

of the distance between the centers of the bodies. Combining

these two proportionalities gives one force law, which now
includes mass and distance:

lOOO Jupiter-s

Juipiter puds on \ooO

pa-rts o'^ -the- sun

\000 pArt^ of t^ie eon

pull on Jupit-er

tflttttlll
O

Jupite-r"

SG 8

SG 9

m
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Such a propoi-tionaliU' can be mitten as an equation by

intixjclucing a constant. iThe constant allows for the units of

measurement used.) Using G for the proportionality constant, the

law of planetary forces can be wiitten as

P p. planet sun

grav - ^2

This equation asserts that the force between the sun and any

planet depends only upon three factors. These factors are the

masses of the sun and planet and the distance between them.

The equation seems unbelievably simple when you remember
how complex the observed planetary motions seemed. Yet every

one of Kepler's empirical laws of planetarv motion agrees with

this relation. In fact, you can even derive Kepler's empirical laws

from this force law and Neuron's second law of motion. More
important still, details of planetaiy motion not obtainable with

Kepler's laws alone can be calculated using this force law.

Newton's proposal that this simple equation describes

completely the forces between the sun and planets was not the

final step. He saw nothing to limit this mutual force to the sun

and planets, or to the earth and apples. Rather, Newton insisted

that an identical relation should apply universally. This relation

would hold tnje for any tv^o bodies separated by a distance that

is large compared to their dimensions. It would apply equally

to two atoms or two stars. In short, Newton proposed a general

law of universal gravitation:

SG 10 F ^ G \

where m, and m_, are the masses of the bodies and Fi is the

distance between their centers. The numerical constant G is

called the constant of universal gravitation. Newton assumed it to

be the same for all gravitational interactions, whether between

two grains of sand, two members of a solar system, or two stars

in different parts of the sky. As you udll see, the successes made
possible by this simple relationship have been veiy great. In fact,

scientists have come to assume that this equation applies

everywhere and at all times, past, present, and future.

Even before you gather more supporting exidence, the

sweeping majesty of Neuron's theory should command your

wonder and admiration. It also leads to the question of how
such a bold universal theory can be pr'oved. Ther-e is no

complete proof, of course, for that would mean examining every

interaction between all bodies in the universe! But the greater

the \'ar iet>' of single tests made, the greater will be the belief in

the coriectness of the theory.
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# 19. According to Newton's law of action and reaction, the

earth should experience a force and accelerate toward a falling

stone.

(a) How does the force on the earth compare with the force on

the stone?

(b) How does the earth s acceleration compare with the

stone's acceleration?

20. Diagram A at the right represents two bodies of equal

mass that e?cert gravitational forces of magnitude F on one

another. What is the magnitude of the gravitational attractions

in each of the other cases?

21. A, B, C, and D are bodies with equal masses. How do the

forces of attraction that A and B e^ert on each other compare

with the forces that C and D e;<ert on each other?

(a) F^ = 3 X F,,„

(b) F^ = 4 X F,„

(c) F^ - 9 X F,„

(d) ¥,, = 16 X F,„

22. Why is it a great simplification to use the distance between

the centers of spherical objects in the formula for gravitational

force? How is the use of the distance between centers

justified? What does it mean to say that the law ofgravitation

is important because it is simple?

(a)i 9^ -^ <
^

ih) •? 7%

)

j ._ _

(d)i Jv '/•,

Ai m
\

i
;

I

I

8*7 Planetary motion and the
^avitational constant

Suppose that a planet of mass m^^ is moving along an orbit of

radius R and period T. According to Newton's mechanics, there

is a continual centripetal acceleration a^ = 4'n~R/T^. Therefore,

there must be a continual force F^

gravity is the central force, then

F = F
grav c

m^a^ = 4'^^fimp/T^ If

or

m^/n^ 4iT~Hm^

Simplifying this equation and rearranging some terms gives an

expression for G:

G -
477" B

m T
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This photograph, of the surface of
the moon, shows some latter-dav

evidence that the laws of mechan-
ics for heavenly bodies are at least

similar to those applying on earth.

The trails of tixo huge boulders

that rolled about 300 m down a lu-

nar slope are shown.
>i

You know from Kepler that for the planets' motion around the

sun, the ratio Fi^/l^ is a constant; 4it~ is a constant also. If the

mass of the sun is assumed to be constant, then all factors on

the right of the equation for G are constant. So G must be a

constant for the gravitational effect of the sun on the planets. By

similar reasoning, the value of G must be a constant for the effect

of Jupiter on its moons. It must also be a constant for Saturn and

its moons, for earth and its moon, and for an apple falling to the

earth. But is it the same value of G for all these cases?

It is impossible to prove that G is the same for the gravitational

interaction oi all bodies. But by assuming that G is a universal

constant, the relative masses of the sun and the planets can be

obtained.

Begin by again equating the centripetal force on the planets

with the gravitational attraction to the sun. This time solve the

equation for m^^^,^:

F = Fgrav c

477 flm^

m 47T^

gt'

Writing A:^^„, for the constant ratio 7 7fi^ gives

4lT~
m -

Gk

By similar derivation,

4tt' 47r'

•Jupitr Gk
-' "1s.„.„n

lup
Gk

4it'
m.

Gk
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Here k^^^,,^^, k^ and fcgg,^^ are the known values of the constant

ratios T^/R^ for the satellites of Jupiter, Saturn, and the earth.

To compare Jupiter's mass to the mass of the sun, simply

divide the formula for mj^pj,^^ by the formula for m^^^:

4tt'

mJupiter
GkJupiter

m
m. 477^

Gk~.

or
Jupiter

m„ Jupiter

Similarly, you can compare the masses of any tu^o planets if you

know the values of T^/R^ for them both; that is, both must have

satellites whose motion has been carefully observed.

These comparisons are based on the assumption that G is a

universal constant. Calculations based on this assumption have

led to consistent results for a vvdde variety of astronomical data.

One example is the successful orbiting and landing of a space

vehicle on the moon. Results consistent with this assumption

also appeared in difficult calculations of the small disturbing

effects that the planets have on each other. There is still no way
of proving G is the same everywhere and always. But it is a

reasonable working assumption until evidence to the contrary

appears.

If the numerical value of G were known, the actual masses of

the earth, Jupiter, Saturn, and the sun could be calculated. G is

defined by the equation Fg,^^ = Gmjm//?^ . To find the value of G,

you must know values for all the other variables; that is, you
must measure the force F^^^^ between two measured masses m^
and m^, separated by a measured distance R. Newton knew this.

In his time there were no instruments sensitive enough to

measure the very tiny force expected between masses small

enough for experimental use.

Masses Compared to Earth
Earth 1

Saturn 95

Jupiter 318

Sun 333,000

• 23. What information can be used to compare the masses of
two planets?

24. What additional information is necessaryfor calculation of

the actual masses?

8.8
I

The value of G and the actual masses
of the planets

The masses of small solid objects can be found easily enough
from their weights. Measuring the distance between solid objects

of spherical shape presents no problem. But how can one

measure the tiny mutual gravitational force between relatively

Calculation of G from approximate
experimental values:

Mm
F = G-^

grav ^2

G =
F„,. R'

Mm

do' N) (0.1 m)'

(100 kg) (1 kg)

10"'' X 10

10'
N = mVkg^

= 10""'Nm'/kg'
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N • mVkg'' can be expressed as

mVkg • sec".

SG 14-19

Actual Masses (in



of nine small ellipses. Such motion might be important in a solar

system in which the planets were very heavy compared to their

sun. In our solar system, it is not large enough to be of interest

for most purposes.

Z5. Which of the quantities in the equation F^^^^ = Gm^ m/R"
did Cavendish measure.^

26. Knowing a value for G, what other information can be used

to find the mass of the earth?

27. Knowing a value for G, what other information can be used

to find the mass ofSaturn?

28. The mass of the sun is about 1,000 times the mass of

Jupiter. How does the sun's acceleration due to Jupiter's

attraction compare with Jupiter's acceleration due to the sun's

attraction?

8.9
I

Further successes

Newton did not stop udth the fairly direct demonstrations

described so far. In the Principia, he showed that his law of

universal gravitation could explain other complicated

gravitational interactions. Among these were the tides of the sea

and the peculiar drift of comets across the sky.

The tides: Knowledge of the tides had been vital to navigators,

traders, and explorers through the ages. The cause of the tides

had remained a mystery despite the studies of such scientists as

Galileo. However, by applying the law of gravitation, Neuron was

Schematic diagram of the device

used by Cavendish for determining

the value of the gravitational con-

stant G. Large lead balls of masses
M| and M, were brought close to

small lead balls of masses m^ and
m,. The mutual gravitational at-

traction between M^ and m^ and
between M^ and m^ caused the ver-

tical wire to be twisted by a meas-
urable amount.

Right:

Cavendish s original drawing of his

apparatus for determining the

value ofG. To prevent disturbance

from air currents, he enclosed it

in a sealed case. Cavendish ob-

served the deflection of the balance

rod from outside with telescopes.

SG 23
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Moon (^-j X

Tidal forces. The earth-moon dis-

tance indicated in the figure is

greatly reduced because cfthe
space limitations.

able to explain the main features of the ocean tides. He found

them to result from the attraction of the moon and the sun upon
the waters of the earth. As you can calculate in SG 16, the

moon's tide-raising force is greater than the sun s. Each day, two

high tides normally occur. Also, twice each month, the moon,
sun, and earth are in line with each other. At these times the

tidal changes are greater than average.

Two questions about tidal phenomena demand special

attention. First, why do high tides occur on both sides of the

earth, including the side away from the moon? Second, w^hy does

high tide occur at a given location some hours after the moon
is highest in the skv'?

Newton knew that the gravitational attractions of the moon
and sun accelerate the whole solid earth. These forces also

accelerate the fluid water at the earth s surface. Neulon retdized

that the tides result from the difference in acceleration of the

earth £ind its waters. The moon's distance from the earth's center

is 60 earth radii. On the side of the earth necirer the moon, the

distance of the water from the moon is only 59 radii. On the side

of the earth away from the moon, the water is 61 earth radii from

the moon. The accelerations are shown in the figure at the left.

On the side nearer the moon, the acceleration of the water

toward the moon is greater than the acceleration of the etirth as

a whole. The net effect is that the water is accelerated away from

the earth. On the side of the earth away from the moon, the

acceleration of the water toward the moon is less than that of

the earth as a whole. The net result is that the earth is

accelerated away from the water there.

Perhaps you have watched the tides change at the seashore or

examined tide tables. If so, you know that high tide occurs some
hoars after the moon is highest in the sky. To understand this,

ex'en qualitatively, you must remember that on the whole the

ocefins cire not ver^' deep. The ocean waters mo\ing in from

more distant parts of the oceans in response to the moon's

attraction are slowed by friction with the ocean floors, especiailly

in shallow water. Thus, the time of high tide is delayed. In any

particular place, the amount of delay and the height of the tides

depends greatly upon how easily the waters can flow. No general

theory can account for all the pcirticulcir details of the tides. Most

local predictions in the tide tables are based on empirical rtiles

using the tidal patterns recorded in the past.

Since there ar-e tides in the seas, you may wonder if the

atmosphere and the earth itself undergo tides. They do. The
earth is not completely rigid, but bends somewhat, like steel. The
tide in the ear1h is about 30 cm high. The atmospheric tides are

generally masked by other weather changes. However, at

altitudes of about 160 km, satellites have recorded considerable

rises anr) falls in the thin atmrjsphere
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Comets: From earliest histon- through the Middle -Ages comets

ha\'e been interpreted as omens of disaster. HaBe\ and Ne\^ton

sho^^'ed them to be onh shin\ , cloud\ masses mo\ing around

the sun according to Kepler s laA\'5 iust as planets do. The\

found that most comets are \lsible onh" A\±ien closer to the sun

than the distance of Jupiter. Sev'eral A^en bright comets have

orbits that take thexn \\^I1 inside the orbit of Mercun . Such

comets pass u-ithin a fe\v million kilometers of the sun as the

figure at the right indicates. Man\ orbits ha\'e eccentricities near

1.0 and are almost parabolas: these comets ha\'e periods of

thousands or ev-en millions of \'e.ars. Some other faint conaets

hax-e periods of onh- 5-10 xTiars.

L'nlike the planets all of \N±iose orbits lie nearh in a single

plcine the planes of comet orbits tilt at all angles. Vet like all

members of the solar s\'stem the\- obe^ all the la\^'5 of d\Tiamics

including the law of unix'eTsal gra\itation.

Edmund Halle\ 1656-1742 applied Newton s concepts of

celestial motion to the motion of bright comets. .Among the

comets he studied \%iiere those seen in 1531 1607 and 1682

HaUey found the orbits for these coniets to be \'erv- nearh the

same. He suspected that the\ might be one comet mD\ing in a

closed orbit with a period of about 75 \'ears. He predicted that

the comet A%T>uld return in about 1757, A^±lich it did although

Halle) did not live to see it. Halley s comet appeared in 1S33 and
1909 and is due to be near the sun and \isible again in 19S5—S6.

With the f)ejiod of this bright comet kno\Mi its dates of

appearance could be tracked bacJk in histon . .Ancient Indian

Chinese, and Japanese documents record all ejq^ected

appearances except one since 240 b c Almost no European
records of this great comet e.vist. This is a sad commejit upon
the lev'el of culture in Europ)e during the so-c^ed Dark .Ages.

One of the few European records is the famous BaA-eux tapestn

embroidered \\ith 72 scenes of the Norman Conquest of England

in 1066. One scene show^ the comet OA^erhead ^^ilile King Harold

of England and his court cowex below. .A maior triumph of

Newtonian science was its e.\planation of comets. Now the\ were

seen to be regular members of the solar sx'stemi instead of

unpredictable, fearful ex'ents.

The scope of the principle of: ~ / p^a\itation: Ne\^"tnn

^plied the law of uni^ej^al gra^ . .j many other problems
wiiich cannot be considej^d in detail haB, For example, he
inxTistigated the causes of the some^^±lat irregular motion of the

moon. He shoxN'ed that these motions are explained by the

gra\itational forces acting on the moon. As the moon mo\«s
around the earth the moon s distance from the sun changes
continualh

. This changes the resultant force of the earth and the

sun on the oihitir^ moon. Ne^\Ton also shoA%^d that o^er
chances :'-;- -,.- > ;".^:\^:^ .^.-. .. :^: .-jiuse the e:i"":"' - ,

'
.
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A scene from the Bayeu}c tapestry,

which was einbrnidered about

1070. The bright comet of 106G can

be seen at the top of the figure.

This comet was later identified as

Halley's comet. At the right, Har-

old, pretender to the throne of
England, is warned that the comet
is an ill omen. Later that year, at

the Battle of Hastings, Harold was
defeated by William the Conqueror.

perfect sphere. IThe earth's diameter at the equator is 43.2 km
greater than the diameter through the poles.) On the problem of

the moon's motion Newton commented that 'the calculation of

this motion is difficult. " Even so, he obtained predicted xalues

reasonably close to the observed values available at that time. He
even predicted some details of the motion which had not been

noticed before.

Newton investigated the variations of gra\ity at different

latitudes on the spinning and bulging earth. He noted differences

in the rates at which pendulums svxang at different latitudes.

From these data, he derived an approximate shape for the earth.

In short, Newton created a whole new quantitative approach

to the study of astronomical motion. Because some of his

predicted variations had not been observed, improved

instruments were built. These instruments improxed the old

observations that had been fitted together under the grand

theory. Many new theoretical problems also clamored for

attention. For example, what were the predicted and observed

influences among the planets themselves upon th(Mr motions?

Although the planets are small compared to the sun and are \'eiy

far apart, their interactions are obseiAable. As precise data

accumulated, the Newlonian theoiA' permitted calculations about

the past and future of the planetar\' system. For past or future

intenals beyond some hundreds of billions of years, such

extrapolations become too uncertain. But for shorter inteiAals,

Newtonian theory says that the planetary system has been and

will continue to be about as it is now.
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Newton's greatness went beyond the scope and genius of his

work in mechanics. It went beyond the originality and elegance

of his proofs. It had another dimension: the astonishing detail

in which he developed the full meaning of each of his ideas. Sure

of his law of universal gravitation, Newton applied it successfully

to a vast range of terrestrial and celestial problems. As a result,

the theoiy became more and more widely accepted. Newton's

theoiy has been the chief tool for solving all of the new problems

concerning motion in the solar system. For example, the motion

of every artificial satellite and space probe is calculated

according to Newton's law of universal gravitation. You can well

agree wdth the reply given to ground control as Apollo 8 returned

from the first trip to the moon. Ground control : "Who's driving

up there? " Captain of Apollo 8: "I think Isaac Newton is doing

most of the driving right now.
"

Beyond the solar system: You have seen how Newton's laws

explain motions and other physical events on the earth and in

the solar system. Now consider a new and even broader

question: Do Newton's laws also apply at greater distances, for

example, among the stars?

Over the years following publication of the Principia, several

sets of obseiA/ations provided an answer to this important

question. One observer was William Herschel, a British musician

turned amateur astronomer. In the late 1700's, with the help of

his sister Caroline, Herschel made a remarkable series of

observations. Using homemade, high-quality telescopes, Herschel

hoped to measure the parallax of stars due to the earth's motion

around the sun. Occasionally he noticed that one star seemed

quite close to another. Of course, this might mean only that two

stars happened to lie in the same line of sight. But Herschel

suspected that some of these pairs were actually double stars

held together by their mutual gravitational attractions. He

continued to observe the directions and distances from one star

to the other in such pairs. In some cases, one star moved during

a few years through a small arc of a curved path around the

other. (The figure shows the motion of one of the two stars in a

system.) Other astronomers gathered more infonnation about

these double stars, far removed from the sun and planets.

Eventually, it was clear that they move around each other

according to Kepler's laws. Therefore, their motions also agree

with Newton's law of universal gravitation. Using the same
equation as that used for planets (see page 228), astronomers

have Ccilculated the masses of these stars. They range from about

0.1 to 50 times the sun's mass.

A theory can never be completely proven. But theories become
increasingly acceptable as they are found useful over a wider and
wdder range of problems. No theory has stood this test better

than Newton's theoiy of universal gravitation as applied to the

Tiny variations from a 1/fi" centrip-

etal acceleration of satellites in or-

bit around the moon have led to a

mapping of "mascons" on the

moon. Mascons are unusueilly dense

concentrations of mass under the

surface.

The motion over many years for

one of the two components of a bi-

nary star system. Each circle indi-

cates the average of observations

made over an entire vear.
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planetary system. It took nearly a century for physicists and
astronomers to comprehend, verify, and extend Neulon's work
on planetary motion. As late as the nineteenth centuiy, most of

what had been accomplished in mechanics since Nev\lon's day

was but a dexelopment or application of his work.

• 29. How does the moon cause the water level to rise on both

sides of the earth?

30. In which of the followine, does the moon produce tides? (a)

the seas (h) the atmosphere Id the solid earth

31. Why is the calculation of the moon s motion so difficult?

32. How are the orbits of comets different from the orbits of

the planets?

33. Do these differences affect the validity ofNewton s law of

universal gravitation for comets?

8.10
I

Some effects and limitations

of Neiiton's w ork

Today Newton and his system of mechanics are honored for

many reasons. The Principia formed the basis for the

development of much of our physics and technologv. Also, the

success of Newton's approach made it the model for all the

physical sciences for the next 2 centuries.

Throughout Newton's work, you will find his basic belief that

celestial phenomena can be explained by applving quantitative

earthly laws. Newton felt that his laws had real ph\sical

meaning, that they were not just mathematical con\eniences

behind which unknowable laws lay hidden. The natural physical

laws goxerning the uni\'erse could be known. The simple

mathematical forms of the laws were e\idence of their reality.

Newton combined the skills and approaches of both the

experimental and the theoretical scientist. He invented pieces of

equipment, such as the first reflecting telescope. He performed

skillful experiments, especially in optics. Yet he also applied his

great mathematical and logical powers to the creation of specific,

testable predictions.

Many of the concepts that Newton used came from earlier

scientists and those of his owti time. Galileo and Descartes had

contributed the first steps leading to a proper idea of ineitia,

which became Newton's first law of motion. Kepler's planetary

laws were central in Newton's consideration of planetary

motions. Huygens, Hooke, and others clarified the concepts of

force and acceleration, ideas that had been evoKing for centuries.

In addition to his owii experiments, Newlon selected and used
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data from a large number of sources. Tycho Brahe was only one

of several astronomers whose observations of the motion of the

moon he used. When Newton could not complete his own
measurements, he knew whom he could ask.

Last, recall how completely and how fruitfully he used and

expanded his own specific contributions. A good example is his

theoiy of universal gravitation. In developing it, Newton used his

laws of motion and his various mathematical inventions again

and again. Yet Newton was modest about his achievements. He

once said that if he had seen further than others "it was by

standing upon the shoulders of Giants."

Scientists recognize today that Newton's mechanics hold tn.ie

only udthin a well-defined region of science. For example, the

forces within each galaxy appear to be Newtonian. But this may
not be true for forces acting between one galaxy and another. At

the other end of the scale are atoms and subatomic particles.

Entirely non-Newtonian concepts had to be developed to explain

the observed motions of these particles.

Even within the solar system, there are several small

differences between the predictions and the observations. The

most famous involves the angular motion of the axis of Mercury's

orbit. This motion is greater than the value predicted from

Neuron's laws by about 1/80° per century. What causes this

difference? For a while, it was thought that gravitational force

might not vary inversely exactly with the square of the distance.

Perhaps, for example, the law is F^,.,^, = -^/^2oooooi

Such difficulties should not be hastily assigned to soi e minor

mathematical imperfection. The law of gravitation applies wath

unquestionable accuracy to all other planetary motions. It may
be that the basic assumptions in the theory make it too limited,

as with the Ptolemaic system of epicycles. Many studies have

shown that there is no way to modiiy the details of Newtonian

mechanics to explain certain observations. Instead, these

observations can be accounted for only by constructing new

theories based on some very different assumptions. The

predictions fr-om these theories are almost identical to those

from Newton's laws for familiar phenomena. But they are also

accurate in some extreme cases where the Newtonian

predictions begin to show inaccuracies. Thus, Newtonian science

is linked at one end with relativity theory, which is important for

bodies with very great mass or moving at very high speeds. At

the other end Newtonian science approaches quantum

mechanics, which is important for particles of extremely small

mass and size, for example, atoms, molecules, and nuclear

particles. For a vast range of problems between these extremes,

Newtonian theory gives accurate results and is far simpler to use.

Moreover, it is in Newtonian mechanics that relativity theoiy and

quantum mechanics have their roots.

Newtonian mechanics refers to the

science of the motion of bodies,

based on Newton's work. It in-

cludes his laws of motion and of

gravitation as applied to a range of

bodies from microscopic size to

stars and incorporates develop-

ments of mechanics for over two
centuries after Newton's own work.

SG 26

SG 29, 30
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study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 8 include:

Experiments

Stepwise /Xpproxiniation lo an Orbit

Model of the Orbit of Halley's comet

Activities

Other Comet Orbits

Forces on a Pendulum

Trial of Copernicus

Discovery of Neptune and Pluto

Film Loops
Jupiter Satellite Orbit

Program Orbit 1

Program Orbit II

Central Forces: Iterated Blows

Kepler's Laws

Unusual Orbits

Z. Complete the foUowing stateinents:

(a) Nevvlon believed that the natural path of any

moving object in the absence of forces is

(b) Since Kepler's first law claims that planets travel

along elliptical paths, Xewlon hypothesized a force

that

(c) Nevx'ton then discovered that if the motion of the

planets follows Kepler's law of areas, this force must

be

(d) Nevx^on also disco\erefl that planets that obey

Kepler's harmonic law of periods require; a force that

3. (a) People have always known that ajiples fall to

the ground. What particular thing about the fall of

an apple led Newton to compare the apple's fiUl to

the motion of the moon?

(b) if the moon is 60 times farther from the center

of the earth than an apple , what is the moon's

acceleration toward the earth's center?

(c) Use the formula for centrip(;tal accf^hn-ation to

find the acceleration of the moon in its orbit.

Compare this value to your answer in part (b).

4. How would you answer the following question:

What keeps the moon up?

5. State the law of universal gravitation in words
and svmbols, defining each sxTiibol. What is the

direction of the force of gravity'? Give the value of C.

Does this value ever change?

6. In the table below are the periods and distances

from Jupiter of the four large satellites, as measured

by telescopic obsei'vations. Does Kepler's law of

periods apply to the Jupiter system?

Distance from Jupiter's Center

Satellite Period (in terms of Jupiter's radius, r)

1



so
expression for the period of a satellite orbiting a

planet in terms of the radius of the orbit and mass

of the planet.

11. Using the formula for the gravitational force

between two objects, calculate the force between a

100-kg sphere and a 1,000-kg sphere placed 10 m
apart. What are the accelerations of the two spheres?

Could these accelerations ever be measured?

12. Why were the discoveries of Neptune and Pluto

triumphs for Newton's theory?

13. By Newton's time, telescopic observations of

Jupiter led to values for the orbited periods and radii

of Jupiter's four large satellites. For example, the one

named Callisto was found to have a period of 16.7

days, and the radius of its orbit was calculated as

1/80 AU.

(a) From these data calculate the value of fcj,,,^,^,.

(First convert days to years.)

(b) Show that Jupiter's mass is about 1/1000 the

mass of the sun.

(c) How was it possible to have a value for the

orbital radius of a satellite of Jupiter?

14. What orbital radius must an earth satellite be

given to keep it always above the same place on the

earth, that is, in order to have a 24-hr period? (Hint:

See Question 10.)

15. Calculate the mass of the earth from the fact

that a 1-kg object at the earth's surface is attracted to

the earth with a force of 9.8 N. The distance from
the earth s center to its surface is 6.4 x lo'' m. How
many times greater is this than the greatest masses
that you have had some experience in accelerating

(for example, cars)?

16. The mass of the earth can be calculated also

from the distance and period of the moon. Show
that the value obtained in this way agrees with the

value calculated from measurements at the earth's

surface.

17. If tides are caused by the pull of the moon, why
are there also tides on the side of the earth opposite

the moon?

18. The moon's orbit around the earth is a

combination of two separate motions: a straight line

and a faU toward the earth's center. Using diagrams,

discuss each part of the moon's motion.

19. Cavendish's value for G made it possible to

calculate the mass of the earth and therefore its

average density. The "density" of water is 1,000

kg/m'; that is, for any sample of water, di\iding the

mass of the sample by its volume gives 1,000 kg/m'.

(a) What is the earth's average density?

(b) The densest kind of rock known has a density of

about 5,000 kg/m'. Most rock has a density of about

3,000 kg/m'. What do you conclude from this about

the internal structure of the earth?

20. The manned Apollo 8 capsule was put into a

nearly circular orbit 112 km above the moon's

surface. The period of the orbit was 120.5 min. From
these data, calculate the mass of the moon. (The

radius of the moon is 1,740 km. Use a consistent set

of units.)

21. Mars has two satellites, Phobos and Deimos

(Fear and Panic). A science-fiction story was once

written in which the natives of Mars showed great

respect for a groove in the ground. The groove

turned out to be the orbit of Mars' closest moon
"Bottomos."

(a) If such an orbit were possible, what would the

period be?

(b) What speed would it need to have in order to go

into such an orbit?

(c) What would you expect to happen to an object in

such an orbit?

22. Using the values given in the table on p. 230,

make a table of relative masses compared to the

mass of the earth.

23. The sun's mass is about 27,000,000 times greater

than the moon's mass; the sun is about 400 times

farther from the earth than the moon is. How does

the gravitational force exerted on the earth by the

sun compare with that exerted by the moon?

24. The period of Halley's comet is about 75 yr.

What is its average distance from the sun? The

eccentricity of its orbit is 0.967. How far from the

sun does it go? How close does it come to the sun?

CHAPTER 8 / STUDY GUIDE 239



sg
as. Accepting the validity of F_^ = Gm,m,//i' and

recognizing that G is a universal constant, we are

able to derive, and therefore to understand better,

many particulars that previously seemed separate.

For example, we can conclude:

(a) that a, for a body of any mass m should be

constant at a particular place on eiirth.

(b) that a^ might be different at places on eai'th at

different distances from the earth's center.

(c) that at the earth's surface the weight of a body is

related to its mass.

(d) that the ratio R'/T^ is a constant for all the

satellites of a body.

(e) that tides occur about 6 hr apart.

Describe briefly how each of these conclusions can

be derived from the equation.

26. The making of theories to account for

observations is a major purpose of scientific study.

Therefore, some reflection upon the theories

encountered thus far in this course will be useful.

Comment in a paragraph or more, with examples

from Units 1 and 2 , on some of the statements

below. Look at all the statements and select at least

six, in any order you wash.

(a) A good theory should summarize and not conflict

with a body of tested obser\'ations. (Take, for

example, Kepler's unwillingness to explain away the

difference of 8 min of arc between his predictions

and Tycho's observations.)

(b) There is nothing more practical than a good

theory.

(c) A good theory should permit predictions of new
observations which sooner or later can be made.

(d) A good new theory should give almost the same
predictions as older theories for the range of

phenomena where the older theories worked well.

(e) Every theory involves assumptions. Some involve

also esthetic preferences of the scientist.

(f) A new theory relates some previously unrelated

observations.

(g) Theories often involve abstract concepts derived

from observation.

(h) Empirical laws or "rules" organize many
observations and reveal how changes in one quantity

vary with changes in another, but such laws provide

no explanation of the causes or mechanisms.

(i) A theory never fits all data exacUy.

(j) Predictions from theories may lead to the

observation of new effects.

(k) Theories that later had to be discarded may have

been useful because they encouraged new
observations.

(1) Theories that permit quantitative predictions are

preferred to qualitative theories.

(m) An "unwritten text" lies behind the statement of

every law of nature.

(n) Communication between scientists is an essential

part of the way science grows.

(o) Some theories seem initially so strange that they

are rejected completely or accepted only very slowly.

(p) Models are often used in the making of a theor\'

or in describing a theory.

(q) The power of theories comes from their

generality.

27. What happened to Plato's problem? Was it

solved?

28. Why do we believe toda\' in a heliocentric

system? Is it the same as either Copernicus' or

Kepler's? VVliat is the experimental evidence? Has the

geocentric system been disproved?

29. Is Newton's work only of historical interest, or is

it useful today? Elxplain.

30. What were some of the major consequences of

Nevv'ton's work on scientists' views of the world?
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EPILOGUE This unit started at the

beginning of recorded history

and followed human attempts to explain the cyclic motions

observed in the heavens. We saw the long, gradual change from

an earth-centered view to the modern one in which the earth is

just another planet moving around the sun. We examined some

of the difficulties encountered in making this change of

viewpoint. We also tried to put into perspective Newton's

synthesis of earthly and heavenly motions. From time to time, we
suggested that there was an interaction of these new world views

with the general culture. We stressed that all scientists are

products of their times. They are limited in the degree to which

they can abandon the teachings on which they were raised.

Gradually, through the work of many scientists over the

centuries, a new way of looking at heavenly motions arose. This

in turn opened new possibilities for even more new ideas, and

the end is not in sight.

In addition, we looked at how theories are made and tested.

We discussed the place of assumption and experiment, of

mechanical models and mathematical description. In later parts

of the course, you will come back to this discussion in more

recent contexts. You will find that attitudes developed toward

theory-making during the seventeenth-century scientific

revolution remain immensely helpful today.

In our study, we have referred to scientists in Greece, Egypt;

Poland, Denmark, Austria, Italy, England, and other countries.

Each; as Newton said of himself, stood on the shoulders of those

who came earlier. For each major success there are many lesser

advances or, indeed, failures. Science is a cumulative intellectual

activity not restricted by national boundaries or by time. It is not

constantly and unfailingly successful, but grows as a forest

grows. New growth replaces and draws nourishment from the

old, sometimes with unexpected changes in the different parts.

Science is not a cold, calculated pursuit. It may involve

passionate controversy, religious convictions, judgments of what

beauty is, and sometimes wild private speculation.

It is also clear that the Newtonian synthesis opened whole

new lines of investigation, both theoretical and observational. In

fact, much of our present science and also our technology had

their effective beginnings with the work of Newton. New models,

new mathematical tools, and a new self-confidence encouraged

those who followed to attack new problems. A never-ending

series of questions, answers, and more questions was well

launched. The modern view of science is that it is a continuing

exploration of ever more interesting fields.

One problem remaining after Newton's work was the study of

objects interacting not by gravitational forces, but by friction and

collision. This study led, as the next unit will show, to the
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The engraving of the French Acad-

eniv by Sebastian LeClerc 11698)

reflects the activity of learned soci-

eties at that time. The picture does

not depict an actual scene, of
course, but in allegory shows the

excitement of communication that

grew in an informal atmosphere.

The dress is symbolic of the Greek

heritage of the sciences. Although

all the sciences are represented,

the artist has put anatomy, botany,

and zoology, symbolized by skele-

tons and dried leaves, toward the

edges, along with alchenw and the-

ologv. .Mathematics and the physi-

cal sciences, including astronomy,

occupv the center stage.

concepts of momentum and energy. It brought about a much
broader view of the connection between different parts of

science, such as physics, chemistiy, and biologv. Eventually, this

line of study produced other statements as grand as Newton's

law of universal gravitation. Among them were the conservation

laws on which much of modern science and technology is based.

An impoilant part of these laws describes how systems

consisting of many interacting bodies work. That account will be

the main subject of Unit 3.

Nev\1on's influence was not limited to science alone. The

centuiy following his death in 1727 was a period of further

understanding and application of his discoveries and methods.

His influence was felt especially in philosophy and literature, but

also in many other fields outside science. Let us round out our

\iew of Newton by considering some of these effects.

The eighteenth centuiy is often called the Age of Reason or

Centuiy of Enlightenment. "Reason " was the motto of the

eighteenth-centuiy philosophers. However, their theories about

impro\ang religion and society were not convincingly connected.

Newtonian physics, religious toleration, and republican

government were all advanced by the same movement. This does

not mean there was really a logical link among these concepts.

Nor were many eighteenth-centuiy thinkers in any field or nation

much bothered by other gaps in logic and feeling. For example,

they believed that all men are created equal." Yet they did little
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to remove the chains of black slaves, the ghetto walls

imprisoning Jews, or the laws that denied rights to women.

Still, compared with the previous century, the dominant theme

of the eighteenth century was moderation, the "happy medium.

"

The emphasis was on toleration of different opinions, restraint

of excess, and balance of opposing forces. Even reason was not

allowed to question religious faith too strongly. Atheism, which

some philosophers thought would logically result from unlimited

rationality, was still regarded wath horror by most Europeans.

The Constitution of the United States of America is one of the

most enduring achievements of this period. Its system of "checks

and balances" was designed specifically to prevent any one

group from getting too much power. It attempted to establish in

politics a state of equilibrium of opposing trends. This

equilibrium, some thought, resembled the balance between the

sun's gravitational pull and the tendency of a planet to fly off in

a straight line. If the gravitational attraction upon the planet

increased without a corresponding increase in planetary speed,

the planet would fall into the sun. If the planet's speed increased

without a corresponding increase in gravitational attraction, it

would escape from the solar system.

Political philosophers, some of whom used Newtonian physics

as a model; hoped to create a similar balance in government.

They tried to devise a system that would avoid the extremes of

dictatorship and anarchy. According to James Wilson (1742-1798),

who played a major role in writing the American Constitution,

In government, the perfection of the whole depends on the

bcdance of the parts, and the balance of the parts consists in

the independent exercise of their separate power's, and, when
their powers are separately exercised, then in their mutual

influence and operation on one another. Each part acts and is

acted upon, supports and is supported, regulates and is

regulated by the rest. It might be supposed, that these powers,

thus mutually checked and controlled, would remain in a state

of inaction. But there is a necessity for movement in human
ciffairs; and these powers are forced to move, though still to

move in concert. They move, indeed, in a line of direction

somewhat different from that, which each acting by itself would

have taken; but, at the same time, in a line partaking of the

natural directions of the whole—the ti-ue line of public liberty

and happiness.

Both Newton's life and his writings seemed to support the idea

of political democracy. A former faiTn boy had penetrated to the

outermost reaches of the human imagination. What he had

found there meant, first of all, that only one set of laws governed

heaven and earth. This smashed the old beliefs about "natural

place " and extended a new democracy throughout the universe.

Newton had shown that all matter, whether the sun or an

UNIT 2 / EPILOGUE 343



ordinal^' stone, was created equal; that is to say, all matter had
the same standing before "the Laws of Nature and of Nature's

God." (This phrase was used at the beginning of the Declaration

of Independence to justify the desire of the people in the

colonies to throw off their oppressive political system and to

become an independent people.) All political thought at this time

was heavily influenced by Nev\^onian ideas. The Principia

seemed to offer a parallel to theories about democracy. It seemed
logical that all people, like all natural objects, are created equal

before nature's creator.

In literature, too, many welcomed the new scientific \ieupoint.

It supplied many new ideas, convenient figures of speech,

parallels, and concepts which writers used in poems and essays.

Newton's disco\'eiy that white light is composed of colors was
referred to in many poems of the 1700's. (See Unit 4.) Samuel

Johnson advocated that words drawn from the vocabulary of the

natural sciences be used in literaiy works. He defined many such

words in his Dictionary and illustrated their application in his

"Rambler" essays.

The first really powerful reaction against Newtonian cosmology

was the Romantic movement. Romanticism was started in

Germany about 1780 by young v\Titers inspired by Johann
Wolfgang von Goethe. The most familiar examples of

Romanticism in English literature are the poems and novels of

Blake, Coleridge, Wordsworth, Shelley, Byron, and Scott. The
Romantics scorned the mathematical \dew of nature. They
believed that any whole thing, whether a single human being or

the entire universe, is filled with a unique spirit. This spirit

cannot be explained by reason; it can only he felt. The Romantics

insisted that phenomena cannot be meaningfully analyzed and

reduced to their separate parts by mechanical explanations.

The Romantic philosophers in Germany regarded Goethe as

their greatest scientist as well as their greatest poet. They

pointed in particular to his theory of color, which flatly

contradicted Newton's theory of light. Goethe held that white

light does not consist of a mLxture of colors and that it is useless

to "reduce" a beam of white light by passing it through a prism

to study its separate spectral colors. Rather, he charged, the

colors of the spectnjm are artificially produced by the prism,

acting on and changing the light which is itself pure.

In the judgment of all modern scientists, Neulon was right

and Goethe wrong. This does not mean that Nature Philosophy,

introduced by Friedrich Schelling in the early 1800's, was without

any value. It encouraged speculation about ideas so general that

they could not be easily tested by experiment. At the time, it was

condemned by most scientists for just this reason. Today, most

historians of science agree that Nature Philosophy exentually

j:)layed an important role in making possible certain scientific
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discoveries. Among these was the general principle of

conservation of energy, which is described in Chapter 10. This

principle asseri;ed that cdl the "forces of nature, " that is, the

phenomena of heat, gravity, electricity, magnetism, and so forth,

are forms of one underiying "force" (which we now call energy).

This idea agreed well with the viewpoint of Nature Philosophy. It

also could eventually be put in a scientifically acceptable form.

Some modem artists, some intellectuals, and most members of

the "counterculture" movements express a dislike for science.

Their reasoning is similar to that of the Romantics. It is based on
the mistaken notion that scientists claim to be able to find a

mechanical explanation for everything.

Even the Roman philosopher Lucretius (100-55 B.C.), who
supported the atomic theory in his poem On the Nature of
Things, did not go this far. To preserve some trace of "free will"

in the universe, Lucretius suggested that atoms might swerve

randomly in their paths. This was not enough for Romantics and
also for some scientists. For example, Erasmus Darvvan, a

scientist and grandfather of evolutionist Charles Darwin, asked

Dull atheist, could a giddy dance

Of atoms lawless hurl'd

Construct so wonderful, so wise,

So harmonised a world?

The Nature Philosophers thought they could discredit the

Newtonian scientists by forcing them to answer this question. To
say "yes," they argued, would be absurd, and to say "no" would
be disloyal to Newtonian beliefs. But the Newtonians succeeded

quite well without committing themselves to any definite answer

to Erasmus Darwin's question. They went on to discover

immensely powerful and valuable laws of nature, which are

discussed in the next units.
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CHAPTER 9 Conservation of Mass and Momentum
CHAPTER 10 Energ*'

CHAPTER 11 The Kinetic Theory' of Gases
CHAPTER 12 Waves

&

Isaac Nev\'tons development

of mathematical principles of

natural philosophy marks a turning point in the growth of

human knowledge. The simple, elegant laws that njle not only

terrestrial hut also astronomical phenomena were soon

recognized as the premier example of the power of human
reason. The fact that Newton had done so much to show that

there is a rational order in natural events made it seem possible

that any problem could be solved by reason. It is not surprising

that after his death in 1727 Newton was looked upon almost as a

god, especially in England. Many poems like this one appeared:

Neuion the unparalleld'd, whose Name
No Time will wear- out of the Book of Fame,

Celestial Science has promoted more,

Than all the Sages that have shone before.

Nature compell'd his piercing Mind obeys,

And gladly shows him iill her secit^t Ways;

Gainst Mathematics she has no defence,

And yields t' experimental Consequence;
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His tow'ring Genius, from its certain Cause

Ev'ry Appearance a priori draws

And shews th' Almiglity Architect's unalter'd Laws.

Newton's success in mechanics altered profoundly the way in

w^hich scientists view^ed the universe. The motions of the sun

and planets could now be considered as purely mechanical. As

for any machine, w^hether a clock or the solar system, the

motions of the parts were completely determined once the

system had been put together.

This model of the solar system is called the Newtonian world

machine. As is true of any model, certain things are left out. The
mathematical equations that govern the motions of the model
cover only the main properties of the real solar system. The
masses, positions, and velocities of the parts of the system, and
the gravitational forces among them, are w^ell described. But the

Newtonian model neglects the internal structure and chemical

composition of the planets, heat, light, and electric and magnetic

forces. Nevertheless, it serves splendidly to deal with obseived

motions. Moreover, Newton's approach to science and many of

his concepts became useful later in the study of those aspects he

had to leave aside.

The idea of a world machine does not trace back only to

Newton's work. In Principles ofPhilosophy 11644), Rene Descartes,

the most influential French philosopher of the seventeenth

century, had written:

I do not recognize any difference between the machines that

cirtisans make and the different bodies that nature alone

composes, unless it be that the effects of the machines depend
only upon the adjustment of certain tubes or springs, or other

instruments, that, having necessarily some proportion vvdth the

hands of those who make them, are always so large that their

shapes and motions can be seen, while the tubes and springs

that cause the effects of natural bodies are ordinarily too small

to be perceived by our senses. And it is certain that all the laws

of Mechanics belong to Physics, so that all the things that are

artificial, are at the same time natural.

Robert Boyle (1627-1691), a British scientist, is knowm
particularly for his studies of the properties of air. (See Chapter
11.) Boyle, a pious man, expressed the 'mechanistic " vdewpoint

even in his religious writings. He argued that a God who could

design a universe that ran by itself like a machine was more
wonderful than a God who simply created several different kinds

of matter and gave each a natural tendency to behave as it does.

Boyle also thought it was insulting to God to believe that the

world machine would be so badly designed as to require any
further divine adjustment once it had been created. He suggested
that an engineer's skill in designing "an elaborate engine" is

(From J. T. Desagulier, The New-
tonian System of the World, the

Best Model of Government, an Al-

legorical Poem.)

iS^ ^
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"The Ancient of Days" by William

Blake, an English poet who had lit-

tle sympathy with the Nevx'ionian

style of "Natural Philosophy.
"

Ironically I Neuron himself explic-

itly rejected the deterministic as-

pects of the "world machine" which
his followers had popularized.

A small area from the center of the

picture has been enlarged to show
what the picture is "really" like.

Is the picture only a collection of
dots? Knowing the underlying

structure does not spoil your other

reactions to the picture, but rather

gives you another dimension of
understanding i(.

more deserving of praise if the engine never needs supervision or

repair. "Just so, " he continued,

... it more sets off the wisdom of God in the fabric of the

universe, that He can make so vast a machine perfoim all those

many things, which He designed it should, by the meer
contrivance of biute matter managed by certain laws of local

motion, and upheld by His ordinaiy and general concoui-se,

than if He employed from time to time an intelligent overseer,

such as nature is fancied to be, to regulate, assist, and controul

the motions of the parts. . .

.

Boyle and many other scientists in the seventeenth and
eighteenth centuries tended to think of God as a supreme
engineer and physicist. God had set down the laws of matter and
motion. Human scientists could hest glorify' the Creator by

discovering and proclaiming these laws.

This unit is mainly concerned with physics as it developed

after Nevx'ton. In mechanics, Newton's theory was extended to

cover a wide range of phenomena, and new concepts were

introduced. The conser\^ation laws discussed in Chapters 9 and

10 became increasingly important. These powerful principles

offered a new way of thinking about mechanics. They opened up
new areas to the study of physics, for example, heat and wave

motion.

Newtonian mechanics treated directly only a small range of

experiences. It dealt udth the motion of simple bodies or those

largely isolated from others, as are planets, projectiles, or sliding

discs. Do the same laws work when applied to complex

phenomena? Do real solids, liquids, and gases behave like

machines or mechanical systems? Can their behaxior be

explained by using the same ideas about matter and motion that

Newton used to explain the solar system?

At first, it might seem unlikely that everything can be reduced

to matter and motion, the principles of mechanics. What about

temperature, colors, sounds, odors, hardness, and so forth?

Newton himself believed that the mechanical view would

essentially show how to investigate these and all other

properties. In the preface to the Principia he WTote:

I wish we could derive the rest of the phenomena of Nature by

the same kind of reasoning from mechanical principles, for 1

am induced by many reasons to suspect that they may all

depend upon certain forces by which the particles of bodies, by

some causes hitherto unknown, are mutually impelled towards

one another, and cohere according to regular figures, or are

repelled and recede fiom one another. These forces being

unknown, philosophers have hitherto attempted the search of

Nature in vain; but I hope the principles here laid down will

afford some light either to this or some truer method of

Philosophv
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Gonseruation of Mass
anil Momentum
9.1 Conservation of mass
9.2 Collisions

9.3 Conservation of momentum
9.4 Momentum and Neuton's laivs of motion

9.5 Isolated systems

9.6 Elastic collisions

9.7 Leibniz and the consen^ation laiv

9*1.
I

Conservation of mass

The idea that despite ever-present, obvious change all around us

the total amount of material in the universe does not change is

really very old. The Roman poet Lucretius restated (in the first

century B.C.) a belief held in Greece as early as the fifth century

B.C.:

. . . and no force can change the sum of things; for there is no

thing outside, either into which any kind of matter can emerge

out of the universe or out of which a new supply can arise and

burst into the universe and change all the nature of things and
alter their motions. [On the Nature of Things]

Just 24 years before Newton's birth, the English philosopher

Francis Bacon included the following among his basic principles

of modern science in Novum Organum (1620):

There is nothing more true in nature than the twin

propositions that "nothing is produced fiom nothing" and

SG 1
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In some open-air chemical reac-

tions, the mass of objects seems to

decrease, while in others it seems
to increase.

\ote the closed flask shown in his

portrait on page 252.

SG2

"nothing is reduced to nothing" . . . the sum total ol matter

i-emains unchanged, without increase or diminution.

This \'ievv agrees with everyday observation to some extent. While

the form in which matter exists may change, in much of our

ordinary experience matter appears somehow indestnjctible. For

example, you may see a large boulder ciushed to pebbles and
not feel that the amount of matter in the universe has

diminished or increased. But what if an object is burned to ashes

or dissohed in acid? Does the amount of matter remain

unchanged even in such chemical reactions? What of laige-scale

changes such as the forming of rain clouds or seasonal

xariations?

I o test whether the total quantity of matter actually remains

constant, you must know how to measure that quantity. Clearly,

it cannot simply be measured by its volume. For example, you

might put watei' in a container, mark the water level, and then

freeze the water. If so, you will find that the volume of the ice is

greater than the volume of the water you started with. This is

Uxie even if you carefully seal the container so that no water can

possibly come in from the outside. Similarly, suppose you
compress some gas in a closed container. The volume of the gas

decreases even though no gas escapes from the container.

Following Newton, we regard the mass of an object as the

proper measure of the amount of matter it contains. In all the

examples in Units 1 and 2, we assumed that the mass of a given

object does not change. However, a burnt match has a smaller

mass than an unlournt one: an iron nail increases in mass as it

rusts. Scientists had long assumed that something escapes from

the match into the atmosphere and that something is added
from the surroundings to the iron of the nail. Therefore, nothing

is really "lost" or "created" in these changes. Not until the end
of the eighteenth century was sound experimental evidence for

this assumption provided. The French chemist Antoine Lavoisier

produced this evidence.

Lavoisier caused chemical reactions to occur in closed flasks (a

"closed system"). He carefully weighed the flasks and theii-

contents before and after the reaction. For example, he burned

iron in a closed flask. The mass of the iron oxide produced
equalled the sum of the masses of the iron and oxygen used in

the reaction. With experimental evidence like this at hand, he

could announce with confidence in I'rnite Elementaire de Chimic

(1789):

We may lay it down as an incontestable axiom that in all the

operations of art and nature, nothing is crealed; an ec|ual

quantity of matter exists both befoi"e and after the exptniment,

. . . and nothing takes place beyond changes and modifications

in the combinations of these elements. Upon this principle, the

whole art of performing chemical o.xperimenls de|)eii(ls
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Lavoisier knew that if he put some material in a well-sealed

bottle and measured its mass, he could return at any later time

and find the same mass. It would not matter what had happened

to the material inside the bottle. It might change from solid to

liquid or liquid to gas, change color or consistency, or even

undergo violent chemical reactions. At least one thing would

remain unchanged: the total mass of all the different materials in

the bottle.

In the years after Lavoisier's pioneering work, a vast number of

similar experiments were peiformed with ever-increasing

accuracy. The result was always the same. As far as scientists

now can measure udth sensitive balances (having a precision of

better than 0.000001%), mass is conserved, that is, remains

constant, in chemical reactions.

To sum up, despite changes in location, shape, chemical

composition, and so forth, the mass of any closed system remains

constant. This is the statement of the law of conserx'ation of mass.

This law is basic to both physics and chemistry.

Obviously, one must know whether a given system is closed or

not before applying this law to it. For example, it is perhaps

surprising that the earth itself is not exactly a closed system

within which all mass would be consei^^ed. Rather, the earth,

including its atmosphere, gains and loses matter constantly. The

most important addition occurs in the foiTn of dust particles.

These particles are detected by their impacts on satellites that

are outside most of the atmosphere, and by the light and

ionization they create when they pass through the atmosphere

and are slowed down by it. The great majority of these particles

are very small (less than 10*' m in diameter) and cannot be

detected individually when they enter the atmosphere. Particles

larger than several millimeters in diameter appear as luminous

meteorite trails when they vaporize in the upper atmosphere;

these particles are only a small fraction of the total, both in

terms of numbers and in terms of mass. The total estimated

inflow of mass of all these particles, large and small, is about 10'

g/sec over the whole surface of the earth. (The mass of the earth

is about 6 X 10~"g.) This gain is not balanced by any loss of dust

or larger particles, not counting an occasional spacecraft and its

debris. The earth also collects some of the hot gas evaporating

from the sun, but the amount is comparatively small.

The earth does lose mass by evaporation of molecules from the

top of the atmosphere. 7 he rate of this evaporation depends on

how many molecules are near enough to the top of the

atmosphere to escape without colliding with other molecules.

Also, such molecules must have velocities high enough to escape

the earth's gravitational pull. The velocities of the molecules are

determined by the temperature of the upper atmosphere.

Therefore, the rate of evaporation depends greatly on this

Conservation of mass was demon-
strated in e^qjeriments on chemical

reactions in closed flasks.

The meaning of the phrase "closed

system" wiU be discussed in more
detail in Sec. 9.5.

"The change in the total mass is

zero" can be expressed symboli-

cally as AXni, = where S^ repre-

sents the sum of the masses of m^

in all parts of the system.

Meteorites have been found in all

parts of the world. This meteorite

fragment was one of severalfound
in the Atacama desert of Chile in

1822.
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Close UpI
The Father of Modern Chemistry

Antoine Laurent Lavoisier (1743-

1794) is knowri as the "father of

modern chemistry" because he

showed the decisive importance of

quantitative measurements, con-

firmed the principle of conservation

of mass in chemical reactions, and

helped develop the present system

of nomenclature for the chemical

elements. He also showed that or-

ganic processes such as digestion

and respiration are similar to burning.

To earn money for his scientific re-

search, Lavoisier invested in a pri-

vate company which collected taxes

for the French government. Be-

cause the tax collectors were al-

lowed to keep any extra tax which

they could collect from the public,

they became one of the most hated

groups in France. Lavoisier was not

directly engaged in tax collecting,

but he had married the daughter of

an important executive of the com-

pany, and his association with the

company was one of the reasons

why Lavoisier was guillotined dunng

the French Revolution.

Also shown in the elegant portrait by

J. L. David IS Madame Lavoisier.

She assisted her husband by taking

data, translating scientific works from

English into French, and making il-

lustrations. About 10 years after her

husband's execution, she married

another scientist, Count Rumford,

who IS remembered for his experi-

ments which cast doubt on the ca-

loric theory of heat.
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temperature. At present, the rate is probably less than 5 x lO"*

g/sec over the whole earth. This loss is very small compared to

the addition of dust. (No water molecules are likely to be lost

directly by atmospheric "evaporation"; they would first have to

be dissociated into hydrogen and oxygen molecules.)

1. TiTje or false: Mass is conserved in a closed system only if

there is no chemical reaction in the system.

2. If50 cm^ of alcohol is mi\ed with 50 crn of water, the

mixture amounts to only 98 cm^. An instrument pack on the

moon weighs much less than on earth. Are these examples of

contradictions to the law of conservation of mass?

3. Which one of the following statements is true?

(a) Lavoisier was the first person to believe that the amount of

material in the universe does not change.

(b) Mass is measurably increased when heat enters a system.

(c) A closed system was used to establish the law of

conservation ofmass e^cperimentally.

4. Five grams (5 g) of a redfluid at 12° C with a volume of 4

mL are mi?ced with 10 g of a blue fluid at 5° C with a volume of

8 ml. On the basis of this information only, and assuming that

the fluids are minced in a closed system, what can you be sure

ofabout the resulting mi}cture?

Try these end-of-section questions

before going on.

SG 3-7

9*2 Collisions

Looking at moving things in the world around us easily leads to

the conclusion that everything set in motion eventually stops.

Every machine eventually runs down. It appears that the amount

of motion in the universe must be decreasing. The universe, like

any machine, must be running down.

Many philosophers of the 1600 s could not accept the idea of a

universe that was running down. The concept clashed vvdth their

idea of the perfection of God, who surely would not construct

such an imperfect mechanism. Some definition of "motion" was

needed that would permit one to make the statement that "the

quantity of motion in the universe is constant."

Is there a constant "quantity of motion" that keeps the world

machine going? To suggest an answer to this question, you can

do some simple laboratory experiments. Use a pair of identical

carts with nearly frictionless wheels; even better are two dry-ice

discs or two air-track gliders. In the first experiment, a lump of

putty is attached so that the carts wall stick together when they

collide. The carts are each given a push so that they approach

each other with equal speeds and collide head-on. As you will

CHAPTER 9 / COIVSERVATIOM OF MASS AND MOMENTUM 253



Va

3e(f re:
\/f^

*- v^.

Af+tr: V •.

- "a
-

Vb

l-x2V-J

ijetcic : Va* v<>,=oA" v&"

Va.

*! * 7' \.

- ^A-
%

Affer: Vi' + v4^o

/n symbols, A Sv^ = A S ,V| = //7

//jf.s particular case.

In general s\'nibols, AS mi'. = 0.

see when you do the experiment, both carts stop in the collision;

their motion ceases. But is there anything related to their

motions that does not change?

Yes, there is. If you add the velocity v^ of one c;art to the

velocitv' v„ of the other cart, you find that the vector sum does

not change. The vector sum of the velocities of these oppositely

moving carts is zero before the collision. It is also zero for the

carts at rest after the collision.

Does this finding hold for all collisions? In other vxoids, is

there a "law of consenation of velocity"? The example aboxe was
a veiy special circumstance. Cai'ts with equal masses approach

each other with equal speeds. Suppose the mass of one of the

carts is twice the mass of the other cart. (You can conveniently

double the mass of one cart by putting another- cart on top of it.)

Now let the carts approach each other with equal speeds and

collide, as before. This time the carts do not come to rest. There

is some motion remaining. Both objects moxe together in the

direction of the initial velocity of the more massive object. The
vector sum of the velocities is not conserved in all collisions.

Another example of a collision will confirm this conclusion.

This time let the first cart have twice the mass of the second, but

only half the speed. When the carts collide head-on and stick

together, they stop. The vector sum of the velocities is equal to

zero after the collision. But it was not equal to zero before the

collision. Again, there is no conservation of velocity'.

These examples show that the "quantitv of riiotion" is always

the same befor-e and after the collision. The results indicate that

the proper definition of "quantity of motion" may invoke tin*

mass of a body as well as its speed. Uescai'tes had suggested that

the proper measui'e of a body's quant it\' of motion was the

product of its mass and its speed. Speed does not involve

direction and is considered always to have a positixe value. The
examples above, however, show that this product (a scalar- and

always positive) is not a conserved quantity. In the second and

third collisions, for example, the products of mass and speed are

zero for the stopped carets after the collision. Thex' obxiously ar-e

not equal to zero before the collisiorn.

If we make one x'eiy important change in Descar-tes' definition,

we do obtain a conser-xed quantity. Instead of defining "quantity

of motion" as the product of mass and speedy mv, we can define

it (as Newton did) as the product of the mass and velocity', mv.

In this way we include the idea of the direction of motion as xvell

as the speed. In all thr^ee collisiorns, the motion of both carts

before and after collision is described by the equation

m,v, + m„v„ mA\ + m„v

helor'c;

collision

after

collision
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if m.^ and m,, represent the masses of the carts, v^ and v,,

represent their velocities before the collision, and \\' and v^'

represent their velocities aftei- the collision.

In other words: The vector sum of the quantities mass X

velocity is constant, or conserved, in all these collisions. This is a

very important and useful equation, leading directly to a

poweiliil law.

In Unit 1, initial and final velocities

were represented as v and v^. Here
they are represented by v and v

because we now need to add sub-

scripts such as A and B.

SG 8, 9

5. Descartes defined the quantity of motion of an object as the

product of its mass and its speed. Is his quantity^ of motion

conserved as he believed it was? If not, how would you modify

his definition so the quantity of motion would be conserved?

6. Two carts collide head-on and stick together. In which of

the following cases will the carts be at rest immediately after

the collision?



In general, for n objects the law can

be written

S (m,v),„f„„ = S (m,v,)7V afer

SG 12-15

cart. The first two forces evidently cancel, since the cart is not

accelerating up or clown. Thus, the net force on each cai1 is just

the force exerted on it b\' the other cai-t as they collide. (Assume
that frictional forces e.xeited by the table and the air are small

enough to neglect. That was the reason for using diy-ice disks,

air-track gliders, or carts with ' frictionless" wheels. This

assumption makes it easier" to discuss the law of conseiAation of

momentum. Later, you v\ill see that the law holds whether-

friction exists or rnot.i

The two carets for-m a system of bodies, each cart being a part

of the system. The for ce exerted by one cart on the other- cart is

a force exerted by one part of the system on another- part. It is

not a force on the system as a whole. The outside forces acting

on the car-ts (by the ear-th and by the table) exactly cancel. Thus,

there is no net outside force. The system is "isolated." This

condition must be met in order for the momentum of a system

to stay constant or- be conserved.

If the net force on a system of bodies is zero, the momentum
of the system will not change. This is the law of conserxation of
momentum for systems of bodies that are moving with linear-

velocity V.

So far, you have consider^ed only cases in which two bodies

collide directly and stick together. The remarkable thing about

the law of conservation of momentum is how universally it

applies. For example:

1. It holds tr-ue no matter what kind of forces the bodies exert

on each other-. They may be gr^avitational forces, electric or

magnetic forceS; tension in strings, compression in springs,

attr-action or r^epulsion. The sum of the mvs before is equal to

the sum of ativ's after any interaction.

2. It does not matter whether the bodies stick together- or

scrape against each other or bounce apart. They do not even

have to touch. When two strong magnets repel or when an alpha

particle is r^epelled by a nucleus, conservation of momentum still

holds.

3. The law is not r^estricted to systems of onl\ two objects;

there can be any number of objects in the system. In those cases,

the basic conservation equation is made more general simpK' by

adding a terin for each object to both sides of the etiuation.

4. The size of the system is not important. Ihe law applies to

a galaxy as well as to an atom.

5. The angle of the collision does not matter-. .All of the

examples so far- have involved collisions between two bodies

moving along the same str^aight line. They wer-e "one-dimensional

collisions." If two bodies make a glancing collision rather- than a

head-on collision, each will move off at an angle to the line of

appr-oach. The law of conser-vation of momentirm appli(\s to sirch

"two-dimensional collisions ' also. iRemembei- that momentum
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(1) A space capsule at rest in space, far from the

sun or planets, has a mass of 1 ,000 kg. A meteorite

with a mass of 0.1 kg moves toward it with a speed

of 1 ,000 m/sec. How fast does the capsule (with the

meteorite stuck in it) move after being hit?

m^ (mass of the meteorite) = 0.1 kg

m^ (mass of the capsule) = 1 ,000 kg

v^ (initial speed of meteorite) = 1 ,000 m/sec

Vg (initial speed of capsule) =

v^' (final speed of meteorite)

i/g' (final speed of capsule)
= 9

The law of conservation of momentum states that

Inserting the values given,

(0.1 kg) (1,000 m/sec) + (1,000 kg) (0) =

(0.1 kg)»/; + (1,000 kg)i/3'

100 kg • m/sec = (0.1 kg)i/^' + (1,000 kg)i/g'

Since the meteorite sticks to the capsule, v^' = i^^';

so we can write

100 kg • m/sec = (0.1 kg)>// + (1,000 kg)\/^'

100 kg • m/sec = (1,000.1 kg)i//

Therefore,

v/ = 1 00 kg • m/sec

1,000.1 kg

= 0.1 m/sec

(in the original direction of the motion of the meteo-

rite). Thus, the capsule (with the stuck meteorite)

moves on with a speed of 0.1 m/sec.

Another approach to the solution is to handle the

symbols first, and substitute the values as a final

step. Substituting v^' for v^' and letting v^' =
would leave the equation mj/^ = m^v^' + m^v^'

= {m^ + m^)v;. Solving for (//

v/ = m„\/„

(m^ + mj

This equation holds true for any projectile hitting

(and staying with) a body initially at rest that moves
on in a straight line after collision.

(2) An identical capsule at rest nearby is hit by

a meteorite of the same mass as the other. How-
ever, this meteorite, hitting another part of the cap-

sule, does not penetrate. Instead, it bounces straight

6I0SC up C,

Conservation of Momentum

back with almost no change of speed. (Some sup-

port for the reasonableness of this claim is given in

SG 24.) How fast does the capsule move after being

hit? Since all these motions are along a straight line,

we can drop the vector notation from the symbols

and indicate the reversal in direction of the meteorite

with a minus sign.

The same symbols are appropriate as in (1):

m^ = 0.1 kg

m^ = 1,000 kg

i/„ = 1,000 m/sec

V, =0
I// = -

1 ,000 m/sec

V ' = 7

The law of conservation of momentum started

\ha{mj/^ + m^v^ = mj/^' + m^v^'. Here,

(0.1 kg) (1,000 m/sec) -i- (1,000 kg) (0) =

(0.1 kg) (-1,000 m/sec) + (1,000 kg)v/g'

100 kg • m/sec = - 100 kg • m/sec -i- (1,000 kg)\/3'

V' = 200 kg • m/sec

1 ,000 kg
= 0.2 m/sec

Thus, the struck capsule moves on with about twice

the speed of the capsule in (1 ). (A general symbolic

approach to this solution can be taken, too. The

result is valid only for the special case of a projectile

rebounding perfectly elastically from a body of much
greater mass.)

There is a general lesson here. It follows from the

law of conservation of momentum that a struck ob-

ject is given less momentum if it absorbs the pro-

jectile than if it reflects it. (A goalie who catches the

soccer ball is pushed back less than one who lets

the ball bounce off.) Some thought will help you to

understand this idea: An interaction that merely

stops the projectile is not as great as an interaction

that first stops it and then propels it back again.
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One of the stroboscopic photo-

graphs of two colliding objects ttuit

appears in the Handbook.

is a vector quantity.) The law of conseivation of iiionientiim also

applies in three dimensions. The xector sum of the momenta is

still the same hefore and after the collision.

On page 257 is a vvorked-out exam|ile that \\ ill hi^lp you
hecome familiar" with the law of consenation of momentum. On
page 259 is an analysis of a two-dimensional collision. There are

also strohoscopic photographs in th(^ ProjecA Physics lliuulhook

and film loops of (U)lliding hodi(^s and (^\|)loding objects. Ilu^se

include collisions and explosions In two dimensions. The more
of them you analyze, the moi(> conxinced you will hv. that the

law of conseiA'atlon of momentum applies to imv isolal(!d system.

The worked-out example on page 257 displays a c:haracteristic

featuie of physics. Again and again, physics problcMiis are solved

by applying the expression of a geiwrnl law to a spcu'ific

situation. Both the beginning student and th(? xeteian lesearch

physicist find it helpful, but also somewhat mysterious, that one

can do tiiis. It seems strange that a few general kiws enable one

to solve an almost infinite number of specific individual

problems. Everyday life seems diffei'ent. There you usually

cannot calculate answers from general laws. Rather-, you have to

make cjuick decisions, some based on r'ational analysis, other's

based on "intuition." The use of general laws to solve scientific

problems will become, with practice, quite natural also.

7. State the law of conservation ofmomentum in terms of

(a) change in the total momentum of a system;

(b) the total initial momentum and final momentum;

(c) the individual parts of a system.

8. Which of the follow ing has the least momentum? Which has

the greatest monmiUwn?

(a) a pitched baseball

(bl a Jet plane inflight

(c) a jet plane taxiing toward the terminal

9. A girl on ice skates is at rest on a horizontal sheet of

smooth ice. As a result of catching a rubber ball moving

horizontally toward her, she moves at 2 cm/sec. Give a rough

estimate of what her speed would have been

(a) if the rubber ball were thrown twice as fast.

(bj if the rubber ball had twice the mass.

(c) if the girl had twice the mass.

(d) if the rubber ball were not caught by the girl, but bounced

off and went straight back with no change of speed.
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Close Upl
A Collision in Two Dimensions

The stroboscopic photograph shows a collision

between two wooden discs on a "frictionless hori-

zontal table" photographed from straight above the

table. The discs are riding on tiny plastic spheres

which make their motion nearly fnctionless. Body

B (marked x) is at rest before the collision. After the

collision it moves to the left, and Body A (marked

- ) moves to the right. The mass of Body B is known

to be twice the mass of Body A: m^ = 2m^. We will

analyze the photograph to see whether momentum
was conserved. {Note: The size reduction factor of

the photograph and the [constant] stroboscopic

flash rate are not given here. But as long as all

velocities for this test are measured in the same
units, it does not matter what those units are.)

In this analysis, we will measure in centimeters

the distance the discs moved on the photograph.

We will use the time between flashes as the unit of

time. Before the collision, Body A (coming from the

lower part of the photograph) traveled 36.7 mm in

the time between flashes: v^ = 36.7 speed-units.

Similarly, we find that v^' = 17.2 speed-units, and

i?g' = 11.0 speed units.

The total momentum before the collision is just

mj/^'. It is represented by an arrow 36.7 momen-
tum-units long, drawn at right.

The vector diagram shows the momenta m^v^'

and mj/g' after the collision; m^v^' is represented

by an arrow 17.2 momentum-units long. Since m^
= 2m^, the m^v^' arrow is 22.0 momentum-units

long.

The dotted line represents the vector sum of m^v^'

and rrigVg', that is, the total momentum after the

collision. Measurement shows it to be 34.0 mo-

mentum-units long. Thus, our measured values of

the total momentum before and after the collision

differ by 2.7 momentum-units. This is a difference

of about 7%. We can also verify that the direction

of the total is the same before and after the collision

to within a small uncertainty.

Have we now demonstrated that momentum was
conserved in the collision? Is the 7% difference

likely to be due entirely to measurement inaccura-

cies? Or is there reason to expect that the total

momentum of the two discs after the collision is

really a bit less than before the collision?

MbVb»22.0

MaV^MbV^

MaV;= 17.2

Momentum Scale (arbitrary units)

M^V^-36.7

10 I? 20
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9«4r Momentum and Xeiiton's laivs of motion

SG 16

Section 9.2 developed the concept of momentum and tlic law of

conservation of momentum by considering experiments with

colliding carts. The law was an "empirical" law; that is, it was
discovered (perhaps "invented" or "induced" are better temis) as

a generalization from experiment.

We can show, howevei", that the law of conseiAation of

momentum also follows directly from Newton's laws of motion. It

takes only a little algebra; that is, we can deduce the law from an

established theoiy. It would also be possible to derive Newlon's

laws fiom the conseivation law. Which is the fundamental law

and which the conclusion is therefore a bit arbitrary. Newton's

laws used to be considered the fundamental ones, but since

about 1900 the conservation law has been assumed to be the

fundamental one.

Newton's second law expresses a relation between the net

force F,,g, acting on a body, the mass m of the body, and its

acceleration a. We wrote this as F,,^, = ma. We can also write this

law in terms oi change ofmomentum of the body. Recalling that

acceleration is the rate-of-change of velocity, a = AvA/, we can

write

See Chapter 20.

Av

Tt

or

If m is a constant,

A(mv) = mv — mv
= m(v' — v)

= m A V

FAf is called the "impulse."

F„ At = mAv
net

If the mass of the body is constant, the change in its momentum,
AIahv), is the same as its mass times its change in xelocitv', m(Av).

Then we can write

^n...
^t Al/riv)

SG 17-20

In Newton's second law, "change of

motion" meant change of momen-
tum. See Definition 11 at the begin-

ning of the Principia.

that is, the product of the net force on a hodv and the time

inter\'al during which this force acts equals the change in

momentum of the body.

This statement of Newton's second law is more nearly what

Newton used in the Principia. Together with Newton's third law,

it enables us to derive the law of conservation of momentum for

the cases we have studied. The details of the deiixation are given

on page 262. Thus, Newton's laws and the law of conseivation of

momentum are not separate, independent law^s of nature.

In all the examples considered so far and in the deiixation

above, we have consider ed each piece of the system to have a

constant mass. But the definition perTnits a change of
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momentum to arise from a change of mass as well as from a

change of velocity. In many cases, it is convenient to consider

objects whose mass is changing. For example, as a rocket spews

out exhaust gases its mass is decreasing; the mass of a train of

coal cars increases as it rolls past a hopper that drops coal into

the cars. These cases can be analyzed using objects that do have

constant masses, but this requires, for example, analyzing

separately the case of each lump of coal that falls into the train.

However, the law of conservation of momentum also is valid

when the masses of the objects involved are not constant, as long

as no net forces act on the system as a whole. Problems such as

the one of the coal train or the rocket are much easier to analyze

in this way than in the other.

In one form or another, the law of conservation of momentum
can be derived from Newton's second and third laws.

Nevertheless, the law of conseI^^ation of momentum is often the

preferred tool because it enables us to solve many problems that

would be difficult to solve using Newton's laws directly. For

example, suppose a cannon that is free to move fires a shell

horizontally. Although it was initially at rest, the cannon is forced

to move while firing the shell; it recoils. The expanding gases in

the cannon barrel push the cannon backward just as hard as

they push the shell forward. Suppose you had a continuous

record of the magnitude of the force. You could then apply

Newton's second law separately to the cannon and to the shell

to find their respective accelerations. After a few more steps

(involving calculus), you could find the speed of the shell and the

recoil speed of the cannon. In practice, it is very difficult to get

a continuous record of the magnitude of the force. For one thing,

the force almost certainly decreases as the shell moves toward

the end of the barrel. So it would be very difficult to use

Newton's law^s to find the final speeds.

However, you can use the law of conservation of momentum
even if you know nothing about the force. The law of

conservation of momentum is a law of the kind that says 'before

= after." Thus, it works in cases where you do not have enough
information to apply Newton's laws during the whole interval

between "before" and "after. " In the case of the cannon and
shell, the momentum of the system (cannon plus shell) is zero

initially. Therefore, by the law of conservation of momentum, the

momentum will also be zero after the shell is fired. If you know
the masses and the speed of one, after firing you can calculate

the speed of the other. (The film loop titled "Recoil" provides just

such an event for you to analyze.) On the other hand, if both

speeds can be measured afterwards, then the ratio of the masses

can be calculated. In Unit 6, "The Nucleus, "you will see how
just such an approach was used to find the mass of the neutron

when it was originally discovered.

SG 21-24

SG25

SG 26

SG 27
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liiose Upl

and

F^^M = MmJ/J

By Newton's third law,

' AB ~ ~ '"b

SO that

Therefore,

F.e^t= -F,,M

^{m^v,) = -Mm^v^)

Suppose that each of the masses m^ and m^ are

constant. Let v^ and v^ stand for the velocities of

the two bodies at some instant, and let v^' and v^'

stand for their velocities at some later instant. Then

we can write the last equation as

A little rearrangement of terms leads to

and

nn,v^' - m,v^ = - m^v^' + m^v^

my' + mj/J = my, + my^

You will recognize this as our original expression

of the law of conservation of momentum.
Here we are dealing with a system consisting of

two bodies. This method works equally well for a

system consisting of any number of bodies. For

example, SG 21 shows you how to derive the law

of conservation of momentum for a system of three

bodies.

Deriving Conservation of Momentum
from Newton's Lows

Suppose two bodies with masses m^ and /n^ ex-

ert forces on each other (by gravitation or by mutual

friction, etc.). F^g is the force exerted on body A by

body B, and Fg^ is the force exerted on body B by

body A. No other unbalanced force acts on either

body; they form an isolated system. By Newton's

third law, the forces F^g and Fg^ are at every instant

equal in magnitude and opposite in direction. Each

body acts on the other for exactly the same time

M. Newton's second law, applied to each of the

bodies, says

F^gA? = \{m^v^)

Globular clusters of stars like this one contain

tens of thousands of suns held together by gravi-

tation attraction

262 LMT 3 IHL; TKIIMPH OF MECHANICS



# 10. Since the law of conservation ofmomentum can be

derived from Newton's laws, what good is it?

11. What force is required to change the momenlum ofan

object by 50 kg m/sec in 15 sec?

9.5
I

Isolated systems

There are important similarities between the conservation law of

mass and that of momentum. Both laws are tested by observing

systems that are in some sense isolated from the rest of the

universe. When testing or using the law of conservation of mass,

an isolated system such as a sealed flask is used. Matter can

neither enter nor leave this system. When testing or using the

law of conservation of momentum, another kind of isolated

system, one which experiences no net force from outside the

system, is used.

Consider, for example, two diy-ice pucks colliding on a

smooth horizontal table. The very low-friction pucks form a veiy

nearly closed or isolated system. The table and the earth do not

have to be included since their individual effects on each puck

cancel. Each puck experiences a downward graxitational force

exerted by the earth. The table exeits an equally strong upwai'd

push.

Even in this artificial example, the system is not entirely

isolated. There is always a little friction vvdth the outside world.

The layer of gas under the puck and air currents, for example,

exert friction. All outside forces are not completely balanced, and

so the two pucks do not form a truly isolated system. Whenevei-

this is unacceptable, one can expand or extend the system so

that it includes the bodies that are responsible for the external

forces. The result is a new system on which the unbalanced

forces are small enough to ignore.

For example, picture two cars skidding toward a collision on

an icy road. The frictional forces exerted by the road on each car

may be several hundred newtons. These forces are veiy small

compared to the immense force (thousands of nevutons) exerted

by each car on the other when they collide. Thus, for many
purposes, the action of the road can be ignored. For such

purposes, the two skidding cars during the collision are nearly

enough an isolated system. However, if friction vvdth the road (or

the table on which the pucks move) is too great to ignore, the

law of conservation of momentum still holds, but in a lar^ger

system—one which includes the i^oad or- table. In the case of the

skidding cars or the pucks, the load or table is attached to the

earth. So the entii^e ear^h would have to be included in a "closed

system." SG 28-33
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12. Define what is meant by "closed" or "isolated" system for
the purpose of the law of conservation of mass; for the

purpose of the law of conservation ofmomentum.

13. E}<.plain whether or not each of the following can be

considered an isolated system.

(a) a baseball thrown horizontally

(b) an artificial earth satellite

(c) the earth and the moon

14. Three balls in a closed system have the following masses
and velocities:

ball A: 4 kg, 8 m/sec left

ball B: 10 kg, 3 m/sec up

ball C: 8 kg, 4 m/sec right

Using the principles ofmass and momentum conservation,

what can you discover about the final condition of the system?

What cannot be discovered?

9.6 Elastic collisions

In 1666, members of the recently formed Royal Society of London
witnessed a demonstration. Two hardwood balls of equal size

^ ^ were suspended at the ends of two strings to foiTn two pendula.

One ball was released from rest at a certain height. It swung
—

;

-f • - down and stnjck the other, which had been hanging at rest.

• After impact, the first ball stopped at the point of impact while

\
the second ball swung ft^om this point to the same height as that

from which the first ball had been released. When the second
^ • ball returned and struck the first, it was now the second ball

which stopped at the point of impact as the first sv\amg up to

almost the same height from which it had started. This motion

repeated itself for several swings.

\ This demonstration aroused great interest among members of

the Society. In the next few years, it also caused heated and

often confusing arguments. Why did the balls rise each time to

nearly the same height after each collision? Why was the motion

"~P"^
'

"transferred" from one ball to the other when they collided? Why

j i

did the first ball not bounce back fixim the point of collision, or

1 continue moving forward after the second ball moved away from

^X^,. the collision point?

The law of conservation of momentum explains what is

~.«,—i„„ obseiA'ed, but it would also allow (juite different results. The law

says only that the momentum of ball A just before it strikes ball

B is equal to the total momentum of A and B just after collision.

It does not sav how A and B share the momentum. The actual

w result is just one of infinitelv manv different outt'omes that
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would all agree with conservation of momentum. For example,

suppose (though it has never been observed to happen) that ball

A bounced back with 10 times its initial speed. Momentum
would still be conseived /f ball B went ahead at 11 times As
initial speed.

In 1668, three men reported to the Royal Society on the whole

matter of impact. The three men were the mathematician John

Wallis, the architect and scientist Christopher Wren, and the

physicist Christian Huygens. Wallis and Wren offered partial

answers for some of the features of collisions; Huygens analyzed

the problem in complete detail.

Huygens explained that in such collisions another conservation

law in addition to the law of conservation of momentum, also

holds. Not only is the vector sum of mv's conseived, but so is the

ordinary arithmetic sum of rnv^s! In modern algebraic form, the

relationship he discovered can be expressed as

t'^a^a' + r"^"^«' " t"^a^^" + T^b^'b"

The scalar quantity VzmV^ has come to be called kinetic energy.

(The reason for the Vz, which does not really affect the rule here,

wdll become clear in the next chapter.) The equation stated

above, then, is the mathematical expression of the conservation

of kinetic energy. This relationship holds for the collision of two

"perfectly hard" objects similar to those observed at the Royal

Society meeting. There, ball A stopped and ball B went on at As
initial speed. A little algebra will show that this is the only result

that agrees with both conseivation of momentum and

conservation of kinetic energy. (See SG 33.)

But is the conservation of kinetic energy as general as the law

of conservation of momentum? Is the total kinetic energy present

conserved in any interaction occurring in any isolated system?

It is easy to see that it is not. Consider the first example of Sec.

9.2. Two carts of equal mass (and with putty between the

bumping surfaces) approach each other with equal speeds. They

meet, stick together, and stop. The kinetic energy of the system

after the collision is 0, since the speeds of both carts are zero.

Before the collision the kinetic energy of the system was Vzm^v,^'

+ V2m,jVg\ Both Vzm^v^^ and Vzm^v^^ are always positive

numbers. Their sum cannot possibly equal zero (unless both v^

and Vg are zero, in which case there would be no collision and

not much of a problem). Kinetic energy is not conseived in this

collision in which the bodies stick together. In fact, no collision

in which the bodies stick together will show consen^ation of

kinetic energy. It applies only to the collision of "perfectly hard"

bodies that bounce back fi^om each other.

The law of conservation of kinetic energy, then, is not as

general as the law of conservation of momentum. If two bodies

collide, the kinetic energy may or may not be conserved,

In general symbols, AS, -my^ = 0.

Compare this equation with the

conservation of momentum equa-

tion on page 254.

SG 34-37

Christian Huygens (1629-1695) was

a Dutch physicist. He devised an

improved telescope with which he

discovered a satellite of Saturn and
saw Saturn's rings clearly. Huygens

was the first to obtain the e^cpres-

sion for centripetal acceleration

fv'/RA' he worked out a wave theory

of light; and he invented a pendu-

lum-controlled clock. His scientific

contributions were major, and his

reputation would undoubtedly have

been greater had he not been over-

shadowed by his contemporary,

Newton.

CHAPTER 9 / CONSERVATION OF MASS AND MOMENTUM 265



Huvgens, and others after him for

about a century, did not use the

factor '/-. The quantity niv^ was
c^ed \is \i\'a, Latin for "living force."

Seventeenth- and eighteenth-cen-

tury scientists were greatly inter-

ested in distinguishing and naming
various "forces." They used the

word loosely; it meant sometimes
a push or a puU (as in the colloquial

modern use of the word force I,

sometimes what is now called "mo-
mentum," and sometimes what is

now called 'energ\'." The term vis

viva is no longer used.

depending on the type of collision. It is consened if the colliding

bodies do not cnjmple or smash or dent or stick together or heat

up or change physically in some other way. Bodies that inbound
without any such change aie perfectly elastic. Collisions between

them are perfectly elastic collisions. In perfectly elastic collisions,

both momentum and kinetic energy are conserved.

Most collisions are not peifectly elastic, and kinetic energ\' is

not conseived. Thus, the sum of the V^mv^'s after the collision is

less than that before the collision. Depending on how much
kinetic energy is "lost," such collisions might bv. called "partially

elastic" or "peifectly inelastic." The loss of kinetic energy' is

greatest in perfectly inelastic collisions, when the colliding

bodies remain together.

Collisions between steel ball bearings, glass marbles, hardwood
balls, billiard balls, or some rubber balls (silicone rubber) are

almost perfectly elastic, if the colliding bodies are not damaged
in the collision. The total kinetic energ\' after the collision might

be as much as, say, 96% of this value before the collision.

Examples of peifectly elastic collisions are found only in

collisions between atoins or subatomic particles.

Descartes (1596-16501 was the

most important French scientist of
the seventeenth centun'. In addi-

tion to his early contribution to the

idea ofmomentum conserx'ation,

he is remembered by scientists

as the inventor of coordinate sys-

tems and the graphical representa-

tion of algebraic equations. Des-

cartes' system of philosophy, which
used the deductive structure of
geometry as its model, is still injhi-

ential.

# 15. Which phrases correctly complete the statement? Kinetic

energy is conserxed

(a) in all collisions.

(b) whenever momentum is conserved.

(c) in some collisions.

(d) when the colliding objects are not too hard.

16. Kinetic energy is never negative because

(a) scalar quantities are always positive.

(b) it is impossible to draw vectors with negative length.

(c) speed is always greater than zero.

(d) it is proportional to the square of the speed.

9.T
I

Leibniz and the consen^ation laiv

Rene Descartes believed that the total quantity of motion in the

universe did not change. He v\Tote in Principles of Philosophy:

It is wholly rational to assume tliat (iod, since in the ci-eation of

matter He imparted different motions to its parts, and presenes

all matter in the same way and conditions in which He created

it, so He similarly preserves in it the same quantity of motion.

Descailes proposed to define the quantity of motion of

an object as the product of its mass and its speed. As you saw
in Sec. 1.1, this product is a conserved quantity only in \'eiy

special cases.
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Gottfried Wilhelm Leibniz was aware of the error in Descartes'

ideas on motion. In a letter in 1680 he wrote:

M. Descartes' physics has a great defect; it is that his rules of

motion or laws of nature, which are to serve as the basis, are

for the most part false. This is demonstrated. And his great

principle, that the quantity of motion is conserved in the world,

is an error.

Leibniz, however, was as sure as Descartes had been that

something involving motion was conserved. Leibniz called this

something, which he identified as 'force, " the quantity mV^

(which he called vis viva). This is just twice the quantity now
called kinetic energy. (Of course, whatever applies to mv^ applies

equally to Vzmv^.)

As Huygens had pointed out, the quantity Vzmx^ is consented

only in perfectly elastic collisions. In other collisions, the total

quantity of Vzmv^ after collision is always less than before the

collision. Still, Leibniz was convinced that Vzmv^ is always

conserved. In order to save his conservation law, Leibniz

invented an explanation for the apparent loss of vis viva. He

maintained that the vis viva is not lost or destroyed. Rather, it is

merely "dissipated among the small parts " of which the colliding

bodies are made. This was pure speculation, and Leibniz offered

no supporting evidence. Nonetheless, his explanation anticipated

modern ideas about the connection between energy and the

motion of molecules.

Leibniz extended conservation ideas to phenomena other than

collisions. For example, when a stone is thrown straight upward,

its quantity of Vamv" decreases as it rises, even without any

collision. At the top of the trajectoiy, Vzmv^ is zero for an instant.

Then it reappears as the stone falls. Leibniz wondered whether

something applied or given to a stone at the start is somehow
stored as the stone rises, instead of being lost. His idea would

mean that Vzmv^ is just one part of a more general and really

conseived quantity.

Leibniz (1646-1716), a contempo-
rary of Newton, was a German phi-

losopher and diplomat, an advisor

to Louis Xrv of France and Peter

the Great of Russia. Independently

of Newton, Leibniz invented the

method of mathematical analysis

called calculus. A long public dis-

pute resulted between the two

great men concerning charges of
plagiarism of ideas.

% 17. According to Leibniz, Descartes' principle of conservation

ofmv was

(a) correct, but trivial.

(b) another way of expressing the conservation ofvis viva.

(c) incorrect.

(d) correct only in elastic collisions.

18. How did Leibniz e}cplain the apparent disappearance of the

quantity Vznv/

(a) during the upward motion of a thrown object?

(b) when the object strikes the ground?
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study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 9 include:

Experiments

Collisions in One Dimension

Collisions in Two Dimensions

Film Loops
One-Dimensional Collisions. I

One-Dimensional Collisions. II

Inelastic One-Dimensional Collisions

Tvvo-Dimensional Collisions. I

Two-Dimensiontil Collisions. II

Inelastic Tvvo-Dimensional Collisions

Scattering of a (Cluster of Objects

Elxplosion of a Cluster of Objects

2. Certainly Lavoisier did not investigate everv'

possible interaction. What justification did he have

for claiming mass was conserved "in all the

operations of art and nature"?

3. It is estimated that ever\' year at least 1 ,800

metric tons of meteoric dust fcdl to the earth. The

dust is mostly debris that was ino\ang in orbits

around the sun.

(a) Is the earth (whose mass is about 5.4 x lO"' tons)

reasonably considered to be a closed system with

respect to the law of conservation of mass?

(b) How large would the system, including the earth,

have to be in order to be completely closed?

4. Would you expect that in your lifetime , when
more accurate balances are built , you will see

experiments which show that the law of conservation

of mass does not entirely hold for chemical reactions

in closed systems?

5. Dayton C. Miller, a renowned experimenter at

Case Institute of Technology, was able to show that

two objects placed side by side on an equal-arm pan
balance did not exactly balance two otherwise

id(!nti(al objects placed one on top of the other. I The

reason is that the pull of gravity d(HT(!as(\s with

distance from the center of the earth. i Does this

experiment contradict the law of conservation of

mass?

6. A children's toy known as a Snake consists of a

tiny pill of mercuric thiocyanate. When the pill is

ignited, a large, serpent-like foam curls out idmost

from nothingness. Devise and describe an

experiment by which you would test the law of

conservation of mass for this demonstration.

7. Consider the following chemical reaction, which

was studied by Landolt in his tcjsts of the law of

conservation of mass. In a closed container, a

solution of 19.4 g of potassiuin chromate in 100.0 g
of water is mixed witli a solution of 33. 1 g of lead

nitrate in 100.0 g of water. A bright yellow solid

precipitate forms and settles to the bottom of the

container. When removed from the liquid, this solid

is found to have a mass of 32.3 g and is found to

have properties different from either of the

reactants.

(a) What is the mass of the remaining licjuid?

(Assume the combined inass of idl substances in the

system is conserved.!

(b) After removal of the yellow precipitate, the

remaining liquid is heated to 95° C. The water

evaporates, leaving a white solid with a mass of 20.2

kg. Why does this result imply that the water did not

react with anything in either la I or lb I?

8. (a) Ten grams (10 g) of a solid are added to 50 g
of a liquid on earth. What is their total mass? What
would be their totid mass on the moon?

(b) A mixture that weighs 50 N on earth weighs

about 8 N on the moon. Why is this fact not a

violation of conservation of mass?

(c) Ten cubic centimeters 110 cm'i of a solid are

added to 50 mL (cm^) of a liquid. The resulting

mixture has a volume of 54 cm'. Why does this result

not violate conservation of mass?

9. (a) For an isolated system, state the principle of

consenation of momentum in terms of the change

in total momentum AP and of the totiU initiid and

final momenta.

(b) For the following disks, find the momentum of

each disk and the totid monunitiim of th(! svstem:
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sg
disk A: 5 kg, 8 m/sec west

disk B: 6 kg, 25 m/sec north

disk C: 10 kg, 2 m/sec east

disk D: 4 kg, 5 m/sec east

(c) If the disks in (b) all collide at the same instant

and stick together, what is the final momentum of

the system? What is the final speed of the group of

disks?

(d) Explain how a system could have zero total

momentum and yet still have many massive objects

in motion.

10. A freight car of mass 10" kg travels at 2.0 m/sec

and collides with a motionless freight car of mass 1.5

X lO'' kg on a horizontal track. The two cars lock

and roll together after impact. Find the velocity of

the two cars after collision. Hints: The general

equation for conservation of momentum for a two-

body system is:

(a) What quantities in the problem can be

substituted in the equation?

(b) Rearrange terms to get an expression for v^'.

(c) Find the value of v^'. (Note: v^' = vj .}

11. You have been given a precise technical

definition for the word momentum. Look it up in a

large dictionary and record its various uses. Can you
find anything similar to our definition in these more
general meanings? How many of the uses seem to

be consistent with the technical definition given

here?

la. Benjamin Franklin, in correspondence with his

friend James Bowdoin (founder and first president of

the American Academy of /\rts and Sciences),

objected to the corpuscular theory of light by saying

that a particle traveling with such immense speed

(3 X 10" m/sec) would have the impact of a 10-kg ball

fired from a cannon at 100 m/sec. What mass did

Franklin assign to the "light particle"?

13. If powerful magnets are placed on top of each
of two carts, and the magnets are so arranged that

like poles face each other when one cart is pushed
toward the other, the carts bounce away from each

other without actually making contact.

(a) In what sense can this be called a collision?

(b) Will tlie law of conseiA/ation of momentum
apply?

(c) Describe an ai'rangement for testing your answer

to (b).

14. A person throws a fast ball vertically. Clearly, the

momentum of the ball is not conserved; it first loses

momentum as it rises, then gains it as it falls. How
large is the "closed system" within which the ball's

momentum, together with that of other bodies (tell

which), is conserved. What happens to the rest of the

system as the ball rises? as it falls?

15. Did Newton arrive at the law of conservation of

momentum in the Principia? If a copy of the

Principia is available, read Corollary III and Definition

II (just before and just after the three laws).

16. (a) For how long would a force of 20 N have to

be applied to cause a system to gain a momentum of

80 kg • m/sec?

(b) A 5-kg object initially travels udth a momentum
of 50 kg • m/sec. If a 10-N force acts on the object for

5 sec, what is the final speed? (Solve this problem

first using Newton's second law directly and then

using momentum formulas.)

(c) What are the advantages of momentum formulas

over Newton's laws? Is one more basic than the

other?

17. (a) Why can ocean liners or planes not turn

corners sharply?

(b) In the light of your knowledge of the relationship

between momentum and force, comment on reports

about unidentified flying objects (UFO's) turning

sharp corners in full flight.

18. A girl on skis (mass of 60 kg including skis)

reaches the bottom of a hill going 20 m/sec. What is

her momentum? She strikes a snowdrift and stops

within 3 sec. What force does the snow exert on the

girl? How far does she penetrate the drift? What
happens to her momentum?

19. During sports, the forces exerted on parts of the

body and on the ball, etc., can be astonishingly lai-ge.

To illustrate this, consider the forces in hitting a golf
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ball. Assume the Ijall's mass is ().U4t) k^. From the

strobe photo on p. 27 of Unit 1, in which the time

intenal between strobe flashes was 0.01 sec,

estimate:

(a) the speed of the ball after impact;

(b) the magnitude of the ball's momentum after

impact;

(c) how long the impact lasted;

(d) the average force exerted on the b^ill during

impact.

20. We derived tlie law of conservation of

momentum for two bodies from \'e\\1on's third and
second laws. Is the principle of the conservation of

mass essential to this derivation? If so, where does it

it enter?

31. Consider an isolated system of three bodies, A,

B, and C. The forces acting among the bodies can be

indicated by subscripts; for example, the force

exerted on body A by body B can be given the symbol
F,„. Bv i\evvlon's third law of motion, F = —F .

•^o .. HA \B

Since the system is isolated, the only force on each

body is the sum of the forces exerted on it by the

other two; for example, F^ = F^^ + F^, . Using these

principles, show that the total momentum change of

the system will be zero.

aa. In Chapter 4, SG 33 was about putting an Apollo

capsule into an orbit around the moon. TIk; question

was: "Given the speed i'_ necessary' for orbit and the

current speed v, how long should the engine with

thrust F fire to give the capsule of mass m the right

speed?" There you solved tiie problem by

considering the acceleration.

(a) .Answer the question more directly by considering

change in niomoiitum.

(b) What would be the total momentum of uU the

exhaust from the rocket?

(c) If the "exhaust velocity" were v , about what mass
of fuel would be required?

23. (a) Show that when two bodies collide their

changes in velocity are inversely proportional to their

masses; that is, if m^ and m„ are the masses and Av^

and AV|j the velocity changes, show that numerically,

Ai'.

(b) Show how it follows from consen'ation of

momentum that if a light particle (like a B.B. pellet)

bounces off a massive object (like a bowling balll,

the velocity of the light particle is chiinged much
more than the velocity of the massive object.

(c) For a head-on elastic collision betiveen a body of

mass m^ moving with velocity \
^
and a body of mass

m^ at rest, combining the equations for conservation

of momentum and conservation of kinetic energy

leads to the relationship v/ = v^ (m^ - mj I (m^ +
ni^l. Show that if body B has a much greater mass
than body A, then v/ is almost exactly the same as

v^; that is, body A bounces back with virtually no loss

in speed.

a4. The equation m^' ^ + ni„v„ = "i^v/ + ni„v„' is a

general equation applicable to countless separate

situations. For example, consider a 10-kg shell fired

from a 1 ,000-kg cannon. If the shell is given a speed

of 1,000 m/sec, what would be the recoil speed of

the cannon? lAssume the cannon is on £in £ilmost

frictionless mount. I Hint: Your answer could include

the following steps:

(a) If A refers to the cannon and B to the shell, what

are v^ and \^^ (before firingi?

(b) What is the total momentum before firing?

(c) What is the total momentum after firing?

(d) Compare the magnitudes of the momenta of the

cannon and of the shell after firing.

(e) Compare the ratios of the speeds and of the

masses of the shell and cannon after firing.

25. The engines of the first stage of the Apollo

Saturn rocket develop an average; thrust of 3.") million
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N for 150 sec. (The entire rocket weighs 28 million

N near the earth's surface.)

(a) How much momentum will be given to the

rocket during that interval?

(b) The final speed of the vehicle is 9,760 km/hr.

What would one have to know to compute its mass?

26. Newlon's second law can be written FAt =

A(mv). Use the second law to explain the following:

(a) It is safer to jump into a fire net or a load of hay

than onto the hard ground.

(b) When jvimping down from some height, you

should bend your knees as you come to rest, instead

of keeping your legs stiff.

(c) Hammer heads are generally made of steel rather

than rubber.

(d) Some cars have plastic bumpers which,

temporarily defomed under impact, slowly return to

their original shape. Others are designed to have a

somewhat pointed front-end bumper.

(S

—^^ /—

\

37. A student in a physics class, having learned

about elastic collisions and consei'vation laws,

decides that he can make a self-propelled car. He

proposes to fix a pendulum on a cart, using a

"superball" as a pendulum bob. He fixes a block to

the cart so that when the ball reaches the bottom of

the arc, it strikes the block and rebounds elasticaUy.

It is supposed to give the cart a series of bumps that

propel it along.

(a) Will his scheme work? (Assume the "superball " is

perfectly elastic.) Give reasons for your answer.

(b) What would happen if the cart had an initial

velocity in the forward direction?

(c) What would happen if the cart had an initial

velocity in the backward direction?

^I

LD-

\ ti

i I'

as. A police report of an accident describes two

vehicles colliding (inelastically) at an icy intersection

of country roads. The cars slid to a stop in a field

as shown in tlie diagram. Suppose the masses of the

cars are approximately the same.

(a) How did the speeds of the two cars compare just

before collision?

(b) What information would you need in order to

calculate the actual speeds of the automobiles?

(c) What simplifying assumptions have you made in

answering (b)?

29. A person fires a gun horizontally at a target fixed

to a hillside. Describe the changes of momentum to

the person, the bullet, the target, and the earth. Is

momentum conserved

(a) when the gun is fired?

(b) when the bullet hits?

(c) during the bullet's flight?

30. A billiard ball moving 0.8 m/sec collides with the

cushion along the side of the table. The collision is

head-on and can here be regarded as perfectly

elastic. What is the momentum of the ball

(a) before impact?

(b) after impact?

(c) What is the change in momentum of the ball?

(d) Is moinentum conserved?
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31. Discuss conservation of momentum for the

system shown in this sketch from Lc Petit Prince.

What happens

(a) if he leaps in the air?

(b) if he runs around?

32. (a) State the principle of consen'ation of kinetic

energy. For what systems is this law applicable?

(b) What does this principle tell you about the

change in the total kinetic energy, and about the

total initial and finid kinetic energies, of an isolated

system of elastic interactions?

(c) What is the total kinetic energy of a system of

two carts with masses of 5 kg and 10 kg, traveling

toward one another at 4 m/sec and 3 in/sec,

respectively?

(d) If the two carts in (c) rebound elastically, what is

the total final kinetic energy?

33. Fill in the blanks for the following motions:



1
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Energy
10.1 Work and kinetic energv
10.2 Potential energv
10.3 Conservation of mechanical energy

10.4 Forces that do no ivork

10.5 Heat as energt'

10.6 The steam engine and the Industrial Revolution

10.7 The efficiency of engines

10.8 Energy in biological systems

10.9 Arriving at a general conservation law
10.10 The laws of thermodji'namics

10.11 Faith in the laivs of thermodynamics

lO.l.
I

Work and kinetic energy

In eveiyday language, pitching, catching, and running on the

baseball field are "playing," while sitting at a desk, reading,

writing, and thinking are "working." However, in the language of

physics, "work" has been given a rather special definition, one

that involves physical concepts of force and displacement

instead of the subjective ones of reward or accomplishment. It is

more closely related to the simple sense of effort or labor. The

work done on an object is defined as the product of the force

exerted on the object times the displacement of the object along

the direction of the force.

When you throw a baseball, you exert a large force on it while

it moves forward for about 1 m. In doing so, you do a large

amount of work. By contrast, in waiting or in turning the pages of
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SG 1

Note that work you do on a box
does not depend on how fa.st you
do your job.

The way d is defined here, the W
= Fd is correct. It does not, how-
ever, explicitly tell how to compute
W if the motion is not in exactly the

same direction as the force. The
definition of d implies that it would
be the component of the displace-

ment along the direction of F; £ind

this is entirely correct.

Note that work is a scalar quantity'.

The equation W = Fd implies that

work is always a positive quantity.

However, by convention, when the

force on a body and its displace-

ment are in opposite directions,

the work is negative. This implies

that the body's energy would be
decreased. The sign convention fol-

lows naturally from the more rig-

orous definition of mechcUiiciil work
as W = Fl cos 6, where 8 is the

angle between F and 7.

a book you exert only a small force over a short distance. This

does not require much work, as the term "work" is understood

in physics.

Suppose you are employed in a factory to lift boxes from the

flooi' straight upward to a conveyor belt at waist height. Here the

language of common usage and that of physics both agree that

you are doing work. If you lift two boxes at once, you do twice as

much work as you do if you lift one box. If the conveyor belt

were twice as high aboxe the (loor, you would do twice as much
work to lift a box to it. The work you do depends on both the

magnitude of the force you must exert on the box and the

distance through which the box moves in the direction of the

force.

We can now define the work W done on an object by a force F
as the product of the magnitude F of the force and the distance

d that the object moves in the direction ofF while the force is

being exerted; in symbols,

W = Fd

To lift a box weighing 100 N upward through 0.8 m requires

you to apply a force of 100 N. The work you do on the box is 100

N X 0.8 m = 80 N-m.

From the definition of work, it follows that no w^ork is done if

there is no displacement. No matter how hard \'ou push on a

wall, no work is done if the wall does not move. Also, no work is

done if the only motion is perpendicular to the dii^ection of the

force. For example, suppose you are earning a book bag. You
must pull up against the downward pull of gravity to keep the

bag at a constant height. But as long as you are standing still you
do no work on the bag. Even if you walk along with it steadily

in a horizontal line, the only work you do is in moving it foiA\'ard

against the small resisting force of the air.

Work is a useftil concept in itself. The concept is most useful

in understanding the concept of energy. There are a great many
foiTHs of energy. A few of them will be discussed in this chapter.

We will define them, in the sense of describing how they can be

measured and how they can be expressed algebraicallv. We will

also discuss how energy changes ft'om one form to another. The
general concept of energy is veiy difficult to define. But to define

some particular foiTiis of energy is easy enough. The concept of

work helps greatly in making such definitions.

The chief importance of the concept of work is that work

represents an amount of energv' transformed fiom one form to

another. For example, when you throw a ball you do work on it.

You also transform chemical energv', which youi- bodv obtains

from food and oxygen, into energy of motion of the ball. When
you lift a stone (doing work on it), you transfomi chemical

energ\' into graxitational potcMitial oncrgv. If vou icicase the
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stone, the earth pulls it downward (does work on it); gravitational

potential energy is transformed into energy of motion. When the

stone strikes the ground, it compresses the ground below it

(does work on it); energy of motion is transfonned into heat. In

each case, the work is a measure of how much energy is

transferred.

The form of energy we have been calling "energy of motion" is

perhaps the simplest to deal with. We can use the definition of

work, W = Fd, together vvdth Newton's laws of motion to get an

expression of this form of energy. Imagine that you exert a

constant net force F on an object of mass m. This force

accelerates the object over a distance d from rest to a speed v.

Using Newton's second law of motion, we can show in a few

steps of algebra that

Fd = YzmV"

SG 2

>

The details of this derivation are given on the first half of page

276.

Fd is the expression for the work done on the object by

whatever exerted the force F. The work done on the object

equals the amount of energy transformed from some form into

energy of motion of the object. So Vzmv^ is the expression for the

energy of motion of the object. The energy of motion of an object

at any instant is given by the quantity VzmV^ at that instant and

is called kinetic energy. The symbol KE is used to represent

kinetic energy. By definition then,

KE = Vznr/

Now it is clearer why Vznnv' instead of just m\r was used in

Chapter 9: VzmV' relates directly to the concept of work and so

provides a useful expression for energy of motion.

The equation Fd — Vzmv^ was obtained by considering the

case of an object initially at rest. In other words, the object had

an initial kinetic energy of zero. The relation also holds for an

object already in motion when the net force is applied. In that

case, the work done on the object still equals the change in its

kinetic energy:

Fd = MKE)

The quantity A(KE) is by definition equal to (Vzmv^)^,^,,

- (V2mv");,^i(j3,. The proof of this general equation appears on the

second half of page 276.

Work is defined as the product of a force and a distance.

Therefore, its units in the mks system are newtons x meters or

neu4on-meters.A newton-meter is also called a joule (symbol J).

The joule is the unit of work or of energ\/.

The Greek word kinetos means
"moving."

The speed of an object must be
measured relative to some refer-

ence frame, so kinetic energy is a

relative quantity also. See SG 3.

SG 3-8

The name of the unit of energy and
work commemorates J. P. Joule,

nineteentli-century English physi-

cist famous for his experiments
showing that heat is a form of en-

ergy (see Sec. 10.7). There is no gen-

eral agreement today whether the

name should be pronounced like

"jool" or like "jowl." The majority

of physicists favor the former.

CHAPTER 10 / ENERGY 275



Close UpI
Doing Work on o Sled
Suppose a loaded sled of mass m Is initially at

rest on low-friction ice. You, wearing spiked shoes,

exert a constant horizontal force F on the sled. The

weight of the sled is balanced by the upward push

exerted by the ice, so F is effectively the net force

on the sled. You keep pushing, running faster and

faster as the sled accelerates, until the sled has

moved a total distance d.

Since the net force F is constant, the acceleration

of the sled is constant. Two equations that apply to

motion starting from rest with constant acceleration

are

and

V = at

d = V2af

Therefore, the work done in this case can be

found from just the mass of the body and its final

speed. With more advanced mathematics, it can be

shown that the result is the same whether the force

is constant or not.

More generally, we can show that the change in

kinetic energy of a body already moving is equal to

the work done on the body. By the definition of

average speed,

d = vj

If we consider a uniformly accelerated body whose
speed changes from v^ to v, the average speed (i^^J

during t is V2(v + vJ. Thus,

V + V.
d = ——^ X t

%„ 1-^ V^"T 9
where a is the acceleration of the body, t is the time

interval during which it accelerates (that is, the time

interval during which a net force acts on the body),

V is the final speed of the body, and d is the distance

it moves in the time interval t.

According to the first equation, t = vs. If we
substitute this expression for t in the second equa-

tion, we obtain

d = Vzaf = Vza—, = V2—
a a

The work done on the sled is lA/ = Fd. From

Newton's second law, F = ma. so

W = Fd

= ma X V2—
a

The acceleration cancels out, giving

W = V2mv'

Bythedefinitionof acceleration, a = Ai/ 1; therefore,

t = Iv a = (v - vJ a. Substituting (v - v^) a for

t gives

V + v^ V - v^
d = :

—- X
2 a

^ (V + V^) {V - v^)

2a

= °

2a

The work (W) done is W = Fd, or, since F = ma,

W = ma X d

= ma X
2a

m , ,

= 2 (^ - ^0')

= ^ 2m v^ - ^^2mv,^
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1. If a force F is everted on an object while the object moves a

distance d in the direction of the force, the work done on the

object is:

(a) F (bj Fd (c) F/d (d) VzFd'

2. The kinetic energy of a body ofmass m moving at a speed v

is:

(a) Vzxnv (b) Vzm\r (c) mv" (d) 2mv^ (e) mV

10.2
I

Potential energ[^

As you saw in the previous section, doing work on an object can

increase its kinetic energy. Work also can be done on an object

without increasing its kinetic energy. For example, you might lift

a book straight up at a small, constant speed, so that its kinetic

energy stays the same. But you are still doing work on the book.

By doing work you are using your body's store of chemical

energy. Into what form of energy is it being transformed?

The answer, as Leibniz suggested, is that there is "energy"

associated with height above the earth. This energy is called

gravitational potential energy. Lifting the book higher and higher

increases the gravitational potential energy. You can see clear

evidence of this effect when you drop the book. The gravitational

potential energy is transformed rapidly into kinetic energy of fall.

In general terms, suppose a force F is used to displace an object

upwards a distance d, without changing its KE. Then, the

increase in gravitationcd potential energy, AlPEIg,^^, is

Potential energy can be thought of as stored energy. As the

book falls, its gravitational potential energy decreases while its

kinetic energy increases correspondingly. When the book reaches

its original height, all of the gravitational potential energy stored

during the lift vAW have been transfonned into kinetic energy.

Many useful applications follow from this idea of potential or

stored energy. For example, the steam hammer used by

construction crews is driven by high-pressure steam ("pumping

in " energy). When the hammer drops, the gravitational potential

energy is converted to kinetic energy. Another example is the

proposal to use extra available energy from electric power plants

during low-demand periods to pump water into a high reservoir.

When there is a large demand for electricity later, the water is

allowed to run down and drive the electric generators.

There are forms of potential energy other than gravitational.

For example, if you stretch a rubber band or a spring, you
increase its elastic potential energy. When you release the rubber

lf=

}—:'.
3

h

To lift the book at constant speed,

you must exert an upward force F

equal in magnitude to the weight

F of the book. The work you do
grav *^

in lifting the book through distance

d is Fd, which is numerically equal

to F d. See SG 9 and 10.

A stretched bow contains elastic

potential energy. When released,

the resulting kinetic energy propels

the arrow to the target.
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SG 11

SG 12

SG 13

The work you have done on the

earth-book system is equal to the

energy you have given up from
your store of chemical energy.

band, it can deliver the stored energy to a projectile in the form

of kinetic energy. Some of the work done in blowing up an

elastic balloon is also stored as potential energy.

Other forms of potential energy are associated with othei' kinds

of forces. In an atom, the negatively charged electrons are

attracted by the positixely charged nucleus. If an externally

applied force pulls an electron away from the nucleus, the

electric potential energy increases. If the election is pulled hack

and moves toward the nucleus, the potential energy' decreases as

the electron's kinetic energy increases.

If two magnets are pushed together with north poles facing,

the magnetic potential energy increases. When released, the

magnets wdll move apart, gaining kinetic energy as they lose

potential energy.

Where is the potential energv' located in all these cases? It

might seem at first that it "belongs" to the body that has been

moved. But without the other object (the eailh, the nucleus, the

other magnet) the work would not increase any potential form

of energy. Rather, it would increase only the kinetic energy of the

object on which work was done. The potential energy belongs

not to one body, but to the whole system of interacting bodies!

This is evident in the fact that the potential energy is available to

any one or to all of these interacting bodies. For example, you
could give either magnet all the kinetic energv' just by releasing

one magnet and holding the other in place. Or suppose you
could fix the book somehow to a hook that would hold it at one

point in space. The earth would then "fall" up toward the book.

Eventually the earth would gain just as much kinetic energy at

the expense of stored potential energy as the book would if it

were free to fall.

The increase in gravitational potential energy "belongs" to the

earth-book system, not the book alone. The work is done by an

"outside" agent (you), increasing the total energy of the

earth-book system. When the book falls, it is responding to

forces exerted by one part of the system on another. The total

energy of the system does not change; it is converted from PE to

KE. This is discussed in more detail in the next section.

3. If a stone ofmass m falls a vertical distance d, pulled by its

weight F^_
_^,
= ma^ the decrease in gravitational potential

energy is:

(a) md (b) mag (c) ma^d (d) ¥21x10" (e) d

4. When you compress a coil spring, you do work on it. The

elastic potential energy:

(a) disappears (b) breaks the spring (c) increases (d) decreases

5. Tv\'o electrically charged objects repel one another. To

increase the electric potential energv, you n^usl
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(a) make the objects move faster.

(b) move one object in a circle around the other object.

(c) attach a rubber band to the objects.

(d) pull the objects farther apart.

(e) push the objects closer together.

10*3
I

Conservation of mechanical energy

In Sec. 10.1, you learned that the amount of work done on an

object equals the amount of energy transfonned from one fonn

to another. For example, the chemical energy of a muscle is

transfonned into the kinetic energy of a thrown ball. This

statement implies that the amount of energy involved does not

change, only its form changes, rhis is particularly obvious in

motions where no "outside" force is applied to a mechanical

system.

While a stone falls freely, for example, the gravitational

potential energy of the stone-earth system is continually

transfonned into kinetic energy. Neglecting air friction, the

decrease in gravitational potential energy is, for any portion of

the path, equal to the increase in kinetic energy. Consider a

stone thrown upward. Between any two points in its path, the

increase in gravitational potential energy equals the decrease in

kinetic energy. For a stone falling or rising (without external

forces such as friction), the only force applied is F The work
done by this force is (wdth d positive for upward displacements)

-^gravd

= -AK£

This relationship can be rewritten as

Ml

or still more concisely as

MKE) + A(f£)g,.^^. =

MKE + PE„ =

If (KE + f£grav' represents the total mechanical energy of the

system, then the change in the system's total mechanical energy

is zero. In other words, the total mechanical energy, A(KE +
PE^^.J, remains constant; it is conserved.

A similar statement can be made for a vdbrating guitar string.

While the string is being pulled away ft^om its unstretched

position, the string-guitar system gains elastic potential energy.

When the string is released, the elastic potential energy

decreases while the kinetic energy of the string increases. The
string coasts through its unstretched position and becomes
stretched in the other direction. Its kinetic energy then decreases

The equations in this section are

true only if friction is negligible. We
shall extend the range later to in-

clude friction, which can cause the

conversion of mechanical energy

into heat energy.

SG 14
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Up to this point, we have alu'ays

considered only changes in PE.

There is some subtlety in defining

an actual value of PE. See SG 15.

SG 16

During its contact with a golf club,

a golf ball is distorted, as is shown
in the high-speed photograph. As
the ball moves awayfrom the club,

the ball recovers its normal spheri-

cal shape, and elastic potential en-

ergy is transformed into kinetic

energy.

as the elastic potential energy increases. As it vibrates, thei^ is a

repeated transfoiTnation of elastic potential energy into kinetic

energy and back again. The string loses some mechanical energy;

for example, sound waves radiate away. Otherwise, the decrease

in elastic potential energy over any part of the string's motion

would be accompanied by an equal increase in kinetic energy,

and vice versa:

A(P£), = -MKE)

In such an ideal case, the total mechanical energy (K£ + PE^.,.j^,J

remains constant; it is conseived.

Galileo's experiment with the pendulum (Sec. 3.5) can also be

described in these terms. The gra\dtational potential energy is

determined by the height to which the pendulum was originally

pulled. That potential energy is converted to kinetic energy at

the bottom of the swing and back to potential energy at the

other side. Since the pendulum retains its initial energy, it will

stop (KE — 0, PE — max) only when it returns to its initial

height.

You have seen that the potential energy of a system can be

transformed into the kinetic energy of some part of the system,

and vice versa. Suppose that an amount of work IV is done on

part of the system by some external force. Then the energy of the

system is increased by an amount equal to W. Consider, for

example, a suitcase-earth system. You must do work on the

suitcase to pull it away ft om the earth up to the second floor.

This work increases the total mechanical energy of the

earth-suitcase system. If you yourself are included in the system,

then your internal chemical energy decreases in proportion to

the work you do. Therefore, the total energy of the lifter +
suitcase -f earth system does not change.

The law of conservation of energy can be derived from

Nev^on's laws of motion. Therefore, it tells nothing that could

not, in principle, be computed directly ftom Newton's laws of

motion. However, there are situations where there is simply not

enough information about the forces involved to apply Newton's

laws. It is in these cases that the law of conservation of

mechanical energy demonstrates its usefulness.

A perfectly elastic collision is a good example of a situation

where we often cannot apply Newlon's laws of motion. In such

collisions, we do not know and cannot easily measure the force

that one object exerts on the other. We do know that during the

actual collision, the objects distort one another. (See the

photograph of the golf ball in the margin.) The distortions are

produced against elastic forces. Thus, some of the combined

kinetic energy of the objects is transformed into elastic potential

energy as they distort one another. Then elastic potential energy

is transformed back into kinetic energy as the objects separate.

In an ideal case, both the objects and their surroundings are
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exactly the same after colliding as they were before.

This is useful but incomplete knowledge. The law of

conservation of mechanical energy gives only the total kinetic

energy of the objects after the collision. It does not give the

kinetic energy of each object separately. (If enough information

were available, we could apply Newton's laws to get more
detailed results, namely, the speed of each object.) You may
recall that the law of conservation of momentum also supplies

useful but incomplete knowledge. It can be used to find the total

momentum, but not the individual momentum vectors, of elastic

objects in collision. In Chapter 9, you saw how conservation of

momentum and conseivation of mechanical energy together limit

the possible outcomes of perfectly elastic collisions. For two

colliding objects, these two restrictions are enough to give an

exact solution for the two velocities after collision. For more
complicated systems, conservation of energy remains important.

Scientists usually are not interested in the detailed motion of

every part of a complex system. They are not likely to care, for

example, about the motion of every molecule in a rocket exhaust.

Rather, they probably want to know only about the overall thiTist

and temperature. These can be found from the overall

conservation laws.

• 6. As a stone falls frictionlessly,

(a) its kinetic energy is conserved.

(b) its gravitational potential energy is conserved.

(c) its kinetic energy changes into gravitational potential

energy.

(d) no work is done on the stone.

(e) there is no change in the total energy.

7. In which position is the elastic potential energy of the

vibrating guitar string greatest? In which position is its kinetic

energy greatest?

8. If a guitarist gives the same amount of elastic potential

energy to a bass string and to a treble string, which one will

gain more speed when released? (The mass of 1 m of bass

string is greater than that of 1 m of treble string.)

9. How would you compute the potential energy stored in the

system shown in the margin made up of the top boulder and
the earth?

10,4
I

Forces that do no ivork

In Sec. 10.1, the work done on an object was defined as the

product of the magnitude of the force F applied to the object
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The reason that your arm gets tired

even though you do no work on the

book is that muscles are not rigid,

but are constantly relaxing and
tightening up again. That requires

chemical energy. When you carry

a heavy load on your back or shoul-

ders, the supporting force is mostly

pro\ided by bones, not muscles. As

a result, you can carry much bigger

loads for greater distances.

and the magnitude of the distance d in the direction of F
through which the ohject moves while the force is being applied.

In all the examples so far, the object moxed in the same
direction as that of the force vector.

Usually, the direction of motion and the direction of the force

are not the same. For example, suppose you cany a book at

constant speed horizontally, so that its kinetic energy does not

change. Since there is no change in the book's energy, you are

doing no work on the book Iby the definition of workl. You do

apply a force on the book, and the book does move through a

distance. But here the applied force and the distance are at right

angles. You exert a vertical force on the book upwaid to balance

its weight. But the book moves horizontally. Here, an applied

force F is exerted on an object while the object moves at right

angles to the direction of the force. Therefore, F has no

component in the direction of d, and so the force does no work.

This statement agrees entirely with the idea of woi'k as energy

being transformedfrom one form to another. Since the book's

speed is constant, its kinetic energy is constant. Since its

distance from the earth is constant, its gravitational potential

energy is constant. Therefore, there is no transfer of mechanical

energy.

A similar reasoning, but not so obvious, applies to a satellite in

a circular orbit. The speed and the distance from the earth are

both constant. Therefore, the kinetic energy and the gravitational

potential energy are both constant, and there is no energy

transfoiTiiation. For a circular orbit, the centripetal force vector is

perpendicular to the tangential direction of motion at any

instant. No work is being done. To put an artificial satellite into a

circular orbit requires work. Once it is in oibit, however, the KE
and PE stay constant, and no further work is done on the

satellite.

When the orbit is eccentric, the force vector is usually not

perpendicular to the direction of motion. In such cases, energy is

continually transformed between kinetic and gravitational

potential fomis. The total energy of the system remains constant,

of course.

Situations where the net force is exactly perpendicular- to the

motion are as rare as situations where the for^ce and motion are

in exactly the same direction. What about the more usual case,

involving some angle between the force and the motion?

J£Cof/D ncxiR

rif^T fuy-in
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In general, the work done on an object depends on how far

the body moves in the direction of the force. As stated before, the

equation W — Fd properly defines work only if d is the distance

moved in the direction of the force. The gravitationcd force F
is directed down. So only the distance down determines the

amount of work done by F^_^^, Change in gravitational potential

energy depends only on change in height, near the earth's

surface, at least. For example, consider raising a suitcase from

the first floor to the second floor. The same increase in Pfig,^, of

the suitcase-earth system occurs regardless of the path by which

the suitcase is raised. Also, each path requires the same amount
of work.

More generally, change in P£g,^, depends only on change of

position. The details of the path foflowed in making the change

make no difference at all. The same is tnae for changes in elastic

potential energy and electric potential energy. The changes

depend only on the initial and final positions, and not on the

path taken between these positions.

An interesting conclusion follows from the fact that change in

PE^^.^^. depends only on change in height. For example, consider a

child on a slide. The gravitational potential energy' decreases as

her altitude decreases. If frictional forces are vanishingly small,

all the work goes into transfomiing P£ into KE. Therefore, the

increases in KE depend only on the decreases in altitude. In

other words, the child's speed when she reaches the ground will

be the same whether she slides down or jumps off the top. A
similar principle holds for satellites in orbit and for electrons in

TV tubes. In the absence of friction, the change in kinetic energy

depends only on the initial and final positions, and not on the

path taken between them. This principle gives great simplicity to

some physical laws, as you wdll see when you study gravitational

and electric fields in Chapter 14.

10. How much work is done on a satellite during each

revolution if its mass is m, its period is T, its speed is v, and
its orbit is a circle of radius R?

11. Two skiers were together at the top of a hill. While one

skier skied down the slope and went off the jump, the other

rode the ski-lift down. Compare their changes in gravitational

potential energy.

12. A third skier went directly down a straight slope. How
would this skier's speed at the bottom compare with that of
the skier who went off the jump?

13. No work is done when

(a) a heavy bo^ is pushed at constant speed along a rough

horizontal floor.

If frictional forces also have to be

overcome, additional work will be

needed, and that additional work
may depend on the path chosen,

for example, whether it is long or

short.

SG 17

CHAPTER 10 / ENERGY 283



See, for example, Elxperiment 3.11

on mixing hot and cold liquids.

Benjamin Thompson was born in

Wohurn, Massachusetts, in 1753.

After several years as a shopkeep-

er's apprentice, he married a rich

widow and moved to Concord (then

called Rumfordj. During the Revo-

lution, Thompson was a Tory; he

left with the British army for Eng-

land when Boston was taken bv the

rebels. In 17H3, Thompson left Eng-

land and ultimatelv settled in Ba-

varia. There he designed fortifica-

tions and built munitions, and
served as an administrator. The
King of Bavaria was sufficiently im-

pressed to make him a Count in

1790, and Thompson took the

name Rumford. In 1 793 he re-

turned to England and continued

to work on scientific experiments.

Rumford was one of the founders

of the Royal Institution. In 1804

he married Lavoisier's widow; the

marriage was an unhappy one, and
they soon separated. Rumford died

in Trance in 1H14, leaving his f;state

to institutions in the United States.

(b) a iiiiil is Ivuumcrcd into n board.

(c) there is no conipoiuutt offorce parallel to the direction of

motion.

(d) there is no component offorce perpendicular to the

direction ofn}otion.

10.^
I

Heat as energy

Suppose that a book on a table has been given a push and is

sliding across the tabletop. If the surface is rough, it will exert a

fairly large frictional force, and the book will stop quickly. Ihe

book's kinetic energy wall rapidly disappear. No corresponding

increase in potential energy will occur, since there is no change

in height. It appears that, in this example, mechanical energy is

not consented.

However, close examination of the bocjk and the tabletop

shows that they are wairmer than before. The disappearance of

kinetic energy of the book is a(xx)mpanied by the appearance of

heat. This suggests, but by no means proves, that the kinetic

energy of the book was transformed into heat. If so, heat must be

one form of energy^ This section deals with how the idea of heat

as a form of energy gained acceptance during the nineteenth

century. You wdll see how theory was aided by practical

knowledge of the relation of heat and work.

Until the middle of the nineteenth centuiy, heat was generally

thought to be some kind of fluid, called caloric fluid. No heat is

lost or gained overall when hot and cold bodies are mixed.

(Mixing equal parts of boiling and nearly freezing water produces

water at just about 50°C.) One could therefore conclude that the

caloric fluid is conserAed in that kind of experiment. Some
substances, like wood or coal, seem to lock up that "fluid" and

can release it during combustion.

Although the idea that the heat content of a substarnce is

r'epresented by a quantity of conserAed fluid was an appai'ently

useful one, it does not adequately explain some phenomena
involving heat. Friction, for example, was known to produce heat.

But it was difficult to understand how the conseiAation of ciiloric

fluid applied to friction.

In the late eighteenth century, while boring cannon for the

Elector of Bavaria, Benjamin Thompson, Count Rumford,

observed that a great deal of heat was generated. Some of the

cannon sha\ings wer^e hot eriough to glow. Rumfbrti made some
careful measurements by immersing the cannon in w ater- and

measuring the rate at which the temperature rose. His results

showed that so mirch heat evohed that [he cannon would haxe

melted had it not been cooled. From rnaru' such experiments,

Rumford concluded that heat is not a conserved fluid but is

generated when work is done and continues to appear \\ ilhout
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limit as long as work is done. His estimate of the ratio of heat to

work was within an order of magnitude of the presently

accepted value.

Rumford's experiments and similar work by Davy at the Royal

Institution did not convince many scientists at the time. The

reason may have been that Rumford could give no clear

suggestion of just what heat is, at least not in terms that were

compatible with the accepted models for matter at that time.

Nearly a half-centuiy later, James Prescott Joule repeated on a

smaller scale some of Rumford's experiments. Starting in the

1840's and continuing for many years. Joule refined and

elaborated his apparatus and his techniques. In all cases, the

more careful he was, the more exact was the proportionality of

the quantity of heat (as measured by a change in temperature

and the amount of work done).

For one of his early experiments, Joule constructed a simple

electric generator, which was driven by a falling weight. The

electric current that was generated heated a wire. The ware was

immersed in a container of water, which it heated. From the

distance that the weight descended Joule calculated the work

done (the decrease in gravitational potential energy). The product

of the mass of the water and its temperature rise gave him a

measure of the amount of heat produced. In another experiment,

he compressed gas in a bottle immersed in water, measuring the

amount of work done to compress the gas. He then measured

the amount of heat given to the water as the gas grew hotter on

compression.

Joule's most famous experiments involved an apparatus in

which slowly descending weights turned a paddle wheel in a

container of water. Owang to the friction between the wheel and

the liquid, work was done on the liquid, raising its temperature.

Joule repeated this experiment many times, constantly

improving the apparatus and refining his analysis of the data. He

learned to take very great care to insulate the container so that

heat was not lost to the room. He measured the temperature rise

vvdth a precision of a small fraction of a degree. He even allowed

for the small amount of kinetic energy the descending weights

had when they reached the floor.

Joule published his results in 1849. He reported:

1st. That the quantity of heat produced by the fiiction of

bodies, whether solid or liquid, is always proportional to the

quantity of [energy] expended. And 2nd. That the quantity of

heat capable of increasing the temperature of a pound of water

... by 1° Fcihr. requires for its evolution the expenditure of a

mechanical energy represented by the fall of 772 lb through the

distance of one foot.

James Prescott Joule (1818-1889).

Joule was the son of a wealthy

Manchester brewer. He is said to

have become first interested in his

arduous e^cperiments by the desire

to develop more efficient engines

for the family brewery.

Joule used the word 'force " instead

of "energy." The currently used sci-

entific vocabulary was still being

formed.

This unit is called a British Thermal
Unit (BTU).

The first statement is the evidence that heat is a fomi of

energy, contraiy to the caloric theoiy. The second statement
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The metric system uses prefixes to

specify some multiplication factors

for the fundamental units. The fol-

lowing table shows the common
prefixes.

Factor Prefix Symbol

10
10'

10"

10'

10'

10^^

10^'

10"

10"'

10'-

10"'

10

10
10"

deca-

hecto-

kilo-

mega-
giga-

tera-

peta-

deci-

centi-

milli-

micro-

nano-
pico-

femto-

da

h

k

M
G
T
P

d

c

m
M-

n

P
f

gives the numerical magnitude of the ratio he had found. Ihis

ratio related a unit of mechanical enei'g\' I the foot-pound i and a

unit of heat (the heat required to raise the tempeiatuie of 1 lb

of water by 1° on the Fahrenheit scale).

By the time Joule did his experiments, the idea of a caloric

fluid seemed to have outlived its usefulness. The idea that heat is

a form of energy was slowly being accepted. Joule's experiments

were a strong argument in favor of lliat idea, ^'ou will look at its

development more closely in Sec. 10. iJ.

Until recently, it was traditional to measure heat in units based

on temperature changes, and mechanical energy in units based

on work. This made comparison of results in one kind of

experiment easy, but it obscured the fundamental equivalence of

heat and other forms of energy. All types of energy are expressed

in joules IJ): ^^

1 J = 1 kg sec" = 1 N-m Inewton-meterl
A

However, you will often see energies expressed in terms of other

units. A few of them are listed here.

Unit Name



10.6
I

The steam engine and the Industrial
Revolution

Until about 200 years ago, most work was done by people or

animals. Work was obtained from wind and water also, but these

were generally unreliable as sources of energy. For one thing,

they were not always available when and where they were

needed. In the eighteenth century, miners began to dig deeper

and deeper in search of a greater coal supply. Water tended to

seep in and flood these deeper mines. The need arose for an

economical method of pumping water out of mines. The steam

engine was developed initially to meet thisveiy practical need.

The steam engine is a device for converting the energy of some
kind of fuel into heat energy. For example, the chemical energy

of coal or oil, or the nuclear energy of uranium, is converted to

heat. The heat energy in turn is converted into mechanical

energy. This mechanical energy can be used directly to do work,

as in a steam locomotive, or transformed into electrical energy.

In typical twentieth-century industrial societies, most of the

energy used in factories and homes comes from electrical energy.

Falling water is used to generate electricity in some parts of the

country. But steam engines still generate most of the electrical

energy used in the United States today. There are other heat

engines, such as internal combustion engines, for example. The

steam engine remains a good model for the basic operation of

this whole family of engines.

Since ancient times, it has been known that heat can be used

to produce steam, which can then do mechanical work. The

aeolipile, invented by Heron of Alexandria about 100 ad , worked

on the principle of Newton's third law. (See margin.) The rotating

lawn sprinkler works the same way except that the driving force

is water pressure instead of steam pressure.

Heron's aeolipile was a toy, meant to entertain rather than to

do any useful work. Perhaps the most "useful" application of

steam to do work in the ancient world was another of Heron's

inventions. This steam-driven device astonished worshippers in a

temple by causing a door to open when a fire was built on the

altar. Not until late in the eighteenth century, however, were

commercially successful steam engines invented.

The first commercially successful steam engine was invented

by Thomas Savery (1650-1715), an English military engineer. In

Savery's engine, water is lifted out of a mine by alternately filling

a tank with high-pressure steam, driving the water up and out

of the tank, and then condensing the steam, drawing more water

into the tank.

Unfortunately, inherent in the Saveiy engine's use of high-

pressure steam was a serious risk of boiler or cylinder

explosions. This defect was remedied by Thomas Newcomen
(1663-1729), another Englishman. Newcomen invented an engine
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A model of Heron's aeolipile.

Steam produced in the boiler es-

capes through the nozzles on the

sphere, causing the sphere to ro-

tate.

Stec

that used steam at lower pressure. His engine was superior in

other ways also. For example, it could raise loads other than

water. Instead of using the steam to force water into and out of a

cylinder, Newcomen used the steam to force a piston hack and

forth. The motion of the piston could then be used to drive a

pump or other engine.

The Newcomen engine was widely used in Britain and other

European countries throughout the eighteenth century. By

modern standards, it was not a very good engine. It burned a

large amount of coal but did only a small amount of work at a

slow, jerky rate. But the great demand for machines to pump
water from mines produced a good market, even for Newcomen's
uneconomical engine.

The work of Scotsman James Watt led to a greatly improved

steam engine. Watt's father was a carpenter who had a

successful business selling equipment to shipowners. Watt was
in poor health much of his life and gained most of his early

education at home. In his father's attic workshop, Watt

developed considerable skill in using tools. He wanted to become
an insti-ument maker and went to London to learn the trade.

Upon his return to Scotland in 1757, he obtained a position as

instrument maker at the University of Glasgow.

In the winter of 1763-1764, Watt was asked to repair a model

of Newcomen's engine that was used for demonstration lectures

at the university. This assignment had immense worldwide

consequences. In acquainting himself with the model, Watt was
impressed by how^ much steam was required to iTjn the engine.

He undertook a series of experiments on the behavior of steam

and found that a major problem was the temperature of the

cylinder walls. Newcomen's engine wasted most of its heat in

w^arming up the walls of its cylinders. The walls were then

cooled again eveiy time cold water was injected to condense the

steam.

Early in 1765, Watt remedied this wasteful defect by devising a

modified type of steam engine. In retrospect, it sounds like a

simple idea. After pushing the piston up, the steam was admitted

to a separate container to be condensed. With this system, the

cylinder could be kept hot all the time, and the condenser could

be kept cool all the time.

The separate condenser allowed huge fuel savings. Watt's

engine could do twice as much work as Newcomen's with the

same amount oi fuel. Watt also added many other refinements,

such as automatically controlled valves that were opened and

closed by the reciprocating action of the piston itself, as well as a

governor that controlled the amount of steam reaching the

engine, to maintain a constant speed for the engine.

This idea, of using pait of the output of the process to regulate

the process itself, is call jd /eed/jac/c. It is an essential pail of the
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design of many modern mechanical and electronic systems.

Watt and his associates were good businessmen as well as

good engineers. They made a fortune manufacturing and selling

the improved steam engines.

Watt's inventions stimulated the development of engines that

could do many other jobs. Steam drove machines in factories,

railway locomotives, steamboats, and so forth. Watt's engine gave

an enormous stimulus to the growth of industry in Europe and

America. It thereby helped transform the economic and social

structure of Western civilization.

The widespread development of engines and machines

revolutionized mass production of consumer goods,

construction, and transportation. The average standard of living

in Western Europe and the United States rose sharply. It is

difficult for most people in the industrially "developed" countries

to imagine what life was like before the Industrial Revolution. But

not all the effects of industrialization have been beneficial. The
nineteenth-century factory system provided an opportunity for

Above, a contemporary engraving

of a working Newcomen steam en-

gine. In July 1698, Savery was
granted a patent for "A new inven-

tion for raising of water and occa-

sioning motion to all sorts of mill

work by the impellant force offire,
which wilt be ofgreat use and ad-

vantage for drayning mines, serving

townes with water, and for the

working of all sorts of mills where

they have not the benefitt of water

nor constant windes." The patent

was good for 35 years and pre-

vented Newcomen from making
much moneyfrom his superior en-

gine during this period.
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The actual model of the Newcomen
engine that inspired Watt to con-

ceive of the separation of con-

denser and piston.

With valve A open and valve B
closed, steam under pressure en-

ters the cylinder and pushes the

piston upward. When the piston

nears the top of the cylinder, valve

A is closed to shut off the steam
supply. Then valve B is opened, so

that steam leaves the cylinder and
enters the condenser. The con-

denser is kept cool by water flow-

ing over it, so the steam conden-

ses. As steam leaves the cylinder,

the pressure there decreases. At-

mospheric pressure (helped by the

inertia of the flywheel) pushes the

piston down. When the piston

reaches the bottom of the cylinder,

valve B is closed, and valve A is

opened, starting the cycle again.

Valves A and B are connected to

the piston directly, so that the mo-
tion of the piston itself operates

them.

some greedy and ci\iel employers to treat workers almost like

slaves. These employers made huge profits, while keeping

employees and their families on the edge of starvation. This

situation, which was especially serious in England early in the

nineteenth century, led to demands for reform. New laws

eventually eliminated the worst excesses.

More and more people left the farms, eithei- xoluntaiily or

forced by poveit}' and new land laws, to work in factories.

Conflict grew intense between the working class, made up of

employees, and the middle class, made up of employers and

professionals. At the same time, some artists and intellectuals

began to attack the new tendencies of their society. They saw
this society becoming increasingly dominated by commerce,

machineiy, and an emphasis on material goods. In some cases,

they confused research science itself with its technical

applications (as is still done today). Scientists were sometimes

accused of explaining away all the awesome mysteries of nature.

These artists denounced both science and technology, while

often refusing to learn anything about them. A poem by William

Blake contains the questions:

VALVE
THROTTLE ^

ir^^=®1__i=^
VALVE
B

CYUNDER

BOILER CONDENSCR

FLYWHEEL

cohdensed
Steam
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Ccr,nectcd

to flywheel

And did the Countenance Divine

Shine forth upon our clouded hUls?

And was Jerusalem builded here

Among these dark Satanic mills?

Elsewhere, Blake advised his readers "To cast off Bacon, Locke,

and Nevvi^on." John Keats was complaining ahout science when
he included in a poem the line: "Do not all channs fly / At the

mere touch of cold philosophy?" These attitudes are part of an

old tradition, going back to the ancient Greek opponents of

Democritus' atomism. Galilean and Newtonian physics also were

attacked for distorting values. The same type of accusation can

still be heard today.

Steam engines are no longer wddely used as direct sources of

power in industry and transportation. Indirectly, however, steam

is still the major source of power. The steam turbine, invented

by the English engineer Charles Parsons in 1884, has now largely

replaced older kinds of steam engines. At present, steam turbines

drive the electric generators in most electric-power stations.

These steam-run generators supply most of the power for the

machinery of modern civilization. Even in nuclear power
stations, the nuclear energy is generally used to produce steam,

which then drives turbines and electric generators.

The basic principle of the Parsons turbine is simpler than that

of the Newcomen and Watt engines. A jet of high-pressure steam

strikes the blades of a rotor, driving the rotor around at high

speed. The steam expands after passing through the rotor, so the

next rotor must be larger. This accounts for the characteristic

shape of turbines. Large electric-power station turbines, such as

"Big Allis" in New York City, use more than 500,000 kg of steam

an hour and generate electrical energy at a rate of 150 million

joules per second.

The usefulness of an engine for many tasks is given by the rate

at which it can deliver energy, that is, by its power. The unit of

power is the watt, symbol W. It is defined as 1 W = 1 J/sec

Waff's "governor." If the engine

speeds up for some reason, the

hea\y balls swing out to rotate in

larger circles. They are pivoted

at the top, so the sleeve below is

pulled up. The cam that fits against

the sleeve is therefore also pulled

up; this forces the throttle to move
donn and close a bit. The reduc-

tion in steam reaching the engine

thus slows it down again. The op-

posite happens when the engine

starts to slow down. The net result

is that the engine tends to operate

at nearly a stable level.

A steam locomotive from the early

part of the twentieth century.
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Watt, of course, used pounds and
feet to express these results.

In some contexts, the horsepower
is defined as 73o.36 \V. More often,

it is defined as 745.56 VV. This am-
biguity of traditional units is one of

the reasons for replacing them with

metric ones.

Matthew Boulton (Watt's business

partner) proclaimed to Boswell (the

biographer of Samuel Johnson): "I

sell here, Sir, what all the world
desires to have: POWER!

"

As with energv', there are many common units of power v\ith

traditional definitions. Before the steam engine, the standard

source of power was the workliorse. Watt, in order to rate his

engines in a unit people could understand, measured the power
output of a horse. He found that a strong horse, working steadily,

could lift an object of 75 kg mass, which weighed about 10 N, at

a rate of about 1 m/sec. The horse in this case thus did work at a

rate of about 750 W. The "horsepower" unit is still used, but its

value is now given by definition (see margin), not by experiment.

SOME POWER RATINGS

Person turning a crank 0.06 h.p. 50 W
Overshot waterwheel 3 2 kW
Turret windmill 10 7 kW
Savery steam engine (1702) 1 0.7 kW
Newcomen engine (1732) 12 9 kW
Smeaton's Long Benton engine (1772) 40 30 kW
Watt engine (of 1778) 14 10 kW
Cornish engine for London water works (1837) 135 100 kW
Electric power station engines (1900) 1,000 0.7 MW
Nuclear power station turbine (1970) 300,000 200 MW

(Adapted from R. J. Forbes, in C. Singer ef a/., History of Technology.)
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Richard Trevithick's railroad at

Euston Square, London, 1809.

TRE>^1TH1CKS,
rORTABLB STEAM ENGIKE.

Catcb.jne who can ,

Mechanical I'mver Subdaing
Ankoal Speed

.

/ I) y

A nineteenth-century French steam
cuhivator.

The "Charlotte Dundas," the first

practical steamboat, built by Wil-

liam Symington, an engineer who
had patented his own improved
steam engine. It was tried out on
the Forth and Clyde Canal in 1801. S
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Above, a 200,000-kilowatt turbine

being assembled. Notice the thou-

sands of blades on the rotor.

A schematic model of an inte-

grated energy supply.

9 17. The purpose of the separate condenser in Watts steam

engine is to

(a) save the water so it can be used again.

(b) save fuel by not having to cool and reheat the cylinder.

(c) keep the steam pressure as low as possible.

(d) make the ei^gine more compact.

18. The history of the steam engine suggests that the social

and economic effects of technology are

(a) always beneficial to everyone.

(b) mostly undesirable.

(c) unimportant one way or another.

lO.T
I

The efficiency of engines

Joule's finding a value for the "mechanical equivalent of heat"

made it possible to describe engines in a new way. The concept

of efficiency applies to an engine or to any device that transforms

energy from one form to another. Efficiency is defined as the

percentage of the input energy that appears as useful output.

Since energy is conserved, the gr^eatest possible efficiency is 100%

when all of the input energy appears as useful output. Obviously,

efficiency must be considered as seriously as power output in

C^RAVITATION

EARTM CORE

EA6TM CRUSTS

OCEAN /C

MECHANICAL

aEOI.06.iCAL'
iroRASE

INTEGRATED ENCRSV SuPfLY AV>OEl.

Electrical^

-^

J.
MATES lAU
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designing engines. Fuel is, after all, a part of the cost of running

an engine, and the more efficient an engine is, the cheaper it is

to run.

Watt's engine was more efficient than Newcomen's, which in

turn was more efficient than Saveiy's. Is there any limit to

improvements in efficiency?

The law of energy conseivation clearly imposes a limit of 100%.

No engine can put out more work than is put into it. Even before

that law had been formulated, a young French engineer, Sadi

Carnot, established that there is in practice an even lower limit.

The reasons for this limit are just as fundamental as the law of

energy conservation.

Carnot started vvath the postulate that heat does not by itself

flow from a cold body to a hot one. It then follows that if heat

does flow from cold to hot, some other change must take place

elsewhere. Some work must be done. Using an elegant argument,

which is summarized on page 300, Carnot showed that no

engine can be more efficient than an ideal, reversible engine and

that all such engines have the same efficiency.

Since all reversible engines have the same efficiency, one has

only to choose a simple engine and calculate its efficiency to find

an upper limit to the efficiency of any engine. Carnot did the

calculation and found that the ratios of heat and work in a

reversible engine depend only on the temperature of the hot

substance from which the engine obtains its heat and on the

temperature of the cold substance that extracts the waste heat

from the engine. The temperatures used in this case are called

absolute, or Kelvin ; temperatures:

T (absolute, in °K) = T (Celsius, in °C) + 273

On the Kelvin scale, water freezes at 273°K. Absolute zero (0°K) is

-273°C.

The expression found by Carnot for the efficiency of reversible

engines is

Sadi Carnot (1796-1832). Son of
one of Napoleon's most trusted

generals, Sadi Carnot was one of
the new generation of e}cpert ad-

ministrators who hoped to produce
a new enlightened order in Europe.

He died of cholera in Paris at the

age of 36.

See also Sec. 11.5.

hot body, temperature Tj

heat in, H^

I

engine
|

>work, W
heat out, H, = H, W

cold body, temperature T,
|

work out W
heat in H,

efficiency

Although Carnot did not wiite the

formula this way, we are making
use of the fact that heat and energy
are equivalent.
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SG 24-29 The relation involved can also be written as follows:

You can feel some of thi waste heat

by feeling the exhaust from a car.

In the MKS system of units, the

coefficient of performance yields a

"pure" number (without units!.

Many American engineers measure
heat in BTL' and electric energ\' in

kilowatt-hours (kVVhl, so that coef-

ficients of performance for air con-

ditioners or refrigerators are often

rated in BTU/kWh.

See Sec. 10.10.

SG 25

H,

T.

W
T.

This result is called Carnot's theorem. Notice that unless T^ is

zero, an unattainably low temperature, no engine can have an

efficiency of 1 (or 100%); that is, every engine must return some
"waste" heat to the outside before returning to get more energy

from the hot body.

In steam engines, the "hot body" is the steam fresh from the

boiler, and the waste heat is extracted from the condenser. In an

internal combustion engine (a car engine, for example), the hot

body is the gas inside the cylinder just as it explodes, and the

cold substance is the exhaust. Any engine that derives its

mechanical energy from heat must also be cooled to remove the

"waste" heat. If there is any friction, or other inefficiency, in the

engine, it will add further heat to the waste and reduce the

efficiency to below the theoretical limit.

A refrigerator or air conditioner is also called a "heat engine."

It uses work (in the form of electrical or mechanical power) to

move heat fiom a cold body (from inside the freezing

compartment! to a hot one (the outside room). Carnot's relations

also provide an upper limit to how much heat can be extracted

by such an engine for a given amount of work, or in practical

terms, for how big your electric bill will be.

hot bodv, T,

heat out, H^ = W -\- H^

I

engine
]
< work, W

heat in, H,
T

cold body, T,

coefficient of performance =
heat in H,

work in W

T, - T.,

The generalization of Carnot's theorem is now known as the

second law of thermodynamics. This law is recognized as one of

the most poweiful laws of physics. Even in simple situations it

can help explain natural phenomena and the fundamental limits

of technolog\'.

1 he coefficient of performance of an air conditioner depends

on the reciprocal of the temperature difference between the

inside of a house and the outside. The bigger that difference, the

moi-e work it will take to move the same amount of heat tmm
inside to outside. An air conditioner mounted in the sun

therefore needs more electricity than one mounted in the shade

on the same house.
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If you bum oil at home, the furnace requires some inefficiency

to burn cleanly, so some heat is lost out the chimney. (Also, a

very efficient furnace would be unaffordably expensive.) Usually

about half the energy content of the oil is converted to useful

heat in a house.

If you install "flameless electric heat," which works just like an

electric blanket or toaster put in under the floor, the power
company has to burn oil in a boiler, use the steam to generate

electricity, and deliver the electricity to your home. Because

metals melt above a certain temperature and because the cooling

water never gets below freezing, Carnot's theorem makes it

impossible to make the efficiency greater than about 0.6. Since

the power company's boiler also loses some of its energy out the

chimney, and since the electricity loses some of its energy on the

way from the power plant, only about one-quarter to one-third

of the energy originally in the oil actually makes it to your home.
Obviously, electric heating wastes a lot of oil or coal.

Because of the limits placed by Carnot's theorem on heat

engines, it is sometimes important not only to give the actual

efficiency of a heat engine but also to specify how close it comes
to the maximum possible. One freezer might have a much larger

coefficient of perfomiance than another, but only because it does

not operate at as low a temperature as the other.

The more carefully you look at a process, the more information

is seen to be important. At first, you could probably be satisfied

with any sort of engine. A closer examination will lead you to

understand the equivalence of heat and energy, so that energy

use and efficiency become important criteria in choosing an

engine. Carnot's investigation showed the importance not only of

energy but also of temperature.

The coldest temperature feasible

for T^ is about 280°K. (Why?) The
hottest possible temperature for T^

is about 780°K. So the maximum
efficiency is 0.64.

• 19. The efficiency of a heat engine is the ratio of

(a) the work output to the heat input.

(b) the work output to the heat output.

(c) the heat output to the heat input.

20. A heat engine is most efficient when it works between

objects that have

(a) a large temperature difference.

(b) a small temperature difference.

(c) a large size.

10.8
I

Energy in biological systems

All living things need a supply of energy to maintain life and to

carry on their normal activities. Human beings are no exception;
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Carbohydrates are molecules made
of carbon, hydrogen, and oxygen.

A simple example is the sugar glu-

cose, the chemical formula for

which is C H. 0„.

?y •
t /.

-• -VI ..( » ' -' .' ;'/ ;*>",-

f

:::^im-

^:^^.
f .S^^^-^'C- 4

Electron micrograph of an energy-

converting mitochondrion in a bat

cell (200,000 times actual size). A
chloroplast, which is the part of a

plant cell that converts CO^ and

HJD to carbohydrates, looks very

much the same, e^ccept it is green,

not colorless.

like all animals, we depend on food to supply us with energy.

Most human beings are omnivores; that is, they eat both

animal and plant materials. Some animals are herbivores, eating

only plants, while others are carnivores, eating only animal flesh.

But iill animals, even carnivoi'es, ultimately obtain their food

energy fiom plant material. The animal eaten by the lion has

previously dined on plant material or on another animal that has

eaten plants.

Green plants obtain energy from sunlight. Some of that energy

is used by the plant to perform the functions of life. Much of the

energy is used to make carbohydrates out of water (H,0) and
carbon dioxide (CO J. The energy used to synthesize

carbohydrates is not lost; it is stored in the carbohydrate

molecules as chemical energv'.

The process by which plants synthesize carbohydrates is

called photosynthesis. This process is still not completely

understood, and research in this field is lively. The synthesis

takes place in many small steps, and many of the steps are well

understood. It is conceivable that scientists may learn how to

photosvnthesize carbohydrates without plants, thus producing

food economically for the rapidly increasing world population.

The overall process of producing carbohydrates (the sugar

glucose, for example) by photosynthesis can be represented as

follows:

carbon dioxide + water + energ\' —> glucose -t- oxygen

The energy stored in the glucose molecules is used by the

animal that eats the plant. This energy maintains the body

temperature, keeps the heart, lungs, and other organs operating,

and enables various chemical reactions to occur in the body. The
animal also uses the energy to do work on external objects. The
process by which the energy stored in sugar molecules is made
available to the cell is very complex. It takes place mostly in tiny

bodies called mitochondria, which are found in all cells. Each

mitochondrion contains enzymes which, in a series of about 10

steps, split glucose molecules into simpler molecules. In another

sequence of reactions, these molecules are oxidized (combined

with oxygen), thereby releasing most of the stoi'ed energ)' and

forming carbon dioxide and water:

glucose + oxygen -^ carbon dioxide + water + energv'

Proteins and fats are used to build and restore tissue and

enzymes, and to pad delicate organs. They also can be used to

provide energy. Both proteins and fats can enter into chemical

reactions that produce the same molecules as the split

carbohydrates. From that point, the energy-releasing process is

the same as in the case of carbohydrates.

The released energy is used to change a molecule called

adenosine diphosphate iADPi into adenosine triphosphate (ATPi.
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In short, chemical energy originally stored in glucose molecules

in plants is eventually stored as chemical energy in ATP
molecules in animals. The ATP molecules pass out of the

mitochondrion into the body of the cell. Wherever energy is

needed in the cell, it can be supplied by an ATP molecule. As it

releases its stored energy, the ATP changes back to ADP. Later,

back in a mitochondrion, the ADP is reconverted to energy-rich

ATP.

The overall process in the mitochondrion involves breaking

glucose, in the presence of oxygen, into carbon dioxide and
water. The energy released is transferred to ATP and stored there

until needed by the animal's body.

The chemical and physical operations of the living body are in

some ways like those of an engine. Just as a steam engine uses

chemical energy stored in coal or oil, the body uses chemical

energy stored in food. In both cases, the fuel is oxidized to

release its stored energy. The oxidation is vigorous in the steam

engine, and gentle, in small steps, in the body. In both the steam

engine and the body, some of the input energy is used to do
work; the rest is used up internally and eventually "lost " as heat

to the surroundings.

Some foods supply more energy per unit mass than others.

The energy stored in food is usually measured in Calories.

However, it could just as well be measured in joules. The table

on page 302 gives the energy content of some foods. (The

"Calorie" or "large calorie" used by dieticians is identical to the

kilocalorie of chemists.)

Much of the energy you obtain from food keeps your body's

internal "machinery " running and keeps your body vv^arm. Even

when asleep, your body uses about 1 Cal every minute. This

amount of energy is needed just to keep alive.

To do work, you need more energy. Yet only a fraction of this

energy can be used to do work; the rest is wasted as heat. Like

any engine, the body of humans or other animals is not 100%
efficient. Its efficiency when it does work varies with the job and
the physical condition and skill of the worker. Efficiency

probably never exceeds 25% and usually is less. Studies of this

sort are carried out in bioenergetics, one of many fascinating and
useful fields where physics and biology overlap.

The table on page 302 gives the results of experiments done in

the United States to determine the rate at which a healthy young
person of average build and metabolism uses energy in various

activities. The estimates were made by measuring the amount of

carbon dioxide exhaled. Thus, they show the total amount of

food energy used, including the amount necessary just to keep
the body functioning.

According to this table, if you did nothing but sleep for eight

hours a day and lie quietly the rest of the time, you would still

The chemical energy stored in food

can be determined by burning the

food in a closed container im-
mersed in water and measuring the

temperature rise of water.

SG 29-31
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mose upI
Cornot's Proof

Carnot's proof of maximum efficiency of ideal,

reversible engines starts with the premise that when

a cold object is in touch with a warmer one, the cold

object does not spontaneously cool itself further and

so give more heat to the warm object. However, an

engine placed between the two bodies can move

heat from a cold object to a hot one. Thus, a re-

frigerator can cool a cold bottle further, ejecting heat

into the hot room. You will see that this is not simple.

Carnot proposed that during any such experiment,

the net result cannot be only the transfer of a given

quantity of heat from a cold body to a hot one.

The engines considered in this case all work in

cycles. At the end of each cycle, the engine itself

is back to where it started. During each cycle, it has

taken up and given off heat, and it has exerted

forces and done work.

Consider an engine, labeled R in the figure,

which suffers no internal friction, loses no heat be-

cause of poor insulation, and runs so perfectly that

it can work backwards in exactly the same way as

forwards (Fig. A).

Hoi" Object Hot Object

i
®
i

H,

H2
>W

Hi

H2

Cold Object Cold Object

Hot



At the end of one cycle, both Z and R are back

where they started. No work has been done; the Z
engine has transferred some heat to the cold object;

and the R engine has transferred some heat to the

hot object. The net heat transferred is H, - H\,

and the net heat taken from the cold object is H^

- H\. These are, in fact, the same:

H^- H[ = {H, - W) - {H\ - W)

= H, - H\

Because Z is supposed to be more efficient than R,

this quantity should be positive; that is, heat has

been transferred from the cold object to the hot

object. Nothing else has happened. But, according

to the fundamental premise, this is impossible.

The only conclusion is that the Z engine was im-

properly "advertised" and that it is either impossible

to build or in fact it is less efficient than R.

As for two different reversible engines, they must

have the same efficiency. Suppose the efficiencies

were different; then one would have to be more

efficient than the other. What happens when the

more efficient engine is used to drive the other re-

versible engine as a refrigerator? The same argu-

ment just used shows that heat would be transferred

from a cold body to a hot one. This is impossible.

Therefore, the two reversible engines must have

the same efficiency.

To actually compute that efficiency, you must

know the properties of one reversible engine; all

reversible engines working between the same tem-

peratures must have that same efficiency. (Carnot

computed the efficiency of an engine that used an

ideal gas instead of steam.)

Mot

i

y
Cold

4
HI H,

© ^ .0
Hi Hz

r
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In this problem of life-and-death importance, what are the

roles science and technology can play? Obxaously, better

agricultural practices should help, both by opening up new land

for farming and by increasing production per acre on existing

land. The application of fertilizers can increase crop yields, and

factories that make fertilizers are not too difficult to build.

However, it is important to study all the consequences before

applying science through technology; othei^vdse you may create

two new problems for every old one that you wash to "fix."

In any particular country, the questions to ask include these:

How will fertilizers interact with the plant being grown and with

the soil? Will some of the fertilizer run off and spoil rivers and
lakes and the fishing industiy in that locality? How much water

will be required? What variety of the desired plant is the best to

use within the local ecological fi^amework? How^ will the ordinary

farmer be able to learn the new techniques? How wdll the farmer

be able to pay for using them?

Upon study of this sort it may turn out that in addition to

fertilizer, a country may need just as urgently a better system of

bank loans to small farmers and better agricultural education to

help the farmer. Such training has played key roles in the rapid

rise of productivity in the richer countries. Japan, for example,

produces 7,000 college graduate agriculturalists each year. All of

Latin America produces only 1,100 per year. In Japan there is

one farm advisor for each 600 farms. Compare this with perhaps

one advisor for 10,000 famis in Colombia, and one advisor per

100,000 farms in Indonesia.

For long-term solutions, the problem of increasing food

production in the poorer countries goes far beyond changing

agricultural practices. Virtually all facets of the economies and
cultures of the affected countries are involved. Important factors

range from internal economic aid and internal food pricing

policies to urbanization, industrial growth, public health, and
family-planning practice.

Where, in all this, can the research scientist's contribution

help? It is usually tnae that one of the causes of some of the

worst social problems is ignorance, including the absence of

specific scientific knowledge. For example, knowledge of how
food plants can grow efficiently in the tropics is lamentably

sparse. Better ways of removing salt from seawater or brackish

groundwater are needed to allow irrigating fields with water from

these plentiful sources. Before this will be economically possible,

more basic knowledge wall be needed on just how molecules

move through membranes of the sort usable in desalting

equipment. Answers to such questions, and many like them, can

only come through research in "pure" science by trained

research workers haxdng access to adequate research facilities.

The physics of energy transforma-
tions in biological processes is one
example of a lively interdisciplinary

field, namely biophysics (where
physics, biology, chemistry, and
nutrition all enter). Another con-
nection to physics is provided by
the problem of inadequate world
food supply; here, too, many physi-

cists, with others, are presently
trying to provide solutions through
work using their special compe-
tence.
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"The Repast of the Lion" by Henri

Rousseau. The Metropolitan Mu-
seum of Art.

• Zl. Animals obtain the energy they needfrom food, but plants

(a) obtain energyfrom sunlight.

(b) obtain energy from water and carbon dioside.

(c) obtain energyfrom seeds.

(d) do not need a supply of energy.

22. The human body has an efficiency ofabout 20%. This

means that

(a) only one-fifth of the food you eat is digested.

(b) four-fifths of the energy you obtain from food is destroyed.

(c) one-fifth of the energy you obtain from food is used to run

the "machinery" of the body.

(d) you should spend 80% of each day lying quietly without

working.

(e) only one-fifth of the energy you obtain from food can be

used to enable your body to do work on e^cternal objects.

23. E?cplain this statement: "The repast of the lion is sunlight."
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I

Arriving at a general conservation laiv

In Sec. 10.3, the law of conseiA^ation of mechanical energy was
introduced. This law applies only in situations where no
mechanical energy is transfomied into heat energy or vice versa.

Early in the nineteenth centuiy, developments in science,

engineering, and philosophy suggested new ideas about energy.

It appeared that all fomis of energy (including heati could be

transformed into one another with no loss. Therefore, the total

amount of energy in the universe must be constant.

Volta's invention of the electric batteiy in 1800 showed that

chemical reactions could produce electricity. It was soon found

that electric currents could produce heat and light. In 1820, Hans

Christian Oersted, a Danish physicist, discovered that an electric

current produces magnetic effects. In 1831, Michael Faraday, the

great English scientist, discovered electromagnetic induction:

When a magnet moves near a coil or a wire, an electric current is

produced in the coil or wire. To some thinkers, these discoveries

suggested that all the phenomena of nature were somehow
united. Perhaps all natural events result from the same basic

"force." This idea, though vague and imprecise, later bore fruit in

the form of the law of conseiA'ation of energy. All natural events

involve a transfonnation of energy from one form to another. But

the total quantity of energy does not change during the

transformation.

The invention and use of steam engines helped to establish

the law of conservation of energy by showdng how to measure

energy changes. Almost fiom the beginning, steam engines were

rated according to a quantity termed their "duty." This term

referred to how heavy a load an engine could lift using a given

supply of fuel. In other words, the test was how much work an

engine could do for the price of a ton of coal. This very practical

approach is typical of the engineering tradition in which the

steam engine was developed.

The concept of work began to develop about this time as a

measure of the amount of energy transformed from one fomi to

another. (The actual words "work" and "energy" were not used

until later.) This concept made possible quantitative statements

about the transformation of energy. For example. Joule used the

work done by descending weights as a measure of the amount
of gravitational potential energy transformed into heat energy.

In 1843, Joule stated that whenever a certain amount of

mechanical energy seemed to disappear, a definite amount of

heat always appeared. To him, this was an indication of the

conservation of what we now call energy. Joule said that he was

. .
. satisfied that the grand agents of nature are by the Creator's

fiat indestructible; and that, wherever mechanical [energ\'] is

expended, an exact equivalent of heat is always obtained.

Joule began his long series of ex-

periments by investigating the "duty"

of electric motors. In this case,

duty was measured by the work the

motor could do when a certain

amount of zinc was used up in the

battery that ran the motor. Joule's

interest was to see whether motors
could be made economically com-
petitive with steam engines.
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Julius Robert von Mayer (1814-

18781 was one of the first to realize

that heat is a form of energy. He
worked out the mechanical equiva-

lent of heat.

Friedrich von Schelling (1775-1854)

One of the great successes of the

Naturphilosophic was Oersted's dis-

covery of the connection between
elect^icit^' and magnetism (see Unit

4, Sec. 14.11). See also Unit 2 Epi-

logue.

Having said this, Joule got back to his work in the laboratoiy. He

was basically a practical man who had little tinier to s|)ecnlate

about a deeper philosophical meaning ot his tindings. But others,

though using speculative arguments, were also concluding that

the total amount of energy in the universe is constant.

A year before Joule's remark, for example, Julius Robert Mayer,

a GeiTnan physician, had proposed a general law of conservation

of energy. Mayer had done no quantitative experiments, but he

had obseived body processes involving heat and respiration. He
had also used other scientists' published data on the thermal

properties of air to calculate the mechanical equivalent of heat.

(Mayer obtained about the same value that Joule did.i

Mayer had been influenced by the German philosophical

school now known as Naturphilosophie or "Nature Philosophy.

'

This school flourished during the late eighteenth and ear-ly

nineteenth centuries. According to Nature Philosophy, the

various phenomena and forces of nature—such as graxdty,

electricity, and magnetism—are not r^eally separate from one

another but are all manifestations of some unifying "basic
'

natural force. This philosophy therefore encouraged experiments

searching for that underiving force and for connections between

different kinds of forces observed in nature.

The most influential thinkers of the school of Nature

Philosophers were Johann Wolfgang von Goethe and Friedrich

von Schelling. Neither of these men is knowii today as a scientist.

Goethe is generally considered Germany's greatest poet and

dramatist, while Schelling is remembered as a minor

philosopher. Both men had great influence on the generation of

German scientists educated at the beginning of the nineteenth

century. The Nature Philosopher's were closely associated with

the Romantic movement in liter^ature, art, and music. The
Romantics protested against the idea of the universe as a great

machine. This idea seemed morally emptv and artistically

worthless to them. The Nature Philosophers also detested the

mechanical world view. They refused to believe that the richness

of natural phenomena, including human intellect, emotions, and

hopes, could be understood as the result of the motions of

particles.

The Nature Philosophers claimed that nature could be

understood as it "really " is only by direct observation. But no

complicated "artificial ' apparatus must be used, only feelings

and intuitions. For Goethe the goal of his philosophy was: "That

I may detect the inmost force which binds the world, and guides

its course."

Although its emphasis on the irnity of nature led the follower's

of Naturphilosophie to some \'ery useful insights, such as the

general concept of the conservation of energy, its romantic and

aritiscientific bias made it less and less influential. Scientists who
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had previously been influenced by it, including Mayer, now
strongly opposed it. In fact, some hard-headed scientists at first

doubted the law of conservation of energy simply because of

their distrust of Nature Philosophy. For example, William Barton

Rogers, founder of the Massachusetts Institute of Technology,

wrote in 1858:

To me it seems as if many of those who are discussing this

question of the conservation of force are plunging into the fog

of mysticism.

However, the law was so quickly and successfully put to use in

physics that its philosophical origins were soon forgotten.

This episode is a reminder of a familiar lesson: In the ordinary

day-to-day work of scientists, experiment and mathematical

theory are the usual guides. But in making a truly major advance

in science, philosophical speculation often also plays an

important role.

Mayer and Joule were only two of at least a dozen people who,
between 1832 and 1854, proposed in some form the idea that

energy is conseiA^ed. Some expressed the idea vaguely; others

expressed it quite clearly. Some arrived at the belief mainly

through philosophy; others from a practical concern vvdth

engines and machines or from laboratory investigations; still

others from a combination of factors. Many, including Mayer and
Joule, worked quite independently of one another. The idea of

energy conservation was somehow "in the air," leading to

essentially simultaneous, separate discoveries.

The initial udde acceptance of the law of conservation of

energy owed much to the influence of a paper published in 1847.

This was 2 years before Joule published the results of his most
precise experiments. The author, a young German physician and
physicist named Hermann von Helmholtz, entitled his work "On
the Conservation of Force." Helmholtz boldly asserted the idea

that others were only vaguely expressing, namely, "that it is

impossible to create a lasting motive force out of nothing." He
restated this theme even more clearly many years later in one of

his popular lectures:

We arrive at the conclusion that Nature as a whole possesses a

store of force which cannot in any way be either increased or

diminished, and that, therefore, the quantity of force in Nature

is just as eternal and unalterable as the quantity of matter.

Expressed in this form, I have named the general law The
Principle of the Conservation of Force.'

Any machine or engine that does work (provides energy) can

do so only by drawing from some source of energy. The machine
cannot supply more energy than it obtains from the source.

When the source runs out, the machine will stop working.

Machines and engines can only transform energy; they cannot

create it or destroy it.

Hermann von Helmholtz
(1821-1894)

Helmholtz's paper, "Zur Erhaltung
der Kraft," was tightly reasoned
and mathematically sophisticated.

It related the law of conservation of

energy to the established principles

of Newtonian mechanics and
thereby helped make the law sci-

entifically respectable.
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Energy Conservation on Earth

Nuclear reactions inside

the earth produce

energy

at a rate of 3 x lO'^W

. / y The nuclear reactions

•*- :^ ' . In the sun produce

energy at a rate of 3.5

X 10"W

The earth receives about 17 x 10'^W from the sun, of which

about 33% is immediately reflected, mostly by clouds

and the oceans; the rest is absorbed, converted to heat, and

ultimately radiated into outer space as infrared radiation. Of that

part of the solar energy that is not reflected,...

5 X 10'^W

heats

dry land

•^
.

^

..3 X 10'^W

heats the

air, producing

winds, waves, etc.

.4 X 10'^W

evaporates

water

f^ost of the energy given to water

is given up again when the water

condenses to clouds and rain; but

every second about 10'* J

remains as gravitational potential

energy of the fallen rain.

Controlled nuclear

reactions produce 2 x

lO'^W in electrical

power

electrochemistry

Some of this energy is

used to produce

ICW of hydroelectric

power

12 X 10"W is

used in

generating'

4 X 10"Wof
electrical

power

...1.5 X 10'^W

is used by

marine plants

for

photosynthesis

Ancient green plants

have decayed and

left a store of

about 2.2 X 10" J

in the form of

oil, gas, and

coal. This store

is being used at a

rate of 5 x 10'^W.

mechanical

power

9 X 10"W is

used in

combustion

engines.

About 75%
of this is wasted

as heat; less

than

3 X 10"W
appears as

mechanical

power

.3 X 10'^W

is used by

land plants

for

photosynthesis

Present-day green

plants are being

used as food for

people and animals,

at a rate

of 2 X 10"W.

Agriculture uses

about 10% of this,

and people

ultimately consume

3 X lO^Was food.

Direct use

as raw

materials

for plastics

and

chemicals

accounts

for

2 X 10"W

3 X lO'^W

is used

for

heating;

this is

equally

divided

between

industrial

and domestic

uses.
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24. The significance of German Nature Philosophy in the

history of science is that it

(a) was the most extreme form of the mechanistic viewpoint.

(b) was a reaction against excessive speculation.

(c) stimulated speculation about the unity of natural

phenomena.

(d) delayed progress in science by opposing Newtonian

mechanics.

25. Discoveries in electricity and magnetism early in the

nineteenth century contributed to the discovery of the law of
conservation of energy because

(a) they attracted attention to the transformation of energy

from one form to another.

(b) they made it possible to produce more energy at less cost.

(c) they revealed what happened to the energy that was

apparently lost in steam engines.

(d) they made it possible to transmit energy over long

distances.

26. The development ofsteam engines helped the discovery of
the law of conservation of energy because

(a) steam engines produced a large amount of energy.

(b) the caloric theory could not explain how steam engines

worked.

(c) the precise idea of work was developed to rate steam
engines.

(d) the internal energy of a steam engine was always found to

be conserved.

SG 33

10.1.0 The lairs of thermoclvnainics

Two laws, one precise and one general, summarize many of the

ideas in this chapter. Both of these laws are called laws of

thermodynamics

.

The first law of thermodynamics is a general statement of the

conservation of energy and is based on Joule's finding that heat

and energy are equivalent. It would be pleasingly simple to call

heat "internal" energy associated with temperature. We could

then add heat to the potential and kinetic energy of a system,

and call this sum the total energy that is conserved. In fact, this

solution works well for a great variety of phenomena, including

the experiments of Joule. Difficulties arise with the idea of the

heat "content" of a system. For example, when a solid is heated

to its melting point, ftzither heat input causes melting without

If you do not want to know what
the detailed difficulties are , you can
skip to the conclusion in the last

paragraph on the next page.
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Special case of an isolated systeni:

\

In general:

AW ^

/

AH

\

AF - AW -^AH

\ /

\
\ /

The word "heat" is used rather
loosely, even by physicists. This re-

striction on its meaning is not nec-

essary in most contexts, but it is

important for the discussion in this

section.

increasing the temperature. lYou may have seen this in the

experiment "Caloiimetiy. "I Simply adding the idea of heat as one

form of a system's energy/ will not give a complete general law.

Instead of "heat, " we can use the idea of an internal energy—
energy in the system that ma\' take forms not directly related to

temperature. We can then use the word "heat " to refer only to

a transfer of energy between a system and its surroundings. (In a

similar way, the term work is not used to describe something

contained in the system. Rather, it describes the transfer of

energy from one system to another.)

Even these definitions do not pennit a simple statement such

as "Heat input to a system increases its internal energy, and
work done on a system increases its mechanical energy." Heat

input to a system can have effects other than increasing internal

energy. In a steam engine, for example, heat input increases the

mechanical energy of the piston. Similarly, work done on a

system can have effects other than increasing mechanical energ\'.

In rubbing your hands together, for example, the work you do

increases the internal energy of the skin of your hands.

Therefore, a general conservation law of energy must include

both work and heat transfer. Further, it must deal with change in

the total energy of a system, not with a "mechanical" part and
an "internal" part.

In an isolated system, that is, a system that does not exchange

energy with its surroundings, the total energy must remain

constant. If the system exchanges energy with its surroundings,

it can do so in only one of two ways: Work can be done on or by

the system, or heat can be passed to or from the system. In the

latter case, the change in energ\' of the system must equal the

net energy gained or lost by the surroundings. More precisely,

Aw stands for the net work on the system, which is all the work
done on the system minus all the work done by the system.

Similarly, AH represents the net heat transfer to the system, or

the heat added to the system minus the heat lost by the system.

Then the change in the total energy of the system, AE, is given

by

A£ = AW + AH

This is the mathematical formula
tion of the first law of thermody
namics.

This general expression includes as special cases the

preliminary versions of the conserv ation law gi\'en earlier in the

chapter. If there is no heat transfer at all, then AH = 0, and so

Mi = Aw. In this case, the change in energ\' of a system equals

the net work done on it. On the other hand, if work is done

neither on nor by a system, then AW = 0, and AjE = AH. Here

the change in energy of a system is equal to the net heat

transfer.

We still need a description of that part of the total enei'gv' of a

.system called "heat" lor better', 'internal" energ\'). So far, we ha\e
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seen only that an increase in internal energy is sometimes

associated wath an increase in temperature. We also mentioned
the long-held suspicion that internal energy involves the motion

of the "small parts" of bodies. We will take up this problem in

detail in Chapter 11.

The second law of thermodynamics is a general statement of

the limits of the heat engine and is based on Carnot's theorem.

You saw that a reversible engine is the most efficient engine and
the most effective refrigerator. Any other engine is not as efficient

or effective. In order to fonnulate that idea generally and
precisely, a new function, the entropy, must be introduced.

The change in entropy of a system, AS, is defined as the heat

gained by the system, AH, divided by the temperature of the

system, T:

AS = AH/T

Although this equation defines only changes of entropy, once a

standard state for the system for which S = is chosen, the total

entropy for any state of the system can be determined.

Since the entropy is defined for any state of the system, an

engine that works in a cycle (as any heat engine does) must have

the same entropy at the end of a cycle as it does at the start.

This is not necessarily true of the boiler (hot object) and the

condenser (cold object), since these are not returned to their

initial states.

If the engine is a reversible one, the change in entropy of the

cold object is

AS3 = H,/T,

Since the hot object loses heat, its change in entropy is

ASj = -H^/T^

The total entropy change of the whole universe in this operation

is

AS . = AS, + AS, + /is .

univei'se 1 2 engine

H H
= — ^ +

Carnot's theorem (page 296) says that the difference must be
zero:

AS.
universe

=

What about a less ideal engine? You know it must be less

efficient than the reversible one; so for the engine X,

H\ > H, and H\ > H,

The total entropy change of the universe is now

AS
univei'se

H H— +

SG 34-38

Ml
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© -w
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It is a fairly straightforward matter to show that this time

nudolf Clausius (1822-1888)

AS >
universe

the entropy increases.

Although proven only for these simple heat engines, the results

that

As = (reversible processes)

As > (any other process)

are general ones. They are, in fact, mathematical formulations of

the second law of thermodvnamics.

Rudolf Clausius, who first formulated the second law in the

form given here, paraphrased the two laws in 1850, as follows:

' rhe energy of the universe remains constant, but its entropy

seeks to reach a maximum.

"

• 27. The first law of thermodynamics is

(a) true onlyfor steam engines.

(b) true only when there is no friction.

(c) a completely general statement of conservation of energy.

(d) the only way to e?cpress conservation of energy.

28. Define AE, AW, AH, and AS for a system.

29. What two ways are there for changing the total energy ofa

system^

30. The second law of thermodynamics says that the entropy

of the universe

(a) cannot increase.

(b) cannot decrease.

(c) must increase.

(d) must decrease.

I.O.H.
I

Faith in the laivs of thermodynaiiiics

For over a century, the law of conservation of energy has stood

as one of the most fundamental laws of science. You will

encounter it again and again in this course, in studying

electricity and magnetism, the structure of the atom, and nuclear

physics. Throughout the other sciences, from chemistry to

biology, and throughout engineering studies, the same law

applies. Indeed, no other law so clearly brings together the

various scientific fields, giving all scientists a common set of

concepts.
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The principle of conseivation of energy has been immensely

successful. It is so fimily believed that it seems almost impossible

that any new discoveiy could disprove it. Sometimes energy

seems to appear or disappear in a system, without being

accounted for by changes in known forms of energy. In such

cases, physicists prefer to assume that some hitherto unknown
kind of energy is involved; rather than to consider seriously the

possibility that energy is not conserved. You have already read

Leibniz's proposal that energy could be dissipated among "the

small parts" of bodies. He advanced this idea specifically in order

to maintain the principle of conservation of energy in inelastic

collisions and frictional processes. Leibniz's faith in energy

consei-vation was justified. Other evidence showed that "internal

energy ' changed by just the right amount to explain obseived

changes in external energy. SG 39, 40

Another similar example is the "invention " of the neutrino by

the physicist Wolfgang Pauli in 1933. Experiments had suggested

that energy disappeared in ceitain nuclear reactions. Pauli

proposed that a tiny particle, named the "neutrino" by Enrico

Fermi, was produced in these reactions. Unnoticed, the neutrino

carried off some of the energy. Physicists accepted the neutrino

theory for more than 20 years even though neutrinos could not

be detected by any method. Finally, in 1956, neutrinos were

detected in experiments using the radiation from a nuclear

reactor. (The experiment could not have been done in 1933, since

no nuclear reactor existed until nearly a decade later.) Again,

faith in the law of conservation of energy turned out to be

justified.

The theme of 'conservation " is so powerful in science that

scientists believe it will always be justified. Any apparent

exceptions to the law will sooner or later be understood in a way
which does not require us to give up the law. At most, these

exceptions may lead us to discover new fomis of energy, making
the law even more general and poweiful.

The French mathematician and philosopher Henri Poincare

expressed this idea in 1903 in his book Science and Hypothesis:

. . the principle of conseivation of energy signifies simply that

there is something which reniiuns constant. Indeed, no matter

what new notions future experiences will give us of the world,

we are sure in advance that there will be something which will

remain constant, and which we shall be able to call energy.

Today, it is agreed that the discoveiy of conservation laws was
one of the most important achievements of science. These laws

are powerful and valuable tools of analysis. All of them basically

affirm that, whatever happens within a system of interacting

bodies, certain measurable quantities will remain constant as

long as the system remains isolated.

CHAPTER 10 / ENERGY 313



The list of knovvn conservation laws has grown in recent years.

The area ot tnndainental lor "elementary") pailicles has yielded

much of this new knowledge. Some of the newer laws are

imperfectly and incompletely understood. Others are on
uncertain ground and are still being argued.

Below is a list of conseivation laws to date. This list is not

complete or eternal, but it does include the conservation laws

that make up the working tool-kit of physicists today. (Those

laws that are starred are discussed in the basic text portions of

this couree. The others are treated in optional supplemental

units, for example, the supplemental unit entitled "Elementary

Particles.")

Conservation Laws

1. Linear momentum*
2. Energy (including mass)*
3. Angular momentum (including spin)

4. Charge*
5. Electron-family number
6. Muon-family number
7. Baryon-family number
8. Strangeness number
9. Isotopic spin

The first law of thermodynamics,
or the general law of conservation

of energ\', does not forbid the full

conversion of heat into mechanical
energy. The second law is an addi-

tional constraint on what can hap-
pen in nature.

See the film loop on the irreversi-

bility of time (Film Loop 36).

Numbers 5-9 result from work in nuclear physics, high-energy

physics, or elementary or fundamental particle physics.

The second law of themiodynamics has a status rather

different from the conseivation laws. It, too, is an extremely

successful and powerful law. It, too, has continued to stand as

one of the fundamental laws of science. Unlike the conseivation

laws or the laws of motion, the second law of thermodynamics

gives no precise results; it only says certain things are

impossible. For example, it is impossible to make the entropy of

the universe (or of an isolated system) decrease, it is impossible

to make heat flow ft om a cold body to a hot one without doing

work on something.

In other words, the processes in\ oh ing heat happen in one

direction only: The entropy increases; heat flows from hot

objects to cold ones. Thus, the second law is connected in some
fundamental way with the notion that time proceeds in one

direction only. To word it differently, when a movie taken of real

events is run backward, what you see cannot, in detail, be found

to occur in the real world. Ihese ideas will be examined in more
detail in the next chapter.
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snide
1. The Project Physics materials particularly

appropriate for Chapter 10 include:

Experiments

Conservation of Energy

Measuring the Speed of a BuUet

Temperature and Thermometers
Calorimetry

Ice Calorimetry

Activities

Student Horsepower

Steam Powered Boat

Predicting the Range of an Arrow

Film Loops
Finding the Speed of a Rifle Bullet. I

Finding the Speed of a Rifle BuUet. II

Recoil

Colliding Freight Cars

Dynamics of a Billiard Ball

A Method of Measuring Energy—Nail Driven

into Wood
Gravitational Potential Energy

Kinetic Energy

Conservation of Energy: Pole Vault

Conservation of Energy: Aircraft Takeoff

2. A person carries a heavy load across the level

floor of a buOding. Draw an arrow to represent the

force applied to the load, and one to represent the

direction of motion. By the definition of work given,

how much work is done on the load? Do you feel

uncomfortable about this result? Why?

3. Kinetic energy, like speed, is a relative quantity;

that is, kinetic energy is different when measured
in different frames of reference. An object of mass m
is accelerated uniformly in a straight line by a force

F through a distance d. Its speed changes from v,

to v^. The work done is equal to the change in kinetic

energy: Fd = Vz mv \
— Vz mv \. Describe this event

from a frame of reference that is itself moving with

speed u along the same direction.

(a) What are the speeds as observed in the new
reference frame?

(b) Are the kinetic energies observed to have the

same value in both reference frames?

(c) Does the change in kinetic energy have the same
value?

(d) Is the calculated amount of work the same?
Hint: By the Galilean relativity principle, the

magnitude of the acceleration, and therefore force,

will be the same when viewed from frames of

reference moving uniformly relative to each other.

(e) Is the change in kinetic energy still equal to the

work done?

(f) Which of the following are "invariant" for changes

in reference frame (moving uniformly relative to one

another)?

(1) the quantity Vzuwr

(2) the quantity Fd

(3) the relationship Fd = A(»/zmv^)

(g) Eljcplain why it is misleading to consider kinetic

energy as something a body has, instead of only a

quantity calculated from measurements.

4. An electron of mass about 9.1 x 10"^' kg is

traveling at a speed of about 2 x lO" m/sec toward

the screen of a television set. What is its kinetic

energy? How many electrons like this one would be

needed for a total kinetic energy of 1 J?

5. A 5-kg object fravels uniformly at 4 m/sec. Over

what distance must a 4-N force be applied to give

the object a total kinetic energy of 80 J?

6. Estimate the kinetic energy of each of the

following:

(a) a pitched baseball

(b) a jet plane

(c) a sprinter in a 90-m dash

(d) the earth in its motion around the sun.

7. A 200-kg iceboat is supported by the smooth
surface of a frozen lake. The wind exerts on the boat

a constant force of 400 N while the boat moves 900

m. Assume that frictional forces are negligible and
that the boat starts from rest. Find the speed

attained at the end of a 900-m run by each of the

following methods:
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(a) Use Newton's second law to find the acceleration

of the boat. How long does it tiike to nio\e 900 in?

How fast vvill it be mo\ing then?

(b) Find the final speed of the boat by equating the

work done on it by the wind and the increase in its

kinetic energy. Compare your result with your

answer in (a).

8. A 2-g bullet is shot into a tree stump. It enters at

a speed of 300 nVsec and comes to rest after having

penetrated 5 cm in a straight line.

(a) What was the change in the bullet's kinetic

energ\'?

(b) How much work did the tree do on the bullet?

(c) What was the average force during impact?

9. Refer to S(i 20 in Chapter 9. How much work

does the golf club do on the golf ball? How much
work does the golf ball do on the golf club?

10. A penny has a mass of about 3.0 g and is about

1.5 mm thick. You have 50 pennies which you pile

one on top of the other.

(a) How much more gravitational potentiid energv'

has the top penny than the bottom one?

(b) How much more gravitational potential energy

have all 50 pennies together than the bottom one

alone?

11. (a) How high can you raise a book weighing 5 N

if you have available 1 J of energy?

(b) How many joules of energy are needed just to lift

a jet airliner weighing 7 x lo' N (fully loaded I to its

cruising idtitude of 10,000 m?

la. I'here are standards for length, time, and mass

(for example, a standard meter i. But energv' is a

"derived qucintit\'" for which no standards need be

kept. Nevertheless, assume someone asks you to

supply 1 J of energy. Describe in as much detail as

you can how you would do it.

13. As a home experiment, hang weights on a

rubber band and measure its elongation. Plot the

force versus stretch on graph paper.

(a) How can you measure the stored energy?

(b» Show that over a straight section of the graph the

stored energv' is equal to Va k(A,v)", where A,v is the

change in length of the rubber band over that section

of the graph and k is the slope of the line (the

change in force divided Ijy the change in length).

(c) If the weights on the rubber band bob up and

down, discuss the "flow of energV' ' from kinetic,

gravitational potenticd energy, and the rubber band's

potential energy.

14. (a) Estimate how long it would take for the

earth to fall up 1 m to a 1-kg stone if this stone were

somehow rigidly fixed in space.

(b) Estimate how far the earth will actually move up
while a 1-kg stone falls 1 m from rest.

(c) Why is the gravitational potential energy assigned

to the system rather than to the rock alone?

15. The photograph below shows a massive lead

wrecking ball being used to demolish a wall. Discuss

the transformations of energV' involv ed.

16. This di.scussion will show that the I^L of an

object is relative to the frame of reference in which

it is measured. The boulder in the photograph on

page 281 was not lifted to its perch. Hather. the rest

of the land has eroded away, leaving the boulder

where it may have been almost sinct; tin* formation

of the earth. Consider the question "What is the

gravitational potential energV' of the boulder-earth

system? ' You can easily calculate what the change in

potential energ\' would be, if the rock fell. It would

be the product of the rocks weight and the distiince

it fell. But would that be the actual value of the

gravitational (mergv' that had been stored in the

boulder-earth svsteni? Imagine that there hap|)ened
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to be a deep mine shaft nearby and the boulder fell

into the shaft. It would then fall much farther,

reducing the gravitational potential energy much
more. Apparently, the amount of energy stored

depends on how far you imagine the boulder can

fall.

(a) What is the greatest possible decrease in

gravitational potential energy the isolated

boulder-earth system could have?

(b) Is the boulder-earth system really isolated?

(c) Is there a true absolute bottom of gravitational

potential energy for any system that includes the

boulder and the earth?

The value of PE depends on the location of the

(resting) frame of reference from which it is

measured. This is not a serious problem, because we
are concerned only with changes in energy. In any

given problem, physicists wiU choose some
convenient reference for the "zero-level" of potential

energy, usually one that simplifies calculations. What

would be a convenient zero-level for the gravitational

potential energy of

(a) a pendulum?

(b) a roller coaster?

(c) a weight oscillating up and down a spring?

(d) a planet in orbit around the sun?

17. The figure below (not drawn to scale) shows a

model of a carnival "loop-the-loop." A car starting

from a platform above the top of the loop coasts

down and around the loop without falling off the

track. Show that to traverse the loop successfully,

the car must start from a height at least one-half a

radius above the top of the loop. Hint: The car's

weight must not be greater than the centripetal force

required to keep it on the circular path at the top

of the loop.

19. Sketch an addition to one of the steam-engine

diagrams of a mechanical linkage that would open

and close the valves automatically (page 290).

20. Show that if a constant propelling force F keeps

a vehicle moving at a constant speed v (against the

friction of the surroundings) the power required is

equal to Fv.

18. Discuss the conversion between kinetic and
potential forms of energy in the system of a coinet

orbiting the sun.

21. The Queen Mary, one of Britain's largest

steamships, has been retired after completing 1,000

crossings of the Atlantic. Its mass is 75 million

kilograms. A maximum engine power of 174 million

watts is allowed the Queen Mary to reach a

maximum speed of 30.63 knots (16 m/sec).

(a) What is the kinetic energy at full speed?

(b) Assume that at maximum speed all the power

output of the engines goes into overcoming water

drag. If the engines are suddenly stopped, how far

will the ship coast before stopping? (Assume water

drag is constant.)

(c) Wliat constant force would be required to bring

the ship to a stop from full speed within 1 nautical

mUe (2,000 m)?

(d) The assumptions made in (b) are not valid for the

following reasons:

(1) Only about 60% of the power delivered to the

propeller shafts results in a forward thrust to the

ship; the rest results in friction and turbulence,

eventually warming the water.

(2) Water drag is less for lower speed than for

high speed.
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(3) If the propellers are not free-wheeling, they

add an increased drag.

Which of the above factors tends to increase, which

to decrease the coasting distance?

(e) Explain why tugboats are important for docking

big ships.

22. Devise an experiment to measure the power

output of

(a) a person riding a bicycle.

(b) a motorcycle.

(c) an electric motor.

23. (a) A skier of 70 kg mass experiences a pull on

a ski lift from an engine transmitting 140 W to the

cable. Neglecting friction, how high can the engine

pull the skier in 500 sec?

(b) What size light bulb (in watts) produces as much
heat as the human body at rest?

24. One hundred joules (100 J) of heat is put into

two engines. Engine A can lift 5 N a distance of 10 m
in 10 sec. Engine B pulls with a force of 2 N for 5

sec a distance of 20 m. Calculate the efficiency and

power of each engine.

25. Refer to the table of "Typical Power Ratings ' on

page 292.

(a) What advantages would Mewcomen's engine ha\'e

over a "turret windmill"?

(b) What advantage would you expect Watt's engine

(17781 to have over Smeaton's engine (1772)?

26. Besides "horsepower," another term used in

Watt's day to describe the performance of steam

engines was "duty. ' The duty of a steam engine was

defined as the distance in feet that an engine could

lift a load of 1 miUion pounds, using 1 bushel of coal

as fuel. For example, N'ewcomen's engine had a duty

of 4.3; it could perform 4.3 million foot-pounds of

work by burning a bushel of coal.

A bushel of coal contains about 900 MJ of energy.

A bushel is 36 liters (L). What was the efficiency of

Newcomen's engine?

27. The introduction of the steam engine had both

positive and negative effects, although all of these

effects were not predicted at the time.

(a) List several actual effects, both beneficial and

undesirable, of the steam engine and of the gasoline

internal combustion engine.

(b) List several predicted effects, both beneficial and

undesirable, of nuclear power and of solar power.

28. (a) Find the maximum efficiency of an engine

tliat makes use of the temperature differences in the

ocean. In the tropics, the surface waters are about

15°C, and the bottom waters are about 5°C.

(b) Cooling 1 metric ton of water by 1°C produces

about 4 MJ of energy. At what rate must warm
surface water be pumped through an engine that is

cooled by bottom water in order that the engine

produce 1 MW of mechanical power?

29. (a) Find the miiximum coefficient of

performance of an air conditioner operating on a

day when it is 40°C outside and 21°C inside.

(b) The coils on the outside of an air conditioner

have to be considerably wiirmer than 40°C and those

inside must be cooler than 21°C. Othenvise, heat

would be exchanged too slowly. Suppose the coils

are, respectively, 10°C warmer and cooler than the

ideal. How much is the coefficient of performance

decreased?

(c) What happens to the coefficient of performance

of this air conditioner when the outside coils are put

into the sun and heat up another 10°C?

30. A table of rates for truck transportation is given

below. How does the charge depend on the amount
of work done?

TRUCK TRANSPORTATION

Weight Moving rates (including pickup and
(kg

I

delivery) from Boston to:
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the following steps in the order used by Clausius in

his formula for the maximum efficiency of an

engine:

(a) No engine can be more efficient than an ideal

reversible engine.

(b) Choose one ideal reversible engine and calculate

its efficiency.

(c) Work must be done to cause heat to flow from a

cold to a hot body.

(d) The ratio of heat to work depends only on the

temperature differences of the reservoirs for ideal

reversible engines.

(e) All reversible engines have the same efficiency.

(f) The efficiency of an ideal reversible engine is the

maximum possible for any real engine; in reality,

the efficiency is much less.

32. Elxplain why all ideal reversible engines have the

same efficiency and why this efficiency is the

maximum possible for an engine. What is an ideal

engine? What is a reversible engine?

33. Assuming that no real engine can be perfectly

reversible, why does the formula for the nitudmum
efficiency of an engine imply that absolute zero can

never be reached?

34. Consider the following hypothetical values for a

paddle-wheel experiment like Joule's: A 1-kg weight

descends through a distance of 1 m, turning a paddle

wheel immersed in 5 kg of water.

(a) About how many times must the weight be

allowed to fall in order that the temperature of the

water increase by 0.5°C?

(b) How could you modify the exjDeriment so that

the same temperature rise would be produced with

fewer falls of the weight? (Hint: There are at least

three possible ways.)

35. While traveling in Switzerland, Joule attempted

to measure the difference in temperature of the

water at the top and at the bottom of a waterfall.

Assuming that the amount of heat produced at the

bottom is equal to the decrease in gravitational

potential energy, calculate roughly the temperature

difference you would expect to observe between the

top and bottom of a waterfall about 50 m high, such

as Niagara Falls. Does it matter how much water

goes down the fall?

36. Because a nuclear power plant's interior must
be kept to much closer tolerances than fossil-fueled

plants, its operating temperature is kept lower.

Compare the efficiencies of a nuclear power plant

that produces steam at 600°K with a fossil-fueled

plant that produces steam at 750°K. Both are cooled

by water at 300°K.

(a) If both plants produce 1 MW of electrical power,

at what rate does each plant dump heat into the

environment?

(b) It takes 4.2 MJ to raise the temperature of 1

metric ton of water by 1°C (or 1°K). How many tons

of water must flow through each of the two plants if

the emerging water is to be no warmer than 303°K?

37. About how many kilograms of hamburgers

would you have to eat to supply the energy for 30

min of digging? Assume that your body is 20%

efficient.

38. If your food intake supplies less energy than you
use, you start "burning" your own stored fat for

energy. The oxidation of 0.45 kg of animal fat

provides about 4,300 Calories of energy. Suppose that

on your present diet of 4,000 Calories a day, you
neither gain nor lose weight. If you cut your diet to

3,000 Calories and maintain your present physical

activity, how long would it take to reduce your mass
by 22.5 kg?

39. In order to engage in normal light work, a

person in India has been found to need on the

average about 1 ,950 Calories of food energy a day,

whereas an average West European needs about

3,000 Calories a day. Explain how each of the

following statements makes the difference in energy

need understandable.

(a) The average adult Indian weighs about 49.5 kg;

the average adult West European weighs about 67.5

kg-

(b) India has a warm climate.

(c) The age distribution of the population for which
these averages have been obtained is different in the

two areas.
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40. No other concept in physics has the economic

significance that "energy" does. Discuss the

statement: "We could express energy in dollars just

as well as in joules or calories."

41. Show how the conservation laws for energy and

for momentum can be applied to a rocket during

the period of its lift-off.

42. Discuss the following statement: "During a

typical trip , all the chemicid energy of the gasoline

used in an automobile is used to heat up the car, the

road, and the air."

43. If you place a hot body and a cold one in

thermal contact, heat will flow spontaneously.

Suppose an amount of heat // flows from a body at

temperature T, to a body at T,. What is the entropy

change of the universe?

44. (a) Describe the procedure by which a space

capsule can be changed from a high circulai' orbit to

a lower circular orbit.

(b) How does the kinetic energy in the lower orbit

compare with that in the higher orbit?

(c) How does the gra\itational potential energy for

the lower orbit compare with that of the higher

orbit?

(d) It can be shown (by using calculus) that the

change in gravitational potential energy' in going

from one circular orbit to another will be twice the

change in kinetic energj'. How, then, will the total

energy for the lower circular orbit compare with

that for the higher orbit?

(e) How do you account for the change in total

energy?

45. Any of the terms in the equation A£ = AH +

Aw can have negative values.

(a) What would be true of a system for wliich

(1) Aii is negative?

(2) AH is negative?

(3) Aw is negative?

(b) Which terms would be negative for the following

systems?

(1) a person digging a ditch

(2) a car battery while starting a car

(3) iin electric light bulb just after it is turned on

(4) an electric light bulb an hour after it is turned

on

(5) a running reft'igerator

(6) an exploding firecracker

46. In each of the following, trace the chain of

energy transformations from tlie sun to the energy

in its final form.

(a) A pot of water is boiled on an electric stove.

(b) An automobile accelerates from rest on a level

road I climbs a hQl at constant speed, and comes to a

stop at a trafflc light.

(c) A windmill pumps water out of a flooded field.

47. Review what you read about the second law of

thermodvnamics in Sec. 10.10. For the engine X

considered in the discussion of that law,

H[ > H, and H', - H,

Refer to the difference between H\ and H^ as h:

H[ - H^ = h

thus, h is a positive number.

(a) Use conser\'ation of energy to show that H' ,
— H,

= h also.

(b) Use the following equation (Carnot's theorem)

H, H,

T.
~

T,

to show that for one cycle of engine X,

AS..„..„
h_ _ jl
T. T,

(c) Prove that AS^^.^^^^ must be positive.

48. An ice cube (10 g) melts in a glass of water (100

g). Both are nearly at 0°C. Neglect temperature

changes. Melting the ire requires 3.4 MJ of energy

(which comes from cooling the water). What is the

entropy change of the ice? of the water? of the

universe?
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The Kinelic Theory of Gooes
11.1 An overview of the chapter

11.2 A model for the gaseous state

11.3 The speeds of molecules
11.4 The sizes of molecules
11.5 Preilicting the behaiior of gases from the kinetic theorj'

11.6 The second laiv of thermodj'namics and the dissipation of
energv

11.7 Maxwell's demon and the statistical vieiv of the second laiv

of thermodji'namics
11.8 Time's arrow and the recurrence paradox

iLl
I

An overview of the chapter

During the 1840 's, many scientists recognized that heat is not a

substance, but a fonn of energy tliat can be converted into other

forms. Two of these scientists, James Prescott Joule and Rudolf

Clausius, went a step further. Heat can produce mechanical
energy, and mechanical energy can produce heat; therefore, they

reasoned, the "heat energy" of a substance is simply the kinetic

energy of its atoms and molecules. In this chapter, you will see

that this idea is largely correct. This idea forms the basis of the

kinetic-molecular theory of heat.

However, even the idea of atoms and molecules was not

completely accepted in the nineteenth centuiy. If such small bits

of matter really existed, they would be too small to obseive even
under the most powerful microscopes. Since scientists could not

SG 1

Molecules are the smallest pieces

of a substance; they may be com-
binations of atoms of simpler sub-

stances.
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observe molecules, they could not check directly the h\pothesis

that heat is molecular kinetic energ\'. Instead, they had to derive

from this hypothesis predictions about the behaxior of

measurably large samples of matter. Then they could test these

predictions by experiment. For reasons that will be explained,

it is easiest to test such hypotheses by obsemng the profDeities

of gases. Therefore, this chapter deals mainly with the kinetic

theory as applied to gases.

The development of the kinetic theory of gases in the

nineteenth century led to one of the last major- triumphs of

Newtonian mechanics. The method involved using a simple

theoretical model of a gas. In this model Neuron's laws of

motion were applied to the gas molecules which were pictured

as tiny balls. This method produced equations that related the

easily observable pr operties of gases, such as pressure, density,

and temperature, to properties not directly observable, such as

the sizes and speeds of molecules. For* example, the kinetic

theory:

1. explained rules that had been found previously by trial-and-

error methods. lAn example is "Boyle's law," which relates the

pressure and the volume of a gas.)

2. predicted new relations. (One surprising result was that the

friction between layers of gas moving at different speeds

increases with temperatur e, but is independent of the density of

the gas.)

3. led to values for the sizes and speeds of gas molecules.

Thus, the successes of kinetic theory showed that Newtonian

mechanics provided a way for understanding the effects and

behavior of invisible molecules.

Applying Newtonian mechanics to a mechanical model of

gases resulted in some predictions that did not agree with the

facts; that is, the model is not valid for all phenomena. According

to kinetic theory, for example, the energy of a group of molecules

should be shared equally among all the different motions of the

molecules and their atoms. The properties of gases predicted

from this "equal sharing" principle clearly disagreed with

experimental evidence. Newtonian mechanics could be applied

successfully to a wide range of motions and collisions of

molecules in a gas. But it did not work for the motions of atoms

inside molecules. It was not until the twentieth century that an

adequate theory of the behavior of atoms, "quantum mechanics,"

was developed. (Some ideas from quantum mechanics are

discussed in Unit 5.)

Kinetic theory based on Newtonian mechanics also had

trouble dealing with the fact that most phenomena are not

reversible. An inelastic collision is an irreversible process. Other

examples are the mixing of two gases or scrambling an egg. In

NevYlonian theory, however, the reverse of anv event is just as
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reasonable as the event itself. Can irreversible processes be

described by a theory based on Newtonian theory? Or do they

involve some new fundamental law^ of nature? In studying this

problem from the viewpoint of kinetic theory, you will see how
the concept of "randomness" entered physics.

1. Earlyforms of the kinetic molecular theory were based on

the assumption that heat energy is

(a) a liquid.

(b) a gas.

(c) the kinetic energy of molecules.

(d) made of molecules.

2. True or false: In the kinetic theory ofgases, as developed in

the nineteenth century, it was assumed that Newton's laws of
motion apply to the motion and collisions of molecules.

3. True or false: In the twentieth century, Newtonian

mechanics was found to be applicable not only to molecules

but also to the atoms inside molecules.
Balloon for carrying weatherfore-
casting apparatus.

1. 1. .2
I

A model for the gaseous state

What are the differences between a gas and a liquid or solid?

You know by observation that liquids and solids have definite

volume. Even if their shapes change, they still take up the same

amount of space. A gas, on the other hand, will expand to fill any

container (such as a room). If not confined, it will leak out and

spread in all directions. Gases have low densities compared to

those of liquids and solids, typically about 1,000 times smaller.

Gas molecules are usually relatively far apart from one another,

and they only occasionally collide. In the kinetic theory model,

forces betw^een molecules act only over very short distances.

Therefore, gas molecules are considered to be moving freely most

of the time. In liquids, the molecules are closer together; forces

act among them continually and keep them from flying apart. In

solids, the molecules are usually even closer together, and the

forces between them keep them in a definite orderly

arrangement.

The initial model of a gas is very simple. The molecules are

considered to behave like miniature balls, that is, tiny spheres or

clumps of spheres that exert no force at all on each other except

when they make contact. Moreover, all the collisions of these

spheres are assumed to be perfectly elastic. Thus, the total

kinetic energy of two spheres is the same before and after they

collide.

Note that the word "model" is used in two different senses in

science. In Chapter 10, we mentioned the model of Newcomen's

-P

>Q
J '-^tj

/

a
^

^
:>

J

A very simplified "model" of the

three states of matter: solid, liquid,

gas. (From General Chemistry,

second edition, by Linus Pauling,

W. H. Freeman and Company, ©
1953.)
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Gases can be confined without a

container. A star, for example, is a

mass of gas confined by grjivita-

tional force. Another example is the

earth's atmosphere.

The word "gas" was originally de-

med from the Greek word chaos;

it was first used by the Belgian
chemist Jan Baptista van Helmont
(1580-1644).

engine which James Watt was given to repair. That was a working

model. It actually did function, although it was much smaller

than the original engine, and contained some parts made of

different materials. Now we are discussing a theoretical model of

a gas. This model exists only in the imagination. Like the points,

lines, triangles, and spheres studied in geometiy, this theoretical

model can be discussed mathematically. The results of such a

discussion may help you to understand the real world.

This theoretical model represents the gas as consisting of a

large number of very small particles in rapid, disordered motion.

"A large number" means something like a billion billion iio"*) or

more particles in a sample as small as a buiible in a soft diink.

"Very small" means a diameter about a hundred-millionth of a

centimeter (10 ~*" m). "Rapid motion" means an average speed of

a few hundred kilometers pei' hour. What is meant by

"disordered" motion? Nineteenth-century kinetic theorists

assumed that each individual molecule mo\'ed in a definite way,

detemiined by Newton's laws of motion. Of course, in practice

it is impossible to follow a billion billion particles at the same
time. They move in all directions, and each particle changes its

direction and speed during collisions with other particles.

Therefore, we cannot make a definite prediction of the motion of

any one individual par'ticle. Instead, we must be content with

describing the average behavior of large collections of particles.

From moment to moment, each individual molecule behaves

according to the laws of motion. But it is easier to describe the

average behavior- if we assume complete ignorance about any

individual motions.

To see why this is so, consider the r'esults of flipping a lar-ge

number of coins all at once. It would be very har-d to predict

how a single coin would behave. But if you assume the coins

behave randomly, voir can confidently predict that flipping a

million coins will give approximately 50% heads and 50% tails.

The same principle applies to molecules bouncing around in a

container. You can safely assume that about as many are moving

in one direction as in another-. Further-more, the molecules ar-e

equally likely to be found in any cubic centimeter of space inside

the container. This is true no matter- where such a r-egion is

located, and even though we do not know wher-e a given

molecule is at any given time. "Disordered," then, means that

velocities and positions are distributed randomlv. Each molecule

is just as likely to be moving to the right as to the left lor- in any

other direction). It is just as likely to be near the center as near

the edge (or any other position).

• 4. What kind of a model is a test model of a bridge made of

balsa wood? a computer program that simulates the forces
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Averages ond Fluctuations

Molecules are too small, too numerous, and too

fast for us to measure the speed of any one mol-

ecule, its kinetic energy, or how far it moves before

colliding with another molecule. For this reason, the

kinetic theory of gases concerns itself with making

predictions about average values. The theory en-

ables us to predict quite precisely the average

speed of the molecules in a sample of gas, the

average kinetic energy, or the average distance the

molecules move between collisions.

Any measurement made on a sample of gas re-

flects the combined effect of billions of molecules,

averaged over some interval of time. Such average

values measured at different times, or in different

parts of the sample, will be slightly different. We
assume that the molecules are moving randomly.

Thus, we can use the mathematical rules of statis-

tics to estimate just how different the averages are

likely to be. We will call on two basic rules of sta-

tistics for random samples:

1. Large variations away from the average are

less likely to occur than are small variations. (For

30-Toss Se-ta

20 5C 90 IOC %Heads

90 -Toss Sets

30 4.0 ro fco 80 90 ]0D "/o Head;

I80-To;s Sets

MmmsuL
10 20 3C 40 5C fee 70 PC 90 100 % HeadS

Giose Upl
example, if you toss 10 coins, you are less likely

to get 9 heads and 1 tail than to get 6 heads and

4 tails.)

2. Percentage variations are likely to be smaller

for large samples. (For example, you are likely

to get nearer to 50% heads by flipping 1 ,000 coins

than by flipping just 10 coins.)

A simple statistical prediction is the statement that

if a coin is tossed many times, it will land "heads"

50% of the time and "tails" 50% of the time. For

small sets of tosses there will be many "fluctua-

tions" (variations) to either side of the predicted

average of 50% heads. Both statistical rules are

evident in the charts at the right. The top chart

shows the percentage of heads in sets of 30 tosses

each. Each of the 10 black squares represents a

set of 30 tosses. Its position along the horizontal

scale indicates the percentage of heads. As we
would expect from rule 1 , there are more values

near the theoretical 50% than far from it. The second

chart is similar to the first, but here each square

represents a set of 90 tosses. As before, there are

more values near 50% than far from it. And, as we
would expect from rule 2, there are fewer values far

from 50% than in the first chart.

The third chart is similar to the first two, but now
each square represents a set of 1 80 tosses. Large

fluctuations from 50% are less common still than

for the smaller sets.

Statistical theory shows that the average fluctua-

tion from 50% shrinks in proportion to the square

root of the number of tosses. We can use this rule

to compare the average fluctuation for sets of, say,

30,000,000 tosses with the average fluctuation for

sets of 30 tosses. The 30,000,000-toss sets have

1,000,000 times as many tosses as the 30-toss

sets. Thus, their average fluctuation in percent of

"heads" should be 1,000 times smaller!

These same principles hold for fluctuations from

average values of any randomly distributed quan-

tities, such as molecular speed or distance between

collisions. Since even a small bubble of air contains

about a quintillion (10'®) molecules, fluctuations in

the average value for any isolated sample of gas

are not likely to be large enough to be measurable.

A measurably large fluctuation is not impossible,

but extremely unlikely.
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Daniel Bernoulli (1700-1782)

SG3

Pressure is defined as the perpen-
dicular force on a surface divided

by the area of the surface. The unit

of pressure, N/mS has been given

the name pascal (svmbol Pa) after

an eighteenth-century physicist. At-

mospheric pressure is about 100
kPa.

acting on a bridge? What are the differences between

"theoretical" and "working" models?

5. Head the following description of a model of a gas and give

a suitable numerical estimation for each underlined phrase:

"a lare,e number of small particles in rapid, disordered

motion.
"

6. In the kinetic theory, particles are thought to e}cert

significant forces on one another

(a) only when they are far apart.

(b) only when they are close together.

(c) all the time.

(d) never.

7. Why was the kinetic theoryfirst applied to gases rather than

to liquids or solids?

1. 1. .3
I

The speeds of molecules

The basic idea of the kinetic theory is that heat is related to the

kinetic energy of molecular motion. This idea had been

frequently suggested in the past. However, many difficulties

stood in the way of its general acceptance. Some of these

difficulties are well worth mentioning. They show that not all

good ideas in science (any more than outside of science i are

immediately successful.

In 1738, the Swdss mathematician Daniel Bernoulli showed
how a kinetic model could explain a well-known property of

gases. This property is described by Boyle's law: As long as the

temperature does not change, the pressure of a gas is

proportional to its density. Bernoulli assumed that the pressure

of a gas is simply a result of the impacts of individual molecules

striking the wall of the container. If the density of the gas were
twice as great, there would be twice as many molecules per

cubic centimeter. Thus, Bernoulli said, there would be twice as

many molecules striking the wall per second and hence twice

the pressure. Bernoulli's proposal seems to have been the first

step toward the modem kinetic theoiy of gases. Yet it was
generally ignored by other scientists in the eighteenth century.

One reason for this was that Newton had proposed a different

theory in his Principia (16871. Newlon showed that Boyle's law

could be explained by a model in which particles at rest exert

forces that repel neighboring particles. Newton did not claim

that he had proved that gases really are composed of such

repelling particles. But most scientists, impressed by Newton's

discoveries, simply assumed that his treatment of gas pressure

was also right, lit was not.)

The kinetic theory of gases was proposed again in 1820 by

English physicist John Heiapath. Herapath ledisctneied
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Bernoulli's findings on the relations between pressure and

density of a gas and the speeds of the particles. Herapath's work
also was ignored by most other scientists.

James Prescott Joule, however, did see the value of Herapath's

work. In 1848, he read a paper to the Manchester Literaiy and
Philosophical Society in which he tried to revive the kinetic

theory. Joule shov^ed how the speed of a hydrogen molecule

could be computed (as Herapath had done). He reported a value

of 2,000 mb^sec at 0°C, the freezing temperature of water. This

paper, too, was ignored by other scientists. For one thing,

physicists do not generally look in the publications of a "literary

and philosophical society " for scientifically important papers.

However, evidence for the equivalence of heat and mechanical

energy continued to mount. Several other physicists

independently u^orked out the consequences of the hypothesis

that heat energy in a gas is the kinetic energy of molecules.

Rudolf Clausius in Germany published a paper in 1856 on "The

Nature of the Motion we call Heat." This paper established the

basic principles of kinetic theoiy essentially in the form accepted

today. Soon afterward, James Clerk Maxwell in Britain and
Ludwig Boltzmann in Austria set forth the full mathematical

details of the theory.

The Maxwell velocity distribution. It did not seem likely that all

molecules in a gas would have the same speed. In 1859, Maxwell

applied the mathematics of probability to this problem. He
suggested that the speeds of molecules in a gas are distributed

over all possible values. Most molecules have speeds not very far

from the average speed. Some have much lower speeds and

some much higher speeds.

(b)

• t *

• • •
• • •
• • •

Cc)

• • •
• • • •
• • • •

• • • •

• « • •

distonc* from cercHer dis+oi'nce fnom ceo+^r-

Ludwig Boltzmann (1844-1906)

A simple example will help you to understand Maxwell's

distribution of molecular speeds. Suppose a person shoots a gun
at a practice target many times. Some bullets will probably hit

the bull's-eye. Others will miss by smaller or larger amounts, as

shown in (a) in the sketch above. The number of bullets scattered

at various distances from the center are counted. A graph of the

results is shown in (b). This graph shows the distribution of hits

for one set of shots. Another target may give a different

distribution, but it is likely to have the same general shape. If you
plot the distribution of hits for a veiy large number of shots, you
will get a distribution like the one in (c).

Target practice e}cperiment: (a)

scatter of holes in target; (b) graph
showing nuniber of holes in each

half-ring of the bull's eye; (c) graph
showing that the distribution be-

comes smooth for a very large

number ofshots andfor very nar-

row rings.
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Ma^cwell's distribution ofspeeds in

gases at different temperatures.

SG4
SG5

For still larger numbers of shots, the distribution spread you
see in (c) will be too small to be noticed. Since the number of

molecules in a gas is very large indeed, the graph shov\ing the

distribution of molecular speeds is smooth at any scale that can

be drawn.

The actual shape of the curve in (c) is determined by many
things about the gun, the person, and so on. Other processes

give rise to other shapes of curves. The speeds of the molecules

in a gas are determined by the collisions they have with each

other. Maxwell used a very clever mathematical argument to

deduce a distribution of molecular speeds. He was then able to

argue, not rigorovisly, that the average number of molecules at

each speed is not changed by the molecular collisions.

Somewhat later, Ludwig Boltzmann published a rigorous proof

that Maxwell's distribution is the only one that remains

unchanged by collisions.

Maxwell's distribution law for molecular speeds in a gas is

shown in the margin in graphical form for three different

temperatures. For a gas at any given temperature, the "tail " of

each curve is much longer on the right (high speeds) than on the

left (low speeds). As the temperature increases, the peak of the

curve shifts to higher speeds, and the speed distribution

becomes more broadly spread out.

What evidence do we have that Maxwell's distribution law

really applies to molecular speeds? Several successful predictions

based on this law gave indirect support to it. Not until the 1920 s

was a direct experimental check possible. Otto Stern in GeiTnany,

and later Zartmann in the United States, devised a method for

measuring the speeds in a beam of molecules. (See the

illustration of Zartmann's method on page 330.) Stern, Zartmann,

and others found that molecular speeds are indeed distributed

according to Maxwell's law.

8. In the kinetic theory ofgases, it is assumed that the

pressure of a gas on the walls of the container is due to

(a) gas molecules colliding with one another.

(b) gas molecules colliding against the walls of the container.

(c) repelling forces everted by molecules on one another.

9. The idea ofspeed distribution for gas molecules means that

(a) each molecule always has the same speed.

(b) there is a wide range ofspeeds ofgas molecules.

(c) molecules are moving fastest near the center of the gas.
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1. 1. .-^ The sizes of molecules

Is it reasonable to suppose that gases consist of molecules

moving at speeds up to several hundred meters per second? If

this model were correct, gases should mix vvdth each other very

rapidly. But anyone who has studied chemistry knows that they

do not. Suppose hydrogen sulfide or chlorine is generated at the

end of a large room. Several minutes may pass before the odor

is noticed at the other end. According to kinetic-theory

calculations, each of the gas molecules should have crossed the

room hundreds of times by then. Therefore, something must be

wrong with the kinetic-theoiy model.

Rudolf Clausius recognized this as a valid objection to his own
version of the kinetic theory. His 1856 paper had assumed that

the particles are so small that they can be treated like

mathematical points. If this were true, particles would almost

never collide with one another. However, the observed slowness

of diffusion and mixing convinced Clausius to change his model.

He thought it likely that the molecules of a gas are not

vanishingly small, but of a finite size. Particles of finite size

moving very rapidly would often collide with one another. An
individual molecule might have an instantaneous speed of

several hundred meters per second, but it changes its direction

of motion every time it collides with another molecule. The more
often it collides with other molecules, the less likely it is to move
very far in any one direction. How often collisions occur depends

on how crowded the molecules are and on their size. For most

purposes, you can think of molecules as being relatively far apart

and of very small size. But they are just large enough and

crowded enough to get in one another's way. Realizing this,

Clausius was able to modify his model to explain why gases mix

so slowly. In addition, he derived a precise quantitative

relationship between the molecules' size and the average

distance they moved between collisions.

Clausius now was faced with a problem that plagues every

theoretical physicist. If a simple model is modified to explain

better the observed properties, it becomes more complicated.

Some plausible adjustment or approximation may be necessary

in order to make any predictions from the model. If the

predictions disagree with experimental data, is this because of a

flaw in the model or a calculation error introduced by the

approximations? The development of a theory often involves a

compromise between adequate explanation of the data and
mathematical convenience.

Nonetheless, it soon became clear that the new model was a

great improvement over the old one. It turned out that certain

other properties of gases also depend on the size of the

molecules. By combining data on several such properties, it was

%/

^
c

The larger the molecules are, the

more likely they are to collide with

each other.
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Direct Measurement of Molecular
Speeds

A narrow beam of molecules is formed by letting molecules of a hot gas

pass through a series of slits. In order to keep the beam from spreading

out, collisions with randomly moving molecules must be avoided. Therefore,

the source of gas and the slits are housed in a highly evacuated chamber.

The molecules are then allowed to pass through a slit in the side of a

cylindrical drum that can be spun very rapidly. The general scheme is shown
in the drawing above.

As the drum rotates, the slit moves out of the beam of molecules. No
more molecules can enter until the drum has rotated through a whole rev-

olution. Meanwhile, the molecules in the drum continue moving to the right,

some moving quickly and some moving slowly.

Fastened to the inside of the drum is a sensitive film that acts as a

detector. Any molecule striking the film leaves a mark. The faster molecules

strike the film first, before the drum has rotated very far.

The slower molecules hit the film later, after the drum has rotated farther.

In general, molecules of different speeds strike different parts of the film.

The darkness of the film at any point is proportional to the number of mol-

ecules that hit it there. Measurement of the darkening of the film shows the

relative distribution of molecular speeds. The speckled strip at the right

represents the unrolled film, showing the impact position of molecules over

many revolutions of the drum. The heavy band in-

dicates where the beam struck the film before the

drum started rotating. (It also marks the place to

which infinitely fast molecules would get once the

drum was rotating.)

A comparison of some experimental results with

those predicted from theory is shown in the graph.

The dots show the experimental results, and the

solid line represents the predictions from the kinetic

theory.



possible to vv^ork backwards and find fairly reliable values for

molecular sizes. Here, only the result of these calculations is

reported. Typically, the diameter of gas molecules came out to be

of the order of lO'" to 10 ' m. This is not far from the modern
values, an amazingly good result. After all, no one previously had
knouTi whether a molecule was 1,000 times smaller or bigger

than that. In fact, as Lord Kelvin remarked: SG 6

The idea of an atom has been so constantly associated with

incredible assumptions of infinite strength, absolute rigidity,

mystical actions at a distance and indivisibility, that chemists

and many other reasonable naturalists of modern times, losing

all patience with it, have dismissed it to the realms of

metaphysics, and made it smaller than anvtbing we can

conceive.'

SG 7

Kelvin showed that other methods could also be used to SG 8

estimate the size of atoms. None of these methods gave results as

reliable as did the kinetic theory. But it was encouraging that

they all led to the same order of magnitude (within about 50%j.

# 10. In his revised kinetic-theory model Clausius assumed that

the particles have a finite size, instead of being mathematical

points, because

(a) obviously everything must have some size.

(b) it was necessary to assume a finite size in order to

calculate the speed of molecules.

(c) the size ofa molecule was already well known before

Clausius' time.

(d) a finite size of molecules could account for the slowness of

diffusion.

11. Why were many people skeptical of the existence ofatoms

at the time of Clausius? How did Clausius estimate of the size

ofatoms reinforce atomic theory?

1. 1. .5
I

Predicting the behavior of gases from the
kinetic theory

One of the most easily measured characteristics of a confined gas

is pressure. Experience with balloons and tires makes the idea

of air pressure seem obvious, but it was not always so.

Galileo, in his book on mechanics, Two New Sciences (1638),

noted that a lift-type pump cannot raise water more than 10 m.
This fact was well known. Such pumps were widely used to

obtain drinking water from wells and to remove water from
mines. You already have seen one important consequence of this

CHAPTER 11 / THE KINETIC THEORY OF GASES 331



.76 m

0.0 m SG 9

SG 10

Torricelli's barometer is a glass

tube standing in a pool of mercury.

The topmost part of the tube is

empty of air. The air pressure on

the pool supports the weight of the

column of mercury in the tube up
to a height of about 0.76 m. The
MKS unit ofpressure is the \'/m',

which has been given the name
pascal (symbol Pa).

Because the force acts on a very

small surface, the pressure under a

thin, high heel is greater than that

under an elephant's foot.

SG 11

SG 36, 37

SG 12

limited ability of pumps to lift water out of deep mines. Ihis

need provided the initial stimulus foi- the de\(?lopment of steam

engines. Another' consecjuenee was that physicists became
curious about \\h\' the lift pumj) worked at all. Also, why should

there be a limit to its abilit\' to raise water?

Air pressure. The |3uzzle was sohed as a result of experiments

by Torricelli (a student of Galileo), Guericke, Pascal, and Boyle.

By 1660, it was fairly clear that the o[3eiation o( a "lift" pump
depends on the pressure of the air. The pump merely reduces

the pressure at the top of the pipe. It is the pressure exerted by

the atmosphere on the pool of v\ater below which forces water

up the pipe. A good pump can reduce the pressure at the top of

the pipe to nearly zero. Then the atmospheric pressure can force

water up to about 10 m iibo\e the pool, but no higher.

Atmospheric pressure at sea lexel is not great enough to support

a column of water any higher. Mercurv is almost 14 times as

dense as water. Thus, ordinary pressure on a pool of mercury

can support a column only '/i4 as high, about 0.76 m. This is a

more convenient height for laboratory experiments. Therefore,

much of the se\'enteenth-century resear'ch on air pr^essur'e was
done with a column of mercury, or mercury' "barometer." The
first of these barometers w^as designed by Torricelli.

The height of the mer'cury column that can be supported by

air pressure does not depend on the diameter of the tube; that

is, it depends not on the total amount of mercury, but only on its

height. This may seem str'ange at first. To understand it, you
must understand the difference between pressure and force.

Pressure is defined as the magnitude of the force acting

perpendicularly on a surface dixided by the area of that surface:

P — FJ_/A. Thus, a large for^ce may produce only a small

pressure if it is spiead over a large area. For example, you can

walk on snow without sinking in it if you wear snowshoes. On
the other' hand, a small force can produce a very large pr'essure if

it is concentrated on a small area. Women's spike heel shoes

ha\'e rnjined many a wooden floor' or carpet. The pressure at the

place wher'e the heel touched the floor was greater' than that

under an elephant's foot.

In 1661, two English scientists, Richard Towneley and Heniy

Power, discovered an important basic r^elation. They found that

the pressure e;<erted by a i^as is directly proportional to the

density of that gas. Using P for pressui'e and D for density, this

relationship is F ^ D or P = kD where k is some constant. For

example, if the density of a given quantity of air is doubled Isay,

by compressing it I, its pressure also doubles. Robert Boyle

confirmed this relation by extensixe experiments. It is an

empirical i\i\e, now generally known as Boyle s law. The law

holds true only under special conditions.

The effect of temperature on gas pressure. Boyle r^ecognized
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that if the temperature of a gas changes during an experiment,

the relation P = kD no longer applies. For example, the pressure

exerted by . gas in a closed container increases if the gas is

heated, even though its density stays constant.

Many scientists throughout the eighteenth centuiy investigated

the expansion of gases by heat. The experimental results were
not consistent enough to establish a quantitative relation

between density (or volume) and temperature. Eventually;

evidence for a surprisingly simple general law appeared. The
French chemist Joseph-Louis Gay-Lussac (1778-1850) found that

all the gases he studied (air, oxygen, hydrogen, nitrogen, nitrous

oxide, ammonia, hydrogen chloride, sulfur dioxide, and carbon

dioxide) changed their volume in the same way. If the pressure

remained constant, then the change in volume was proportional

to the change in temperature. On the other hand, if the volume
remained constant, the change in pressure was proportional to

the change in temperature.

A single equation summarizes all the experimental data

obtained by Boyle, Gay-Lussac, and many other scientists. It is

known as the ideal gas law:

P = kD(t + 273°)

Here, t is the temperature on the Celsius scale. The
proportionality constant k depends only on the kind of gas (and

on the units used for P, D, and t).

This equation is called the ideal gas law because it is not

completely accurate for real gases except at very low pressures.

Thus, it is not a law of physics in the same sense as the law of

conservation of momentum. Rather, it simply gives an

experimental and approximate summary of the observed

properties of real gases. It does not apply w^hen pressure is so

high, or temperature so low, that the gas nearly changes to a

liquid.

The number 273 appears in the ideal gas law simply because

temperature is measured on the Celsius scale. The fact that the

number is 273 has no great importance. It just depends on the

choice of a particular scale for measuring temperature. However,

it is important to note what would happen if t were decreased

to — 273°C. Then the entire factor involving temperature would
be zero. And, according to the ideal gas law, the pressure of any

gas would also fall to zero at this temperature. Real gases

become liquid long before a temperature of — 273°C is reached.

Both experiment and thermodynamic theory indicate that it is

impossible actually to cool anything, gas, liquid, or solid, down
to precisely this temperature. However, a series of cooling

operations has produced temperatures less than 0.0001° above

this limit.

In view of the unique meaning of this lowest temperature,

Lord Kelvin proposed a new temperature scale. He called it the

On the Celsius scale, water freezes

at 0° and boils at 100°, when the

pressure is equal to normal atmos-
pheric pressure. On the Fahrenheit

scale, water freezes at 32° and boils

at 212°. Some of the details involved

in defining temperature scales are

part of the experiment "Tempera-
ture and Thermometers" in the

Handbook.

If the pressure were kept constant,

then according to the ideal gas law,

the volume of a sample of gas
would shrink to zero at — 273°C.

This "absolute zero" point on the

temperature scale has been found
to be -273.16° Celsius.
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For our purposes, it is sufiiciently

accurate to say the absolute tem-
perature of any sample (symbol-

ized by the letter T and measured
in degrees Kelvin, or °K) is equal to

the Celsius temperature t plus 273°:

T = t + 273°

The boiling point of water, for ex-

ample, is 373°K on the absolute
scale.

SG 13, 14

'Celsius

327-

IOO--
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0--
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leodmcll^
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-rioo
^273

195

490

-273 -'- absolute zero

Comparison of the Celsius and ab-

solute temperature scales.

absolute temperature scale and put its zero at -273°C. The
absolute scale is sometimes called the KeKin scale. The
temperature of - 273°C is now referred to as 0"K on the absolute

scale and is called the absolute zero of temperature.

The ideal gas law may now be written in simpler fomi:

P = kDT

T is the temperature in degrees Kelvin, and k is the

proportionality' constant.

The equation P — kDT summarizes experimental facts about

gases. Now you can see whether the kinetic-theoiy model offers

a theoretical explanation for these facts.

Kinetic explanation ofgas pressure. According to the kinetic

theory, the pressure of a gas results from the continual impacts

of gas particles against the container wall. This explains why
pressure is proportional to density: The greater the density, the

greater the number of particles colliding with the wall. But

pressure also depends on the speed of the individual particles.

This speed determines the force exerted on the wall during each

impact and the frequency of the impacts. If the collisions with

the wall are perfectly elastic, the law of consenation of

momentum will describe the r esults of the impact. The detailed

reasoning for this procedure is worked out on pages 336 and 337.

This is a beautifully simple application of Newtonian mechanics.

The r^esult is clear: Applying Newtonian mechanics to the kinetic

molecular model of gases leads to the conclusion that P =

M)D(v^l^^ whei^e (v^).,, is the average of the squared speed of the

molecules.

So there are two expressions for the pressure of a gas. One
summarizes the experimental facts, P = kDT. The other is

derived by Neuton's laws from a theoretical model, P — VaDlv^)^^.

The theoretical expression will agree with the experimental

expression only if kT = V:i{v^)_^^. This would mean that the

temperature of a gas is proportional to lv^i_^^. The mass m of each

molecule is a constant, so the temperature is also proportional

to Vzmlv^),^. Thus, the kinetic theory leads to the conclusion that

the temperature of a gas is proportional to the average kinetic

energy of its molecules! We already had some idea that raising

the temperature of a material somehow affected the motion of its

"small par'ts." We wer'e awar^e that the higher- the temper-atur-e

of a gas, the more rapidly its molecules are moving. But the

conclusion T ^ V2mi\^}^^^ is a pr-ecise quantitative r'elationshij:)

derived from the kinetic model and empir ical hivvs.

This relationship makes possible other quantitative predictions

from kinetic theory. We know by experience that when a gas is

compressed or- condensed rapidly, the temperature changes, and

the general gas law (P = kDT) applies. Can the model explain

this result?
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In the model used on pages 336-37; particles were bouncing

back and forth between the walls of a box. Every collision with

the wall was perfectly elastic, so the particles rebounded with no

loss in speed. Suppose the outside force that holds one wall in

place is suddenly reduced. What will happen to the wall? The
force exerted on the wall by the collisions of the particles will

now be greater than the outside force. Therefore, the wall will

move outward.

As long as the wall was stationary, the particles did no work
on it, and the wall did no work on the particles. Now the wall

moves in the same direction as the force exerted on it by the

particles. Thus, the particles must be doing work on the wall.

The energy needed to do this w^ork must come from somewhere.
The only av^ailable source of energy here is the kinetic energy

Wzmxr) of the particles. In fact, it can be shown that molecules

colliding perfectly elastically with a receding wall rebound with

slightly less speed. Therefore, the kinetic energy of the particles

must decrease. The relationship T ^ Vimlv^)^^ implies that the

temperature of the gas will drop. This is exactly what happens!

If the outside force on the wall is increased instead of

decreased, just the opposite happens. The gas is suddenly

compressed as the w^all moves inward, doing work on the

particles and increasing their kinetic energy. As Vzni\r goes up,

the temperature of the gas should rise, which is just what
happens when a gas is compressed quickly.

Many different kinds of experimental evidence support this

conclusion and therefore also support the kinetic-theory model.

Perhaps the best evidence is the motion of microscopic particles

suspended in a gas or liquid, called Brownian motion. The gas

or liquid molecules themselves are too small to be seen directly,

but their effects on a larger particle (for example, a particle of

smoke) can be observed through the microscope. At any instant,

molecules moving at very different speeds are striking the larger

particle from all sides. Nevertheless, so many molecules are

taking part that their total effect nearly cancels. Any remaining

effect changes in magnitude and direction from moment to

moment. Therefore, the impact of the invisible molecules makes
the visible particle "dance" in the viewiield of the microscope.

The hotter the gas, the more lively the motion, as the equation

T <x Vamlv^)^^ predicts.

This experiment is simple to set up and fascinating to watch.

You should do it as soon as you can in the laboratory. It gives

visible evidence that the smallest parts of all matter in the

universe are in a perpetual state of lively, random motion.

SG 16

This phenomenon can be demon-
strated by means of the expansion
cloud chamber, cooling of CO, fire

extinguisher, etc. Here the "waH" is

the air mass being pushed away.

Diesel engines have no spark plugs;

ignition is produced by tempera-
ture rise during the high compres-
sion of the air-fuel vapor mixture.

SG 15

Brownian motion was named after

the English botanist, Robert Brown,
who in 1827 observed the phenom-
enon while looking at a suspension
of the microscopic grains of plant

pollen. The same kind of motion of

particles ("thermal motion") exists

also in liquids and solids, but there

the particles are far more con-
strained than in gases.

• 12. The relationship between the density and pressure of a gas
e;sipressed by Boyle 's law, P = kD, holds true
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Close UpI
Deriving on Expression for Pressure

from the Kinetic Theory

We begin with the model of a gas described in

Sec. 11.2: "a large number of very small particles

in rapid, disordered motion." We can assume here

that the particles are points with vanishingly small

size, so that collisions between them can be ig-

nored. If the particles did have finite size, the results

of the calculation would be slightly different. But the

approximation used here is accurate enough for

most purposes.

The motions of particles moving in all directions

with many different velocities are too complex as

a starting point for a model. So we fix our attention

first on one particle that is simply bouncing back

and forth between two opposite walls of a box.

Hardly any molecules in a real gas would actually

move like this. But we will begin here in this simple

way and later in this chapter extend the argument

to include other motions. This later part of the ar-

gument will require that one of the walls be movable.

Therefore, we will arrange for that wall to be mov-

able, but to fit snugly into the box.

In SG 24 of Chapter 9, you saw how the laws of

conservation of momentum and energy apply to

cases like this. When a very light particle hits a more

massive object, like the wall, very little kinetic en-

ergy is transferred. If the collision is elastic, the par-

ticle will reverse its direction with very little change

in speed. In fact, if a force on the outside of the wall

keeps it stationary against the impact from inside,

the wall will not move during the collisions. Thus no

work is done on it, and the particles rebound without

any change in speed.

How large a force will these particles exert on the

wall when they hit it? By Newton's third law the

average force acting on the wall is equal and op-

posite to the average force with which the wall acts

on the particles. The force on each particle is equal

to the product of its mass times its acceleration {F

= mi), by Newton's second law. As shown in Sec.

9.4, the force can also be written as

F =
limv)

where A{mv) is the change in momentum. Thus, to

find the average force acting on the wall we need

to find the change in momentum per second due

to molecule-wall collisions.

Imagine that a particle, moving with speed v^ (the

component of v in the x direction) is about to collide

with the wall at the right. The component of the

particle's momentum in the x direction is mv^. Since

the particle collides elastically with the wall, it re-

bounds with the same speed. Therefore, the mo-

mentum in the x direction after the collision is

m{-vj = -mv^. The change in the momentum of

the particle as a result of this collision is

final



the right or to the left. We can therefore indicate

direction by using a + or a - sign, respectively.

Now think of a single particle of mass m moving

In a cubical container of volume L^ as shown In the

figure.

The time between collisions of one particle with

the right-hand wall Is the time required to cover a

distance 2L at a speed of v;, that is, 2Llv^. If 2Llv^

equals the time between collisions, then vJ2L
equals the number of collisions per second. Thus,

the change in momentum per second Is given by

(change in (number of

momentum in x collisions

one collision) per second)

[-2n)v) X {vJ2L)

(change In

momentum
per second)

- mv

The net force equals the rate of change of momen-
tum. Thus, the average force acting on the molecule

(due to the wall) is equal to -mvf/L, and by New-
ton's third law, the average force acting on the wall

(due to the molecule) is equal to +mv^^/L. So the

average pressure on the wall due to the collisions

made by one molecule moving with speed v^ is

r, _ F _ F _ mv] _ mv^

where v (here L^) Is the volume of the cubical con-

tainer.

Actually, there are not one but N molecules in the

container. They do not all have the same speed,

but we need only the average speed in order to find

the pressure they exert. More precisely, we need
the average of the square of their speeds In the x

direction. We call this quantity {v^)^^. The pressure

on the wall due to N molecules will be N times the

pressure due to one molecule, or

P =
V

In a real gas, the molecules will be moving in all

directions, not just In the x direction; that is, a mol-

ecule moving with speed v will have three compo-
nents: v^, v^, and v^. If the motion is random, then

there is no preferred direction of motion for a large

collection of molecules, and (v ^) = (v^) = (v ^)
.

' \ X 'av V y 'av V z 'av

It can be shown from Pythagoras' theorem that v^

= I// -I- v^^ + y^. These last two expressions can

be combined to give

or

(y ') = hs/)
V X 'av o^ 'av

By substituting this expression for (i/^

sure formula, we get

in the pres-

P =
Hm X y)^

_ 1
/V/77,

3 y ^ '^-^

Notice now that A/m is the total mass of the gas,

and therefore himlV is just the density D. So

P = ^(^')av

This is our theoretical expression for the pressure

P exerted on a wall by a gas in terms of its density

D and the molecular speed y.
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(a) for any gas under any conditions.

(b) for some gases under any conditions.

(c) only if the temperature is kept constant.

(dj only if the density is constant.

13. Using the concept of work and the kinetic theory ofgases,

explain why the temperature of a gas and the kinetic energy

of its molecules both increase if a piston is suddenly pushed

into the container.

14. What are the limits under which the ideal gas law

describes the behavior of real gases?

11. .6
I

The second law of thermodi'nainics and
the dissipation of ener^'

SG 23

"Our life runs down in sending up
the clock.

The brook runs down in sending up
our life.

The sun runs dorni in sending up
the brook.

And there is something sending up
the sun.

It is this backward motion toward

the source,

Against the stream, that most we
see ourselves in.

It is from this in nature we are

from.

It is most us."

[Robert Frost, West-Running Brook]

You have seen that the kinetic-theory model can explain the way
a gas hehaves when it is compressed or expanded, wanned or

cooled. In the late nineteenth century, the model was refined to

take into account many effects we have not discussed. There

proved to be limits beyond which the model breaks down. For

example, radiated heat comes from the sun through the vacuum
of space, rhis is not explainable in terms of the thennal motion

of particles. But in most cases the model worked splendidly,

explaining the phenomenon of heat in terms of the ordinary

motions of particles. This was indeed a triumph of Newtonian

mechanics. It fulfilled much of the hope Newton had expi'essed

in the Principia that all phenomena of nature could be explained

in terms of the motion of the small parts of matter.

A basic philosophical theme of the Newtonian cosmology is

the idea that the world is like a machine whose parts never wear

out and which never ixins doun. This idea inspired the search

for conservation laws applying to matter and motion. So far in

this text, you have seen that this search has been successful. We
can measure "matter" by mass, and "motion" by momentum or

by kinetic energy. By 1850, the law of conservation of mass had

been firmly established in chemistry. In physics, the laws of

conseivation of momentum and of energy had been equally well

established.

Yet these successful conseivation laws could not banish the

suspicion that somehow the world is running dov\Ti, the paits of

the machine are wearing out. Energy may be conserved in

burning fuel, but it loses its usefiilness as the heat goes off into

the atmosphei-e. Mass may be conserved in scrambling an egg,

but the organized structure is lost. In these transformations,

something is consened, but something is also lost. Some
processes are irreversible; that is, they will not run backward.

There is no way to unscramble an egg, although such a change

would not \iolate mass conser-vation. There is no wa\' to draw
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smoke and hot fumes back into a blackened stick, forming a new,

unburned match.

Section 10.10 discussed one type of irreversible motion, that

involving heat engines, which was governed by the second law of

themiodynamics. That law can be stated in several equivalent

ways: Heat will not by itself flow from a cold body to a hot one. It

is impossible to fully convert a given amount of heat into work.

The entropy of an isolated system, and therefore of the universe,

tends to increase.

The processes of scrambling an egg, of mixing smoke and air,

or of wearing down a piece of machinery do not, at first sight,

seem to obey the same laws as do heat engines. However, these

processes also are governed by the second law. Heat, as you have

seen, is represented by the disordered motions of atoms and
molecules. Converting (ordered) mechanical work into heat thus

leads to an increase in disordered motion.

The second law says that it is never possible to reverse this

increase entirely. Heat can never be turned entirely into work.

When the entropy of a system increases, the disordered motion

in the system increases.

For example, think of a falling ball. If its temperature is very

low, the random motion of its parts is very low, too. Thus, the

motion of all particles during the falling is mainly downward
("ordered"). The ball strikes the floor and bounces several times.

During each bounce, the mechanical energy of the ball

decreases, and the ball waiTns up. Now the random thermal

motion of the parts of the heated ball is far more vigorous.

Finally, the ball as a whole lies still (no "ordered" motion). The
disordered motion of its molecules (and of the molecules of the

floor where it bounced) is the only motion left. As with the

bouncing ball, all motions tend from ordered to disordered. In

fact, entropy can be defined mathematically as a measure of the

disorder of a system (though it is not necessaiy to go into the

mathematics here).

Irreversible processes are processes for which entropy

increases. For example, heat will not flow by itself from cold

bodies to hot bodies. A ball lying on the floor will not somehow
gather the kinetic energy of its randomly moving parts and
suddenly leap up. An egg will not unscramble itself. An ocean

liner cannot be powered by an engine that takes heat from the

ocean water and ejects ice cubes. All these and many other

events could occur without violating any principles of Newtonian

mechanics, including the law of conservation of energy. But they

do not happen; they are "forbidden" by the second law of

thermodynamics. (They are "forbidden" in the sense that such
things do not happen in nature.)

All familiar processes are to some degree irreversible. Thus,

Lord Kelvin predicted that all bodies in the universe would

SG 24-26
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rion's novel, La Fin du Monde:
ItopI "La miserable race hurnaine

perira par le froid." ihottorn) "Ce

sera la fin.
"

SG 27

eventually reach the same temperature by exchanging heat vvltli

one another. Wlien this happened, it would be impossible to

produce any useful work from heat. After all, work can only be

done by means of heat engines when heat flows from a hot body
to a cold body. Finally, the sun and other stars would cool, all

life on earth would cease, and the universe would be dead.

This general "heat-death" idea, based on predictions from

thermodvnamics, aroused some popular interest at the end of

the nineteenth century. I'he idea appeai-ed in several books of

that time, such as H. G. Wells' The Time Machine. The French
astronomer Camille Flammarion vviote a book describing ways in

which the world uould end.

15. The presumed "heat death of the universe" refers to a

state in which

(a) all mechanical energy has been transformed into heat

energy.

(b) all heat energy has been transformed into otherforms of

energy.

(c) the temperature of the universe decreases to absolute

zero.

(d) the supply of coal and oil has been used up.

16. What is a reversible process?

17. Which of the following statements agrees with the second

law of thermodynamics?

(a) Heat does not naturallyflow from cold bodies to hot

bodies.

(b) Energy tends to transform itself into less useful forms.

(c) No engine can transform all its heat input into mechanical

energy.

(d) Most processes in nature are reversible.

18. If a pot of water placed on a hot stove froze, Newton's laws

would not have been violated. Why would this event violate the

second law of thermodynamics? Ifan extremely small group

of water molecules in the pot cooledfor a moment, would this

violate the second law?

1.1 .7
I

MaxivelFs demon and the statistical liew
of the second law of thermodynamics

Is there any way of avoiding the "heat death .^ Is irre\ ersibility a

basic law of physics, or is it only an approximation based on

limited experience of natural processes?
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The Austrian physicist Ludwig Boltzmann investigated the

theory of irreversibility. He concluded that the tendency toward

dissipation of energy is not an absolute law of physics that

always holds. Rather, it is only a statistical law. Think of a

container of air containing about 10"^ molecules. Boltzmann
argued that, of all conceivable arrangements of the gas molecules

at a given instant, nearly all would be almost completely

"disordered." Only a relatively few arrangements would have

most of the molecules moving in the same direction. Even if a

momentarily ordered arrangement of molecules occurred by
chance, it would soon become less ordered by collisions.

Drawing by Steinberg; © 1963, The New

Yorker Magazine, Inc.

Fluctuations from complete disorder vvdll, of course, occur. But

the greater the fluctuations, the less likely they are to occur. For

collections of particles as large as 10^^, the chance of a

fluctuation large enough to be measurable is vanishingly small. It

is conceivable that a cold kettle of water will heat up on its own
after being struck by only the most energetic molecules in the

surrounding air. It is also conceivable that air molecules will

"gang up" and strike only one side of a rock, pushing it uphill.

But such events, while conceivable, are utterly improbable.

For small collections of particles, however, it is a different

story. For example, it is quite probable that the average height of

people on a bus will be considerably greater or less than the

national average. In the same way, it is probable that more
molecules will hit one side of a microscopic particle than the

other side. Thus, we can observe the "Brownian" motion of

microscopic particles. Fluctuations are an important aspect of

the world of very small particles. Hou^ever, they are virtually

undetectable for any large collection of molecules familiar in the

everyday world.

The second law is different in character from all the other

fundamental laws of physics you have studied so far. The
difference is that it deals with probabilities, not certainties.

Maxwell proposed an interesting "thought experiment" to

show a possible violation of the second law. Suppose a container

Consider also a pool table. The or-

dered motion of a cue ball moving
into a stack of resting ones soon
gets "randomized."

To illustrate Boltzmann's argu-

ment, consider a pack of cards
when it is shuffled. Most possible

arrangements of the cards after

shuffling are fairly disordered. If

you start with an ordered arrange-

ment, for example, the cards sorted

by suit and rank, then shuffling

would almost certainly lead to a

more disordered arrangement.
(Nevertheless, it does occasionally

happen that a player is dealt 13

spades, even if no one has stacked

the deck.)

A living systen^ Itkti Ihis tree ap-

pears to contradict the second law

of thermodynamics by bringing

order out of disorder. (See page
342).
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Initially the average KE of molecules

is greater in A.

Only fast molecules are allowed to go

from B to A.

Only slow molecules are allowed to

go from A to B

As this continues, the average KE

in A increases and the average KE
in fi decreases.

How Maxwell's "demon could use

a small, massless door to increase

the order of a system and make
heat flow from a cold gas to a hot

gas.
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of gas is divided by a diaphragm into two parts, the gas in one
part being hotter than in the other. "Now conceive of a finite

being, " Maxwell suggested, "who knows the patiis and velocities

of all the molecules but who can do no work except open and
close a hole in the diaphragm." This "finite being, " now known
as 'Maxwell's demon, ' can make the hot gas hotter and the cold

gas cooler just by letting fast molecules move in only one

direction through the hole (and slow molecules in the other), as

is shown in the diagram.

There is, of course, no such fanciful demon (even in machine
form) that can obseive and keep track of all the molecules in a

gas. (If somehow it could be made to exist, one might find that

the demon's entropy is affected by its actions. For example, its

entropy might increase enough to compensate for the decrease

in entropy of the gas. This is what happens in other systems

where local order is created; the entropy elsewhere must

increase.)

Some biologists have suggested that certain large molecules,

such as enzymes, may function as "Maxwell's demons." Large

molecules may influence the motions of smaller molecules to

build up the ordered stnjctures of living systems. I'his result is

different from that of lifeless objects and is in apparent violation

of the second law of thennodvTiamics. This suggestion, however,

shows a misunderstanding of the law. The second law does not

say that the order can never increase in any system. It makes

that claim only for closed or isolated systems. Any system that

can exchange energy with its surroundings can increase its

order.

There is some evidence, in fact, that the flow of energy through

a system that is not closed tends to produce order in the system.

The law governing these processes seems to be, again, the

second law of thermodynamics. The existence of life therefore

may be a result of the energy flow from the sun to the earth. Far

from being a violation of the second law, life would be a

manifestation of it. Life does have its cost in terms of the effect

on the rest of the total system. This point is expressed vividly in

the following passage from a UNESCO document on

environmental pollution.

Some scientists used to feel that tine occurrence, reproduction,

and grovvtli of older in living systems presented an exception to

the second law. This is no longer believed to be so. True, the

living system may increase in order, but only by diffusing

energy to the surroundings and by converting complicated

molecules (carbohydrates, fats) called food into simple

molecules (CO,, H,OI. For example, to maintain a healthy

human being at constant weight for one yeai- i-equires the

degradation of about 500 kilograms (one half ton) of food, and

the diffusion into the surroundings (ft-om the human and the

foodi of about 500,000 kiloc'alories (tvvo million kilojoulesl of
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energy. The "order" in the human may stay constant or even

increase, but the order in the surroundings decreases much,

much more. Maintenance of life is an expensive process in

terms of generation of disorder, and no one can understand the

full implications of human ecology and environmental pollution

without understanding that first.

19. In each of the following pairs, which situation is more
ordered?

(a) an unbroken egg; a scrambled egg.

(b) a glass of ice and warm water; a glass of water at uniform

temperature.

20. True or false?

(a) Ma^iwell's demon was able to get around the second law of
thermodynamics.

(b) Scientists have made a Ma^<well's demon.

(c) Ma^cwell believed that his demon actually existed.

H .8
I

Time's arrow and the recurrence
paradox

Late in the nineteenth century, a small but influential group of

scientists began to question the basic philosophical assumptions

of Newtonian mechanics. They even questioned the very idea of

atoms. The Austrian physicist Ernst Mach argued that scientific

theories should not depend on assuming the existence of things

(such as atoms) which could not be directly observed. Typical

of the attacks on atomic theory was the argument used by the

mathematician Ernst Zermelo and others against kinetic theory.

Zermelo believed that (1) the second law of themiodynamics is

an absolutely valid law of physics because it agrees with all the

experimental data. However, 12) kinetic theoiy allows the

possibility of exceptions to this law (due to large fluctuations).

Therefore, (3) kinetic theory must be wrong. It is an interesting

historical episode on a point that is still not quite settled.

The critics of kinetic theory pointed to two apparent

contradictions between kinetic theory and the principle of

dissipation of energy. These contradictions were the reversibility

paradox and the recurrence parado^. Both paradoxes are based
on possible exceptions to the second law; both could be thought
to cast doubt on the kinetic theory.

The reversibility paradox was discovered in the 1870 s by Lord
Kelvin and Josef Loschmidt, both of whom supported atomic
theory. It was not regarded as a serious objection to the kinetic

theory until the 1890's. The paradox is based on the simple fact

that Neu1:on's laws of motion are reversible in time. For example,

The reversibility paradox: Can a

model based on reversible events

e^cplain a world in which so many
events are irreversible? (Also see

photographs on ne^ct page.)
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if you watch a motion picture of a bouncing ball, it is easy to tell

whether the film is being nm forward or backward. You know
that the collisions of the ball with the floor are inelastic and that

the ball rises less high after each bounce. If, however, the ball

made perfectly elastic bounces, it would rise to the same height

after each bounce. Then you could not tell v\'hether the film was
being run forward or backward. In the kinetic theory, molecules

are assumed to make perfectly elastic collisions. Imagine that

you could take a motion picture of gas molecules colliding

elastically according to this assumption. When showing this

motion picture, there would be no way to tell whether it was
being run forward or backwaid. Either way would show valid

sequences of collisions. But here is the paradox: Consider motion

pictures of interactions invoking large objects, containing many
molecules. You can immediately tell the difference between

forward (true) and backward (impossible) time direction. For

example, a smashed light bulb does not reassemble itself in real

life, though a mo\ie run backward can make it appear to do so.

The kinetic theory is based on laws of motion that are

reversible for each individual molecular interaction. How, then,

can it explain the existence of irreversible processes on a large

scale? The existence of such processes seems to indicate that

time flows in a definite direction, that is, from past to future.

This contradicts the possibility', implied in Nev\ton's laws of

motion, that it does not matter whether we think of time as

flowing fonvard or backward. As Lord Kelvin expressed the

paradox,

If . . . the motion of every particle of matter in tfie universe were

precisely reversed at any instant, the course of nature would
be simply reversed for ever after. The bursting bubble of foam at

the foot of a waterfall would reunite and descend into the

water; the thermal motions would reconcentrate their energy,

and throw the mass up tlie fall in drops refonning into a close

column of ascending water. Heat which had been generated

by the friction of solids and dissipated by conduction, and
radiation with absorption, would come again to the place of

contact, and throw the moving body back against the force to

which it bad previously yielded. Boulders would recover li-om

the mud the materials required to rebuild them into their

previous jagged forms, and would become reunited to the

mountain peak from which they had formerly broken away.

And if also the materialistic hypothesis of life were Uwe, living

creatures would grow backwai'ds, with conscious knowledge of

the future, but no memory of the past, and would become
again unboiri. But the real phenomena of life infinitely

transcend human science; and speculation regarding

consequences of their imagined revei-sal is utterly un[)r{)fitable.

Kelvin himself, and later Boltzmann, used statistical probability

to explain whv we do not obseive such large-scale revei-sais.
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There are almost infinitely many possible disordered

arrangements of water molecules at the bottom of a waterfall.

Only an extremely small number of these arrangements would

lead to the process described above. Reversals of this kind are

possible in principle^ but for all practical purposes they are out of

the question.

The answer to Zemielo's argument is that his first claim is

incorrect. The second law of thermodynamics is not an absolute

law, but a statistical law. It assigns a veiy low probability to ever

detecting any overall increase in order, but does not declare it

impossible.

However, another small possibility allowed in kinetic theoiy

leads to a situation that seems unavoidably to contradict the

dissipation of energy. The recurrence paradox revived an idea

that appeared ft equently in ancient philosophies and is present

also in Hindu philosophy to this day: the myth of the "eternal

return." According to this myth, the long-range history of the

world is cyclic. All historical events eventually repeat themselves,

perhaps many times. Given enough time, even the matter that

people were made of will eventually reassemble by chance. Then
people w^ho have died may be born again and go through the

same life. The Gemian philosopher Friedrich Nietzsche was
convinced of the truth of this idea. He even tried to prove it by

appealing to the principle of conservation of energy. Nietzsche

wrote:

If the universe may be conceived as a definite quantity of

energy, as a definite number of centres of energy—and every

other concept remains indefinite and therefore useless—it

follows therefrom that the universe must go through a

calculable number of combinations in the great game of chance
which constitutes its existence. In infinity [of time], at some
moment or other, every possible combination must once have

been realized; not only this, but it must have been realized an
infinite number of times.

If the number of molecules is finite, there is only a finite number
of possible arrangements of molecules. Therefore, somewhere in

infinite time the same combination of molecules is bound to

come up again. At the same point, all the molecules in the

universe would reach exactly the same arrangement they had at

some previous time. All events following this point would have

to be exactly the same as the events that followed it before. That

is, if any single instant in the histoiy of the universe is ever

e^cactly repeated, then the entire histoiy of the universe wdll be

repeated. As a little thought shows, it would then be repeated

over and over again to infinity. Thus, energy would not endlessly

become dissipated. Nietzsche claimed that this view of the

eternal return disproved the "heat-death" theory.

SG 29

The World's great age begins anew,
The golden years return.

The earth doth like a snake renew
His winter weeds outworn . . .

Another Athens shall arise

And to remoter time

Bequeath, like sunset to the skies,

The splendour of its prime . . .

[Percy Bysshe Shelley, "HeUas"
(1822)]

Lord Kelvin (1824-1907)
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Record of a particle in Brownian

motion. Successive positions, re-

corded every 20 sec, are connected

by straight lines. The actual paths

between recorded positions would
be as erratic as the overall path.

At about the same time, in 1889, the French mathematician

Henri Poincare published a theorem on the possibility of

recurrence in mechanical systems. According to Poincare, even

though the universe might undergo a heat death, it would
ultimately come alive again:

A bounded vvoild, governed only by the laws of nieclianics, will

always pass through a state veiy close to its initial slate. On the

other hand, according to accepted experimental laws (if one

attributes absolute validity to them, and if one is willing to

pi-ess their consequences to the extreme), the universe tends

toward a certain final state, from wliich it will nevei- depait. In

this final state, from which v\ill be a kind of death, all bodies

will be at rest at the same temperature.

. . . the kinetic theories can extricate themselves fi'om this

contradiction. The world, according to them, tends at fii-st

toward a slate where it remains for a long time without

apparent change; and this is consistent v\ath experience; but it

does not remain that way forever; ... it merely stays there for

an enormously long time, a time which is longer the more

numerous are the molecules. This stale will not be the final

death of the universe, but a sort of slumber, from which it will

awake after millions of centuries.

According to this theory, to see heat pass from a cold bod\' to

a war-m one, it will rnot be necessary to have the acute vision,

the intelligence, and the dexterity of Maxwell's demon; it will

suffice to have a little patience.

Poincare was willing to accept the possibility of a violation of the

second law after a very long time. Others refused to admit exen

this possibility. In 1896, Zermelo published a paper attacking not

only the kinetic theory but the mechanistic world \dew in

general. This view, he asserted, contradicted the second law.

Boltzmann replied, repeating his earlier explanations of the

statistical nature of irreversibility.

The final outcome of the dispute between Boltzmann and his

critics was that both sides were partly i ight and partly wrong.

Mach and Zermelo were correct in believing that Newton's laws

of mechanics cannot fully descr ibe molecular and atomic

processes. IWe will come back to this subject in Unit 5.) For

example, it is only approximately valid to describe gases in terms

of collections of frantic little balls. Hut Boltzmann was right in

defending the usefulness of the molecular- model. I'he kinetic

theory is veiy nearly correct except for those properties of matter

that involve the strTicture of molecules themselxes.

In 1905, Alber-t Einstein pointed out that the fluctuations

predicted by kinetic theory could be used to calculate the rate of

displacement for particles in "BrovviTian" motion. Precise

quantitative studies of Brownian motion confir-med Kinstein's

theoretical calculations. This new success of kinetic theory, along

with discoveries in r'adioac'tixity and atomic phvsi(\s, persuaded
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almost all the critics that atoms and molecules do exist. But the

problems of irreversibility and of whether- the laws of physics

must distinguish between past and future survixed. In a new
form, these issues still interest physicists today.

This chapter concludes the application of \e\\1onian

mechanics to individuid particles. The stor^' was mainly one of

triumphant success. However, like all theories, Newtonian

mechanics has serious limitations. These will be explored later.

The last chapter in this unit coxer^s the successful use of

Newtonian mechanics in the case of mechanical wave motion.

Wave motion completes the list of possibilities of particle motion.

In Unit 1, you studied the motion of single particles or- isolated

objects. The motion of a system of objects bound by a force of

interaction, such as the earth and sun, was tr^eated in Unit 2 and

in Chapter's 9 and 10 of this unit. In this chapter', you observed

the motions of a system of a very large number of separate

objects. Finally, in Chapter' 12 you will study the action of many
particles going back and foi'th together- as a wave passes.

SG34
SG35

Zl. The kinetic energy of a falling stone is transformed into

heat when the stone strikes the ground. Obviously, this is an

irreversible process; you never see the heat transform into

kinetic energy of the stone, so that the stone rises off the

ground. Scientists believe that the process is irreversible

because

(a) New'ton's laws of motion prohibit the reversed process.

(b) the probability ofsuch a sudden ordering of molecular

motion is e^ctreinely small.

(c) the reversed process would not conserx'c energy.

(d) the reversed process would violate the second law of

thermodvnamics.

The ruins of a Greek temple at Del-

phi are an elegant testimony to

the continual encroachment of dis-

order.
*v
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study
guide
1. The Project Physics materials particularly

appropriate for Chapter 11 include:

Experiments

Monte Carlo Elxperiment on Molecular

Collisions

Behavior of Gases

Activities

Drinking Duck
Mechanical Equivalent of Heat

A Diver in a Bottle

Bockets

How to Weigh a Car with a Tire Pressure Gauge

Perpetual-Motion Machines

Film Loop
Beversibility of Time

2. The idea of randomness can be used in

predicting the results of flipping a large number of

coins. Give some other examples where randomness

is useful.

3. The examples of early kinetic theories given in

Sec. 11.3 include only quantitative models. Some of

the underlying ideas are thousands of years old.

Compare the kinetic molecular theory of gases to

these Greek ideas expressed by the Roman poet

Lucretius in about 60 B c :

If you think that the atoms can stop and by their

stopping generate new motions in things, you are

wandering far from the path of truth. Since the

atoms are moving freely through the void, they

must aU be kept in motion either by their own
weight or on occasion by the impact of another

atom. For it must often happen that two of them
in their course knock together and immediately

bounce apart in opposite directions, a natural

consequence of their hardness and solidity and the

absence of anything behind to stop them. . . .

It clearly follows that no rest is given to the

atoms in their course through the depths of space.

Driven along in an incessant but variable

movement, some of them bounce far apart after a

collision while others recoil only a short distance

from the impact. From those that do not recoil

far, being driven into a closer union and held there

by the entanglement of their own interlocking

shapes, are composed firmly rooted rock, the

stubborn strength of steel and the like. Those

others that move freely through larger tracts of

space, springing far apart and carried far by the

rebound—these provide for us thin air and blazing

sunlight. Besides these, there are many other

atoms at large in empty space which have been

thrown out of compound bodies and have

nowhere even been granted admittance so as to

bring their motions into harmony.

4. What is a distribution? Under what conditions

would you expect a measured distribution to be

similar to an ideal or predicted distribution?

5. Consider these aspects of the curves showing

Maxwell's distribution of molecular speeds:

(a) AU show a peak.

(b) The peaks move toward higher speed at higher

temperatures.

Explain these characteristics on the basis of the

kinetic model.

6. The measured speed of sound in a gas turns out

to be nearly the same as the average speed of the gas

molecules. Is this a coincidence? Discuss.

7. How did Clausius modify the simple kinetic

model for a gas? What was he able to explain with

this new model?

8. Benjamin Franklin observed in 1765 tliat a

teaspoonful of oil would spread out to cover half an

acre of a pond. This helps to give an estimate of the

upper limit of the size of a molecule. Suppose that

1 cm^ of oil forms a continuous layer one molecule

thick that just covers an area on water of 1,000 m'.

(a) How thick is the layer?

(b) What is the size of a single molecule of the oil

(considered to be a cube for simplicity)?

9. Knowing the size of molecules allows us to

compute the number of molecules in a sample of

material. If we assume that molecules in a solid or

liquid are packed close together, something like
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apples in a bin, then the total volume of a material is

approximately equal to the volume of one molecule

times th(! number of molecules in the material.

(a) Houghly how many molecules are there in 1 cm^

of water? I For this approximation, you can take the

volume of a molecule to be d' if its diameter is d.l

(b) The density of a gas lat atmospheric pressure

and 0°CI is about 1 1000 the densit\' of a liquid.

Roughly how many molecules are there in 1 cm' of

gas? Does this estimate support the kinetic model

of a gas as described on p 336?

10. How high could water be raised with a lift pump
on the moon?

11. At sea level, the atmospheric pressure of air

ordinarily can balance a barometer column of

mercur\' of height 0.76 m or 10.5 m of water. Air is

approximately a thousand times less dense than

liquid water. What can you say about the minimum
height to which the atmosphere goes above the

earth?

12. (a) The pressure of a gas is 100 N/m'. If the

temperature is doubled while the density is cut to

one-third, what is the new pressure?

(b) The temperature of a gas is 100°C. If the pressure

is doubled and the density is also doubled by cutting

the volume in half, what is the new temperature?

13. What pressure do you exert on the ground when
you stand on flat-heeled shoes? skis? skates?

14. From the definition of density' , D = A//V' (where

M is the mass of a sample and \' is its volume), write

an expression relating pressure P and volume V of

a gas.

15. State the ideal gas law. What three

proportionalities are contained in this law? What are

the limitations of this law?

16. Show how all the proportionalities describing

gas behavior on p. 332 are included in the ideal gas

law: P = kD (t + 273°).

17. The following information appeared in a

pamphlet published by an oil company:

HOWS VOIH I'IHE PHESSURF?

If you last checked the pressure in your tires on a

warm day, one cold morning you may find your

tires seriously underinflated.

The Rubber Manufacturers Association warns

that tire pressures drop approximately 12 kPa for

every 10-deg dip in outside air. If your tires

register 165 kPa pressure on a 30°C day, for

example, they'll have only 130 kPa pressure when
the outside air plunges to 0°C.

If you keep your car in a heated garage at 15°C,

and drhe out into a — 30°C morning, your tire

pressure drops from 165 kJ'a to 125 kPa.

Are these statements consistent with the ideal gas

law? {i\'otc: The pressure registered on a tire gauge is

the pressure above normal atmospheric pressure

of about 100 kPa.i
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21. List some of the directly observable properties

of gases.

22. What aspects of the behavior of gases can the

kinetic molecular theory be used to explain

successfully?

23. Many products are now sold in spray cans.

Elxplain in terms of the kinetic theory of gases why it

is dangerous to expose the cans to high

temperatures.

24. When a gas in an enclosure is compressed by

pushing in a piston, its temperature increases.

Elxplain this fact in two ways:

(a) by using the first law of thermodynamics.

(b) by using the kinetic theory of gases.

The compressed air eventually cools down to the

same temperature as the surroundings. Describe this

heat transfer in terms of molecular collisions.

25. From the point of view of the kinetic theory,

how can you explain: (a) that a hot gas would not

cool itself down while in a perfectly insulated

container? (b) how a kettle of cold water, when put

on the stove, reaches a boiling temperature. (Hint: At

a given temperature the molecules in and on the

walls of the solid container are also in motion,

although, being part of a solid, they do not often get

far away.)

26. In the Principia, Newton expressed the hope that

all phenomena could be explained in terms of the

motion of atoms. How does Newton's view compare

with this Greek view expressed by Lucretius in about

60 B c ?

I will now set out in order the stages by which

the initial concentration of matter laid the

foundations of earth and sky, of the ocean depths

and the orbits of sun and moon. Certainly the

atoms did not post themselves purposefully in due

order by an act of intelligence, nor did they

stipulate what movements each should perform.

But multitudinous atoms, swept along in

multitudinous courses through infinite time by

mutual clashes and their own weight, have come
together in every possible way and realized

everything that could be formed by their

combinations. So it comes about that a voyage of

immense duration, in which they have experienced

every variety of movement and conjunction, has

at length brought together those whose sudden

encounter normally forms the starting-point of

substantial fabrics—earth and sea and sky and the

races of living creatures.

27. In Sec. 11.6, three statements of the second law

of thermodynamics are given. In Chapter 10, we
showed that the first and third laws are equivalent.

Show that the first and second laws are also

equivalent, by using an argument analogous to

Carnot's; that is, show that if an engine violates

either statement, then this engine (perhaps together

with a reversible engine) also violates the other.

28. There is a tremendous amount of internal

energy in the oceans and in the atmosphere. What

would you think of an invention that purported to

draw on this source of energy to do mechanical

work? (For example, a ship that sucked in seawater
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and exhausted blocks of ice, using the heat from the

water to run the ship.)

29. Compute the entropy change associated with the

bouncing ball of page 339. Assume that the biill has

a mass of 0.1 kg and fidls from a height of 1 m. How
much energy is converted to heat? if the process

happens nearly at room temperature (a bit less than

300°K), what is the entropy change of the universe?

Does it matter how much of the heat goes to the ball

and how much goes elsewhere?

30. Since there is a tendency for heat to flow from

hot to cold, wiil the universe eventually reach

absolute zero?

31. Does Maxwell's demon get around the second

law of thermodynamics? List the assumptions in

Maxwell's argument. Which of them do you believe

are likely to be true?

32. Since all the e\idence is that molecular motions

are random, you might expect that any given

arrangement of molecules vviU recur if you just wait

long enough. Elxplain how a paradox arises when this

prediction is compared with the second law of

thermodynamics.

33. (a) Explain what is meant by the statement that

Newton's laws of motion are time-reversible.

(b) Describe how a paradox arises when the time-

reversibUity of Neuion's laws of motion is compared

with the second law of thermodynamics.

34. Why is the melting of an ice cube an irreversible

process even though it could easUy be refrozen?

35. if there is a finite probability of an exact

repetition of a state of the universe, there is also a

finite probability of its exact opposite, that is, a state

where molecules are in the same position but with

reversed velocities. What would this imply about the

subsequent history of the universe?

36. List the assumptions in the "recurrence" theory.

Which of them do you believe to be true?

37. Some philosophical and religious systems of the

Far East and the Middle East include the idea of the

eternal return. If you have read about some of these

philosophies, discuss what analogies exist to some
of the ideas in the last part of this chapter. Is it

appropriate to take the existence of such analogies to

mean that there is some direct connection between

these philosophical and physical ideas?

38. Where did Newtonian mechanics run into

difficulties in explaining the behavior of molecules?

39. What are some advantages and disadvantages of

theoretical models?

40. At any point in a fluid, the upward force on a

column of fluid at rest must be sufficient to support

the weight of the fluid above it. The pressure of a

fluid must therefore increase with the depth of the

fluid. Consider a fluid whose density is D. By how
much does the pressure increase if the depth below

the surface is increased by ;t? (Consider the force on

a column 1 m"^ in area.)

41. Archimedes' principle: The fact that pressure

increases with depth implies that an object (say, a

balloon) forcibly immersed in a fluid uill experience

a strong upward force from the fluid. The reason

is that the fluid touching the bottom of the balloon

has a greater pressure than has the fluid touching

the top, so the upward force on the object exerted by

the fluid below is greater than the downward force

exerted by the fluid above it. This difference is called

the "buoyant force."

You can find the buoyant force as follows.

C()nsid(!r a cube, length /. on a side, immersed in a
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fluid of density D. In SG 36 you showed that the (c) What is the force exerted on the bottom of the

pressure increases by Dg^ as tlie depth increases cube (magnitude and direction)?

^ (d) What is the net force exerted by the fluid on tlie

(a) Suppose the pressure at the top surface of the cube?
cube is p. What is the pressure at the bottom?

(e) Show that this force is equal to the weight of the
(b) What is the force exerted on the top of the cube fluid displaced by the object,

(magnitude and direction)?
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Uliat is a wave?

The world is continually criss-crossed by waves of all sorts.

Water waves, whether giant rollers in the middle of the ocean or

gently fomied rain I'ipples on a still pond, are sources of wonder
or pleasure. If the earth's crust shifts, violent waxes in the solid

earth cause tremors thousands of kilometers away. A musician

plucks a guitar string, and sound waxes pulse against the ears.

Wave disturbances may come in a concentrated bundle, like the

shock front from an aiiplane flying at supersonic speeds. Or the

disturbances niiiy come in succession like the train of waxes sent

out from a steadily vibrating source, such as a bell or a string.

All of these examples are mcchnnicnl waxes, in which l)odies or

particles physically moxe back and forth. Ihere are also xxaxe

disturbances in electric and magnetic fields. In Unit 4, you will

learn that such waxes are responsible for xvhat x'our sens(\s
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experience as light. In all cases involving waves, however, the

effects produced depend on the flow of energy as the wave

moves forward.

So far in ths text, you have considered motion in terms of

Individual particles. In this chapter, you will study the

cooperative motion of collections of particles in "continuous

media" moving in the fonn of mechanical waves. You udll see

how^ closely related are the ideas of particles and waves used to

describe events in nature.

A comparison vvdll help here. Look at a black and vv^hite

photograph in a newspaper or magazine with a magnifying glass.

You wdll see that the picture is made up of many little black dots

printed on a white page (up to 3,000 dots per square centimeter).

Without the magnifier, you do not see the indixddual dots.

Rather, you see a pattern with all possible shadings between

completely black and completely vuhite. These two views

emphasize different aspects of the same thing. In much the same
way, the physicist can sometimes choose between two (or more)

ways of viewing events. For the most part, a particle view has

been emphasized in the first three units of Project Physics. In

Unit 2, for example, each planet was treated as a particle

undergoing the sun's gravitational attraction. The behavior of the

solar system was described in temis of the positions, velocities,

and accelerations of point-like objects. For someone interested

only in planetaiy motions, this is fine. But for someone
interested in, say, the chemistry of materials on Mars, it is not

very helpful.

In the last chapter, you saw two different descriptions of a gas.

One was in terms of the behaxdor of the individual particles

making up the gas. Newton's laws of motion described what

each individual particle does. Then average values of speed or

energy described the behavior of the gas. You also studied

concepts such as pressure, temperature, heat, and entropy.

These concepts refer directly to a sample of gas as a whole. This

is the viewpoint of thermodynamics, which does not depend on
assuming Newton's laws or even the existence of particles. Each

of these viewpoints sensed a useful purpose and helped you to

understand what you cannot directly see.

To study waves, you once again see the possibility of using

different points of view. Most of the waves discussed in this

chapter can be described in temis of the behavior of particles.

But you also can understand waves as disturbances traveling in a

continuous medium. You can, in other words, see both the forest

and the trees; the picture as a whole, not only individual dots.

13.2
I

Properties of ivaves

Waves should be studied in the lab-

oratoiy. Most of this chapter is only

a summary of some of what you
will learn there. Film loops on
waves are listed in SG 1.

Suppose that tw^o people are holding opposite ends of a rope.

Suddenly one person snaps the rope up and dovvTi quickly once.

CHAPTER 12 / WAVES 355



1>
(a)

(b)

"Snapshots" of three types of waves

on a spring. In (c), small markers
have been put on the top of each

coil in the spring.

That "disturbs" the rope and puts a hump in it which travels

along the rope toward the other person. The traveling humjD is

one kind of a wave, called a pulse.

Originally, the rope was motionless. Ihe height of each point

on the rope depended only upon its position along the rope and

did not change in time. When one person snaps the rope, a

rapid change is created in the height of one end. This

disturbance then moves away from its source. I'he height of each

point on the rope depends upon time as well as position along

the rope.

The disturbance is a pattern of disphicemcnt along the rope.

The motion of the displacement pattern ft om one end of the

rope toward the other is an example of a wave. The hand
snapping one end is the source of the wave. The rope is the

medium in which the vv^ave moves.

Consider another example. When a pebble falls into a pool of

still liquid, a series of circular crests and troughs spreads over

the surface. This mo\ang displacement pattern of the liquid

surface is a wave. The pebble is the source; the moving pattern of

crests and troughs is the wave; and the liquid surface is the

medium. Leaves, sticks, or other objects floating on the surface of

the liquid bob up and dowoi as each wave passes. But they do
not experience any net displacement on the average. No material

has moved from the wave source, either on the surface or among
the parficles of the liquid. The same holds for rope waves, sound
waves in air, etc.

As any one of these weaves mox'es through a medium, the wave

produces a changing displacement of the successive parts of the

medium. Thus, we can refer to these weaves as waves of

displacement. If you can see the medium and recognize the

displacements, then you can see waves. But waves also may exist

in media you cannot see (such as air) or may form as

disturbances of a state you cannot detect with your eyes Isuch as

pressure or an electric field).

You can use a loose spring coil to demonstrate three different

kinds of motion in the medium through which a vva\e passes.

First, move the end of the spiing from side to side, oi- up and

dov\Ti as in sketch la) in the margin. A wave of side-to-side or up-

and-down displacement uill travel along the spring. \ovv push
the end of the spring back and forth, idong the direction of the

spring itself, as in sketch (b). A wiive of back-and-forth

displacement will travel along the spring. Finally, twist the end of

the spring clockwise and counterclockwise, as in sketch Ic). A
wave of angular displacement will travel along the spring. Waves

like those in la), in which the displacements are perpendicular

to the dir'ection the wave travels, are called transverse waves.

Waves like those in lb), in which the displacements ar-e in the

direction the wave tr'avels, ar'e called l()ns,itudinal waxes. Waves
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like those in (c), in which the displacements are twisting in a

plane perpendicular to the direction the wave travels, are called

torsional waves.

All three types of wave motion can be set up in solids. In

fluids, hovuever, transverse and torsional waves die out very

quickly and usually cannot be produced at all. Therefore, sound

waves in air and water are longitudinal. The molecules of the

medium are displaced back and forth along the direction in

which the sound travels.

It is often useful to make a graph of wave patterns in a

medium. However, a graph on paper always has a transverse

appearance, even if it represents a longitudinal or torsional wave.

For example, the graph at the right represents the pattern of

compressions in a sound wave in air. The sound waves are

longitudinal, but the graph line goes up and douoi. This is

because the graph represents the increasing and decreasing

density of the air. It does not represent an up-and-down motion

of the air.

A. unpolarized wave on a rope

B. polarized wave on a rope

To describe completely transverse waves, such as those in

ropes, you must specify the direction of displacement. When the

displacement pattern of a transverse wave lies in a single plane,

the wave is polarized. For waves on ropes and springs, you can

observe the polarization directly. Thus, in the photograph on the

previous page, the waves the person makes are in the horizontal

plane. Although there are few special properties associated with

polarized waves on ropes, you will see (in Sec. 13.7) that for light

waves, for example, polarization can have important effects.

All three kinds of wave (longitudinal, transverse, and torsional)

have an important characteristic in common. The disturbances

move away from their sources through the media and continue

on their own. We stress this particular characteristic by saying

that these waves propagate. This means more than just that they

"travel" or "move." An example will clarify the difference between

waves that propagate and those that do not. You probably have

read some description of the great wheat plains of the Middle

West, Canada, or Central Europe. Such descriptions usually

mention the "beautiful, vwnd-formed waves that roll for miles

across the fields." The medium for such a wave is the wheat, and

/ \

(a)

(b)

(a) "Snapshot" representation of a

sound wave progressing to the

right. The dots represent the den-

sity of air molecules, (b) Graph of
air pressure P versus position x

at the instant of the snapshot.
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An engine starting abruptly can

start a displacement wave along a

line of cars.

A very important point: Energy
transfer can occur without matter

transfer.

the disturbance is the swaying motion of the wheat. This

disturbance does indeed travel, but it does not propagate: that is,

the disturbance does not originate at a source and then go on
by itself. Rather, it must be continually fanned by the wind.

When the wind stops, the disturbance does not roll on, but

stops, too. The traveling "waves" of swaying wheat are not at all

the same as rope and water waves. This chapter will concentrate

on waves that do originate at sources and propagate themselves.

For the purposes of this chapter, waves are disturbances which

propagate in a medium.

1. What kinds of mechanical waves can propagate in a solid?

2. What kinds of mechanical waves can propagate in a fluid?

3. What kinds of mechanical waves can be polarized?

4. Suppose that a mouse runs along under a rug, causing a

bump in the rug that travels with the mouse across the room.

Is this moving disturbance a propagating wave?

A rough representation of the

forces at the ends of a small sec-

tion of rope as a transverse pulse

moves past.

1.2«3
I

Wave propagation

Waves and their behavior are perhaps best studied by beginning

with large mechanical models and focusing your attention on
pulses. Consider, for example, a freight train, with many cars

attached to a powerful locomiotive, but standing still. If the

locomotive starts abruptly, it sends a displacement wave running

down the line of cars. The shock of the starting displacement

proceeds from locomotive to caboose, clacking through the

couplings one by one. In this example, the locomotive is the

source of the disturbance, while the freight cars and their

couplings are the medium. The "bump" traveling along the line

of cars is the wave. The disturbance proceeds all the v\'a\' from

end to end, and with it goes energy of displacement and motion.

Yet no particles of matter are transferred that far; each car only

jerks ahead a bit.

How long does it take for the effect of a disturbance created at

one point to reach a distant point? The time interval depends
upon the speed with which the disturbance or waxe propagates.

This speed, in turn, depends upon the type of waxe and the

characteristics of the medium. In any case, the effect of a

disturbance is ne\'er transmitted instantly oxer any distance.

Each part of the medium has inertia, and each portion of the

medium is compressible. So time is needed to transfer energy

from one part to the next.

The same comments apply also to transverse waxes. The series

of sketches in the margin represents a wave on a rope. Think of

the skettiies as frames of a motion picture film, taken at (njual
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time intervals. The material of the rope does not travel along wdth

the wave. But each bit of the rope goes through an up-and-down
motion as the wave passes. Each bit goes through exactly the

same motion as the bit to its left, except a little later.

Consider the small section of rope labeled X in the diagrams.

When the pulse traveling on the rope first reaches X, the section

of rope just to the left of X exerts an upward force on X. As X is

moved upward, a restoring downward force is exerted by the

next section. The further upward X moves, the greater the

restoring forces become. Eventually, X stops moving upward and
starts down again. The section of rope to the left of X now exerts

a restoring (downward) force, while the section to the right

exerts an upward force. Thus, the trip down is similar, but

opposite, to the trip upward. Finally, X returns to the equilibrium

position, and both forces vanish.

The time required for X to go up and down, that is, the time

required for the pulse to pass by that portion of the rope,

depends on two factors. These factors are the magnitude of the

forces on X, and the mass of X. To put it more generally: The
speed wdth which a wave propagates depends on the stiffness

and on the density of the medium. The stiffer the medium, the

greater will be the force each section exerts on neighboring

sections. Thus, the greater vvdll be the propagation speed. On the

other hand, the greater the density of the medium, the less it will

respond to forces. Thus, the slower will be the propagation. In

fact, the speed of propagation depends on the ratio of the

stiffness factor and the density factor. SG 2

# 5. What is transferred along the direction of wave motion?

6. On what two properties of a medium does wave speed
depend?

7. If a spring is heated to make it less stiff, does it carry waves

faster or slower? // the boxcars in a train are unloaded, does

the longitudinal start-up wave travel faster or slower?

JiA»4t
\
Periodic ivaves

Many of the disturbances considered up to now have been
sudden and short-lived. They were set up by a single disturbance

like snapping one end of a rope or suddenly bumping one end
of a train. In each case, you see a single wave njnning along the

medium with a certain speed. This kind of wave is a pulse.

Now consider periodic waves, continuous regular rhythmic

disturbances in a medium, resulting from periodic vibrations of a

source. A good example of a periodic vibration is a swinging

pendulum. Each svvdng is virtually identical to every other swing,

The exact meaning of stiffness and
density factors is different for dif-

ferent kinds of waves and different

media. For tight strings, for exam-
ple, the stiffness factor is the ten-

sion T in the string, and the density

factor is the mass per unit length,

m/l. The propagation speed v is

given by

\ m/l
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T/je wave generated by a simple

harmonic vibration is a sine wave.

A "snapshot" of the displacement

of the medium would show it has

the same shape as a graph of the

sine function familiar in trigonom-

etry. This shape is frequentlv re-

ferred to as "sinusoidal.

and the suing repeats over and over again in time. Another

example is the up-and-down motion of a weight at the end of a

spring. The maximum displacement from the position of

equilibrium is called the amplitude; A, as shown in the margin.

Ihe time taken to complete one vibration is called the period, T.

The number of vibrations per second is called the frequency, f
What happens when such a vibration is applied to the end of a

rope? Suppose that one end of a rope is fastened to the

oscillating (vibrating) weight. As the weight vibrates up and
down, you observe a wave propagating along the rope. The wave
takes the fonn of a series of moving crests and troughs along the

length of the rope. The source executes "simple harmonic

motion" up and down. Ideally, every point along the length of

the rope executes simple harmonic motion in turn. The wave
travels to the right as crests and troughs follow one another.

Each point along the rope simply oscillates up and down at the

same frequency as the source. The amplitude of the wave is

represented by A. The distance between any two consecutive

crests or any two consecutive troughs is the same all along the

length of the rope. This distance, called the wavelength of the

periodic wave, is represented by the Greek letter X (lambda).

If a single pulse or a wave crest moves fairly slowly through

the medium, you can easily find its speed. In principle all you
need is a clock and a meter stick. By timing the pulse or crest

over a measured distance, you can get the speed. But it is not

always simple to observe the motion of a pulse or a wave crest.

As is shown below, however, the speed of a periodic wave can be

found indir^ectly from its frequency and wavelength.

As a wave progresses, each point in the medium oscillates with

the frequency and period of the source. The diagram in the

margin illustrates a periodic wave moving to the r ight, as it might

look in snapshots taken every V4 period. Follow the progress of

the crest that started out from the extreme left at f = 0. The time

it takes this crest to move a distance of one wavelength is equal

to the time required for one complete oscillation; that is, the

crest moves one wavelength X in one period of oscillation 7'. The
speed V of the crest is ther efore

distance moved X

corresponding time interval T

All par1s of the wave patterrr propagate with the same speed.

Thus, the speed of any one crest is just the speed of the wave.

Therefore, the speed v of the wave is

wavelength _ X

period of oscillation 7'

But 7" -
1/f, where/ = frequency (see Project Physics, Chapter

4, page 112). Therefore, v = fK, or wave speed = frequency X

v\'av(>length.
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We can also write this relationship as X = v/forf = v/X. These

expressions imply that, for waves of the same speed, the

frequency and wavelength are inversely proportional; that is, a

wave of twdce the frequency would have only half the

wavelength, and so on. This inverse relation of frequency and
wavelength will be useful in other parts of this course.

The diagram below represents a periodic wave passing

through a medium. Sets of points are marked that are moving "in

step" as the periodic wave passes. The crest points C and C
have reached maximum displacement positions in the upward
direction. The trough points D and D' have reached maximum
displacement positions in the downward direction. 1 he points C
and C have identical displacements and velocities at any instant

of time. Their vibrations are identical and in unison. The same
is true for the points D and D'. Indeed there are infinitely many
such points along the medium that are vibrating identically

when this w^ave passes. Note that C and C are a distance X

apart, and so are D and D'.

A "snapshot" of a periodic wave

moving to the right. Letters indi-

cate sets of points with the same
phase.

Points that move "in step," such as C and C, are said to be in

phase with one another. Points D and D' also move in phase.

Points separated from one another by distances of X, 2X, 3X, . . .,

and nX (where n is any whole number) are all in phase with one

another. These points can be anywhere along the length of the

wave. They need not correspond with only the highest or lowest

points. For example, points such as P, P', P", are all in phase w^ith

one another. Each point is separated from the next one by a

distance X.

Some of the points are exactly out of step. For example, point

C reaches its maximum upward displacement at the same time

that D reaches its maximum downward displacement. At the

instant that C begins to go dowoi, D begins to go up. Points such
as these are one-half period out ofphase with respect to one
another; C and D' also are one-half period out of phase. Any two
points separated from one another by distances of X/2, 3X/2,

5X/2, . . . are one-half period out of phase.

SG3

• 8. Of the wave variables frequency^ wavelength, period,

amplitude, and polarization, which ones describe
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(a) space properties of waves?

(b) time properties of waves?

9. A wave with the displacement as smoothly and simply

varying from point to point as that shown in the illustration on

page 361 is called a "sine" wave. How might the "wavelength"

be definedfor a periodic wave that is not a sine wave?

10. A vibration of 100 Hz (cycles per second) produces a wave.

(a) What is the wave frequency?

(h) What is the period of the wave?

(c) If the wave speed is 10 m/sec, what is the wavelength? (If

necessary, look back to find the relationship you need to

answer this.)

11. Ifpoints X and Y on a periodic wave are one-halfperiod

"out ofphase" with each other, which of the following must be

true?

(a) X oscillates at half the frequency at which Y oscillates.

(b) X and Y always move in opposite directions.

(c) X is a distance of one-half wavelength from Y.

=XV
The superposition of ti\'o rope
waves at a point. The dashed
curves are the contributions of the

individual waves.

1.2«o
I

¥llien Yvaves meet: the superposition
principle

So far, you have considered single waves. VV^hat happens when
two waves encounter each other in the same medium? Suppose

two waves approach each other on a rope, one traveling to the

right and one traveling to the left. The series of sketches in the

margin shows what would happen if you made this experiment.

The weaves pass through each other without being modified. After

the encounter, each wave looks just as it did before and is

traveling just as it was before. This phenomenon of passing

through each other unchanged can be obseived with all tvpes of

waves. You can easily see that it is true foi" surface ripples on

w^ater. (Look, for example, at the photograph on page 364.) You

could reason that it must be true for sound waves also, since two

conversations can take place across a tiible without distorting

each other. (Note that when particles encounter each other, they

collide. Waves can pass through each other.)

What happens during the time? vxhen the two waxes o\'erlap?

The displacements they provide add up. At each instant, the

displacement of each point in the overlap region is just the sum
of the displacements that would be caused b\' each of the two

waves separately. An example is shown in the margin. Two waves

travel toward each other on a rope. One has a maximum
displacn'ment of 0.4 (^m ujiward and \he other a maxiiiuini
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displacement of 0.8 cm upward. The total maximum upward
displacement of the rope at a point where these two waves pass

each other is 1.2 cm.

What a wonderfully simple hehavior, and how easy it makes

everything! Each wave proceeds along the rope making its own
contribution to the rope's displacement no matter what any

other wave is doing. You can easily determine what the rope

looks like at any given instant. All you need to do is add up the

displacements caused by each vv^ave at each point along the rope

at that instant. This property of waves is called the superposition

principle. Another illustration of wave superposition is shown in

the margin. Notice that when the displacements are in opposite

directions, they tend to cancel each other. One of the two

directions of displacement may always be considered negative.

The supeiposition principle applies no matter how many
separate waves or disturbances are present in the medium. In

the examples just given, only two waves are present. But you
would find by experiment that the superposition principle works

equally well for three, ten, or any number of waves. Each wave
makes its owoi contribution, and the net result is simply the sum
of all the individual contributions.

If waves add as just described, then you can think of a

complex wave as the sum of a set of simpler waves. In 1807, the

French mathematician Jean-Baptiste Fourier advanced a very

useful theorem. Fourier stated that any continuing periodic

oscillation, however complex, could be analyzed as the sum of

simpler, regular wave motions. This, too, can be demonstrated by

experiment. The sounds of musical instruments have been

analyzed in this way also. Such analysis makes it possible to

"imitate " instruments electronically by combining just the right

proportions of simple vibrations.
^W

a*b

^/w a-^b^c

IZ. Two periodic waves of amplitudes A, and A^ pass through a

point P. What is the greatest possible displacement ofP?

13. What is the displacement of a point produced by two waves

together if the displacements produced by the waves

separately at that instant are +5 cm and —6 cm? What is the

special property of waves that makes this simple result

possible?

SG 4-8

12.6
I

A tivo-source interference pattern

The photograph on page 364 (center) shows ripples spreading

from a vibrating source touching the water surface in a "ripple

tank." The drawing to the left of it shows a "cut-away" view of
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Close UpI
Woves in o Ripple Tank

When something drops in the water

produces periodic wave trains of ere;

and troughs, somewhat as shown in h

"cut-away" drawing at the left below

The center figure below is an inste

taneous photograph of the shadows

ripples produced by a vibrating po

source. The crests and troughs on I

water surface show up in the image

bright and dark circular bands. In !•

photo below nght. there were two po

sources vibrating in phase. The overia

ping waves create an interference p<

tern.

'S^
c
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the water level pattern at a given instant. The third photograph

(far right) introduces a phenomenon that will play an important

role in later parts of the course. It shows the pattern of ripples

on a water surface disturbed by two vibrating sources. The two

small sources go through their up and down motions together;

that is, they are in phase. Each source creates its ov^^ set of

circular, spreading ripples. The photograph catches the pattern

made by the overlapping sets of waves at one instant. This

pattern is called an interference pattern.

You can interpret what you see in this photograph in terms of

what you already know about waves. You can predict how the

pattern will change with time. First, tilt the page so that you are

viewing the interference pattern from a glancing direction. You
will see more clearly some nearly straight gray bands. This

feature can be explained by the supeiposition principle.

Suppose that two sources produce identical pulses at the

same instant. Each pulse contains one crest and one trough. (See

margin.) In each pulse the height of the crest above the

undisturbed or average level is equal to the depth of the trough

below. The sketches show the patterns of the water surface after

equal time intervals. As the pulses spread out, the points at

which they overlap move too. In the figure, a completely

darkened circle indicates where a crest overlaps another crest. A
half-darkened circle marks each point where a crest overlaps a

trough. A blank circle indicates the meeting of two troughs.

According to the superposition principle, the water level should

be highest at the completely darkened circles (where the crests

overlap). It should be lowest at the blank circles, and at average

height at the half-darkened circles. Each of the sketches in the

margin represents the spatial pattern of the water level at a given

instant.

At the points marked uath darkened circles in the figure, the

two pulses arrive in phase. At the points indicated by blank

circles, the pulses also arrive in phase. In either case, the waves
reinforce each other, causing a greater amplitude of either the

crest or the trough. Thus, the waves are said to interfere

constructively. In this case, all such points are at the same
distance from each source. As the ripples spread, the region of

maximum disturbance moves along the central dotted line in (a).

At the points marked with half-darkened circles, the two
pulses arrive completely out of phase. Here the waves cancel and
so are said to interfere destructively, leaving the water surface

undisturbed. The lines N show the path along which the

overlapping pulses meet when they are just out of phase. All

along these lines there is no change or displacement of the water
level.

When periodic waves of equal amplitude are sent out instead

of single pulses, overlap occurs all over the surface, as is shown

o o

N N
Pattern produced when two circu-

lar pulses, each of a crest and a

trough, spread through each other.

The small circles indicate the net

displacement:

# = double height peak

O = average level

O — double depth trough
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Analysis of interference pattern similar to that of the lower right photo-

graph on page 364 set up by two in-phase periodic sources. (Here S, and

S^ are separated bv four wavelengths.) The dark circles indicate where

crest is meeting crest, the blank circles where trough is meeting trough,

and the halfdark circles where crest is meeting trough. The other lines

of maxinujm constructive interference are labeled A^^ A^, A^, etc. Points

on these lines move up and down much more than they would because

of waves from either source alone. The lines labeled N^, N.,, etc., repre-

sent bands along which there is maximum destructive interference.

Points on these lines move up and down much less than they would be-

cause of waves from either source alone. Compare the diagram with the

photograph and identify antinodal lines and nodal lines.

on this page. All along the central dotted line, there is a doubled

disturbance amplitude. All along the lines labeled N, the water

height remains undisturbed. Depending on the wa\'elength and

the distance between the sources, there can be many such lines

of constructive and destructive interference.

Now you can interpret the ripple tank interference pattern

shown at the lower nght on page 364. The gray bands are areas

where waves cancel each other, called nodal lines. These bands

correspond to lines N in the simple case of pulses instead of

periodic waves. Between these bands aie other bands where

crest and trough follow one another, wiiere the waves reinforce.

These are called antinodal lines.

Such an interference pattern is set up by overlapping weaves

from two sources. For water waves, the interference pattern can

be seen directly. But whether \asible or not, all waves, including

eai-thfjuake waves, sound waves, or X rays, can set up
int(M lorcnce |iatteriis. I'or e.\am[ile, suppose two l()U(ls[)eak(MS
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are working at the same frequency. By changing your position in

front of the loudspeakers, you can find the nodal regions where

destructive interference causes only little sound to be heard. You

also can find the antinodal regions where a strong signal comes

through.

The beautiful symmetry of these interference patterns is not

accidental. Rather, the whole pattern is determined by the

wavelength \ and the source separation SjS,. From these, you

could calculate the angles at which the nodal and antinodal

lines radiate out to either side of A^. Conversely, you might know
SjS2 and might have found these angles by probing around in the

two-source interference pattern. If so, you can calculate the

wavelength even if you cannot see the crests and troughs of the

waves directly. This is very useful, for most waves in nature

cannot be directly seen. Their wavelength has to be found by

letting weaves set up an interference pattern, probing for the

nodal and antinodal lines, and calculating \ from the geometry.

The figure at the right shows part of the pattern of the diagram

on the opposite page. At any point P on an antinodal line, the

waves from the two sources arrive in phase. This can happen

only if P is equally far from S^ and S,, or if P is some whole

number of wavelengths farther from one source than from the

other. In other words, the difference in distances (S^P — S,P)

must equal nX, A. being the wavelength and n being zero or any

whole number. At any point Q on a nodal line, the waves from

the two sources arrive exactly out ofphase. This occurs because

Q is an odd number of half-wavelengths (VzK, Vzk, %X, etc.)

farther from one source than from the other. This condition can

be written S^Q - S,Q -- (n + VzW.

The distance from the sources to a detection point may be

much larger than the source separation d. In that case, there is a

simple relationship between the node position, the wavelength

\, and the separation d. The wavelength can be calculated from

measurements of the positions of nodal lines. The details of the

relationship and the calculation of wavelength are described on

page 369.

This analysis allows you to calculate from simple

measurements made on an interference pattern the wavelength

of any wave. It applies to water ripples, sound, light, etc. You will

find this method very useful in later units. One important thing

you can do now is find X. for a real case of interference of waves

in the laboratory. This practice will help you later in finding the

wavelengths of other kinds of waves.

SG 9

r9

Since the sound wave patterns in

space are three-dimensional, the

nodal or antinodal regions in this

case are two-dimensional surfaces;

that is, they are planes, not lines.

• 14. Are nodal lines in interference patterns regions of
cancellation or reinforcement?

15. What are antinodal lines? antinodal points?
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A vibrator ut the left produces a

wave train that runs along the rope

and reflects from the Ji.xed end at

the right. The sum of the oncoming

and the reflected waves is a stand-

ing wave pattern.

16. Nodal points in an interference pattern are places where

(a) the waves arrive "out ofphase."

(b) the waves arrive "in phase."

(c) the point is equidistant from the wave sources.

(d) the point is one-half wavelength from both sources.

17. Under what circumstances do waves from two in-phase

sources arrive at a point out ofphase?

Lyre player painted on a Greek
vase in the 5th century B.C.

12.T
I

standing^ waves

If both ends of a rope are shaken with the same frequency and

same amplitude, an interesting thing happens. Ihe interference

of the identical waves coming from opposite ends results in

certain points on the rope not moving at all! In between these

nodal points, the rope oscillates up and down. But there is no

apparent propagation of wave patterns in either direction along

the rope. This phenomenon is called a standing wave or

stationary wave. The important thing to remember is that the

standing oscillation you observe is really the effect of two

traveling waves.

To make standing waves on a rope, there do not ha\'e to be

two people shaking the opposite ends. One end can be tied to a

hook on a wall. The train of waves sent down the rope by

shaking one end will reflect back from the fixed hook. These

reflected waves interfere with the new, oncoming \va\es and can

produce a standing pattern of nodes and oscillation. In fact, you
can go further and tie both ends of a string to hooks and pluck

(or bow) the string. From the plucked point a pair of waves go

out in opposite directions and then reflect back from the ends.

The interference of these reflected waves traveling in opposite

directions can produce a standing pattern just as before. The

strings of guitars, violins, pianos, and all other stringed

instruments act in just this fashion. The energy given to the

strings sets up standing waves. Some of the energ\' is then

transmitted from the vibrating string to the body of the

instiTjment. The sound waves sent forth from the body are at

essentially the same frequency as the standing waves on the

string.

The vibration frequencies at which standing waves can exist

depend on two factors. One is the speed of wave propagation

along the string. The other is the length of the string. I'he

connection between length of string and musical tone was

recognized over 2,000 years ago. This relationship contributed

greatly to the idea that nature is built on mathematical

principles. Eariy in the development of musical instruments,

people learned how to produce certain pleasing harmonies by

|)lu(king strings. These harriionies icsult if the strings ar-e of
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Giose ttn L
Colculoting X from on Interference Pattern

d = (8,82) = separation between 8, and S^. (8,

and 82 may be actual sources that are in

phase, or two slits through which a previously

prepared wave front passes.)

€ = OQ = distance from sources to a far-off line

or screen placed parallel to the two sources.

X = distance from center axis to point P along the

detection line.

/. = OP = distance to point P on detection line

measured from sources.

Waves reaching P from 8, have traveled farther

than waves reaching P from S^. If the extra distance

is \ (or 2k, 3\, etc.), the waves will arrive at P in

phase. Then P will be a point of strong wave dis-

turbance. If the extra distance is V2K (or ^/zK, %\,

etc.), the waves will arhve out of phase. Then P will

be a point of weak or no wave disturbance.

With P as center, draw an arc of a circle of radius

P82; it is indicated on the figure by the dotted line

S^M. Then line segment P82 equals line segment

PM. Therefore, the extra distance that the wave

from 8 travels to reach P is the length of the seg-

ment 8M.

Now if d is very small compared to ^, as you can

easily arrange in practice, the circular arc S^M will

be a very small piece of a large-diameter circle, or

nearly a straight line. Also, the angle 8,M82 is very

nearly 90°. Thus, the triangle 8,82M can be re-

garded as a right triangle. Furthermore, angle

S,82M is equal to angle POQ. Then the right triangle

S^S^M is similar to triangle POQ.

8,M

8,8.

X

OP
or

8,M

If the distance ( is large compared to x, the dis-

tances € and L are nearly equal. Therefore,

S,M _ X

~d~ ~
e

But 8,M is the extra distance traveled by the wave
from source 8,. For P to be a point of maximum
wave disturbance, 8,M must be equal to nk (where

n = if P is at Q, and n = 1 if P is at the first

maximum of wave disturbance found to one side of

Q, etc.). 80 the equation becomes

nk

d
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equal tautness and diameter and if their lengths are in the ratios

of small whole numhers. Thus, the length ratio 2:1 gi\es the

octave, 3:2 the musical fifth, and 4:3 the musical fouilh. This

striking connection between music and numbei"s encouraged the

Pythagoreans to search for other numeric^al ratios or harmonies

in the univei'se. I'he P\'thagorean ideal strongly affected Greek

science and many centuries later inspired much of Kepler's

work, hi a general fomi, the ideal flourishes to this day in many
beautiful applications of mathematics to jjhvsical experience.

SG 13 Using the superposition principle, we can now define the

harmonic relationship much more precisely. First, we must

stress an important fact about standing wave patterns produced

by reflecting waves from the boundaries of a medium. You can

imagine an unlimited variet\' of waves traveling back and foith.

But, in fact, only certain wavelengths (or frequencies) can produce

standing waves in a given medium. In the example of a stringed

instiTiment, the two ends are fixed and so must be nodal points.

This fact puts an upper limit on the length of standing waxes

possible on a fixed rope of length L. Such waves must be those

for which one-half wavelength just fits on the rope IL — \/2).

Shorter weaves also can produce standing patterns ha\ing more
nodes. But always, some whole number of one-half wavelengths

must just fit on the rope (L = X/2, 2\/2, 3X/2, etc. I so that L =

nk/2.

This relationship can be used to give an expression for all

possible wavelengths of standing waves on a fixed rope:

2L
K = —

n

or simply X^ ^ l/n. That is, if X, is the longest wavelength

possible, the other possible wavelengths will be VzX,, VbX,, . . .,

1/nX,. Shorter waxelengths correspond to higher frequencies.

Thus, on any bounded medium, only certain frequencies of

standing waves can be set up. Since frequency /is inversely

proportional to wavelength, f^f 1/X, we can rewiite the

expression for all possible standing waves on a plucked string as

f„^n

In other circumstances,/ may depend on n in some other way.

The lowest possible frequency of a standing wa\ e is usually the

one most stitjngly present when the string vibrates after being

plucked or bowed. If/ represents this lowest possible frequency,

then the other possible standing waves would have fi'equencies

2/,, 3/,, . . ., nj\. These higher frequencies are called "o\ertones"

of the "fundamental" frequency/. On an "ideal" string, there are

in principle an unlimited number of such frequencies, all simple

multiples of the lowest frequency.

In real media, there are practical upper limits to the possible

fre(|uencies. -Also, th(> o\ertones aie not cxactK simple nuiltiples
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of the fundamental frequency; that is, the ov^ertones are not

strictly "harmonic. " This effect is still greater in systems more

complicated than stretched strings. In a saxophone or other

wind instrument, an air column is put into standing wave

motion. The overtones produced may not be even approximately

harmonic.

As you might guess from the superposition principle, standing

waves of different frequencies can exist in the same medium at

the same time. A plucked guitar string, for example, oscillates in

a pattern which is the supeiposition of the standing waves of

many overtones. The relative oscillation energies of the different

instruments determine the "quality" of the sound they produce.

Each type of instrument has its own balance of overtones. This is

why a violin sounds different from a trumpet, and both sound

different from a soprano voice, even if all are sounding at the

same fundamental frequency.

Film Loops 3&-43 show a variety of

standing waves, including waves on
a string, a drum, and in a tube of

air.

Mathematically inclined students

are encouraged to pursue the topic

of waves and standing waves, for

example, Science Study Series pa-

perbacks Waves and the Ear and
Horns, Strings, and Harmony.

SG 16

# 18. When two identical waves of the same frequency travel in

opposite directions and interfrre to produce a standing wave,

what is the motion of the medium at

(a) the nodes of the standing wave?

(b) the places between nodes, called antinodes or loops, of the

standing wave?

19. If the two interfering waves have wavelength X, what is the

distance between the nodal points of the standing wave?

20. What is the wavelength of the longest traveling waves that

can produce a standing wave on a string of length L?

21. Can standing waves of any frequency, as long as it is higher

than the fundamental, be set up in a bounded medium?

12.8
I

Wave fronts and diffraction

Waves can go around corners. For example, you can hear a voice

coming from the other side of a hill, even though there is

nothing to reflect the sound to you. You are so used to the fact

that sound waves do this that you scarcely notice it. This

spreading of the energy of waves into what you might expect to

be "shadow" regions is called diffraction.

Once again, water waves wall illustrate this behavior most

clearly. From among all the arrangements that can result in

diffraction, we udll concentrate on two. The first is showoi in the

second photograph in the margin on page 373. Straight water

waves (coming from the top of the picture) are diffracted as they

pass through a narrow slit in a straight barrier. Notice that the

slit is less than one wavelength wide. The wave emerges and
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Close UpI
Vibration of o Drum

I

In the Film Loop "Vibration of a Drum," a

marked rubber "drumhead" Is seen vibrat-

ing In several of Its possible modes. Below
are pairs of still photographs from three of

the symmetrical modes and from an antl-

symmetrlcal mode.

I
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spreads in all directions. Also notice the pattern of the diffracted

wave. It is basically the same pattern a vibrating point source

would set up if it w^ere placed vv^here the slit is.

The bottom photograph shows a second barrier arrangement.

Now there are two narrow slits in the barrier. The pattern

resulting from supeiposition of the diffracted waves from both

slits is the same as that produced by two point sources vibrating

in phase. The same kind of result is obtained when many narrow

slits are put in the barrier; that is, the final pattern just matches

that which would appear if a point source were put at the center

of each slit, vdth all sources in phase.

You can describe these and all other effects of diffraction if you

understand a basic characteristic of weaves. This characteristic

was first stated by Christian Huygens in 1678 and is now known
as Huygens' principle. In order to understand the principle, you

first need the definition of a wave front

.

For a water wave, a wave ft ont is an imaginary line along the

water's surface and every point along this line is in exactly the

same stage of vibration; that is, all points on the line are in phase.

Crest lines are wave fronts, since all points on the water's suiface

along a crest line are in phase. Each has just reached its

maximum displacement upward, is momentarily at rest, and will

start downward an instant later.

Since a sound vv^ave spreads not over a surface but in three

dimensions, its wave fronts are not lines but surfaces. The w^ave

ft'onts for sound waves from a very small source are very nearly

spherical surfaces, just as the wave ftonts for a veiy small source

of water waves are circles.

Huygens' principle, as it is generally stated today, is that every

point on a wave front may be considered to behave as a point

source for waves generated in the direction of the wave s

propagation. As Huygens said:

There is the further consideration in the emanation of these

waves, that each particle of matter in which a wave spreads,

ought not to communicate its motion only to tlie next particle

which is in the straight line drawn from the (source), but that it

also imparts some of it necessanly to ail otliers whicli touch

it and which oppose themselves to its movement. So it arises

that around each particle there is made a wave of which tliat

particle is the center.

The difft^action patterns seen at slits in a barrier are certainly

consistent with Huygens' principle. The wave arriving at the

barrier causes the water in the slit to oscillate. The oscillation of

the water in the slit acts as a source for waves traveling out ftom
it in all directions. When there are two slits and the wave
reaches both slits in phase, the oscillating water in each slit acts

like a point source. The resulting interference pattern is similar

Diffraction of ripples around the

edge of a barrier.

Diffraction of ripples through a

narrow opening.

Diffraction of ripples through two

narrow openings.
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Each point on a wave front can be

thought of as a point source of
naves. The waves from all the point

sources interfere constructively

onlv alor}g their envelope, which

becomes the new wave front.

When part of the wave front is

blocked, the constructive interfer-

ence of waves from points on the

wave front e,x/ends into the

"shadow" region.

\

When all but a ver\' small portion

of a wave front is blocked, the wave
propagating away from that small
portion is nearly the same as that

from a point source.

to the pattern produced by \va\es IV(jni two point soiiices

oscillating in phase.

Consider what happens behind a breakwater wall as in ihe

aerial photograph of the harbor above. By Huygens' principle,

water- oscillation near the end of the breakwater sends cnr-cular

wiues propagating into the "shadow" region.

You can understand all diffraction patterns if you keep both

Huygens' principle and the superposition principle? in mind. For

example, consithM- a slit v\ider- than one waxeknigth. in tliis case

the pattern of diffracted waves contains nodal lines Isee the

series of four- photogr'aphs in the margin on page 375 1.

The figirre on page 375 helps to explain why nodal lines

appear. There must be points like P that ar-e jirst X farther- from

side A of the slit than fr-om side 15; that is, there nurst be points P

for which AF differs from BP b\' exactly \. For- sirch a point, AP
and OP difler- by one-half wavelength, K/2. By Huygens' principle,

you ma\' think of points A and O as in-phase point sour'ces of

circular- waves. Birt since AP arid ()l^ differ- by \/2, the two waxes

will arrive at P completely out of phase. So, according to the

sirperpositiorn jorinciple, the vxaxes fr-om ,\ and () will (-ancel at

[loint I'.

This argument also holds tr-ue for the pair of points consisting

of the fir\st point to the right of A and the fir-st to the r-ight of ().

in fact, it holds true iov each such matched pair- of points, all tiie

way across the slit. The waves originating at each such pair of

points all cancel at point P. Thus, P is a nodal point, located on a

nodal line. On the other hand, if the slit width is less than K.

then there can be no nodal point. This is olnioirs, since no point

can be a distance \ farilier- tVom one sid(^ of the slit tlian fi-om
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the other. Slits of widths less than \ hehave nearly as point

sources. The narrower they are, the more nearly their behavior

resembles that of point sources.

You can easily compute the wavelength of a wave from the

interference pattern set up where diffiacted wtwes overlap. For

example, you can analyze the two-slit pattern on page 373

exactly as you analyzed the two-souice pattern in Sec. 12.6. This

is one of the main reasons for interest in the interference of

diffracted waves. By locating nodal lines formed beyond a set of

slits, you can calculate \ even for wiives that you cannot see.

For two-slit inteiference, the larger the wavelength compared

to the distance between slits, the more the interference pattern

spreads out. That is, as X increases or d decreases, the nodal and

antinodal lines make increasingly large angles with the straight-

ahead direction. Similarly, for single-slit diffraction, the pattern

spreads when the ratio of wavelength to the slit width increases.

In general, diffraction of longer wavelengths is more easily

detected. Thus, when you hear a band playing aiound a corner,

you hear the bass drums and tubas better than the piccolos and

cornets, even though they actually are playing equally loudly.

A o B

O 22. What characteristic do all [joints on a wave front have in

common?

23. State Huygens' principle.

24. Can there be nodal lines in a diffraction pattern from an

opening less than one wavelength wide? Explain.

25. What happens to the diffraction pattern from an opening

as the wavelength of the wave increases?

26. Can there be diffraction without interference? inteiference

without diffraction?

SG 21

12.9 Reflection

You have seen that waves can pass through one another and

spread around obstacles in their paths. Waves also are leflected,

at least to some degree, whenever they reach any boundaiy of

the medium in which they travel. Echoes are familial' examples

of the reflection of sound waves. All waves share the property of

reflection. Again, the supeiposition piinciple will help you

understand what happens when reflection occurs.

Suppose that one end of a rope is tied tightly to a hook

securely fastened to a massive wall. From the other end, a pulse

wave is sent down the rope towaid the hook. Since the hook

cannot move, the force exerted by the rope wave can do no work

on the hook. Theiefore, the energv carried in the w^jve cannot
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leave the rope at this fixed end. histead, the wave bounces back,

is reflected, ideally v\ith the same energy.

What does the wave look like after it is reflected.^ 1 li(> .striking

result is that the wave seems to fiip upside down on rellection.

As the wave comes in from left to light and encounters the fixed

hook, it pulls up on it. By Newton's third law, the hook must

exert a force on the I'ope in the opposite direction while

reflection is taking place. The details of how this force \aries in

time are complicated. The net effect is that an inverted wave of

the same form is sent back down the rope.

SG 22 The sketches in the margin on the left show the results of

reflection of water waves from a straight wall. You can see if the

sketches are accurate by trying to reproduce the effect in your

sink or bathtub. Wait until the water is still, then dip your

fingertip briefly into the water or let a drop fall into the water. In

the upper sketch, the outer crest is approaching the barrier at

the right. The next two sketches show the positions of the crests

after first one and then two of them have been reflected. Notice

the dashed curves in the last sketch. They show that the

reflected wave appears to originate from a point S' that is as far

behind the barrier as S is in front of it. The imaginaiy source at

point S' is called the image of the source S.

Reflection of circular waves is studied first, because that is

what you usually notice first when studying water waves. But it

is easier to see a general principle for explaining reflection by

-.

^^ observing a straight wave front, reflected ft'om a straight barrier.

V \ \ The ripple-tank photograph on page 377 shows one instant

; 'j ', during such a reflection. (The wave came in from the upper left

/ /' ,' at an angle of about 45°.) The sketches below show in moreIII "-'

/ / detaU what happens as the wave crests reflect from the straight

r' barrier.

The description of wave behavior is often made easier by

drawing lines peipendicular to the vvaxe fronts. Such lines, called

rays, indicate the direction of propagation of the wave. Notice the

last drawing in the margin, for example. Rays have been drawn
for a set of wave crests just befoi'e reflection and just after

reflection horn a barriei'. The straight-on direction, peipendicular

to the reflecting surface, is shouTi by a dotted line. The ray for

the incident crests makes an angle 6, with the straight-on

direction. The ray for the reflected crests makes an angle H, with

it. The angle of reflection 6, is equal to the angle of incidence B,:

that is, 6, = 0.. This is an experimental fact, which \ou can \'erifv

for vourself.
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Manv kinds of wave reflectors are in use today, from radar

antennae to infrared heateis. Figures la) and (b) below show how
straight-line waves reflect from two circular reflectois. A few

incident and reflected rays are shown. (The dotted lines are

peipendicular to the barrier suiface.) Rays reflected from the

half-circle (a) head off in all directions. However, rays reflected

from a smafl segment of the circle (b) come close to meeting at a

single point. A barrier with the shape of a parabola (c) focuses

straight-line waves piecisely at a point. Similarly, a parabolic

surface reflects plane waves to a sharjD focus. An impressixe

example is a radio telescope. Its huge parabolic suiface reflects

faint radio waves fi^om space to focus on a detector.

The wave piiths indicated in the sketches could just as well be

reversed. For example, spherical waves pioduced at the focus

become plane waves when reflected from a parabolic suiface.

The flashlight and automoliile headlamp are familiar applications

of this principle. In them, white-hot wires placed at the focus of

parabolic reflectors produce almost parallel beams of light.

Z7. What is a "ray"'::'

28. What is the relationship between the angle at which a wave

front strikes a barrier and the angle at which it leaves'::*

Z9. What shape of reflector can reflect parallel wave fronts to

a sharp focus':'

30. What happens to wave fronts originating at the focus of

such a reflecting surface':'

m

Above: A ripple tank shadow show-

ing how circular waves produced
at the focus of a parabolic wall are

reflectedfrom the wall into

straight waves.

12.10
I

Refraction

What happens when a wave propagates from one medium to

another medium in which its speed of propagation is different?

Look at the simple situation pictured on page 378. Two one-
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Above: The fiUirnent of a flashlight

bulb is at the focus of a parabolic-

mirror, so the reflected light forms
a nearly parallel beam.

1

A_A

V

~V v
A

Pulses encountering a boundary

between two different media. The
speed ofpropagation is less in me-
dium Z.

Continuous wave train crossing the

boundary between two different

media. The speed of propagation is

less in medium Z.

SG 2fi

dimensional pulses approach a lioiindaiy sepaiating two media,

rhe speed ot the propiigation in medium 1 is greatei- tlian it is

in medium 2. Imagine the pulses to be in a light rope (medium
II tied to a relatively hea\y rope Imedium 2i. Part of each pulse is

reflected at the boundaiy. Tiiis rellected component is Hipped

upside down relative to the original pulse. Recall the inverted

reflection at a hook in a wall discussed earlier. The heavier rope

here tends to hold the boundaiy point fixed in just the same
way. But what happens to that part of the wave that continues

into the second medium.-'

As shown in the figure, the transmitted pulses aie closei'

together in medium 2 than they are in medium 1. The speed of

the pulses is less in \hv. heavier lope. So the second pulse is

catching up with the first while the second pulse is still in the

light rope and the first is already in the heavy rope. In the same
way, each separate [lulse is itself s(|ueezed into a narrower form:

that is, while the front of the pulse is entering the region of less

speed, the back part is still moving with greater speed.

Something of the same sort hafipens to a periodic wave at

such a boundary. This situation is pictured in the figur-e below.

For the sake of simplicity, assume that all of the wave is

transmitted and none of it is reflected. Just as the two pulses

wer e brought closer- and each pulse was squeezed narrower-, the

periodic wave patter^n is squeezed together, too. Thus, the

wiivelength \., of the transmitted waxe is shor-ter- than the

wavelength X, of the incoming, or incident, wave.

Although the wavelength changes when the wave passes

across the boundary, the frequency of the wave cumnot change. If

the rope is unbroken, the pieces immediately on either- side of

the boundaiy must go up and down together. The frequencies of

the incident and transmitted weaves must, then, be e(|ual. V\'e (-an

simply label both of them/!

The wavelength, frequency, and speed relationship for- both the

incident and transmitted vviives can be written separately:

\j/ = V, and \, f — v^

Dividing one of these equations bv the other and eliminating the

1 his etiualicjn tells that the ratio of th(> wavelengths in the two

media equals the ratio of the speeds.

I'he same sort of thing hap|iens when water- ripples cr-oss a

boundary. Experiments show that the ripples move more slowly

in shallower water. A piece of plate glass is placed on the bottom

of a r-i|)ple tank to make the water- shallower- there. This cr-(?at(\s

a boundary' betwecMi the dee|)er- and sbailowei- part imiulium 1
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(a)

water

and medium 21. Figure (a) iibove shows the case where this

boundaiy is parallel to the crest lines of the incident wave. As

with rope waves, the wavelength ot water waves in a medium is

proportional to the speed in that medium.

Water waves offer a possibility not present for rope waves. The

crest lines can approach the boundaiy at any angle, not only

head-on. Photograph (c) shows such an event. A ripple-tank wave

approaches the boundary at an angle. The wavelength and

speed, of course, change as the wave passes acioss the

boundaiy. The direction of the wave propagation also changes.

As each part of a ciest line in medium 1 enters medium 2, its

speed decreases, and it starts to lag behind. In time, the

(b)

(c)

Top: Ripples on water (coming

from the left) encounter the shal-

low region over the corner of a

submerged glass plate. Bottom:

Ripples on water (coming from the

left) encounter a shallow region

over a glass plate placed at an an-

gle to the wave fronts.

Aerial photograph of the refr^action

of ocean waves approaching shore.
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SG 27-31

The slowing of star light by increas-

ingly dense layers of the atmos-
phere produces refraction that

changes the apparent position of

the star.

directions of the whole set of ci^st lines in metliuiii 2 are

changed from their directions in medium 1.

This phenomenon is called refraction. Refraction occurs

whenever a wave passes into a medium in which the wave
velocitv' is reduced. The wave fronts are turned (refracted) so that

they are more nearly parallel to the houndaiy. See photographs

(b) and (c). This accounts for st^mething that you may have

noticed if you have been at an ocean beach. No matter in what
direction the waves are moving far from the shore, v\'hen they

come near the beach their crest lines are nearly parallel to the

shoreline. A wave's speed is steadily reduced as it mo\'es into

water that gets gradually more shallow. So the wa\ e is refracted

continuously as if it vv^ere always crossing a boundary between

different media, as indeed it is. The refraction of sea wa\'es is so

great that waxe crests can curl around a small island with an all-

beach shoreline and proxide suif on all sides.

31. If a periodic wave slows down on entering a new medium,
what happens to (a) its frequency? (b) its wavelength? (c) its

direction?

32. Complete the sketch in the margin to show roughly what

happens to a wave train that enters a new inedium in which its

speed is greater.

12.1.1 Sound ivaves

Look again at the bottom figure in

the margin of page 357.

1 Hz = 1/sec, or one cycle (or os-

cillation) per second.

Sound waves are mechanical disturbances that propagate

through a medium, such as the air. Typically, sound waves are

longitudinal waves, producing changes of densitx' and pressure

in the medium through which they traxel. The medium can be a

solid, liquid, or gas. If the waves strike the ear, they can produce

the sensation of hearing. The biology and psychology of hearing,

as well as the physics of sound, are important to the science of

acoustics. Here, of course, we will concentrate on sound as an

example of wave motion. Sound has all the properties of wave

motion considered so far. It exhibits refraction, diffraction, and

the same relations among frequency, wavelength, and

propagation speed and interference. Only the propeity of

polarization is missing, because sound waxes arc longitudinal,

not transxerse.

Vibrating sources for sound wax^es may be as simple as a

tuning fork or as complex as the human lannx xxith its xocal

cords. Tuning forks and some special electronic dexices produce

a steady "pure tone. " Most of the energy in such a tone is in

simple hannonic motion at a single frequenrx The "pitch" of a
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sound goes up as the frequency of the wave increases.

People can hear sound waves udth frequencies between about

20 and 20,000 Hz. Dogs can hear over a much wider range

(15-50,000 Hz). Bats, porpoises, and whales generate and respond

to frequencies up to about 120,000 Hz.

Loudness (or "volume") of sound is, like pitch, a psychological

variable. Loudness is strongly related to the intensity of the

sound. Sound intensity is a physical quantity. It is defined in

terms of the energy carried by the wave and is measured in the

number of watts per square centimeter transmitted through a

surface perpendicular to the direction of motion of a wave front.

The human ear can perceive a vast range of intensities of sound.

The table below illustrates this range. It begins at a level of
10"^'' watts per square centimeter (relative intensity = 1). Below

this "threshold" level, the normal ear does not perceive sound.

Relative Intensity

1

10'

10'

10'

10'

10'

10'

10'

10«

10'

10'°

10"
10'^

10'^

10'^

10''

10"

10"

Sound
Threshold of hearing

Normal breathing

Leaves in a breeze

Library

Quiet restaurant

Two-person conversation

Busy traffic

Vacuum cleaner

Roar of Niagara Falls

Subway train

Propeller plane at takeoff

Machine-gun fire

Small jet plane at takeoff

Wind tunnel

Space rocket at lift-off

It is customary to measure loud-

ness in decibels (db). The number
of decibels is 10 times the exponent
in the relative intensity of the sound.

Thus, a jet plane at takeoff makes
noise at the 140-db level.

Levels of noise intensity about lO'" times threshold intensity can
be felt as a tickling sensation in the ear. Beyond 10^^ times

threshold intensity, the sensation changes to pain and may
damage the unprotected ear.

Often the simplest way of reducing noise is by absorbing it

after it is produced but before it reaches your ears. Like all

sound, noise is the energy of back and forth motion of the

medium through which the noise travels. Noisy machinery can

be muffled by padded enclosures in which the energy of noise is

changed to heat energy, which then dissipates. In a house, a

thick iTjg on the floor can absorb 90% of room noise. (Thirty

centimeters of fresh snow is an almost perfect absorber of noise

outdoors. Cities and countrysides are remarkably hushed after

a snowfall.)

It has always been fairly obvious that sound takes time to

travel from source to receiver. By timing echoes over a known
distance, the French mathematician Marin Mersenne in 1640 first

Since many popular music con-
certs produce steady sound levels

near this intensity (and above it for

the performers), there are many
cases of impaired hearing among
young people.
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Close Upl
The Sonic Doom

In the last decades a new kind of noise has ap-

peared: the sonic boom. An explosion-like sonic

boom is produced whenever an object travels

through air at a speed greater than the speed of

sound (supersonic speed). Sound travels in air at

about 340 m sec. Many types of military airplanes

can travel at two or three times this speed. Flying

at such speeds, the planes unavoidably and con-

tinually produce sonic booms. SST (Supersonic

Transport) planes such as the Concorde are now

in civilian use in some countries. The unavoidable

boom raises important questions. What are the

consequences of technological "progress"? Who
gains, and what fraction of the population do they

represent? Who and how many pay the price? Must

we pay it: must SST's be used? How much say has

the citizen in decisions that affect the environment

so violently?

The formation of a sonic boom is similar to the

formation of a wake by a boat. Consider a simple

point source of waves. If the source remains in the

same position in a medium, the wave it produces

spreads out symmetrically around it. as in Diagram

1. If the source of the disturbance is moving

through the medium, each new crest starts from a

different point, as in Diagram 2.

Notice that the wavelength has become shorter

in front of the object and longer behind it. This is

called the Doppler effect. The Doppler effect is the

reason that the sound an object makes seems to

have a higher pitch when it is moving toward you

and a lower pitch when it is moving away from you.

In Diagram 3, the source is moving through the

medium faster tfian the wave speed. Thus, the

crests and the corresponding troughs overlap and

interfere with one another. The interference is

mostly destructive everywhere except on the line

tangent to the wave fronts, indicated in Diagram 4.

The result is a wake that spreads like a wedge away

from the moving source, as in the photograph.

All these concepts apply not only to water waves

but also to sound waves, including those disturb-

ances set up in air by a moving plane as the wind

and body push the air out of the way. If the source

of sound is moving faster than the speed of sound

wave, then there is a cone-shaped wake (in three

dimensions) that spreads away from the source.

Actually, two cones of sharp pressure change are

formed. One cone originates at the front of the air-

plane and one at the rear, as indicated in the graph

at the right.

Because the double shock wave follows along

behind the airplane, the region on the ground

where people and houses may be struck by the

boom (the "sonic-boom carpet") is as long as the

supersonic flight path itself. In such an area, typi-

cally thousands of kilometers long and 80 km wide,

there may be millions of people. Tests made with

airplanes flying at supersonic speed have shown

that a single such cross-country flight by a 315-ton

supersonic transport plane would break many thou-

sands of dollars worth of windows, plaster walls,

etc., and cause fright and annoyance to millions of

people. Thus, the supersonic flight of such planes

has been confined to over-ocean use. It may even

turn out that the annoyance to people on shipboard,

on islands, and on coastal areas near the flight

paths is so great that over-ocean flights, too, will

have to be restricted.
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Double-cone shock wave, or sonic boom, pro-

duced by an airplane that is traveling (at 21 -km
altitude) at three times the speed of sound.

Building B is just being hit by the shock wave,

building A was struck a few seconds ago. and
building C will be hit a few seconds later. (Draw-

ing is not to scale.)

AiR

normal

l€> 30 30 40 SO iO 10 g^ to IflO «»

This curve represents the typical sonic boom
from an airplane flying at supersonic speed
(speed greater than about 340 misec). The pres-

sure rises almost instantly, then falls relatively

slowly to below-normal pressure, then nses again

almost instantaneously. The second pressure

rise occurs about 0. 1 sec after the first one, mak-
ing the boom sound "double."

^^.-<*=^$i?^/-

>ite^..^^-'

r^.-

iimii^W^iM-ff. '
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SG 32

SG 33-35

Since the two frequencies are dif-

ferent, the waves cannot stay in

phase or out of phase. They there-

fore alternate between destructi\e

and constructive interference. See

SG8.

The acoustic properties of a hall

filled with people are \'er\' different

from those of the empty hall.

Acoustical engineers sometimes fill

the seats with felt-covered sand-

bags while making tests.

computed the speed of sound in air. It took another 70 years

before William Derham in England, comparing the flash and

noise from cannons across 20 km, came close to the modern
measurements.

Sound in air at 20°C moves at about 344 m/sec. As for all waves,

the speed of sound waxes depends on the properties of the

medium: the temperature, density, and elasticity. Sound waves

generally travel faster in liquids than in gases, and faster still in

solids. In seawater, their speed is about 1,500 m/sec; in steel,

about 5,000 m/sec; in quartz, about 5,500 m/sec.

Interference of sound waves can be shown in a xariety of ways.

In a large hall with hard, sound-reflecting surfaces, there udll be

dead" spots. At these spots, sound waves coming together after

reflection cancel each other. Acoustic engineers must consider

this in designing the shape, position, and materials of an

auditorium. Another interesting and rather different example of

sound interference is the phenomenon knovvTj as beats. When
two notes of slightly different frequency are heard together, they

interfere. This interference produces beats, a rhythmic pulsing

of the sound. Piano tuners and string players use this fact to

tune two strings to the same pitch. They simply adjust one string

or the other until the beats disappear.

Refraction of sound by different layers of air explains why you
sometimes see lightning without hearing thunder. Similar

refraction of sound occurs in layers of water of different

temperatures. Geologists use the refraction of sound waves to

study the earth's deep structure and to locate fossil fuels and

minerals. Very intense sound waves are produced in the ground

(as by dynamite blasts!. The sound waxes traxel through the

earth and are received by detection dexices at different locations.

The path of the waves, as refracted by layers in the earth, can be

calculated from the relatixe intensities and times of sound
received. From knowledge of the paths, estimates can be made of

the composition of the layers.

As mentioned, diffraction is a property of sound xvaxes. Sound
xvaves readily bend around comeis and barriers to reach the

listener xxithin range. Sound xvaves reflect, as do rope or water

waves, xvherexer they encounter a boundaiy betxxeen different

media. The architectural accidents ciilled ' xxhispeiing galleries
"

show vividly how sound can be focused by reflection from

curved surfaces. All these effects are of interest in the study of

acoustics. Moreox'er, the proper acoustical design of public

buildings is now recognized as an important tunction hx' most

good architects.

In this chapter, you hax e studied the basic phenomena of

mechanical waves, ending wdth the theory of sound propagation.

The explanations of these phenomena xxere considered tiie final

triumph of \e\\1onian mechanics as applied to the tiansfcr of
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An "anechoic chamber" being used for research in

acoustics. Sound is almost completely absorbed dur-

ing multiple reflections among the wedges of soft

material that cover the walls.

The concert hall of the University of Illinois Krannert

Center for the Performing Arts was acoustically de-

signed for unamplified performances.

energy of particles in motion. Most of the general principles of

acoustics were discovered in the 1870's. Since then, the study of

acoustics has become involved with such fields as quantum
physics. Perhaps its most important influence on modern
physics has been its effect on the imagination of scientists. The
successes of acoustics encouraged them to take seriously the

power of the wave viewpoint, even in fields far from the original

one—the mechanical motion of particles that mo\'e back and
forth or up and dovvai in a medium.

# 33. List five wave behaviors that can be demonstrated with

sound waves.

34. Can sound waves be polarized':' E^cplain.
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study
guide
1. The Project Physics materials particularly

appropriate for (]hapter 12 int-kide:

Experiment^i

Sound

Activities

Standing Waves on a Uruni and a Violin

Moire Patterns

Music and Speech Acti\ities

Measurement of the Speed of Sound

MechaniciU \\'a\'e Machines

Film Loops
Superposition

Standing Waves in a String

Standing Waves in a Gas

Four Loops on X'ibrations

2. Some waxes propagate at such a high speed that

you are usually not a\vai-e of any delay '\n energy

transfer. Give an example of a compression wave in a

solid, started by an action at one end, that

propagates so quickly that you are not aware of any

delay before an effect is exliibited at the other end.

3. Describe the diff(!rences in phase of oscillation

of various parts of your l)ody as you walk. What

points are exactly in phase? Which points are exactly

Vz cycle out of phase? Ai-e there any points 'A cycle

out of phase?

Q+t|

4. Pictured are two pulse waxes lA and H) on a

rope at tiu; instants l)(!f()r(! and aft(!r tiu^y ()\(;rlap I/,

and tj. Divide the elapsed time between f, and t, into

four equal intervals and plot the shape of the rope

at the end of each intei'v^U.

5. Repeat SG 4 for the two pulses (A and CI

pictured above.

att2

6. The wave above propagates to the right along a

rope. What is the shape of the wa\'e propagating to

the left that could for an instant cancel this one

completely?

7. The velocity of a portion of ropt: at some instant

as transverse waves are passing through it is the

superposition of the xclocities of waxes passing

through that j)ortion. is th(! kin(;tic energ\' of a

portion of the rope the superposition of the kinetic

energies of xvax'es passing through that rc^gion?

Justify your ansxxer.

». Shoxxn in the; figure arc two xxaxes of slightly

diff(M('nt frc(|U('n(x . find liu'lr sum gra|)hi(allx . Wni
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will probably find that the sum has "beats." Can you

find a way to determine the frequency of the beats

if you know the fi-equencies of the waves?

9. What sliape would the nodal regions have for

sound waves from two loudspeakers?

10. Imagine a detection device for waves is moved
slowly to either the right or left of the point labeled

A,, in the figure on page 366. Describe what the

detection device would register.

ss
14. (a) What is the speed of sound in air if middle C

(256 Hz) has a wavelength of 1.34 m?

(b) What is the wavelength in water of middle C if

sound waves travel at 1 ,500 m/sec in water?

(c) What is the period of middle C in air and in

water?

15. Different notes are sounded with the same
guitar string by changing its vibrating length (that is,

11. What kind of interference pattern would you

expect to see if the separation between two in-pliase

sources were less than the wavelength \? Where
would the nodal and antinodal lines be if the two in-

phase sources were separated by the distance X? by

X/2? Convince yourself that one additional nodal line

appears on each side of the central antinodal line

whenever the separation between the two in-phase

sources is increased by one wavelength.

13. Derive an equation, similar to nkd = d^^, for

nodal points in a two-source interference pattern

(where d is the separation of the sources, € the

distance from the sources, and s„ the distance of the

nth node from the center line).

13. If you suddenly disturbed a stretched rubber

hose or Slinky with a frequency that precisely

matched a standing wave frequency, would standing

waves appeal' immediately? If not, what factors

would determine the time delav?

pressing the string against a brass ridge). If the fuU

length of the string is L, what lengths must it be

shortened to in order to sound (a) a "musical

fourth," (b) a "musical fifth," (c) an "octave"?

16. An oscilloscope displays a picture of an electric

wave so that its amplitude and frequency can be

easily measured. What is the frequency of the

incoming waves if eight complete cycles cover 10 cm
of the oscilloscope screen and the electron beam is

moving across the screen at 100 cm/sec?

17. Standing sound waves can be set up in the air in

an enclosure (like a bottle or an organ pipe). In a

pipe that is closed at one end, the air molecules at

the closed end are not free to be displaced, so the

standing wave must have a displacement node at the

closed end. At the open end, however, the molecules

are almost completely free to be displaced, so the

standing waves must have an antinode near the open

end.
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(a) What will be the \va\'(;longth of the fundamental

standing wave in a pipe of length L eloscnl at one

end? (Hint: What is the longest wave that has a node

and an antinode a distance L apart?)

(b) What is a general expression for possible

wavelengths of standing waves in a pipe closed at

one end?

(c) Answer (a) and lb) for the case of a pipe open at

both ends.

18. Imagine a spherical blob of Jello in whicii you

can set up standing \'ibrations. What would be some
of the possible modes of \ibration? (Hint: What

possible symmetrical nodal surfaces could there be?)

19. Suppose that straight-line ripple waves

approach a thin straight barrier that is a few

wavelengths long and that is oriented with its length

pariillel to the wave fronts. What do you predict

about the nature of the diffraction pattern along a

straight line behind the barrier tiiat is j^erpendicular

to the barri(M' and passes through the centCM* of the

barrier? Why do people who design breakwaters

need to concern themselves with diffraction effects?

20. A megaphone directs sound along the

megaphone axis if the waxelength of the sound is

small compared to the diameter of the opening.

Estimate the upper limit of frequencies that ai^e

diffracted at a cheerleader's megaphone opening.

Can you hear what a cheerleader shouts e\en though

you are far off the axis of the megaphone?

21. Explain why it is that the narrower a slit in a

barrier is, the more nearly it can act like a point

source of vvax'es.

22. If light is also a wave, why luut; you not seen

light Ijcing diffracted by the; slits of a picket fence, or

diffracted around the corner of a house?

23. Assuming that light is a waxe phenomenon,
what is the wa\elength of green light if the first node;

in a diffraction pattern is found 10 cm from th(;

center line at a distanc-c; of 4 m from the slits which

have a separation distance of 2.5 x lu ' cm?

24. By actual construction with a ruler and compass
on a tracing of the photograjjli on page 'M7, show

that rays for the reflecttul wa\e front appc^ar to come
from S'. Show also that this is consistent with

e, = e,.

25. A sti-aight-line wave approaches a right-angle

reflecting barrier as shown in the figure. Find the

shape, size, and direction of jjropagation of the wave
after it has been completely reflected by th(! barrier.

26. With ruler and compass reproduce part (b) of

the figure at the bottom of page 377 and find the

distance from the circle's center to the point P in

terms of the radius of the circle r. Make the radius

of your circle much lai'ger than the one in the

figure. (Hint: The dotted lines are along radii.)

27. Convince yourself that a parabolic reflector will

actually bring parallel wave fronts to a sharp focus.

Draw a parabola y = k^^ (choosing any convenient

value for k) and some parallel rays along the axis as

in part Ir) of the figure at the bottom of page 377.

Construct line segments perpendicular to the

parabola where the rays hit it, and di'aw the reflected

rays at equal angles on the other side of these lines.

28. The focal length of a curved reflector is the

distance from the reflector to the ]3oint where

pariUlel rays are focused. L'se \hv. drawing in S(i 24 to

fine! the fociil length of a parabola in terms of k.

29. K(!calling that water surface; waxes tra\(!l slower

in shallow water, what would you expect to happen

to the shape of the following wave as it continues

to the right? Pay particular attention to the region of

\'aiying depth. Can you use the; line of reasoning

above to gi\e at least a partial explanation of the

cause of breakers near a beach?
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30. If the frequency of a wave traveling in a medium
is increased, what will happen to its speed? What

determines the speed of waves in a medium?

31. A straight-line wave in a ripple tank approaches

a boundary between deep and shallow water as

shown. Describe the shape of the wave as it passes

through the boundary and then as it continues in the

shallow water.

cte»p

32. The diagram below shows two successive

positions. AB and CD, of a wave train of sound or

light, before and after crossing an air-glass

boundary. The time taken to go from AB to DC is

one period of the wave.

(a) Indicate and label an angle equal to angle of

incidence 0^.

(b) Indicate and label an angle equal to angle of

refraction 9^.

(c) Label the wavelength in air X^.

(d) Label the wavelength in glass Xj,.

(e) Show that v/v^ = X/X^.

(f) If you are familiar with trigonometry, show that

sin QJsin 9,. = X,/X,..

air

gloss \

33. A periodic ripple-tank wave passes through a

straight boundary between deep and shallow water.

The angle of incidence at the boundary is 45°, and

the angle of refraction is 30°. The propagation speed

in the deep water is 0.35 m/sec, and the frequency

of the wave is 10 Hz. Find the wavelengths in the

deep and shallow water.

34. What is the speed of water waves in a ripple

tank if waves generated at 10 Hz pass through slits 3

cm apart and create a diffraction pattern whose

third node is 10 cm from the center line at a

distance of 40 cm from the slits?

35. Look at figure (c) on page 379. Prove that if a

wave were to approach the boundary between

medium 1 and medium 2 from the right, along the

same direction as the refracted wave in the figure, it

would be refracted along the direction of the

incident wave in the figure. This is another example

of a general rule: If a wave follows a set of rays in

one direction, then a wave can foUow the same set of

rays in the opposite direction. In other words, wave

paths are reversible.

36. Suppose that in an extremely quiet room you

can barely hear a buzzing mosquito at a distance of

1 m.

(a) What is the sound power output of the

mosquito?

(b) How many mosquitoes would it take to supply

the power for one 100-W reading lamp?

(c) If the swarm were at 10 m distance, what would

the sound be like? (Sound intensity diminishes in

proportion to the square of the distance from a

point source.)

37. How can sound waves be used to map the floors

of oceans?

38. Estimate the wavelength of a 1,000-Hz sound

wave in air, in water, in steel (refer to data in text).

Do the same if/ = 10,000 Hz. Design the dimensions

of an experiment to show two-source interference

for 1,000-Hz sound waves.

39. Waves reflect from an object in a definite

direction only when the wavelength is small

compared to the dimensions of the object. This is

true for sound waves as well as for any other. What

does this tell you about the sound frequencies a bat

must generate if it is to catch a moth or a fly?

Actually, some bats can detect the presence of a wire

about 0.12 mm in diameter. Approximately what

frequency would that require?
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EPILOGUE Seventeenth-century scientists

thought they could eventually

explain all physical phenomena hv reducing them to matter and

motion. This mechanistic viewpoint became known as the

Newtonian world view or Newtonian cosmology, since its most

impressive success was Newton's theoiy of planetary motion.

Newton and other scientists of his time proposed to apply

similar- methods to other- problems, as mentioned in the Prologue

to this unit.

The eariy enthusiasm for* this new approach to science is

vixddly expressed by Henry Power in his book Experimental

Philosophy 11664). Addr^essing his fellow natural philosophers lor^

scientists, as we would now call them), he UTote:

You ai-e the enlarged and elastical Souls of the world, who,

removing all former rTibbish, and prejudicial resistances, do

make way for the Springy Intellect to five out into its desired

Expansion. . .

.

. . . This is the Age wherein (me-tiiinksi Philosophy comes in

with a Spring-tide ... I see how all the old Rubbish must be

thrown away, and carried away witli so powerful an

Inundation. I'hese are the days that must lay a new Foundation

of a more magnificent Philosophy, never- to be overthrown: that

uill Empirically and Sensibly canvass tlie Phaenonxcna of

Nature, deducing the causes of things from such Originals in

Nature, as we observe are producible by Art, and the infallible

demonstration of Mechanicks; and certainly, this is tlie way,

and no other, to build a tiTie and permanent Philosopiiv.

In Power's day, there were many people who did not regard

the old Aristotelian cosmologv as rubbish. For^ them, it provided

a comforting sense of unity and interrelation among natural

phenomena. They feared that this unity would be lost if

everything was r-educed simply to atoms moving randomly

through space. The poet John Donne, in 1611, complained

hitter ly of the change already taking place in cosmology:

And new Philosophy calls all in doubt,

The Element of fire is quite put out:

rhe Sun is lost, and th' eartli, arul no man's wit

Can well direct him where to looke for it.

And fi-eely men confesse that this world s spent,

When in the Planets, and the Firmament

They seeke so many new: then see that this

Is crumbled out againe to his Atomies

Tis all in peeces, all coherence gone;

All just supply, and all Relation . . .

Ncvvlonian physics provided powerful methods for- analyzing

the vvoiid and uncovering the basic principles of motion for

individual pieces of matter\ The richness and complexity of

processes in the real vvorid seemed infinite. Could Nevvlonian
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physics deal as successfully with these real events as with ideal

processes in a hypothetical vacuum? Could the perceptions of

colors, sounds, and smells really be reduced to "nothing but"

matter and motion? In the seventeenth century, and even in the

eighteenth century, it was loo soon to expect Newtonian physics

to answer these questions. There was still too much work to do

in establishing the basic principles of mechanics and applying

them to astronomical problems. A full-scale attack on the

properties of matter and energy had to wait until the nineteenth

century.

This unit covered several successful applications and
extensions of Newtonian mechanics that were accomplished by

the end of the nineteenth century. For example, we discussed

the conservation laws, new explanations of the properties of heat

and gases, and estimates of some properties of molecules. We
introduced the concept of energy, linking mechanics to heat and
to sound. Unit 4 wdll show similar links to light, electricity, and
magnetism. We also noted that applying mechanics on a

molecular level requires statistical ideas and presents questions

about the direction of time.

Throughout most of this unit, we have emphasized the

application of mechanics to separate pieces or molecules of

matter. But scientists found that the molecular model was not

the only w^ay to understand the behavdor of matter. Without

departing from basic Newtonian cosmology, scientists could also

interpret many phenomena (such a sound and light! in temis of

wave motions in continuous matter. By the middle of the

nineteenth century, it was generally believed that all physical

phenomena could be explained by a theory that was built on the

use of either particles or waves. In the next unit, you will

discover how much or how little validity there was in this belief.

You will begin to see the rise of a new viewpoint in physics,

based on the concept of field.

The Newtonian world \aew, as extended to include electrical

and statistical phenomena, was immensely successful, so

successful that at the close of the nineteenth centuiy the

fundamental properties of the physical universe seemed to be

well understood. All that remained for research were details and
applications. However, this was not to be. As you wall see in Unit

5, the advances in physics brought about by developments in the

nineteenth century led to new problems that required

revolutionary changes in our understanding of the world.
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PROLOGUE'The con\icti()ii tliat the world

land eventhin^ in it consists of

matter in motion drove scientists to search for mechanical

models for light and electromagnetism; that is, they tried to

imagine how the effects of light, electricity, and magnetism could

be explained in cietail as the action of material objects. iFor

example, consider the way light bounces off a mirroi". A model

for this effect might picture light as consisting of particles of

matter that behaxe somewhat like tiny ping-pong balls. i Such

mechanical models were useful for a time, but in the long run

proved far too limited. Still, the search for these models led to

many new discoveries, which in turn brought about important

changes in science, technology, and society. These discoveries

and their- effects for'm the subject of this unit. This Prologue

cover's the dexelopment of \arious models and brie(l\' indicates

their effect on present ideas of the physical world

Fr^om the sexenteenth centirry on ther-e were two competing

models for light. CJne modc^l tried to explain light in terms of

particles; the other, in terms of waxes. In the first half of the

nineteenth century, the wave model won general acce[)tance>
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because it was better able to account for newly discovered

optical effects. Cha{3ter 13 tells the stoiy of the triumph of the

wave theoiy of light. The wave theoiy remained supreme until

the early part of the twentieth century, when it was found (as

you vvdll see in Unit 5) thiit neither waves nor particles alone

could account for all the behavior of light.

As experiments established that electric and magnetic forces

have some characteristics in common with gra\dtational forces,

scientists developed new theories of electricity and magnetism.

Modeled on Newton's treatment of graxitation, these new
theories assumed that there are forces between electrified and

magnetized bodies that vaiy inversely vdth the square of the

distance. This assumption was found to account for many
obsei-vations. Of course, the drafters of these theories also

assumed that bodies can exert forces over a distance without

having to touch one another.

Action-at-a-distance theories were remarkably successful in

providing a quantitative explanation for some aspects of

electromagnetism. However, these theories did not at the time

provide a really complete explanation. Instead, another means of

description, based on the idea offields, became widely accepted

by the end of the nineteenth centuiy. It is now generally believed

to be the best way to discuss all physical forces. The concept of

field is introduced in Chapter 14 and developed further in the

last chapter of the unit.

Many scientists felt that action-at-a-distance theories, however

accurate in their predictions, failed to give a satisfactory physical

explanation of how one body exerts a force on another. Neuron

himself was reluctant to assume that one body can act on

another through empty space. In a letter to Richard Bentley he

wrote:

It was inconceivable to many scien-

tists that one body could directly

affect another across empty space.

They devised a variety ofschemes
to fill the space in between with

something that would transmit the

effect, first with material "ether,
"

later with mathematical 'fields.
"

Some of these schemes are illus-

trated on this and the ne^ct page.

This model is by Euler (eighteenth

century).
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Above: Ma;<weU s model of the

ether (nineteenth centurv).

Right: This model of the ether is by

Descartes (seventeenth centur\'j.

Above is a drawing representing

the magnetic field around the

earth, it is not the more sMumetri-

cal field the earth would have on

its own, but ;s disturbed bv

strean^s of charged particles from
the sun.

The text of this letter is reproduced
exactly as \e\\lnn wrote it.

illl
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Tis un(-oiu-ei\'able to me that inanimate hmlc matter should

iwitiioLit tile mediation ot scjmetliing (^Ise well is not mateiiall

operate upon & atteet otiiei- matt(M' witliout mutual ('ontact; . .

.

And this is one reason vviiv I desire you woulti not ascribe

innate gravity to me. That gra\aly should Ije innate inherent &.

essentiiil to matter so y{ one body may act upon anothei' at a

distance through a xacuum \\ thout the mediation of any thing

else by & through wch their action oi- force ma\' be conveyed

from one |)oint to another- is to me so great an absurdity that I

believe no man who has in [philosophical matteis an\'

competent faculty of thinking can e\er fall into it.

Some sexenteenth-centuiA' scitMilist.s were less cautious than

Nev\1on. They proposed that objects are surrouncleci In

atmospheres that e.xtend to th(^ most distant regions and
transmit graxitational, electric, and magnetic forces from one

hod\' to another. TIk^ almospliercs |)ro|K)sed at this time wriv
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not made a part of a quantitative theoiy. But in the nineteenth

centuiy the atmosphere concept was rexdved. Numerous
attempts were made to develop mathematically the properties of

a medium that would transmit the waves of light. The name
luminiferoLis ether was given to this hv]30thetical "light-hearing"

substance.

The rapid discoveiy of new electrical and magnetic effects in

the first half of the nineteenth centuiy stimulated the scientific

imagination. Michael Faraday (1791-1867), who made many of the

important discoveries, developed a model vvath lines of force

assigned to the space surrounding electrified and magnetized

bodies. Faraday showed how these lines of force could account

for many electromagnetic effects.

In a paper he wiote at age 17, William Thomson 11824-1907)

showed how the equations used to formulate and solve a

problem in electrostatics could also be used to solve a heat-fl iw
problem. Electrostatics deals with the effects of forces between

charges at rest. At the time, electiostatics was most simply and

effectively treated by assuming that electrical forces can act at a

distance. On the other hand, the flow of heat was generally held

to result from the action of parts that touch. Thomson showed

that the same mathematical formulation could be used for

theories based on completely different physical assumptions.

Perhaps, then, it was more important to find correct

mathematical tools than to choose a particular mechanical

model.

James Clerk Maxwell (1831-1879), inspired by Faradiiy's

physical models and by Thomson's mathematics, attempted to

develop a mathematical theoiy of electromagnetism. Maxwell first

assumed an imaginaiy ether consisting of gears and idler wheels.

Then he gradually worked out a set of equations that described

the properties of electric and magnetic fields. These equations

were later found to be remarkably successful. They described

quite accurately the electric and magnetic effects already known
to occur. Moreover, they led Maxwell to predict new effects

based on the idea of a propagating wave disturbance in electric

and magnetic fields. The speed he predicted for such

electromagnetic weaves was nearly the same as the measured

speed of light. This similarity suggested to Maxwell that light

might be an electromagnetic wave.

The concept of field, togethei' with the concept of energy,

provides a way of treating the influence of one body on another

without speaking of action at a distance or of a material medium
that transmits the action. The field concept has proved its

usefulness over and over again during the twentieth centuiy.

William Tliomson (Lord Kelvin) was
a Scottish mathematical pliysicist.

He contributed to the fields of elec-

tricity, meclianics, and thermody-
namics and to sucli practical de-

velopments as an ixnproved ship's

compass and the first trans-Atlantic

calile. Tlie Kelvin scale of alisokite

temperature is named for him.

Radio telescope at the National

Radio Astronomy Observatory,

Greenbank, West Virginia.
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Light

Behold tho Li^lit emitted from
the Sun,

What more familiar, and what
more unknown;
While by its spreading Radiance

it rexeals

All \atures Face, it still itself

conceids . . .

I Richard Blackmore, Creation II,

17151

SG 1

13.1 Introduction: niiat is light?

13.2 Propagation of li^t

13.3 Reflection and refraction

13.4 Interference and diffraction

13.5 Color

13.6 flliv is the skv blue?

13.7 Polarization

13.8 The ether

13.1
I

Introduction: Uliat is li^ht?

Light is a form of energy. The physicist can describe a beam of

light by stating measurable values of its speed, wavelength or

frequency, and intensity. But to physicists, as to all people,

"light" also means brightness and shade, the beauty of summer-

flowers and fall foliage, of red sunsets, and of the canvases

painted by masters. These are simply different ways of

appreciating light. One way concentrates on light's measurable

aspects; this approach has been enomiously fruitful in physics

and technology. The other way concerns aesthetic responses to

viewing light in nature or art. Still another way of considtMing

light deals with the biophysical process of \ision.

These aspects of light are not easily separated. Thus, in the

early histoiy of science, light presented more subtle and more

elusive problems than did most other aspects of phxsical

experience. Early ideas on its nature often confused light \\ ith

xision. This confusion is still {nident in x'oung childicMi. W hrii
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playing hide-and-go-seek, some children "hide" by covering their

eyes with their hands; apparently they think that they cannot be

seen when they cannot see. The association of vision with light

persists in the language of the adult world. People often talk

about the sun "peeping out of the clouds."

Some Greek philosophers believed that light travels in straight

lines at high speed and contains particles that stimulate the

sense of vision when they enter the eye. For centuries after the

Greek era, limited attention was paid to the nature of light, and

this particle model survived almost intact. Around 1500,

Leonardo da Vinci, noting a similarity between sound echoes and

the reflection of light, speculated that light might have a wave

character.

A decided difference of opinion about the nature of light

emerged among scientists of the seventeenth centuiy. Some,

including Newton, favored a model largely based on the idea of

light as a stream of particles. Others, including Huygens,

supported a wave model. By the late nineteenth century, there

appeared to be overwhelming evidence in support of the wave

model. This chapter will deal with the question: How accurate is

a wave model in explaining the observed behavior of light? The

wave model wdll be taken as a hypothesis, and the evidence that

supports it examined. Remember that any scientific model,

hypothesis, or theoiy has two chief functions: to explain what is

known and to make predictions that can be tested experi-

mentally. Both of these aspects of the wave model wdll be

discussed. The result wdll be rather suiprising. The wave model

turns out to work splendidly for all properties of light known
before the twentieth century. But in Chapter 18 you will find that

for some purposes a particle model must be used. Then in

Chapter 20, both models will be combined, merging two

apparently conflicting theories.

The ancient opinion, later proved by experiment, that light

travels in straight lines and at high speed has been mentioned.

The daily use of mirrors shows that light can also be reflected.

Light also can be refracted, and it shows the phenomena of

interference and diffraction. You studied all of these properties in

Chapter 12, which discussed the behavior of waves. If necessary,

you should refresh your memoiy about the basic ideas of that

chapter before going on to the study of light. You will also en-

counter other phenomena such as dispersion, polarization, and
scattering. As you will see, these also fit into the wave model.

Model, analogy, hypothesis, and
theory have similar but distinct

meanings when applied to physics.

An analogy is a corresponding sit-

uation which, though perhaps to-

tally unrelated to the situation at

hand, helps you understand it. Many
electronic circuits have analogs in

mechanical systems. A model is a

corresponding situation that may
well be what "is really going on"
and therefore can be taken more
seriously as an explanation. An
electron rotating around a nucleus

is one model for the atom. An hv-

pothesis is a statement that can
usually be directly or indirectly

tested. To Franklin, the statement

"lightning is caused by electricity"

was at first an hypothesis. A theory

is a more general construction,

perhaps putting together several

models and hypotheses to explain

a collection of effects that previ-

ously seemed unrelated. Newton's
explanation of Kepler's laws, Gali-

leo's experiments in mechanics and,

finally, the Cavendish experiment
were all part of the theory of uni-

versal gravitation. This is a good ex-

ample of a theory.

13*2
I

Propagation of light

There is ample evidence that light travels in straight lines. The
fact that one cannot see "around the corner" of an obstacle is an
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Light beams trnvcl in straight lines.
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obvious example of such exddence. A shadow cast by the sun has

the shaiply defined outlines given by a large but veiy distant

light source. Similarly, sharp shadows are cast by smaller sources

closer by. The distant sun and the nearby small source are

approximate point sources of light. Such point sources produce

shaip shadows.

Images as well as shadows can demonstrate that light tiavels

in straight lines. Before the invention of the modern camera with

its lens system, a light-tight box with a pinhole in the center of

one face was widely used. As the camera obscura, the device was
highly popular in the Middle Ages. Leonardo da Vinci piobably

used it as an aid in his sketching. In one of his manuscripts he

says that "a small aperture in a window shutter projects on the

inner wall of the room an image of the bodies which are beyond

the aperture." He includes a sketch to show how the straight-

line propagation of light explains the formation of an image.

SG 2

It is often convenient to use a straight line to represent the

direction in which light travels. The pictorial device of an

infinitely thin ray of light is useful for thinking about light, but no

such rays actually exist. A light beam emerging from a good-sized

hole in a screen is as wide as the hole. You might expect that if

you made the hole extremely small, you vv^ould get a very narrow

beam of light, ultimately just a single ray. This is not the case.

DiftVaction effects (such as you observed for water and sound
waves in Chapter 12) appear when the beam of light passes

Camera obscura is a Latin phrase
meaning "dark chamber."

First published illustration of a

camera obscura, used to obserx'e a

solar eclipse in January 1544, from
a book by the Dutch physician and
mathematician Gemma Frisius.

An attempt to produce a "rav" of
ligl^t. To make the pictures at the

left, a parallel beam of red light

was directed through increasingly

narrow slits to a photographic

plate. (Of course, the narrower the

slit, the less light gets through.

This was compensated for bv

longer exposures in these photo-

graphs. The slit widths, from left to

right, were 1.5 mm, 0.7 mm, 0.4

mm, 0.2 nvn, and 0.1 mm.
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through a small hole (see opposite). So an infinitely thin ray of

light, although it is pictorially useful, cannot he [Diociueed in

practice. But the idea can still be used in oider to represent the

direction in which a train of parallel waves in a beam of light is

traveling.

Actually, the beam of light produced by a laser comes as close

as possible to the ideal case of a thin, parallel bundle of rays. As

you will leain later in this unit (Chapter 15i, light is produced

by the vibrations of electrons within the atoms of its source. In

most light sources, ranging from incandescent and tluorescent

bulbs to the sun and stars, these vibrations occur independently

SG 3 of one another. Each of the vibrating atoms produces an

individual wavelet, and the sum of the waxelets from all the

atoms makes up the totiil emerging light beam. As a result, light

from such sources spreads out in all directions. A more or less

parallel beam of light can be produced by using a set of pinholes

or by using mirrors or lenses, as found, for instance, in

flashlights, automobile headlights, and searchlights. However, as

you can quickly detemiine for yourself, the beams of light they

produce still diverge noticeably.

In contrast, lasers are designed in such a way that their atoms

vibrate and produce light in unison with one another, rather

than individually and at random. As a result, the atoms produce

their wavelets simultaneously; this can yield a total beam of

considerable intensity and much more nearly monochromatic

(that is, of a single color) than the light from any conventional

source. In addition, since the individual wavelets from the atoms

of a laser are produced simultaneously, they are able to inteifere

with each other constructively to produce a beam of light that

is narrow and very nearly parallel. In fact, such light spreads out

so little that beams from lasers, when directed at the suiface of

the moon 400,000 km away, have been found to produce spots of

light only a meter in diameter. (You will learn more about lasers

later in this text.)

Given that light seems to travel in straight lines, can we tell

how fast it goes? Galileo discussed this problem in his 7\\o New
Sciences (published in 1638). He pointed out that eveiydiiy

experiences might lead one to conclude that light propagates

instantaneously. But these experiences, when analyzed more
closely, really show only that light travels much faster than

sound. For example, "when we see a piece of artillery fired, at a

great distance, the flash reaches our eyes without lapse of time;

but the sound reaches the ear only after a noticeable inteiAal."

But how do you really know whether the light moved "without

lapse of time" unless you have some accurate way of measuring

the lapse of time?

SG 4 Galileo then described an experiment by whicli two people

standing on distant hills flashing lant(M-ns might nu>asure the
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speed of light. (This experiment will be analyzed in SG 4.) He
concluded that the speed of light is probably finite, not infinite.

Galileo, however, was not able to estimate a definite value for it.

Experimental evidence was first successfully related to a finite

speed for light by a Danish astronomer, Ole Romer. Detailed

observations of Jupiter's satellites had shown an unexplained

irregularity in the times recorded between successive eclipses of

the satellites by the planet. Such an eclipse was expected to

occur at 45 sec after 5:25 a.m. on November 9, 1676. In September

of that year, Romer announced to the Academy of Sciences in

Paris that the eclipse would be 10 min late. On November 9,

astronomers at the Royal Obseivatoiy in Paris carefully obseived

the eclipse. Though skeptical of Romer's mysterious prediction,

they reported that the eclipse did occur late, just as he had

foreseen.

Later, Romer revealed the theoretical basis of his prediction to

the baffled astronomers at the Academy of Sciences. He
explained that the originally expected time of the eclipse had

been calculated from observations made when Jupiter was near

the earth. But now Jupiter had moved farther away. The delay

in the eclipse occurred simply because light from Jupiter takes

time to reach the earth. Obviously, this time interval must be

greater when the relative distance between Jupiter and the earth

in their orbits is greater. In fact, Romer estimated that it takes

about 22 min for light to cross the earth's own orbit around the

sun.

Shortly after this, the Dutch physicist Christian Huvgens used

Romer's data to make the first calculation of the speed of light.

Huygens combined Romer's value of 22 min for light to cross the

earth's orbit with his own estimate of the diameter of the earth's

orbit. (This distance could be estimated for the first time in the

seventeenth century, as a result of the advances in astronomy

described in Unit 2.) Huygens obtained a value which, in modern
units, is about 2 x 10** m/sec. This is about two-thirds of the

presently accepted value (see below). The error in Huygens' value

was due mainly to Romer's overestimate of the time interval.

Scientists now know that it takes light only about 16 min to cross

the earth's orbit.

The speed of light has been measured in many different ways

since the seventeenth century. Since the speed is very great, it

is necessary to use either a very long distance or a very short

time interval or both. The earlier methods were based on

measurements of astronomical distances. In the nineteenth

century, rotating slotted wheels and mirrors made it possible to

measure very short time intervals so that distances of a few

kilometers could be used. The development of electronic devices

in the twentieth century allowed measurement of even shorter

time intervals. Today, the speed of light is one of the most

The importance of Romer's work
was not so much that it led to a

particular value of the speed of

light, but rather that it established

that the propagation of light is not

instantaneous but takes a finite

time and that he obtained a value

of the right order of magnitude.
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Two narrow beams of light, coming

from the upper left, strike a block

of glass. Can you account for all

the ohsrr^rd rff'crts'^

ll 7
Katherine Burr Blodgett

(1898-1979). Dr. Blodgett developed

"invisible" glass by applying 44 lay-

ers of a one-molecule thick trans-

parent liquid soap to glass to re-

duce reflections from its surface.

Todav, nearlv all camera lenses

and optical devices have nonreflec-

tive coatings on their surfaces.

These coatings facilitate the effi-

cient passage of light.

SG 7-12

The incident, reflected and re-

fracted rays are all in the same
plane, a plane peqjendicular to the

surface. See Sec. 12.10.

accurately known physical constants. Because of the impoilance

of the value of the speed of light in modern physical theories,

physicists are continuing to improve theii- methods of

measurement.

The most accurate recent measurements indicate that the

speed of light in vacuum is 299,792,456.2 m/sec. The unceilainty

of this value is thought to he about 1 nVsec, or 0.000001%. The

speed of light is usually represented by the symbol c; for most

|iurposes it is sufficient to use the approximate value c = 3 X

lO" m/sec.

1. Ciiii ii bcuni of light be made increasingly narrow by passing

it through narrower and narrower slits? What property of light

does this e}iperijnent demonstrate?

2. What reason did Romer have for thiiiking that the eclipse of

a particular satellite ofJupiter would be obserxed later than

expected?

3. What was the most important outcome of Homer's work?

13.3
I

Reflection and refraction

What does each model of light predict \\ ill happ(;n \\ hen light

traveling in one medium (e.g., air) hits the boundary of another

medium le.g., glass)? The answers to this question depend on
whether a particle or a wave theory of light is used. Here is an

opportunity to test which theory is better.

Reflection and refi'action from the wa\'e xiewpoint were

discussed in Chapter 12. Recall the lesults obtained there and

apply them to light:

1. A ray may be taken as the line drawn pcrpenditailar to a

wave's crest lines. Such a ray lepresents the direction in which a

train of parallel waves is traveling.

2. In reflection, the angle of incidence O.) is equal to the angle

of reflection i6,.).

3. Refraction inv^olves a change of wavelength and speed of the

wave as it passes into another medium. When the speed

decreases, the wavelength decreases, and the ray bends in a

direction toward a line perpendicular to the boundaiy. This

bending toward the perpendicular is obsei-vod \\ hen a ra\' of

light passes from air to glass.

What about explaining the same obseivations by means of the

particle model? To test this model, first consider the nature of

the surface of glass. Though appaientK' smooth, it is actually a

wrinkled surface. A poweiful microscope would show it to haxe

endl(\ss hills and \'alleys. If particles of light were at all similar
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to little balls of matter, then on striking such a wrinkled surface

they would scatter in all directions. They would not be reflected

and refracted as shown above. Therefore, Newton argued, there

must actually be "some feature of the body which is evenly

diffused over its surface and by which it acts upon the ray

without immediate contact." Obviously, in the case of reflection,

the acting force would have to be one that repelled the particles

of light. Similarly, a force that attracted light particles instead of

repelling them could explain refraction. As a particle of light

approached a boundary of another medium, it would first have

to overcome the repelling force. If it did that, it would then meet

an attractive force in the medium that would pull it into the

medium. Since the attractive force would be a vector with a

component in the direction of the particle's original motion, the

particle's speed would increase. If the ray of particles were

moving at an oblique angle to the boundary, it would change

direction as it entered the medium, bending toward the line

perpendicular to the boundary.

According to the particle model, therefore, you can make the

following statements iibout reflection and refraction:

1. A ray represents the direction in which the particles are

moving.

2. In reflection, the angles of incidence and reflection are

equal. This prediction can be derived by applying the law of

conservation of momentum (Chapter 9) to particles repelled by a

/
Q

Q

SG 13

Notice that to make this argument
we have had to make an assump-
tion about the size of Newton's light

"particles." The particles must be

at least as small as the irregularities

in the surface of a mirror. Simi-

larly, a concrete wall is quite rough,

but a tennis ball rebounds from
such a wall almost exactly as light

reflects from a mirror.
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The surface of a mirror as shown
by a scanning electron microscope.

The surface is a 3-micron thick

aluminum film. The magnification

here is nearly 26,000 times, ([l

stands for micron; l(x = JO '' m.)

force as showii on the Uist sketch on the piexious page I see also

SG 7).

3. Refraction involves a change of speed of the particles as they

enter another medium. In particular, when an attractive power
acts, the speed increases, and the ray is hent into the medium.
Compare these featuies of the particle model with the

corresponding features of the wave model. The only difference is

in tiie predicted speed for a refracted ra\'. You obserxe that a ray

is bent tovvaid the perpendicular line when light jsasses from air

into water. The particle theory predicts that light has a greater

speed in the second medium. The wave, theoiy predicts that light

has a lower speed.

You might think that it would be fairly easy to devise an

experiment to determine which prediction is correct. All one has

to do is measure the speed of light after" it has entered water and

compare it with the speed of light in air. But in the late

seventeenth and early eighteenth centuries, when Huvgens was
supportinig the wa\e model and N'ewlon a particle model, no

su(;h experiment was possible. I he only available way of

measuring the speed of light was an astronomical one. \ot until

the middle of the nineteenth century did Arriiand H. L. Fizeau

and Jean B. L. Foucault measure the speed of light in water. The

results agreed with the predictions of the \va\e model: The speed

of light is less in water- than in air\

Actually, by the time these experiments were done, most

physicists had already accepted the wave model for other

reasons. The Foucault-Fizeau experiments of 1850 wer^e widely

regarded as driving the last nail in the coffin of the Newlonian

particle theory.

• 4. What evidence showed conclusively that Newton's particle

model for light could not e^cplain all aspects of refraction?

5. If light has a wave nature, what changes take place in the

speed, wavelength, andfrequency of light on passingfrom air

into water?

13 .4:
I

Interference and diiiraction

From the time of Newton until the early nineteenth century,

most physicists favored the particle theorv of light. Newton's own
prestige contributed greatly to this support. Early in \hc

nineteenth century, howevet\ the wave theory was re\ived by

Thomas Young. In experiments made between 1802 and 1804,

Young found that light shows the phenomenon of interference.

Ilnterfeience patterns were discussed in Sec. 12.6 in connection

with water waxes. i The particle theor\' of light coirld not easily
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explain such patterns. Young's famous "double-slit experiment"

provided convincing evidence that light does have properties that

are explainable only in terms of waves.

Young's experiment must be done in the lab, rather than just

talked about, but we will describe it briefly here. Basically, it

involves splitting a single beam of light into two beams. The split

beams are then allowed to overlap, and the two wave trains

interfere, constiuctively in some places and destructively in

others. To simplify the inteipretation of the experiment, assume

that it is done with light that has a single definite wavelength X.

Young used a black screen with a small hole punched in it to

produce a narrow beam of sunlight in a dark room. In the beam
he placed a second black screen wdth two narrow slits cut in it,

close together. Beyond this screen he placed a white screen. The
light coming through each slit was diffracted and spread out into

the space beyond the screen. The light from each slit interfered

with the light from the other, and the interference pattern

showed on the white screen. Where interference was
constructive, there was a bright band on the screen. Where
interference was destructive, the screen remained dark.

It is remarkable that Young actually found, by experiment,

numerical values for the veiy short wavelength of light. Here is

his result:

From a comparison of various experiments, it appears that the

breadth of the undulations constituting the extreme red light

must be supposed to be, in air, about one 36 thousandth of an

inch [7 X 10 " m], and those of the extreme violet about one

60 thousandth [4 x 10 ' m].

In announcing his result, Young took special pains to forestall

criticism from followers of Newton, who was generally

considered a supporter of the particle theory. He pointed out

that New1:on himself had made several statements favoring a

theory of light that had some aspects of a wave theoiy

.

Thomas Young (1773-18291 was an

English linguist, physician, and ex-

pert in many fields of science. At

the age of 14 he was familiar with

Latin, Greek, Hebrew, Arabic, Per-

sian, French, and Italian, and later

was one of the first scholars suc-

cessful at decoding Egyptian hiero-

glyphic inscriptions. He studied

medicine in England, Scotland, and
Germany. While still in medical

school, he made original studies of
the eve and later developed the

first version of what is now known
as the three-color theory of vision.

Young also did research in physiol-

ogy on the functions of the heart

and arteries and studied the hu-

man voice mechanism, through

which he became interested in the

phvsics ofsound and sound waves.

Young then turned to optics and
showed that many of Newton's ex-

periments with light could be ex-

plained in terms of a simple wave

theory of light. This conclusion was
strongly attacked fay some scien-

tists in England and Scotland who
were upset fay the implication that

Newton might have been wrong.

SG 14

Thomas Young's original drawing

showing interference effects in

overlapping waves. The alternate

regions of reinforcement and can-

cellation in the drawing can be

seen best bv placing vour eye near

the right edge and sighting at a

grazing angle along the diagram.
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A Polaroid photograph taken

through a Project Physics magni-

fier placed about 30 cm behind

a pair of closely spaced slits. The
slits were illuminated with a nar-

row hut bright light source.

SG 15

August in Jean I'resnel (1788-18Z7)

w^as an engineer of bridges and
roads for the French government.

In his spare time, he carried out

e;<tensive e^periinental and theo-

retical work in optics. Fresnel de-

veloped a comprehensive wave
model of light that successfully ac-

counted for reflection, refraction,

intciference, and polarization. He
also designed a lens system for

lighthouses that is still used today.

Nevertheless, Young was not taken seriously. It was not until

1818, when the French physicist Aiigustin Fresnel proposed his

own niathenuitical wa\e theoiy, that \'oung's research hegan to

get the credit it deseived. Fresnel also had to submit his work for

approval to a group of physicists who were committed to the

paiticle theoiy. C3ne of them, the mathematician Simon Poisson,

tried to refute Fresnel's wave equations. If these equations really

did describe the behaxior of light, Poisson said, a very peculiar

thing ought to happen when a small solid disk is placed in a

beam of light. Diffraction of the light waves all around the edge

of the round disk should lead to constructive intciference at the

center. In tuin, this constructive interference should produce a

bright spot in the center of the disk's shadow on a white screen

placed at certain distances behind the disk. But the particle

theoiy of light allowed no room f(jr ideas such as diffraction and

constructive interference. In addition, such a bright spot had

never been reported, and even the veiy idea of a bright spot in

the center of a shadow seemed absurd. For all of these reasons,

Poisson announced that he had refuted the wave theoiA'.

Fresnel accepted the challenge, however, and immediately

arranged for Poisson s prediction to be tested by experiment. The

result was that a bright spot did appear in the center of the

shadow, as predicted by Poisson on the basis of Fresnel's wave

theoiy.

Gradually, scientists realized the significance of the Young
double-slit experiment and the Poisson bright spot. Support for

the particle theoiy of light began to crumble. By 1850, the wave

model of light was generally accepted. Physicists had begun to

coiK-entrate on working out the mathematical consequences of

this model and applying it to the different properties of light.

>6". How did Young's e}(.periments support the wave model of

light':'

7. In what way is diffraction involved in Yoinigs experiments?

8. What phenomenon was predicted by Poisson on the basis of

Fresnel's wave theorv?

13,5
I

Color

The coloring agents found in prehistoric painting and potteiy

show that humans have appreciated color since earliest times.

But no scientifi(- theoiy of (^olor was developed before the time of

Newton. Until then, most of the accepted ideas about color had

come from artist-scientists like da \ inci, who based theii- ideas

on e\|ieiiences with mixing pigments.
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Unfortunately, the lessons learned in mixing pigments rarely

apply to the mixing of different-colored light beams. In ancient

times, it was thought that light from the sun was "pure light.

"

Color resulted from adding impurity, as when "pure light" was

refracted in glass.

Newton became interested in colors when, as a student at

Cambridge University, he set out to construct an astronomical

telescope. One troublesome defect of the telescope was a fuzzy

ring of color that always surrounded the image formed by the

telescope lens. Perhaps in an attempt to understand this

particular defect, Newton began his extensive study of color.

In 1672, at the age of 29, Newton published a theory of color in

the Philosophical Transactions of The Royal Society of London.

This was his first published scientific paper. He wi^ote:

... in the beginning of the Year 1666 (at which time I applyed

myself to the grinding of Optick glasses of other figures than

Spherical,] I procured me a Triangular glass-Prisme, to try

therewith tlie celebrated Phaenomena of Colours. And in order

thereto haveing darkened my chamber, and made a small hole

in my window-shuts, to let in a convenient quantity of the Suns

light, I placed my Prisme at his entrance, that it might be

thereby refracted to tfie opposite wall. It was at first a very

pleasing divertisement, to view the vivid and intense colours

produced thereby. . .

.

Diffraction pattern caused by an

opaque circular disk, showing the

Poisson bright spot in the center of
the shadow. Note also the bright

and dark fringes of constructive

and destructive interference. (You

can make similar photographs

yourself; see the activity "Poisson 's

Spot" in the Handbook.,)

The drawing at the left is based on
Newton's diagram of the refraction

of sunlight by a prism.

J Kl 1)

The cylindrical beam of "white" sunlight from the circular

opening passed thi^ough the prism and produced an elongated

patch of colored light on the opposite wall. This patch was violet

at one end, red at the other, and showed a continuous gradation

of colors in between. For such a pattern of colors, Newton
invented the name spectrum.

But, Newton wondered, where do the colors come from? And
why is the image spread out in an elongated patch rather than

circular? Newton passed the light through different thicknesses

of the glass, changed the size of the hole in the window shutter,

and even placed the prism outside the window. None of these

changes had any effect on the spectnam. Perhaps some
unevenness or irregularity in the glass produced the spectrnjm,

Newton thought. To test this possibility, he passed the coloi^ed
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Close UpI
Diffraction ond Detoii

k ^
A»

The photograph above shows the diffraction im-

age of a point source of light. Diffraction by the

camera lens opening has spread the light energy

into a bright central disk surrounded by alternate

dark and bright rings. The photographs below show
an array of point sources, recorded through a pro-

gressively smaller and smaller hole. The array

.^

\.

rr')

could represent a star cluster, surface detail on

Mars, granules in living cells, or simply specific

points on some object.

The diffraction of the waves from the edges of

the hole limits the detail of information that it is pos-

sible to receive. As the hole through which we ob-

serve the array below becomes smaller, the dif-

fraction image of each point spreads out and begins

overlapping the diffraction images of other points.

When the diffraction patterns for the points overlap

sufficiently, it is impossible to distinguish between

them.

This problem of diffraction has many practical

consequences. We obtain most of the information

about our environment by means of waves (light,

sound, radio, etc.) which we receive through some
sort of hole: the pupil of the eye, the entrance to

the ear or a microphone, the aperture of an optical

telescope or radio telescope, etc. In all these cases,

then, diffraction places a limit on the detail with

which the sources of waves can be discriminated.
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rays from one prism through a second similar prism tuined

upside down. If some irregularity in the glass caused the beam of

light to spread out, then passing this beam through the second
prism should spread it out even more. Instead, the second
prism, when properly placed, brought the colors back together

fairly well. A spot of white light was formed, as if the light had
not passed through either prism.

By such a process of elimination, Newton convinced himself of

a belief that he probably had held from the beginning: White light

is composed of colors. The prism does not manufacture or add
the colors; they are there all the time, but mixed up so that they

cannot be distinguished. When white light passes through a

prism, each of the component colors is refracted at a different

angle. Thus, the beam is spread into a spectrum.

As a further test of this hvpothesis, Newton cut a small hole in

a screen on which a spectrum was projected. In this way, light

of a single color could be separated out and passed through a

second prism. He found that the second prism had no further

effect on this single-color beam, aside from refracting it more.

Once the first prism had done its job of separating the colored

components of white light, the second prism could not change
the color of the components.

Summarizing his conclusions, Newton wrote:

Colors are not Qualifications of Light derived from Refraction or

Reflection of natural Bodies (as 'tis generally believed) but

Original and Connate Properties, which in divers Rays are

divers. Some Rays are disposed to exhibit a Red Colour and no
other; some a Yellow and no other, some a Green and no other,

and so of the rest. Nor are there only Rays proper and
particular to the more Eminent Colours, but even to all their

intermediate gradations.

Apparent colors of objects. So far, Newton had discussed only

the colors of rays of light. In a later section of his paper he raised

the important question: Why do objects appear to have different

colors? Why is the sky blue, the gi^ass green, a paint pigment
yellow or red? Newton proposed a veiy simple answer:

That the Colours of all Natural Bodies hiive no other Origin

than this, that they . . . Reflect one sort of Light in greater plenty

than another.

Most colors observed for real ma-
terials are "body" colors, produced
by selective absorption of light which
penetrates a litUe beyond the sur-

face before being scattered back.

This explains why the light trans-

mitted by colored glass has the

same color as the light reflected

from it. Thin metallic films, how-
ever, have "surface" color, resulting

from selective regular reflection.

Thus, the transmitted light will be

the complement of the reflected

light. For example, the light trans-

mitted by a thin film of gold is

bluish-green, whUe that reflected is

yellow.

In other words, a red pigment looks red to us because when
white sunlight falls on it, the pigment absorbs most of the rays of

other colors of the spectrum and reflects mainly the red to our
eyes.

According to Newton's theory, color is not a property of an
object by itself. Rather, color depends on how the object reflects

and absorbs the various colored rays that strike it. Nevvton
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backed up this hypothesis b\' {jointing out tliat an object may
appear to have a different eoloi' when a different kind of light

shines on it. Foi' example, consider a pigment tliat reflects much
more red light than green or blue light. When illuminated by

white light, it will reflect mostly the red component of the white

light, and so will appear red. But if it is illuminated with blue

light, there is no red for it to reflect, and it can reflect only a very

little of the blue light. Thus, it will appear- to be dark and slightly

blue.

DPTICKS-
O R, A

TREATISE
OF THE

REFLEXIONS, REFRACTIONS,
INFLEXIONS and COLOURS

LIGHT.
ALSO

Two TREATISES
OF THE

SPECIES and MAGNITUDE
OF

Curvilinear Figures,

LONDON,
Printed for Sam. S»4ith, and Bekj. Waliord.

Piintcrs to the Roval Society , at ilic Pnitt,'i Armi in

St. ?A,r% Church-yjrd. STdCCIV-

Title page from the first edition of
iX'evvton's Opticks (1704), in which

he described his theory of light.

Reactions to Newton's theory. Nev\^on's theory of color- met

v\ith \'iolent opposition at first. Other- British scientists, especially

Rober-t Hooke, objected on grounds that postulating a different

kind of light for- each c-olor- was irnnecessarA'. It woirld be simpler

to assume that the different colors were produced from pure

white light by some kind of modification. For- example, the wave

front might be twisted so that it is no longer- perpendicular- to

the direction of motion.

Nevvlon u^as awai-e of the flaws in Hooke s theory, but he

disliked public controxersy. In fact, he waited irntil after Hooke 's

death in 1703 to publish his own book, Upticks 11704), in which

he reviewed the properties of light.

Newton's Principia was a nuuh more important work from a

purely scientific xieupoint. Birt his Opticks had also considerable

influence on the literary world. English poets gladly celebrated

the discoveries of their country's greatest scientist. Most poets, of

course, v\^ei-e only dimly awai-e of the significance of Newlon's

theory of gravity. The technical details of the geometric axioms

and pr^oofs of the Principia were beyond them. Birt Newlon's

theory of colors and light pr'o\1ded good material for- poetic

fancy, as in James Thomson's, "To the Memory of Sir Isaac

Newton ' (1727):

SG 1'

. . . First the flaming r-ed,

Springs \i\id foitli; the tawny or-ange next;

And next delicious yellow; by whose side

Fell the kind Ijeams of all-refreshirng green.

Then the pui-e blue, that swells autuninal skies,

Ethereal played; and then, of sadder hue,

Emerged tiie deepened indigo, as when
The heavy-skirted evening di-oops with fr-ost;

While the last gleamings of lefi-acted light

Died in the tainting \ iolet away.

Leadei-s of the nineteenth-centurA Homantic movement in

literature and the Gennan "Nature Philosophers ' did not think

so highly of Newton's theory of color. The scientific procedure of

dissecting and analyzing natural phenomena by experiments was

distasteful to them, ihev preferred to speculate about the

irnitying princ-iplcs of all natural for-(-es, hoping somehow to
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grasp nature as a whole. The Gennan philosopher Friedrich

Schelling wi ote in 1802:

Newton's Opticks is the greatest illustration of a whole

structure of fallacies which, in all its parts, is founded on
observation and experiment.

The GeiTnan poet and Nature Philosopher Goethe (mentioned

in Chapter 11) spent many years tiying to overthrow Newton's

theory of colors. Using his owai observations, as well as

passionate arguments, Goethe insisted on the purity of white

light in its natural state. He rejected Neuron's hviDothesis that

white light is a mixture of colors. Instead, he suggested, colors

may be produced by the interaction of white light and its

opposite—darkness. Goethe's obseivations on color perception

were of some value to science. But his theory of the physical

nature of color could not stand up under detailed experiment.

Neuron's theoiy of the colors of the spectrum lemained firmly

established.

To the nineteenth-century physi-

cists who were trying to use New-
ton's theory to explain newly dis-

covered color phenomena, Goethe
addressed the following poem:

May ye chop the light in pieces

TiU it hue on hue releases;

May ye other pranks deliver,

Polarize the tiny sliver

TiU the listener, overtaken,

Feels his senses numbed and
shaken

—

Nay, persuade us shall ye never
Nor aside us shoulder ever,

Steadfast was our dedication

—

We shall win the consummation.

SG 18, 19

9. How did Newton show that white light was not "pure"?

10. Why could Newton be confident that, say, green light was

not itself composed of different colors of light?

11. How would Newton explain the color of a blue shirt?

12. Why was Newton's theory of color attacked by the Nature

Philosophers?

The nanometer is 10—
' m, a con-

venient unit for measuring wave-
lengths of visible and ultra-

violet light, X rays, and sizes of
atomic dimension. The Angstrom,
10 — '" m, was used previously.

13.6 Whv is the skv blue?

Newton suggested that the apparent colors of natural objects

depend on which color is most strongly reflected or scattered to

the viewer by the object. In general, there is no simple way of

predicting from the surface structure, chemical composition, etc.,

what colors a substance will reflect or scatter. However, the blue

color of the clear sky can be explained by a fairly simple

argument.

As Thomas Young showed experimentally (Sec. 13.4), different

wavelengths of light correspond to different colors. The
wavelength of light may be specified in units of nanometers

(abbreviated nm; 1 nm — 10"'' m) or, alternatively, in Angstroms
(A), equal to 10"'" m. The range of the spectrum visible to

humans is from about 400 nm (4000 A) for violet light to about

700 nm (7,000 A) for red light.

Small obstacles can scatter the energy of an incident wave in

all directions, and the amount of scattering depends on the

wavelength. This fact can be demonstrated by simple

The Angstrom unit is named after

Anders Jonas Angstrom, a Swedish
astronomer who, in 1862, used
spectroscopic techniques to detect

the presence of hydrogen in the
sun.
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The iiinount uf scnttcring of differ-

ent v\ave.s by a tiny obstacle is indi-

cated here for three wavelengths.

experiments with water waxes in a lipple tank. As a general injle,

the larger the wavelength is compared to the size of the obstacle,

the less the wave is scattered by the obstacle. For particles

.:^^\



second. Most of these particles are invisible, ranging in size from
10~'' m to 5 X 10~'^ m. Such particles provide a fi^amework to

which gases, liquids, and other solids adhere. These larger

particles then scatter light and produce haze. Gravity has little

effect on the particles until they become veiy large by collecting

more matter. They may remain in the atmosphere for months
if not cleaned out by repeated rain, snow^, or winds. The
influences of such clouds of haze or smog on the climate and on

human health are substantial.

13. How does the scattering of light waves by tiny obstacles

depend on the wavelengthF

14. How would you explain the color of the earth's sky? What
do you expect the sky to look like on the moon? Why?

1.3.T
I

Polarization

Hooke and Huygens proposed that light is in many ways like
,

sound, that is, that light is a wave propagated through a \

medium. Newton could not accept this proposal and argued that

light must also have some particle-like properties. He noted two Iceland spar crys-tai

properties of light that, he thought, could not be explained Double Refraction

unless light had particle properties. First, a beam of light is

propagated in straight lines, while waves such as sound spread

out in all directions and go around corners. This objection could

not be answered until early in the nineteenth century, when
Young measured the wavelength of light and found it to be

II
' * ' ^^^

extremely small. Even the wavelength of red light, the longest

wavelength of the visible spectrum, is less than a thousandth of a ^^^

millimeter. As long as a beam of light shines on objects or

through holes of ordinary size (a few millimeters or more in

width), the light will appear to travel in straight lines. Diffraction

and scattering effects do not become stiikingly exddent until a

wave passes over an object or through a hole whose size is about

equal to or smaller than the wavelength.

Nevvl^on's second objection was based on the phenomenon of

"polarization" of light. In 1669, the Danish scientist Erasmus
Bartholinus discovered that crystals of Iceland spar (calcitej

could split a ray of light into two rays. Writing or small objects

viewed through the crystal looked double.

Newton thought this behavior could be explained by assuming
that light is made up of particles that have different "sides," for

example, rectangular cross sections. The double images, he
thought, represent a sorting out of light particles that had
entered the medium wdth different orientations.
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Double refraction by a crystal of
Iceland spar. The unpolarized in-

cident light can be thought of as

consisting of two polarized compo-
nents. The crystal separates these

two components, transmitting

them through the crxstal in differ-

ent directions and with different

speeds.

The same short wave train on the

rope approaches the slotted board

in each of the three sketches. De-

pending on the orientation of the

slot, the train of waves (a) goes en-

tirely through the slot; (b) is partly

reflected and partly transmitted

with changed angles of rope vibra-

tion; or (c) is completely reflected.

Around 1820, Young and Fresnel gave a fai- more satisfactory

explanation of polarization, using a modified wave theoiy of light.

Before then, scientists had generally assumed that light wax'es,

like sound waves, must be l()iiu,itudinal. (And, as Newlon believed,

longitudinal waves could not have any directional propei'tv.i

Young and Fresnel showed that if light waxes are tnmsvcrse, this

could account for the phenomenon of polarization.

In a transverse wave, the motion of the medium itself is always

perpendicular to the direction of propagation of the wave (see

Chapter^ 12). This does not mean that th(> motion of the medium
is always in the same direction. In fact, it could be in any

direction in a plane perpendicular* to the direction of

propagation. However", if the motion of the medium is mainly in

one direction (for example, vertical), the wave is polarized. (Thus,

a polarized wave is really the simplest kind of transxerse wave.

An unpolarized transx^erse wave is more complicated, since it is a

mixture of various transverse motions.) The xvay in xvhich Iceland

spar separ-ates an unpolarized light beam into txvo polarized

beams is sketched in the mar^gin.

Scientific studies of polarization continued throughout the

nineteenth century. Pr^actical applications, hoxvexer, xver^e

frustrated, mainly because polarizing substances like Iceland

spar were scarce and fragile. One of the best polarizers was
"herapathite," or sulfate of iodo-quinine, a synthetic crystal. The
needle-like her'apathite crystals absorb light that is polarized in

the direction of the long crystal axis and absor^b very little of the

light polarized in a dir'ection at 90° to the long axis.

Her\ipathite crystals xver^e so fragile that there seemed to be no

way of using them. But in 1928, Edwin H. Land, while still a

freshman in college, invented a polarizing plastic sheet he called

"Polar'oid." His first polarizer was a plastic film irn which many

i\

-AA/^

microscopic crystals of herapathite were imbedded. When the
Later, Land improved Polaroid bv , .

'
, , . .. ... ....

using ,,olymeric moleculos com'- P'^^^^^ ^^« stretched, the needle-lrke crystals fined up rn one

posod mainly of iodine; in plnco of dir'ection. Thus, they all acted on inc^oming light in the same
h(Tapalliit(! ciystals. wax .
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Some properties of a polarizing material are easily demon-
strated. Hold a polarizing sheet, for example, the lens of a pair of

polarizing sunglasses, in front of a light source. Then look at the

first polarizing sheet through a second one. Rotate the first sheet.

You will notice that, as you do so, the light alternately brightens

and dims. You must rotate the sheet through an angle of 90° to

go from maximum brightness to maximum dimness.

How can this be explained? The light that strikes the first sheet

is originally unpolarized, that is, a mixture of waves polarized in

various directions. The first sheet transmits only those waves that

are polarized in one direction and absorbs the rest. The trans-

mitted wave going toward the second sheet is now polarized

in one direction. Whenever this direction coincides with

the direction of the long molecules in the second sheet, the wave
uill be absorbed by the second sheet (that is, the wave will set

up vibrations udthin the molecules of the ciystals and will lose

most of its energy). However, if the direction is perpendicular to

the long axis of the ciystal molecules, the polarized light udll go
through the second sheet without much absorption.

Interference and diffraction effects required a wave model for

light. To explain polarization phenomena, the wave model was
made more specific. It was shown that polarization could be
explained if light waves were transverse. This model for light

explains well enough all the characteristics of light considered so

far. But you will see in Unit 5 that the model turned out to

require even further extension.

Ordinary light, when scattered by
particles, shows polarization to dif-

ferent degrees, depending on the

direction of scattering. The eyes of

bees, ants, and other animals are

sensitive to the polarization of scat-

tered light from the clear sky. This
enables a bee to navigate by the
sun, even when the sun is low on
the horizon or obscured. Following

the bees' example, engineers have
equipped airjjlanes with polariza-

tion indicators for use in Arctic re-

gions.

SG 20, 21

# 15. What two objections did Newton have to a wave model?

16. What phenomena have been discussed that agree with a

wave model of light?

17. Can sound waves be polarized?

13.8
I
The ether

One factor seems clearly to be missing from the wave model for

light. Chapter 12 discussed waves as disturbances that propagate

in some substance or "medium," such as a rope or water. What
is the medium for the propagation of light waves?

Is air the medium for light waves? No, because light can pass

through airless space, as it does between the sun or other stars

and the earth. Even before it was definitely known that there is

no air between the sun and the earth, Robert Boyle had tried the

experiment of pumping almost all of the air out of a glass

container. He found that the objects inside remained visible.

It was difficult to think of a disturbance without specifying

what was being disturbed. So it was natural to propose that a

"Ether" was originally the name for

Aristotle's fifth element, the pure
transparent fluid that filled the
heavenly sphere. It was later called

"quintessence" (see Sees. 2.1 and
6.4).
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"Entrance to the Harbor," a paint-

ing by Georges Seurat (1688). Art

historians believe that Seurat's

technique o/ fjointillism, the use of
tiny dots ofpure color to achieve

all ejfects in a painting, was based

on his understanding of the physi-

cal nature of light. The Museum
ofModern Art; Lillie P. Bliss Col-

lection.

medium for the propagation of light waves existed. I his medium
was called the ether. In the seventeenth and eighteenth

centuries, the ether was imagined to be an inxisible fluid of very

low density. This fluid could penetrate all matter and fill all

space. It might somehow be associated uath the "effluvium"

(something that "flows out") that was imagined to explain

magnetic and electric forces. But light waves must be transverse

in order to explain polarization, and transverse waves usually

propagate only in a solid medium. A liquid or a gas cannot

transmit transverse waves for any significant distance for the

same reason that you cannot "twist" a liquid oi- a gas. So

nineteenth-century physicists assumed that the ether must be a

solid.

As stated in Chapter 12, the speed of propagation increases

uith the stiffness of the medium, and decreases with its density.

The speed of propagation of light is veiy high compared to that

of other kinds of waxes, such as sound. Therefore, the ether was

i^^ja^r^'^ ''
.'iS'^i****'--

i^imair

W?^
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thought to be a very stiff solid with a veiy low density. Yet it

seems absurd to say that a stiff, solid ether fills all space. The
planets move udthout slowing dovvai, so apparently they

encounter no resistance from a stiff ether. And, of course, you
feel no resistance when you move around in a space that

transmits light freely.

Without ether, the w^ave theoiy seemed improbable. But the

ether itself had absurd properties. Until early in this centuiy, this

problem remained unsolved, just as it had for Newton. You will

see hovv^, following Einstein's modification of the theoiy of light,

the problem was solved.

# 18. Why was it assumed thai there existed an "ether" that

transmitted light wavesl'

19. What remarkable property must the ether have if it is to

be the mechanical medium for the propagation of light?

In order to transmit transverse
waves, tfie medium must have some
tendency to return to its original

shape when it has been deformed
by a transverse pulse. As Thomas
Young remarked on one such ether

model, "It is at least very ingenious,

and may lead us to some satisfac-

toiy computations; but it is at-

tended by one circumstance which
is perfectly appalling in its conse-

quences. ... It is only to solids that

such a lateral resistance has ever

been attributed: so that ... it might
be inferred that the luminiferous
ether, peivading all space, and pen-
etrating almost all substances, is

not only high elastic, but absolutely

solid!!!"

Study
fluide
1. The Project Physics learning materials

particularly appropriate for Chapter 13 include:

Experiments

Refraction of a Light Beam
Young's lixperiment—the Wavelength of Light

Activities

Thin-Film Interference

Handkerchief Diffraction Grating

Photographic Diffraction Patterns

Poisson's Spot

Photographing Activities

Color

Polarized Light

Make an Ice Lens

In addition the following Project Physics materials

can be used with Unit 4 in general:

Film

People and Particles

2. A square card, 3 cm on a side, is held 10 cm
from a small penlight bulb, and its shadow faUs on a

wall 15 cm behind the cai'd. What is the size of the

shadow on the wall? (A diagram of the situation will

be useful.)

3. The row of photographs on page 399 shows
what happens to a beam of light that passes through

a narrow slit. The row of photographs on page 375

of Chapter 12 shows what happens to a train of

water wave that passes through a narrow opening.

Both sets of photographs illustrate single-slit

diffraction, but the photographs are not at all simUar

in appearance. Elxplain the difference in appearance

of the photographs and also how they are simUar.

4. An experiment to determine whether or not the

propagation of light is instantaneous is described by

Galileo as follows:

Let each of two persons take a light contained in

a lantern, or other receptacle, such that by the
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inteiposition of tho hand, the one can shut off or

admit the light to the \isioii of the other. \'e,\t let

them stand opposite each other at a distance of a

few cubits (1 cubit = about 0.5 ml and practice

until they acquire such skill in unc()\(;ring and

occulting their lights that the instant one sees the

light of his companion he will unco\er his own.

After a few trials the response will be so prompt
that without sensible error [svariol the unco\ering

of on(! light is immediately follow (hI by tlu;

uncovering of the other, so that as soon as one

exposes his light he will instantly see that of the

other. Ha\ing acquired skill at this short distance

let the two experimenters, equipped as before

take up positions separated by a distance of two

or three miles and let them perform the same
experiment at night, noting carefully whether the

exposures and occultations occur in the same
manner as at short distances; if they do, we may
safely conclude that the propagation of light is

instantaneous, but if time is required at a distance

of three miles which, considering the going of one

light and the cximing of the other, really amounts

to six, then the delay ought to be easily

observable. . . .

But later he states:

In fact, I have tried the experiment only at a short

distance, less than a mile, from which 1 ha\'e not

been able to ascertain with certainty whether the

appearance of the opposite light was instan-

taneous or not; but if not instantaneous, it is

extraordinarily rapid. . . .

(a) Why was (icilileo unsuccessful in the above

experiment?

(b) How would the experiment have to be altered to

be successful?

(c) What do you think is the longest time that light

might have taken in getting from one; observeu" to the

oth('r without the obseners detecting Xhv. delay? Use

this estimate to arri\'e at a lower limit for the speed

of light that is consistent with Galileo's description of

the result.

(d) Why do you suppose that the first proof of the

finite speed of light was based on ceh^stial

obsei-\ations rather than on t(!rr('sti-ial olisenations?

5. A coinenitMit unit for measuring astronomic£il

distances is the liiiht year, defined us the distance

that light travels in 1 vr. Calculate the number of

meters in a light year to two significant figures.

6. Calculate how much farther than expected

Jupiter must ha\e been from earth when Homer
predicted a 10-min delay for the eclipse of 1676.

7. Suppose a space vehicle had a specid 1 lOOO that

of light. How long woud it take to travel the 4.;} light

years from the earth to the closest known star other

than the sun, Proxima Centauri. Compare the speed

given for the space xehicle with the speed of

approximately 10 km sec maximum speed (relative to

the earth) that a space capsule reaches on an

earth-moon trip.

8. Newton supposed that the reflection of light off

shiny surfaces is due to "some feature of the body

which is evenly diffused o\'er its surface and by

which it acts upon th(! ray without contact." The
simplest model for such a feature w ould be a

repulsive force that acts only in a direction

perpendicular to the surface. In this problem you
are to show how this model, together with the laws

of mechanics, predicts that the angles of incidence

and reflection must be equal. Proceed as follows:

(a) IJraw a clear diagram showing the incident and

reflected rays. Also show the angles of incidence and

reflection lO, and fl.i. Sketch a coordinate system on

your diagram that has an ,v-a\is piiriUlel to tht;

surface and a y-axis perpendicular to the surface.

Note that the angles of incidence and reflection are

defined to l^e the angles between the in( ident and

reflected rays and the i-axis.

(b) Supposing that the incident light consists of

particles of mass m and spe(!d \ . what is the kinetic

energy of a single particle? Write math('niatical

expressions for the ^ and y components of the

momentum of an incident light partich*.

(c) If the repulsive force due to the reflecting surface

does no work on the particle and acts only

perjaendicular to the surface, which of the quantities

that you have described in part (b) is consented?

(d) Show algebraically that the speed u of the

reflect(Ki particle is the; same as the spcMid v of the

in( ident |)articlc.
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(e) Write mathematical expressions for the

components of the momentum of the reflected

particle.

(f) Show algebraically that 6^ and 6^ must be equal

angles.

9. In the diagram below, find the shortest path

from point A to any point on the surface M and then

to point B. Solve this by trial and error, perhaps by

experimenting with a short piece of string held at

one end by a tack at point A. (A possible path is

shown, but it is not necessarily the shortest one.)

Notice that the shortest distance between A, M, and B

is also the least-time path for a particle traveling at

a constant speed from A to M to B. What path would
light take from A to M to B? Can you make a

statement of the law of reflection in terms of this

principle instead of in terms of angles?

X
\

JA

10. what is the shortest mirror in which a 180-cm-

taU man can see himself entirely? (Assume that both

he and the mirror are vertical and that he places the

mirror in the most favorable position.) Does it

matter how far away he is from the mirror? Do your

answers to these questions depend on the distance

from his eyes to the top of his head?

11. Suppose the reflecting surfaces of every visible

object were somehou' altered so that they completely

absorbed any light falling on them; how would the

world then appear to you?

la. Objects are visible as a whole if their surfaces

reflect light, enabling your eyes to intercept cones of

reflected light diverging from each part of the

surface. The accompanying diagram shows such a

cone of light (represented by two diverging rays)

entering the eye from a book.

^
Draw clear, straight diagrams to show how a pair

of diverging rays can be used to help explain the

follouing phenomena.

sg
(a) The mirror image of an object appears to be just

as far behind the mirror as the object is in front of

the mirror.

(b) A pond appears shallower than it actually is.

(c) A coin is placed in an empty coffee mug so that

the coin cannot quite be seen. The coin becomes
visible if the mug is filled with water.

13. Because of atmospheric refraction, you see the

sun in the evening for some minutes after it is really

below the horizon and also for some minutes before

it is actually above the horizon in the morning.

(a) Draw a simple diagram to illusfrate how this

phenomenon occurs.

(b) What would sunset be like on a planet with a

very thick and dense (but still transparent)

atmosphere?

14. In a particle theoiy of light, refraction could be

explained by assuming that the particle is accelerated

by an attractive force as it passes from air or a

vacuvim toward a medium such as glass. Assume
that this accelerating force can act on the particle

only in a direction perpendicular to the surface. Use

vector diagrams to show that the speed of the

particle in the glass would have to be greater than in

air.

15. Plane parallel waves of single-wavelength light

illuminate the two narrow slits, resulting in an
interference pattern of alternate bright and dark

fringes being formed on the screen. The bright

fringes represent zones of constructive interference.

Therefore, they appear at a point such as P in the

diagram above only if the diffracted waves from the

two slits arrive at P in phase. The diffracted waves
will be in phase at point P only if the path difference
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is a whole number of \va\elengths (that is, only if

the path difference equals mk, where m = 0, 1, 2,

3, . . .).

(a) What path difference results in destructive

interference at the screen?

(b) The separation between two successixe bright

fringes depends on the waxelengths of the light used.

Would the separation be greater for red light or for

blue light?

(c) For a particular color of light, how would the

pattern change if the distance of the screen from the

slits is increased? (Hint: Make two diagrams.)

(d) What changes occur in the pattern if the slits are

mined closer together? (Hint: Make two diagrams.)

(e) What happens to the pattern if the slits

themselves are made narrower?

16. Use Young's estimate of the wavelengths of xiolet

(400 nm) and red (700 nm) light to cidculate their

frequencies.

17. How far apart would the slits in Young's

experiment have been if he had noticed the first

node of the interference pattern 5 cm from the

center line on a screen 15 m away while using green

light?

18. The layers of atoms in a ciystal act as slits in

diffracting beams of X rays. How far from the center

line of a viewing screen 1 m from the crv'stid would
you expect to find the first node using X rays of 10

'"

m wavelength if the crystalline layers are 10 " m
apart?

19. Hecalling diffraction and interference

phenomena from Chapter 12, show how the wa\e

theory of light can explain the bright spot found in

the center of the shadow of a disk illuminated by
a point source.

•'^

|0'S<

ao. It is now a familiar observation that clothing of

certain colors app(;ars different in artificial light and

in sunlight. Explain why.

21. /Vnother poem by James Thomson (1728):

Meantime, refracted from yon eastern cloud,

Bestriding earth, the grand ethereal bow
Shoots up immense; and every hue unfold,

In fair proportion running from the red

To where the violet fades into the sky.

Here, awe-ful i\evv1on, the dissolving clouds

Form, fronting on the sun, thy showeiy prism;

And to the sage-instructed eye unfold

The various twine of light , by thee disclosed

From the white mingling blaze.

How do you think it compares with the poem on p.

(a) as poetry?

(b) as physics?

22. Green light has a wavelength of approximately 5

X 10 m (500 nm). What frequency corresponds to

this wavelength? Compare this frequency to the

carrier frequency of the radio waves broadcast by a

radio station you listen to.

23. One way to achieve privacv in apartments facing

each other across a narrow courtviird while still

allowing residents to enjoy the view of the courtyard

and the sky above the courtyard is to use polarizing

sheets placed over the windows. Explain how the

sheets must be oriented for maximum effectiveness.

24. To prevent car drivcM's from b(;ing blinded by the

lights of approaching autos, polarizing sheets could

be placed over the headlights and windshields of

every car. Ex-ijlain why these sheets would have to be

oriented the sanij; w;iy on eveiy vehicle and must

hav(; th(Mr polarizing axis at 4.'> to the; v('rliial.
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Electric and Magnetic Fieids

14.1 Introduction

14.2 The curious properties of lodestone and amber:
Gilbert's De Magnete

14.3 Electric charges and electric forces

14.4 Forces and fields

14.5 The smallest charg^e

14.6 The law of conservation of electric charge
14.7 Electric currents

14.8 Electric potential difference

14.9 Electric potential difference and current
14.10 Electric potential difference and pouter

14.11 Currents act on magnets
14.13 Currents act on currents

14.13 Magnetic fields and moving charges

14r.l.
I

Introduction

The subject "electricity and magnetism" makes up a large part of

modern physics and has important connections with almost all

other areas of physics, chemistry, and engineering. It would be

impossible to cover this subject fully in the time available in an
introductory course. This chapter will consider only a few main
topics, which will serve as a foundation for later chapters. Major
applications of the infomiation in this chapter will appear later;

the dev^elopment of electrical technolog)' (Chapter 15), the study

of the nature of light and electromagnetic waves (Chapter 16),

and the study of properties of atomic and subatomic particles

(Unit 5).
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An inside view of the heaw ion

linear accelerator at Berkeley,

California. In this device electric

fields accelerate charged atoms to

high energies.

This chapter wdll cover electric charges and the forces between
them. The discussion will be brief, because the best way to leam
about this subject is not by reading but by doing experiments

in the laboratory (see Experiment 4-3 in the Handbook). Next, you
will see how the idea of a "field" simplifies the description of

electric and magnetic effects. Then, you will study electric

currents, which are made up of moving charges. By combining

the concept of field with the idea of potential energy, quantitative

relations betw^een current, voltage, and power can be established.

These relations will be needed for the practical applications

discussed in Chapter 15.

Finally, at the end of this chapter, you will come to the

relation between electricity and magnetism. This relation has

very important consequences for both technology and basic

physical theory. You will begin by studying a simple physical

phenomenon: the interaction between moving charges and
magnetic fields.

1.-4.2
I

The curious properties of
lodestone and amber:
Gilbert's Ue" Ma^nete

Two natural substances, amber and lodestone, have aroused

interest since ancient times. Amber is sap that long ago oozed

from certain softwood trees, such as pine. Over many centuries,

it hardened into a semitransparent solid ranging in color from

yellow to brown. It is a handsome or-namental stone when
polished, and it sometimes contains the remains of insects that

were caught in the sticky sap. Ancient Greeks recognized a

strange proper'tv' of amber. If njbbed vigor'ously against cloth, it

can attract nearby objects such as bits of straw or grain seeds.

Lodestone is a mineral that also has unusual properties. It

attr'acts iron. Also, when suspended or floated, a piece of

lodestone always turns to one particular position, a north-south

direction. The first known v\Titten description of the navigational

use of lodestone as a compass in Western countries dates ft om
the late twelfth century, but its properties were known even

earlier in China. Today, lodestone would be called magnetized

iron ore.

The histories of lodestone and amber are the eaiiy histories of

magnetism and electricity. The modem developments in these

subject areas began in 1600 with the publication in London of

William Gilbert's book De Magnete. Gilbert (1544-1603) was an

influential physician, who served as Queen Elizabeth's chief

physician. During the last 20 year's of his life, he studied what

was already known of lodestone and amber. Gilbert made his

own experiments to check the r^epor^ts of other writcis and
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summarized his conclusion in De Magnete. The book is a classic

in scientific literature, primarily because it was a thorough and
largely successful attempt to test complex speculation by

detailed experiment.

Gilbert's first task in his book was to review and criticize what
had previously been written about lodestone. He discussed

various theories about the cause of magnetic attraction. One of Lucretius was one of the early writ-

the most popular theories was suggested by the Roman author ers on atomic theory; see the Pro-

Lucretius: '°g"^ to Unit 5.

Lucretius . . . deems the attraction to be due to this, that as

there is from all things a flowing out ["efflux " or "effluvium"] of

minutest bodies, so there is from iron an efflux of atoms into

the space between the iron and the lodestone—a space

emptied of air by the lodestone s atoms [seeds]; and when these

begin to return to the lodestone, the iron follows, the

corpuscles being entangled with each other.

Gilbert himself did not accept the effluvium theoiy as an

explanation for magnetic attraction, although he thought it might

apply to electrical attraction.

When it was discovered that lodestone and magnetized

needles or iron bars tend to turn in a north-south direction,

many authors offered explanations. But, says Gilbert,

. . . they wasted oil and labor, because, not being practical in

the research of objects of nature, being acquainted only with

books, being led astray by certain erroneous physical systems,

and having made no magnetical experiments, they constructed

certain explanations on a basis of mere opinions, and old-

womanishly dreamt the things that were not. Marcilius Ficinus

chews the cud of ancient opinions, and to give the reason for

the magnetic direction seeks its cause in the constellation Ursa

. . . Paracelsus declares that there are stars which, gifted with

the lodestone's power, do attract to themselves iron . . . All

these philosophers . . . reckoning among the causes of the

direction of the magnet, a region of the sky, celestial poles, stars

. . . mountains, cliffs, vacant space, atoms, attractional . . . regions

beyond the heavens, and other like unproved paradoxes, are

world-wide astray from the truth and ai e blindly wandering.

Gilbert himself proposed the real cause of the lining-up of a

suspended magnetic needle or lodestone: The earth itself is a

lodestone. Gilbert also performed a clever experiment to show
that his hypothesis was a likely one. Using a large piece of

natural lodestone in the shape of a sphere, he showed that a

small magnetized needle placed on the surface of the lodestone

acts just as a compass needle does at different places on the

earth's surface. (In fact, Gilbert called his lodestone the terrella,

or "little earth.") If the directions along which the needle lines

up are marked vvdth chalk on the lodestone, they form meridian
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The immensely important idoii of

"field" was introdut-ed into physics

by Michael Faraday early in the

nineteenth century, and developed

further by Kelvin and Maxwell (see

Sees. 14.4 and 1B.2I.

"Electric" comes from the Greek
word electron, meaning "amber."

circles. Like the lines of equal longitude on a globe of the eaith,

these circles converge at two opposite ends that may be (uilled

"poles." At the poles, the needle points perpendicular to the

surface of the lodestone. Halfway between, along the eciuator,"

the needle lies along the surface. Small bits of iron wire placed

on the spherical lodestone also line up in these same directions.

Discussion of the actions of magnets now generally involves

the idea that magnets set up "fields" all around themselves. The
field can act on other objects, near or distant. Gilbert's

description of the force exerted on the needle by his spherical

lodestone was a step toward the modern field concept:

The terrella's force extends in all directions. . . . But whenever

iron or other magnetic body of suitable size happens within its

sphei-e of influence it is attracted; yet the nearei- it is to the

lodestone the greater the force with which it is borne towaicl it.

Gilbert also included a discussion of electricitv' in his book. He
introduced the word electric as the general term for "bodies that

attract in the same way as amber." Gilbert showed that electric

and magnetic forces are different. For example, a lodestone

always attracts iron or other magnetic bodies. An electric object

exerts its attraction only when it has been recently tubbed. On
the other hand, an electric object can attract small pieces of

many different substances. But magnetic forces act only between

a few types of substances. Objects are attracted to a rubbed

electric object along lines directed toward one center region. But

magnets always have two regions (polesi toward which other

magnets are attracted.

- Gilbert went beyond summarizing the known facts of

electricity and magnets. He suggested new research problems

that were pursued by others for many years. For example, he

proposed that while the poles of two lodestones might either

attract oi' repel each other, electric bodies could never exeit

repelling forces. However, in 1646, Sir Thomas Browne published

the first account of electi ic repulsion. To systematize such

observations a new concept, electric charge, was introduced. In

the next section, you wdll see how this concept can be used to

describe the forces between electrically charged bodies.

1. List separately the "curious properties of lodestone" and

those of amber. Which properties are now called "electric

effects" and which are called "magnetic effects":'

2. How did Gilbert demoi}strate that the earth hrhaws like a

spherical lodestone?

3. How does the attraction of objects by amber differ fron} the

attraction by lodestone?
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1.4,3
I

Electric charges and electric forces

As Gilbert strongly argued, the facts of electrostatics must be

learned in the laboratoiy rather than by just reading about them.

This section, therefore, is only a brief outline to prepare you for

your own experience with the phenomena.
The behavdor of amber was discussed earlier. When rubbed, it

mysteriously acquires the property of picking up small bits of

grain, cork, paper, hair, etc. To some extent, all materials show
this effect w^hen rubbed, including rods made of glass or hard

rubber, or strips of plastic. There are two other important basic

observations: 11) When two rods of the same material are rubbed

with something made of another material, the rods repel each

other. Examples that w^ere long ago found to work especially well

are two glass rods rubbed with silk cloth, or tw^o hard rubber

rods rubbed with fur. (2) When two rods of different material are

rubbed I for example, a glass rod rubbed with silk, and a njbber

rod rubbed with fur, the two rods may attract each other.

These and thousands of similar experimentally obseivable facts

can be summarized in a systematic way by adopting a very

simple model. While describing a model for electrostatic

attraction and repulsion, remember that this model is not an

experimental fact which you can obsene separately. It is, rather,

a set of invented ideas which help describe and summarize
observations. It is easy to forget this important difference

between experimentally observable facts and invented

explanations. Both are needed, but they are not the same thing!

The model adopted consists of the concept of "charge" and
three rules. An object that is rubbed and given the property of

attracting small bits of matter is said to "be electrically charged"

or to "have an electric charge. ' Also, imagine that there are two

kinds of charge. All objects showing electrical behavior are

imagined to have either one or the other of the two kinds of

charge. The three rules are:

1. There are only tw^o kinds of electric charge.

2. Tw^o objects charged alike (that is, having the same kind of

charge) repel each other.

3. Two objects charged oppositely attract each other.

When tw^o different uncharged materials are rubbed together

(for example, the glass rod and the silk cloth), they acquire

opposite kinds of charge. Benjamin Franklin, who did many
experiments with electric charges, proposed a mechanical model
for such phenomena. In his model, charging an object

electrically involved the transfer of an "electric fluid ' that was
present in all matter. When two objects were njbbed together,

some electric fluid from one passed into the other. One body
then had an extra amount of fluid and the other a lack of fluid.

An excess of fluid produced one kind of electric charge, which

Benjamin Franklin I17U6-179UJ,

American statesman, inventor, sci-

entist, and writer, was greatlv inter-

ested in the phenomena of electric-

ity; his famous kite esperiment and
invention of the lightning rod

gained him wide recognition.

Franklin is shown here observing

the behavior of a bell whose clap-

per is connected to a lightning rod.

CHAPTER 14 / ELECTRIC AND IVIAGMETIC FIELDS 425



Franklin called "positive." A lack ot the same fluid pi cuiuced the

other kind of electric charge, which he called 'negative.

"

Previously, some theorists had proposed "two-fluid" models
inx'oK'ing both a "positixe fluid" antl a "negatixe fluid." \ormal
matter contained equal amounts of these two fluids, so that they

cancelled out each other's effects. When two different objects

were rubljcd together-, a transfer- of fluids o(-curr-ed. One object

received an excess of positive fluid, and the other- received an

excess of negative fluid.

there was some dispute between advocates of one-fluid and
two-fluid models, but both sides agreed to speak of the two kinds

of electrical charges as "
-f-

" or " — ." It was not until the late

1890 s that experimental exidence gave conxincing support to any

model for "electric charge." There were, as it turned out,

elements of tr\ith in both one-fluid and two-fluid models. The
story will be told in some detail in Unit 3. For- the present, we
can say that there are in fact two different material 'fluids." But

the "negative fluid" moxes around much more easily than the

"positive fluid. " So mcjst of the electric phenomena discussed so

far actually involve an excess or lack of the mobile "negatix'e

fluid, ' or, in moder'n terms, an excess or lack of electrons.

Franklin thought of the electric fluid as consisting of tiny

particles, and that is the present view, too. Consequently, the

word 'charge" is often used in the plural. For- example, we
usually say "electric char^ges transfer' from one body to another."

What is amazing in electricity, and indeed in other parts of

physics, is that so few concepts are needed to deal xxith so many
diffei^ent observations. For example, a thir-d or fbuith kind of

charge is not needed in addition to "
-I-

' and " — ." That is to say,

no observation of charged objects recjuires some additional type

of charge that might haxe to be called " -^ " or " X .

"

Even the behavior of an uncharged body can be understood in

temis of + and — charges. Any piece of matter- lar^ge enough to

be visible can be considered to contain a large amount of electric

charge, both positive and negative. If the positive charge is equal

to the negatix'e charge, the piece of matter xvill appear- to have

zero charge, ncj c;harge at all. Thc^ effects of the positixe and

negative charges simply cancel each other- xvhen they are added

together or- ar-e acting together-, iliiis is one adxantage of calling
Our experience with Newton's law ^j^^ ^„ ,^.,^^j^ ^^j. ^,^ .^.^,^ .^,^^j „,,g.^i,,,, ,.,the,- than, sav,
of gi'avitation is aiiocting our ques-

, , ,

'

, . ,, ,
'

lion. Wc arc assimiing tliat the ^ and y.) The electnc charge on an object usually means the

force depentl.s only on a single slight excess (or net) of either positive or- negatixe charge that

property and on distance. happens to be on that object.

The electric force law. What is the "law of force" betvxeen

electric charges? In other- words, how does the i'oicv. depend on

the iimount of chai'ge and on the distance between the charged

()bj(M;tS?
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The first evidence of the nature of such a force law was
obtained in an indirect way. About 1775, Benjamin Franklin

noted that a small cork hanging near the outside of an

electrically charged metal can was strongly attracted. But when
he lowered the cork by a thread into the can, he found that no

force was experienced by the cork no matter what its position

inside the can.

Franklin did not understand why the walls of the can did not

attract the cork when it was inside, but did when it was outside.

He asked his friend Joseph Priestley to repeat the experiment.

Priestley verified Franklin's results and went on to reach a

brilliant conclusion from them. He remembered from Newton's

Principia that gravitational forces behave in a similar way. Inside

a hollow planet, the net gravitational force on an object (the sum
of all the forces exerted by all parts of the planet) would be

exactly zero. This result also follows mathematically from the law

that the gravitational force between any two indixddual pieces of

matter is inversely propoilional to the square of the distance

between them. Priestley therefore proposed that forces exerted

by charges vary inversely as the squai'e of the distance, just as do
forces exerted by massive bodies. (Zero force inside a hollow

conductor is discussed on page 431.) The force exerted between

bodies ovvdng to the fact that they are charged is called 'electric
"

force, just as the force between uncharged bodies is called

"gravitational" force. (Remember that all forces are knouii by

their mechanical effects, by the push or acceleration they cause

on material objects!)

Priestley's proposal was based on reasoning by analogy, that is,

by reasoning from a parallel, well-demonstrated case. Such

reasoning alone could not prove that electrical forces are

inversely proportional to the square of the distance between

charges. But it strongly encouraged other physicists to test

Priestley's hypothesis by experiment.

The French physicist Charles Coulomb provided direct

experimental evidence for the inverse-square law for electric

charges suggested by Priestley. Coulomb used a torsion balance

which he had invented. A diagram of the balance appeals on the

following page. A horizontal, balanced insulating rod is

suspended by a thin silver wire. The wire twists when a force is

exerted on the end of the rod, and the twisting effect can be

used as a measure of the force.

Coulomb attached a charged body, A, to one end of the rod

and placed another charged body, B, near it. The electrical force

exerted on A by B caused the wire to twist. By measuring the

twisting effect for different separations between the centers of

spheres A and B, Coulomb found that the force between spheres

varied in proportion to 1/R', where R represents the distance

between the centers:

Joseph Priestley (1773-1804), a Llni-

tarian minister and phvsiciil scien-

tist, was persecuted in England for

his radical political ideas. One of

his books was burned, and a mob
looted his house because of his

s\anpathv with the French Hevolu-

tion. He moved to America, the

home of Benjamin Franklin, who
had stimulated I'riestley's interest

in science. Primarily known for his

identification of oxygen as a sepa-

rate element that is involved in

combustion and respiration, he iilso

experimented with electricity. In

addition, I^riestley can claim to be

the developer of carbonated drinks

(soda-pop).

Charles Auguslin Coulomb
(1738-18U6) was born into a family

of high social position and grew
up in an age of political unrest. He
studied science and mathematics
and began his career as a military

engineer. While studying macl}ines,

Coulomb invented his torsion bal-

ance, with which he carried out

intensive investigations on the me-
chanical forces caused by electrical

charges. These investigations were
analogous to the work of Cavendish
on gravitation (see L'nit 111.
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— Suspension head

Coulomb s torsion balance.

1

el ^.

Thus, he directly confirmed Priestley's suggestion. The electric

force of repulsion for like charges, or attraction for unlike

charges, varies inversely as the square of the distance between

charges.

Coulomb also demonstrated how the magnitude of the electric

force depends on the magnitudes of the charges. There was not

yet any accepted method for measuring quantitatively the

amount of charge on an object. Iln fact, nothing said so far

would suggest how to measure the magnitude of the charge on a

body.) Yet Coulomb used a clever technique based on symmetry
to compare the effects of different amounts of charge. He first

showed that if a charged metal sphere touches an uncharged

sphere of the same size, the second sphere becomes charged

also. You might say that, at the moment of contact between the

objects, some of the charge from the first "flows " or is

"conducted " to the second. Moreover, after contact has been

made, the two spheres are found to share the original charge

equally. (This is demonstrated by the obseivable fact that they

exert equal forces on some third charged body.) Using this

principle, Coulomb started with a given amount of charge on one

sphere. He then shared this charge by contact among several

other identical but uncharged spheres. Thus, he could produce

charges of one-half, one-quarter, one-eighth, etc., of the original

amount. In this way. Coulomb varied the charges on the two

original test spheres independently and then measured the

change in force between them. He found that, for example, when
the charges on the t\vo spheres are both reduced by one-half,

the force between the spheres is reduced to one-quarter its

previous value. In general, he found that the magnitude of the

electric force is proportional to the product of the chaiges. The
symbols q^ and q^ can be used for the net charge on bodies A
and B. The magnitude F^^ of the electric force that each exerts on

the other is proportional to q^^ x q^, and may be written as F^^

Coulomb summarized his results in a single equation that

describes the electric forces two small charged sphei-es A and B

exert on each other:

el ^2

R represents the distance between the centers, and k is a

constant whose value depends on the units of charge and length

that are used. This form of the law of force between two electric

charges is now called Coulomb's law. The xalue of k is discussed

below. For the moment, note one striking fact about Coulomb's

law: It has exactlv the same form as Nev\1on's law of uni\ei-sal
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gravitation! Yet these two great laws arise from completely

different sets of observations and apply to completely different

kinds of phenomena. Why they should match so exactly is to this

day a fascinating puzzle.

The unit of charge. Coulomb's law can be used to define a unit

of charge. For example, assign k a value of exactly 1. Then define

a unit charge so that two unit charges separated by a unit

distance exert a unit force on each other. There actually is a set

of units based on this choice. However, another system of

electrical units, the "MKSA" system, is more convenient to use. In

this system, the unit of charge is derived not ftom electrostatics,

but fi'om the unit of current—the ampere (A). (This will be

discussed in Sec. 14.12.) The unit of charge is called the coulomb

(C). It is defined as the amount of charge that flows past a point

in a wire in 1 sec when the current is equal to 1 A. In Sec. 14.6,

you will see that 1 C corresponds to the charge of 1/1.6 X lo''^

electrons.

The ampere (A), or "amp," is a familiar unit frequently used to

describe the current in electrical appliances. The effective

amount of current in a common 100-watt light bulb is

approximately 1 A. Therefore, the amount of charge that goes

through the bulb in 1 sec is about 1 C. It might seem that a

coulomb is a fairly small amount of charge. However, 1 C of net

charge collected in one place is unmanageably large! In the light

bulb, 1 C of negative charge moves through the filament each

second. How^ever, these negative charges are passing through a

more or less stationary arrangement of positive charges in the

filament. Thus, the net charge on the filament is zero.

Taking the coulomb (1 C) as the unit of charge, you can find

the constant k in Coulomb's law experimentally. Simply measure

the force between known charges separated by a known
distance. The value of k turns out to equal about 9 billion

newton-meters squared per coulomb squared (9 x 10^ N-m"/C").

So two objects, each wdth a net charge of 1 C, separated by a

distance of 1 m, w^ould exert forces on each other of 9 billion N.

This force is roughly the same as a weight of 1 million tons! We
never obsei^^e such large forces because we cannot actually

collect so much net charge in one place. Nor can we exert

enough force to bring tw^o such charges so close together. The
mutual repulsion of like charges is so strong that it is difficult to

keep a charge of more than a thousandth of a coulomb on an

object of ordinaiy size. If you rub a pocket comb on your sleeve

enough to produce a spark when the comb is brought near a

conductor (such as a sink faucet), the net charge on the comb
will be far less than 1 millionth of a coulomb. Lightning

discharges usually take place when a cloud has accumulated a

net charge of a few hundred coulombs distributed over its veiy

large volume.

The Project Physics documentary
film "People and Particles" shows
an experiment designed to dem-
onstrate whether Coulomb's law
applies to charges at distances as

small as 10 — '' cm. (It does.)

Meter-Kilogram-Second-Ampere

A stroke of lightning is, on the av-

erage, about 40,000 amperes and
transfers about 50 coulombs of
charge between the cloud and the

ground.

SG 3
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Electrostatic induction. As noted, and as you have probably

observed, an electrically charged object can often attract small

pieces of paper. But the paper itself has no net charge; it exerts

no force on other pieces of paper. At first sight then, its

attraction to the charged object might seem to contradict

Coulomb's law. After all, the force ought to be zero if eithei- q^ or

Qg is zero. To explain the attraction, recall that uncharged objects

contain equal amounts of positive and negative electric charges.

When a charged body is brought near a neutral object, it may
i-eairange the positions of some of the charges in the neutral

object. The negatively charged comb does this when held near a

piece of paper. Some of the positive charges in the paper shift

toward the side of the paper nearest the comb, and a

corresponding amount of negative charge shifts toward the other

side. The paper still has no iwt electric charge. But some of the

positive charges are slightly closer to the comb than the

corresponding negative charges are. So the attraction to the

comb is greater than the repulsion. I Remember that the force

gets weaker with the square of the distance, according to

Coulomb's law. The force would be only one fourth as large if

the distance were twice as large.) In short, there is a net

attraction of the charged body for the neutral object. This

explains the old observation of the effect iTibbed amber had on

bits of grain and the like.

A charged body induces a shift of charge in oi- on the neai'by

neutral body. Thus, the rearrangement of electric charges inside

or on the surface of a neutral body caused b\' the influence of

a nearby charged object is called electrostatic induction. In

Chapter 16, you will see how the theory of electrostatic induction

played an important role in the development of the theorv of

light.

4. In the following sentences, underline the words or phrases

that do not simply describe observable facts, but that have

been specifically "invented" to help understand such

obser\ations.

(a) Like charges repel each other. A body that has a net

positive charge repels any body that also has a net positive

charge; that is, two glass rods that have both been rubbed will

tend to repel each other. A body that has a net negative charge

repels any other body that also has a net negative charge.

(b) Unlike charges attract each other. A body that has a net

positive charge attracts any body that has a net negative

charge and vice versa.

5. What e}iperimental fact led Priestley to propose that

electrical forces and gravitational forces change with distance

in a similar way?
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Consider any point charge P inside an even, spherical

distribution of charges. For any small patch of charges
with total charge Q, on the sphere there is a corresponding
patch on the other side of P with total charge Oj. But the

areas of the patches are directly proportional to the

squares of the distances from P. Therefore, the total

charges 0, and Q^ are also directly proportional to the

squares of the distances from P. The electnc field due to

each patch of charge is proportional to the area of the

patch, and inversely proportional to the square of the dis-

tance from P. So the distance and area factors cancel.

The forces on P due to the two patches at P are exactly

equal in magnitude. But the forces are also in opposite

directions. So the net force on P is zero owing to 0, and
Og. Since this is true for all pairs of charge patches, the

net electric field at P is zero.

A section of shielded cable

Close llp\
Electric Shielding

o;

P/^

In general, charges on a closed conducting surface

arrange themselves so that the electric force inside

is zero just as they do on a sphere as shown in the

diagrams above. Even if the conductor is placed in

an electric field, the surface charges will rearrange

themselves so as to keep the net force zero every-

where inside. Thus, the region inside any closed

conductor is "shielded" from any external electric

field. This is a very important practical principle.

Whenever stray electric fields might disturb the

operation of some electric equipment, the equip-

ment can be enclosed by a shell of conducting ma-

terial. Some uses of electric shielding can be seen

in the photographs of the back of a TV receiver,

below.

Closeup of a tube in the tuning section of the TV
set on the left. Surrounding the tube is a collapsible

metal shield. Partly shielded tubes can be seen
elsewhere in that photo.
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6. What two facts about the force between electric charges did

Coulomb demonstrate?

SG 4 7. If the distance between two charged objects is doubled, how
is the electrical force between them affected? How is the force

affected if the charge on one of them is cut to one-quarter its

SG 5 former size?

8. Are the coulomb and ampere both units of charge?

9. State the force law, tell the direction of the force between
two charged particles, and give the value of k. Verijy that a

force of 9,000,000,000 N (9 X lO"" N) e?cists between two

particles with charges of 1 C each if the particles are 1 m
apart.

1.4.4
I

Forces and fields

Gilbert described the action of the lodestone by saying it iiad a

"sphere of influence" surrounding it. He meant that any other

magnetic body coming inside this sphere would be attracted. In

addition, the strength of the attractive force would be greater at

places closer to the lodestone. In modern language, you would
say that the lodestone is surrounded by a magnetic field.

The word "field" is used in many ways. Here, some familiar

kinds of fields will be discussed, and then the idea of physical

fields as used in science will be gradually developed. This

exercise should remind you that most terms in physics are really

adaptations, with important changes, of commonly used words.

Velocity, acceleration, force, energy, and work are examples you
have already encountered in this course.

One ordinary use of the concept of field is illustrated by the

"playing field" in various sports. The football field, for example, is

a place where teams compete according to i\i\es that confine the

important action to the area of the field. "Field" in this case

means a region of interaction.

In international politics, people speak of "spheres" or "fields"

of influence. A field of political influence is also a region of

interaction. But unlike a playing field, it has no sharp boundaiy

line. A countiy usually has greater influence on some countries

and less influence on others. So in the political sense, "field"

refers also to an amount of influence, more in some places and

less in others. Moreover, the field has a source, that is, the

country that exei-ts the influence.

There are similarities here to the concept of field as used in

physics. But there is also an important difference. lo define a

field in physics, it must be possible to assign a numerical value

of field strength to every point in the field. This part of the field

idea will become clearer- if you consider- some situations that are

more directly related to the study of physics. First think about
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these situations in everyday language, then in terms of physics.

Description of Your

Experience
"The brightness of light is

increasing."

"The sound gets louder and

then softer."

"The sidewalk is cooler here

than in the sunshine."

Situation

(a) You are walking along the

sidewalk toward a street lamp

at night.

(b) You stand on the

sidewalk as an automobile

moves down the street udth its

horn blaring.

(c) On a hot summer day,

you walk barefoot out of the

sunshine and into the shade

on the sidew^alk.

You can also describe these experiences in terms of fields:

(a) The street lamp is surrounded by a field of illumination.

The closer you mov^e to the lamp, the stronger is the field of

illumination as registered on your eye or on a light meter you
might be carrying. For every point in the space around the street

lamp, you could assign a number that represents the strength

of the field of illumination at that place.

(b) The automobile horn is surrounded by a sound field. You
are standing still in your frame of reference (the sidewalk). A
pattern of field values goes past you with the same speed as the

car. You can think of the sound field as steady but moving with

the horn. At any instant, you could assign a number to each

point in the field to represent the intensity of sound. At first the

sound is faintly heard as the weakest part of the field reaches

you. Then the more intense parts of the field go by, and the

sound seems louder. Finally, the loudness diminishes as the

sound field and its source (the horn) move avv^ay.

(c) In this case, you are u^alking in a temperature field. This

field is intense where the sidewalk is in the sunshine and weaker

where it is in the shade. Again, you could assign a number to

each point in the field to represent the temperature at that point.

Notice that the first two fields are each produced by a single

source. In (a) the source is a stationaiy street lamp; in (b) it is a

moving horn. In both cases the field strength gradually increases

as your distance fiom the source decreases. But in the third case

(c) the field is produced by a complicated combination of

influences: the sun, clouds in the sky, the shadow cast by nearby

buildings, and other factors. Yet the description of the field itself

is just as simple as that of a field produced by a single source.

One numerical value is associated with each point in the field.

So far, all examples have been simple scalar fields. No
direction has been involved in the value of the field at each

point. On the next page are maps of two fields for the layer of air

Note that meteorologists have a

convention for representing vec-

tors different from the one we have
been using. What are the advan-
tages and disadvantages of each?
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Close UpI
Pressure ond Velocity Fields
These maps, adapted from those of the U.S. Weather Bureau, depict two

fields, air pressure at the earth's surface and high-altitude wind velocity, for

two successive days. Locations at which the pressure is the same are

connected by lines. The set of such pressure "contours" represents the

overall field pattern. The wind velocity at a location is indicated by a line

(showing direction) and feather lines—one for every 10 mph. (The wind

velocity over the tip of Florida, for example, is a little to the east of due

north and is approximately 30 mph.)

Air pressure at the earth's surface High-altitude wind velocity

Jan. 10

' \ \



over North America on two consecutive days. There is a very

important difference between the field mapped at the left and

that mapped at the right. The air pressure field (on the left) is a

scalar field; the wind velocity field (on the right) is a vector field.

For each point in the pressure field, a single number (a scalar

quantity) gives the value of the field at that point. But for each

point in the wind velocity field, the value of the field is given by

both a numerical value (magnitude) and a direction, that is, by

a vector.

These field maps can help in more or less accurately

predicting what conditions might prevail in the field on the next

day. Also, by superimposing the maps for pressure and wind
velocity, you can discover how these two kinds of fields are

related to each other.

Physicists actually use the term "field" in three different

senses: (1) the value of the field at a point in space; (2) the set or

collection of all values eveiywhere in the space where that field

exists; (3) the region of space in which the field has values other

than zero. In reading the rest of this chapter, you will not find

it difficult to decide which meaning applies each time the temi

is used.

SPECIMEN
STATION MODEL
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Itfl I
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tenfhs of milhbati I

Tim« precipitation
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Weather in past 6
hou

Key for a U.S. Weather Bureau
map.

The gravitational force field. Before returning to electricity and
magnetism, let us illustrate a bit further the idea of a field. A
good example is the gravitational force field of the earth. Recall

that the force F^,^^ exerted by the earth on any object above its

surface acts in a direction toward the center of the earth. So the

field of force of gravitational attraction is a vector field, which
can be represented by arrows pointing toward the center of the

earth. In the illustration in the margin, a few such arrows are

shown, some near, some far from the earth.

The strength, or numerical magnitude, of the earth's

gravitational force field at any chosen point depends on the

distance of the point fiom the center of the earth. This follows

fiom Neuron's theoiy, which states that the magnitude of the

gravitational attraction is inversely proportioned to the square of

the distance B:

F„ = G X
grav

Mm

where M is the mass of the earth, m is the mass of the test body,

/i is the distance between the centers of earth and the test body,

and G is the universal gravitational constant.

In this equation, F also depends on the mass of the test

body. It would be more convenient to define a field that depends
only on the properties of the source, w^hatever the mass of the

test body. Then you could think of the field as existing in space

and having a definite magnitude and direction at every point.

p
'^J'.^
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The mass of the test body would not niatt(;r. In fact, it would not

matter whether there were any test body present at all. As it

happens, such a field is easy to define. By slightly rearranging

the equation for Newton's law of gravitation, you can write:

^.ra. = rn
GM

Then, define the gravitational field strength g around a spherical

body of mass M as heuing a magnitude GM/R^ and a direction

the same as the direction of F„,„, so that:

SG 4

Recall that F., is called an "electric"

force because it is caused by the

presence of charges. But. as with

all forces , we know it exists and can
measure it only by its mechanical
effects on bodies.

Q

J^

where g = GM/PT. Thus, note that g at a point in space is

determined by the source mass M and the distance R from the

source, and does not depend on the mass of any test object.

The total or net gravitational force at a point in space is

usually determined by more than one source. For example, the

moon is acted on by the sun as well as by the earth and to a

smiiller extent by the other planets. In order to define the field

resulting from any configuration of massive bodies, take F^^^^, to

be the net gravitational force due to all sources. Then define g in

such a way that you can still write the simple relationship F
= nng) that is, define g by the equation:

m

Thus, the gravitational field strength at any point is the ratio of

the net gravitational force F^,^^ acting on a test body at that point

to the mass m of the test body.

Electric fields. The strength of any force field can be defined in

a similar way. According to Coulomb's law, the electric force

exerted by one relatively small charged body on another depends

on the product of the charges of the two bodies. Consider a

charge q placed at any point in the electric field set up by a

charge Q. Coulomb's law, describing the force F^^ experienced by

q, can be written as:

F.., = k-
R~

el W^.

As in the discussion of the gravitational field, the expression for

force here is divided into two parts. One part, kOjR', depends

only on the charge Q of the source and distance R from it. This

part can be called "the electric field strength due to Q." The
second part, q, is a property of the body being acted on. Thus,

the electric field str(>ngth E due to charge Q is defined as having
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magnitude kQ/R^ and the same direction as F^,. The electric force

is then the product of the test charge and the electric field

strength:

F,
F = q£ and £ = ^^

r

The equation defines E for an electric force field. Thus, the

electric field strength £ at a point in space is the ratio of the net

electric force F^, acting on a test charge at that point to the

magnitude q of the test charge. This definition applies whether

the electric field results from a single point charge or from a

complicated distribution of charges. The same kind of

superjDosition principle holds which you have already seen many
times. Fields set up by many sources supeipose, forming a single

net field. The vector specifying the magnitude of the net field at

any point is simply the vector sum of the values of the fields due

to each individual source.

So far, u^e have passed over a complication not encountered in

dealing wdth gravitation. There are two kinds of electric charge,

positive ( + ) and negative (
—

) . The forces they experience when
placed in the same electric field are opposite in direction. By

agreement, scientists define the direction of the vector £ as the

direction of the force exerted by the field on a positive test

charge. Given the direction and magnitude of the field vector £ at

a point, then by definition the force vector F^, acting on a charge

q is Fp, = qE. A positive charge, say +0.00001 C, placed at this

point will experience a force F^, in the same direction as £ at

that point. A negative charge, say —0.00001 C, wdll experience a

force of the same magnitude, but in the opposite direction.

Changing the sign of q from + to — automatically changes the

direction of F^^ to the opposite direction.

SG 7

SG 8

SG 9

10. What is the difference between a scalar field and a vector

field? Give examples of each.

11. Describe how one can find, by experiment, the magnitude

and the directions of:

(a) the gravitational field at a certain point in space.

(b) the electric field at a certain point in space.

12. Why would the field strengths g and E for the test bodies

be unchanged ifm and q were doubled?

13. A negatively charged test body is placed in an electric field

where the vector E is pointing downward. What is the direction

of the force on the test body?

14. What is the electric field at a point if a test particle of 3 X
10~^ C e^cperiences a force of 10~~ N upward?

SG 10
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15. What is the force on another particle of 5 x 10 ' N at the

same point?

16. What useful simf)lification results when you use the field

concept instead of the Coulomb force law?

14.5
I

The smallest chargfe

Millikan used fine droplets of oil

from an atomizer. The droplets be-

came charged as they formed a

spray. The oil was convenient be-

cause of the low rate of evaporation

of the droplet.

ei
-,i

m

r^ = m
?

when mg and qE are balanced,

factional forces remain until the

hodv stops movini!:,.

SG 11

In Sec. 14.3; you read that an electrified comb can pick up a

small piece of paper. Obviously, the electric force on the paper

must exceed the gravitational force exerted on the paper by the

earth. This observation indicates that electric forces generally are

stronger than gravitational forces. Using the same principle, the

gravitational force on a microscopically small object (which still

contains several billion atoms) can be balanced against the

electrical force on the same object vv^hen the object has a net

electric charge of only a single electron! (The electron is one of

the basic components of the atom. Other properties of atoms and

electrons will be discussed in Unit 5.) This fact is the basis of a

method for actually measuring the electron's charge. The method
was first employed by the American physicist Robert A. Millikan

in 1909. Millikan's experiment will be described in detail in Sec.

18.3. The basic principle is discussed here, since it provides such

a clear connection between the ideas of force, field, and charge.

Suppose a small body of mass m, for example, a tiny drop of

oil or a small plastic sphere, has a net negative electric charge of

magnitude q. The negatively charged body is placed in an

electric field E directed downward. A force F^., of magnitude qE is

now exerted on the body in the upward direction. Of course,

there is also a douaiward gravitational F^,^^^ = mg on the object.

The body will accelerate upward or dou^nward, depending on

whether the electric force or the gravitational force is greater. By

adjusting the magnitude of the electric field strength E (that is,

by changing the source that sets up £), the two forces can be

balanced.

What happens when the two forces are balanced? Remember
that if a zero net force acts on a body, the body can have no

acceleration; that is, it would be at rest or continue to move at

some constant velocity. In this case, air resistance is also acting

as long as the drop moves at all and will soon bring the drop or

sphere to rest. The drop will then be in equilibrium. In fact, it

will be suspended in mid-air. When this haj^pens, the m^ignitude

of the electric field strength E which was applied to produce this

condition is recorded.

Since now the electric force balances the gravitational force,

the following must hold:

qE = mg
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You can calculate the charge q ftom this equation if you know
the quantities E, m, and g, since

^ E

Thus, you can find, in the laboratory, what values of charge q a

very small test object can carry.

When you do this, you wdll discover a remarkable fact: All

possible charges in nature are made up of whole multiples of
some smallest charge. This smallest possible charge is called the

magnitude of the charge on one electron. By repeating the

experiment many times with a variety of small charges, you can
find the value of the charge on one electron iqj. In effect, this

is what Millikan did. He obtained the value of qf^ = 1.6024 X
10"^^ C for the electron charge. (For most purposes you can use

the value 1.6 x lO"'" C.) This value agrees with the results of

m2iny other experiments done since then. No experiment has yet

revealed the existence of a smaller unit of charge. (Some
physicists have speculated, however, that there might be Vb q^
associated with a yet-to-be-found subatomic particle called the

quark. Although new experimental evidence supports the

existence of quarks, current theory predicts that quarks cannot
be isolated singly but exist only in collections that have a total

charge of either zero or q^.)

But how can m be determined?

The magnitude of the charge on the

electron is symbolized by q , and its

sign is negative. Any charge q is

therefore given by q = nq^ where
n is the whole number of individual

charges, each of magnitude qf .

Therefore, 1 coulomb is the mag-
nitude of the charge on 1/1.6 X 10"^

electrons.

SG 16-21

17. How can the small oil drops or plastic spheres used in the

Millikan e}cperiment e;cperience an electric force upward //

the electric field is directed downward.^

18. What do the results of the Millikan eyiperiment indicate

about the nature of electric charge?

1.4,6
I

The law of conservation of electric
charge

For many centuries, the only way to charge objects electrically

was to rub them. In 1663, Otto von Guericke made and described

a machine that would aid in producing large amounts of charge

by rubbing:

. .
. take a sphere of glass which is called a phial, as large as a

chUd's head; fill it with sulphur that has been pounded in a

mortar and melt it sufficiently over a fire. When it is cooled

again break the sphere and take out the globe and keep it in a

dry place. If you think it best, bore a hole through it so that it

can be turned around an iron rod or axle. . .

.
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Fninklin's drawing of a Leyden Jar,

standing on an insulating block of
way The rod in the stoppe;r was

connected to a conducting liquid in

the bottle. A charge given to the

ball would hold, through the non-

conducting glass wall, an equal

amount of the opposite charge on

the metal foil wrapped around the

outside. A Leyden jar can hold a

targe charge because positive

charges hold negative charges on

the other side of a nonconducting

wall.

When von Guericke rested his hand on the surface of the

sulphur globe while rotating it rapidly, the globe acquired

enough charge to attract small objects.

By 1750 electrical machines were far more powerful, and
\igorous research on the nature of electricity was going on in

many places. Large glass spheres or cylinders wei^ whirled on
axles supported by heavy wooden frames. A stuffed leather pad
was sometimes substituted for the human hands. The charge on
the globe was often transferred to a large metal object I such as

a gun barrel! suspended nearby.

These machines were powerful enough to deliver strong

electrical shocks and to produce frightening sparks. In 1746,

Pieter van Musschenbroek, a physics professor at Leyden,

reported on an accidental and nearly fatal discovery in a letter

beginning, "I wish to communicate to you a new, but terrible,

experiment that I would adxise you never to attempt yourself."

Musschenbroek was apparently trying to capture electricity in a

bottle, for he had a brass wire leading from a charged gun barrel

to a jar filled with water. A student was holding the jar in one

hand while Musschenbroek cranked the machine. When the

student touched the brass wire wdth his fiee hand, he received a

tremendous shock. They repeated the experiment, this time with

the student at the crank and Musschenbroek holding the jar. The
jolt was even greater than before I the student must have been

very energetic at the crank). Musschenbroek wrote later that he

thought "... it was all up with me . .

." and that he would not

repeat the experience for the u^hole kingdom of France. Word of

the experiment spread rapidly, and the jar came to be called a

Leyden jar. In fact, Musschenbroek had inadvertently discovered

that charge could be stored in a properly constnjcted solid

object. Devices such as Leyden jars that have a capacity for

storing electric charge are now called capacitors.

The Leyden jar came to Benjamin Franklin's attention. Franklin

performed a series of experiments with it and published his

analysis of its behavior in 1747. In these experiments, Franklin

first showed that the effects of different kinds of charges (positive

and negative) can cancel each other. Because of this cancellation,

he concluded that positive and negative charges were not really

different. As mentioned before, Franklin thought that one kind

of electricity was enough to explain all phenomena. He believed

that a positive charge resulted from an excess of "electric fluid"

or 'electric fire, " and a negative charge from a shortage of it.

This view led Franklin to the poweiful and correct idea that

electric charge is neither created nor destroyed. Objects become
positively or negatively charged by rearrangement of the electric

charges already present in them. This is a matter of

redistribution rather than creation. Similarly, positixe and

negative charges can cancel or neutralize each other's effect
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without being destroyed. This is the modern principle of

conservation of charge. It is taken to be as basic a law of nature

as are the conserv^ation piinciples of momentum and of energy.

The principle of the law of conservation of electric charge can be

stated in this way: The net amount of electric charge in a closed

system remains constant, regardless of what reactions occur in

the system. Net amount of charge is defined as the difference

between the amount of + and of — charge. (For example, a net

charge of -f 1 C would describe 1 C of positive charge all by itself,

or a combination of 11 C of positive charge and 10 C of negative

charge.) If the + and — are taken as actual numerical signs,

instead of only as convenient labels for two different kinds of

charges, then the net charge can be called the total charge.

Simply adding charges with + and — signs will then give the

difference between the amounts of positive and negative charge.

The law or principle of consen^ation of electric charge is

widely useful. Its applications range from designing circuits to

analyzing subatomic reactions (see the Project Physics

Supplemental Unit "Elementary Particles"). One interesting

possibility allowed by the electric charge consen^ation law is that

charges can appear or disappear suddenly in a closed system,

as long as the appearance or disappearance involves equal

amounts of + and — charge. (An example of such a

spontaneous appearance of + and — charges, in the form of a

negative electron and a positron, is a central part of the

experiment in the Project Physics film "People and Particles.")

• ,*

i, 6

Capacitors, familiar to anyone who
has looked inside a radio, are de-

scendents of the Leyden jar. They
have many different functions in

modern electronics.

19. What does the law of conservation of electric charge

demand when, for e}cample, a + charge appears inside a

closed svstem?

Electrostatic equipment of the

1700's.

CHAPTER 14 / ELECTRIC AND MAGNETIC FIELDS 441



Count Alessandro Volta (1745-1827)

WHS given his title by Napoleon in

honor of his electrical experi-

ments. He was Professor of Physics

at the University of Pavia, Italy.

Volta showed that the electric ef-

fects previously ohserxed by Luigi

Galvani, in experiments with frog

legs, were due to the metals and
not to any special kind of "animal

electricity."

SG 15

1.4.T
I

Electric currents

Touching a charged object to one end of a chain or gun barrel

will cause the entire chain or barrel to become charged. The
obvious explanation is that the charges move through and
spread over the object. Electric charges move easily through

some materials, called conductors. Metal conductors were most

commonly used by the early experimenters, but salt solutions

and very hot gases also conduct charge easily. Other materials,

such as glass and dr\' fibers, conduct charge hardly at all. Such

materials are called nonconductors or insulators. Diy air is a

fairly good insulator. (Damp air is not; you may have difficulty

keeping charges on objects in electrostatic experiments on a

humid day. I If the charge is great enough, however, even diy air

suddenly will become a conductor, allowing a large amount of

charge to shift through it. The heat and light caused by the

sudden rush of charge produces a "spark." Sparks were the fii-st

obvious evidence of moving charges. Until late in the eighteenth

century, a significant flow of charge, that is, an electric current,

could be produced only by discharging a Leyden jar. Such

currents lasted only for the brief time it took for the jar to

discharge.

In 1800, Alessandro Volta discovered a much better way of

producing electric currents. Volta's method involved two different

metals, each held wdth an insulating handle. When put into

contact and then separated, one metal took on a positive charge

and the other a negative charge. Volta reasoned that a much
larger charge could be produced by stacking up several pieces of

metal in alternate layers. This idea led him to undertake a series

of experiments that produced an amazing finding, reported in

a letter to the Royal Society in England in March of 1800:

Yes! the apparatus of which I speak, and which will doubtless

astonish you, is only an assemblage of a number of good

conductors of different sorts ananged in a certain way. 30, 40,

60 pieces or more of copper, or better of silver, each in contact

with a piece of tin, or what is much better, of zinc, and an

equal number of layers of water or some other liquid which is a

better conductor than pure water, such as salt water or lye and

so forth, or pieces of cardboard or of leather, etc., well soaked

with these liquids. . .

.

I place horizontally on a table or base one of the metallic

plates, for example, one of the silver ones, and on this first plate

I place a second plate of zinc; on this second plate I lav one

of the moistened discs; then another plate of silver, followed

immediately by another of zinc, on which I place again a

moistened disc. I thus continue in the same way coupling a

plate of silver with one of zinc, always in the same sense, that

is to say, always silver below and zinc aboxe oi- vice versa,

according as I began, and inserting betAxcen these couples a
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moistened disc; I continue, I say, to form from several of these

steps a column as high as can hold itself up without falling.

Volta showed that one end, or "terminal," of the pile vv^as

charged positive, and the other charged negative. He then

attached wires to the first and last disks of his apparatus, which

he called a "battery." Through these wires, he obtained electricity

with exactly the same effects as the electricity produced by

rubbing amber, by friction in electrostatic machines, or by

discharging a Leyden jar.

Most important of all, Volta's battery could produce a more or

less steady electric current for a long period of time. Unlike the

Leyden jar, it did not have to be charged from the outside after

each use. Now the properties of electric currents as well as of

static electric charges could be studied in a controlled manner.

This was the device needed to start the series of inventions that

have so greatly changed civilization.

# 20. In what ways was Volta s battery superior to a Leyden jar?

1.4.8
I

Electric potential difference

Sparks and heat are produced when the terminals of an electric

battery are connected. These phenomena show that energy ft^om

the battery is being transfomied into light, sound, and heat

energy. The battery itself converts chemical energy to electrical

energy. This, in turn, is changed to other forms of energy (such

as heat) in the conducting path between the teiTninals. In order

to understand electric currents and how they can be used to

transport energy, a new concept, which has the common name
voltage, is needed.

You learned in mechanics (Unit 3) that change in potential

energy is equal to the work required to move an object

frictionlessly from one position to another (Sec. 10.2). For

example, a book's gravitational potential energy is greater when
the book is on a shelf than when it is on the floor. The increase

in potential energy is equal to the work done in raising the book

from floor to shelf This difference in potential energy depends

on three factors: the mass m of the book, the magnitude of the

gravitational field strength g, and the difference in height d

between the floor and the shelf.

Similarly, the electric potential energy changes when work is

done in moving an electric charge from one point to another in

an electric field. Again, this change of potential energy A(P£) can

be directly measured by the work that is done. The magnitude

of this change in potential energy, of course, depends on the
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As is true for graxitational potential

energy r tiiere is no absolute zero

level of electric potential energy,

rhe difTcrcncc in potential energy

is tiie signiticant (iiiantity. Hie sxin-

bol \' is us(!cl ijotii for potential dif-

ference" as in lh(' t!(|uation at tht;

right, and as an abl)re\ iation for

volt, the unit of potential difference

(as in 1 \' ^ 1 .1 c:()uli.

SG 16-21

A 1 '/s-volt cell is one that has a

potential difference of I'/z volts be-

tween its two terminals. (This (vpe

of cell is often called a "battery,
'

alth()ue,h technically a hatleiy is

the naru(^ for a group of connected

cells.)

magnitude of the test charge q. Dividing AlPfii by q gi\'es a

quantity that does not depend on how large q is. Rather, it

depends only on the intensitv of the electric field and on the

location of the beginning and (Mid points. The new quantity' is

called electric potential difference. Electric potential difference is

defined as the ratio of the change in electrical potential energy

A(PE) of a charge q to the magtiitude of the charge. In symbols,

MPE)
V

£/

The units of electric potential difference are those of energy

dixided by charge, or joules per coulomb. The term used as the

abbrexiation for joules/coulomb is volt i\'l. The electrical potential

difference (or voltage) between two points is 1 VMf 1 J of work is

done in moxing 1 C of charge from one point to the other.

1 xolt = 1 joule coulomb

The potential difference between two points in a steady

electric field depends on the location of the points. It does not

depend on the path followed by the test charge. VVhethei- the

path is short or long, direct or roundabout, the same xvork is

done per unit charge. Similarly, a hiker does the same xvork per

kilogi-am of mass in the pack against the griixitational field,

whether climbing straight up or spiraling up along the slopes.

Thus, the electrical potential difference between Uvo points in a

field is similar to the difference in graxitational potential energy

between two points (Sec. 10.2).

A simple case xvill help you to see the great importance of this

definition of potential diffeience. Calculate the potential

difference between txvo points in a unifomi electric' field of

magnitude £ produced by oppositely charged parallel plates.

Work must be done in moxdng a positixe charge q fiom one point

to the other directly against the lines of electric force. The
amount of xvork required is the product of the force F

.,
exerted

on the charge (where F^, — qE), and the distance d through

xvhich the charge is moved. Thus,

^(PE) = qEd

Substituting this expression for A(P£) in the definition of electric

potential difference gix'es for the simple case of a uniforhi field:

^{PE)
V =

q
_ qEd

q
= Ed

In practice it is easier to measure electric potential difference V

ixvith a \()llnH>t(Mi than to measure electric fi(!ld strength E. The
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relationship is often useful in the form E = V/d, which can be

used to find the intensity of a unifonn electric field.

Electric potential energy, like gravitational potential energy,

can be converted into kinetic energy. A charged particle placed

in an electric field, but free of other forces, vvdll accelerate. In

doing so, it wall increase its kinetic energy at the expense of

electric potential energy. (In other words, the electric force on
the charge acts in such a way as to push it toward a region of

lower potential energy.) A charge q "falling" through a potential

difference V increases its kinetic energy by qV if nothing is lost by
friction (as in a vacuum tube). The increase in kinetic energy is

equal to the decrease in potential energy. So the sum of the two
at any moment remains constant. This is just one particular case

of the general principle of energy conserv^ation, even though only

electric forces are acting.

The conversion of electric potential energy to kinetic energy is

used in electron accelerators (a common example is a television

picture tube I. An electron accelerator usually begins vvdth an
electron "gun." The "gun" has two basic parts: a v\ire and a

metal can in an evacuated glass tube. The wire is heated red-hot,

causing electrons to escape from its surface. The nearby can is

charged positively, producing an electric field between the hot

wire and the can. The electric field accelerates the electrons

through the vacuum toward the can. Many electrons stick to the

can, but some go shooting through a hole in one end of it. The
stream of electrons emerging from the hole can be further

accelerated or focused by additional cans. (You can make such
an electron gun for yourself in the laboratory experiment.

"Electron Beam Tube. I. ') Such a beam of charged particles has a

wide range of uses both in technology and in research. For

example, it can make a fluorescent screen glow, as in a television

picture tube or electron microscope. Or it can be used to break

atoms apart, producing interesting particles for study, or X rays

for medical pur|30ses or research. When moving through a

potential diffei^ence of 1 V, an electron v\dth a charge of 1.6 x
10"'" C increases its kinetic energy by 1.6 x 10"'''

J. This amount
of energy is called an electron volt, abbreviated eV. Multiples are

1 KeV (
= 1,000 eVi, 1 MeV (

= lO*" eV), and 1 BeV (
= 10^' eV).

Energies of particles in accelerators are commonly expressed in

such multiples. In a television tube, the electrons in the beam
are accelerated across an electric potential difference of about

20,000 V. Thus, each electron has an energy of about 20 KeV. The
largest accelerator now operating gives (for research purposes)

charged particles with kinetic energies of about 1,000 GeV.

Electrically charged particles (elec-

trons) are accelerated in an "elec-

tron gun" as they cross the poten-

tial difference betneen a hot wire

(filamentl and a can in an evacu-

ated glass tube.

Particle accelerators come in a wide
variety of shapes and sizes. They
can be as common as a 1,000-volt

tube in an oscilloscope or 20,000-

volt T\' "guns," or as spectacular as

the one shown below. (Or see the

Cambridge Electron Accelerator,
which was the scene for two Pro-

ject Physics films, "People and Par-

ticles ' and "Synchrotron. "I

k : kilo- (
10')

M : mega- lio'')

B : billion (

10
')

(B is often replaced by G giga-

• 21. How is the electric potential diff[erence, or "voltage/'

between two points defined?
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SG 22
22. Does the potential difference between two points depend

on the path followed in taking a charge from one to the other?

Does it depend on the magnitude of the charge moved?

23. Is the electron volt a unit oflaJ charge, lb) potential

difference (voltage), or (c) something else? ff(c), what is it?

Above left; A section i)j tin- c\u(ii-

atcd tube throui^h which the elec-

trons travel. The electrons are ac-

celerated in steps by electric fields

in a long line of accelerating cavi-

ties, similar to those in the photo-

graph on page 422.

Above right: The site ofStanford
University's 3.2-km electron accel-

erator, in which electrons are given

kinetic energies of up In 20 ReV.

In metallic conductors, the moving
chiirge is the negative electron, with

the positive "mother" atom fLxed.

But all effects are the same as if

positive charges were moving in

the opposite direction. By an old

convention, the latter is the direc-

tion usually chosen to descrihe the

direction of current.

14.9
I

Electric potential difference and current

The acceleration of an electron in a vacuum by an electric field is

the simplest example of a potential difference affecting a charged

particle. A more familiar example is electric current in a metal

wire. In this arrangement, the two ends of the v\ire are attached

to the two terminals of a battery. Chemical changes inside a

battery pr oduce an electric field that continually drives charges

to the tei'minals, one charged negatively, the other positively. The
"voltage" of the battery tells how much energy per unit charge

is available when the charges move in any e^cternal path from

one ter^minal to the other along the wire, for example.

Electrons in a metal do not move freely as they do in an

evacuated tube, but continually interact with the metal atoms. If

the electrons wer-e r-eally completely fr'ee to mo\'o, a constant

voltage would make them accelerate so that the current would

increase with time. This does not happen. A simple relation

between current and voltage first foirnd by Cieorg Wilhelm Ohm
is at least approximately valid for- most metallic ctjnductor-s: The

total current I in a conductor is proportional to the potential
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difference V applied between the two ends of the conductor. Using

the s3mibol / for the current and V for the potential difference,

or

/ constant X V

This simple relation is called Ohm 's law. It is usually written in

the form

V
/ = -

R

where fl is a constant called the resistance of the conducting

path. Thus, Ohm's law assumes that the resistance of a given

conducting path does not depend on current or voltage.

Resistance does depend on the material and dimensions of the

path, such as the length and diameter of a wire. Resistance is not

strictly constant for any conducting path; it varies with changes

in temperature, for example.

Ohm's law applies closely enough for practical technical work.

But it does not have the general validity of the law of universal

gravitation or Coulomb's law. In this course, you vvdll use it

mainly in lab work and in connection with electric light bulbs

and power transmission in Chapter 15.

Close-up ofpart of the electric cir-

cuit in the TV set pictured on page
431. These "resistors" have a fairly

constant voltage-to-current ratio.

(The value of the ratio is indicated

by colored stripes, each color

standing for a number: 0, 1, 2, . .

.

9.)

SG 23

# Z4. How does the current in a metallic conductor change if the

potential difference between the ends of the conductor is

doubled?

25. What does it mean to say a resistor has a resistance of5

megohms (5 x lo"" ohms)?

26. How would you test whether Ohm's law applies to a given

piece of wire?

1.4r«10
I

Electric potential difference and power

Suppose a charge could move freely from one terminal to the

other in an evacuated tube. The work done on the charge would
then simply increase the kinetic energy of the charge. However, a

charge moving through some material such as a ware transfers

energy to the material by colliding with atoms. Thus, at least

some of the work goes into heat energy. A good example of this

process is a flashlight bulb. A battery forces charges through the

filament wire in the bulb. The electric energy carried by the

charges is converted to heat energy in the filament. The hot
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Close UpI
Electrical Conduction in Metols
While charges cannot move freely through an in-

sulator, they can nnove freely through a conductor.

Yet when a conductor (say, a piece of copper wire

or a steel knife blade) is connected between the

two terminals of a battery, a steady current starts

immediately and persists until the battery is dis-

charged. This is puzzling. The battery sets up a

potential difference between the two ends of the

conductor and so there is an electric field along the

conductor. This means that there is an electrical

force on the charges. If this were the net force

on the charges, they would be moving faster

and faster. In that case, the current should increase

with time, a situation not at all like what actually

happens.

An acceptable model for a conductor must be a

little more complex, then, than a substance "through

which charge can move freely." One of the first

useful models for a conductor (and one which is

still used today) was constructed around 1900 by

Drude and Lorentz. They pictured the atoms of a

perfect crystal of metal locked into position in a reg-

ular array (called a lattice). Each atom has one or

more electrons (depending on the metal) that are

1.5 VOLTS

K_

shared with all the other atoms in the metal. These

mobile electrons are always in random motion at

very high speeds (roughly lO'' m sec for copper),

very much like the molecules of a gas studied in

Unit 3. The electrons' motion is much faster,

though, than that of the gas molecules at the same
temperature (the reason for this was not discovered

until about 1930 when quantum mechanics was
applied to the problem).

An electric current exists where there is nei flow

of charge along the wire. As long as the electrons

are moving at random, the net flow is zero on the

average. The electrons are constantly experiencing

collisions with any metal atom which gets "out of

line," for example, impurities in the metal or imper-

fections in the lattice, and with vibrations of the

atoms caused by their own random thermal mo-

tion. On the average, an electron travels freely for

a time \ between consecutive collisions (for copper,

this time X is about 10"''' sec).

PaXh of an electron.

/

+

No net flow of electrons past tfie surface

448 UNIT 4 / LIGHT AND ELEC rRO\L\GNETISM



When a battery is connected to the metal, there

is an electric field E created along the length of the

conductor. This field does indeed accelerate the

electrons, but since they move freely only for a time

t, the change in their velocity caused by the field is

just

^v = a t

= E^t
m

This additional velocity imparted to the electrons is

called the "drift velocity" and is responsible for the

conduction of electricity. Since E is proportional

to the battery's voltage, it is easy to see that the

current will be proportional to the voltage (Ohm's

law) so long as the average time between col-

lisions, t, does not change. For example, when
a metal is cooled, the thermal motion of the at-

oms is reduced and collisions with these ther-

mal vibrations become less frequent. Therefore,

cooling a metal makes it a better conductor.

Similarly, a very pure sample of copper is a bet-

ter conductor than a sample with many impur-

ities from which electrons are scattered as they

move. A more quantitative model can also be

described (though that is not necessary to un-

derstanding the basic model). Picture a piece of

wire of length L, cross-sectional area A, with an

average of n electrons in each cubic centimeter.

Ignore the random motion of the electrons,

since this makes no contribution to the conduc-

tion, and picture all the electrons moving with

the drift velocity.

v, = ^v = E^t

The current is just the amount of charge crossing

the surface each second:

((no. of electrons)

\

crossing surface 1 x q^

in 1 sec /

The number of electrons crossing the surface each

second is nAv^ Oust as you calculated in Chapter

1 1 for gas molecules). Thus,

But E = V/L if the wire is uniform so that the field

is a constant along its length, and

V, i.e., / y- V. But this is Ohm's law! Thus, this model

determines the resistance of a wire as

R =
m L

where R = v/l. It follows that, for a given mate-

rial, doubling the length should double the resis-

tance; doubling the cross-sectional area should

halve the resistance. This is just what is found ex-

perimentally.

A net flow of electrons past thie surface.
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E}camplc: A small flashlight bulb

connected to a l.S-V cell will ha\e

a current of about 0.1 A in its fila-

ment. At what rat(! is (ilectric work
b(Mng (lone to heat the filament in

the bulb?

P = VI

= 1.5 V X 0.1 A
= 0.15 W

(Only a small fraction of this power
goes into the \isible light energy ra-

diated from the filament.)

SG 2+-27

filament in turn radiates energy, a small fraction of which is in

the form of \isible light. Recall now that "xoltage" (electric

potential difference] is the amount of work done per unit of

charge transferred. So the product of voltage and current gives

the amount oi work done per unit time:

V (joules/coulomhi x / (coulombs/sec) = V/ (joules/sec)

Work done per unit time is called power (as defined in Sec. 10.6

of Unit 3). The unit of power, equal to 1 J/sec, is called a watt (W).

Using the definition of ampere (1 C/sec) and volt (1 J/C), the

equation for power P is

P (watts) = V (volts) X / (amperes)

What energy transformation does this work accomplish? As the

positive charge moves to a lower potential level, it does work

against material by colliding with atoms. The electric energy of

the charge is converted to heat energ\'. If V^ is the voltage

between the two ends of some material cariying a current /, the

power converted to heat in the material is given by P = VI. This

can be expressed equally well in terms of the resistance of the

material, substituting IR for V:

P = m X I

P = I-R

Thus, the heat produced by a current is proportional to the

square of the current. Joule was the first to find this relationship

experimentally. The discoveiy was part of his series of researches

on conversion of different forms of energy (Sec. 10.7). The fact

that heat production is proportional to the square of the current

is very important in making practical use of electric energy. You
will learn more about this in the next chapter.

27. What happens to the electrical energy used to move
charge through a conducting material?

Z8. How does the power converted to heat in a conductor

change if the current in the conductor is doubled?

1.4.1.1.
I

Currents act on magnets

Early in the eighteenth century, reports began to appear that

lightning changed the magnetization of compass needles and

made magnets of knives and spoons. Some researchers believed

that they had magnetized steel needles by discharging a Leyden

jar through them. These reports suggested that electiicitx' and

magnetism were closeK' related in some wax. But the casual
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observations were not followed up with deliberate, planned

experiments that might have led to useful concepts and theories.

None of these eariy reports surjarised the nineteenth-century

Nature Philosophers in Europe. They were convinced that all

phenomena observed in nature were only different effects of a

single "force." Their belief in the unity of physical forces

naturally led them to expect that electrical and magnetic forces

were associated or related in some way.

The first concrete evidence of a connection between electricity

and magnetism came in 1820, when Oersted performed an

extremely important series of experiments. (See illustrations on
next page.) Oersted placed a magnetic compass needle directly

beneath a long horizontal conducting wire. The wire lay along

the earth's magnetic north-south line, so that the magnetic

needle was naturally lined up parallel to the wire. When Oersted

connected the wire to the temiinals of a battery, the compass
needle swung toward an east-west orientation, nearly

perpendicular to the wire! Charge at rest does not affect a

magnet. But charge in motion la current) does exert an odd kind

of force on a magnet.

Oersted's results were the first ever found in which a force did

not act along a line connecting the sources of the force. (Forces

between planets, between electric charges, or between magnetic

poles all act along such a line.) The force exerted between the

current-carrying wire and each magnetic pole of the compass
needle is not along the line from the vvdre to the pole. In fact, for

the needle to twist as it does, the force must be acting

perpendicular to such a line. The magnetic needle is not

attracted or repelled by the wire, but is twisted sideways by
forces on its poles.

This was a totally new kind of effect. No wonder it had taken

so long before anyone found the connection between electricity

and magnetism. Closer examination revealed more clearly what
was happening in this experiment. The long, straight, current-

carrying wire sets up a magnetic field. This field turns a small

magnet so that the north-south line on the magnet is tangent to

a circle whose center is at the wire and whose plane lies

perpendicular to the wire. Thus, the cun^ent produces a circular

magnetic field, not a centrally dir^ected magnetic field as had
been expected.

The direction of the magnetic field vector B at each point is

defined as the direction of the force on the north-seeking pole of
a compass needle placed at that point. The force on the south-

seeking pole wdll be in a direction exactly opposite to the field

direction. A compass needle will respond to the opposite forces

on its ends by turning until it points as closely as possible in the

direction of the field. You can get a clue to the "shape " of the

magnetic field ar^ound a current by sprinkling tiny slivers of iron

''+\

Remember this useful rule: If

the thumb points in the direction

of the flow of charge, the fingers

curl in the direction of the lines of
the magnetic field B . The magni-
tude o/B is discussed in Sec. 14.13.

Use the right hand for positive

charge flow, left hand for negative

charge flow.

Needle-like iron o}<.ide crvstals in

the magnetic field of a bar magnet.
The bar magnet is under the paper
on which the iron o^ide crystals

have been spread.
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Close Upl
Hons Christian Oersted

Hans Christian Oersted (1777-1851),

a Danish physicist, studied the writ-

ings of the Nature Philosopher

Schelling and wrote extensively on

philosophical subjects himself. In an

essay published in 1813, Oersted

predicted that a connection between

electricity and magnetism would be

found. In 1820, he discovered that

a magnetic field surrounds an elec-

tric current when he placed a com-

pass under a current-carrying wire.

In later years he vigorously denied

the suggestion of other scientists

that his discovery of electromagne-

tism had been accidental.

^rSf^^

^
Oersted's experiment.

.^
a^ <fi

^ <z ^ <y>

® <7>

®

«" <^

fr>

<P^
Left: An array of tiny compasses on a sheet of card-

board placed perpendicular to a brass rod. Right:

When there is a strong current in the rod, the com-
pass needles are deflected from their normal
north-south line by the magnetic field set up by the

current. This experiment, too, indicates that the

lines of magnetic force due to the current are cir-

cular around the rod
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on a sheet of paper through which the current-carrying wire is

passing. The slivers become magnetized and behave like tiny

compass needles, indicating the direction of the field. The slivers

also tend to link together end-to-end. Thus, the pattern of slivers

indicates magnetic lines of force around any current-carrying

conductor or bar magnet. These lines form a "picture" of the

magnetic field.

You can use a similar argument to find the "shape" of a

magnetic field produced by a current in a coil of wire, instead of

a straight wdre. To do this, bend the wire into a loop so that it

goes through the paper in two places. The magnetic effects of

the different parts of the ware on the iron slivers produce a field

pattern similar to that of a bar magnet.

Iron filings in the magnetic field

produced by current in a coil of
wire.

• 29. Under what conditions can electric charges ajfect

magnets?

30. What was surprising about the force a current everted on
a magnet?

31. How do we know that a current produces any magnetic

field near it? What is the "shape" of the field anywhere near a

straight conductor?

'L4*'L2t
I

Currents act on currents

Oersted's experiment vuas one of those rare occasions u^hen a

discovery suddenly opens up an exciting new subject of

research. In this case, no new equipment was needed. At once,

dozens of scientists thr oughout Europe and America began

intensive studies on the magnetic effects of electric currents. The
work of Andre-Marie Ampere (1775-1836) stands out among all

the rest. Ampere was called the "Newton of electricity" by James
Clerk Maxwell, who decades later constrxicted a complete theory

of electricity and magnetism. Ampere's work is filled with elegant

mathematics. Without describing his theory in detail, we can

trace some of his ideas and review some of his experiments.

Ampere's thoughts raced forwar^d as soon as he heard

Oersted's news. He began wdth a line of thought somewhat as

follows: Magnets exert forces on each other, and magnets and
currents exert forces on each other. Do currents then exer t

forces on other currents? The answer is not necessarily yes.

Arguing from S3anmetry is inviting and often turns out to be

right. But the conclusions to which such arguments lead are not

logically or physically necessary. Ampere recognized the need
to let experiment answer his question. He wrote:

When M. Oersted discovered the action which a current

exercises on a magnet, one might certainly have suspected the

SG 28

Andre-Marie Ampere I1775-1836J

was born in a village near Lyons,

France. There was no school in the

village, and Ampere was self-taught.

His father was executed during the

French Revolution, and Ampere's
personal life was deeply affected by
his father's death. Ampere became
a professor of mathematics in

Paris and made important contri-

butions to physics, mathematics,
and the philosophy of science. His

self-portrait is reproduced above.
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Hf[)luii ot Anjpcff s ctirrcnt bal-

ance. The essential part is a fi;<.ed

horizontal wire iforeground!, and
just behind it, hanging from a

hinged support, a shorter segment

of wire. Current is produced in

both wires, and the force between
them is measured.

existence of a mutual action between Uvo circuits carrying

currents; but this was not a necessary consequence; for a bar of

soft iron also acts on a magnetised needle, although there is

not mutual action between two bars of soft iron.

Ampere put his hunch to tiie test. On September 30, 1820,

within a week after word of Oersted's work reached France,

Ampere reported to the French Academy of Sciences. He had
indeed found that two parallel current-canying wires exert foix:es

on each other. They did so even though the wires showed no
evidence of net electric charges.

Ampere made a thorough study of the forces between
currents. He investigated how they depend on the distance

between the wires, the relative positions of the wires, and the

amount of current. In the laboratory, you can repeat these

experiments and work out the "force law " between two currents.

We need not go into the quantitative details here, except to note

that the force between currents can be used to measure how
much current is flowing. In fact, the magnetic force between
currents is now the quantitv' preferred for defining the unit of

current. This unit is called the ampere, as mentioned in Sec. 14.3.

One ampere (1 A) is defined as the amount of current in each of

two long, straight, parallel wires, set 1 m apart, that causes a

force of exactly 2 x 10 N to act on each meter of each wire.

)32. What was Ampere's hunch':

SUMMARY OF ELECTRIC UNITS

Quantity Symbol Unit

Current

Charge



I^.IS
I

Ma^etic fields and moving^ charg^es 6 A ^ A V V A

Q-

In the last two sections, the interactions of currents with

magnets and with each other were discussed. The concept of

magnetic field greatly simplifies the description of these

phenomena.

As you saw in studying Coulomb's law, electrically charged

bodies exert forces on each other. When the charged bodies are

at rest, the forces are "electric " forces, or Coulomb forces.

"Electric fields " act as the sources of these forces. But when the

charged bodies are moving (as when two parallel wires carry

currents), new forces in addition to the electric forces are

present. These new forces are called "magnetic " and are caused

by "magnetic fields " set up by the moving charges.

Magnetic interaction of moving charged bodies is not as simple

as electric interaction. Remember the description of Oersted's

experiment. The direction of the force exerted by a current on a

magnet is perpendicular both to the direction of the current and
to the line between the magnet and current. For the moment,
however, it is not necessary to examine the forces on current-

carrying conductors. After all, the force on a wire is believed to

be caused by forces on the individual electric charges moving in

it. How^ do such individual charges behave when moving freely

in an external magnetic field? Once some simple rules have been

established for the behavior of free charged particles, wires will

be discussed in the next chapter. There you will see how these

simple rules are enough to explain the operation of electric

generators and electric motors. (You will also see how these

inventions have changed civilization.)

The rules summarized in the remainder of this section are best

learned in the laboratory. All you need is a magnet and a device

for producing a beam of charged particles, for example, the

"electron gun" described in Sec. 14.8. (Recommended procedures

are described in the experiment 'Electron Beam Tube. I." in the

Handbook.)

(a) When the charge q moves with

velocity v perpendicular to B,

B

(b) there is a force F as shown,
proportional to q, v, and B.

8

(c) Ifv is not perpendicular (J-l to

B, there is a smaller force, propor-
tional to v_^ instead of v.

The force on a moving charged body. Suppose you have a fairly

uniform magnetic field 6, produced either by a bar magnet or

by a current in a coil. How does this external field act on a

moving, charged body? You can find by experiment that the

charge experiences a force and that the force depends on three

quantities: (1) the charge q on a body, (2) the velocity v of the

body, (3) the strength of the external field B through which the

body is moving.

The force depends not only on the magnitude of the velocity,

but also on its direction. If the body is moving in a direction
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Remember this useful rule: Ifvour

fingers point along B and your
thumb along v, F will be in the di-

rection your palm would push. For
positive charges use the right hand,

andfor negative use the left hand.
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perpendicular to the field B, the magnitude of the force is

proportional to both of these quantities; that is,

F a qvB

which can also be written as

F = kqvB

where k is a proportionality constant that depends on the units

chosen for F, q, v, and B.

But if the charge is moving in a direction parallel to B, there is

no force! For all other directions of motion, the magnitude of the

force is somewhere between the full value and zero. In fact, the

force is proportional to the component of the velocit\' that is

perpendicular to the field direction, Vj,. Therefore, a more
general expression for the force is

F oc qv^ B

or

F = kqv^ B

where k is the same constant as before. The direction of the force

is always perpendicular to the direction of the field. It is also

perpendicular to the direction of motion of the charged body.

The force exerted by an external magnetic field on a mo\dng

charged particle can be used to define the unit of magnetic field

B. This is done by taking the proportionality constant k as equal

to one. This definition is convenient here, since we are dealing

mainly with how magnetic fields act on moving charges (rather

than with forces between bar magnets). So in the special case

when B and v are at right angles to each other, the magnitude of

the deflecting force becomes simply

F = qvB

The path of a charged body in a magnetic field. The force on a

moving charged body in a magnetic field is always "off to the

side"; that is, the force is perpendicular to the body's direction of

motion at every moment. Therefore, the magnetic force does not

change the speed of the charged body. Rather, it changes the

direction of the velocity vector. If a charged body is mo\ing

exactly peipendicular to a unifonn magnetic field, there will be a

constant sideways push. The body wdll move along a circular

path, in a plane perpendicular to the direction of the magnetic

field. If B is strong enough, the particle will be trapped in a

circular orbit [as in sketch (a) in the margin].

What if the charged body's velocit\' has some component along

the direction of the field but not exactly parallel to it.^ The body
will still be deflected into a curved path, but the component of

its motion along the field will continue undisturbed. So the
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particle will trace out a coiled (helical) path [as in sketch ib) in

the margin]. If the body is initially moving exactly parallel to the

magnetic field, there is no deflecting force at all, since v^^ is

zero.

Some important examples of the deflection of charged particles

by magnetic fields are discussed in Unit 5 and Unit 6. These

examples include particle accelerators and bubble chambers.

One example of "coiled" motion is found in the Van Allen

radiation belts. A stream of charged particles, mainly from the

sun, but also from outer space, continually sweeps past the

earth. Many of these particles are deflected into spiral paths by

the magnetic field of the earth and become "trapped" in the

earth's field. The extensive zones containing these rapidly

moving trapped particles are called the Van Allen belts. Particles

from these zones sometimes work their way toward the earth's

magnetic poles. When they hit the atmosphere, they excite the

atoms of the gases to radiate light. This is the cause of the aurora

("northern lights " and "southern lights").

This chapter has dealt with the interaction between currents

and magnets and between magnetic fields and charged particles.

At first reading, many students consider this topic to be a veiy

abstract part of pure physics. Yet the study of these interactions

has had important social and practical effects on the whole
civilized world. You will look at some of these effects in the next

two chapters.

33. Which of the following affect the magnitude of the

deflecting force on a moving charged particle?

(a) the component of the velocity parallel to the magnetic field

(h) the component of the velocity perpendicular to the field

(c) the magnetic field B itself

(d) the magnitude of the charge

(e) the sign of the charge

34. Which of the items in the preceding question affect the

direction of the deflecting force on the charged particle?

35. Why does the deflecting force on a moving charged

particle not change the speed of the charged particle? Does it

ever do any work on it?

36. What are differences between deflecting forces on a

charged object due to

(a) gravity?

(b) an electric field?

(c) a magnetic field?

SG 31

A simplified sketch of a variety of
paths taken by charged particles in

the earth's magnetic field. The Van
Allen belts are regions of such
trapped particles.

The American physicist James A.

Van Allen directed the design of in-

struments carried by the first

American satellite, E.xplorer I.

SG 32, 33
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The aurora photographedfrom
Alaska. The glow is produced when
the upper atmosphere is e,\cited

by charged particles trapped in the

earths magnetic field.

Study
guide

1. The Project Physics learning materials

particularly appropriate for Chapter 14 include:

Experiments

Electric Force. I

Electric Forces. II

Forces on Currents

Currents. Magnets, and Forces

Electron Beam 'I\ibe. I

Electron Beam Tubes. II

Activities

Detecting Electric Fields

Voltaic Pile

An lie Battery

Measuring Magnetic Field Intensity

More Perpetual Motion Machines

An Isolated \orth Magnetic Pole?

2. How much must you alter the distances

between tv\o charged objects in order to keep the

force on them constant, if you also

(a) triple the net charge on each?

(b) halve the net charge on each?

(c) double the net charge on one and halve the net

charge on the other?

3. How far apart in air must U\o charged spheres

be placed, each having a net charge of 1 C. so that

the force on them is 1 i\?

4. If electrostatic induction does not inxohe the

addition or subtraction of charged particles, but

instead is just a redistribution of charged particles,

how can attraction result from induction?

5. A carbon-coated (and therefore conducting)

ping-pong ball hanging by a nylon (nonconducting)

thread from a ring stand is touched with a finger to

remove any slight charge it ma\' ha\e had. Then a

negati\'el\' chai'ged rod is brought up close to but not

touching the ball. WhUe the rod is held there, the

ball is moinentarily touched with a finger; then the

rod is removed. Does the ball now lia\(> a net charge?

How would vou test whether it has? If vou think it
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has, make a few simple sketches to show how it

became charged, indicating clccirly what kind of

charge it has been left with.

6. (a) Calculate the strength of the gravitational field

of the moon at a point on its surface. The mass of

the moon is taken to be 7.3 x 10" kg, and its radius

is 1.74 X 10' m.

(b) Calculate the gravitational field at a point near

the surface of a small but extremely dense star

whose radius is 1.5 x lo' m and whose density is

about 10" kg/m'.

(c) The gravitational field of any uniform spherical

shell is zero inside the shell. Use this principle

together with Newton's gravitational force law and

the formula for the volume of a sphere (Vairr') to find

out how the gravitational field at a point P inside a

solid spherical planet depends on the distance r

from the center. (Assume the planet's density is

uniform throughout.)

7. An electric field exerts a force on a charged

particle placed in the field. What else can you say

about this situation, considering the fact that

Newton's third law holds in this case, too?

8. The three spheres A, B, and C are fixed in the

positions shown. Determine the direction of the net

electrical force on sphere C, which is positively

charged, if

®
I

(a) A and B carry equal positive charges.

(b) A and B have charges of equal magnitude, but tlie

charge on B is negative and that on A positive.

9. A sphere with a negative charge of 4 x 10" C is

in the middle of a room. All test charges are placed

at a distance of 2.5 m west of tlie center of the

sphere.

(a) Use Coulomb's force law to calculate the force on

particles with charges of 3q^, 6q^, lOq^, and 34q^.

(b) Find the electric field at the test point, then use F

= qE to determine the force on the particles in (a).

(c) What important physical principle is the basis

of the electric field concept?

10. An electric field strength exists at the earth's

surface of about 100 N/C, directed downward.

(a) What is the net charge on the earth? (As Newton

had shown for gravitational forces, the field of a

uniformly charged sphere can be calculated by

assuming all of the charge is concentrated at its

center.)

(b) Because the earth is a conductor, most of the net

charge is on the surface. What, roughly, is the

average amount of net charge per square meter of

surface? Does this seem large or small, compared to

famUiar static charges like those that can be

produced on combs?

11. In oscUloscope tubes, a beam of electrons is

deflected as it is passed between two pairs of

oppositely charged plates. Each pair of plates, as can

be seen in the photograph at the top of the following

page, is shaped something like the sketch to the

right of the photograph. Sketch in roughly what you

think tlie lines of force in the elective field between a

pair of such oppositely charged plates would be like.

13. Is air friction acting on the moxdng oil drop a

help or a hindrance in the experiment described for

measurement of the charge of the electron? Explain

your answer briefly.

13. The magnitude of the electron's charge is 1.6 x

10'^ C. How many electrons are required to make
1 C of charge?

14. Calculate the ratio of the electrostatic force to

the gravitational force between two electrons a

distance of 10 '" m apart. (The mass of the electron

is approximately 10 '" kg; recall that G = 6.7 x 10
"

N-mVkg".)
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15. Electrical forces are similar in some respects to

gravitational forces. So it is reasonable to imagine

that charged particles such as the electron may
move in stable orbits around other charged particles.

Then, just as the earth is a "gravitational satellite"

of the sun, the electron would be an "electric

satellite" of some positively charged particle. If this

particle has a very large mass compared to that of

the electron , you can assume it will remain

stationary' at the center of the electron's orbit.

Suppose the particle has a charge equal in

magnitude to the charge of the electron and that the

electron moves in a circular orbit.

(a) The centripetal force acting on the moving

electron is provided by the electrical I Coulomb i force

between the electron and the positively charged

particle. Write an equation representing this

statement. From this equation derive another

equation showing how the kinetic energy of the

electron is related to its distance from the positively

charged particle.

(b) Calculate the kinetic energy of the electron if the

radius of its orbit is 10 "' m.

(c) What will be the speed of the electron if it has

the kinetic energ>' you calculated in part lb I? (The

mass of the electron is approximately 10"^" kg.)

16. A hard rubber or plastic comb rubbed against

wool can often be shown to be chargcKl. Why does a

metal comb not readily show a net chai-ge produced

by rubbing unless it is held by an insulating handle?

17. What is the potential difference between two

points in an electric field if 6 x 10 ' J of work is

done against the electric forces in moving 2 x 10 C

of chcirge from one point to the other?

.>>

IS. If there is no potentiid difference between any

points in a region, what must be true of

(a) the electric potential energy in that region?

(b) the electric field?

19. Electric field intensity E can be measured in

either of two equivalent units: newtons per coulomb
and volts per meter. Using the definitions of v olt and
joule, show that newton/coulomb is actually the

same as volt/meter. Can you give the reason for the

equivalence in words?

20. By experiment , if the distance between the

surfaces of two conducting spheres is about 1 cm, an

electric potential difference of about 30,000 V
between them is required to produce a spark in

ordinary air. (The higher the voltage above 30,000 V,

the "fatter" the spark for this gap distance.! What

is the minimuiTi electric field strength (in the gap

between the surfaces I necessary to cause sparking?

ai. The gap between the two electrodes in an

automobile spark plug is about 1 mm. If the voltage

produced between them by the ignition coil is about

10,000 \', what is the approximate electric field

strength in the gap?

22. One can think of an electric batter>' as

"pumping" charges into its terminals. This pumping

continues until the electric potential difference

between the terminals reaches a certain value where

those charges already there repeal nj^wcomers from
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inside the battery. Usually this value is very close to

the voltage marked on the battery.

(-;

A -n ml

£V.

What would happen if you connected two or more
batteries in a sequence? For example, the battery on

the right, above, maintains terminal C at an electric

potential 6 V higher than terminal D. This is what
the + indicates under C; its electric potential is

higher than that of the other terminal of the same
battery. The battery on the left maintains terminal A
at a potential 6 V higher than terminal B. If you
connect B to C with a good conductor, so that B and
C are at tlie same potential level, what is the

potential difference between A and D?
What would the potential difference be between

the extreme left and right terminals in the following

set-ups?

(W
n. tfc

CV.

=£3 _

CV.

33. (a) What kinetic energy will an electron gain in

an evacuated tube if it is accelerated through a

potential difference of 100 V? State your answer in

electron volts and also in joules. (The magnitude of

the charge on the electron is 1.6 x 10"" C.)

(b) What speed will it acquire because of the

acceleration? (The mass of the electron is 10 '" kg.)

34. (a) A battery of 12 V is connected to a circuit

with a resistance of 3 ohms. What is the current? If

the voltage is doubled and the resistance is constant,

what is the new current in the circuit?

(b) Why are the following terms used: "voltage

across" and "current through"?

as. What is the resistance of a dc circuit that allows

a current of 4 A to flow if 100 V is applied across it?

Assuming that Ohm's law applies to the circuit, what

is the voltage if the current is cut in half? If Ohm's
law does not apply to this circuit, what is the

relationship of current to voltage?

26. What is the power used by a circuit in which 3 A
flow across a 50-V supply? What is the resistance of

this circuit?

27. When power demand is high, an electric

company will often lower the voltage to its

customers. If your house is operating six 100-W light

bulbs, one 200-W television, one 5,000-W clothes

dryer, and one 25-W radio, what is your total power

use before and after a 5% voltage reduction on 120-V

service? What is your current use before and after

the voltage cut? Are you being cheated by the electric

power company?

28. A circuit breaker will cut off the current to a

circuit when the current through the circuit exceeds

the rating marked on the circviit breaker. How many
150-W light bulbs can you put on a circuit with a 10-

A circuit breaker if a 500-W stereo is already on the

circuit? (Assume that the house voltage is 120 V.)

29. Suppose three resistors are each connected to a

battery and to a current meter. The following table

gives two of three quantities related by Ohm's law

for three separate cases. Complete the table.

Voltage

(volts)

(a)

(b) 10

Current
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precisely 5,000 J of energy in 30 nanoseconds."

(From an advertisement in the journal Physics

Today.)

The term "4MeV'" means that the charges in the

beam have an energy that \\ ould result from being

accelerated across a potential difference of 4 million

volts. A "nanosecond" is a billionth of a second. Are

these published x-alues consistent with one another?

(Hint: Calculate the power of the beam in two

different ways.)

32. An electron "gun" includes several electrodes,

kept at different voltages, to accelerate and focus the

electron beam. But the energx' of electrons in the

beam that emerges from the gun depends only on

the potential difference between their source (the hot

wire I and the final accelerating electrode. In a color

T\' picture tube, this potential difference is 20 to 30

kV^ A triple gun assembly (one each for red, blue,

and green i from a color IV set is shown in the

photograph below.

fcj^I^q^H

Suppose the beam in a IV tube is accelerated

through 20,000 V and forms an average current on

the order of 10 ' A. Houghly what is the power being

dissipated against the screen of the tube?

33. Cidculate the power dissipated in each of the

three circuit elements of SG 23.

34. A student trying to show the magnetic effect of a

current on a pocket compass slowly slid the

compass along a tabletoji toward a wire Iving on the

table and carrying a constant current. The student

was surjjrised by the lack of an\' obscr\ ed turning

effect on the compass needle. How would you

explain these observations?

35. The sketch shows two long, parallel wires, lying

in a vertical north-south plane (the view here is

toward the west I. A horizontal compass is located

midway between the two wires. With no current in

the wires, the needle points i\. With 1 A in tlie upper

wire, the needle points NW.

(a) What is the direction of this 1-A current?

(b) What current (magnitude and direction) in the

lower wire would restore the compass to its original

position?

36. (a) What is the definition of the ampere (A)

given in Sec. 14.12?

(b) The force between two wires carrying an electric

current varies directly with the current in each of

the wires and inversely with the distance separating

them. VMiat is the force between two wires 3 m long,

0.5 m apart, carrying 5 A and 8 A, respectively?

37. The deflecting force on a charged particle

moving perpendicularly to a uniform magnetic field

is always perpendicular to its velocity vector.

Therefore, it is directed at every moment toward a

single point—the center of the circular path the

particle follows.

(a) The magnetic force (given by the expression qvB)

therefore provides a centripetal force always given

by m\'^/R). Show that the radius of the circle R is

direcdy proportional to the momentum of the

particle mv.

(b) What information would you need to determine

the ratio of the particle's charge to its mass?

38. By referring to the information given in the last

problem,

(a) find an equation for the period of the circular

motion of a charged particle in a uniform inagnetic

field.

(b) show mathematically that the radius of the

helical path will be smiiller where the magnetic field

strength is greater. (See sketch.)

(c) using the right-hand rule, show that the direction

of the deflecting force on the particle oppost^s the

movement of the particle into the region of stronger

field.

39. If the energv' of chiirged particles approaching

the earth (from the sun) is very great, they will not
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be trapped in the Van Allen belts. Rather, they will be

somewhat deflected, continuing on past or into the

earth. The direction of the lines of force of the

earth's magnetic field is toward the earth's north

end. If you set up a detector for positively charged

particles on the earth, would you expect to detect

more particles by directing it slightly toward the east

or slightly toward the west?

40. William Gilbert, in De Magnete, recorded that a

piece of amber that had been rubbed attracted

smoke rising from a recently extinguished candle.

The smoke particles had been charged by passing

through the ionized gases of the flame. After the

development of electrostatic machines, experiments

were done on the discharges (called corona

discharges) from sharp or pointed needlelike

electrodes. As long ago as 1824 it was found that

passing such a discharge through a jar filled with fog

cleared the fog from the jar. A similar experiment

was performed using tobacco smoke. The corona

discharge in these experiments ionized the gas,

which in turn charged and precipitated the water

droplets of the fog or the smoke particles.

However, no successful industrial precipitator was
built until Frederick Cottrell succeeded in using the

V

"^
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I
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electric generator, high-voltage transformer, and
mechanical rectifier developed late in the nineteenth

century. Cottrell achieved both a strong corona

discharge and a high potential difference between
the discharge electrode and the collecting electrode.

Since that time, many "electrostatic precipitators"

have been built by electrical engineers to collect

particulate matter. The most important such

particles are fly ash from the burning of coal in the

electrical power industry.

(a) Why are neutral particles attracted to the central

wire?

(b) Would the precipitator work if the central wire

were + and the casing — ?

CHAPTER 14 / STUDY GUIDE 463



Faraday anil the Electrical Age

la.l The problem: Getting energi' from one place to another

15.2 Faradaj^'s first electric motor
15.3 The fliscoi'er*' of electromagnetic induction

15.4 Generating elecrtricit^' bv the use of magnetic fields: The
fh'namo

15.5 ITie electric motor
15.6 The electric light bulb
15.7 Ac versus dc and the Niagara Falls power plant

15.8 ElectriciU' and society'

15.9 Alternate energy' sources

15.10 The efficiency of an electric poiver plant

SG 1

I.5.I.
I

The problem: Getting ener^^ from one
place to another

In Chaptei" 10, the development of steam engines in the

eighteenth and nineteenth centuries was discussed. These

engines enabled Europe and America to make use of the vast

stores of energy contained in coal, wood, and oil. By burning

fuel, chemical energy can be converted to heat energy, which in

turn can be used to make steam. By letting the steam expand

against a piston or a turbine blade, heat eneig\' can be convei-ted

to mechanical energy. In this way, a coal-fueled steam engine

can povx'er machinery'.

Steam engines had two major defects. First, the mechanical

energy was available only at the place where the steam engine
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was located. Second, practical steam engines were big, hot, and

dirty. As the use of machines run by steam engines increased,

people were crowded together in factories, and their homes
stood in the shadow of the smoke stacks. Even steam-powered

locomotives, though useful for transportation, were limited by

their size and weight. They also added further to polluting the

air.

These defects could be partially overcome by using one central SG 2

power plant for sending out energy for use at a distance. This

energy could drive machines of any desired size and power at

the most practical locations. After Volta's development of the

battery, many scientists and inventors speculated that electricity

might provide such a means of distributing energy and running

machines. But the energy in batteries is quickly used up unless it

is delivered at a low rate. A better way of generating electric

currents was needed. When such a way was found, it changed

the whole shape of life in homes, factories, farnis, and offices. It

even changed the very appearance of cities and landscapes.

In this chapter you will see another example of hov\'

discoveries in basic physics have given rise to new technologies.

These technologies have revolutionized and benefited modern
civilization. But they have brought some new^ problems in their

turn. SG 3
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Ampere also sensed that electricit%'

might transmit not only energy but

also information to distant places.

Two versions of Faraday s electro-

magnetic rotator. In each, the cup
was filled with mercury so that a

current could be passed between

the base and overhead support.

'^

W---^

In one version (left) the north end

of a bar magnet revolves along the

circular electric lines of force sur-

rounding the fi^ed current. In the

other version (right), the rod carry-

ing the current revolves around
the fi^ed bar magnet, moving al-

ways perpendicular to the mag-
netic lines of force coming from
the pole of the magnet.

The first clue to the broader use of electricity came from

Oersted's discovery that a magnetic needle is deflected by a

current ft om a battery. Since an electric current can exert a force

on a magnet, many physicists naturally speculated that a magnet
could somehow produce a current in a wire. (Such reasoning

fiom symmetry is common in physics and often is useful.) Soon
after the news of Oersted's discovery reached Paris, the French
physicists Biot, Savart, and Ampere began research on the

interactions of electricity and magnetism. ISome of their results

were mentioned in Chapter 14.) A flood of other experiments and
speculations on electromagnetism poured from all over the

world into the scientific journals. Yet the one key discovery'

—

how to generate an ample and continuous electric current—still

eluded everyone.

1.5.2
I

Faraday's first electric motor

Scientific journals regularly print brief announcements of the

technical details of new discoveries. From time to time they also

provide valuable in-depth suiveys of recent broad advances in

science. The need for such a review article is especially great

after a burst of activdty of the kind that followed Oersted's

discovery of electromagnetism in 1820.

In 1821, the editor of the British journal Annals of Philosophy

asked Michael Faraday to re\dew the experiments and theories of

electromagnetism that had appeared in the previous year.

Faraday's first discovery in electromagnetism came on September

3, 1821. Repeating Oersted's experiment (described in Sec. 14.11),

he put a compass needle at various places around a current-

carrying wire. Faraday v\'as particularh' struck by one fact: The
force exerted by the current on each pole of the magnet tended

to cany the pole along a circular line around the wire. As he

expressed it later, the wire is surrounded by circular lines of

force: a circular magnetic field. Faraday then constructed an

"electromagnetic rotator" based on this idea. It worked. Though
very primitive, it was the first device for producing continuous

motion by the action of a current: the first electric motor.

Faraday also designed an arrangement in which the magnet
was fixed and the cutrent-cariying wire rotated around it. (If a

current exerts a force on a magnet, the magnet should exert an

equal force on the current, according to Newton's third law.) As

in many other cases, Faraday was guided by the idea that for

every effect of electricity on magnetism, there must exist a

corresponding effect of magnetism on electricitv. Of cour se, it

was not always so obvious what form the corresponding effect

would take.
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1. why does the magnetic pole ofFaraday s "electromagnetic

rotator" move in a circle around afi;<.ed wire?

l.S«3
I

The discovery of electromagnetic
induction

Armed with his "lines of force" idea of electric and magnetic

fields, Faraday joined the search for a way of producing currents

by magnetism. Scattered through his diary in the years after 1824

are many descriptions of such experiments. Each report ended
with a note: "exhibited no action" or "no eifect."

Finally, in 1831, came the breakthrough. Like many discoveries

that follow much research and discussion among scientists, this

one w^as made almost at the same time by two scientists working

independently in different countries. Faraday was not quite the

first to produce electricity from magnetism. Electromagnetic

induction (the production of a current by magnetism) was
actually discovered first by the American scientist Joseph Henry.

At the time Heniy was teaching mathematics and philosophy at

an academy in Albany, New York. Unfortunately for the

reputation of American science, teachers at the Albany Academy
were expected to spend all their time on teaching and related

duties. There was little time left for research. Henry had hardly

any opportunity to follow up his discovery, which he made
during a one-month vacation. He was not able to publish his

work until a year later. In the meantime, Faraday had made a

similar discoveiy and published his results.

Faraday is known as the discoverer of electromagnetic

induction not simply because he published his results first. More
importantly, he conducted exhaustive investigations into all

aspects of the subject. His earlier experiments and his ideas

about lines of force had suggested that a current in one wire

should somehow induce a current in a nearby wire. Oersted and

Ampere had shown that a steady electric current produced a

steady magnetic field around the circuit carrying the current.

Perhaps a steady electric current could somehow be generated if

a ware were placed near or around a very strong magnet. Or a

steady current might be produced in one vvdre by a veiy large

steady current in another vvdre nearby. Faraday tried all these

possibilities, vvath no success.

The solution Faraday found in 1831 came partly by accident.

He was experimenting with two wire coils that had been wound
around an iron ring (see illustration in the margin). He noted

that a current appeared in one coil w^hile the current in the

other coil was being switched on or off. When a current was
turned on in coil A, a current was induced in coil B, but it lasted

^l
I

'^>^
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Close Upl
Michael Forodoy

Michael Faraday (1791-1867) was the son of an

English blacksmith. In his own words:

My education was of the most ordinary descrip-

tion, consisting of little more than the rudiments

of reading, writing and arithmetic at a common

day-school. My hours out of school were passed

at home and in the streets.

At the age of 12 he went to work as an errand

boy at a bookseller's store. Later he became a

bookbinder's assistant. When Faraday was about

19 he was given a ticket to attend a series of lec-

tures given by Sir Humphry Davy at the Royal In-

stitution in London. The Royal Institution was an

important center of research and education in sci-

ence, and Davy was Superintendent of the Institu-

tion. Faraday became strongly interested in science

and undertook the study of chemistry by himself. In

1813, he applied to Davy for a job at the Royal

Institution and Davy hired him as a research as-

sistant. Faraday soon showed his genius as an ex-

perimenter. He made important contributions to

chemistry, magnetism, electricity and light, and

eventually succeeded Davy as superintendent of

the Royal Institution.

Because of his many discoveries, Faraday is gen-

erally regarded as one of the greatest of all experi-

mental scientists. Faraday was also a fine lecturer

and had an extraordinary gift for explaining the

results of scientific research to non-scientists. His

lectures to audiences of young people are still delight-

ful to read. Two of them, "On the Various Forces

of Nature " and "The Chemical History of a Candle,

"

have been republished in paperback editions.

Faraday was a modest, gentle, and deeply reli-

gious man. Although he received many interna-

tional scientific honors, he had no wish to be

knighted, preferring to remain without title.

Faraday's laboratory at the Royal Institution



^JJUm'^i'^ *-»»^ ^-t"»'»«» •»^£- »^»*C- ••*^'' ^K'^ .^^ ''*^

.>VJ<

1,/^ ^A'.-..»-...-'<Cw '^

* ,</_ •..-^ /^ / f /^^

only a moment. As soon as there was a steady current in coil A,

the current in coil B disappeared. When the current in coil A
was turned off, a current again appeared briefly in coil B.

To summarize Faraday's result: A current in a stationary wire

can induce a current in another stationary wire only while the

current is changing. A steady current in one wire cannot induce

a current in another wire.

Faraday was not satisfied wdth merely observing and reporting

his accidental arrangement and its important result. Guided by

his concept of "lines of force," he tried to find out the basic

principles involved in electromagnetic induction.

According to Faraday's theory, the changing current in coil A
would change the lines of magnetic force in the whole iron ring.

The change in lines of magnetic force in the part of the ring near

coil B would then induce a current in B. But if this was really

the correct explanation, Faraday asked himself, should it not be

possible to produce the same effect in another way? In

particular:

1. Is the iron ring really necessary to produce the induction

effect? Or does the presence of iron merely strengthen an effect

that would also occur wdthout it?

2. Is coil A really necessary? Or could current be induced

simply by changing the magnetic lines of force through coil B in

some other way, such as by moving a simple magnet relative to

the wire?

Faraday answered these questions almost immediately by
performing further experiments. First, he showed that the iron

Part of a page in Faraday's diary

where he recorded the first suc-

cessful experiment in electromag-

netic induction (about one-half the

actual size).
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ring was not necessary. Starting or stopping a current in one coil

of wire would induce a momentary current in a nearby coil, with

only air (or a vacuum) between the coils. (See top figure on this

page. Note that there is no battery in the circuit at the right, only

a meter to measure the induced current.) Second, he studied

what happened when a bar magnet was inserted into or

removed from a coil of wire. He found that a current was
induced at the instant of insertion or removal. (See second figure

at the left.) In Faraday's words,

A cylindrical bar magnet . . . had one end just inserted into the

end of the helix cylinder; then it was quickly thrust in the

whole length and the galvanometer needle moved; when pulled

out again the needle moved, but in the opposite direction. The

effect was repeated every time the magnet was put in or out. . .

.

Note that this is a primitive electric generator; it pro\ides electric

current by having some mechanical agent move a magnet.

Having done these and many other experiments, Faraday

stated his general principle of electromagnetic induction.

Basically, it is that changing lines of magnetic force can induce a

current in a wire. The needed "change " in lines of force can be

produced either by a magnet moving relative to a wire or by a

changing current. In the case of the moving magnet, Faraday

described the wire as "cutting across" lines of force. In the case

of changing current, the lines offeree "cut across" the wire. He
later used the word field to refer to the arrangement and

intensity of lines of force in space. Therefore, a current can be

induced in a circuit by changes in a magnetic field around the

circuit. Such changes may result either from relative motion of

wire and field or simply from a change in intensity of the field.

So far, Faraday had produced only inomentarv surges of

current by induction. This was hardly an improvement over

batteries as a source of current. Was it possible to produce a

continual current by electromagnetic induction? To do this

would require a situation in which inagnetic lines of force were

continually changing relative to the conductor. Using a simple

magnet, the relative change could be produced either by moving

the magnet or by moving the conductor. This is just what

Faraday did. He turned a copper disk between the poles of a

magnet. (See illustration in inargin.l A steady current was
produced in a circuit connected to the disk through brass

contacts or "brushes." His device, called the "Faraday disk

dynamo," was the first constant-current electric generator. This

particular arrangement did not turn out to be veiy piactical, but

it showed that continuous generation of electricity was possible.

These firet experimental ineans of producing a continuous

current were important aids to understanding the connection

between electiicitv and magnetism. Moreover, thev suggested the
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possibility of ev^entually generating electricity on a large scale.

The production of electrical current involves changing energy

from one form to another. When electrical energy appears, it is at

the cost of some other form of energy. In the electric batteiy,

chemical energy (the energy of formation of chemical

compounds) is converted to electrical enei'gy. Batteries are useful

for many portable applications (automobiles and flashlights, for

example). But it is not practical to produce large amounts of

electrical energv by this means. There is, however, a vast supply

of mechanical energy available from many sources. Electrical

energy could be produced on a large scale if some reasonably

efficient means of conveiting mechanical energy to electrical

energy were available. This mechanical energy might be in the

form of wind, or falling water, or continuous mechanical motion

produced by a steam engine. The discoveiy of electromagnetic

induction showed that, at least in principle, it was possible to

produce electricity by mechanical means. In this sense, Faraday

can rightly be regarded as the founder of the modein electrical

age.

# 2. Why is Faraday considered the discoverer of
electromagnetic induction':'

3. What is the general definition of electromagnetic induction?

15.4
I

Generating electricity by the use of
magnetic fields: The dynamo

Faraday had shovvai that when a conducting wire moves relative

to a magnetic field, a current is produced. Whether it is the wire

or the magnetic field that moves does not matter. What counts

is the relative motion of one with respect to the other. Once the

principle of electromagnetic induction had been discovered,

experimenters tested many combinations of wires and magnets
in relative motion. One basic type of generator (or "dynamo," as

it was often called) was widely used in the nineteenth century.

In fact, it remains the basic model for many generators today.

This foiTn of generator is basically a coil of w^ire that can be

rotated in a magnetic field. The coil is connected to an external

circuit by sliding contacts. On page 472, in the diagram above

and on the left, the "coil" is shown for simplicity as a single

rectangular loop of wire. This loop rotates around an axis XY
between the north and south poles of a magnet. Two conducting

rings d and e are permanently attached to the loop and,

therefore, also rotate around the axis. Conducting brushes /and
g complete a circuit through a meter at h that indicates the

current produced. The complete circuit is abdfhgea. (Note that

W,

One generator of 1832 had a per-

manent horseshoe magnet rotated

by hand beneath two stationary

coils in which current was induced.
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Alternating-current

generator.

one part of the wire goes through ring d without

touching it and connects to e.l

Initially, the loop is at rest between the

magnetic poles and no charge flows through it.

Now suppose the loop is rotated counter-

clockvvdse. The wire's long sides a and b now
have a component of motion perpendicular to

the direction of the magnetic lines of force; that

is, the wire "cuts across" lines of force. This is

the condition for inducing an electric current in

the loop. The greater the rate at which the lines

are cut, the greater the induced current.

To understand better what is going on in the

wire, you should understand its operation in

teiTHS of the force on the charges in the wire. It is

the movement of these charges that fomis the

current. The charges in the part of the loop

labeled b are being physically moved together

with the loop across the magnetic field.

Therefore, they experience a magnetic force given

by qvB (as described in Sec. 14.13 i. This force

pushes the charges in the wire "oft to the side.
'

In this situation, "off to the side " is along the

wire.

What about side a? It is also moving through

the field and "cutting" lines of force, but in the

opposite direction. So the charges in a

experience a push along the wire in the direction

opposite to those in b. lliis is just what is

needed; the two effects reinforce each other in
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Direct-current

generator.

1 a/KiiEJur

.^^ -Time,

generating a current around the whole loop. The
"push" that produces the current can also be

regarded as resulting from a potential difference

("voltage ") induced in the loop of wire. Therefore,

a generator produces both "voltage" and current.

The generator just described produces

alternating current (abbreviated ac). The current

is called "alternating" beciiuse it regularly

reverses (alternates) its direction. This is

indicated in the margin on page 472. At the time

this kind of generator was first developed, in the

1830 s, alternating current could not be used to

run machines. Instead direct current (dc) was
needed.

In 1832, Ampere announced that his

instrument maker, Hippolyte Pixii, had solved the

problem of generating direct current. Pixii

modified the ac generator by means of a device

called the commutator, rhe name comes from

the word commute, to interchange or to go back

and foi"th. The commutator is a split cylinder (see

top of this page) inserted in the circuit. In the ac

generator (previous page), brushes /and g are

always connected to the same part of the loop.

But with the commutator, the biTishes reverse

connections each time the loop passes through

the vertical position. Just as the direction of

current induced in the loop is at the point of

reversing, the contacts reverse. As a result, the

current in the ouside circuit is always in the

same direction.
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Although the current in the outside circuit is ahvcixs in the

same direction, it is not constant. It I'ises and falls lapidK'

between zero and its niaxiniuni \alue, as shown in tiie drawings

on page 473. hi working generators, many sets of loops and

commutators are connected together on the same shaft. In this

way, their induced currents reach their maximum and zei'o

values at difterent times. The total current from all of them
together' is then more urniforrii.

SG 6 Whether a generator delixers alternating or direct current, the

electric power* lenei'g\' per unit timei produced at e\ery instant is

given by the same equation developed in Sec. 14.10. For example,

suppose that a wire (for example, the filament wire in a light

bulb) with resistance R is substituted for- the meter at /?. If the

current generated in the circuit at a given time is /, the electrical

energy per- unit time delixered to the wive is gi\'en by I'B. For

alter-nating current, the power- output varies from instant to

instant. But the average output power is simply il~l,,fi. This

electrical energy, of course, does not appear- by itself, v\'ithout

any source. That would violate the laws of conservation of

energy. In the generator, the "source" of energy is clearly the

mechanical energ\' thiit keeps the coils rotating in the magnetic

field. This mechanical ener-gy is provided by a steam or gasoline

engine, or by water power, wind power, etc. The generator is

thus a device for converting mechanical energy to electrical

SG 7-9 energv'.

# 4. What is the position of a rotating loop when it generates

ma^imuTTi current? minimum? Why?

5. What is the purpose of the commutator?

6. Where does the energy delivered by the generator come
from?

1.5«^
I

The electric motor

The gi^eatest obstacle to practical irse of electric motor's was the

lack of cheap electric current to run them. The chemical energx'

in batteries was quickly exhausted. The d3aiamo, inxented almost

simultaneously b\ Faraday and Henrv in 1832, was at fir'st also

not at all economical in producing electrical current when
mechanical energy was expended on it. Generators that used

mechanical power- efficiently to pr-oduce electric power were

needed. But to design such generators reciuired an

understanding of the details of operation and this

understanding took nearly 5Q years.

In fact, a chance e\ent marked the eifectixe start of the electric

power age. This event was an accidental discoxerA' at the \ ienna
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EUctricai energy MecKnriicfll eriergy

GEMRATOR MOTOR

Exhibition of 1873. The stoiy goes that an unknowai worker at the

Exhibition just happened to connect two dynamos together. The
first dynamo, which was mechanically driven, generated current,

and this current then passed through the coils of the second

dynamo. Amazingly, the second dynamo then ran as an electric

motor, driven by the electricity generated by the fijst dynamo.

This accidental discoveiy that a generator (dynamo) could

function as a motor was immediately utilized at the Exhibition. A
small artificial waterfall was used to drive the generator. Its

current then drove the motor, which in turn operated a device

that did mechanical work. This is the basic operation of a

modern electrical transmission system. A turbine driven by steam

or falling vv^ater drives a generator that converts the mechanical

energy to electrical energy. Conducting wires transmit the

electricity over long distances to motors, toasters, electric lights,

etc. These devices in turn convert the electrical energy to

mechanical energy, heat, or light.

The development of electrical generators shows an interaction

of science and technology different from that of the development

of steam engines. As was pointed out in Chapter 10, the early

steam engines were developed by practical inventors. These

inventors had no knowledge of what is now considered to be the

correct theory of heat (thermodynamics). But their development

of the steam engine, and attempts by Sadi Carnot and others to

improve its efficiency through theoretical analysis, contributed

greatly to the establishment of themiodynamics. In that case, the

advance in technology came before the advance of science. In

the case of electromagnetism, the reverse occurred. A large

amount of scientific knowledge was built up by Ampere, Faraday,

Kelvin, and Maxwell before any serious practical application

succeeded. The scientists, who understood electricity better than

anyone else, were not especially interested in commercial

applications. And the inventors, who hoped to make huge profits

from electricitv, knew veiv little theoi^. After Faradav announced

SG 10

SG 11

A commercial generator. As in al-

most all large generators, the coils

of wire in which current is induced
are around the outside, and elec-

tromagnets are rotated on the in-

side.
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his discoveiy of electromagnetic induction, people started

making generators to produce electricity immediateK . But it was
not until 40 years lat(M' that in\entois and engineers understood

enough to work with such necessaiA' concepts as lines of force

and field vectors. With the introduction ol the telegraph,

telephone, radio, and altcinating-curient powei' systems, a much
greater mathematical knowledge was needed to work \\ ith

electricitv'. Universities and technical schools started to give

courses in electrical engineering. Gradually, a group of specialists

developed who were familiar with the physics of electricity and

who also knew how to appl\' it.

Water-driven electric generators

producing power at the lennessee

Valley Authority. The plant can gen-

erate electric energy at a rate of

over 100,000,000 watts. • 7. How would vou make an electric motor out of a generator?

8. What prevented the electric motor from faeZ/ig an

immediate economic success?

9. What chance event led to the hegintuna, of the electric

power age?
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15.6
I

The electric light bulb

The growth of the electric industry has resulted largely from the

great public demand for electrical products. One of the first

commercially successful electrical products in the United States

was the electric light bulb. Its success is an interesting case of

the relationship between physics, industry, and society.

At the beginning of the nineteenth century, buildings and
homes were lit by candles and oil lamps. There was almost no
street lighting in cities except for a few lights hung outside

houses at night. The natural gas industry was just starting to

change this situation. London got its first street lighting system

in 1813, when gas lights were installed on Westminster Bridge.

However, the social effects of gas lighting were not all beneficial.

For example, gas lighting in factories enabled employers to

extend an already long and difficult working day into one still

longer.

In 1801, the British chemist Humphiy Davy noted that a

brilliant spark or arc appeared when he broke contact between
carbon rods connected to the two terminals of a battery. This

discovery led to the development of the arc light.

The arc light was not practical for general use until steam-

driven electrical generators replaced expensive batteries as a

source of current. In the 1860's and 1870s, arc lights began to be

used for street lighting and lighthouses. However, they were too

glaring and too expensive for use in the home. Also, the carbon

rods burned up in a few hours because of the high temperatures

produced by the arc. This need for fi^equent service and
replacement made the system inconvenient. (Arc lights are still

used for some high-intensity purposes, such as spotlights in

theaters and motion picture projectors.)

As Davy and other scientists showed, light can be produced
simply by heating a vvdre to a high temperature by passing a

current through it. This method is known as incandescent

lighting. The major technical drawback was that the ware

filament gradually burned up. The obvious solution was to

enclose the filament in a glass container from which all the air

had been removed. But this was easier said than done. The
vacuum pumps available in the early nineteenth century could

not produce a strong enough vacuum for this purpose. It was
not until 1865, when Hennann Sprengel in Germany invented an
improved vacuum pump, that the electric light bulb in its

modem form could be developed. ( Sprengel s pump also greatly

aided Crookes and others in scientific experiments leading to

important discoveries in atomic physics. These discoveries will

be discussed in Chapter 18.)

Thomas Edison was not the first to invent an incandescent

light, nor did he discover any essentially new scientific

CHAPTER 15 / FARADAY AND THE ELECTRICAL AGE

Davy's arc lamp.

Demonstrations of the new electric

light during a visit ofQjueen Victo-

ria and Prince Albert to Dublin,

Irelandfrom Illustrated London
News, August 11, 1849.

In the late 1800's, dynamo-powered
arc lamps were used in some Eu-
ropean cities.
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Lewis Howard Latiinrr 1 1S4<S-I92H).

The son of a runawav slave, Lati-

mer became one of the original as-

sociates of Thomas Edison. Lati-

mer was an inventor, patent

authority, poet, draftsman, author,

and musician.

Edison in his laboratory'.

Series circuit

principles. What he did was develop a practical light bulb for use

in homes. Even more important, he worked out a distribution

system for electricity. His system not only made tlie light bulb

practical, but opened the way for- mass consumption of electrical

energy in the United States.

Edison started by making an important assumption ^ibout how
people would want to use theic light bulbs. He decicUni that each

customer must be able to turn on and off any single bulb

without affecting the other bulbs connected to the circuit. This

meant that the bulbs must be connected "in parallel, ' like the

i\ings of a ladder, rather than "in series."

The choice of parallel rather than series circuits had important

technical consequences. In a series circuit, the same current

goes through each bulb. In a parallel circuit, only part of the

total current available from the source goes through an\' one

bulb. I'o keep the total curient needed from being too large, the

current in each bulb has to be small.

As noted in Chapter 14, the heating effect of a current depends

on both the resistance of the w'we and the amount of current.

The rate at which heat energy is produced is I'li: that is, the rate

goes up directly as the i^sistance, but increases as the sqiuire

of the current. Therefore, most inventors used high-cuirent, low-

resistance bulbs and assunKxl tliat paiallcl ciicuits would not
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be practical. Edison realized that a small current can have a large

heating effect if the resistance is high enough.

So Edison began a search for a suitable high-resistance,

nonmetallic substance for his filaments. To make such a filament,

he first had to bake or "carbonise" a thin piece of a substance.

Then he sealed it inside an evacuated glass bulb with wires

leading out. His assistants tried more than 1,600 kinds of

material: "paper and cloth, thread, fishline, fiber, celluloid,

boxwood, coconut-shells, spruce, hickory, hay, maple shavings,

rosewood, punk, cork, flax, bamboo, and the hair out of a

redheaded Scotchman's beard." Edison's first successful high-

resistance lamp was made wdth carbonized cotton thread in a

high-vacuum sealed bulb. It burned continuously for two days

before it fell apart. This was in October 1879. The following year,

Edison produced lamps with filaments made from bamboo and
paper.

T. A. EDISON.
Electric-Lamp.

No. 223,898. Patented Jan. 27. 1880.

fnO^nLU

Sliciiuia CI. S(i(Jxn'

SG 12, 13

One type of Edison lamp. Note the

familiar filament and screw-type

base.

The Edison Electric Light Company began to install lighting

systems in 1882. After only 3 years of operation, the Edison

company had sold 200,000 lamps. It had a virtual monopoly of

the field and paid big dividends to its stockholders.

The electric light bulb had changed somewhat since Edison's

original invention. For example, the carbonized filaments of the

older lamps had been replaced in newer bulbs by thin tungsten
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jU1uU1\I u Llljnl.

The Great Inyeutor's Triumph ir.

Electric Illamination.

A SCRAP OF PAPER.

It Makes a Light, 'VVitljout Gas or

Flame, Cheaper Than Oil.

IfiANSFORlD IN THE FORNAGE,

Complete Details of the Perfected

Carbon Lamp.

FIFTEEN MONTHS OF TOIL.

hvj of H's Tireless ExpeniueDts will] Lamps,

Burners id GaEerators.

SUCCESS IN A COTTON THREAD.

The Wizard's Byplay, with Eodily Pain

and Gold "Tailings."

UiSTORY OF ELECTRIC LIGHTING.

Tiic Dur approacb of tbc firat puulLc exhibition ot

E'jisoD't long loukrd for electric li(;li[, lauouucod to

luke pliu:e on >iev Vesr's £vo *t HodIo Park, ou

%>l:.cU (icckiuou that pace will bo iUuui mated witb

tti>: Dcw liuht. has revived put>lic iiit^rent la tUn

(ri.Mt luveotor'a vork, and tbrougbuut ttc civilized

vurid Bcieutists and people gunerally are anuously

a»'ailiuK the rc>>ult. From tlio brginniug of bia ci-

pcr oieiita in electric ll^bting lo tUe prcseut time

^r. f.dison h^a kept liis laboritory guirdedly

c:.'!>c>l. and no autUoritatire account (except tbat

P<jU.j>ili<.d in the UutiLD aomo montiis ago r^'latin^;

lo hit first piicut) of any of tbo iiuportaut et'^pa o;

his progreaa haa been uiade public—a course of pro-

eiJurc tUo inventor found abeolatcly neceaaarj for

bis own pioteciiou. Tho Hiilulxi la now, bowuver,

eii*bled to present to Ita r«ader8 a full and accurate

account ot hia work from Ita loc«ptlon to Ita com-

Jlciiou.

A uainu> parrji.

r.auou'a electric light, lucrediblo aa It may appear,

l! pro.luced from a littla picco of paper—a tiny atrtp

o.' uaper that a breath would blow away Thron,^.

wires. Tungsten had tlie advantages of greater efficiency and

longer life.

The widespread use of light bulbs confirmed the soundness of

Edison's theoiy about what people would buy. It also led to the

rapid development of systems of power generation and

distribution. The need for more power for lighting spurred the

invention of better generators, the harnessing of watei- power,

and the invention of the steam turbine. Success in pro\iding

large quantities of cheap energy made other uses of electricity

practical. Once homes were wired for electric lights, the current

could be used to run sewing machines, vacuum cleaners,

washing machines, toasters, and (later onl refrigerators, freezers,

radios, and tele\ision sets. Once electric power- was available for

relatively clean public transportation, cities could grow rapidly in

all dimensions. Electric elevators made high-iise buildings

practical, while electric tramways and subways rapidly

transported people firom their homes to jobs and markets.

We are now so accustomed to more sophisticated applications

of electricity that it is hard to realize the impact of something as

simple as the light bulb. But most people who lived through the

period of electrification, which was as late as the 1930's and

1940's in many rural areas of the United States, iigreed that the

electrical appliance that made the greatest difference in their

daily lives was the electric light bulb.

10. Why were arc lights not used for ilhirninating homes?

11. What device was essential to the development of the

incandescent lamp?

12. Why did Edison require a substance with a high resistance

for his light bulb filaments?

13. What were some of the major effects the introduction of

electric power had on everyday life?

l^.T
I

Ac versus dc and the Niagara Falls
poner plant

Section 15.4 stated that the eaiiiest electiic generators produced

alternating current, which could be changed Into diiect current

by the use of a commutator. Throughout most of the nineteenth

centuiy, most engineers believed that only dc was useful in

practical applications of electricity. However, as the demand foi-

electric power increased, some disadvantages of dc became
evident. One problem was that the commutator com|?licated the

mechanical design of generators, especialK if the ring had to

rotate at high speed. This (lillicultx' b(H"ame even more serious
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after the introduction of steam turbines in the 1890 s, since

turbines work most effectively at high speeds. Another

disadvantage was there was no convenient way of changing the

generated voltage of a direct current supply.

Why should it be necessary to change the voltage with which
current is driven through a transmission system? One reason

involves the amount of power lost in heating the transmission

wires. The power output of a generator depends (as indicated in

Sec. 14.10) on the output voltage of the generator and the amount

of current:

The power made available by the generator is transmitted to

the line and to the consumer. The same amount of power can be
delivered at smaller / if V is somehow made larger. When there

is a current / in a transmission wire of resistance R, the portion

of the power lost as heat in transmission is proportional to the

resistance and the square of the current:

Opposite page: First newspaper
account of Edison s invention (New
York Herald, December 21, 1879).

SG 14

"heat loss ' '^

The power finally available to consumers is P,^,,^, ~^heai loss
• For

transmission lines of a given resistance R, where the value of fi is

fixed by the wdres themselves, the current / should be as small

as possible in order to minimize the power loss. Obviously,

therefore, electricity should be transmitted at low current and at

high voltage.

However, most genei ators cannot produce electricity at veiy

high voltages. To do so would require excessively high speeds of

the moving parts. Some way of "stepping up" the generated

electricity to a high voltage for transmission is needed. But some
way of "stepping dowoi ' voltage again at the other end, wheie
the consumer uses the power, is also needed. For most
applications of electricity, especially in homes, it is neither

convenient nor safe to use high voltages. In short, transformers

are needed at both ends of the transmission line.

A transformer can easily be made by a simple change in

Faraday's induction coil (Sec. 15.4). Recall that Faraday wound a

coil of wire called the secondary coil) around one side of an iron

ring. He then induced a current in this secondary coil by

changing a current in another coil (the primary coil) wound
around the other side of the ring. A current is induced in the

secondaiy coil whenever the primaiy current changes. If the

primary current is changing all the time, then a current is

continually induced in the secondaiy. An alternating current

applied to the primaiy coil (for example, from a generator

without a commutator) induces an alternating current in the

secondai-y coil.
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A steady current (del in the priman'
induces no current at all in the sec-

ondary; transformers work on ac.

By the law of ronsenation of en-

ergy, the output power from a

transformer cannot exceed the in-

put power. So if the output \'oltagc

is increased (by a greater coil ratio

for the secondan' coill, the; output

current will decrease proportion-

ally.

SC; 1.^17

SG 18

One more concept is important to undeistanding a simple

electric tianstormer. If the secondaiy lias more turns than the

primaiy, the alternating voltage produced across the secondaiy

coil will he greater than that across the primaiy. If the secondaiy

has ^wer turns than the primaiy, the alternating voltage

produced across the secondaiy will be lower than the voltage

across the primaiy. This fact was discovered by Joseph Henry,

who built the first transformer in 1838.

The first ac system was demonstrated in Paris in 1883. An
experimental line that powered arc and incandescent lighting,

through transformers, was installed in a railway line in London
in 1884. Another one was exhibited shortly afteiward in Italy. An
American engineer, George VVestinghouse, saw the Italian system

and bought the American patent rights for it. VVestinghouse had
already gained a reputation from his im'ention of the railway air

brake. He also had set up a small electrical engineering company
in Pittsburgh. After improving the design and construction of

transfomiers, the VVestinghouse Electric Company set up its first

commercial installation in 188(3. Its purpose was to distribute

alternating current for incandescent lighting in Buffalo, New
York.

When VVestinghouse introduced its ac system in the United

States, the Edison Electric Light Company held an almost

complete monopoly of the incandescent lighting business. The
Edison Company had invested a great deal of mone\' in dc

generating plants and distribution systems for most of the large

cities. Naturally, Edison was alarmed bv a new compam- that

claimed to produce electric power for illumination with a much
cheaper system. A bitter public controversy followed. Edison

attempted to show that ac was unsafe because of the high

voltage used for transmission. In the middle of the dispute, the

New York State Legislature passed a law establishing

electrocution as a means of capital punishment. This event

seems to have added to the popular fear of high \ oltage.

Nevertheless, the VVestinghouse system continued to grow.

There were no spectacular accidents, and th(^ public began to

accept ac as reasonably safe. The invention of the "rotaiy

converter" (essentially an ac motor driving a dc generator) also

helped to end the dispute. It could change ac into dc for use in

local systems already set up with dc equipment, or it could

power individual dc motors. So the Edison company (later

merged into General Electiici did not have to go out of business

when ac was generally adopted.

The final victory of the ac system was assured in 1893, when
ac was chosen for the new hydroelectric plant at Niagara Falls.

In 1887, businessmen in Buffalo had dangled a $100,000 prize

before "the Inventors of the World." Ihe prize would go to the

inventor who designed a system for utilizing the pow(M- of the
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Niagara River "at or near Buffalo, so that such power may be

made practically available for various puiposes throughout the

city." The contest attracted worldwide attention. Large quantities

of electrical power had never before been transmitted over such

a distance. It was 32 km from Niagara Falls to Buffalo. The
success or failure of this venture would influence the future

development of electrical distribution systems for other large

cities.

It was a close decision whether to use ac or dc for the Niagara

Falls system. Ac could be generated and transmitted more
efficiently. But the demand for electricity in 1890 was mainly for

lighting. This meant that there would be a peak demand in the

evening. The system would have to operate at less than full

capacity during the day and late at night. Because of this

variation in the demand for electricity, some engineers believed

that a dc system would be cheaper to operate. This was because

batteries could be used to back up the generators in periods of

peak demand. Thomas Edison was consulted, and without

hesitation he recommended dc. But the Cataract ConstiTiction

Company, which had been formed to administer the project,

delayed making a decision.

The issue was still in doubt in 1891, when the International

Electrical Exhibition opened in Frankfurt, Germany. There, a

fairly high-voltage ac line carrying sizable quantities of power 176

km from Frankfurt to Lauffen was demonstrated. Tests of the line

showed an efficiency of transmission of 77% ; that is, for eveiy 100

W fed in at one end of the line, only 23 were wasted by heating

effects in the line. The other 77 W were delivered as useful

power. The success of this demonstration reinforced the gradual

change in expert opinion in favor of ac over dc. Finally, the

Cataract Company decided to constiTict an ac system.

After the ac system had been established, it turned out that

the critics had been wrong about the variation of demand for

electricity throughout the day. Electricity found many uses

besides lighting. In the 1890 s, electric motors were already being

used in street railway cars, sewing machines, and elevators.

Because of these diverse uses, the demand for electricity was
spread out more evenly during each 24-hour period. In the

particular case of the Niagara Falls power plant, the source of

energy was the steady flow of water down the Niagara River, rhis

made it possible to produce energy continuously without much
extra cost. (The boiler for a steam turbine would either have to

be kept supplied with fuel late at night, or shut downi and
started up again in the morning.) Since hydroelectric power was
available at night at low cost, new uses for it became possible.

The Niagara Falls plant attracted electric furnace industries,

continually producing aluminum, abrasives, silicon, and graphite.

Previously, the electrochemical processes involved in these
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Wilson Dain I'l'cniwsscr \ alley Au-

thority), Alabama.

_A_

^
The general principle of hydroelec-

tric power generation is shown in

this sketch. Water flow ing from
a higher to a lower level turns tur-

bine blades attached to a generator

shaft. The details of construction

vary widely.

\'iagara Power Plant (above right).

SG 19

industries had been too expensive for large-scale use. Cheap
power now made them practical. These new industries in turn

pro\dded a constant demand for power, making the Niagara

project even more profitable than had been expected.

The first transmission of power to Buffalo took place in

November 1896. By 1899, there were 5,000 horsepower units in

operation at Niagara. The stockholders of the C^ataract

Construction Company already had earned a profit of better than

50% on their investment. The electrochemical industries, which

had not figured in the original plans at all, were using more
power than lighting and motors together.

There is a postscript to the stoiy of ac versus dc. Dc is now
coming back into favor for long-distance transmission of electric

power at high voltages.

14. Give one reason why it is more economical to trnnsn^it

electric power at high voltage and low current than at low

voltage and high current.
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15. Why will transformers not operate ifsteady do is furnished

for the primary coil?

15.8
I

Electricity and society

An optimistic view. Many times during the last 100 years,

enthusiastic promoters have predicted a marvelous future for us

all, based on the application of electricity to all phases of life.

Machinery run by electricity wdll do all the backbreaking physical

labor that has been the lot of 99% of the human race throughout

the ages, and still is for most of humanity today. The average

citizen will have nothing to do except supervise machinery for a

few hours a day and then go home to enjoy a life of leisure.

Electric machines vvdll also do all the household chores, such as

cleaning, laundering, ironing, cooking, and dishwashing.

Others, including President Franklin D. Roosevelt, who believed

that country life is more natural and healthy than city life,

conceived of electrical technology as having a social purpose. In

the nineteenth century, the steam engine had provided a source

of power that could take over most work done by humans and
animals, but to use this power people had had to crowd into the

cities, close to the power generating plant. Now that electrical

transmission of power at a distance was possible, people could

go back to the countiyside without sacrificing the comforts of

city life. Heating, lighting, and refrigeration by electricity would
make life easier and more sanitary in difficult climates. One of

the major achievements of Roosevelt's administration in the

1930 's was the rural electrification program. This program gave

loans to rural cooperatives for installing electrical generating and
distribution systems in areas where private power companies
had found it unprofitable to operate. Federal power projects

such as the Tennessee Valley Authority also assisted in the

campaign to make electricity available to everyone. Electricity

made country life a bit easier, reducing the physical labor

involved in farming and lengthening the day for leisure and
education. In this way, electrification should have helped to

reverse the migration of people from rural to urban areas.

An effect of electricity unforeseen by its original promoters has SG 20

been its tendency to unite a large country into a single social

unit by providing rapid transportation and even more rapid

communication between the different parts. In transportation,

electricity-operated devices play essential roles both in the mass
manufacture and in the operation of cars, trucks, and buses. As
to communication, remember that human society evolves much
as do biological organisms: All parts develop in step and increase

their interdependence. It follows that telecommunication and
modem civilization had to develop together. The telephone is
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Close UpI
Commercial Distribution of

Electric Power
The commercial distribution of ac electric power

requires elaborate transmission facilities. Genera-

tor output voltages of about IC volts are stepped

up to about 10' volts for transmission, stepped

down to about IC volts for local distribution, and

further stepped down to about 10^ volts by neigh-

borhood power-pole transformers. Within the home,

they may be stepped down further (often to 6 volts

for doorbells and electric trains, as with the trans-

former shown below) and stepped up by trans-

formers in radio and TV sets for operating high-

voltage tubes.





most valuable in a complicated, cosmopolitan society. In fact,

many of the basic institutions of society, for example, a free

Press, could not operate today without rapid, two-way electronic

communication

.

Optimists envision electricity doing more and more things for

a larger and larger part of the population. Electric appliances

such as refrigerators and air conditioners vvdll contribute to

healthier, more comfortable lives the world over. Electronic

communications will continue to spread, allowing an ever-greater

exchange of facts, opinions, and cultures. Electric machines will

do more and more of our difficult work for us. Thanks to

advances in science and related technology, many people no

longer have to spend almost all of their time working for the bare

necessities of life. Whatever it is that we really want to do, the

optimists say, electricity can help us do it better.

What it costs in a metropolitan area

to run some electric home appli-

ances (approximate, in cents):

refrigerator,

frostless, 16



appliance usually purchased by such families is a television set,

which, the skeptics say, is not likely to contribute much to

improving the quality of life.

The decentralization of population which electricity was
supposed to help produce has come about, but in an

unexpected way. The upper- and middle-income inhabitants of

cities have indeed been able to escape to the suburbs where they

can enjoy the convenience and pleasures of the electrical age.

But they have left behind them urban ghettos ci'owded udth

minority groups. These people are naturally angiy at being

deprived of the benefits of the "affluent society" and the

suburban life presented to them on television. As for the fanner,

modem technology has made agriculture into a giant industiy

with no place for the small landholder.

Electrical communications and rapid transportation are

binding us more and more into a close-knit, interdependent

social system. But this has its disadvantages, too. For example, an

electronic computer may be used by an employer or a state to

dredge up all a persons past mistakes. The threat of war has

become ever more terrifying because of modern weapons. In the

same way, the threat of an authoritarian state is much greater

when government adopts the tools of rapid communication and
information processing to its own puqDoses.

Electricity: Good or bad? Such criticisms illustrate the other

half of the total story. Electrical devices, like all other

technological improvements based on scientific discovery, are

Electric power lines in New York
State.
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neither good nor had hy themselves. Electricity increases

enormously the whole range of possibilities open to us. But

choices among these possibilities still have to be made on the

basis of value systems outside the framework of science or

technology. Important decisions lie ahead concerning

electrification, the use of nuclear power, automation and other

uses of cxjmputers, and many oth(M' appllc-alions of electricity.

These decisions cannot be left to the experts in physics or

engineering, to the public or private utilities, or to goxeinment

agencies. I'hey must be made by citizens who have taken the

trouble to learn something about the physical forces that play

such an important roh; in modein cixilization.

IS.9
I

Alternate energi^ sources

An experimental solar house. Glass

panels trap heat through the

greenhouse effect. Solar cells be-

neath the panels convert light to

electricity, which can then he

stored in batteries. Heat from the

cells is transferred to a coolant

and stort^d for later use.

There are other ways to obtain energv that can be used to

produce electricity, for example, harnessing the tides, wind

power, heat from the earth's depths, nuclear reactions, and the

energy that comes directly from the sun. This last, solar power, is

receiving intense study because of the vast amount of energy

potentially available.

Just outside the earth's atmosphere the sun's radiation

provides 1,360 VV of power to each square meter of surface. By

the time the radiation reaches the earth's surface, much of this is

lost, because of atmospheric absorption and clouds. Since the

earth rotates, direct sunlight is available in any particular' spot on

the earth's surface for only about 8 hr Ion the average) each day.

Depending upon the location, then, between 150 and 450 VV/m^

are delivered to ground level when ax'cr^aged oxer a 24-hr' per'iod.

This power can be used to boil water with which to power' an

ordinary steam turbine generating plant or' to heat water for

household use.

Sunlight can also be converted directly into electricity in

photocells or "solar " cells by a process called photovoltaic

conversion. The basic operation of the photocell is explained on

page 492. Even the best photocell is unable to turn all the energy

that strikes it into electrical ener'gv, for much of the light is

reflected, transmitted, or turned into heat within the cell. The
ratio of energy striking the cell to electrical energy produced is

called the efficiency. While the best efficiency obtairnable at this

writing is 23% for very specially prepared cells, a more topical

value for commercial cells is 12% . Moreover, the cost of a solar

cell is high, currently around S6 per watt of output. This is many
times the cost per watt of either- conventional or' nuclear- power
plants.

While solar" power- coirld solve many of the |jr'oblems r-(\sulting

fi-om fuel shor-tages and the enxironmcMital jjollution ol otiKM-

ener'gy sour'ces, the gener'aliori of exen a signilic-ant li.u lion ol
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our nation's electric power directly from the sun is dependent

on finding ways of building far less expensive collection systems

for accepting the sun's energy and storage systems for providing

the electricity when it is needed I at night, for example, or on
cloudy days). Probably the most practical use of solar energy

during the next decade or two will be to assist in the heating of

houses and in the production of hot water for home use.

IS.1.0
I

The efficiency of an electric poiver
plant

An electric power plant, whether powered by fossil fuels (coal,

oil, or gas) or nuclear fuel, needs both a heat engine and a

generator in order to produce electricity. The thermodynamic

limit of the efficiency of a heat engine sets veiy severe constraints

on how much of the energy released from burning the fuel is

ultimately available as electrical energy. (This limit does not, of

course, apply to hydroelectric plants.)

You saw in Unit 3 (Sec. 10.7) that any engine that converts heat

into mechanical work must also release heat into the

environment. A diagram of this process, w^hich can be applied to

Watt's steam engine or to a large steam turbine, has been

sketched in the margin. T^ and T^ are the temperatures of the

hot and cold reservoirs, respectively; Qj is the heat fed into the

engine; Q, is the waste heat released into the environment; and

W is the mechanical work obtained from the engine.

The second law of thennodynamics states that in the best

possible circumstances the efficiency (in) of the heat engine can

be no greater than

T,

T..

f]

This law was discussed in detail on page 296 in Sec. 10.7.

What does this mean for a power plant? Fuel is burned in a

combustion chamber; the chemical (or nuclear) energy is

converted into themial energy that keeps the combustion

chamber at the temperature T,. Water, heated by the combustion

chamber in the boiler, circulates through the plant as steam

during parts of its route and as liquid during others. In most

plants, very high-pressure steam is created in the boiler. This

steam pushes against the blades of a turbine, doing work on the

turbine, and leaves the turbine as steam at a much lower

pressure and temperature. The electric generator converts the

mechanical work done on the turbine into electric energy; this

process is not restricted by the second law because no thermal

energy is involved. Finally, the steam must be condensed so that

the water can retrace its route through the plant. This is done
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Close UpI
The Photocell

As you will see in Unit 5 when you study the

photoelectric effect, light can give up energy to the

electrons in a metal, causing the electrons to leave

the metal with kinetic energy. Since the metal is

originally uncharged, the loss of electrons leaves

it with a positive charge. If a conductor is placed

where it can collect the electrons, it will become
negatively charged. Such a device is called a pho-

totube, and it can be used to generate an electric

PHOTOTUBE

current from sunlight. Notice that as the charge

builds up, there will be a tendency for the electrons

to turn around and go the "wrong" way because

the negative charge already on the collector will

repel them (and the positive charge on the metal

will make it more difficult for electrons to escape):

What is needed here is some sort of "one-way

gate" that lets the electrons flow in one direction

only. To a limited extent, this can be done by con-

structing the light-sensitive plate from a metal that

gives up its electrons easily, and the collector from

a metal that does not. No phototube has yet been

built that serves as a useful energy source.

A better "one-way gate" can be constructed as

a sandwich of two thin layers of materials that ab-

sorb light and that conduct electricity far better than

an insulator but not as well as a metal. Silicon and

germanium are examples of such materials (called

"semiconductors '). A property of a junction be-

tween two suitable semiconductors is that an elec-

tric current can flow in only one direction. (The rea-

son for this will not be explained here. You can

learn more about this effect, which makes transis-

tors work as well, by reading, for example, the sup-

plementary unit on Electronics.)

Light striking the junction causes a separation of

charge, just as it does in a phototube. The sepa-

ration of charge creates a potential difference be-

tween the two layers. The process is called the

photovoltaic effect because light creates a voltage.

The voltage generates an electric current if a circuit

joins them. The "sandwich" is called a photocell or

a solar cell.
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SEMICONDUCTOR
JUNCTION load

Several things keep a solar cell from turning all

the energy of light into electricity. First, some of the

light is reflected and some passes right through the

cell; this light is simply never put to use at all. Sec-

ond, though the junction is a good "one-way gate"

it Is not perfect. A certain fraction of the + and -

charges that are created do, in fact, recombine

within the cell (a process called "recombination").

When this happens, the net effect is that some of

the light's energy is converted not into electricity,

but just into heating up the cell.

Current research is aimed at improving several

aspects of solar cells: (1) reducing the recombina-

tion of the -I- and - charges to make the cell as

efficient as possible; (2) making cells of a sort that

can be mass produced inexpensively.

These solar cells absorb light energy and convert it

directly to electrical energy.

Solar cells in the panels shown in the photograph were
used on the Skylab orbiting space station.
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by allowing heat Q^ to escape to the environment at temperature

7'^. The whole process is shown schematically in the sketch

below:

For the best efficiency, 1', should be as low as possible, and 7,

as high as possible. However, T^ is fixed by the environment,

since cooling air or water must be used at whatever tempeiatuie

is available outside. This is generally about 20-25°C I about 300°K).

T, is limited by technology and chemistry. Metals weaken and

melt when they get too hot. For a modein fossil plant, 7', may be

as high as 500°C I about 773°K). In a nuclear power plant, caution

suggests more conservative limits, and therefore T^ is typically

400°C (about 673°K). The lower temperature is necessary in

particular to avoid damaging the fuel rods.

ruSL— [a)MeUSTtW CHAM6gi^

I

I
BOILER

I

TURBINE
Oe-NERATOR

V

Electric

/ " Mechanical current
• work

CONDEM&ER Q2 (Hoot to river, oir, oceon)

The maximum possible efficiency is thus

T, 300
11 = 1 ^ 1 0.6

T, 773
(fossil)

= 1
300

673
= 0.5 (nuclear)

Therefore, even if there were no losses ofnnv kind whatsoever, a

power plant could only turn about half of the theimal energ\'

into electrical energy. For each joule of electrical energy
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produced, two joules of energy vvdll have to be provided

originally by the fuel. The remaining joule will be released to the

environment (into a river, the ocean, or the airl as thermal

pollution.

The preceding paragraph describes the maximum possible

efficiency of a peri'ect Carnot engine. Real power plants are

significantly less efficient. Modern fossil fuel plants can achieve

about 38% or 40% in practice; nuclear plants, because of the

lower value of T,, can manage about 30%. Older fossil plants have

efficiencies of 30% or less. These additional losses are due to the

fact that turbines are not ideal Carnot engines (they have friction;

some heat simply leaks through them wdthout doing any work
at all) and the fact that there are minor losses in generators,

transfomiers, and power lines. A useful rule of thumb is that the

overall efficiency of a power plant is about 33%

.

What this analysis shows is, very roughly, that any time you
use 1 J of electrical energy, about 3 J of themial energy were

produced at the power plant, and 2 J were released into the

enxaronment, mostly near the plant. For example, if you heat a

room vvdth a small electric heater, about three times as much fuel

has to be burned to produce the needed energy when the same
fuel is burned directly vvdthin the room itself (in a gas stove, for

example). This is the trade-off for the fact that electricity is such

a convenient source of power.

A typical fossil-fuel power plant

that produces electricity by burn-

ing coal.

Study
guide

1. The Project Physics learning materials

particularly appropriate for Chapter 15 include:

Activities

Faraday Disk Dynamo
Generator Jump Rope
Simple Meters and Motors

Simple Motor-Generator Demonstration

Physics Collage

Bicycle Generator

Lapis Polaris, Magnes

2. What sources of energy were there for industry

before the electrical age? How was the energy

transported to where it was needed?

3. Oersted discovered that a magnetic needle was
affected by a current. Would you expect a magnetic

needle to exert a force on a current? Why? How
would you detect this force?

4. In which of these cases will electromagnetic

induction occur?

(a) A battery is connected to a loop of wire that is

being held near another closed loop of wire.

(b) A battery is disconnected from a loop of wire

held near another loop of wire.

(c) A magnet is moved through a loop of wire.
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(d) A loop of wdre is held in a steady magnetic field.

(e) A loop of wore is moved across a magnetic field.

5. It was stated on page 474 that the output of a dc

generator can be made smoother by using multiple

windings. If each of two loops were connected to

commutators as showTi what would the output

current of the generator be like?

tl'

6. Refer to the simple ac generator shown on page

472. Suppose the loop is being rotated counter-

clockwise by some externidly applied mechanical

force. Consider the segment b as it is pictured in the

tliird drawing, moving down across the magnetic

field. (Remember the useful rule: If your fingers

point along B, and your thumb along v, F will be in

the direction your palm would push. For positive

charges use the right hand, and for negative, use the

left hand.)

B
Hight: Multiple coirnnulator seg-

ments of an electric generator for
use in an automobile.

V

(a) Use the hand rule to determine the direction of

the current induced in b.

(b) The induced current is an additional motion of

the charges, which also mo\'c across the external

magnetic field. Thus, an additional magnetic force

acts on segment b. Use the hand rule to determine

the direction of the additional force. Before doing so

try to guess the direction of the force.)

(c) Determine the direction of the additional force

on the charges in the segment labeled a, which is

moving upward across the field

7. Why is a generator coil harder to rotate when it

is connected to an appliance to which it provides

current, such as a lamp, than when it is

disconnected from any load?

8. Suppose two bar magnets, each held by one end

at the same level but a few feet apart, are di'opped

simultaneously. One of th(!m passes through a closed

loop of wire. Which magnet reaches the ground

first? Why?

9. Sketch a situation in which a wire is

perpendicular to a magnetic field, and use the hand

rule to find the direction of the forc'e on the current.

Imagine the wire moves sideways in r(;sponse to the

force. This sideways motion is an additional motion

across the field, and so each charge in the wire

experiences an additionid force. In what direction is

the additional force on the charges?

10. Connect a sm^Ul dc motor to a batteiy through a

current meter. By squeezing on the motor shaft, \ar\'

the speed of the motor. On the basis of your answ er

to 9, can you explain the effect that the speed of the

motor has on the current?

11. There are two ways to connect resistors in a

circuit. In a series circuit, the resistors receive the

same total input current and share th(! voltage; in

direct proportion to their resistance. In a parallel

circuit, the resistors receive the same total input

voltage and share the current in inverse proportion

to their resistances.
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serie:<

(a) Which circuit stops fvinctioning completely if one

resistor is removed?

(b) In which circuit does the total current decrease if

more resistors are added while the input voltage

remains the same?

(c) Which circuit represents the way your home is

wired?

(d) Using this model, exj^lain why the current in

your home increases when more resistors

(appliances, light bulbs, etc.) are added to the circuit.

13. Suppose that the resistors in the diagrams above

are each 4 ohms and the batteries supply 12 V. Find

the total resistance of each circuit and the total

current flowing in the circuit. Also find the voltage

across and the current through each resistor.

13. Find the total voltages and currents, the voltage

across and the current through each resistor, if/},

= 5 ohms and R, = 10 ohms with a 50-V battery

connected to the circuit.

14. A dozen Christmas-tree lights are connected in

series and plugged into a 120-volt wall outlet.

(a) If each lamp dissipates 10 W of heat and light

energy, what is the current in the circuit?

(b) What is the resistance of each lamp?

(c) What would happen to these lamps if they were

connected in parallel across the 120-volt line? Why?

/\ r\

15. Suppose you wanted to connect a dozen 10-W

lamps in parallel across a 120-V line. What resistance

must each lamp have in this case? To determine the

resistance, proceed by answering the following

questions.

(a) What current will there be in each lamp?

(b) What is the resistance of each lamp?

Compare the total current for this string of 10-W
lamps with the total current in the string of lamps in

the previous question.

16. A man who built his own boat wanted to equip

it with running lights and an interior light using a

connecting wire with a resistance of Vf, ohm. But he

was puzzled about whether a 6-V system or a 12-V

system would have less heating loss in the

connecting wires. Suppose that his interior lamp is

to be a H-W lamp. (A 6-W lamp designed for use in 6-

V systems has a resistance of 6 ohms.)

(a) If it were to operate at its full 6-V, 6-W rating,

what current would the lamp require?

(b) If the current calculated in (al were the actual

current, what power loss would there be in the

connecting wires?

(c) What would be the answers to (a) and (b) if a 12-V

battery and a 12-V, 6-W bulb were used?

(d) Because of the resistance of the connecting

wires, the lamps described will not actually operate

at full capacity. Recalculate parts (a) and (b) to

determine what would be the actual currents, power
losses, and power consumptions of the lamps.

CHAPTER 15 / STUDY GUIDE 497



sg
17. A transformer for an electric toy train is used to

"step down" the xoltaf^e fi-oni 120 \' to 6 V. As in

most transformers, the output power from the

secondary coil is only a little less than the input

power to the primar\' coil. If the current in the

primar\' coil is 0.25 A, what is the current in the

secondaiy coil?

18. For a transformer, the ratio of the secondary'

voltage to the primar\' \oltage is the same as the

ratio of the number of turns of wire on the

secondary coil to the number of turns of wire on the

primary coil. If a transformer were 100% efficient,

the output power would equal the input power.

Assume such is the case, and derive an expression

for the ratio of the secondary current to the primar\'

current in terms of the turn ratio.

19. In a transformer, there is no connection

between the input and outjDut coils. I'se the principle

of electromagnetic induction to exjjlain why there

is a current in the output coils.

ao. On many transformers, thicker wire (ha\'ing

lower resistance! is us(;d for one of \hv. coils than for

the other. Which would you e.vjject has the thicker

wire, the low-voltage coil or the high-voltage coil?

21. Comment on the adxisabilit^' and possible

methods of getting out of a car oxer which a high-

\'oltage power line has fallen.

22. What factors made Edison's recommendation

for the use of dc for the \iagara Falls system in

error?

23. Write a report comparing the earliest electric

automobiles with those being developed now.

24. V\'hat were some of the major effects (both good

and bad) of electricity on society?

25. What limits the efficiency of electric power
plants? How efficient are they at best?

I

498 CilAmHK 15 / STUUV Gl IDtl



EleetromagnetiG Railiaiioii

16.1 Introduction

16.2 MaxYvell's formulation of the principles of

electroma^netism

16.3 The propagation of electromagnetic ivaves

16.4 Hertz's experiments
16.5 The electromagnetic spectrum
16.6 niiat about the ether now?

16.1
I

Introduction

On April 11, 1846, the distinguished physicist Sir Charles

Wheatstone was scheduled to give a lecture at the Royal

Institution in London. Michael Faraday was to introduce

Wheatstone to the audience. At the last minute, just as Faraday

and Wheatstone were about to enter the lecture hall, Wheatstone

got stage fright, turned around, and ran out into the street.

Faraday had to give the lecture himself. Nonnally, Faraday

discussed only his actual experiments in public. But on this

occasion he revealed certain speculations which, as he later

admitted, he would never have made public had he not

suddenly been forced to speak for an hour.

Faraday's speculations dealt with the nature of light. Faraday,

like Oersted before him, believed that all the forces of nature are

somehow connected. Electricity and magnetism, for example,

could not be separate forces that just happen to exist in the

same universe. Rather, they must be different forms of one basic

Radio telescope in Alaska, framed
by Northern Lights.

SG 1

Nature Philosophy was discussed in

the Epilogue to Unit 2, in Sec. 10.9,

and its effect on Oersted in Sec.

14.11.
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phenomenon. This belief paialleled that ot Schelling and other

German Nature Philosophers at the beginning of the nineteenth

century. It had iiispircKl Oersted to search in the laboratory' for- a

connection l){>t\v{H;n electricitx' and magnetism. lAciitually he

found such a connection in his dis(;o\ery that an electric current

in a condirctor- can tirr-n a neuirbv magnet.

Faraday, too, had been guided by a belief in the irnit\' of

natural forces. Could light also be another form of this basic

"force"? Or rather-, to use more modern terms, is light a form of

cnerg}'? If so, scientists should be able to demonstrate

experimentally its connection with other fonns of energv such as

electricity and magnetism. I'arada\' did sircceed in doing just

this. In 1845, he showed that light traveling through hea\A' glass

had its plane of polarization rotated by a magnetic field applied

SG 2 to the glass.

This experiment convinced Faraday that there is a delinite

connection between light and magnetism. But he could not resist

going one step fuiiher in his unrehearsed k^clirr-e the following

year-. Perhaps, he suggested, light itself is a vibration of niiignetic

lines of force. Suppose, for example, that two charged or

niiigrietized objects are connect(?d by an electric or- magn(;tic line

of for'ce. If one of them moved, Faraday reasoned, a distur-l)ance

would be transmitted along the line of force. Furthermor e, if light

waves wer-e vibr-ations of lines of force, then an elastic substance

such as "ether" would not be needed in order- to explain the

propagation of light. The concept of the ether could be replaced

if it could be shown that lines of force themselves have the

elastic properties needed for- wave transmission.

Faraday could not make his idea more precise. He lacked the

mathematical skill needed to pr-ove that waves coirld jjropagate

along lines of electric or- magnetic force. Other- phvsicists in

Britain and Europe might have been able to develop a

mathematical theory of electrxjmagnetic waves. But at the time

these scientists either did not understand Faraday's concept of

lines of force or did not consider them a good basis for a

mathematical theory. Teri years passed befor e James Cler'k

Maxwell, a Scottish mathematical physicist, Scuv the value of the

idea of lines of force and started using mathematics to express

Faraday's concepts.

16.2
I

Maxivell's formulation of the principles
of electronia^netism

The work of Oersted, Ampere, Henry, and Far-ada\ had

established two basic principles of (det-tromagiietism:

1. An electric currant in ;i conductor produces magnetic lines

offeree that circle the conductor.
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2. When a conductor moves across eternally set up magnetic

lines offorce, a current is induced in the conductor.

In the 1860's, James Clerk Maxwell developed a mathematical

theory of electromagnetism. In it, he added to and generalized

these principles so that they applied to electric and magnetic

fields in conductors, in insulators, and even in space free of

matter.

Maxwell began by putting Faraday's theoiy of electricity and
magnetism into mathematical form. In 1855, less than 2 years

after completing his undergraduate studies at Cambridge

University, Maxwell presented to the Cambridge Philosophical

Society a long paper. Entitled "On Faraday's Lines of Force," it

described how these lines are constructed:

\
^j'

Magnetic lines offorce indicate the

direction of magnetic force on a

north magnetic pole. (The force on
a south pole is in the opposite di-

rection.)

... if we commence at any point and draw a line so that, as we
go along it, its direction at any point shall always coincide with

that of the resultant force at that point, this curve will indicate

the direction of that force for every point through which it

passes, and might be called on that account a line offorce. We
might in the same way draw other lines of force, till we had
filled all space with curves indicating by their direction that of

the force at any assigned point.

/̂
r

Maxwell stated that his paper was designed to 'show how, by a

strict application of the ideas and methods of Faraday, the

connection of the veiy different orders of phenomena which he

has discovered may be clearly placed before the mathematical

mind. " During the next 10 years. Maxwell created his own
models of electric and magnetic induction. In developing his

theory, he first proposed a mechanical model for the electrical

and magnetic quantities observed experimentally by Faraday and
others. Maxwell then expressed the operation of the model in a

group of equations that gave the relations between the electric

and magnetic fields. He soon found these equations to be the

most useful way to represent the theory. Their power allowed

him eventually to discard the mechanical model altogether.

Maxwell's mathematical \dew is still considered by physicists to

be the proper approach to the theory of electromagnetic

phenomena. If you go on to take another physics course after

this introductory one, you vvdll find that the development of

Maxwell's mathematical model (Maxwell's equations) is one of

the high points of the course. However, it will require vector

calculus.

Maxwell's work contained an entirely new idea of far-reaching

consequences: /\n electric field that is changing with time must
be accompanied by a magnetic field. Not only do currents in

conductors produce fields around them, but changing electric

fields in insulators such as glass, air, or empty space also

produce magnetic fields.

Electric lines of force indicate the

direction of electric force on a

positive test charge. (The force on
a negative charge is in the opposite

direction.!

James Clerk Maxwell (1831-1879).
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Consider a pair of conducting plates connected to a source of

current, as shown at the right. Charges are moved onto or away

from plates through the conductors connecting them to the

source. Thus, the strength of the electric field E in the space

between the plates changes with time. This changing electric

field pioduces a magnetic field B as shown. (Of course, only a

few of the infinitely many lines for E and B are shown.)

An additional principle, known before Maxwell, assumed new
significance in Maxwell's work because it is so symmetrical to

statement 3 above:

4. A changing magnetic field in space produces an electric field.

The induced electric field vector E is in a plane perpendicular

to the changing magnetic field vector B. The magnitude of £

depends on the rate at which 6 is changing—not on B itself, but

on AB/At. Consider the changing magnetic field produced by,

say, temporarily increasing the current in an electromagnet. (See

the illustration in the right margin of this page.) This changing

magnetic field induces an electric field in the region around the

magnet. If a conductor happens to be lined up in the direction

of the induced electric field, the free charges in the conductor

wdll move under the field's influence. Thus, a current in the

direction of the induced field will arise in the conductor. This

electromagnetic induction had been discovered experimentally

by Faraday (Sec. 15.3).

Maxwell's theories of the total set of relations between electric

and magnetic fields were not at once directly testable. When the

test finally came, it concerned his prediction of the existence of

waves traveling as interrelating electric and magnetic fields, that

is, electromagnetic waves.

i i >
kt^ /

^^^

cj MUlli^>i**i

' ^-^..--f

l^U^l^^i^^n

# 1. When there is a changing electric field, what else occurs

(according to Ma^iweW?

2. What is a displacement current?

3. What are the four principles of electromagnetism?

1.6«3
I

The propagation of electromagnetic
ivaves

Suppose in a certain region of space, an electric field that

changes with time is created. According to Maxwell's theory, an

electric field E that varies in time simultaneously induces a

magnetic field B that also varies with time. (The magnetic field

also varies with the distance from the region where the changing

electric field was created.) Similarly, a magnetic field that is

changing w^ith time simultaneously induces an electric field that
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The electric and magnetic field

changes occur together, much like

the "action" and "reaction" of New-
ton's third law.

changes vvdith time. (Here, too, the electric field also changes with

distance from the region where the changing magnetic field was
created.)

As Maxwell realized and (correctly predicted, mutual induction

of time- and space-changing electric and magnetic fields should

set up an unending sequence of events. First, a time-varying

electric field in one region produces a time- and space-vaiying

magnetic field at points near this region. But this magnetic field

produces a time and space-vaiying electric field in the space

surrounding it. And this electric field produces time- and space-

varying magnetic fields in its neighborhood, and so on. Thus,

suppose that an electromagnetic disturbance is started at one

location, say by \abrating charges in a hot gas or in the

transmitter wire of a radio or television station. This disturbance

can travel to distant points through the mutual generation of the

electric and magnetic fields. The fiuctuating, interlocked electric

and magnetic fields propagate through space in the form of an

electromagnetic wave, a disturbance in the electric and magnetic

field intensities in space.

Irtcreasi.

Electric and magnetic Jields linked

by induction, from Ma^ Born, Ein-

stein's Theory of Special Relativity'

(1924). An increasing electric field

E, at the left (or a current) sur-

rounds itself with a magnetic field

B|. As B| changes, it induces an in-

terlinking electric field E^ etc. The
chainlike process continues with

finite velocity. This is only a sym-
bolic picture of the process, which

propagates itself in all directions.

In a microwave oscillator, which

you mav see in your laboratory

work, electric oscillations in a cir-

cuit are led onto a rod in a metal

"horn." In the horn they generate a

variation in electric and magnetic

fields that radiates away into space.

This drawing represents an instan-

taneous "snapshot" of almost plane

wave fronts directly in front of
such a horn.

'^'
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In Chapter 12 it was shown that waves occur when a

disturbance created in one region produces at a later time a

disturbance in adjacent regions. Snapping one end of a rope

produces, through the action of one part of the rope on the

other, a displacement at points farther along the rope and at a

later time. Dropping a pebble into a pond produces a

disturbance that moves away from the source as one part of the

w^ater acts on neighboring parts. Time-varying electric and
magnetic fields produce a disturbance that moves away from the

source as the varying fields in one region create varying fields

in neighboring regions.

What detemiines the speed vvdth which electromagnetic waves

travel? Recall first that for mechanical waves the speed of

propagation is detennined by the stiffness and density of the

medium. Speed increases with increasing stiffness, but decreases

vvdth increasing density. This relation between wave speed,

stiffness, and densit\' holds for mechanical wave motions and for

many other types of waves. Only the barest outline of how
Maxwell proceeded beyond this point is given here. First, he

assumed that a similar "stiffness and density" relation would
hold for electromagnetic waves. Then he computed what he

thought to be the "stiffness" and "density" of electric and

magnetic fields propagating through the hv}30thetical ether. In

finding values for these two properties of the electric and
magnetic fields, Maxwell was guided by his mechanical model
representing the ether. In this model, stiffness was related to the

electric field, and density to the magnetic field. Next, he proved

mathematically that the ratio of these two factors, which should

determine the wave speed, is the same for all strengths of the

fields. Finally, Maxwell demonstrated that the speed of the waves

(if they exist!) is a definite quantity that can be deduced from

measurements in the laboratory.

The necessaiy measurements of the factors involved actually

had been made 5 years earlier by the German scientists Weber
and Kohlrausch. Using their published values. Maxwell

calculated that the speed of the supposed electromagnetic waves

should be about 311,000,000 m/sec. He was immediately struck

by the fact that this large number was very close to a measured
speed already well known in physics. In 1849, Armand Fizeau

had measured the speed of light and had obtained a value of

about 315,000,000 m/sec. The close similarity could have been a

chance occurrence. But Maxwell believed that there must be a

deep underlying reason for these two nvimbers being so nearly

the same. The significance for physics seemed obvious to him.

Making an enormous leap of the imagination, he uaote:

SG 4,5

As was stated in Chapter 12, page
359, the speed of propagation de-

pends on both the stiffness and
density of the medium; the relation

can be written

speed
stiffness

densitv

With better measurements, scien-

tists now know that both Mcixwell's

predicted speed and Fizeau 's mea-
sured speed should have come to

just under 3 x lO" nVsec or 2.99793
X 10" m/sec.

The velocity of the transverse undulations in our liyi^othetical

medium, calculated from the electromagnetic experiments of

MM. Kohlrausch and Weber, agrees so exactly with the velocity
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Mawvell had shown that in an elec-

tromagnetic disturbance E and B
should he perpendicular to each

other and to th(! direction of |3rop-

agation of the wave, rherefon;. in

the language of Chapter 12, electro-

magnetic waves are transverse. And
as was noted in ("hapter 13, it was
long known that light waves are

transverse.

Recall from page 503: The magni-

tude of B depends on the rate at

which E changes (or AE/Am. There-

fore, an electric field oscillating at

a \ciy high ft-et|uency induces mag-
netic fields that are lai'ge compared
to the ordinaiy niiignetic field sur-

roiuiding the conductor for the

current. But circuits to produce
such high-frequency oscillations

were not available in Maxwell's time.

of light calculated from the optical experiments of M. Kizeau,

that we can scarcely avoid the inference that light consists in

the transverse undulations of the same medium which is the

cause of electric and magnetic phenomena.

Here then was an explanation of light waves and at the same

time a joining of the previously separate sciences of electricity,

magnetism, and optics. Maxwell lealized the importance of his

discoveiy. Now he set to work making the theoiy mathematically

sound and freeing it from his admittedly artificial model.

Maxwell's synthesis of electiomagnetism and optics, after it

had been experimentally confirmed (see Sec. 16.4), was seen as a

great event in physics. In fact, physics had knov\ai no greater

time since the 1680's, when Nev\^on was writing his monumental
work on mechanics. Of course, MiLXwell's electromagnetic theoiy

had arisen in Maxwell's mind in a Newtonian, mechanical

framework. But it had grown out of that framev\'ork, becoming

another great general physical theoiy, independent of its

mechanical origins. Like Newtonian mechanics, Maxwell's

electromagnetic field theoiy succeeded spectacularly. You will

see something of that success in the next few sections. The

success occurred on two different levels: the practical and the

theoretical. Practically, it led to a host of modern developments,

such as radio and telexasion. On the theoretical level, it led to a

whole new way of vieudng phenomena. The universe was not

only a Newtonian machine of whiiling and colliding parts; It

included fields and energies that no machine could duplicate. As

you will see later. Maxwell's work formed a basis of the special

theory' of relativity. Other physical theories were ncuirished by it

also. Eventually, however, results accumulated that did not fit

Maxwell's theoiy; something more was needed. Starting about

1925, after a quaiter-centuiy of discoveiy, the development of

quantum mechanics led to a larger synthesis, which included

Maxwell's ekuUromagnetism.

4. What discovery did iV/a,vv\e// niiikc upoii calcuUilini>, the

speed with which electromagnetic disturbar\ces should travel?

5. What is Ma^cwell's synthesis?

1.6.4
I

Hertz's experiments

Did Maxwell establish without doubt that ligiit acUualiv does

consist of electromagnetic waves, or even that electromagnetic

waves exist at all? No. Most physicists remained skeptical for

several years. The fact that the ratio of two (luantities determined

by ckuliical experinuMits came out (uiual to the spcnul ot light
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certainly suggested some connection between electricity and
light. No one would seriously argue that this was only a

coincidence. But stronger evidence was needed before the rest of

Maxwell's theoiy, with its displacement current, could be

accepted.

What further evidence was needed to persuade physicists that

Maxwell's theory was correct? Miixwell showed that his theoiy

could explain all the known facts iibout electricity, magnetism,

and light. But so could other theories, although with less

sweeping connections between their separate parts. To a modern
physicist, the other theories proposed in the nineteenth century

seem much more complicated and artificial than Maxwell's. But

at the time, Max-well's theory seemed strange to physicists who
were not accustomed to thinking in temis of fields. It could be

accepted over other theories only if it could be used to predict

some new property of electromagnetism or light.

Maxwell himself made two such predictions from his theoiy.

He did not live to see them verified experimentally in 1888, for he

died in 1879 at the age of 48. Max^vell's most important

prediction was that electromagnetic waves of many different

frequencies could exist. All such waves would propagate through

space at the speed of light. Light itself would correspond to

waves of only a small range of high frequencies (from 4 x lo"

Hz to 7 X lo" Hz). These are frequencies detectable by the

human eye.

To test this prediction required inventing apparatus that could

both produce and detect electromagnetic waves, preferably of

frequencies other than light frequencies. This was first done by

the German physicist Heinrich Hertz, whose contribution was
triggered by a chance obseivation. In 1886, Hertz noticed a

peculiar effect produced during the sparking of an induction

coil. As was well known, sparks sometimes jump the air gap

between the terminals of an induction coil (see drawing). You
will recall (Chapter 15) that an induction coil can be used to

produce high voltages if there are many more turns of wire on

one side than on the other. Ordinarily, air does not conduct

electricity. But when there is a veiy large potential difference

between two wires a short distance apart, a conducting pathway
may form briefly as air molecules are ionized. A shoit burst of

electricity then may pass through, attended by a visible spark.

Each visible spark produced is actually a series of many small

sparks, jumping rapidly back and forth (oscillating) between the

terminals. Hertz found that he could control the spark's

frequency of oscillation by changing the size and shape of metal

plates attached to the spark gap of the induction coil.

Hertz then bent a simple piece of wire so that there was a

short gap between its two ends. When it was held near an

induction coil, a sparkjumped across the air gap in the wire Just

The unit "cycles/sec" is called the

hertz, after Heinrich Hertz. It is ab-

breviated Hz.

A B

1

c^

Operation of the induction coil:

Starting and stopping the current

in coil A with a vibrating switch

S produces a rapidly changing

magnetic field in the iron core.

This rapidly changing field induces

high-voltage peaks in the many-
turn coil B and can cause a spark

to jump across the air gap. Spark
coils for use in car engines operate

in this wav.
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when a spark jumped across the terminals of the induction coil.

This was a surprising new phenomenon. Hertz reasoned that as

the spark jumps back and forth across the gap of the induction

coil, it must set up rapidly changing electric and magnetic fields.

According to Maxwell's theoiy, these changes propagate through

space as electromagnetic waves. (The fi^equency of the waves is

the same as the frequency of oscillations of the sparks.) When
the electromagnetic waves pass over the bent vvdre, they set up
rapidly changing electric and magnetic fields there, too. A strong

electric field produces a spark in the air gap, just as the

transmitter field did between the terminals of the induction coil.

Since the field is rapidly changing, sparks can jump back and
forth between the two ends of the wire. This wire, therefore,

serves as a detector of the electromagnetic waves generated by

the induction coil. Hertz's obseivation of the induced spark was
the first solid clue that electromagnetic waves do exist.

r

,

,

J^

•ilkim/j apar

&0(Jrxie

./n

Hertz showed that the electromagnetic radiation from his

induction coil has all the usual properties of light waves. It can

be reflected at the surface of solid bodies, including metallic

conductors. In addition, the angle of reflection is equal to the

angle of incidence. The electromagnetic radiation can be focused

by concave metallic mirrors. It shows diffraction effects when it

passes through an opening in a screen. All interference

phenomena can be shown, including standing waves. Also,

electromagnetic waves are refracted by prisms made of glass,

wood, plastic, and other nonconducting material. (All these

experiments, with more modern apparatus, can be done in your

laboratory.) By setting up a standing-wave pattern with a large

metal reflector. Hertz was also able to determine the distance

between consecutive nodes and thus measure the wavelength.

He determined the frequency of the oscillating electric current

through an analysis of his circuits. Thus, he was able to

determine the speed of his waves and found it to be the same
value that Maxwell had predicted: the speed of light.

Hertz's experiments dramatically confimied Maxwell's

electromagnetic theory'. They showed that electromagnetic waves

Radio and television "static " is often

produced by sparking in electrical

appliances and in the ignition of

passing cars. This fact shows that

high-frequency oscillations occur
in sparks.

SG 6

Heinrich Hertz {1857-18941 was

born in Hamburg, Germany. During

his youth, Hertz was mainly inter-

ested in languages and the humani-

ties, but was attracted to science

after his grandfather gave him
some apparatus. Hertz did simple

experiments in a small laboratory

which he had fitted out in his

home. After completing secondary

school (and a year of military ser-

vice) he undertook the serious

study of mathematics and physics

at the University of Berlin in 1878.

In 1882, Hertz devoted himself to

the study of electromagnetism, in-

cluding the recent and still gener-

ally unappreciated work ofMax-
well. Two years later he started his

famous experiments on electro-

magnetic waves. During the course

of this work, Hertz discovered the

photoelectric effect, which has had
a profound influence on modern
physics. You will study this effect in

Chapter 18 (Unit 5).
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Instead of relying on oscillating

sparks, modern electronic circuits

use the wires of a transmitting an-

tenna. Through the wires move the

oscillating currents that radiate

electromagnetic waves.

SG 7

SG 8

actually exist, that they travel with the speed of light, and that

they have the familiar characteristics of light. Now mathematical

physicists rapidly accepted Maxwell's theoiy and applied it with

great success to the detailed analysis of a wide range of

phenomena.
Thus, at the end of the nineteenth centur^'. Maxwell's

electromagnetic theoiy stood with Newton's laws of mechanics

as an established part of the foundations of physics.

6. What predictions ofMsQcwell's were verified by Hertz?

7. What did Hertz use as a detector of electromagnetic waves?

Radio stations regularly announce
their frequencies in megahertz
(MHz) for the FM band and kilo-

hertz (kHz) for the AM band.

1.6.5
I

The electroma^etic spectrum

Hertz's induction coil produced electromagnetic radiation with a

wavelength of about 1 m. This is about 1 million times the

wavelength of visible light. Later experiments showed that a very

wide and continuous range of electromagnetic wavelengths (and

frequencies) is possible. The entire possible range is called the

electromagnetic spectrum. A range of frequencies from about 1

Hz to 10^^ Hz, corresponding to a wavelength range from lO" m to

10"*^ m, has been studied. Many of these frequency regions have

been put to practical use.

Light, heat, radio waves, and X rays are names given to

radiations in certain regions of the electromagnetic spectrum. In

each of these regions radiation is produced or obseived in a

particular way. For example, light may be perceived directly

through its effect on the retina of the eye. But to detect radio

waves requires electronic equipment. The named regions overlap.

For example, some radiation is called "ultraviolet" or "X ray,"

depending on how it is produced.

All waves in the electromagnetic spectrum, although produced

and detected in various ways, behave as predicted by Maxwell's

theoiy. All electromagnetic waves travel through emptv space at

the same speed—the speed of light. They all carry' energy'; when
they are absorbed, the absorber is heated, as is food in a

microwave oven. Electromagnetic radiation, whatexei- its

frequency, can be emitted only if energv' is supplied to the

source of radiation, which is, ultimately, a charge that is

undergoing acceleration. This charge acceleiation can be

produced in many ways. For example, heating a material will

increase the vibrational energy of charged particles. Also, one can

vary the motion of charges on an electric conductor lan antennai

or cause a charged particle to change its direction. In these and

other processes, work is done by the force that is applied to
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accelerate the electric charge. Some of the energy supplied to the

antenna in doing this work is "radiated" away; that is, it

propagates away from the source as an electromagnetic wave.

The work of Maxwell and Hertz opened up a new scientific

view of nature. It also prepared for a rapid blooming of new
technologies, such as radio, TV, radar, etc. As was done before,

for example, in the chapter on electric motors and generators, a

brief description of these indirect consequences of a scientific

advance is given below.

Radio. Electromagnetic waves having frequencies of 10^ to 10^

Hz are reflected quite well by electrically charged layers that

exist in the upper atmosphere. This reflection makes it possible

to detect radio waves at great distances from the source. Radio

signals have wavelengths from tens to thousands of meters. Such

waves can easily diffi^act around relatively small obstacles such

as trees or buildings. But large hills and mountains may cast

"dark" shadows.

.-v«M»/.

10 10" /r /'

A chart of the electromagnetic

spectrum.

SG 9

SG 10

SG 11

In December 1901, Guglielmo Mar-
coni successfully detected radio

waves sent from Newfoundland to

Ireland. Marconi's work showed
that long-distance radio communi-
cation was possible and revealed

the previously unsuspected layers

of ionized particles in the upper
atmosphere.

Radio waves that can cross large distances, either directly or

by relay, are very useful for carrying information. Communication
is accomplished by changing the signal according to an agreed

code that can be deciphered at the receiving end. The first radio

communication was achieved by turning the signal on and off

in an agreed pattern, such as Morse code. Later, sounds were

coded by continuous variations in the amplitude (that is, the

intensity) of the broadcast wave (AM). Later still, the information

was coded as ^equency variations in the broadcast wave (FM).

In broadcast radio and telexdsion, the "decoding" is done in the

receiver serving the loudspeaker or TV picture tube. The output

message from the receiver takes the same form that it had at the

transmitter.
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A "carrier" radio wave.

AM (amplitude rnodulationJ: Infor-

mation is coded as variations in

the amplitude (or intensityj of the

FM (frequency modulation): Infor

mation is coded as variations in

the frequency of the carrier.

-"^

Because signals from different stations should not he received

at the same spot on the dial, it is necessary to restrict their

transmission. The International Telecommunication Union (ITU)

controls radio transmission and other means of international

communication. Within the United States, the Federal

Communications Commission (FCC) regulates radio transmission.

In order' to reduce the interfererice of one station's signal with

another, the FCC assigns suitable frequencies to r^adio stations. It

also limits their power or the power radiated in particular

dir^ections, arid may restrict the hour\s of tr-ansmission.

Television and radar. Television and FM broadcasting stations

operate at frequencies of about 10** Hz. Waves at these

frequencies are not reflected by the layers of electric charge in

the upper atmosphere. Rather, the signals travel in nearly

straight lines and pass into space instead of following the

curvature of the earth. Thus, they can be used in communication

between the earth and the moon, for example. But on earth,

coaxial cables or relay stations are necessary to transmit signals

between points more than about 80 km apart, even if there are

no mountains in the way. Signals can be transmitted from one

distant place to another, including from one continent to

another, bv relav satellites.

-i«
-5"

Satellites are used to relay micro-

waves all over the world. The mi-

crowaves can carry radio or T\'

information.

An important principle in radio

transmission and detection is that

of the resonant or "tuned" cii'cuit.

Reference to this can be found in

the Radio Amateurs Handbook or

in basic texts listed in most radio

supply catalogues, such as Allied

Radio.

SG 12-18

>
^

si
Since these signals have wavelengths of only about 1 m, they

are not diffracted much around objects that have dimernsions of

several meter's, such as car^s, ships, or air'craft. Thus, the reflected

portion of signals of wavelengths from 1 m down to 1 mm is

used to detect such objects. The interfer'ence between the direct

waves and reflection of these waves by passing airplanes can

distori a television picture consider ably. The signal also may be

radiated in the form of pulses. If so, the time from the emission

of a pulse to the reception of its echo measures the distance of

the reflecting object. This technique is called radio detection and

ranging, or radar. By means of the reflection of a beam that is

pulsed, both the direction and distance of an object can be

measured.

M/crowave radiation. Electromagnetic waves uith wavelengths

of 10~' to 10 ' m are often called microwaves. This radiation
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interacts strongly with matter and thus has uses other than

communication. Water, for example, readily absorbs radiation

with a wavelength on the order of 10 cm. Thus, any moist

substance placed in a region of intense microwave radiation of

this wavelength (meat, soup, or a cake batter, for example) will

become hot veiy quickly. Because the heat is generated within

the substance itself, rather than conducted inward from the

outside, foods can be cooked veiy rapidly in a microwave oven. It

is, however, important to keep the radiation confined to the oven

because microwave radiation can damage living tissue.

Infrared radiation, hi heated bodies, the atoms themselves give

off electromagnetic waves shorter than about 10"^ m. This

"radiant heat" is usually called infrared rays, because most of the

energy is of wavelengths slightly longer than the red end of the

visible spectrum. While associated mainly with heat radiation,

infrared rays do have some properties that are the same as those

of visible light. The shorter infrared waves affect specially treated

photographic film, and photographs taken with infrared radiation

show some interesting effects. Also, scattering by small particles

in the atmosphere is veiy much less for long wavelengths (Sec.

13.6). Thus, infrared rays can penetrate smoky haze dense

enough to block visible light.

Visible light. The visual receptors in the human eye are

sensitive to electromagnetic radiation with wavelengths between

about 7 X 10"' and 4 x 10 ' m. Radiation of these wavelengths

is usually called light, or xdsible light. The eye is most sensitive

to the green and yellow parts of the spectrum. This peak

sensitivity corresponds roughly to the peak of solar radiation that

reaches the earth s surface.

A photograph made with film sen-

sitive onlv to infrared radiation.

SG 19

SG 20

IBHSrnVrry l>f5T^l&OTtOid

xkf meters

Ultraviolet light. Electromagnetic waves shoi'ter than the visible

violet (4 X 10" to 10" m) are called ultraviolet. The ultraviolet

region of the spectrum is of just as much interest in spectrum
study as the visible and infrared. The atoms of many elements

emit ultraviolet radiations that are characteristic of those

SG 21
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Close UpI
Astronomy Across the Spectrum

The electromagnetic spectrum comprises more
than the rainbow effect produced by passing white

light through a prism. Electromagnetic radiation of

different wavelengths provides different kinds of in-

formation. You are familiar with the effects of var-

ious parts of the spectrum: sunburn (ultraviolet

rays), visible light, heat (infrared), sound, and vi-

brations (for example, earth tremors). Scientists

make use of electromagnetic radiations in such

fields as astronomy, earth and life sciences, and

communications. Several astronomical applications

of the electromagnetic spectrum are shown here.

^^ K^^J
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The photos on page 514 show: (top) a solar flare photo-
graphed in visible light; (middle) a computer-enhanced
image of the star Betelguese taken with the 4-m IVIayall

telescope: (bottom) Jupiter photographed in ultraviolet,

violet, green, yellow, red, and infrared. The photos on this

page show: (top left) the huge radio telescope in Arecibo,

Puerto Rico: (top right) the steerable Haystack antenna
in l\/lassachusetts: (bottom left) a contour map of the in-

frared brightness of a portion of the sky.

11



Electromagnetic waxes geneiviUy are

produced in the acceleration of

charged pai'ticles.

A-/vn photos of I topi a chambered
nautilus sea shell and (bottom) a

jet engine.

The glow in the photograph is

caused when gamma ravs emitted

by radioactive cobalt c\'lind(^rs in-

teract with the surrounding pool of
water.

elements. Ultraviolet light, like visible light, can cause

photochemical reactions in which radiant energy is converted

directly into chemical energv. Typical of these reactions are

those that occur in silver bromide in the photograjihic process,

in the production of ozone in the upper atmosphere, and in the

production of a dark pigment, known as melanin, in the skin.

X rays. This radiation involves wavelengths from about 10 " m
to 10 '' m. Usually, it is produced by the sudden dellection or

stopping of electrons when they strike a metal target. The
iiKiximum frecjuency of the radiation generated is deter'mined by

the enei'gv' with which the electr'ons strike the tar-get. In tur'ii,

this energy is determined by the voltage through which the

electrons are acceler^ated iSec. 14.81. So the maximum Irequency

incr^eases v\ith the acceler'ating voltage. The higher the frequency

of the X rays, the greater is their power to penetrate matter. But

the distance of penetr^ation also depends on the nature of the

material being peneti'ated. X r'ays are r'eadily absorbed by bone,

which contains calcium; they pass much more easily through

less dense or'ganic matter I such as flesh i containing mainlv the

light atoms hydr^ogen, car'bon, and oxygen. This fact, combined

with the ability of X i ays to affect a photographic plate, has led to

some of the medical uses of X-ray photography. X r'ays can

damage living cells and should be used with gr^eat caution and

only by trained technicians. But some kinds of diseased cells are

injui^ed mor^e easily by X r-ays than ar-e healthy cells. Thus, a

carefully controlled X-iay beam is sometimes used to destr^oy

cancerous growths or other harmful cells.

X r'ays produce interference effects when they fall on a crystal

in which atoms and molecules ai'e arranged in a regular- pattern.

Different portions of the incident beam of X rays are reflected

from differ-ent planes of atoms in the crystal str\rcture. These

reflected r-ays can interier-e constructively, and this fact can be

used in either of two ways. If the spacing of the atoms in the

crystal is known, the wavelength of the .X ravs can be calcirlated.

If the X-r-ay wavelength is known, the distance between crystal

planes, and thus the stnjcture of the crystal, can be deterTnined.

X rays ar-e now widely used by chemists, mineralogists, and

biologists in studying the structur-e of crystals and complex

molecules. You will use these ideas in Chapter 18.

Garnmii rays. The gamma-ray region of the electromagnetic

spectriim overlaps the X-ray region (see page 511). Gamma
r-adiation is emitted mainly by the unstable rnuclei of natural or

ariifiiial radioactive^ maten ials. You w ill studv gamma ravs firriher

in Unit 6.
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8. Why do radio waves not cast noticeable "shadows" behind

such obstacles as trees or small buildings?

9. Why are relay stations often needed in transmitting

television signals?

10. How is the fi^equency ofX rays related to their penetration

of matter?

11. How do the wavelengths used in radar compare with the

wavelengths of visible light?

16.6
I

What about the ether noiv?

The "luminiferous ether" had been proposed specifically as a

medium for the propagation of light waves. Maxwell found that

the ether could also be thought of as a medium for transmitting

electric and magnetic forces. Later, he realized that he could

drop his specific model of the ether entirely if he focused on the

mathematical form of the theory. Yet, just before his death in

1879, Maxwell wrote an article in which he still supported the

ether concept:

Whatever difficulties we may have in forming a consistent idea

of the constitution of the aether, there can be no doubt that the

interplanetary and interstellar spaces are not empty, but are

occupied by a material substance or body, which is certainly

the largest, and probably the most uniform body of which we
have any knowledge. .

.

Maxwell was aware of the failures of earlier ether theories. Near

the beginning of the same article he said:

Aethers were invented for the planets to swim in, to constitute

electric atmospheres and magnetic effluvia, to convey

sensations from one part of our bodies to another, and so on,

till all space had been filled three or four times over with

aethers. It is only when we remember the extensive and

mischievous influence on science which hypotheses about

aethers used formerly to exercise, that we can appreciate the

horror of aethers which sober-minded men had during the 18th

century. . .

.

Maxwell had formulated his electromagnetic theory

mathematically, independent of any particular model of the

ether. Why, then, did he continue to speak of the "great ocean of

aether" filling all space? It seemed unthinkable to Maxwell that

there could be vibrations without something that vibrates, or

waves without a medium. Also, to many nineteenth-century

physicists the idea of "action at a distance" seemed absurd. How

James Clerk Maxwell 11831-1879)

was born in Edinburgh, Scotland,

in the same year Faraday discov-

ered electromagnetic induction.

Unlike Faraday, Maxwell came
from a well-offfamily. He was edu-

cated at the Edinburgh Academy
and the University of Edinburgh.

He showed a lively interest in how
things happened when he was
scarcely 3 years old. As a child he

constantly asked, "What's the go

of that?" He studied mechanisms,

from a toy top to a commercial
steam engine, until he had satisfied

his curiosity about how they

worked. On the abstract side, his

formal studies, begun at the Acad-

emy in Edinburgh and continued

through his work as an undergrad-

uate at Cambridge, gave Ma^avell

experience in using mathematics
to develop usefijl parallels among
apparently unrelated occurrences.

His first publication appeared in

the proceedings of the Royal Soci-

ety of Edinburgh when he was only

14 years old. By the time he was

1 7, he had published three papers

on the results of his original re-

search. In the 1870's he organized

the Cavendish Laboratory at Cam-
bridge University, which became
a world center for physics research

for the ne^ct several decades.

He was one of the main contrib-

utors to the kinetic theory of gases,

to statistical mechanics and ther-

modvnamics, and also the theory

of color vision. His greatest

achievement was his electromag-

netic theory. Ma;<well is generally

regarded as the most profound and
productive physicist between the

time of Newton and Einstein.
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SG 23

A comparable effect is observed

with sound waves: They go faster

with respect to the ground when
traveling with the wind than when
traveling against the wind.

Michelson first tried the experi-

ment in 1881, stimulated by spec-

ulations on how to measure the ef-

fect of ether on light propagation,

given in a letter of MiLwvell's pub-
lished just after Maxwell's death.

could one object exert a force on another body far away if

something did not transmit the loice? One body is said to act on

another, and tlie word on gives tlie idea of contact. Thus,

according to accepted ways of describing the world in common
language, the ether seemed somehow necessary.

Yet 25 years after Maxwell's death the ether concept had lost

much of its support. Within another decade, it had vanished

from the collection of useful concepts. In part, the success of

Maxwell's theoiy itself helped to undeimine the general belief in

the existence of an ether, simply because his equations did not

depend on details of the ether's structure. In fact, they could be

taken to describe the relations between changes of electric and
magnetic fields in space without any reference to the ether at all.

Another difficulty with belief in the ether was that all attempts

to detect the motion of the earth relative to the ether failed. If

light is a kind of vibration of an ether that fills all space, then

light should travel at a definite speed relative to the ether. But

the earth must also be moving through the ether in its annual

orbit around the sun. Thus, the earth should be moving like a

ship, against an 'ether wind" at some times, and uith it at other

times. Under these conditions, the apparent speed of light

should be obsen ed to differ. When the earth and a beam of light

are moving in the same direction through the ether, the obseived

speed of light should not be the same as when the earth and the

light are moving in opposite directions.

Theorists computed the time required for light to make a

round trip with and against the ether wind. They compared this

interval with the time calculated for a round trip in the absence

of an ether wind. The expected time diffeience was found to be

very small: only 10"'^ sec for a round trip of 30 m. This is too

short a time difference to measure directly, but it is of the same
order as the time for one vibration of visible light. Therefore, the

difference might be detected from obsen ations of a properly

produced interference pattern. In 1887, the American scientists

Albert A. Michelson and Edward Morley used a device sensitive

enough to detect an effect only 1% as great as that predicted by

the ether theoiy. Neither this experiment nor the many similar

experiments done since then have revealed the existence or-

expected effects of an ether wind.

Supporters of the ether concept offered various explanations

for this unexpected result. For example, they suggested that

objects moving at high speeds relative to the ether' might change

their size in just such a way as to make this relative speed

undetectable. But even those who made such attempts to rescue

the ether concept felt their proposals to be forced and artificial.

Finally, a decisive development led scientists to abandon the

ether concept. This breakthrough was not a specific experiment,

but a brilliant pr-oposal hv a voung man of 2(i vears. The man
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was Albert Einstein, who in 1905 suggested that a new and deep

union of mechanics and electromagnetisni could be achieved

without the ether model. A few brief remarks here will provide a

setting for your further study of relativity at a later time.

Einstein showed that the equations of electromagnetism can

be wiitten to fit the same principle of relativity that holds for

mechanics. In Sec. 4.4, the Galilean principle of relativity was
discussed. It states that the same laws of mechanics apply in each

of two frames of reference that have a constant velocity relative

to each other. Thus, it is impossible to tell by any mechanical

experiment whether or not a laboratory (reference frame) is at

rest or is moving vvdth constant velocity. The principle is

illustrated by common experience within a ship, car, plane, or

train moving at a constant speed in a straight line. The observer

finds that objects move, remain at rest, fall, or respond to applied

force in just the same way they do when the ship, or whatever,

is at rest. Galileo, a convinced Copernican, applied this principle

to the motion of objects with respect to the earth. You will recall

the example of a stone falling straight down alongside a tower.

Galileo argued that this event gives no indication whether the

earth is fixed and the sun in motion, or the sun fixed and the

earth in motion.

Einstein extended this principle of relativity beyond

mechanics. It applied, he proposed, to all of physics, including

electromagnetism. A main reason for this assumption appears to

have been his feeling that nature could not be lopsided; relativity

could not apply only to part of physics. Einstein then added a

second basic conjecture. He stated that the speed of any light

beam moving through free space is the same for all observers,

even when they are moving relative to each other or relative to

the light source! This bold statement resolved the question of

why the motion of observers vvath respect to the ether did not

show up in experiments on the speed of light. In fact, Einstein

rejected the ether and all other attempts to provdde a "preferred

frame of reference" for light propagation. The price of making

these assumptions of his was, Einstein showed, the necessity of

revising some common-sense notions of space and time. Einstein

showed that Maxwell's equations are fully consistent with

extending the principle of relativity to all physics. This was yet

another great synthesis of previously separate ideas, like the

syntheses forged by Copernicus, Newton, and Maxwell.

More on relativity theory appears
in Chapter 20.

Einstein in 1908.

Some of the other important con-

sequences of Einstein's theory
of relativity will be discussed in

Unit 5.

SG 24-28

• 13. Why did Ma^cwell (and others) cling to the concept ofan

ether?

14. Whose argument finally showed that the ether was an

unnecessary hypothesis?
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studif
guide

1. The Project Physics learning materials

particularly appropriate lor Chapter 16 include:

i4ctivitie8

Microwave Transmission System

Film Loop
Standing Electromagnetic Waves

2. What inspired Oersted to look for a connection

between electricity and magnetism?

3. A current in a conductor can be caused by a

steady electric field. Can a displacement current in

an insulator be similarly caused? Explain your

answer briefly.

4. What causes an electromagnetic wave to be

initiated? to be propagated?

5. What is the "disturbance" that travels in each of

the following waves?

(a) water waves

(b) sound waves

(c) electromagnetic waves

6. In Hertz's detector, it is the electric field

strength in the neighborhood of the wire that makes

the sparks jump. How was Hertz able to show that

the waves from the induction coil spark gap were

polarized?

7. What evidence did Hertz obtain that his

induction-coil-generated waves have many properties

similar to visible light waves?

8. Give sevenil factors that contributed to the 25-

year delay in the general acceptance by scientists of

Maxwell's electromagnetic wave theory.

9. What evidence is there for believing that

electromagnetic waves carry energy? Does this

suggest why the early particle theory of light had

some success?

10. What is the wavelength of an electromagnetic

wave generated by the 60-Hz alternating current in

power lines? by radio broadcasts at the standard AM
radio frequencies (between 500 and 1,500 x lo' Hz)?

by broadcasts on the AM Hz "Citizen Band " (26.225

X 10" Hz)?

11. How short are "short-wave " radio waves? (Look

at the frequencies indicated on the dial of a short-

wave radio.)

IZ. Electric discharges in sparks, neon signs,

lighting, and some atmospheric disturbances

produce radio waves. The result is "static" or noise

in AM radio receivers. Give other likely sources of

such static.

13. Why must there be some federal control of the

broadcast power and direction of radio and T\'

stations, but no such controls of the distribution of

newspapers and magazines?

14. Many different kinds of radiation are broadcast

from the Empire State Building. Antennas broadcast

television and radio signals. Red warning lights

protect airplanes. Infi\ired radiation leaks from all

warm areas of the building. Even the electric wires

broadcast a faint radiation of their own.

(a) Give an approximate frequency and wavelength

for each of these four kinds of radiation.

(b) How would each kind of radiation behave if it

encountered a 2-m space between two buildings?

15. If there are extraterrestrial beings of advanced

civilizations, what method for gathering information

about earth-people might they have?

16. Why can AM radio waves be detected at greater

distances than the waves used for television and FM
broadcasting?

17. Some relay satellites have a 24-hr orbit. Thus,

they stay abo\e the same point as the earth turns

below them. What would the radius and location of

the orbit of such a "synchronous" orbit be? (Refer to

Unit 2 for whatever principles or constants you

need.)

18. ExjDlain why aiiplanes passing overhead cause

"flutter" of a IV picture.
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19. How much time would elapse between the

sending of a radar signal to the moon and the return

of the echo?

20. Refer to the black-and-white photograph on

page 513 that was taken using film sensitive only to

infrared. How do you explain the appearance of the

trees, clouds, and sky?

21. Why do you think the eye is sensitive to tlie

range of light wavelengths to which it is sensitive?

22. A sensitive thermometer placed in different

parts of the visible light spectrum formed by a

quartz prism will show a rise in temperature. This

proves that all colors of light produce heat when
absorbed. But the thermometer also shows an

increase in temperature when its bulb is placed in

either of the two dark regions to eitlier side of the

end of the visible spectrum. Why is this?

23. For each part of the electromagnetic spectrum

discussed in Sec. 16.5, list the ways in which you

have been affected by it. Give examples of things you

have done with radiation in that frequency range,

or of effects it has had on you.

24. What is the principal reason for the loss of

support for the ether concept?

25. At many points in the history of science, the

"natural" or common-sense way of looking at things

has changed greatly. Attitudes toward action-at-a-

distance are a case in point. What are some other

examples?

26. Can intuition be educated; that is, can feelings

about the fundamental aspects of reality be changed?

Use attitudes toward action-at-a-distance of the ether

as one example and give others.

Elxplain the "cat-less" grin shown below.

28. Write a brief essay on any two of the pictures on

page 522, explaining in some detail what principles

of physics they illustrate. (Select first the main

principle at work in each of the situations shown.

Also, you need not limit yourself to the principles

discussed in this unit.)

29. In a couple of pages, summarize how this unit

built up the story land physical details! of the wave

theory of light and the particle model of light.

Include the model of light as a material wave in a

material ether. Go on to the joining of the initially

separate disciplines of electricity and magnetism,

first with each other and then with the theory of

light in Maxwell's general electromagnetic theory.

In this chapter, you have read
about how mechanical models of
light and electromagnetism faded
away, leaving a model-less, mathe-
matical (and therefore abstract!

field theory. The situation has been
likened to that of the Cheshire Cat,

in a story written by the Reverend
Charles Dodgson, a mathematics
teacher at O^cford, in 1862. An illus-

tration is reproduced here.



This unit has presented the

story of how light and
electiT)magnetism became undeistandable, first sepaiateK' and
then together. The particle model of light explained the beha\'ior

of light in temis of mo\ ing particles. On experiencing strong

forces at a boundarA', these particles were thought of as bouncing
back or* swerAing in just the direction that light is obser-ved to be

r-eflected and r^efi acted. The wave model accounted for these and
other- effects by treating light as transxer'se waxes in a continuous

medium. These rival theories of light provided helpful

mechanical models for- light viewed either as particles or as

waves.

Mechanical models also worked, up to a point, in explaining

electricity and magnetism. Both Faraday and Maxwell made use

of mechanical models for- electric and magnetic lines of for-ce.

Maxwell used these models as guides in developing a

mathematical theory of electromagnetism that, when completed,

went well beyond the models. This theorA' also explained light

as an electromagnetic wave phenomenon.
However, it prxaved essential, ultimately, to keep the equations

describing the electric and magnetic fields, but to dispose of any

specific mechanical model used to help deri\e the equations. But

is there any way you can picture in your- mind what a field

"looks like"? Here is the response of the \'obel Prize-winning

American physicist Richard Feynman to this question:

I ha\'e asked you to imagine these electric and magnetic fields.

What do you do? Do you know how? How do 1 imagine the

electric and magnetic field? What do I actually see? What ar-e

the demands of scientific imagination? Is it any different frxim

trying to imagine that the room is full of invisible angels? No, it

is not like imagining inxisifjle angels. It requii-es a much higher-

degree of imagination to under-stand the electromagnetic field

than to undei-stand invisible angels. Why? Because to make
invisible angels undeistandablc, all I have to do is to alter their

properties a little bit— I make them slightlv visible, and then

I can see the shapes of their wings and bodies, and halos. Once

I succeed in imagining a visible angel, the abstraction

r-cquired—which is to take almost invisible angels and imagine

them completely invisible—is relatively easv. So vou sav,

"Professor, please give me an approximate description of the

electromagnetic waves, even though it may be slightlv

inaccurate, so that I too can see them as well as I can see

cilmost-invisible angels. Then I v\ill modifv the pictur-e to the

necessary abstraction."

I'm sorry that I can't do that for you. I don't know how. I

have no picture of this electromagnetic field that is in any sense

accurate. I have known about the electromagnetic field a long

time— I was in the same position 25 year-s ago that vou iuv

now, and I have bad 25 years of experience thinking about

these wiggling waves. When I start describing the magnetic field
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moving through sjoace, I speak of the E- and B-fields and wave

my arms and you may imagine that I can see them. I'll tell you
what I can see. I see some kind of vague shadowy wiggling

lines—here and there is an E and B written on them somehow,

cind perhaps some of the lines have arrows on them—an arrow

here or there which disappears when I look too closely at it.

When I talk about the fields swashing through space, I have a

terrible confusion between the symbols I use to describe the

objects and the objects themselves. I cannot really make a

picture that is even nearly like the true waves. So if you have

some difficulty in making such a picture, you should not be

worried that your difficulty is unusual.

The general trend in modern mechanics and electromagnetism

can be summarized by saying that physical theories have become
increasingly abstract and mathematical. Newton replaced the

celestial machineiy of early theories with a mathematical theoiy

using the laws of motion and the inverse-square law. Maxwell

developed a mathematical theory of electromagnetism that, as

Einstein showed, did not require any material medium such as

"ether." You are seeing here a growing but quite natural gap

between common-sense ideas developed from direct human
experiences and the subtle mathematical abstractions describing

effects that you cannot sense directly.

Yet, in the end, even these highly abstract theories must make
sense when put into ordinary language. And they do tell about

the things you can see and touch and feel. They use abstract

language, but have concrete tests and by-products. They have

made it possible to devise the equipment that guides space

probes to other planets and to design and operate the

instruments that enable scientists to communicate with these

probes. Not only are these theories at the base of all practical

developments in electionics and optics, but they now also

contribute to the understanding of vision and the nervous

system.

Maxwell's electromagnetic theory and the interpretation given

to electromagnetism and mechanics by Einstein in the special

theory of relativity produced a pr ofound change in the basic

philosophical viewpoint of the Newtonian cosmology. (In this

sense. Unit 4 marks a kind of watershed between the 'old ' and

"new " ways of doing physics.) While it is too early to hope for

a comprehensive statement of these changes, some aspects of a

new cosmology can already be detected. For this purpose, you
wall now proceed to study the behavior of matter and the atomic

theories developed to account for this behavior.
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CHAPTER 17 A Suniiiuir%'

of Some Ideas from Chemi.str«'

CHAPTER 18 Electrons and Quanta

CHAPTER 19 The Rutherford-Bohr Model
of the Atom

CHAPTER 20 Some Ideas from
Modern Ph^sicid Tlieories

PROLOGUE In the early units of this text,

you studied the motion of

bodies of ordinary size, such as you deal with in ordinaiy life.

You sau' how the laws of mechanics and of electiicitv' and

magnetism can be used to describe and predict the behavior of

these bodies. More important, you saw that these laws can iilso

predict the beha\ior of bodies veiy different from those you are

familiar with from everyday experience, for example, planets and

the solar system at one extreme, and molecules of a gas or

electrons in a metal at the other. In this unit, you will learn how
to apply basic theories to the problem of the nature of matter.

The phrase "the nature of matter " may seem simple now, but its

meaning has been changing and gr-owing ovei' the centuries. The

kinds of questions asked about matter and the methods used to

answer- these questions ar-e continirally charnging. For- example,

during the nineteenth century, the stirily of the nature of matter-

consisted mainly of chemistry; in the twentieth (-cntiiiA , th(^
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study of matter also involves atomic, nuclear, and elementaiy

particle physics.

Since 1800, progress has been so rapid that it is easy to forget

that people have theorized about matter for more than 2,500

years. In fact, some questions which have been answered only

during the last hundred years were first asked more than 2,000

years ago. Some ideas which are considered new and exciting,

such as the atomic structure of matter, were debated in Greece

in the fifth and fourth centuries B.C. This prologue will review

briefly the development of ideas concerning the nature of matter

up to about 1800. This review will set the stage for the four

chapters of Unit 5, which cover in greater detail the progress

made since 1800. You will see that regardless of the form it takes

(large or small, stable or shifting, solid, liquid, or gaseous) all

matter is made up of separate particles called atoms. You will

find that the atoms themselves have structure.

Theories based on the motion of bodies of ordinary size are

useful only up to a point when dealing with atoms and their

structure. Beyond that point, these theories break dowai. Nor are

they able to deal vvdth other extremes, for example, bodies that

move very rapidly or bodies that are extraordinarily dense.

Quantum mechanics and relativity were developed to describe

the behavior of bodies that are far outside direct, eveiyday

experience. These new theories do not prove mechanics to be

"wrong." Rather, they show the existence of a boundary beyond
which eveiyday experience cannot be extrapolated without

clashing vvdth new phenomena and new laws.

Finally, it udll become apparent that quantum mechanics and

relativity have their limits, too. There is a realm of behavior in the

elementaiy particles that make up the nucleus, of which even

quantum mechanics or relativity do not provide an adequate

description. At present, no new theories have yet been shown to

be fully satisfactory, either.

Early science had to develop out of ideas that were available

before science started. These ideas came from experience with

snow, wind, rain, mist, and clouds; heat and cold, salt and fresh

water; udne, milk, blood, and honey; ripe and unripe fruit; fertile

and infertile seeds. The most obvious and most puzzling facts

were that plants, animals, and people were born, grew and
matured, then aged and died. The world was continually

changing, and yet, on the w^hole, it seemed to remain much the

same. The causes of these changes and of the apparent

continuity of nature were unknown. Often they were assigned to

the actions of gods and demons. Myths concerning the creation

of the world and the changes of the seasons were among the

earliest creative productions of primitive people eveiywhere.

Such myths helped people to come to temis with events they

could see happening but could not rationally understand.

This gold earring, made in Greece
about 600 B.C., shows the great skill

with which ancient artisans worked
metals. [Museum of Fine Arts, Bos-

ton]
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Over a long period of time, humans developed some control

over nature and materials. They learned how to keep warni and
dry, to smelt ores, to make weapons and tools, to produce gold

ornaments, glass, perfumes, and medicines. Eventually, in Greece,

by the year 600 B.C., philosophers (literally "lovers of vWsdom")

had started to look for rational explanations of natural events.

They wanted explanations that did not depend on the actions or

the whims of gods or demons. They sought to discover the

enduring, unchanging things out of which the worid is made.

How did these things give rise to the changes they perceived and

to the great variety of matericd things? This search was the

beginning of human attempts to understand the material worid

rationally, and it led to a theory of the nature of matter.

The eariiest Greek philosophers thought that all the different

things in the worid were made out of a single basic substance.

Some thought that water was the fundamental substance and
that all other substances were derived from it. Others thought

that air was the basic substance; still others favored fire. But

neither water, air, nor fire was satisfactory. No one substance

seemed to have enough different properties to give rise to the

enormous variety of substances in the world. According to

another view, introduced by Empedocles around 450 B.C., there

were four basic types of matter: earth, air, fire, and water. All

material things were made out of them. These four basic

materials could mingle and separate and reunite in different

proportions. In doing so, they could produce the variety of

familiar objects as well as the changes in such objects. The basic

four materials, called elements, were supposed to persist through

all these changes. This theory was the first appearance of a

model of matter explaining all material things as just different

arrangements of a few elements.

The first atomic theory of matter was introduced by the Greek

philosopher Leucippus, born about 500 B.c:., and his pupil

Democritus (460-370 B.C.I. Only scattered fragments of the

writings of these philosophers remain, but their ideas were

discussed in considerable detail by the Greek philosopher's

Aristotle (389-321 B.C.) and Epicurus (341-270 B.C. I and by the

Latin poet Lucretius (100-55 B.C.). To these men we owe most of

our knowledge of ancient atomism.

The theory of the atomists was based on a number of

assumptions:

1. Matter is eternal; no material thing can come frxjm nothing,

nor can any material thing pass into nothing.

2. Material things consist of very small indi\asible particles.

The word "atom" meant "uncuttable " in Greek. In discussing the

ideas of the early atomists, the word "indivisibles" could be used

instead of the word "atoms.

'

3. Atoms differ in their sizes and shaptvs.
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4. Atoms exist in otherwise empty space (the void), which

separates them and allow^s them to move from one place to

another.

5. Atoms are continually in motion, although the nature and
cause of the motion are not clear.

6. In the course of their motions, atoms come together and
form combinations which are the material substances. When the

atoms forming these combinations separate, the substances

decay or break up. Thus, the combinations and separations of

atoms give rise to the changes that take place in the worid.

7. The combinations and separations take place according to

natural laws that are not yet clear, but do not require the action

of gods, demons, or other supernatural powers. In fact, one of

the chief aims of the atomists was to liberate people from

superstition and fear. As Lucretius put it, "fear in sooth takes

hold of all mortals because they see many operations go on in

earth and heaven, the causes of which they can in no way
understand, believing them therefore to be done by divine

power." By explaining natural events by the motion of atoms,

Lucretius hoped to show "the manner in which all things are

done without the hand of the gods."

With the above assumptions, the ancient atomists worked out

a consistent story of change, which they sometimes called

"coming-to-be" and "passing away." They could not demonstrate

experimentcilly that their theory w^as correct. It was simply an

explanation derived from assumptions that seemed reasonable to

them. The theory was a 'likely story. ' It was not useful for

predicting new phenomena; but prediction became an important

value for a theory only later. To the atomists, it was more
significant that the theory also helped to allay an unreasonable

belief in capricious supernatural beings.

The atomic theory was criticized severely by Aristotle. He
argued logically, from his own assumptions, that no vacuum or

void could exist. Therefore, the idea of atoms in continual

motion must be rejected. (Aristotle was also probably sensitive to

the fact that in his time belief in atomism was identified with

atheism.) For a long time Aristotle's argument against the void

was widely held to be convincing. Not until the seventeenth

century did Torricelli's experiments (described in Chapter 11)

show that a vacuum could indeed exist. Furthermore, Aristotle

argued that matter is continuous and infinitely divisible, so that

there can be no atoms.

Aristotle developed a theory of matter as part of his grand

scheme of the universe. This theory, wdth some modifications,

was considered satisfactory by most philosophers of nature for

neariy 2,000 years. Aristotle's theory was based on the four basic

elements. Earth, Air, Fire, and Water, and four "qualities, " Cold,

Hot, Moist, and Dry. Each element was characterized by two

FIRE

WATER
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According to Aristotle in his Meta-

physics, "There is no consensus
concerning the number or nature

of these fundamental substances.

Tiiides, the first to thini< about such

matters, held that the (liementaiy

substance is clear liquid. . . . He
may have gott(!n this idea from the

observation that only moist matter

can be wholly integrated into an
object—so that idl growth depends
on moisture. . . .

"Anaximenes and Diogenes held

that colorless gas is more elemen-

tary than clear liquid, and that in-

deed, it is the most elementary of

all simple substances. On the other

hand, llippasus of Metpontum and
Heraclitus of Ephesus said that the

most elemenlarx' substance is heat.

Empedocles spoke of four elemen-

tcU-y substances, adding diy dust to

the three already mentioned. . . .

Anaxagoras of Clazomenae said that

there are an infinite number of el-

ementary constituents of

matter. ..." [From a translation by
D. E. Gershenson and D. A. Green-

berg)

Laborutory oj a siy^leriiili < i-iiiiit\

alchemist.

qualities Ithe nearer two to each side, as shown in the diagram

at the left). Thus, the element

Earth is Diy and Cold,

Water is Cold and Moist,

Air is Moist and Hot,

Fire is Hot and 13iy.

According to Aristotle, it is always the first of the two qualities

that dominates. In his theory, the elements are not

unchangeable. Any one of them may be transformed into any

other if one or both of its qualities change to their opposites. The

transfomiation takes place most easily between two elements

having one quality in common. Thus, Earth (dry and cold) is

transformed into Water when dryness changes to moistness.

Earth can be transformed into Air only if both of the qualities of

Earth (diy and cold) are changed to their opposites Imoist and
hot).

As mentioned in Chapter 2, Aristotle was able to explain many
natural phenomena by means of his ideas. Like the atomic

theoiy, Aristotle's theory of coming-to-be and passing away was a

consistent model of the nature of matter. It also had certain

advantages over the atomic theory. For example, it was based on

elements and qualities that were familiar to people; it did not

involve atoms, which could not be seen or otherwise perceived,

or a void, which was difficult to imagine. In addition, Aristotle's

theoiy provided some basis for further experimentation: It

supplied what seemed like a rational basis for the fascinating

possibility of changing any material into any other.

Although the atomistic view was not completely abandoned, it

found few supporters between 300 B.C. and about 1600 ad. The
atoms of Leucippus and Democritus moved through empty
space, which contained no "spirit ' and had no definite plan or

purpose. Such an idea remained contrary to the beliefs of the

major religions. Like the Athenians in the time of Plato and

Aristotle, the later Christian, Hebrew, and Moslem theologians

considered atomists atheistic and "materialistic " for claiming that

everything in the universe could be explained in terms of matter

and motion.

About 300 or 400 year s after Aristotle, a type of research called

alchemy appeared in the Near and Far East. Alchemy in the Near

East combined Aristotle's ideas about matter with methods of

treating ores and metals. One aim of the alchemists was to

change or "transmute " ordinary metals into precious metals.

Although they failed to do this, the alchemists found and studied

many properties that are now classified as chemical properties.

They invented some pieces of chemical apparatus, such as

reaction vessels and distillation flasks, that (in modern form) are

still common in chemical laboratories. They studied such

processes as calcination, distillation, fermentation, and
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sublimation. In this sense, alchemy may be regarded as the

chemistiy of the Middle Ages. But alchemy left unsolved the

fundamental questions. At the opening of the eighteenth century

the most important of these questions were: (1) What is a

chemical element? (2) What specifically is the chemical nature of

the so-called elements, Earth, Air, Fire, and Water? (3) What is the

nature of chemical composition and chemical change, especially

burning? Until these questions were answered, it was impossible

to make real progress in finding out the structure of matter. Real

progress was delayed until about a century after the "scientific

revolution" of the seventeenth century, which clarified the chief

problems of astronomy and mechanics, but not of chemistiy.

During the seventeenth century, however, some forward steps

were made, supplying a basis for future progress in determining

the nature of matter. The Copernican and Newtonian revolutions

greatly undermined the authority of Aristotle. Now his ideas

about matter were also more easily questioned. Atomic concepts

were revived, offering a way of looking at things that was very

different from Aristotle's ideas. As a result, theories involving

atoms (or "particles ' or "corpuscles ') were again considered

seriously. Boyle based his models on the idea of "gas particles."

Nevv1:on also discussed the behavior of a gas (and even of light)

by supposing it to consist of particles. In addition, there was
now^ a successful science of mechanics. Through mechanics,

scientists could hope to describe how the atoms interacted with

each other. Thus, the stage was set for a general revival of atomic

theory.

In the eighteenth century, chemistry became more
quantitative. Weighing, in particular, was done more frequently

and more carefully. New substances were isolated and their

properties examined. The attitude that grew up in the second

half of the century was apparent in the work of Henry Cavendish

(1731-1810). According to a biographer. Cavendish regarded the

universe as consisting

One of those who contributed
greatly to the revival of atomism
was Pierre Gassendi (1592-1655), a

French priest and philosopher. He
avoided the criticism of atomism as

atheistic by saying that God created

the atoms and bestowed motion
upon them. Gassendi accepted the

physical explanations of the atom-
ists, but rejected their disbelief in

the immortality of the soul and in

Divine Providence. He u'as thus

able to provide a philosophical jus-

tification of atomism that met some
of the serious religious objections.

It was Cavendish, remember, who
designed the sensitive torsional bal-

ance that made it possible to find

a value for the gravitational con-

stant G (Sec. 8.8).

. . . solely of a multitude of objects which could be weighed,

numbered, and measured; and the vocation to which he

considered himself called was to weigh, number, and measure

as many of those objects as his alloted threescore years and ten

would permit. ... He weighed the Earth; he analysed the Air;

he discovered the compound nature of Water; he noted with

numerical precision the obscure actions of the ancient element

Fire.

Eighteenth-century chemistry reached its peak in the work of

Antoine Lavoisier (1743-1794). Lavoisier worked out the modern
views of combustion, established the law of conservation of mass
and explained the elementary nature of hydrogen and oxygen

and the composition of water. Above all, he emphasized the

Lavoisier's work on the conserva-

tion of mass was described in

Chapter 9.

UNIT 5 / PROLOGUE 529



T R A I T E
ELEMENTAIRE
D E C HIMIE,

PRfeSENTt DANS UN ORDRE NOUVEAU
ET d'aPRES LEi D^COL'VERTES MODERNES;

Avec Figures :

Par Af. LxroiSIER, de I' Academie dis
Scieiuts , de la Socictc Royalt de Medntne , dcs
Societcs d'Agriculture de Paris & dOrUars , de
la Soctcti RoyaU de Londres , de i'lnjlitut de
Botogiie , de la Socie'ic Helvetique de BujU , dt
ce.'les de Philadelphie , Harlem , Manchejler

,

Padoue , tfc.

TOME PREMIER.

A PARIS,
Chez CucHET, Libraire, rue & hotel Serpente.

M. D C C. L X X X I X.

touJ U PriviUgt di r.4iadimit det S.iencrj O di Ui
Socteu RoyaU de Medtcitu

Title page of Lavoisier's Traite

Elementaire de Chimie (1789).

quantitative aspects of chemistiy. His tanious book, Iraite

Elementaire de Chimie (Elements of Chemistry), published in

1789, established chemistiy as a modern science. In it, Lavoisier-

analyzed the idea of an element in a way which is very close to

modern views:

... if, by the term elements we mean to express those simple

and indivisible atoms of which matter is composed, it is

extremely probable that we know notbinj^ at all about thtnii; but

if we apply the term elements, or principles of bodies, to

express our idea of the last point which analysis is capable of

reaching; we must admit as elements all the substances into

which we are capable, by any means, to reduce bodies by

decomposition. Not that we are entitled to afiirm tbat these

substances we consider as simple may not be compounded of

tv\'o, or even of a greater number of principles; but since these

pnnciples cannot be separated, or rather since we have not

hitherto discovered the means of separating them, they act with

regard to us as simple substances, and we ought never to

suppose them compounded until experiment and observation

have pitjved them to be so.

During the second half of the eighteenth century and the early

years of the nineteenth century gr eat prxDgr^ss was made in

chemistry. This progress resulted largely from the increasing use

of quantitative methods. Chemists found out more and more
about the composition of substances. They separated many
elements and showed that nearly all substances are compounds,

that is, combinations of a fairly small number- of chemical

elements. They learned a great deal about how elements

combine and form compounds and how compounds can be

broken douai into the elements of which they consist. This

inforTnation allowed chemists to establish many empirical laws of

chemical combination. Then chemists sought an explanation for

these laws.

During the first 10 years of the nineteenth century, the English

chemist John Dalton introduced a modified form of the old

Greek atomic theory. Dalton s theory was an attempt to account

for the laws of chemical combination. It is here that the modern
story of the atom begins. Dalton s atomic theory was an

improvement over that of the Greeks because it opened the way
for quantitative study of the atom. Today, the existence of the

atom is no longer a topic of speculation. Ther-e are nrany kinds of

experimental evidence, not only for- the existence of atoms but

also for their inner structure. This unit will trace the discoveries

and ideas that pr-ovided this evidence.

Between the nineteenth and twentieth centuries, coruincing

evidence was developed for the modern conception of atoms.

Some of this evidence came from chemistry. Chapter- 17 will

review these ideas quite brieflv'. IThe review assumes that you
have already studied some chemistrv.)
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However^ chemistry could not answer all questions about

atoms; these questions could only be answered by physics.

Physical evidence accumulated in the nineteenth century and in

the early years of the twentieth century made it possible to

propose models not only for the atomic structure of matter but

for the interior structure of the atom itself. This evidence will be

discussed in Chapters 18 and 19. You will see how this physical

evidence required a revision of the laws upon which all physical

explanations vv^ere based thus far, when these laws were applied

to atomic phenomena.
Chapter 20 deals wdth the triumphs of two theories belonging

to modern physics. These theories grew logically from the

attempts to understand the structure of the atom. At the same
time, you will begin to see that these new theories, too, are still

evolving in order to deal with the newest discoveries.

Chemical laboratory of the eigh-

teenth century.
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A Summary
of Some Ideas from Chemistry

Electrolysis is discussed in Sec.

17.2.

17.1 Elements, atoms, and compounds
17J2 Electriciti' and chemistrt'

17.3 The periodic table

l.T*l
I

Elements, atoms, and compounds

This brief chapter is not meant to teach you chemistiy but to

refresh your memory about some ideas you have learned in

previous chemistry courses. Unlike other chapters in Project

Physics, there will be little history. You may also find many of the

explanations incomplete.

Substances can be divided into two classes: compounds and

elements. Compounds, by far the larger class, are substances that

can be decomposed into other substances by chemical means
(for example, heating or passing an electric current through

them). Elements are unique in that they can not be decomposed
chemically.

Sometimes this definition was difficult to apply because

chemists did not know all the wiiys to decompose substances.

Soda (sodium bicarbonate) and potash (potassium carbonate)

were considered elements before Humphry Davy, by using a

strong electric current, showed that the^' could be decomposed.

Most elements can be combined with other elements to make
compounds. When elements combine in this way, precisely the

same ratio of masses of the constituents is required to make a

particular compound. For example, 7.94 g of oxygen always
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combine vvath 1.00 g of hydrogen to produce 8.94 g of water. If

you start with 10.00 g of oxygen, you still get only 8.94 g of water,

but there will be 2.06 g of oxygen left over. This rule applies to

all compounds and is called the law affiled proportions.

A model that explains the law of fixed proportions asserts that

any element consists of a collection of identical, indestructible

atoms, a notion carefully investigated by John Dalton (1766-1844).

When two or more atoms link together, they fonn a molecule.

The molecule may be an element itself (if both atoms are the

same), or it may be a compound (if the atoms are different). Since

atoms are not divisible, the idea of joining two atoms of

hydrogen to, say, I'A atoms instead of exactly one atom of

oxygen is meaningless. The law of fixed proportions follows quite

naturally from the hypothesis that elements are made up of

identical, indestructible atoms.

It is useful to give the elements symbols, for example, "O" for

oxygen, "H" for hydrogen, "Fe" for iron. With these symbols,

formulas for the compounds can be wi itten quite simply. The
familiar formula H^O indicates that a water molecule has two
hydrogen atoms (2 H) and one oxygen atom (O). Other examples

of simple fomiulas are NaCl, FeJJ^, and H^SO^. The subscript

indicates the number of atoms of the particular element in one

molecule of the compound.
These fomiulas suggest another very useful concept that is

called combining capacity. This concept is probably easiest to

illustrate by example. Common table salt has the foiTnula NaCl.

This formula indicates that one atom of sodium (Na) combines

Dalton's symbols for "elements"

(18081.

An alloy is a niLxture of metals and
is not a compound. Thus, Cu.jSn,_

is a reasonable formula for an al-

loy.

Berzelius (1779-1848) introduced
these symbols in the 1820's.
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fi. (q\) ^ with one atom of chlorine (Cli to fomi one molecule ot table salt

(NaCl). Another salt, calcium chloride (often used to melt ice on
iT)adsi has the formula CaCl,; one atom of calcium iCai combines
with two atoms of t'hlorine to fomi this compound. Carbon

NaCl: (on

—

^ (No; tetrachloride (CCl^l is a liquid used in diy cleaning in which one
carbon atom IC) is combined with four chlorine atoms.

The atoms Na, Ca, and C apparently have different capacities

for combining with Cl. You could imagine that molecules are
^oClai ^ ^ 'Co) held together with little hooks. Then you could picture a Cl

atom, for example, as hiiving one hook. In this case, Na would
need one hook also; Ca would need two; and C would need four.

The number of hooks inquired for each atom in this model is

called the combining capacity or valence. Actuiilly, you would
begin by assigning a combining capacitv' of 1 to hydrogen and
arranging all other combining capacities to be mutually

consistent. Since the compound HCl is stable, for example, Cl

also has a combining capacity of 1. Ammonia has the formula

NH,, so nitrogen INI has a combining capacity' of 3. Proceeding

this way, you could assign the combining capacity' to each

element in turn. For example, since water is represented by H^O,

^^ ox\'gen's combining capacity is 2. There are a few complications,
US' (He) however. Some elements behave as though they have different

combining capacities in different situations. At another extreme

are elements like helium which do not form compounds at all

(or only under veiy exotic conditions). A combining capacity of

is assigned to these elements.

Since the combining capacity', or valence, of each element is

known, you can calculate the equivalent mass of each element.

"Equivalent" means the mass of an equal number of atoms. For

convenience, the mass of a hydrogen atom is taken as the

standard unit. For example, we know b\' experiment that water

(H^O) contains 7.94 g of oxygen for each gram of hydrogen. Two
hydrogen atoms (H^l are needed to balance the valance of one

oxygen atom (0~'). Therefore, the equivalent mass of one o.xygen

atom is 2 x 7.94 = 15.88 compared to each hydrogen atom.

Similarly, in the compoimd HCl, one atom of chlorine (atomic

weight 35.4) combines with one atom of hydrogen (or 35.4 g of Cl

combines wdth 1 g of H). Each chlorine atom has a mass

equi\'alent to 35.4 that of a hydrogen atom. This equi\'alent

weight for the same number of atoms is called the gram atomic

weight.

Vou might try to imagine an SO
molecule like this:

O O # 1. What is the combining capacity of sulfur (S) in the

^j^ compound H^? in the compound SO^?

II 2. What is the combining capacity ofaluminum in the

O compound AljO/
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3. Methane (CHJ has roughly 3 g carbon for 1 g of hydrogen.

Use this information to find the approximate gram atomic

weight of carbon.

'L7»2t
I

Electricity and chemistry

While chemists were applying Dalton's atomic theory in the first

decade of the nineteenth century, another development made
possible experiments showang that electricity and the stiucture

of matter were closely related. As you saw in Unit 4, Alessandro

Volta invented the electric cell in 1800 (Sec. 14.7). Soon, batteries

of these cells were providing the first available large, steady

sources of electric current in several laboratories. A few weeks

after Volta announced his discovery, it was found that an electric

current could decompose water into oxygen and hydrogen. The
decomposition of a compound by passing an electric current

through it is called electrolysis. When the hydrogen and oxygen

gases are collected and weighed, they form in the proportion of

7.94 g oxygen to 1.00 g hydrogen. This is exactly the proportion

in which these elements combine to form w^ater.

As mentioned in Sec. 17.1, when Humphry Davy (1778-1829J

passed a current through soda and potash, he discovered the

metals sodium and potassium. Michael Faraday, whose
enonnous contribution to electromagnetism was discussed in

Unit 4, carried on with Davy's initial experiments and discovered

two fundamental empirical laws of electrolysis:

1. The mass of an element released at an electrode during

electrolysis is proportional to the amount of charge ( = current

X time) that has passed through the electrode.

2. IfA is the atomic mass of an element and v its combining

capacity, a transfer of 96,540 C of charge (for example, 100 A for

965 sec) releases A/v grams of the element.

The quantity A/v has significance beyond electrolysis

experiments. For example, the values of A'v are 8.00 for oxygen

and 1.008 for hydrogen. The ratio 8.00/1.008 = 7.94—just the

ratio of the masses of oxygen and hydrogen that combine to

produce w^ater. In general, when two elements combine, the ratio

of their masses is equal to the ratio of their values for A/v.

There are two profound implications in Faraday's work on
electrolysis. First, it showed that electricity was somehow
involved in holding atoms together to form molecules and hinted

that a certain amount of electricity was connected with each

atom. (In other words, electricity may also be atomic in nature.)

As you will see in Chapter 18, this is a very useful idea. Second,

electrolysis provided precisely the tool needed to help chemists

determine atomic weights and combining capacities for many
elements which are confusing if dealt vvdth using other chemical

techniques.

Physicists and chemists have now
decided to use the most common
isotope of carbon, C'~ , to define

atomic mass. With the atomic mass
of C" set at 12.000, hydrogen has an
atomic mass of 1.008.

I

Remember that current is defined

as charge/time.
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4. Complete the following table:

MASSES OF ELEMENTS RELEASED IN ELECTROLYSIS
WHEN 96,540 C OF CHARGE HAVE PASSED

Element



TABLE 17.1 LIST OF THE ELEMENTS



Dmitri Mendeleev (1834^1907) pub-
lished the first periodic table in

1869. It contained the 63 elements
known at the time.

The physical reason for this re\'er-

sal is now well understood and \\ ill

be discussed later.

elements, called the halogens, is found in Group \ II: Iluorine,

chlorine, bromine, and iodine. These elements combine violently

with many metals and form white, ciystalline salts \ halogen

means "salt fonner"). These salts have similar formulas, such as

NaF, NaCl, NaBr, Nal, or MgF,, MgCl,, MgBr,, and Mgl,.

Occasionally, it was necessarv' to depart from the overall

scheme of ordering the elements by increasing atomic weight in

the periodic table. For example, the chemical properties of argon

(Ar) and potassium IK) demand that they be placed in the

eighteenth and nineteenth positions in order to fall into groups

characteristic of their families. On the basis of their atomic

masses alone 139.948 for argon; 39.102 for potassium) their

positions would have been reversed.

The number that designates the place an element has in the

periodic table is called the atomic number of the element. The
atomic number is usually represented by the symbol Z; thus, for

hydrogen Z = 1, for chlorine Z = 17, and so on. In Chapter 19,

you will see that the atomic number has a fundamental physical

meaning that is fixed by the structure of the particular atom. Any
successful model of atoms must explain why the elements

arrange themselves in a periodic table and predict v\'hv an

element of Z = 2 is chemically quite similar to one of Z = 10

and very distinct from one of Z = 3. You will see that by

combining the ideas of several physicists, including Rutherfoi^d,

Bohi, and Pauli, such a model has been constructed and is one

of the great successes of physics during the first thii d of the

twentieth century.

Study
guide

1 . The Project Physics learning materials

particularly appropriate for Chapter 17 include the

foUouing:

Experiment
Electrolysis

Activities

Dalton's Puzzle

Electrolysis of Water

Periodic Table

Single-Electrode Plating

Activities from Scientific American

Film Loops
Production of Sodium by Electrolysis

2. The chemical compound zinc oxide I molecular

formula ZnOI contains equal numbers of atoms of

zinc and oxygen. L'sing \iilues of atomic masses from

the periodic table Ion page .1361, find the percentage

by mass of zinc in zinc oxide. What is the percentage

of oxygen in zinc oxide?

3. The chemical compound zinc chloride

(molecular formula ZnCl.l contains two atoms of
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sg
chlorine for each atom of zinc. Using values of

atomic masses from the periodic table, find the

percentage by mass of zinc in zinc chloride.

4. When a 5.00-g sample of ammonia gas is

completely decomposed into its elements, nitrogen

and hydrogen, 4.11 g of nitrogen are obtained. The
molecular formula of ammonia is NH^. Find the

mass of a nitrogen atom relative to that of a

hydrogen atom. Compare your result with the one

you would get by using the values of the atomic

masses in the periodic table. If the two results are

different, how do you account for the difference?

5. From the information in SG 4, calculate how
much nitrogen and hydrogen are needed to make 1.2

kg of ammonia.

6. A sample of nitric oxide gas, weighing 1.00 g,

after sepai'ation into its components, is found to

have contained 0.47 g of nf rogen. Taking the atomic

mass of oxygen to be 16.00, find the corresponding

numbers that express the atomic mass of nitrogen

relative to oxygen if the molecular formula of nitric

oxide is (a) NO; (b) NO,; (c) Np.

7. Given the molecular formulas HCl, NaCl, CaCl^,

AlCl^, SnCl^, PCI., find possible combining capacities

of sodium, calcium, aluminum, tin, and phosphorus.

8. In recent editions of the Handbook of Chemistry

and Physics, the valence numbers of the elements

are printed in or below one of the periodic tables.

Ignore the negative valence numbers and plot (to

element 65) a graph of ruciximum valences observed

versus atomic mass. What periodicity do you find?

Is there any physical or chemical significance to this

periodicity?

9. According to the table in Question 4 (p. 536),

when about 96,500 C of charge pass through a water

solution, how much oxygen will be released at the

same time when (on the other electrode) 1.008 g of

hydrogen are released? How much oxygen will be

produced when a current of 3 A is passed through

water for 60 min (3,600 sec)?

10. If a current of 0.5 A is passed through molten
zinc chloride in an electrolytic apparatus, what mass
of zinc vvtU be deposited in

(a) 5 min (300 sec)?

(b) 30 min?

(c) 120 min?

11. (a) For 20 min (1,200 sec), a current of 2.0 A is

passed through molten zinc chloride in an

electrolytic apparatus. What mass of chlorine wiU be

released at the anode?

(b) If the current is passed through molten zinc

iodide rather than molten zinc cliloride, what mass
of iodine will be released at the anode?

(c) Would the quantity of zinc deposited in part (b)

differ from that in part (a)? Why?

(d) How would you set up a device for plating a

copper spoon with silver?

13. 96,540 C in electrolysis frees A grams of a

monovalent element (v = 1) of atomic mass/\, for

example, hydrogen when hydrochloric acid is used

as electrolyte. How much chlorine will be released

on the other electrode?

13. 96,540 C in electrolysis always frees A grams of a

monovalent element, A/2 grams of a divalent element

(v = 2), etc. What relation does this suggest between

valence and "atoms" of electricity?

14. The idea of chemical elements composed of

identical atoms makes it easier to understand the

phenomena discussed in this chapter. Could the

phenomena be explained without using the idea of

atoms? Chemical phenomena usually involve a fairly

lai'ge quantity of material (in terms of the number
of "atoms"). Do such phenomena provide sufficient

evidence for Dalton's belief that an element consists

of atoms, all of which are exactly identical with each

other?
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18.1 The idea of atomic structure

18.2 Cathode ra\'s

18.3 The measurement of the charge of the electron: Millikan's

experiment
18.4 The photoelectric effect

18.5 Einstein's theor\' of the photoelectric effect

18.6 X ravs

18.7 Electrons, cpianta, and the atom

1.8.1. The idea of atomic structure

SG 1

a. These elenient.s burn when ex-

posed to iiir; they decxjmpose water,

often ex|jlosi\ ely.

b. These elements react slowly with

air or water.

c. These elements rarely roml)ine

with anv other element.

Chemistry in the nineteenth centuiy had succeeded remarkably

in accounting for combining proportions and in predicting

chemical reactions. This success had convinced most scientists

that matter is indeed composed of atoms. But there remained

a related question: Are atoms really indivisible, or do they consist

of still smaller particles?

You can see how this question arose by thinking a little more
about the periodic table. Mendeleev had arranged the elements

in the order of increasing atomic mass. But the atomic masses of

the elements cannot explain the periodic features of Mendeleev's

table.

Why, for example, do lai the 3id, 11th, lUth, 37th, ooth, and

87th elements, with quite different atomic masses, have similar

chemical properties?

Why are these properties somewhat different from those of lb)

the 4th, 12th, 20th, 38th, 56th, and 88th elements in the list, but
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greatly different from the properties of (c) the 2nd, 10th, 18th,

36th, 54th, and 86th elements?

The periodicity in the properties of the elements led to

speculation that atoms might have structure, that they might be

made up of smaller pieces. The properties changed gradually

from group to group. This fact suggested that some unit of

atomic structure might be added from one element to the next,

until a certain portion of the structure is completed. The
completed condition would occur in the atom of a noble gas. In

an atom of the next heavier element, a new portion of the

structure would be started, and so on. The methods and
techniques of classical chemistiy could not supply experimental

evidence for such structure. In the nineteenth century, however,

discoveries and new techniques in physics opened the way to

proof that atoms actually do consist of smaller pieces. Evidence

piled up to support the conclusion that the atoms of different

elements differ in the number and arrangement of these pieces.

In this chapter, you wdll study the discovery of one structural

unit that all atoms contain, the electron. Then you will see how
experiments vvdth light and electrons led to the revolutionary

idea that light energy is transmitted in separate "chunks."

Chapter 19 vvdll describe the discovery of another part of the

atom, the nucleus. Finally, you \Adll see how Niels Bohr combined
these pieces to create a workable model of the atom. The story

starts with the discovery of cathode rays.

CHAPTER 18 / ELECTRONS AND QUANTA

J. J. Thomson and F. B. Jewett (later

president of Bell Laboratories) in-

specting vacuum tubes at the New
Jersey laboratories in 1923.
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Cathode-ray apparatus.

Siibstames that glow when ex-

posed to light, particularly ultraxi-

olet, are called fluorescent. "Flu-

orescent lights" are essentially

Geissler tubes with an inner coat-

ing of fluorescent powder.

^
.-.

lathodc

Bent Geissler tube. The most in-

tense green glow appeared at g.

'ti;

^

A Crookes tube.

18.2
I

Cathode rays

In 1855, the German physicist Heinrich Geissler invented a

poweiful vacuum pump. Ihis pump could remove enough gas

from a strong glass tube to reduce the pressure to 0.01% of

normal air pressure. It was the first major improvement in

vacuum pumps after Guericke's invention of the air pump, two

centuries earlier. This new pump made possible the electric light

bulb, the electron tube, and other technologically valuable

inventions over the next 50 years. It also opened new fields to

pure scientific research. Geissler s friend Julius Pliicker

connected one of Geissler's evacuated tubes to a battery. He was
surprised to find that, at the very low pressure obtained vvilh

Geissler's pump, electricity flowed through the tube. Pliicker

used apparatus similar to that sketched in the margin. He sealed

a wire into each end of a strong glass tube. Inside the tube, each

uire ended in a metal plate, called an electrode. Outside the

tube, each wire ran to a source of high voltage. (The negative

plate is called the cathode, and the positive plate is called the

anode.) A meter indicated the current going through the tube.

Pliicker and his student Johann Hittorf noticed that when an

(electric current passed through the low-pressure gas in a tube,

the tube itself glowed with a pale green color. Several other

scientists observed this effect, but two decades passed before

anyone undertook a thorough study of the glov\ing tubes. By

1875, Sir William Crookes had designed new tubes for studying

the glow. When he used a bent tube (see figure at the left) the

most intense green glow appeared on the part of the tube that

was directly opposite the cathode (at g). This suggested that the

green glow is produced by something that comes out of the

cathode and travels down the tube until it hits the glass. Another

physicist, Eugen Goldstein, was also studying the effects of

passing an electric current through a gas at low pressure.

Goldstein coined a name for whatever it was that appeared to be

coming from the cathode: cathode rays. For the time being, the

nature of these cathode rays was a mysteiy.

To study the nature of the rays, Crookes did some clever

experiments. He reasoned that if cathode rays could be stopped

before they reached the end of the tube, the intense green glow

would disappear. He therefoi'e introduced barriers like the

Maltese cross (made of metal) as in the sketch in the margin. A
shadow of the barrier appeared in the midst of the green glow at

the end of the tube. The cathode seemed to act like a source that

radiates a kind of light; the cross acted like a barrier blocking the

light. The shadow, cross, and cathode appeared along one

straight line. Therefore, Crookes concluded, cathode rays, like

light rays, travel in straight lines. Next, Crookes moved a magnet

near the tube, and the shadow moved. Thus, he foutnd that
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magndc fields deflect catiiode ra\s which does not happen
with i;hti.

In le course of man\' experiments Crookes found the

foilowig properties of cathode ra\s:

1. >j matter what material the cathode is made of it produces

ra\s vth the same properties.

2. lithe absence of a magnetic field the ra\s tra\el in straight

lines crpendicular to the surface that emits them.

3. Aiiagnetic field deflects the path of the cathode rays.

4. Te rays can produce some chemical reactions similar to

the rcotions produced b\ light. For example, certain sil\"er salts

chang color when hit b\ the rays.

5. Iiaddition, Crookes suspected ibut did not succeed in

showigi that charged objects deflect the path of cathode rays.

Phy:cists were fascinated by the cathode ra\'s. Some thought

that th rays must be a form of light. .After all, the\ ha\"e man\
of the roperties of light: the\ tra\el in straight lines and
produo chemical changes and fluorescent glows just as light

does, '^cording to Max^Nell's theor\- of electricity and magnetism
light cnsists of electromagnetic waxes. So the cathode ra\"s

might,,:)r example, be electromagnetic waxes of frequency much
higherban that of \isible light.

Hovwer, while magnetic fields do not bend light the\ do
bend le path of cathode ra\ s. Chapter 14 described how
magnec fields exert forces on currents that is on moxlng
electri chaises. A magnetic field deflects cathode ra\ s in the

same xay that it deflects negati\e chaises. Therefore some
physic ts belie\ed that cathode ra\s consisted of negatixeh

charge particles.

The abate o\ er whether cathode ra\ s are a form of

electrmagnetic waxes or a stream of charged particles

contined for 25 years. Finallx , in 1897, J. J. Thomson made a

series c experiments that conxinced phxsicists that cathode ra\ s

are ne^tixeh charged particles. A detailed account of the

discoxTV' of the electron is gixen in Chapter 2 of the

Suppleiental Unit B, "Discoveries in Physics.

It \vi then xxell knoxxn that the paths of charged particles are

afl^ecteibx' both magnetic and electric fields. By assuming that

cathod rays xxere negatixeh charged particles, Thomson could

predictvhat should happen xxtien the\ passed through such
fields. Dr example, an electric field of just the right magnitude
and diiction should exacth balance the deflection of a beam of

cathod ra\s bx a magnetic field. As Thomson discoxered. the

predict)ns xxere xerified. Thomson could therefore conclude

that caiode ra\s xxere indeed made up of negativelx charged

particle He x\as then able to calculate, from the experimental

data th ratio of the charge of a particle to its mass. This ratio is

J. J. Thomson later observed this to

be possible.

Sir Joseph John Thomson
'1856-1940 . one of the greatest

British physicists, attended Owens
College in Manchester. England,

and then Cambridge L'ni\ersit}-. He
worked on the conduction of elec-

tricity.- through gases, on the rela-

tion between electricity and matter,

and on atomic models. His greatest

single contribution was the discan-

er\ of the electron. Thomson was
the head of the famous Cavendish

Laboratory at Cambridge L'ni\'er-

sity. wfiere one of his students «as
Ernest Rutherford.
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SG 2

The data in the table in Question 4

of Chapter 17 show that 1.008 g of

hydrogen is freed when 96,540 C of

electric charge are transferred; this

implies q/m = 96,540 C/1.008 g, or

about 9.6 X 10' C/kg.

represented by q/m, where q is the charge and m is the mass of

the particle. Thomson found that the rays coming from cathodes

made of different materials all had the same value oi q/rn: 1.76

X 10" C/kg.

Thus, it was clear that cathode rays must be made of

something all materials have in common. Thomson's negatively

charged particles were later called electrons. The value of q/m for

the cathode-ray particles was about 1,800 times larger than the

values of q/m for charged hydrogen atoms lions), which can be

shown to be 9.6 X 10' C/kg, as measured in electrolysis

experiments of the kind discussed in Sec. 17.2 (see table on page

536). Thomson concluded from these results that either the

charge of the cathode-ray particles is much greater than that of

the hydrogen ion, or the mass of the cathode-ray particles is

much less than the mass of the hydrogen ion.

Thomson also measured the charge q on these negatively

charged particles uith methods other than deflection by electric

and magnetic fields. His experiments were not very accurate. But

they were good enough to indicate that the charge of a cathode-

ray particle was the same or not much different from that of the

hydrogen ion in electrolysis. In view of the large value of q/m,

Thomson concluded that the mass of cathode-ray particles is

much less than the mass of hydrogen ions.

In short, the cathode-ray particles, or electrons, were found to

have two important properties: (II they were emitted by a uide

variety of cathode materials, and (2) they were much smaller in

mass than the hydrogen atom, which has the smallest known
mass. Thomson therefore concluded that the cathode-ray

particles form a part of all kinds of matter. He suggested that the

atom is not the ultimate limit to the subdixdsion of matter; rather,

the electron is part of an atom and is perhaps even a basic

building block of atoms. Scientists now know that this is correct.

The electron, whose existence Thomson had first proved by

quantitative experiment, is one of the ftmdamental or

"elementary" particles of which matter is made.
In the article in which he published his discovers', Thomson

also speculated about how electrons might be arranged in atoms

of different elements. He thought that such arrangements might

account for the periodicity of the chemical properties of the

elements. As you will see in the next chapter, Thomson did not

say the last word about the arrangement and number of

electrons in the atom. But he did say the first word about it.

1. What was the most convincing evidence to support the fact

that cathode rays were not electromagnetic radiation?

2. What was the reason given for the ratio q/m for electrons

being 1,H00 times larger than q/m /or hydrogen ions?
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3. What were two main reasons for Thomson's belief that

electrons may be "building blocks "from which all atoms are

made?

1.8.3
I

The measurement of the charge of the
electron: Millikan's experiment

After the ratio of charge to the mass iq/m) of the electron had
been detennined; physicists tried to measure the value of the

charge q itself. If the charge could be determined, the mass of

the electron could be found from the knowni value of q/m. In the

years between 1909 and 1916, the American physicist Robert A.

Millikan succeeded in measuring the charge of the electron. This

quantity is one of the fundamental constants of physics; it comes

up again and again in atomic and nuclear physics as well as in

electricity and electromagnetism.

Millikan s "oil-drop experiment" is still an infomiative

experiment that students can do. It is described in general

outline on page 547. Millikan found that the electric charge that

a small object such as an oil drop can pick up is always a simple

multiple of a certain minimum value. For example, the charge

may have the value -4.8 x lO'" C, -1.6 x 10"" C, -6.4 x
10"" C, or -1.6 X 10""* C. But it never has a charge of, say,

-2.4 X 10"" C, and it never has a value smaller than -1.6 X
10"" C. In other words, electric charges always come in

multiples (1, 2, 3, . . .) of 1.6 x 10"" C, a quantity often

symbolized by q^. Millikan correctly took this minimum charge to

be the amount of charge of a single electron.

The magnitude of the charges of nuclei or atomic and

molecular ions is also always a multiple of the electron charge q^.

For example, a chemist may refer to a "doubly charged oxygen

ion." This means that the magnitude of the charge of the ion is

2q^, or 3.2 X 10"" C.

Note that Millikan's experiments did not prove that no charges

smaller than q^ can exist. However, no experiment has yet proved

the existence of smaller charges. Recent theoretical advances

suggest that in some very high-energ\^ experiments, an

elementary particle of charge V3 q^ may eventually be discovered.

But no such "fractional" charge is expected to be found on

nuclei, ions, or droplets.

In everyday life, the electric charges are huge compared to that

on one electron. Thus, you usually think of such charges or

currents as being continuous, just as you think of the flow of

water in a river as continuous rather than as a flow of indivadual

molecules. A current of lA, for example, is equivalent to the flow

of 6.25 X 10^** electrons per second. The "static" electric charge

you accumulate by shuffling over a rug on a dry day consists of

something like 10*^ electron charges.

From now on, the magnitude of the

charge of the electron is repre-

sented by q^

c/,. = 1.6 X 10" C

The sign of the charge is negative

for the electron.

SG3

In 1964, an American physicist,

Murray GeU-Mann, suggested that

particles with charge equal to '/a or

% of q, might exist. He named these

particles "quarks." The word comes
from James Joyce's novel Finne-
gan's Wake. However, current the-

ory suggests that quarks are always
bound together in groups whose
charge is equal to q^.
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Thomson found that

q/m = 1.76 x lo" C/kg

According to Millikan's experiment

,

the magnitude of c/,. is 1.6 x 10' ''

C.

Therefore, the mass of an electron

is:

1.6 X 10'" C

1.76 X 10" C/kg

= 0.91 X 10 ^'' kg

(Mass of a hydrogen ion is 1.66 x

10 '" kg. This is approximately the

value of one "atomic mass unit. "I

Since the work of Millikan, other experiments involving many
different fields within physics ha\'e all pointed to the charge q,.

as being fundamental in the stiuctue and behavior of atoms,

nuclei, and smaller particles. For example, it has been shouTi

directly that cathode-ray particles carry this basic unit of charge,

that they are, in other words, electrons.

By combining Millikan's value for the electron charge q^, with

Thomson's value for the ratio of charge to mass iqjm}, you can

calculate the mass of a single electron (see margin!. The mass
found for the electron is about 10"^° kg. From electrolysis

experiments (see Sec. 17.2), the charge-to-mass ratio of a

hydrogen ion is known to be 1,836 times smaller than the

charge-to-mass ratio of an electron. But an electron and a

hydrogen ion fonn a neutral hydrogen atom when they combine.

Therefore, it is reasonable to expect that they have equal and
opposite charges. If so, the mass of the hydrogen ion is 1,836

times as great as the mass of the electron; that is, the mass of the

hydrogen ion is 1,836 x 0.91 x 10"'"' kg = 1.66 X 10"'' kg. Ihis

is approximately the value of one atomic mass unit.

4. Oil drops pick up different amounts of electric charge. On
what basis did Millikan decide that the lowest charge he found

was actuallyjust one electron charge?

18.4
I

The photoelectric effect

In 1887, the Gemian physicist Heinrich Hertz was testing

Maxwell's theoiy of electromagnetic waves (see Sec. 16.4). He
noticed that a metallic surface can emit electric charges when
light of very short wavelength falls on it. Because light and

electi icity are both involved, the name photoelectric effect was

given to this phenomenon. When the electric charges so

pr'oduced passed through electric and magnetic fields, their

paths were changed in the same ways as the paths of cathode

rays. It was therefore deduced that the electric charges consist of

negatively charged particles. In 1898, J. J. Thomson measured the

value of the ratio q/m for these photoelectrically emitted

particles. Using the same method that he had used for cathode-

ray particles, Thomson got the same xalue for the photoelectric

particles as he had for- the cathode-ray particles. These

experiments (and others) demonstrated that photoelectric

particles had the same properties as electrT)ns. In fact, physicists

consider them to be ordinary electrons, although they are often

r-eferTcd to as photoelectrons to indicate their origin. Later work

showed that all substances (solids, liquids, and gases) exliibit the

photoelectric effect under appropriate conditions. However, it

is conxenient to stud\ the effect with metallic surfaces.
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uiose Upl
Millikon's Oil-drop Experiment

R. A. Millikan's own apparatus (about 1910) for

measuring the charge of the electron is seen in the

photograph below.

In principle, Millikan's experiment is simple; the

essential part of the apparatus is sketched above.

When oil is sprayed into the chamber containing

two horizontal plates, the tiny droplets formed are

electrically charged as they emerge from the spray

nozzle. The charge of a droplet is what must be

measured. Consider a small oil drop of mass m
carrying an electric charge q. It is situated between

the two horizontal plates that are separated by a

distance d and at an electrical potential difference

V. There will be a uniform electric field E between

the plates, of strength V/d (see Section 14.8). This

field can be adjusted so that the electrical force qB
exerted upward on the drop's charge will balance

the force ma exerted downward by gravity. In this

balanced situation,

!#
t

V'f'L.TA'1

or

t -i 1- 1 t y .:_ I

q = ma IE

Therefore,

F = F

qE = ma^

The mass of the drop can, in principle, be deter-

mined from its radius and the density of the oil from

which it was made. Millikan had to measure these

quantities by an indirect method. (Today it is pos-

sible to do the experiment with small manufactured

polystyrene spheres instead of oil drops. Their

mass is known, so that some of the complications

of the original experiment can be avoided.) Milli-

kan's remarkable result was that the charge q on

objects such as an oil drop is always a multiple (1,

2, 3 . . .) of a smallest charge, which he identified

with the magnitude of the charge of one electron



The best way to study this and most
other parts of physics is by actually

doing the experiments discussed.

The photoelectric effect, which you \\i\\ study in greater detail,

has had an important place in the development of atomic

physics. The effect could not be explained in terms of the ideas

of physics you have studied so far. New ideas had to be

introduced to account for the experimental results. In particular,

a revolutionary concept was introduced: quanta. A new branch

of physics called quantum theory developed, at least in part,

because of the explanation provided for the photoelectric effect.

The basic information for studying the photoelectric effect

comes Irom two kinds of measurements: 111 measurements of the

photoelectric current (the number of photoelectrons emitted per

unit time), and 12) measurements of the kinetic energies with

which the photoelectrons are emitted.

The photoelectric current can be studied with an apparatus

like that sketched in (a) below. Two metal plates, C and A, are

sealed inside a well-evacuated quartz tube. (Quartz glass is

transparent to ultraviolet light as well as visible light.) The two

plates are connected to a source of potential difference (for

example, a battery). In the circuit is also an ammeter. As long as

light strikes plate C, as in (b), electrons are emitted from it. If the

potential of plate A is positive relative to plate C, these emitted

photoelectrons will accelerate to plate A. I Some emitted electrons

will reach plate A even if it is not positive relative to C.) The
resulting "photoelectric" current is indicated by the ammeter.

The result of the experiment is that the stronger the beam of

light of a given color Ifrequency), the greater the photoelectric

current.

Schematic diagram of apparatus

for photoelectric experiments.

f\

(b)

Any metal used as plate C shows a photoelectric effect, but

only if the light has a frequency greater than a certain value. This

value of the frequency is called the threshold frequency for that

metal. Different metals have different threshold frecjuencies. If the

incident light has a frequency lower than the threshold

frequency, no photoelectrons are emitted no matter' how great

the intensity of the light or how long the light is left on! This is

the fii'st of a set of surprising discoveries.
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The kinetic energies of the electrons can be measured in a

slightly modified version of the apparatus, sketched in (c) below.

The battery is reversed so that plate A now tends to repel the

photoelectrons. The voltage can be changed from zero to a value

just large enough to keep any electrons from reaching plate A,

as indicated in (d).

(d) It

When the voltage across the plates is zero, the meter wdll

indicate a current. This reading shows that the photoelectrons,

emerging with kinetic energy from the metallic surface, can reach

plate A. As the repelling voltage is increased, the photoelectric

current decreases. Eventually a certain voltage is reached at

which the current becomes zero, as indicated in (d) above. This

voltage, which is called the stopping voltage, is a measure of the

maximum kinetic energy of the emitted photoelectrons (KE^^J. If

the stopping voltage is called V^^^^p, this maximum kinetic energy

is given by the relation

KE = V, Qrricix stop "e

The results can be stated more precisely. Only the important

experimental results are listed here. Their theoretical

interpretation will be discussed later.

1. A substance shows a photoelectric effect only if the incident

light has a frequency above a certain threshold frequency

(symbol/^).

2. If light of a given frequency does produce a photoelectric

effect, the photoelectric current from the surf^ace is proportional

to the intensity of the light falling on it.

3. If light of a given frequency releases photoelectrons, the

emission of these electrons is immediate. The time interval

between the instant the light strikes the metallic surface and the

appearance of electrons is at most 3 X 10"^ sec and probably

much less. In some experiments, the light intensity used was
extremely low. According to the classical theory, it should take

several hundred seconds for an electron to accumulate enough
energy from such light to be emitted. But even in these cases.

SG 4

In Sec. 14.8, you saw that the change
in potential energy of a charge is

given by Vq. In Unit 3, you saw that

(in the absence of friction) the de-

crease in kinetic energy in a system
is equal to the increase in its poten-

tial energy.
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^k

FREQU6MCY OF INCIDENT LIGHT

Photoelectric effect: Masiinum ki-

netic energ}' of the electrons as

a function of the frequency of the

incident light; different metals yield

lines that are parallel, but have dif-

ferent threshold frequencies.

electrons are sometimes emitted about a billionth of a second
after the light strikes the surface.

4. The maximum kinetic energv' of the photoelectrons

increases in direct proportion to Ihe frequency of the light that

causes their emission. (Maximum KE is not dependent on the

intensity of the incident light.) The way in which the maximum
kinetic energv' of the electrons xaries with the IVequency of the

incident light is shown in the margin. The symbols [fj^, (fj^) and

{fj^ stand for the different threshold frequencies of three

different substances. For each substance, the experimental data

points fall on a straight line. All the lines have the same slope.

What is most astonishing about the results is that

photoelectrons are emitted if the light frequencies are a little

above the threshold ft equency, no matter how weak the beam of

light. But if the light frequencies are just a bit below the

threshold frequency, no electrons are emitted no matter how
great the intensity of the light beam is.

Findings 111, (31, and (41 could not be explained on the basis of

the classical electromagnetic theoiy of light. How could a low-

intensity train of light waves, spread out over a large number of

atoms, concentrate, in a very short time intenal, enough energy

on one electron to knock the electron out of the metal?

Furthennore, the classical wave theory could not account for

the existence of a threshold frequency. There seemed to be no

reason v\'hy a sufficiently intense beam of lov\'-frequenc\'

radiation should not pr oduce photoelectricity if low-intensity

radiation of higher ft^equency could produce it. Neither could

classical theoiy explain why the maximum kinetic ener'g\/ of the

photoelectrons increases directly with the frequency of the light

but is independent of the intensits'. Thus, the photoelectric effect

posed a chidlenge that the classical wave theoiy of light was not

able to meet.

5. Light falling on a certain metal surface causes electrons to

be emitted. What happens to the photoelectric current as the

intensity of the light is decreased?

6. What happens as the frequency of the light is decreased?

7. Sketch a rough diagram of the equipment and circuit used

to demonstrate the main facts of photoelectricity.

18«S
I

Einstein's theori' of the photoelectric
effect

The explanation of the photoelectric effect was the major work

cited in the award to Albert I.instein of the Nobel Prize in
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physics for the year 1921. Einstein's theory, proposed in 1905,

played a major role in the development of atomic physics. The
theoiy was based on a daring proposal, for few of the

experimental details were known in 1905. Moreover, the key

point of Einstein's explanation contradicted the classical ideas of

the time.

Einstein assumed that energy of light is not distributed evenly

over the whole expanding wave front (as the classical theory

assumed). Instead, the light energy is concentrated in separate

"lumps. " In addition, the amount of energy in each of these

regions is not just any amount, but a definite amount of energy

that is proportional to the frequency/of the wave. The
proportionality factor is a constant (symbol h); it is called

Planck's constant for reasons which will be discussed later. Thus,

in this model, the light energy in a beam of frequency/ comes
in pieces, each of amount hf. The amount of radiant energy in

each piece is called a quantum of energy. It represents the

smallest possible quantity of energy for light of that frequency.

The quantum of light energy was later called a photon.

There is no explanation clearer or more direct than Einstein's.

A quote from his first paper (1905) on this subject is given here.

Only the notation is changed, in order to agree with modern
practice (including the notation used in this text):

. . . According to the idea that the incident light consists of

quanta with energy hf, tiie ejection of cathode rays by light can

be understood in the following way. Energy quanta penetrate

the surface layer of the body, and their energy is converted, at

least in part, into kinetic energy of electrons. The simplest

picture is that a light quantum gives up all its energ\' to a single

electron; we shall assume that this happens. The possibility is

not to be excluded, however, that electrons receive their energy

only in part ftom the light quantum. An electron provided with

kinetic energy inside the body may have lost part of its kinetic

energy by the time it reaches the surface. In addition, it is to be

assumed that each electron, in leaving the body, has to do an

amount of work W (which is characteristic of the body). The
electrons ejected directly from the surface and at right angles to

it will have the greatest velocities perpendicular to the surface.

The maximum kinetic energy of such an electron is

h = 6.6 X 10 " J-sec

SG 5

Each electron must be given a min-
imum energy to emerge from the

surface, because it must do work
against the forces of attraction as

it leaves the rest of the atoms.

If the body plate C is charged to a positive potential, V^^^ , just

large enough to keep the body from losing electric charge, we
must have

KE hf W = V

where q^ is the magnitude of the electronic charge . .

.

If the derived formula is correct, then V^,^ , when plotted as a

fimction of the frequency of the incident light, should yield a

This equation is usually called Ein-

stein's photoelectric equation.

SG 6-8
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How Einstein's theory explains the

photoelectric effect:

1. \o photoelectric emission be-

low threshold frequency. Keason:

Low-frequency photons do not liave

enough energ\' to pro\'ide electrons

with KE sufficient to leave the inetid.

2. Current ^ light intensity. Rea-

son: One photon ejects one elec-

tron.

3. Immediate emission. Reason:

A single photon prtnides the energy

concentrated in one place.

4. K£^^^^ increases directly with

frequency above f^,. Reason: The

work needed to remove the elec-

tron is W = /j^,; any energy left

over from the original photon is

now available for kinetic energy of

the electron.

»^'

Student apparatus for photoelec-

tric experiments often includes

a vacuum phototube, like the one
shown at the left. The collecting

wire corresponds to A in (a) on
page 548, and is at the center of a

cylindrical photosensitive surface

that corresponds to C. The fre-

quency of the light entering the

tube is selected by placing colored

filters between the tube and a

white light source, as shown at the

right.

straight line whose slope should be independent of the nature of

the substance illuminated.

Compare Einstein's photoelectric equation with the

experimental results to test whether or not his theory' accounts

for those results. According to the equation, the kinetic energy is

greater than zero only when hf is greater than W. Therefore, an

electron can be emitted only when the frequency of the incident

light is greater than a certain lowest value^ (where hf^ — W.l

Next, according to Einstein's photon model, it is an individual

photon that ejects an electron. Now, the intensity of the light is

proportional to the number of the photons in the light beam. In

addition, the number of photoelectrons ejected is proportional to

the number of photons incident on the surface. Therefore, the

number of electrons ejected land with it the photoelectric

current) is proportional to the intensity of the incident light.

According to Einstein's model, the light energy is concentrated

in the quanta (photons). So no time is needed for collecting light

energy. Instead, the quanta transfer their energy immediately to

the photoelectrons, which emerge after the very short time

required for them to escape ft^om the surface. (See SG 9 and 10.)

dt+f.ctor

Finally, the photoelectric equation predicts that the greater the

frequency of the incident light, the greater the maximum kinetic

energy of the ejected electrons. According to the photon model,

the photon s energy is directly proportional to the light

frequency. The minimum energy needed to eject an electron is

the energy required for the electron to escape from the metal

surface. This explains why light of frequency less than some
frequency^ cannot eject any electrons. The kinetic energy of the

escaping electron is the difference between the energy of the

absorbed photon and the energy lost by the electron in escaping

the surface.

Thus, Einstein's photoelectric equation agreed qualitatively

with the experimental results. There remained two quantitative

tests to be made: (1) Does the maximum energy vary in direct

proportion to the light frequency? (2) Is the proportionality factor

h really the same for all substances? For 10 years, experimental

physicists att(Mnpt(Hi theses (iiiantitatixe tests. One experimental
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Albert Einstein

uiose up L

Albert Einstein (1879-1955) was born in the city

of Dim, in Germany. Like Newton, he showed no

particular intellectual promise as a youngster. He
received his early education in Germany, but at the

age of 15, dissatisfied with the discipline in school

and militarism in the nation, he left and went to

Switzerland. After graduation from the Polytechnic

Institute in Zurich, Einstein (in 1902) found work in

the Swiss Patent Office in Berne. This job gave

Einstein a salary to live on and an opportunity to

use his spare time for working in physics on his

own. In 1905, he published three papers of im-

mense importance. One dealt with quantum thei y

and included his theory of the photoelectric effejt.

Another treated the problem of molecular motions

and sizes, and worked out a mathematical analysis

of the phenomenon of "Brownian motion." Ein-

stein's analysis and subsequent experimental work

by Jean Perrin, a French physicist, provided a

strong argument for the molecular motions as-

sumed in the kinetic theory. Einstein's third 1905

paper provided the theory of special relativity which

revolutionized modern thought about the nature of

space and time, and of physical theory itself.

In 1915, Einstein published a paper on the theory

of general relativity. In it he provided a new theory

of gravitation that included Newton's theory as a

special case.

When Hitler and the Nazis came to power in Ger-

many in 1933, Einstein went to the United States

and became a member of the Institute for Ad-

vanced Study at Princeton. He spent the rest of his

working life seeking a unified theory which would

include gravitation and electromagnetism. Near the

beginning of World War II, Einstein wrote a letter

to President Roosevelt, warning of the war potential

of an "atomic bomb," for which the Germans had

all necessary knowledge and motivation to work.

After World War II, Einstein devoted much of his

time to organizations advocating world agreements

to end the threat of atomic warfare.



The equation K£
,,,^

= hf — W can

be said to have led to two \ol)el

Prizes: one to Einstein, who derived

it theoretically, and one to Millikan,

who \'erified it experimentally. This

equation is the subject of a Project

Physics laboratory experiment.

SG 11

Mii.K Planck (1858-19471, a German
physicist, was the originator of the

quantum theory, one of the two

great revolutionary physical theo-

ries of the tv\entieth century. (The

other is Einstein's relativity theory.)

Planck won the Nobel Prize in 1918

for his quantum theory. He tried

for many years to show that this

theory could be understood in

terms of the classical physics of
Newton and Ma.xwell, but this at-

tempt did not succeed. Uuantum
phvsics is fundamentally differer^t,

through its postulate that energy' in

light ar\d matter is not continu-

ously divisible, hut e;>dsts in quanta

of defu\ile amount.

difficulty was that the value ofW for a metal changes greatly if

there are impurities I for example, a layer of oxidized metal) on

the surface. Finally, in 1916, Rohei-t A Millikan established that

there is indeed a stiaight-line relationship between the frequency

of the absorbed light and the maximum kinetic energy of the

photoelectrons. (See the graph on page 550. 1 To obtain his data,

Millikan designed an apparatus in which the metal photoelectric

surface was cut clean while in a vacuum. A knife inside the

evacuated volume was manipulated by an electromagnet outside

the vacuum to make the cuts. This rather intricate arrangement

was required to achieve a pure metal surface.

The straight-line graphs Millikan obtained for different metals

all had the same slope, even though the threshold frequencies

were different. The value of /i could be obtained from Millikan's

measurements, and it was the same for each metal surface. Also,

it agreed very well with a value obtained by means of other,

independent methods. So Einstein's theory of the photoelectric

effect was verified quantitatively.

Actually, the first suggestion that the energy in electromagnetic

radiation is "quantized" (comes in definite quanta) did not come
from the photoelectric effect. Rather, it came from studies of the

heat and light radiated by hot solids. The concept of quanta of

energy was introduced by Max Planck, a Gemian physicist, in

1900, five years before Einstein's theory. (Thus, the constant h is

known as Planck's constant.\ Planck was trying to explain how
the heat (and light) energy radiated by a hot body is related to

the frequency of the radiation. Classical phvsics (nineteenth-

centuiy thennodynamics and electromagnetism) could not

account for the experimental facts. Planck found that the facts

could be interpreted only by assuming that atoms, on radiating,

change their energy in separate, quantized amounts. Einstein's

theoiy of the photoelectric effect was actually an extension and

application of Planck's quantum theory of themial radiation.

Einstein postulated that the change in the atom's energy is

can ied off as a distinct photon rather than being spread

continuously over the light wave.

The experiments and the theory of radiation are much more
difficult to describe than the experiments and theoiy of the

photoelectric effect. That is why the concept of quanta of energy

was introduced here by means of the photoelectric effect. By

now, many tests have been made of both Planck's and Einstein's

conceptions. In all cases, Planck's constant h is found to have the

same basic position in quantum phvsics that Newton's universal

constant G has in the physics of gravitation.

The photoelectric effect presented physicists with a real

dilemma. According to the classical waxe theoiy, light consists of

electromagnetic waves extending continuously thioughout space.

This theoiy was highly successful in explaining optical
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phenomena (reflection, refraction, polarization, inteiference). But

it could not account for the photoelectric effect. Einstein's

theory, which postulated the existence of separate quanta of light

energy, accounted for the photoelectric effect. But it could not

account for the other properties of light. The result was that

there were two models whose basic concepts seemed to

contradict each other. According to one, light is a wave
phenomenon; according to the other, light has particle-like

properties. Each model had its limits, successes, and failures.

What, if anything, could be done about the contradictions

between the two models? You will see later that this problem

and its treatment have a central position in modern physics.

• 8. Einstein's idea of a quantum of light had a definite relation

to the wave model of light. What was it?

9. Why does the photoelectron not have as much energy as

the quantum of light that causes it to be ejected?

10. What does a stopping voltage of 2.0 V indicate about the

photoelectrons emerging fi^om a metal surface?

18.6
I

X rays

In 1895, a surprising discovery was made. Like the photoelectric

effect, it did not fit in vvdth accepted ideas about electromagnetic

waves and eventually needed quanta for its explanation. The
discoveiy was that of X rays by the German physicist Wilhelm

Robert Andrews Millikan

(1868-1953), an American physicist,

attended Oberlin College, where
his interest in physics was only

mild. After his graduation, he be-

came more interested in physics,

taught at Oberlin while taking his

master's degree, and then obtained

his doctor's degree from Columbia
University in 1895. After more
study in Gennany, Millikan went to

the University of Chicago, where
he became a professor of physics

in 1910. His work on the determi-

nation of the electronic charge

took place from 1906 to 1913. He
was awarded the Nobel Prize in

physics in 1923 for this research

and for the very careful e^iperi-

ments which resulted in the verifi-

cation of the Einstein photoelectric

equation (Sec. 18.4). In 1921, Milli-

kan moved to the California Insti-

tute of Technology, eventually to

become its president.

Wilhelm Konrad Rontgen
(1845-1923)
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Rontgen. Its consequences for atomic physics and technology

were dramatic and important.

On November 8, 1895, Rontgen was experimenting v\ith the

newly found cathode rays, as were many physicists ail over the

world. According to a biographer,

... he had covered the iill-glass pear-shaped tube [Cix)okes tube;

see Sec. 18.2] with pieces of black cardboard, and had darkened

the room in order to test the opacity of the black paper cover.

Suddenly, about a yard itxtm the tube, he saw a weak light that

shimmered on a little benc^h he knew was nearbv. Highly

excited, Rontgen lit a match and, to his great surprise,

discovered that the source of the mysterious light was a little

barium platinocyanide screen King on the bench.

The discovery of X rays was nar-

rowly missed by several physicists,

including Hertz and Lenard (an-

other well-known German physi-

cist!. An English physicist, Freder-

ick Smith, found that photographic

plates kept in a box near a cathode-

ray tube became fogged, so he told

his assistant to keep the plates in

another place!

X rays were often referred to as

Rontgen rays, after their discov-

erer.

Barium platinocyanide, a mineral, is one of the many
chemicals knowTi lo fluoresce I emit xisible light when
illuminated with ultra\aolet light). But no source of ultraviolet

light was present in Rontgen s experiment. Cathode rays had not

been observed to travel more than a few centimeters in air. So,

neither ultraviolet light nor the cathode rays themselves could

have caused the fluorescence. Rontgen therefore deduced that

the fluorescence involved rays of a new kind. He named them X
rays, that is, rays of an unknown nature. In an intensive series

of experiments over the next 7 weeks, he determined the

properties of this new radiation. Rontgen reported his results on
December 28, 1895, in a paper whose title (translated) is "On a

New Kind of Rays."

Rontgen s paper described nearly all of the properties of X rays

that are known even now. It described the method of producing

the rays and proved that they originated in the glass wall of the

tube, where the cathode rays stiaick it. Rontgen showed that X

rays travel in straight lines from their place of origin and that

they darken a photographic plate. He reported in detail the

abilitv of X rays to penetrate various substances, such as paper,

wood, aluminum, platinum, and lead. Their penetrating power

was greater through light materials (paper, wood, flesh i than

through dense materials (platinum, lead, bone). He described

photographs showing "the shadows of bones of the hand, of a

set of weights inside a small box, and of a piece of metal whose
inhomogeneitv becomes apparent with X rays. ' He gave a clear

description of the shadows cast by the bones of the hand on the

fluorescent screen. Rontgen also reported that the X rays were

not deflected by a magnetic field, nor did they show reflection,

refraction, or interference effects in ortlinaiy optical apparatus.

J. J. Thomson discovered one of the most important properties

of X rays a month or two after the rays themselves had become
known. He found that when the rays pass through a gas, they

make it a conductor of electricitv. Thomson attributed this effect
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to "a kind of electrolysis, the molecule being split up, or nearly

split up by the Rontgen rays." The X rays, in passing through the

gas, knock electrons loose from some of the atoms or molecules

of the gas. The atoms or molecules that lose these electrons

become positively charged. They are called ions because they

resemble the positive ions in electrolysis, and the gas is said to

be ionized. Also, the freed electrons may attach themselves to

previously neutral atoms or molecules, giving them negative

charges.

Rontgen and Thomson found, independently, that electrified

bodies lose their charges when the air around them is ionized by

X rays. The rate of discharge depends on the intensity of the

rays. This property was therefore used as a convenient

quantitative means of measuring the intensity of an X-ray beam.

As a result, careful quantitative measurements of the properties

and effects of X rays could be made.

One problem that aroused keen interest following the

discovery of X rays concerned the nature of the mysterious rays.

Unlike charged particles (electrons, for example) they were not

deflected by magnetic or electric fields. Therefore, it seemed that

they had to be either neutral particles or electromagnetic weaves.

It was difficult to choose between these two possibilities. On the

one hand, no neutral particles of atomic size (or smaller) that

had the penetrating power of X rays were then known. The

existence of such particles would be extremely hard to prove,

because there was no way of getting at them. On the other hand,

if the X rays were electromagnetic waves, they would have to

have extremely short wavelengths because only in this case,

according to theory, could they have high penetrating power and

show no refraction or interference effects wdth ordinary optical

apparatus.

As discussed in Chapters 12 and 13, distinctly wave-like

properties become apparent only when waves interact with

objects (like slits in a barrier) that are smaller than several

wavelengths across. The wavelength hypothesized for X rays

w^ould be on the order of 10~" m. So a demonstration of their

wave behavior would require a diffraction grating with slits

spaced about 10 "^"^ m apart. Evidence from kinetic theory and
from chemistry indicated that atoms were about 10^^° m in

diameter. It was suggested, therefore, that X rays might be

diffracted measurably by crystals in which the atoms form

orderly layers about 10^" m apart.

In 1912, such experiments succeeded. The layers of atoms did

act like diffraction gratings, and X rays did, indeed, act like

electromagnetic radiations of very short wavelength (like ultra-

ultraviolet light). These experiments are more complicated to

interpret than diffr^action of a beam of light by a single, two-

dimensional optical grating. The diffraction effect occurs in three

It is easy to see why a charged elec-

troscope will be discharged when
the air around it is ionized. It at-

tracts the ions of the opposite charge
from the air.

Such a particle, called a neutron,

was discovered in 1932. But the

neutron has nothing to do with X
rays.

SG 12

SG 13
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dimensions instead of two. Therefore, the diffraction patterns are

far more elaborate (see the illustration below).

Pho+ogrophic
film

• •

jrrcident y^ X/j Point ai

/ interferenotf

)f path lengiths

differ by D^

Metal
tJlOtlTS

X-ray diffraction patterns from a

metal crystal. The black spots are

produced by constructive interfer-

ence ofX rays scatteredfrom
atoms. The drawing indicates how
one of the spots is formed on the

photographic film.

SG 14

SG 15

SG 16
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In addition to wave properties, X rays were found to have

quantum properties. For example, they can cause the emission of

electrons from metals. These electrons have greater kinetic

energies than those produced by ultraviolet light. IThe ionization

of gases by X rays is also an example of the photoelectric effect.

In this case, the electrons are freed from the atoms and
molecules of the gas.) Thus, X rays also require quantum theory

for the explanation of some of their beha\dor. So, like light, X rays

were shown to have both wave and particle properties.

Rontgen's discovery of X rays excited scientists throughout the

world. His experiments were immediately repeated and extended

in many laboratories in both Europe and America. Scientific

journals during the year 1896 were filled with letters and articles

describing new experiments or confirming the results of earlier

experiments. This widespread experimentation was made easier

since, during the years before Rontgen's discoveiy, the passage

of electricity through gases had been a popular topic for study

by physicists. Many physics laboratories therefore had cathode-

ray tubes and could produce X rays easily.

Intense interest in X rays was generated by the spectacular use

of these rays in medicine. Within three months of Rontgen's

discovery, X rays were put to practical use in suigical ojjerations

in a hospital in Vienna. The use of this new aid to surgeiA' spread

rapidly. Since Rontgen's time, X rays have rexolutionized some
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phases of medical practice, especially the diagnosis of some
diseases and treatment of some fonns of cancer. Extremely

impoilant uses of X rays also occur in other fields of applied

science, both physical and biological. Among these are the study

of the crystal structure of materials; "industrial diagnosis," such

as the search for possible defects in materials and engineering

structures; the study of old paintings and sculptures; and many
others.

11. X rays were the first "ionizing" radiation discovered. What
does "ionizing" mean?

12. What are three properties ofX rays that led to the

conclusion that X rays were electromagnetic waves?

13. What was the experimental and theoretical evidence to

support that X rays had a very short wavelength?

1.8.T
I

Electrons, quanta, and the atom

By the beginning of the twentieth centuiy, enough chemical and
physical infomiation was available to allow many physicists to

devise models of atoms. It was known that negative pai'ticles wdth

identical properties (electrons) could be obtained from many
different substances and in different ways. This suggested that

electrons are parts of all atoms. Electrons are negatively charged.

But samples of an element are ordinarily electrically neutral.

Therefore, the atoms making up such samples are also

presumably neutral. If so, the presence of negative electrons in

an atom would seem to require the presence of an equal amount
of positive charge.

Section 18.2 discussed a comparison of the values of q/m for

the electron and for charged hydrogen atoms. As mentioned,

hydrogen atoms are nearly 2,000 times more massive than

electrons. Experiments (which will be discussed in some detail in

Chapter 22 of Unit 6) showed that electrons make up only a very

small part of the atomic mass in any atom. Consequently, any

model of an atom must take into account the following

information: (a) an electrically neutral atom contains equal

amounts of positive and negative charge; (b) the negative charge

is associated with only a small part of the mass of the atom. In

addition, any atomic model should answer at least two

questions: (1) How many electrons are there in an atom? (2) How
are the electrons and the positive charge arranged in an atom?

During the first 10 years of the twentieth century, several

atomic models were proposed, but none was satisfactory. The
early models were all based entirely upon classical physics, that
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Close UpI
X roys

Originally, X rays were produced in Rontgen's

laboratory when cathode rays (electrons) struck a

target (the glass wall of the tube). Today, X rays

usually are produced by directing a beam of high-

energy electrons onto a metal target. As the elec-

trons are deflected and stopped, X rays of various

energies are produced. The maximum energy a

single ray can have is the total kinetic energy the

incident electron gives up on being stopped. So the

greater the voltage across which the electron beam

is accelerated, the more energetic and penetrating

are the X rays. One type of X-ray tube is shown in

the sketch below. A stream of electrons is emitted

from a cathode C and accelerated to a tungsten

target T by a strong electric field (high potential

difference).

^-4->

Above is the head of a dogfish shark.

The blood vessels have been in-

jected with a fluid that absorbs X rays

so that the vessels can be studied.

An X ray of a jet engine. X-ray photographs are often

used to discover internal structural damage and flaws in

pieces of complex machinery like this engine and nuclear

reactor components, as well as in more mundane objects

such as bowling pins and golf balls
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/Above IS a rose, photographed with

X rays. The potential difference be-

tween the electron-emitting cathode

and the target in the X-ray tube was
30,000 volts.

Immediately above is illustrated the

familiar use of X rays in dentistry. Be-

cause X rays can injure tissues, a

great deal of caution is required in

using them. The shortest possible
pulse of X rays is used, lead shield-

ing is provided for the body, and the

technician stands behind a wall of

lead and lead glass.

This photograph illustrates another

use of X rays to discover internal

damage, this time in a piece of art.

Here, a technician is preparing to

take X-ray photographs of t\/lichel-

angelo's "Pieta."
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See the Project Physics film loop

"Thomson Model of the Atom."

is, upon the physics of Nevvlon and Maxwell. No one knew how
to invent a model that took account of Planck's theory of

quantization of energy. More detailed experimental facts were

also needed. Foi' example, this was the period during which the

charge on the electron and the main facts of photoelectricity

were still heing found. Nevertheless, scientists cannot and should

not wait until every last fact is in, for that will never happen. It

is impossible even to know what the missing facts are unless you
have some sor't of model. Even an incomplete or* a par tly uTong
model will provide clues on which to build a better one.

Until 1911, the most popular model for the atom was one

proposed by J. J. Thomson in 1904. Thomson suggested that an

atom consisted of a sphere of positive electricity in which an

equal amount of negative charge was distributed in the for^m of

electr^ons. Under this assumption, the atom was like a pudding of

positive electricity, with the negative electricity scattered in it like

raisins. The positive "fluid" was assumed to act on the negative

charges, holding them in the atom by electric forces only.

Thomson did not specify how the positive "fluid " was held

together. The r adius of the atom was taken to be of the order of

10~^° m. This value was based on information from the kinetic

theory of gases and other considerations (see SG 13). With this

model, Thomson was able to calculate that certain arrangements

of electrons would be stable. This was the first requirement for

explaining the existence of stable atoms. Thomson's theory' also

suggested that chemical pr oper ties might be associated with

particular gr'oupings of electrons. A systematic repetition of

chemical properties might then occur among groups of elements.

But it was not possible to deduce the detailed structure of the

atoms of particular elements, nor could any detailed comparisorn

with the actual periodic tiible be made. The problem of precisely

how the electrons would ar range themselves was simply too

difficult for Thomson to solve quantitatively.

2=/ F-2

Some stable (hypothetical] arrange-

ments of electrons in Thomson
atoms. The atomic number Z is in-

terpreted as equal to the number
of electrons.

Z^3 ir-4 ^^s- Z ^6

Chapter 19 will discuss some additional experimental

inforTnation that provided valuable clues to improved models of

the structure of atoms. You will also see how one of the greatest

physicists of our time, Niels Bohr, combined the experimental

evidence then axailable with the new concept of quanta in a

successful theory of atomic structure. Bohr's model was

eventually replaced by more sophisticated ones. But it led to the
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presently accepted theory of the atom and to this day is quite

adequate for explaining most of the main facts of concern in this

course.

• 14. Why was most of the mass ofan atom believed to he

associated with positive electric charge?

Study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 18 include the

following:

Experiments

The Charge-to-Mass Ratio for an Electron

The Measurement of Elementary Charge

The Photoelectric Effect

Activities

Measuring q/m for the Electron

Cathode Rays in a Crookes Tube
X Rays from a Crookes Tube
Lighting a Bulb Photoelectrically

Transparencies

Photoelectric Elxperiment

Photoelectric Equation

2. In Thomson's experiment on the ratio of charge

to mass of cathode-ray particles (page 543), the

following might have been typical values for B, V, and

d: With a magnetic field B alone, the deflection of

the beam indicated a radius of curvature of the beam
within the field of 0.114 m for B = 1.0 x 10^ T.*

With the same magnetic field, the addition of an

electric field in the same region (V = 200 volts, plate

separation d = 0.01 m) made the beam go on

straight through.

'The SI unit for B is N/A-m and is now called the testa,

symbol T (after the electrical engineer Nikola Teslal.

(a) Find the speed of the cathode-ray particles in the

beam.

(b) Find q/m for the cathode-ray particles.

3. Given the value for the charge on the electron,

show that a current of lA is equivalent to the

movement of 6.25 x lo'" electrons per second past a

given point.

4. In the apparatus shown in (d) in Sec. 18.4, an

electron is turned back before reaching plate A and

eventually arrives at electrode C from which it was
ejected. It arrives with some kinetic energy. How
does this final energy of the electron compare with

the energy it had as it left the electrode C?

5. At light frequencies below the threshold

frequency no photoelectrons are emitted. What
might happen to the light energy?

6. For most metals, the work function W is about
10"'* J. Light of what frequency wtH cause

photoelectrons to leave the metal with virtually no

kinetic energy? In what region of the spectrum is

this frequency?

7. What is the energy of a light photon that

corresponds to a wavelength of 5 x 10 m? 5 x

10 " m?

8. The minimum or threshold frequency of light

from emission of photoelectrons for copper is 1.1 x
10'" Hz. When ultraviolet light of frequency 1.5 x
10"^ Hz shines on a copper surface, what is the

maximum energy of the photoelectrons emitted, in

joules? in electron volts?

9. What is the lowest-frequency light that will

cause the emission of photoelectrons from a surface
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8S
whose work function is 2.0 eV (that is, an energy of

at least 2.0 eV is needed to eject an electron)?

10. Monochromatic light of \va\ek;ngth o x lo m
falls on a metal cathode to produce photoelectrons.

The light intensity at the surface of the metal is 10" J

(m^ = sec).

(a) What is the frequency of the light?

(b) What is the energy (in joules) of a single photon

of the light?

(c) How many photons fall on 1 m" in 1 sec?

(d) If the diameter of an atom is about 10 '" m, how
many photons fall on one atom in 1 sec, on the

average?

(e) How often would one photon fall on one atom,

on the average?

(f) How many photons fall on one atom in 10 '" sec,

on the average?

(g) Suppose the cathode is a square 0.05 m on a

side. How many electrons are released per second,

assuming every photon releases a photoelectron? (In

fact, only about one in 50 photons does so.) How big

a current would this be in amperes?

11. Houghly how many photons of \'isible light are

given off per second by a 1-W flashlight? (Only about

5% of the electric energy input to a tungsten-

filament bulb is given off as visible light.) Hint: Urst

find the energy, in joules, of an average photon of

visible light.

la. Recall from Sec. 17.2 that 96,540 C of charge will

deposit 31.77 g of copper in the electrolysis of

copper sulfate. In Sec. 18.3, the charge of a single

electron was reported to be 1.6 x lo" C.

(a) How many electrons must be transferred to

deposit 31.77 g of copper?

(b) The density of copper is 8.92 g/cm'. How many
copper atoms would there be in the 1 cm'? (Actually

copper has a combining number of 2, which

suggests that two electrons are required to deposit a

single copper atom.)

(c) What is the approximate volume of each copper

atom?

(d) What is the approximate diameter of a copper

atom? (For this rough approximation, assume that

the atoms cire cubes.)

13. The approximate size of atoms can be calculated

in a simple way from X-ray scattering exijeriments.

The diagram below represents a beam of X rays

reaching a crystal and the paths of two portions of

the X-ray wave front lea\'ing the cnvstal. I'art of the

front was scattered from the first layer lor plane)

of atoms and part by the second layer, the third

layer, and so on. The distance between layers is d.

Each layer of atoms may be pictured as a partly

transparent, plane mirror. Thus, each plane reflects

some of the X rays specularly (just as light is

reflected from a plane surface of water). The planes

of atoms in the crystal are commonly called "Bragg

planes," after W. H. Bragg who, with his son, W. L.

Bragg, developed this part of the theoiy of X-ray

diffraction in 1913. This scattering is shown
schematicidly in the diagram.

\ Ptanes of

atoms m

Note that the wave front of the X ray reflected

from the second plane travels a distance 2,v further

than that reflected from the first plane.

(a) Show that pc = d sin 0, where d is the distance

between consecutive planes.

(b) At what angle B will the wa\e scattered from the

second plane interfere constructively with that

scattered from the first plane? destructively?

(c) What will be the effect on your answers to (b) if

you take into account the third and subsequent

planes?
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so
14. The highest frequency, /^_^^, of the X rays

produced by an X-ray tube is given by the relation

where h is Planck's constant, q^ is the charge of an

electron, and V is the potential difference at which

the tube operates. If V is 50,000 volts, what is f^^J?

15. The equation giving the maximum energy of the

X rays in the preceding problem looks like one of

the equations in Einstein's theory of the

photoelectric effect. How would you account for this

similarity? for the difference?

16. What potential difference must be applied

across an X-ray tube for it to emit X rays with a

minimum wavelength of 10" m? What is the energy

of these X rays in joules? in electron volts?

17. A glossary is a collection of terms applicable to a

special field of knowledge. Make a glossary of terms

that appeared for the first time in this course in

Chapter 18. Write an informative statement or

definition for each term.

18. In his Opticks, Newton proposed a set of

hypotheses about light which, taken together,

formed a fairly successful model of light. The

hypotheses were stated as questions. Three of the

hypotheses are given below:

Are not all hypotheses erroneous, in which light is

supposed to consist in pression or motion waves

. . . ? [Quest. 28]

Are not the rays of light very small bodies emitted

from shining substances? [Quest. 29]

Are not gross bodies and light convertible into one

another, and may not bodies receive much of their

activity from the particles of light which enter

their composition? [Quest. 30]

(a) In what respect is Newton's model similar to and

different from the photon model of light?

(b) Why would Newton's model be insufficient to

explain the photoelectric effect? What predictions

can be made with the photon model that cannot be

made with Newton's?

I
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The Ruthcrforil Dohr Model
of the Atom

A sculptor's construction repre-

senting the Bohr model of a so-

dium atom.

SG 1

Spectra of ^ases
Regularities in the hydrogen spectrum
Rutheribrd\ nuclear model of the atom
Nuclear chiu'^e and size

The Bolir theori': The postulates

The size of the hydrogen atom
Other consef|uences of die Bohr model
Tlie Bohr theoiy: The spectral series of hudrogen
Stationary' states of atoms: The Franck—Hertz experiment

The periodic table of the elements

The inaflequacy of die Bohr theoiy and the state of atomic

theor\' in the earlv 1920's

Id.!
I

Spectra of gases

One of the first real clues to understanding atomic structure

appeared in the study of emission and absorption of light by

different elements. The results of this study are so important to

the story that their dexelopment will be reviewed in some detail.

It has long been known that light is emitted by gases or- \ apors

when they are excited in ar\v one of sever al ways: 111 by heating

the gas to a high temperatur^e, as when a volatile substance is

put into a flame; (2) by an electric discharge through gas in the

space between the terminals of an electr-ic ar^c; (31 by a

continuous electric cur-rent in a gas at low pressur-e (as in the

now familiar- "neon sign").

i

I
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Close Up\
Three Glosses of Specfro

Hot solids emit all wavelengths of light, producing a

continuous spectrum on the screen at nght. The shorter-

wavelength portions of light are refracted more by the

pnsm than are long wavelengths.

^
Hot gases emit only certain wavelengths of light, pro-

ducing a bright line spectrum. If the slit had a different

shape, so would the bright lines on the screen.

1

^^^

Cool gases absorb only certain wavelengths of light,

producing a dark line spectrum when "white" light from

\7 a hot solid IS passed through the cool gas.

<

A.



uiv

pSr^^tet

Parts of the line emission spectra

of mercury (Hg) and helium (He),

redrawn from photographic rec-

ords, containing both visible and
ultraviolet ravs.

The pioneer experiments on light emitted by various excited

gases were made in 1752 by the Scottish physicist Thomas
Melvill. He put one substance after another in a flame; "haxdng

placed a pasteboard with a circular hole in it between my eye

and the flame . . ., I examined the constitution of these different

lights with a prism." Melvill found that the spectrum of light

from a hot gas was different from the well-knovvn rainbow-

colored spectrum of a glowing solid or liquid. MeKill's spectrum

was not an unbroken stretch of color continuously graded from

violet to red. Rather, it consisted of individual patches, each

having the color of that part of the spectixim in which it was
located. There were dark gaps (missing colors) between the

patches. Later, more general use was made of a narrow slit

through which to pass the light. Now the emission spectrum of a

gas was seen as a set of bright lines (see the figure in the margin

on this page). The bright lines are in fact colored images of the

slit. Such spectra show that light from a gas is a mixture of only

a few definite colors or narrow wavelength regions of light.

Melvill also noted that the colors and locations of the bright

spots were different when different substances were put in the

flame. For example, with ordinary table salt in the flame, the

dominant color was "bright yellow" (now known to be

characteristic of the element sodium). In fact, the line emission

spectrum is markedly different for each chemically different gas

because each chemical element emits its own characteristic set

of wavelengths. (See the figure in the margin.) In looking at a

gaseous source without the aid of a prism or a grating, the eye

combines the separate colors. It perceives the mixture as reddish

for glovvang neon, pale blue for nitrogen, yellow for sodium vapor,

and so on.

Some gases have relatively simple spectra. Thus, the most

prominent part of the visible spectrum of sodium vapor is a pair

of bright yellow lines. (This is why, for example, the flame in a

gas stove turns yellow when soup, or any liquid containing salt,

boils over.) Some gases or vapors have very complex spectra. Iron

vapor, for example, has some 6,000 bright lines in the \dsible

range alone.

In 1823, the British astronomer John Herschel suggested that

each gas could be identified by its unique line spectium. By the

early 1860's, the physicist Gustav R. Kirchhoff and the chemist

Robert W. Bunsen, in Germany, had jointly discovered two new
elements (njbidium and cesium) by noting previously unreported

emission lines in the spectrum of the vapor of a mineral water.

This was the first of a series of such discoveries. It started the

development of a technique for speedy chemical analysis of

small amounts of materials by spectrum analysis. The "flame test"

you may have perfomied in chemistry class is a simple

application of this analysis.
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In 1802, the English scientist William Wollaston saw in the

spectrum of sunlight something that had been overlooked before.

Wollaston noticed a set of seven sharp, irregularly spaced dark

lines across the continuous solar spectrum. He did not

understand why they were there and did not investigate further.

A dozen years later, the German physicist Joseph von

Fraunhofer, using better instruments, detected many hundreds
of such dark lines. To the most prominent dark lines, von

Fraunhofer assigned the letters A, B, C, etc. These dark lines can

be easily seen in the sun's spectrum with even quite simple

modem spectroscopes. The letters A, B, C, ... are still used to

identify them.

Spectroscope: A device for examin-

ing the spectrum by eye.

KH G



wavelengths which, when excited, it can emit. (Note that not

every emission line is represented in the absorption spectium.

Soon you will see why.)

absorption

spectrum

spectrumimMimmM
ultraviolet

Comparison of the line absorption

spcctrun} and line emissioi} spec-

trum of sodium vapor.

visible infrared

Each of the various von Fraunhofer lines across the spectra of

the sun and other stars has now been identified with the action

of some gas as tested in the laboratory. In this way, the whole

chemical composition of the outer region of the sun and other

stars has been determined. This is really quite breathtaking from

several points of vdevv. First, it is surprising that scientists can

learn the chemical composition of immensely distant objects. It

is even more surprising that chemical materials out there are the

same as those on earth. (That this is true is clearly shown by the

fact that even very complex absorjjtion spectra are reproduced

exactly in star spectra.) Finally, this result leads to a striking

conclusion: The physical processes that cause light absorption in

the atom must be the same among the distant stars as on earth.

In these facts you can see a hint of how universal physical law

leally is. Even at the farthest edges of the cosmos fiom which the

earth receives light, the laws of physics appear to be the same
as for common materials close at hand in the kiboratoryl This is

just what Galileo and Newton had intuited when they proposed

that there is no difference between terrestrial and ((^iestial

physics.

i

SG 2 # 1. What can you conclude about a source if its light gives a

bright-line spectrum?

2. What can you conclude about the source if its light gives a

dark-line spectrum':'

3. What evidence is there that the physics and chemistry of

materials at great distances from earth are the same as those

of matter close at hand'::'
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1.9.2
I

Regularities in the hydrogen spectrum

Of all the spectra, the line emission spectnjm of hydrogen is

especially interesting for both historical and theoretical reasons.

In the visible and near-ultraviolet regions, the emission spectrum

consists of an apparently systematic series of lines. (See the

illustration at the right.) In 1885, Johann Jakob Balmer found a

simple formula Ian empirical relation) which gave the

wavelengths of the lines known at the time. The formula is

\ = b

The quantit)' b is a constant which Balmer detennined

empirically and found to be equal to 364.56 x 10 ~'^ m); n is a

whole number, different for each line. Specifically, to give the

observed value for the wavelength, n must be 3 for the first (red)

line of the hydrogen emission spectrum (named Hj: n = 4 for

the second (green) line (Hp); n = 5 for the third (blue) line (H^);

and n = 6 for the fourth (violet) line (H^). The table below shows
excellent agreement (within 0.02%) between Balmer s calculations

from his empirical formula and previously measured values.

WAVELENTH K, IN NANOMETERS (10 ' m),

FOR HYDROGEN EMISSION SPECTRUM*

Name
of Line

From Balmer's

Formula
By Angstrom's
Measurement Difference

H



H,„

In this equation, which can be derixed from the first one, /i„ is a

constant, equal to 4/b. lit is called the Hydbcrg constant for

hydrogen, in honor of the Swedish spectroscopist J. R. Rxdberg.

Following Balmer, Rydberg made great progress in the search foi-

various spectral series. i The series of lines described bv Balmer s

fomiula are called the Balmer series. Balmer constructed his

formula from known \ of only four lines. The formula could be

used to predict that there should be many more lines in the

same series I indeed, infinitely many such lines as n takes on

values such as n = 3, 4, 5, 6, 7, 8, . . . ^1. The figure in the margin

indicates that this has indeed been observed. Moreoxer, exery

one of the lines is correctly predicted by Balmer's formula with

considerable accuracy.

Folloxving Balmer's speculative suggestion of replacing 2" by

other numbers gives the following possibilities:

1

X
- "" [^ ~

,7

and so on. Each of these equations describes a possible series.

All these h\^30thetical series of lines can then be summarized by

one ox'erall fomiula:

H,„

1
- = R
X \n

Part of tlw absorption spectrum

observed in the light from the star

Rigel (^ Orion). The dark lines are

at the same location as the lines

caused bv absorption by hydrogen

gas in the ultraviolet region as pro-

duced in a laboratory; they match

the lines of the Balmer series as

indicated by the H numbers (where

H, would be H^, H, would be H^,

etc.). This photograph thus indi-

cates the presence of hydrogen in

the star.

whei^ n, is a whole number that is fixed for any one series for

xvhich waxelengths are to be found. I For example, it is 2 for all

lines in the Balmer series.) The letter n. stands for integers that

take on the x'alues n^ + 1, n, + 2, n^ + 3, . . . for the successix'e

indixidual lines in a given series. (Thus, for the first two lines of

the Balmer series, n, is 3 and 4.) The constant /i„ should haxe the

same xalue for all of these hydrogen series.

So far, this discussion has been merely speculatix^e. No series,

no single line fitting the general formula, need exist (except for

the obserxed Balmer series, xxhere n, = 2i. But xvhen physicists

began to look for these hvpothetical lines with good

spectrometers, they found that they do exist!

In 1908, F. Paschen in Gemianv found two hydrogen lines in

the infrared. Their waxelengths xxere ('orrectlx' gixen by setting n,

— 3 and n, = 4 and 5 in the general formula. Many other lines

in this "Paschen series" haxe since been identified. With

improxed experimental apparatus and techniques, nexv regions

of the spectium could be explored. Thus, other series gradually

xvere added to the Balmer and Paschen series. In the table on

page 573, the name of each series listed is that of the discoxer^r.
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SERIES OF LINES IN THE HYDROGEN SPECTRUM

Name of
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In somewhat the same way, you
could, in prinriple, use a scattering

expcriuKMit to cliscoxer the size and
shape of an object hidd(Mi in a

cloud or fog. Vou could do so by
directing a series of projectiles at

the unseen object and tracing their

paths back after deflection.

\
'-

./<

/^

' \

positively charged particles. These pai-ticles are positively

charged helium ions with masses ahout 7,500 times greater than

the electron mass. Some radioactive substances emit a particles

at veiy high rates and energies. Such particles are often used as

projectiles in bombarding samples of elements. The experiments

that Rutherford and his colleagues did with a. particles are

examples of a highly important kind of experiment in atomic and
nuclear physics: the scattering experiment.

In a scattering experiment, a narrow, parallel beam of

pr^ojectiles (for example, a particles, electrons, X r'aysl is aimed at

a target. The tar^get is usually a thin foil or- film of some material.

As the beam strikes the target, some of the projectiles ai^

deflected, or scattered, from their original direction. The
scattering is the r^esult of the inter^action between the pariicles in

the beam and the atoms of the material. A careful study of the

projectiles iifter scattering can yield infonnation about the

projectiles, the atoms, and the interaction between them. If you
know the mass, energy, and direction of the projectiles and see

how they are scattered, you can deduce properties of the atoms

that scattered the projectiles.

Rutherford noticed that when a beam of a par tides passed

through a thin metal foil, the beam spread out. This scattering

may be thought of as caused by electrostatic forces between the

positively charged a particles and the charges that make up
atoms. Atoms contain both positive and negative charges.

Therefore, an a pariicle under^goes both repelling and attr^acting

forces as it passes through matter. The magnitude and direction

of these forces depend on how closely the particle approaches

the center's of the atoms among which it moves. When a

particular atomic model is proposed, the extent of the expected

scattering can be calculated and compared with experiment. The
Thomson model of the atom pi'edicted almost no chance that

an a particle would be deflected by an angle of more than a few

degr-ees.

The breakthrough which led to the modeiri model of the atom

follow^ed a discovery by one of Rutherford's assistants, Hans

Geiger. Geiger found that the number of particles scattered

through angles of 10° or more was much greater- than the

number predicted by the Thomson model. In fact, 1 out of aboirt

every 8,000 a particles was scatter-ed thr-ough an angle gr-eater-

than 90°. Thus, a significant number- of a particles \ irtually

bounced right back from the foil. This result was entirely

unexpected. Accor-ding to Thomson's model, the atom shoirld

have acted only slightly on the projectile, rather- like a cloud in

which fine dust is suspended. Some years later, Rutherford

WTOte:

... I had obser\'ed the scattering of a-particles, and Dr. Geiger

in mv laboratoiv had examined it in detail He foiiiul in rhin
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pieces of heavy metal, that the scattering was usually small, of

the order of one degree. One day Geiger came to me and said,

"Don't you think that young Marsden, whom I am training in

radioactive methods, ought to begin a small research? " Now I

had thought that, too, so I said, "Why not let him see if any a-

particles can be scattered through a large angle?" I may tell you
in confidence that I did not believe that they would be, since

we knew that the a-particle was a very fast, massive particle,

with a great deal of [kinetic] energy, and you could show that if

the scattering was due to the accumulated effect of a number
of small scatterings, the chance of an a-particle's being

scattered backward was very small. Then I remember two or

three days later Geiger coming to me in great excitement and
saying, "We have been able to get some of the a-particles

coming backward . .

." It was quite the most incredible event

that has ever happened to me in my life. It was almost as

incredible as if you fired a 15-inch shell at a piece of tissue

paper and it came back and hit you. On consideration, I

realized that this scattering backward must be the result of a

single collision, and when I made calculations I saw that it was
impossible to get anything of that order of magnitude unless

you took a system in which the greater part of the mass of the

atom was concentrated in a minute nucleus. It was then that I

had the idea of an atom with a minute massive centre, carrying

a charge.

These experiments and Rutherford's interpretation marked the

origin of the modei^n concept of the nuclear atom. Look at the

experiments and Rutherford's conclusion more closely. Why
must the atom have its mass and positive charge concentrated in

a tiny nucleus at the center about which the electt ons are

clustered?

A possible explanation of the observed scattering is that the

foil contains concentrations of mass and charge, that is,

positively charged nuclei. These nuclei are much more dense
than in Thomson's atoms. An a particle heading directly toward
one of them is stopped and turned back. In the same way, a ball

would bounce back ft^om a rock but not fi'om a cloud of dust

particles. The figure on page 576 is based on one of Rutherford's

diagrams in his paper of 1911, which laid the foundation for the

modei^n theory of atomic structure. It shov\'s two positively

charged a particles, A and A'. The a particle A is heading

directly toward a massive nucleus N. If the nucleus has a positive

electric charge, it wall repel the positive a particle. Because of

this electrical repulsive force, A wdll slow to a stop at some
distance r from N and then move directly back. A' is an a
particle that is not headed dii^ectly toward the nucleus N. It is

repelled by N along a path which calculation shows must be a

hvperbola. The deflection of A' from its original path is indicated

by the angle ^.

CHAPTER 19 / THE RUTHERFORD-BOHR MODEL OF THE ATOM

Ernest Rutherford (1871-1337) was
born, grew up, and received most

of his education in New Zealand. At

age 24 he went to Cambridge, Eng-

land, to work at the Cavendish Lab-

oratorv under J. J. Thomson. From
there he went to McGill University

in Canada, then home to be mar-
ried, and back to England again, to

Manchester University. At these

universities, and later at the Caven-

dish Laboratory where he suc-

ceeded J. J. Thomson as director,

Rutherford performed important

experiments on radioactivity, the

nuclear nature of the atom, and
the structure of the nucleus. Ruth-

erford introduced the concepts

"alpha," "beta," and "gamma" rays,

"protons," and "half-life." His con-

tributions will be further discussed

in Unit 6, "The Nucleus." For his

scientific work, Rutherford was
knighted and received a Nobel
Prize.
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Paths of two a particles A and A'

approaching a nuclenjs A'. (Based

on Rutherford. Philosophical x\lag-

azine, Vol. 21, 19U, p. 669.)

V

Rutherford's scintillation apparatus

was placed in an evacuated cham-
ber so that the a particles would
not be slowed down bv collisions

with air molecules.

Rutherford considered the effects on the a particle's path of

the important variables: the particle's speed, the foil thickness,

and the quantity' of charge Q on each nucleus. According to the

model, most of the a particles should be scattered through small

angles, because the chance of approaching a verv' small nucleus

nearly head-on is so small. But a significant number of ot

particles should be scattered through large angles.

Geiger and Marsden tested these predictions with the

apparatus sketched in the margin. The lead box B contains a

radioactive substance Iradoni that emits a particles. The particles

emerging from the small hole in the box are deflected through

various angles <j) in passing through the thin metal foil F. The
number of particles deflected through each angle 4) is found by

letting the particles strike a zinc sulfide screen S. Each a particle

that strikes the screen produces a scintillation (a momentary
pinpoint of fluorescence!. These scintillations can be observed

and counted by looking through the microscope M. The
microscope and screen can be moved together along the arc of a

circle. In later experiments, the number of a particles at any

angle (j) w^as counted more conveniently by a counter invented

by Geiger (see sketch in the margin of page 5771. The Geiger

counter, in its more recent versions, is now a standard laboratory

item.

Geiger and Marsden found that the number of a particles

counted depended on the scattering angle, the speed of the

particles, and the thi kness of the foil. These findings agreed

with Rutherford's predictions and supported an atomic model in

which most of the mass and all positi\'e charge occupy a very

small region at the center of the atom.

7. Why are a particles scattered by atoms? Why is the angle of
scattering mostly small but sometimes large?

8. What was the basic difference between the Rutherford and
the Thomson models of the atom?

1.9*4r
I

Nuclear charge and size

q^ = magnitude of charge on one
electron.

Despite the success of Rutherford's model, a problem remained.

There still was no way to measure independently the nucleus

charge Q. However, the scattering experiments had confirmed

Rutherford's predictions about the effect of the speed of the a

particle and the thickness of the foil on the angle of scattering.

As often happens when part of a theorv is confirmed, it is

reasonable to proceed temporarily as if the whole theoiy were

justified; that is, pending further proof, one could assume^ tlKit
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the value of Q needed to explain the observed scattering data

was the correct value of Q for the actual nucleus. On this basis,

scattering data were compiled for several different elements,

among them carbon, aluminum, and gold. The following nuclear

charges yielded the best agreement with experiments: for carbon,

Q = 6 q^r, for aluminum, Q = 13 or 14 c/^j and for gold, Q = 78

or 79 q^. Similarly, values were found for other elements.

The magnitude of the positive charge of the nucleus was an
important and welcome piece of information about the atom.

The atom as a whole is, of course, electrically neutral. So if the

nucleus has a positive charge of 6 q,., 13 or 14 q^, etc., the

number of electrons surrounding the nucleus must be 6 for

carbon, 13 or 14 for aluminum, etc. Thus, for the first time,

scientists had a good idea of just how many electrons an atom
may have. But an even more important fact was soon noticed.

For each element, the v£ilue for the nuclear charge, in multiples

of q^, was close to the atomic number Z, the place number of

that element in the periodic table! The results of scattering

experiments with a particles were not yet precise enough to

make this conclusion with certainty. But the data indicated that

each nucleus has a positive charge Q numerically equal to Zq^,.

This suggestion made the picture of the nuclear atom much
clearer and simpler. On this basis, the hydrogen atom (Z = 1)

has one electron outside the nucleus. A helium atom (Z = 2) has

in its neutral state two electrons outside the nucleus. A uranium
atom (Z = 92) has 92 electrons. Additional experiments further

supported this simple scheme. The experiments showed that it

was possible to produce singly ionized hydrogen atoms, H^, and
doubly ionized helium atoms, He^^, but not H^^ or He^^^.
Evidently, a hydrogen atom has only one electron to lose, and a

helium atom only two. Unexpectedly, the concept of the nuclear

atom thus provided new insight into the periodic table of the

elements. The nuclear concept suggested that the periodic table

is really a listing of the elements according to the number of
electrons around the nucleus or according to the number of
positive units of charge on the nucleus.

These results cleared up some of the difficulties in

Mendeleev's periodic table. For example, the elements tellurium

and iodine had been assigned positions Z = 52 and Z = 53 on
the basis of their chemical properties. This positioning

contradicted the order of their atomic weights. But now Z was
seen to correspond to a fundamental fact about the nucleus.

Thus, the reversed order of atomic weights was understood to be

only an accident rather than a basic fault in the scheme.

As an important additional result of these scattering

experiments, the size of the nucleus could be estimated. Suppose
an a particle is moving directly toward a nucleus. Its kinetic

energy on approach is transfomied to electrical potential energy.

A Geiger counter (1928). It consists

of a metal cylinder C containing

a gas and a thin wire A that is insu-

latedfrom the cylinder. A potential

difference slightly less than that

needed to produce a discharge

through the gas is maintained be-

t^A'een the wire (anode A) and cylin-

der (cathode C). When an a parti-

cle enters through the thin mica
window (W), it frees a few electrons

from the gas molecules. The elec-

trons are accelerated toward the

anode, freeing more electrons

along the way by collisions with gas

molecules. The avalanche of elec-

trons constitutes a sudden surge of
current that can be amplified to

produce a click in the headphones
or to operate a register (as in the

Project Physics scaler, used in ex-

periments in Unit 6).

+ +

A
V
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The central dot rcpresentinii, the

nucleus in relation to the si'Ae of

the atom as a whole is about 100

times too large. Popular diagrams

ofatoms often greatly e^caggerate

the relative size of the nucleus,

perhaps in order to suggest the

greater mass.

SG 9

It slows down and eventually stops, like a ball rolling up a hill.

The distance of closest appixjach can be computed from the

original kinetic energy of the a particle and the charges of a

particle and nucleus. The value calculated for the closest

approach is approximately 3 x 10~" m. If the a particle does

not penetrate the nucleus, this distance must be at least as great

as the sum of the radii of a particles and nucleus; thus, the

radius of the nucleus could not be larger than about lO" m. liut

lO" m is only about 1/1,000 of the known radius of an atom.

Furtheniiore, the total volume of the atom is proportional to the

cube of its radius. So it is clear that the atom is mostly empty,

with the nucleus occupying only 1 billionth of the space! This

explains how a particles or electrons can penetrate thousands of

layers of atoms in metal foils or in gases, with only an occasional

large deflection backward.

Successful as this model of the nuclear atom was in explaining

scattering phenomena, it raised many new questions: What is the

arrangement of electrons about the nucleus? What keeps the

negative electron from falling into a positive nucleus by electrical

attraction? Of what is the nucleus composed? What keeps it from

exploding on account of the repulsion of its positive charges?

Rutheiford realized the problems raised by these questions and
the failure of his model to answer them. But he rightly said that

one should not expect one model, made on the basis of one set

of puzzling results which it explains well, also to handle all other

puzzles. Additional assumptions were needed to complete the

model and ansu^er the additional questions about the details of

atomic structure. The remainder" of this chapter will deal with

the theory proposed by Niels Bohr, a young Danish physicist

who joined Rutherford's group just as the nuclear model was
being announced.

9. What does the "atomic number" of an element refer to,

according to the Rutherford model of the atom?

10. What is the greatest positive charge that an ion of lithium

(the ne^ct heaviest element after helium) could have?

19«^
I

'File Bohr theort': the postulates

Assume that an atom consists of a positively charged nucleus

surrounded by a numbei" of negatively charged electrons. What,

then, keeps the electrons from falling into the nucleus, pulled

in by the electric force of attraction? One possible answer is that

an atom may be like a planetary system with the electrons

I evolving in orbits around the nucleus. Instead of the

578 UNIT 5 / MODELS OF THE Al ()\1



gravitational force, the electric attractive force between the

nucleus and an electron would supply a centripetal force. This

centripetal force would tend to keep the moving electron in

orbit.

This idea seems to be a good start toward a theory of atomic

structure. But a serious problem arises concerning the stability of

a "planetary" atom. According to Maxwell's theory of

electromagnetism, a charged particle radiates energy when it is

accelerated. An electron moving in an orbit around a nucleus

continually changes its velocity vector. In other words, it is

always being accelerated by the centripetal electric force. The
electron, therefore, should lose energy by emitting radiation. A
detailed analysis of the electron's motion shows that the electron

should be drawTi steadily closer to the nucleus. (Somewhat
similarly, an artificial satellite loses energy because of friction in

the upper atmosphere and gradually spirals foulard the earth.)

Within a very short time, the energy-radiating electron should

actually be pulled into the nucleus. According to classical

physics, mechanics and electromagnetism, a planetaiy atom
would not be stable for more than a veiy small fraction of a

second.

The idea of a planetaiy atom was nevertheless appealing.

Physicists continued to look for a theoiy that would include a

stable planetary structure and predict separate line spectra for

the elements. Niels Bohr, then an unknown young physicist who
had just received his PhD, succeeded in constructing such a

theory in 1912-1913. This theory was widely recognized as a

major victory. Although it had to be modified later to account for

many more phenomena, it showed how to attack atomic

problems by using quantum theoiy. Today, it seems a rather

naive way of thinking about the atom, compared with more
recent quantum-mechanical theories. But in fact, considering

what it was designed to do, Bohr's theoiy is an impressive

example of a successful physical model.

Bohr introduced tw^o new postulates specifically to account for

the existence of stable electron orbits and separate emission

spectra. These postulates may be stated as follows:

1. Contrary to the predictions of classical physics, there are

states for an atomic system in which electromagnetic radiation

simply does not occur, despite any acceleration of the charges.

These states are called the stationary states of the atom.

2. Any emission or absorption of radiation, either as visible

light or other electromagnetic radiation, corresponds to a sudden
transition between two such stationary states. The radiation

emitted or absorbed has a frequency /^ determined by the

relation hf= E^ — E^. (In this equation, h is Planck's constant, and
E. and E^ are the energies of the atom in the initial and final

stationary states, respectively.)

"Classical physics " refers to those

ai'eas of physics firmly established

before about 1900 and based on
Newton's mechanics, Maxwell's
electromagnetism, and Carnot's
thei'modynamics.

Since Bohr incorporated Ruther-
ford's idea of the nucleus, the model
that Bohr's dieory discusses is often

called the Rutherford-Bohr model.
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g ^i-fp. • Quantum tlieoiA' had he^gun witli Plaiu^k's idea tlial atouis emit
"

'-^ light only in definite amounts of energy. 1 his concept was
extended by Einstein's idea that light travels only as definite

• parcels of eneig\'. Xovv it was extended furthei- by Bohr s idea

that atoms e^ist only in definite energy states. But Bohi also

used the quantum concept in deciding v\'hich of all the

conceivable stationary states were actually possible. An example
of how Bohi' did this is given in the next section.

. . ^ 'V'*' For simplicity, the hydrogen atom, v\ith a single electron
-^

^ rS^^ rev'ohing aiound the nucleus, is used. Following Bohr, it is

f assumed that the possible electron orbits are simply circular.

e Light is emitted by the atom when it changes from one state to

another (see marginal sketches). The details of some additional

assumptions and calculations ai^ worked out on page 582. Bohr's

i-esult for the possible stable orbit radii r,, was r„ = an~, where

a is a constant {h~/4'n~mkq^j that can be calculated from known
-i sfifl+e: , physical values, and n stands for an\' whole number, 1, 2, 3. . .

.

• 11. What was the main evidence to support the fad that an

atom could e^ist only in certain energy states?

12. How did Bohr deal with the fact that as long as an electron

is steadily orbiting a nucleus, it does not radiate

electromagnetic energy?

19.6
I

The size of the hydrogen atom

Bohr's result is remarkable. In hydrogen atoms, the possible

orbital radii of the electrons are whole multiples of a constant

which can at once be exaluated; that is, n" takes on \alues of 1",

2~, 3~,
. . . , and all factors to the left of n~ are quantities known

previously by independent measurement! Calculating the value

{h~/4iT'mkql) gives 5.3 X 10" " m. Therefore, according to Bohr's

model, the radii of stable electron orbits should be r, = 5.3 x
10~" m X n', that is, 5.3 x 10" " m when n = 1 (first allowed

orbit I, 4 X 5.3 x 10"" m when n = 2 (second allowed orbit), 9

X 5.3 X 10" " m when n = 3, etc. In between these \alues, there

are no allowed radii. In short, the separate allowed electron

orbits are spaced around the nucleus in a regular way, with the

allowed radii quantized in a regular manner'. (See the drawing

at the top of page 586.) Emission and absorption of light should

sc; 10 ther-efore correspond to the ti-ansition of the electron from one

allowed orbit to another-.

This is just the kind of result hoped for. It tells which ladii are

possible and where they lie. But so far, it had all been model

building. Do the orbits in a real h\'drx)gen atom actualh

correspond to this model.-' In his first |)a|)er- of 1913, Bohr- was
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able to give at least a partial yes as an answer. It had long been
known that the normal "unexcited" hydrogen atom has a radius

of about 5 X 10"" m (that is the size of the atom obtained, for

example, by inteipreting measured characteristics of gases in

light of the kinetic theoiy). This known value of about 5 X 10""

m corresponds excellently to the prediction from the equation

for orbital radius r if n has the lowest value, namely 1. Now there

was a way to understand the size of the neutral, unexcited

hydrogen atom. For every such atom, the size corresponds to the

size of the innermost allowed electron orbit. That orbit, fixed by
nature, is described by the quantization rule.

13. Why do all unexcited hydrogen atoms have the same size?

14. Why does the hydrogen atom have just the size it has?

1.9.T
I

other consequences of the Bohr model

With his two postulates, Bohr could calculate the radius of each
permitted orbit. In addition, he could calculate the total energy

of the electron in each orbit, the energy of the stationary state.

The results that Bohr obtained may be summarized in two
simple formulas. As you saw, the radius of an orbit wdth

quantum number n is given by the expression

r_ = n~r^

where r^ is the radius of the first orbit (the orbit for n = 1) and
has the value 5.3 x 10"^ cm or 5.3 X 10"" m.
The energy (the sum of kinetic and electric potential energy) of

the electron in the orbit with quantum number n can also be

computed from Bohr's postulate (see SG 11). As pointed out in

Chapter 10, it makes no sense to assign an absolute value to

potential energy. Only changes in energy have physical meaning.

Therefore, any convenient zero level can be chosen. For an
electron orbiting in an electric field, the mathematics is

particularly simple if, as a zero level for energy, the state n = oo

is chosen. At this level, the electron would be infinitely far from
the nucleus (and therefore free of it). The energy for any other

state E^ is then the difference from this free state. The possible

energy states for the hydrogen atom are therefore

Note: Do not confuse this use of E
for energy vvath the earlier use of E
for electric field.

E„ = -.E,

where £, is the total energy of the atom when the electron is in

the first orbit. £, is the lowest energy possible for an electron in a
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Close UpI
Dohr's QuontizQtion Rule ond
the Size of Orbits

The magnitude of the charge on the electron is

q^; the charge on a nucleus is Zq^, and for hydro-

gen (Z = 1) it is just Q,. The electric force with

which the hydrogen nucleus attracts its electron is

therefore

F = k Me

where k is the coulomb constant, and r is the cen-

ter-to-center distance. If the electron is in a stable

circular orbit of radius r around the nucleus, moving

at a constant speed i^, then the centripetal force is

equal to mv^^r. Since the centripetal force is pro-

vided by the electric attraction,

r "V
In the last equation, m, q^, and k are constants;

r and v are variables, whose values are related by

the equation. What are the possible values of \/ and

r for stationary states of the atom?

You can begin to get an answer if you write the

last equation in slightly different form. fVlultiplying

both sides by f and dividing both sides by i/, you

get

^^
V

mvr =

The quantity on the left side of this equation is

the product of the momentum of the electron and

the radius of the orbit. You can use this quantity to

characterize the stable orbits. According to classi-

cal mechanics, the radius of the orbit could have

any value, so the quantity mvr could also have any

value. Of course, classical physics also seemed to

deny that there could be any stable orbits in the

hydrogen atom. But Bohr's first postulate implies

that certain stable orbits (and only those) are per-

mitted. So Bohr needed to find the rule that decides

which stable orbits are possible. Here Bohr ap-

pears to have been largely guided by his intuition.

He found that what was needed was the recognition

that the quantity mvr does not take on just any

value, but only certain allowed values. These val-

ues are defined by the relation

mvr = n
2-IT

where h is Planck's constant, and n is a positive

integer; that is, n = 1, 2, 3, 4, . . , (but not zero).

When the possible values of mvr are restricted in

this way, the quantity mvr is said to be quantized.

The integer n that appears in the formula is called

the quantum number. The main point is that each

quantum number (n = 1, 2, 3 . . .) corresponds to

one allowed, stable orbit of the electron.

If you accept this rule, you can at once describe

the "allowed" states of the atom, for example, in

terms of the radii r of the possible orbits. You can

combine the last expression above with the clas-

sical centripetal force relation as follows. The quan-

tization rule is



hydrogen atom. Its value is — 13.6 eV (the negative value means
only that the energy is 13.6 eV less than the free state value E ^-).

This is called the ground state. In that state, the electron is most

tightly "bound" to the nucleus. The value of £,, the first "excited"

state above the ground state, is 1/2" x —13.6 eV = —3.4 eV (only

3.4 eV less than in the ft^ee state).

According to the formula for r^, the first Bohr orbit has the

smallest radius, with n — 1. Higher values of n correspond to

orbits that have larger radii. The higher orbits are spaced further

and further apart, and the force field of the nucleus falls off even

more rapidly. So the work required to move out to the next

larger orbit actually becomes smaller and smaller. Also, the

jumps in energy from one level of allowed energy E to the next

become smaller and smaller.

19.8
I

The Bohr theory: the spectral series of
hydrogen

The most spectacular success of Bohr's model was that it could

be used to explain all emission (and absorption) lines in the

hydrogen spectium; that is, Bohr could use his model to derive,

and so to explain, the Balmer formula! By Bohr's second

postulate, the radiation emitted or absorbed in a transition in an

atom should have a frequency /determined by

hf = £, - £,

If Hf is the quantum number of the final state and n, is the

quantum number of the initial state, then according to the result

for E ,

1

The different radii and energies a

hydrogen atom can have are shown
schematically in the diagram on
page 586.

and E.

The frequency of radiation emitted or absorbed u^hen the atom
goes from the initial state to the final state is therefore

determined by the equation

hf
£,
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According to Bohr's model, then, this equation gives the

wavelengtli X of the radiation emitted or absorbed when a

hydrogen atom changes from one stationary state with quantum
number n. to another with n^.

How does this prediction from Bohr's model compare with the

long-established empirical Balmer formula for the Balmer series?

This, of course, is the cn.icial question. The Balmer formula was

given on page 571:

1 / 1 1

X " \2' n

You can see at once that the equation for X of emitted (or

absorbed) light derived from the Bohr model is exactly the same
as Balmer's formula, if fi„ = —E/hc and n^ = 2.

The Rydberg constant R^ was long known ft om spectroscopic

measurements to have the value of 1.097 x 10' m '. Now it

could be compared with the value for — (E/hc). Remarkably,

there was fine agreement, as can be shown without much
difficulty. Rfj, previously regarded as just an experimentally

determined constant, was now shown to be a number that could

be calculated ii^om known constants, namely, the mass and
charge of the electron, Planck's constant, and the speed of light.

More important, you can now see the meaning, in physical

terms, of the old empirical fomiula for the lines (H^, Hp, . . . ) in

the Balmer series. All the lines in the Balmer series simply

correspond to transitions from various initial states (various

values of n.) to the same final state, for which n, = 2. Thus,

photons having the frequency or wavelength of the line H^ are

emitted when electrons in a gas of hydrogen atoms "jump " from

their n = 3-state to their n — 2-state (see diagram, page 586).

The Hp line corresponds to "jumps " from n = 4 to n = 2, and so

forth.

When the Bohr theory was proposed in 1913, emission lines in

only the Balmei- and Paschen series for hydrogen were known
definitely. Balmer had suggested, and the Bohr model agreed,

that additional series should exist. Further experiments revealed

the Lyman series in the ultraviolet portion of the spectrum

(1916), the Brackett series (1922), and the Pfund series (1924). In

each series, the measured irequencies of the lines were found to

be those predicted by Bohr's theoiy. Similarly, the general

formula that Balmer guessed might apply for all spectral lines of

hydrogen was explained. The lines of the Lyman series

correspond to transitions from various initial states to the final

state Hf = 1; the lines of the Paschen series correspond to

transitions from various initial states to the final state n, = 3; etc.

(See table on page 573.) The general scheme of possible

transitions among the first six orbits is shovsoi in the figure on
page 586. Thus, the theory not only related known infonnation

SG 11

Niels Bohr (1885-1962)

did the work described

at the time he
in this section.
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SG 13
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A schematic diagram of the rela-

tive energy levels of electron states

in an atom of hydrogen.
n = 6

Lyman

series

n = 5

n = 4

Balmer

series

Paschen Brackett Pfund

series series series

l'
'' II .

ENERGY

0.0

-0.87 X 10 '"J

-1.36

-2.42

n = 2
nyv Y -5.43

Energy-level diagram for the hy-

drogen atom. Possible transitions

between energy states are shown

for the first few levels from n = 2

to n = 1, orfrom n = 3 to n =

2 or n = 1, etc.). The dotted arrow

for each series indicates the series

limit, a transition from n = ^, the

state where the electron is com-
pletelv frer 'infinitflv f;tri from the

nuchnis.
21 76
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about the hydrogen spectrum, but also predicted correctly the

wavelengths of previously unknowoi series of lines in the

spectrum. Moreover, it provided a reasonable physical model;

Balmer's general formula had offered no physical reason. The
schematic diagram shown on page 586 is useful as an aid foi' the

imagination. But it has the danger of being too specific. For

instance, it leads you to think of the emission of radiation in

tenns of "jumps" of electrons between orbits. Although this is a

useful idea, in Chapter 20 you will see why it is impossible to

detect an electron moving in such orbits. Nor can you watch an

electron "jump" from one orbit to another. A second way of

presenting the results of Bohr's theoiy yields the same facts but

does not adhere as closely to a picture of orbits. This scheme is

shown in the bottom figure on page 586. It focuses not on orbits

but on the corresponding possible energy states. These energy

states are all given by the formula £,, = 1/n" X £j. In temis of

this mathematical model, the atom is normally unexcited, with

an energy E^ about -22 x lo"' J (
- 13.6 eV). Absoqation of

energy can place the atoms in an excited state, with a

correspondingly higher energy. The excited atom is then ready to

emit light, with a consequent reduction in energy. The energy

absorbed or emitted always shifts the total energy of the atom to

one of the values specified by the formula for £„. Thus, the

hydrogen atom may be represented by means of the energy-level

diagram.

\
4.0eV

4/?eV Q--
ELECTROhJ

'*'i-h%/Mi~--

MeRcui?y A-rOH

6.1 eV ©
5JDe\' O-

Nercuk/Atz>m

Q UeV

15. Balmer had predicted accurately the other spectral series

of hydrogen 30 years before Bohr did. Why is Bohr's prediction

considered more significant?

16. How does Bohr's model explain line absorption spectra?

On page 570, you saw that an absorption spectrum did not

contain all the lines of the emission spectrum. Based on the

Bohr model, why is this so?

MBUCOF'^f Ar^1

1.9«9
I

Stationari' states of atoms: the
Franck—Hertz experiment

The success of the Bohr theory in accounting for the spectium of

hydrogen left this question: Could experiments show directly

that atoms have only certain, separate energy states? In other

words, were there really gaps between the energies that an atom
can have? A famous experiment in 1914, by the German
physicists James Franck and Gustav Hertz, showed that these

separate energy states do indeed exist.

Franck and Hertz bombarded atoms with electrons from an

electron gun. They were able to measure the energy lost by
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Physicists now know two ways of

"exciting" an atom: by absorption

and by collision. In absorption, an

atom absorbs a photon with just

the right energ\' to cause a transi-

tion from the lowest energ\' level to

a higher one. Collision may inxohe

an electron from an electron gun
or collisions among agitated atoms
(as in a heated enclosure or a dis-

charge tube).

SG 14, 15

electrons in collisions with atoms. They could also determine the

energy gained by atoms in these collisions. In their first

experiment, Franck and Hertz bombarded mercuiy \'apor

contained in a chamber at very low pressure. The procedure was
equivalent to measuring the kinetic energy of electrons on
leaving the electron gun, and again after they had passed

through the mercuiy vapor, liie only way elections could lose

energy was in collisions with mercury atoms. Franck and Hertz

found that when the kinetic energy of the electrons ieaxing the

gun was small lup to several electron volts i the electrons still had

almost exactly the same energy after passage through the

mercuiy vapor as they had on leaxdng the gun. This result could

be explained in the following v\ay. A mercuiy atom is several

hundred thousand times more massive them an electron. When it

has low kinetic energy, the electron just bounces off a mercuiy

atom, much as a golf ball thrown at a bowling ball would bounce

off. A collision of this kind is called an "elastic" collision

(discussed in Sec. 9.6). In an elastic collision, the mercuiy atom
(bowling ball I takes up only a negligible part of the kinetic energy

of the electron (golf ball I so that the electron loses practically

none of its kinetic energy.

But when the kinetic energ\' of the electrons was raised to

5 eV; the experimental results changed dramatically. When an

electron collided with a mercuiy atom, the electron lost almost

exactly 4.9 eV of energy'. When the energy was increased to 6 eV^

the electron still lost just 4.9 eV of energy in collision, being left

with 1.1 eV' of energy. These results indicated that a mercury

atom cannot accept less than 4.9 eV of energ\'. Furthermore,

when the mercury atom is offered somewhat more energy, for

example, 5 or 6 eV, it still accepts onl\' 4.9 eV. The accepted

amount of energy cannot go into kinetic energy of the mercuiy

because the atom is so much more massive than the electron.

Therefore, Franck and Hertz concluded that the 4.9 eV^ is added

to the internal energ\' of the mercury atom; that is, the mercuiy

atom enters a stationaiy state with energy 4.9 eV greater than

that of the lowest energy state, with no allowed energy level in

between.

What happens to this extra 4.9 eV of internal energy?

According to the Bohr model, this amount of energy should be

emitted as electromagnetic radiation when the atom returns to

its lowest state. Franck and Hertz looked for this radiation and

found it. They observed that the mercury vapor emitted light at a

wavelength of 253.5 nanometers. This wavelength was known to

exist in the emission spec^trum of hot mercuiy \apor. The
wavelength corresponds to a frequency /for which the photon's

energ\', lif, is just 4.9 eV (as you can calculate). This result

showed that mercuiy atoms had indeed gained (and then

radiated awa\ i 4.9 e\' of energ\' in collisions with electrons.
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Later experiments showed that mercury atoms bombarded by

electrons could also gain other sharply defined amounts of

energy, for example; 6.7 eV and 10.4 eV. In each case, the

radiation emitted corresponded to knovvoi lines in the emission

spectrum of mercuiy. In each case, similar results were obtained;

the electrons always lost energy, and the atoms always gained

energy, both in sharjjly defined amounts. Each type of atom
studied was found to have separate energy states. The amounts
of energy gained by the atoms in collisions with electrons always

corresponded to known spectrum lines. Thus, direct experiment

confirmed the existence of separate stationary states of atoms

predicted by the Bohr theoiy of atomic spectra. This result was
considered to provide strong evidence of the validity of the Bohr

theory.

SG 16

# 17. How much kinetic energy will an electron have after a

collision with a mercury atom if its kinetic energy before

collision is (a) 4.0 eW? (b) 5.0 eV? (c) 7.0 eV?

19.1.0
I

The periodic table of the elements

In the Rutherford-Bohr model, atoms of the different elements

differ in the charge and mass of their nuclei and in the number
and arrangement of the electrons. Bohr came to picture the

electronic orbits as shouTi on page 592, though not as a series of

concentric rings in one plane, but as patterns in three

dimensions.

How does the Bohr model of atoms help to explain chemical

properties? Recall that the elements hydrogen (atomic number
Z = 1) and lithium (Z = 3) are somewhat alike chemically. Both

have valences of 1. Both enter into compounds of similar types,

for example, hydrogen chloride (HCl), and lithium chloride (LiCl).

There are also some similarities in their spectra. All this suggests

that the lithium atom resembles the hydrogen atom in some
important respects. Bohr speculated that two of the three

electrons of the lithium atom are relatively close to the nucleus,

in orbits resembling those of the helium atom. But the third

electron is in a circular or elliptical orbit outside the inner

system. Since this inner system consists of a nucleus of charge

( + ) 3q^ and two electrons each of the charge (
-

) q^, its net

charge is ( + ) q^. Thus, the lithium atom may be roughly pictured

as having a central core of charge 1 + ) q^. Around this core one

electron revolves, somewhat as for a hydrogen atom. This similar

physical structure, then, is the reason for the similar chemical

behavior.

These two pages will be easier to

follow if you refer to the table of

the elements and the periodic table

in Chapter 17.
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Close UpI
Losers

An atom in an excited state gives off energy by

emitting a photon, a quantum of electromagnetic

radiation, according to Bohr's second postulate

(Section 19.5). Although Bohr's specific model of

the atom has been vastly extended and incorpo-

rated into models based on a different approach

(see Chapter 20), this postulate is still valid.

As you have seen, atoms can acquire internal

energy, that is, be brought to an excited state, in

many ways. In the Franck-Hertz experiment, in-

elastic collisions provided the energy: in a cool gas

displaying a dark-line spectrum, it is the absorption

of photons; in a spark or discharge tube, it is col-

lisions between electrons and atoms. There are

other mechanisms as well.

Once an atom has acquired internal energy, it

can also get rid of it in several ways. An atom can

give up energy in inelastic collisions, or (as dis-

cussed above) it can emit energy as electromag-

netic radiation. There are many different kinds of

inelastic collisions; which one an atom undergoes

depends as much on its surroundings as on the

atom itself.

There are also two different ways an atom can

emit radiation. Spontaneous radiation is the kind

considered elsewhere in this chapter. At some ran-

dom (unpredictable) moment, the previously ex-

cited atom emits a photon (of frequency v) and

changes its state to one of lower energy (by an

amount IE). If, however, there are other photons

of the appropriate frequency (v = lE/h) in the vi-

cinity, the atom may be stimulated to emit its en-

ergy. The radiation emitted is at exactly the same
frequency, polarization, and phase as the stimulat-

ing radiation. That is, it is exactly in step with the

existing radiation; in the wave model of light, you

can think of the emission simply increasing the am-

plitude of the oscillations of the existing electro-

magnetic field within which the emitting atom finds

itself.

Stimulated emission behaves very much like the

classical emission of radiation discussed in Chapter

16. A collection of atoms stimulating one another

to emit radiation behaves much like an antenna.

You can think of the electrons in the different atoms

as simply vibrating in step just as they do in an

ordinary radio antenna, although much, much faster.

Usually atoms emit their energy spontaneously

long before another photon comes along to stimu-

late them. Most light sources therefore emit inco-

herent light, that is, light made up of many different

contributions, differing slightly in frequency, out of

step with each other, and randomly polarized.

Usually, most of the atoms in a group are in the

ground state. Light that illuminates the group is

more likely to be absorbed than to stimulate any

emission, since it is more likely to encounter an

atom in the ground state than in the appropriate

excited state. But suppose conditions are arranged

so that more atoms are in one of the excited states

than are in the ground state. (Such a group of atoms

is said to be inverted.) In that case, light of the

appropriate frequency is more likely to stimulate

emission than to be absorbed. Then an interesting

phenomenon takes over. Stimulated emission be-

comes more probable the more light there is

around. The stimulated emission from some atoms

therefore leads to a chain reaction, as more and

more atoms give up some of their internal energy

to the energy of the radiation. The incident light

pulse has been amplified. Such an arrangement is

called a laser (/ight amplifier using stimulated emis-

sion of radiation).

Physicists and engineers have developed many

tricks for producing "inverted" groups of atoms, on

which laser operation depends. Exactly what the

tricks are is not important for the action of the laser

itself, although without them the laser would be im-

possible. Sometimes it is possible to maintain the

inversion even while the laser is working: that is. it

is possible to supply enough energy by the mech-

anisms that excite the atoms (inelastic collisions

with other kinds of atoms, for example) to compen-

sate for the energy emitted as radiation. These las-

ers can therefore operate continuously.

There are two reasons laser light is very desirable

for certain applications. First, it can be extremely

intense; some lasers can emit millions of joules in

minute fractions of a second, as all their atoms emit

their stored energy at once. Second, it is coherent;

the tight waves are all in step with each other. In-

coherent light waves are somewhat like the waves

crisscrossing the surface of a pond in a gale. But

I
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coherent waves are like those in a ripple tank, or

at a beach where tall breakers arrive rhythmically.

The high intensity of some lasers can be used for

applications in which a large amount of energy must

be focused on a small spot. Such lasers are used

in industries for cutting and welding delicate parts.

In medicine, they are used to re-attach the retina

(essentially by searing a very small spot) in the eye.

The coherence of lasers is used in applications

that require a stable light source emitting light of a

precisely given frequency and polarization in one

precise direction. Surveyors can use lasers to lay

out straight lines, since the coherent beam spreads

out very little with distance. Telephone companies

can use them to carry signals in the same way they

now use radio and microwaves.

These powerful lasers are part of the experimental Shiva

fusion device. The energy supplied by the lasers is di-

rected onto a tiny fuel pellet, causing the pellet to implode

and thus release energy.
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The sketches above are based on
diagrams Bohr used in his lerUires.

Helium IZ = 2) is a chemically inert noble gas. These

propeilies indicate that the helium atom is highly stable, having

both of its electrons closely bound to the nucleus. It seems
sensible, then, to regard both electrons as mo\ing in the same
innermost shell around the nucleus when the atom is unexcited.

Moreover, because the helium atom is so stable and chemically

inert, you may reasonably assume that this shell cannot hold

more than two electrons. This shell is called the K-shell. I he

single electron of hydrogen is also said to be in the K-shell when
the atom is unexcited. Lithium has two electrons in the K-shell,

filling it to capacity; the third electron starts a new shell, called

the L-shell. This single outlying and loosely bound electron is the

reason why lithium combines so readily with o^a^gen, chlorine,

and many other elements.

Sodium (Z — 111 is the next element in the periodic table that

has chemical properties similar to those of hydrogen and
lithium. This similarity suggests that the sodium atom also is

hydrogen-like in having a central core about which one electron

revolves. Moreover, just as lithium follows helium in the periodic

table, sodium follows the noble gas neon IZ = 10). You may
assume that two of neon's 10 electrons are in the first (K) shell,

while the remaining eight electrons are in the second (LI shell.

Because of the chemical inertness and stability of neon, you may
further assume that these eight electrons fill the L-shell to

capacity'. For sodium, then, the 11th electron must be in a third

shell, called the M-shell. Passing on to potassium IZ = 19), the

next alkali metal in the periodic table, you may again picture an

inner core and a single electron outside it. The core consists of a

nucleus with charge ( + ) 19q^. There are two, eight, and eight

electrons occupying the K-, L-, and M-shells, respectively. The
19th electron revolves around the core in a fourth shell, called

the N-shell. The atom of the noble gas argon, with Z — 18, comes
just before potassium in the periodic table. Argon again

represents a tight and stable electron pattern, uith two in the K-,

eight in the L-, and eight in the M-shell.

These qualitative considerations have led to a consistent

picture of electrons distributed in groups, or shells, around the

nucleus. The arrangement of electrons in the noble gases may be

considered particularly stable. For each new alkali metal in

Group I of the periodic table, a new shell is started. Each alkali

metal atom has a single electron around a core that resembles

the pattern for the preceding noble gas. You may expect this

outlying electron to be easily "loosened " by the action of

neighboring atoms, and this agrees v\ith the facts. The elements

lithium, sodium, and potassium aie alkali metals. In compounds

or in solution (as in electrolysis), they may be considered to be

in the form of ions such as Li^, Na"^, and K^. Each ion lacks one

electron and so has one positive net charge I -I- ) q,.. In the neutral
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atoms of these elements, the outer electron is relatively free to

move about. This property has been used as the basis of a theoiy

of electrical conductivity. According to this theory, a good

conductor has many "free" electrons that can form a current

under appropriate conditions. A poor conductor has relatively

few "free" electrons. The alkali metals are all good conductors.

Elements whose electron shells are filled are very poor

conductors; they have no "free" electrons. In Chapter 14, you
saw how electrical conduction takes place in metals. It is

because metals have many "free" electrons that they are

conductors.

In Group II of the periodic table, you would expect those

elements that follow immediately after the alkali metals to have

atoms with two outlying electrons. For example, beiyllium

(Z = 4) should have two electrons in the K-shell, thus filling it,

and two in the L-shell. If the atoms of all these elements have

two outlying electrons, they should be chemically similar, as

indeed they are. Thus, calcium and magnesium, which belong to

this group, should easily form ions such as Ca^^ and Mg^^,

each with a positive net charge of ( + ) Zq^,. This is also found to

be true.

As a final example, consider those elements that immediately
precede the noble gases in the periodic table. For example;
fluorine atoms (Z = 9) should have two electrons filling the

K-shell but only seven electrons in the L-shell, one less than
enough to fill it. If a fluorine atom captures an additional

m£*»t>»i
etc.

Shell

Name
Number of Electrons in

Filled Shell

2

8

18

•

etc.

9#d
M

H

Relative energy levels of electron

states in atoms. Each circle repre-

sents a state that can be occupied
bv two electrons.
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SG 18

electron, it should become an F^ ion with one negative net

charge. The L-shell would then be filled, as it is for neutral neon

(Z = 10), and you would expect the F ion to be relatively stable.

This prediction agrees with observation. Indeed, all the elements

immediately preceding the inert gases tend to form stable, singly

charged negative ions in solution. In the solid state, you would

expect these elements to lack free electrons. In fact, all of them
are poor conductors of electricity.

As indicated in the diagram below, the seven main shells, K, L,

M, . . . , Q, divide naturally into subshells. The shells fill with

electrons so that the total energv' of the atom is minimized.

Bohr carried through a complete analysis along these lines.

Finally, in 1921, he proposed the fomi of the periodic table

shown on page 593. The periodicity results from the completion

of subshells. This phenomenon is complicated even beyond the

shell overlap in the figure below by the interaction of electrons in

the same subshell. Bohr's table, still useful, was the result of

physical theoiy and offered a fundamental physical liasis for

understanding chemistiy. For example, it showed how the

stiTicture of the periodic table follows from the shell structure of

atoms. This was another triumph of the Bohr theory.

18. Why do the ne^ct heavier elements after the noble gases

easily become positively charged?

Bohr's periodic table of the (ele-

ments (1921). Since then, some of

the names and symbols have been

changed. Masurium (43) is now
called technetium (43), and niton

(86) is radon (86). The rectangles

indicate the filling of subshells of a

higher shell.

Period

IV

Period
VII

-87 --

-88 Ra
-89 Ac
90 Th

91 Pa

92 U
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19. Why are there only two elements in Period I, eight in

Period II, eight in Period 111, etc.?

19.H
I

The inadequacy of the Bohr theorr^ and
the state of atomic theory in the early
1930's

Every model and every theoiy has its limits. The Bohr theoiy

achieved great successes in the years between 1913 and 1924. But

problems arose for which the theory proved inadequate. Bohr's

theory accounted very well for the spectra of atoms with a single

electron in the outennost shell. However, serious differences

between theory and experiment appeared in the spectra of

atoms wdth tvv^o or more electrons in the outermost shell.

Experiments also revealed that when a sample of an element is

placed in an electric or magnetic field, its emission spectrum

shows additional lines. For example, in a magnetic field each line

is split into several lines. The Bohr theory could not account in

a quantitative way for some of the observed splittings.

Furthemiore, the theory supplied no method for predicting the

relative brightness of spectral lines. These relative intensities

depend on the probabilities with which atoms in a sample

undergo transitions among the stationary states. Physicists

wanted to be able to calculate the probability of a transition from

one stationaiy state to another. They could not make such

calculations vvdth the Bohr theory.

By the early 1920's it was clear that the Bohr theory, despite its

great successes, was limited. To form a theory that would solve

more problems, Bohr's theory would have to be revised or

replaced. But the successes of Bohr's theoiy showed that a better

theory of atomic structure would still have to account for the

existence of stationaiy states, which are separate, distinct atomic

energy levels. Therefore, such a theoiy would have to be based

on quantum concepts.

Besides the inability to predict certain properties of atoms at

all, the Bohr theory had two additional shortcomings. First, it

predicted some results that did not agree with experiment (such

as incorrect spectra for elements with two or three electrons in

the outermost electron shells). Second, it predicted results that

could not be tested in any known way (such as the details of

electron orbits). Although orbits were easy to draw on paper,

they could not be observed directly. Nor could they be related to

any observable properties of atoms. Planetary theory has veiy

different significance vv^hen applied to a planet in an observable

orbit than when applied to an electron in an atom. The precise

position of a planet is important, especially in experiments such

In March 1913, Bohr wrote to Ruth-
erford, enclosing a draft of his first

paper on the quantum theory of

atomic constitution. On March 20,

1913, Rutherford replied in a letter,

the first part of which is quoted
here.

"Dear Dr. Bohr:

I have received your paper and
read it with great interest, but I

want to look it over again carefully

when I have more leisure. Your
ideas as to the mode of origin of

spectra in hydrogen are very inge-

nious and seem to work out well:

but the mixture of Planck's ideas

with the old mechanics make it

very difficult to form a physical

idea of what is the basis of it. There
appears to me one grave difficulty

in your hvpothesis, which I have no
doubt you fully realize, namely,
how does an electron decide what
frequency it is going to \abrate at

when it passes from one stationary

state to the other. It seems to me
that you would have to assume that

the electron knows beforehand
where it is going to stop. . .

."
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Remember, for example (Unit U,

how proudly Galileo pointed out,

when announcing that all falling

bodies are equally and constantly

accelerated: "So far as I know, no
one has yet pointed out that the

distances traversed, during equal

intervals of time, by a body falling

from rest, stand to one another in

the same ratio as the odd numbers
beginning with unity [namely
1:3:5:7: . . .]."

as photographing an eclipse or a portion of the suiface of Mai^

from a satellite. But the moment-to-moment position of an

electron in an orhit has no such meaning because it has no

relation to any experiment physicists have been able to de\ise. It

thus became evident that the Bohr theory led to some questions

that could not be answered experimentally.

In the early 1920's, physicists, especially Bohr himself, began to

work seriously on revising the basic ideas of the theory. One fact

that stood out was that the theoiy started with a mixture of

classical and quantum ideas. An atom was assumed to act

according to the laws of classical physics up to the point where
these laws did not work. Beyond this point, quantum ideas were

introduced. The picture of the atom that emerged was an

inconsistent mixture. It combined ideas from classical physics

with concepts for which there was no place in classical physics.

The orbits of the electrons were determined by the classical,

Nevvlonian laws of motion. But of the many theoretical orbits,

only a small portion were regarded as possible. Even these few

orbits were selected by rules that contradicted classical

mechanics. Again, the frequency calculated for the orbital

revolution of elections was quite differ ent from the frequency of

light emitted or absorbed when the electr on moved from or to

this orbit. Also, the decision that n could never be zer^o was
necessary to prevent the model from collapsing by letting the

electron fall on the nucleus. It became evident that a better

theory of atomic strnjcture would need a more consistent

foundation in quantum concepts.

The contribution of the Bohr theory may be summarized as

follows. It pro\ided some excellent answers to the questions

raised about atomic structure in Chapters 17 and 18. Although

the theory turned out to be inadequate, it drew attention to how
quantum concepts can be used. It indicated the path that a new
theoiy would have to take. A new theoiy would have to supply

the right answer^s that the Bohr theory gave. But it would also

have to supply the right answers for the problems the Bohr"

theoiy could not solve. One of the most fascinating aspects of

Bohr's wor k was the pr^oof that physical and chemical properties

of matter can be traced back to the fundamental role of integers

(quantum numbers such as n = 1, 2, 3, . . . ). As Bohr said, "The

solution of one of the boldest dr^eams of natural science is to

build up an understanding of the r^egularities of nature upon the

consideration of pure number." You can catch here an echo of

the hope of Pythagoras and Plato, of KephM- and (lalileo.

Since the 1920's, a successful theory of atomic stixictur-e has

been developed and generally accepted by physicists. It is part of

quantum mechanics , so called because it is built directly on

quantum concepts. It goes far beyond understanding atomic

structure. In fact, it is the basis of the modern conception of
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events on a submicroscopic scale. Some aspects of this theory

will be discussed in the next chapter. Significantly, Bohr himself

was again a leading contributor.

• 20. The Bohr model of atoms is widely presented in science

books. What is wrong with it? What is good about it?

SG 19-23

Study
guide
1. The Project Physics materials particularly

appropriate for Chapter 19 include:

Experiment

Spectroscopy

Activities

Measuring Ionization—^A Quantum Effect

"Black Box" Atoms

Film Loop
Rutherford Scattering

Transparencies

Alpha Scattering

Energy Levels—Bohr Theory

3. (a) Suggest experiments to show which of the

von Fraunhofer lines in the spectrum of sunlight

result from abosrption in the sun's atmosphere

rather than from absorption by gases in the earth's

atmosphere.

(b) How might one decide from spectroscopic

observations whether the moon and the planets

shine by their own light or by reflected light from
the sun?

3. Theoretically, how many series of lines are there

in the emission spectrum of hydrogen? In all these

series, how many lines are in the visible region?

4. The Rydberg constant for hydrogen, fi„, has the

value 1.097 x 107m. Calculate the wavelengths of

the lines in the Balmer series corresponding to n =

8, n = 10, n = 12. Compare the values you get with

the wavelengths listed in the table on page 571. Do
you see any pattern in the values?

5. (a) As indicated in the figure on page 571, the

lines in one of hydrogen's spectral series are

bunched very closely at one end. Does the formula

1 / 1

suggest that such bunching will occur?

(b) The "series limit" corresponds to the last

possible line(s) of the series. What value should be

taken for n^ in the above equation to compute the

wavelength of the series limit?

(c) Compute the series limit for the Ljonan, Balmer,

or Paschen series of hydrogen.

(d) Consider a photon with a wavelength

corresponding to the series limit of the Lyman
series. What energy could it carry? lixpress the

answer in joules and in electron volts (1 eV = 1.6 x
10'" J).

6. In what ways are Thomson's and Rutherford's

atomic models similar? In what ways do they differ?

7. In 1903, the German physicist Philipp Lenard

(1864-1947) proposed an atomic model different

from those of Thomson and Rutherford. He observed

that, since cathode-ray particles can penetrate

matter, most of the atomic volume must offer no
obstacle to their penetration. In Lenard 's model
there were no electrons and no positive charges
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so
separate from the electrons. His atom was made up
of particles called dynumiiics , each of which was an

electric dipole possessing mass. lAn electric dipole

is a combination of a positive charge and a negative

charge close together.) All dynamides were identical,

and an atom contained as many of them as were

need(;d to make up its mass. They were distributed

throughout the volume of the atom. But their radius

was so small compared with that of the atom that

most of the atom was empty.

(a) In what ways does Lenard's model resemble

those of Thomson and Rutherford? in what ways

does it differ from those models?

(b) VVhy would you not exjject a particles to be

scattered through large angles if Lenard's model

were valid?

(c) In \iew of the scattering of a particles that is

obser\'ed, is Leucird's model valid?

8. Determine a likely upper limit for the effective

size of a gold nucleus from the following facts and

hypotheses:

i. A beam of a particles of known velocity v = 2 x

lO" m/sec is scattered from a gold foil. The manner
of this scattering makes sense only if the a particles

are repelled by nucle^ir charges that exert a

Coulomb's law repulsion on the a particles.

ii. Some of these a. particles come straight back after

scattering. They therefore approach the nuchn up

to a distance r from the nucleus' center. At this

point, tlie initial kinetic energy Vzm^vJ is completely

changed to the potential energy of the system.

iii. The potential energy of a system made up of an a

particle of charge 2q at a distance r from a nucleus

of charge Zq^ is given by the product of the

"potenticil ' IZq/r) set up by the nucleus at distance r

and the charge (2qJ of the a particle.

iv. The distance r can now be computed. You know

^a' "'a '^ ^ 10^" kg, from other evidence), Z for gold

atoms (see periodic table), and q_ (see Sec. 14.5).

V. The nuclear radius must be equal to or less than r.

Thus, you have a reasonable upper limit for the size

of this nucleus.

9. Physicists genendly suppose that the atom and

the nucleus are each spherical. They assume that the

diameter of the atom is of the order of 10 '" m and

that the diameter of the nucleus is of the order of

10 " m.

(a) What are the evidences that these are reasonable

suppositions?

(b) What is the ratio of the diameter of the nucleus

to that of the atom?

10. The nucleus of the hydrogen atom is thought to

have a radius of about 1.5 x 10 '''m. Imagine this

atom magnified so that the nucleus is 0.1 mm across

(the size of a grain of dust). How far away from it

would the electron be in the Bohr orbit closest to it?

11. Show that the total energy of a neutral hydrogen

atom made up of a positively charged nucleus and

an electron is given by

1
£ = — £,

where E^ is the energy when the electron is in the first

orbit (n = 1) and where the value of E^ = —13.6 eV.

(You may consult other texts, for example, Foundation

oj Modern Physical Science by Holton and Boiler, Sec.

34.4 and 34.7.) Program and hints:

i. The total energy E of the system is the kinetic and

potentiid energy KE + PE of the electron in its orbit.

Since mv^/r = kq'Jr^ Isee page 582), KE = Vzmv^ can

be quickly calculated.

ii. The electrical potential energy PE of a charged point

object (electron) is given by the electrical potential V
of the region in which it finds itself, times its own
charge. The value of V^ set up by the (positive) nucleus

at distance r is given by kqJr. The charge on the elec-

tron is — t/.. Therefore, P£ = —kql/r. The meaning of

the negative sign is simply that PE is taken to be zero

if the electron is infinitely distant. The system radiates

energv' as the electron is placed closer to the nucleus.

On the other hand, energ\' must be supplied to move
the electron away from the nucleus.

iii. Now you can show that the total energy £ is

I ^lE = KE + PE
2r

iv. Using the equation deri\'ed on page .182, namely

r =

—

, show that
4T7^mt/~
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ss
where E^ = k~ZTr^mqyh\

The numerical value for this can be computed by using

the known values (in consistent units) for k, m, q^ and
h.

V. Find the numerical value of the energy of the hy-

drogen atom for each of the first four allowed orbits

(n = 1,2,3,4).

vi. As a final point, show that the quantity — £//ic has

the same value as the constant R^^, as claimed in Sec.

19.8.

12. Using the Bohr theory, how would you account

for the existence of the dark lines in the absorption

spectrum of hydrogen? Why are all the possible lines

not seen?

13. A group of hydrogen atoms is excited (by

collision or by absorption of a photon of proper

frequency). They all reach the stationary state for

which n = 5. Refer to the top figure on page 586 and

list all possible lines emitted by this sample of

hydrogen gas.

14. Make an energy-level diagram to represent the

results of the Franck-Hertz experiment.

15. Many substances emit visible radiation when
illuminated with ultraviolet light. This phenomenon
is an example of fluorescence. Stokes, a British

physicist of the nineteenth centuiy, found that in

fluorescence, the wavelength of the emitted light

usually was the same or longer than the illuminating

light. How would you account for this phenomenon
on the basis of the Bohr theory?

16. Bohr's model of the hydrogen atom draws ideas

from many branches of physics. Make a list of the

ideas involved, and indicate whether each idea is in

accord with classical physics or at odds with it.

17. Use the chart on page 593 to explain why atoms

of potassium (Z = 19) have electrons in the N shell

even though the M shell is not filled.

18. Use the chart on page 593 to predict the atomic

number of the next inert gas after argon; that is,

imagine filling the elecron levels with pairs of

electrons vintil you reach an apparently stable, or

complete, pattern. Do the same for the next inert gas

following.

19. Make up a glossary, with definitions, of terms
that appeared for the first time in this chapter.

ao. The philosopher John Locke (1632-1704)

proposed a science of human nature that was
strongly influenced by Newton's physics, in Locke's

atomistic view, elementary ideas ("atoms") are

produced by elementary sensory experiences and
then drift, collide, and interact in the mind. Thus,

the formation of ideas was only a special case of the

universal interactions of particles.

Does such an approach to the subject of human
nature seem reasonable to you? What argument for

and against this sort of theory can you think of?

31. In a textbook of physics, the following statement

is made:

Arbitrary though Bohr's new postulate may seem,

it was just one more step in the process by which

the apparently continuous macroscopic world was
being analyzed in terms of a discontinuous,

quantized, microscopic world. Although the Greeks

had speculated about quantized matter (atoms), it

remained for the chemists and physicists of the

nineteenth century to give them reality. In 1900

Planck found it necessary to quantize the energy of

electromagnetic waves. Also, in the early 1900's a

series of experiments culminating in Millikan's oil-

drop experiment conclusively showed that electric

charge was quantized. To this list of quantized

entities, Bohr added angular momentum (the

product mvr).

(a) What other properties or things in physics can
you think of that are "quantized"?

(b) What properties or things can you think of

outside physics that might be said to be 'quantized"?

22. Write an essay on the successes and failures of

the Bohr model. Can it be called a good model? a

simple model? a beautiful model?
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Some Meas from
Modern Physioal Theorieo

SG 1

30.1 Some results of relatiiiti' theort'

20J2 Particle-like behaiior of radiation
20.3 Wa\'e-like behavior of particles

20.4 Mathematical versus \isualizable atoms
20.5 The uncertainty' principle

20.6 Probability' interpretation

20.1.
I

Some results of relativity theory

Progress in atomic and nuclear physics has been based on two

great advances in physical thought: quantum theory and

relativity. A single chapter could not even begin to give a full

account of the actual development of physical and mathematical

ideas in these fields. But this chapter can offer you some notion

of what kind of problems led to their development, suggest some
of the unexpected conclusions, and prepare for material in later

chapters. Chapter 20 can also introduce you to the beautiful

ideas on relativity theory and quantum mechanics, and to

nuclear physics, which is presented in more detail in Unit 6,

"The Nucleus" and in the supplemental units.

In Chapter 18 and 19 you saw how quantum theorv entered

into atomic physics. To follow its further development into

quantum mechanics, you need to know some of the results of

the relativity theory. These results will also be essential to the

treatment of nuclear physics. Therefore, this section is devoted to

a brief discussion of one essential result of the theoiv of relativity
I
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introduced by Einstein in 1905, the same year in which he

published the theory of the photoelectric effect.

Unit 1 discussed the basic idea of relativity. You saw that

certain aspects of physical events appear the same from different

frames of reference, even if the reference frames are moving with

respect to one another. Mass, acceleration, and force seem to be

such invariant quantities. Thus, Newton's laws relating these

quantities should be equally valid in all reference frames.

By 1905, it had become clear that this is true enough for all

ordinary cases of motion. But problems arise if the bodies

involved move vvath respect to the observer at a speed more than

a few percent of that of light. Einstein wondered whether the

relativity principle could be extended to the mechanics of rapidly

moving bodies and even to the description of electromagnetic

waves. He found that this could be done only by replacing

Newton's intuitive definitions of length and time with definitions

that produce a more consistent physics. His work resulted in a

new viewpoint, and this viewpoint is the most interesting part of

Einstein's thinking. But here you will deal wdth high-speed

phenomena from an essentially Newtonian \aewpoint. The focus

wdll be on the corrections required to make Newtonian

mechanics better fit a new range of phenomena.

The dijfraction pattern on the left

was made by a beam ofX rays

passing through thin aluminum
foil. The dijfraction pattern on the

right was made by a beam of elec-

trons passing through the same
foil. (The center of the pattern on
the left is black because the center

of the film was blocked off to pre-

vent overexposing the film.)
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For bodies moving at speeds that are small compared to the

speed of light, measurements predicted by relativity theoiy differ

only veiy slightly from measurements predicted by \ev\^onian

mechanics. You know that this is true because iSIevvton's laws

account very well for the motion of bodies with which you are

familiar in ordinary life. Differences between r-elativistic

mechanics and Newtonian mechanics become apparent in

experiments involving high-speed particles.

You saw in Sec. 18.2 that J. J. Thomson devised a method for

determining the speed v and the ratio of charge to mass q/m for

electrons. Not long after Thomson discovered the electron, it was
found that the value of q^/m seemed to vary with the speed of

the electrons. Between 1900 and 1910, several physicists found

that electrons have the value q/m = 1.76 x lo" C/kg only for

speeds that are very small compared to the speed of light. As

electrons were given greater speeds, the ratio became smaller.

Relativity theory offered an explanation: The electron charge is

invariant; it does not depend on the speed of the electrons. But

the mass of an electr on, as riieasured by an observer- in a

laboratory, should vary with speed. The mass should increase,

according to the formula:

m„
m —

Vl - x^/c'

In this forTTiula, v is the speed the electron has relative to the

observer, while c is the speed of light in a vacuum. The quantity

m^ is the rest mass, that is, the electron's mass measured by an

observer when the electron is at rest with respect to the

observer; m is the mass of an electr^on measured while it moves

with speed v relative to the observer; m may be called the

relativistic mass. It is the mass detennined, for example, by J. J.

Thomson's method.

The ratio of relatixistic mass to rest mass, m/rn,,, is equal to

1/Vl — v^/c". The table below shows how this ratio varies as

values of v/c approach 1. The value of m/m^^ becomes very large

as V approaches c.

THE RELATIVISTIC INCREASE OF MASS WITH SPEED

v/c



experimentally. Some of the results, for electrons with speeds so

high that the value of v reaches about 0.8 c, are graphed below.

At V = 0.8 c, the relativistic mass m is about 1.7 times the rest

mass m^. The curve shows the theoretical variation of m as the

value of V increases. I'he agreement of experiment and theory is

excellent. The increase in mass wdth speed precisely accounts for

the shrinking of the ratio qjm with speed, which was mentioned

earlier.

%^/4^ /2'= V-
The formula for variation of mass with speed is valid for all

moving bodies, not just for electrons and other atomic particles.

But the large bodies that you encounter in everyday life move at

veiy small speeds compared to the speed of light. Thus, for such

bodies, the value of v/c is veiy small. The value of v^/c^ in the

denominator is also veiy small, and the values of m and m^ are

so nearly the same that you cannot tell the difference. In other

words, the relativistic increase in mass can be detected in

practice only for particles of atomic or subatomic size. For it is

only these particles to which accelerators can give speeds higher

than a small fraction of c.

The effects discussed so far are mainly of historical interest

because they eventually helped to convince physicists of the

correctness of relativity theory. More recent experiments provide

more striking evidence of the inadequacy of Newtonian physics
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Variation of relativistic mass with

speed (e^ipressed as a fraction of
the speed of light). The dots and
crosses indicate the results of two

different e^iperiments.
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I'nit 6 deals further with accelera-

tors. The operation of one of these,

the Cambridge Electron Accelera-

tor (CEA) apparatus, is also the sub-

ject of the Project Physics film

"Synchrotron."

?!?•/ ("Me/'

for paiticles with \en' high speeds. Electrons can be gixen very

high energies by accelerating them in a vacuum by means of a

high voltage V. Since the electron charge q^, is known, the energy

increase, q^V, is known. The rest mass m„ of an electron is also

known (see Sec. 18.3), and the speed v can be measured by

timing the traxel over a known distance. It is therefore possible

to compare the value of the energv' supplied, q^.V, with the

expression for kinetic energy in classical mechanics, VzTrigV^.

Experiments of this kind hiive shown that when electrons have

speeds that are small compared to the speed of light, it is correct

to write Vzm^V^ = qy. This relation was used in Sec. 18.5 in

discussing the photoelectric effect. This could be done coirectly

because photoelectrons do indeed have small speeds, and m and
rrig have nearly the same value. But when the speed of the

electron becomes so large that v/c is no longer a small fraction,

the quantity Vim^V^ no longer increases in proportion to qy. This

disagreement increases as qy increases. The increase in kinetic

energy still is equal to the amount of work done by the electrical

field, qy. But the mass is no longer m^, and so kinetic energy

cannot be measured by Vzmy^ or even by Vznv/. The value of v^,

instead of steadily increasing with energy supplied, approaches a

limiting value: c~.

One of several accelerators of its kind is the Stanford Linear

Accelerator (SLAC), operated in California by Stanford University.

In it electrons are accelerated to an energv that is equi\alent to

what they would gain in being accelerated by a potential

difference of 10^" V. This is an enormous energ\' for electrons.

The speed attained by the electrons is 0.999999999 c. At this

speed, the relativistic mass m Iboth by calculation and by

experiment) is over 10,000 times greater than the rest mass m^!

Another way of saying mass increases with speed is this: Any
increase in kinetic energy is accompanied by an increase in mass.

If the kinetic energy measured from a gixen frame of reference

is K/i, the increase in mass Am (above the rest massi measured

in that frame turns out to be propoilional to KE:

Im ^ KE

It takes a great deal of kinetic energy to give a measurable

increase in mass. The proportionalits' constant is very small. In

fact, Einstein showed that the constant would be 1/c', whei-e c is

the speed of light in a vacuum:

Am - —r
c

To increase the mass of a body by
1 g, it would have to be gixen a ki-

netic energ\' of to" J.

Thus, the total mass m of a body is its rest mass, m„ plus KE/c^

KE
m = m„ -\ T
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Einstein proposed that the "mass equivalent" of kinetic energy

is only a special case. In general, there should be a precise

equivalence between mass and energy. Thus, the rest mass m^^

should correspond to an equivalent amount of "rest energy" E^

such that m„ = £„/c"; that is.

m = +
KE

The rest energy mc^ includes the

potential energy, if there is any.
Thus, a compressed spring has a

somewhat larger rest mass and rest

energy than the same spring when
relaxed.

Using the symbol E for the total energy of a body, £ = E^ + KE,

Em = —

:

Do not confuse E with the symbol
for electric field.

This is just w^hat Einstein concluded in 1905: "The mass of a

body is a measure of its energy content. ' This relation can be
written in a more familiar form, which is probably the most
famous equation in physics:

E = md"

The last four equations all represent the same idea: Mass and
energy are different expressions for the same characteristic of a

system. You should not think of mass as being "converted" to

energy, or energy to mass. Rather, a body vvdth a measured mass
m has an energy E equal to mc~. And a body of total energy E has

a mass equal to E/c~.

This equivalence has exciting significance. First, two great

conservation laws become alternate statements of a single law: In

any system whose total mass is conserved, the total energy is

conserved also. Second, the idea arises that some of the rest

energy might be transformed into a more familiar form of energy.

Since the energy equivalent of mass is so great, a veiy small

reduction in rest mass would release a tremendous amount of

energy, for example, kinetic energy or electromagnetic radiation.

In Unit 6, you will see how such changes come about

experimentally. Unit 6 will discuss additional experimental

evidence that supports this relationship.

SG 5, 6

1. What happens to the measurable mass of a particle as its

kinetic energy is increased?

2. What happens to the speed of a particle as its kinetic energy

is increased?

20,2 Particle-like behavior of radiation

One of these mass-energy relations can be used to look at light

quanta and their interaction with atoms from a somewhat
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different point of view than that used in discussing the

photoelectric effect on Bohr's model. Study of the photoelectric

effect showed that a light quantum has energy hf, where h is

Planck's constant and /is the frequency of the light. This concept

also applies to X rays which, like \dsible light, are electromagnetic

radiation, but of higher fi'equencv than xisible light. The
photoelectric effect, however, did not tell anything about the

momentum of a quantum. If a light quantum has energy, does it

also have momentum?
SG 7 The magnitude of the momentum p of a body is defined as the

product of its mass m and speed v. p — mv. Replacing m with

its energy equivalent E/c~ gives

Ev

Note that this equation is an expression for momentum, but that

it contains no direct reference to mass. Now suppose this same
equation is applied to the momentum of a photon of energv £.

Since a photon moves at the speed of light, v would be replaced

by the speed of light c to give

Ec E

Remember, E = hf (or a light quantum. If you substitute this

expression for £ in p = E/c, you get the momentum of a light

quantum:

p = —
c

Or, using the wave relation that the speed equals the frequency

times the u^avelength, c = /X, you can express the momentum as

h

SG 8 Does it make sense to define the momentum of a photon in

this way? It does, if the definition helps in undei-standing

experimental insults. The first successful use of this definition

was in the analysis of an effect discovered by Arthur H. Compton.

A review of Compton s work is given below.

Consider a beam of light lor X rays) striking the atoms in a

target (such as a thin sheet of metal). According to classical

electromagnetic theory, the light will be scatter-ed in various

directions, but its frequency will not change. The absorption of

light of a certain frequency by an atom may be followed by

I'eemissiorT of light of a different ft-ecjirencv. But if th(^ light wave

is simply scnltcrcd. them accorcllng to classical theory' the

frequency should not change.
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According to quantum theory, however, light is made up of

photons. According to relativity theory, photons have

momentum. Therefore, Compton reasoned, in a collision

between a photon and an atom, the law of conservation of

momentum should apply. According to this law (see Chapter 9),

when a body of small mass collides vvdth a massive object at rest,

it simply bounces back or glances off. It experiences very little

loss in speed and so very little change in energy. But if the

masses of the two colliding objects are not very different, a

significant amount of energy can be transferred in the collision.

Compton calculated how much energy a photon should lose in a

collision vvath an atom, if the photon's momentum is hf/c. He
concluded that the change in energy is too small to observe if a

photon simply bounces off an entire atom. But if a photon strikes

an electron, which has a small mass, the photon should transfer

a significant amount of energy to the electron.

In 1923, Compton was able to show that X rays did in fact

behave like particles with momentum p = hX when they collided

with electrons. Compton measured the frequency of the incident

and scattered X rays and thus was able to deteraiine the X-ray

photon's change in momentum. By measuring the momentum of

the scattered electron, he was able to verify that p = h\ by using

the law of conservation of momentum (see page 257 in Sec. 9.3).

For this work, Compton received the Nobel Prize in 1927.

Compton s experiment showed that a photon can be regarded

as a particle with a definite momentum as well as energy. It also

showed that collisions between photons and electrons obey the

laws of conservation of momentum and energy.

As noted in Sec. 18.5 in the discussion of the photoelectric

effect, light has particle-like properties. The Compton effect gave

additional evidence for this fact. To be sure, photons are not like

ordinary particles, if only because photons do not exist at speeds
other than that of light. (There can be no resting photons and,

therefore, no rest mass for photons.) But in other ways, as in

their scattering behavior , photons act much like particles of

matter. For example, they have momentum as well as energy. Yet

they also act like waves, having frequency and wavelength. In

other words, electromagnetic radiation in some experiments

exhibits behavior similar to what is thought of as particle

behavior. In other experiments, its behavior is similar to what is

thought of as wave behavior. This pattern of behavior is often

referred to as the wave-particle dualism of radiation. Is a photon
a wave or a particle? The only answer is that it can act like

either, depending on what is being done with it.

Arthur H. Compton (1892-1962)

f



considered in the discussion of the photoelectric effect on

Bohr's model':'

4. What did Compton do, and what did the experiment prove?

20*3
I

Wave-like behavior of particles

The "de Broglie u'avelength " of a

material particle does not refer to

anvthing having to do with light,

but to some new \\'a\e property as-

sociated with the motion of matter

itself. Sometimes these waxes are

called "pilot waxes.
"

Diffraction pattern produced by

directing a beam of electrons

through polycrystalline aluminum
(that is, many small crystals of alu-

minum oriented at random). With

a similar pattern, G. P. Thomson
demonstrated the wa\'e properties

of electrons ZH vears after their

particle properties were first dem-
onstrated bv .1. ,/. Thomson, his

father.

In 1923, the French physicist Louis de Broglie suggested that the

wave-particle dualism that applies to radiation might also apply

to electrons and other atomic particles. Perhaps, he said, the

wave-particle dualism is a fundamental property of all quantum
processes. If so, particles that were always thought of as material

particles can, in some circumstances, act like waves. De Broglie

sought an expression for the wavelength that might he associated

with wave-like hehavior of an electron. He found such an

expression by means of a simple argument.

The momentum of a photon of wavelength \ is p - h/\. De
Broglie thought that this relation might also apply to electrons

with the momentum p = mv. He theiefore boldly suggested that

the wavelength of an electron is

h
X =

mv

where m is the electron's mass and v its speed.

What does it mean to say that an electron has a wavelength

equal to Planck's constant divided by its momentum? If this

statement is to have any physical meaning, it must be possible to

test it by some kind of experiment. Some wave property of the

electron must be measured. The first such property to be

measured was diffraction.

The relationship \ = h/mv indicates that the wavelengths

associated with electrons will be veiy short, even for fairly slow

electrons. An electron accelerated across a potential difference of

only 100 V would have a wavelength of only 10"'" m. So small a

wavelength would not give measurable diffraction effects on

encountering even a microscopically small object (say, 10 "^ m).

By 1920, it was known that crystals have a regular lattice

structure. The distance between rou's of planes of atoms in a

crystal is about 10 '" m. After de Broglie proposed that electrons

have wave properties, several physicists suggested that the

existence of electron waves might be shown by using crystals as

diffraction gratings. Experiments begun in 1923 by C. J. Davisson

and L. H. Germer in the United States yielded diffraction patterns

similar to those obtained for- X rays (see Sec. 18.61. Their- method
is illustrated in the drawing at the top of page 610. The
experiment showed two things. First, electr-ons do have wave

pr'oper'tres. One may say that an electr'on moves along the path

taken by the de Broglie; wave that is associatt^d with the electron.
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UI08C up L

A body of mass 1 kg moves with a speed of 1 m/

sec. What is the de Broglie wavelength?

_ _h_

mv

h = 6.6 X 10-''J-sec

mv = 1 kg-m/sec

6.6 X lC'J-sec
\ =

1 kg-m/sec

The de Droglie Wavelength:
Examples

An electron mass 9.1 x 10'^' kg moves with a

speed of 2 x 10^ m/sec. What is its de Broglie

wavelength?

_ _h_

mv

h = 6.6 X 10"''J-sec

mv = 1.82 X 10"'' kg-m/sec

6.6 X 10-''J-sec

so

\ = 6.6 X 10 m

The de Broglie wavelength is many orders of mag-
nitude smaller than an atom. Thus, it is much too

small to be detected. There are, for example, no

slits or obstacles small enough to show diffraction

effects. You would expect to detect no wave as-

pects in the motion of this body.

\ =
1.82 X 10 -'"kg-m/sec

so

\ = 3.6 X 10 m

The de Broglie wavelength is of atomic dimensions.

For example, it is of the same order of magnitude

as the distances between atoms in a crystal. So
you can expect to see wave aspects in the inter-

action of electrons with crystals.

Prince Louis Victor de Broglie

(1892-), whose ancestors served the

French kings as far back as the

time of Louis XIV, was educated at

the Sorbonne in Paris. He pro-

posed the idea of wave properties

of electrons in his PhD thesis.
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(a)

1

a. One way to demonstrate the

wave behavior ofX rays is to direct

a beam at the surface of a crystal.

The r-ef1ectiorhs from different

pianes of atones in the cr^'stal in-

trr-f'ere to produce reflected beams
at ant^/f?.s other than the ordinary

angle of reflection.

b. A very similar effect can be

demonstrated for a beam of elec-

trons. The electrons must be accel-

erated to an energ\' that corre-

sponds to a de Rtoglie wavelength

at about 10 '" m. This would re-

quire an accelerating voltage of

only about KM) volts.

c. Like any other beam of parotides,

a beam of molecules directed at

a crystal will show a diffraction

pattern. Diagram (cl shows how a

heart} of hydrogen molecules (H.J

can he formed by slits at the open-

ing of a heated chamber. I'he aver-

age energv of the nuilecules is

controlled by adjusting the temper-

ature of the over}.

d. Diffr-action pattern for H.^ mole-

cules glancing off a crystal of lith-

ium fluoride. The graph, repro-

duced frorr\ Zeitsc'hrift fiir Phvsik

(19301, shows results obtairyed by I.

Ester-rriarm and O. Stern in der-

marw. The detector reading is plot-

ted against the deviation to either

side of the arrgle of ordinary reflec-

tion. A low but distinct peak owing

to diffraction is seen to each side

of the ordinary reflection beams.

SG 11

SG 12

SG 13

(b)

o
tSTEfTlX

.-' o
.^

oeysT/K.

(d)

w°/( DireMerStrohl^Ocn

,1 1 1 I I J J I I

-V 10° 20*

Second, electron waxelengths are correctly given by de Broglie's

relation, X = h/mv. These results were confinned in 1927 when
G. P. Thomson directed an electron beam through thin gold foil.

Thomson found a pattern like the one on page 608. It resembles

diffraction patterns produced by light beams going through thin

slices of mateiials. By 1930, diffraction from ciystals had bcuMi

used to demonstrate the wave-like behavior of helium atoms and

hydrogen niolcriiles. (See the drawings abox'e.)

According to de Broglie's hypothesis, wave-particle dualism is

a general property not only of radiation but also of matter. This

has been confirmed by all experiments. Scientists now
customarily refer to electrons and photons as "particles ' while

recognizing that both have properties of weaves as u^ell. (Of

course, there are also important differences between them.

I

You will recall Bohr's postulate; that the quantits' nnr (called

the angular momentum) of the electron in the hydrogen atom
can have only certain values. De Broglie's relation, \ = h/mv, has

an interesting yet simple appli('ation that supports this postulate.

Bohi- assumed that m\i^ can have onlv thc^ values

m\T
27T

where n = 1, 2, 3,

Now, suppose that an electron wave is somehow spread over an

orbit of radius r so that, in some sense, it 'ocuurpies " the oi'bit.

Can standing waves be set up as indicatcxl, for- (\\ample, in the
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sketch in the margin? If so, the circumference of the orbit must
be equal in length to a whole number of wavelengths, that is, to

n\. The mathematical expression for this condition of "fit" is:

Zirr = nX

Replacing X by h/mv according to de Broglie's relation gives

h
Zirr = n—

or

m\n^

mv

27T

This is just Bohr's quantization condition! The de Broglie relation

for electron waves, and the idea that electrons have orbits that

allow standing waves, allows you to derive the quantization that

Bohr had to assume.

The result obtained indicates that you may picture the

electron in the hydrogen atom in two ways. You may think of it

as a particle moving in an orbit with a certain quantized value of

mvr; or you may picture it as a standing de Broglie-type wave
occupying a certain region around the nucleus.

SG 14

Only certain wavelengths will "fit"

around a circle.

Either way is incomplete by itself.

5, Where did de Broglie get the relation k = h/mv for

electrons?

6. Why were crystals used to get dijfraction patterns of
electrons?

20*4r
I

Mathematical versus lisualizable atoms

It was now clear that "things" (electrons, atoms, molecules) long

regarded as particles also show properties of waves. This fact is

the basis for the presently accepted theory of atomic structure.

This theory, quantum mechanics, was introduced in 1925. Its

foundations were developed very rapidly during the next few

years, primarily by Heisenberg, Born, Schrodinger, Bohr, and
Dirac. At first, the theory appeared in two different mathematical

forms, proposed independently by Heisenberg and Schrodinger.

A few months later, these two forms were shown by Schrodinger

to be equivalent, different ways of expressing the same
relationships. Schrodinger's form of the theoiy is closer to the

ideas of de Broglie (discussed in the last section). It is often

referred to as wave mechanics.

Schrodinger sought to express the dual wave-particle nature of

matter mathematically. Maxwell had fomiulated the

P. A. M. Dirac 11902-J, an English

physicist, was one of the devel-

opers of modern quantum me-
chanics. In 1932, at the age of 30,

Dirac was appointed Lucasian Pro-

fessor of Mathematics at Cam-
bridge University, the post held by
Newton.
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A/a,v Born I1H82-1969J was bum in

Gern-iiinv, but left that country for

England in 1933 when Hitler and
the Nazis gained control. Born was

largely responsible for introducing

the statistical interpretation of
wave mechanics.

Envin Schrodinger 11887-1961) was
born in Austria. He developed wave
mechanics in 1926 and then fled

from Germany in 1933 when Hitler

and the Nazis came to power.

From 1940 to 1956, when he re-

tired, he was professor ofphvsics

at the Dublin Institute for Ad-

vanced Studies.

electromagnetic theoiy of light in ternis ot a wave equation.

Physicists were familiar with this theory and its applications.

Schrodinger reasoned that the de Broglie waves associated with

electrons could be described in a way analogous to the classical

waves of light. Thus, there should be a wave equation that holds

for matter waves, just as there is a wa\'e equation for

electromagnetic waves. This mathematical pai1 of wave

mechanics cannot be discussed adequately without using

advanced mathematics, but the physical ideas imolved require

only a little mathematics and are essential to understanding

modern physics. Therefore, the rest of this chapter will discuss

some of the physical ideas of the theory so as to make them
seem reasonable. Some of the results of the theoiy and some of

the significance of these results will also be considered.

Schrodinger successfully derived an equation for the "matter

waves" that are associated with moving electrons. This equation,

which has been named after him, defines the wave properties

of electrons and also predicts particle-like behavior. The
Schrodinger equation for an electron bound in an atom has a

solution only when a constant in the equation has the whole-

number values 1, 2, 3. . . . These numbers correspond to different

energies. Thus, the Schrodinger equation predicts that only

certain electron energies are possible in an atom. In the

hydrogen atom, for example, the single electron can be in only

those states for which the energy of the electron has the

numerical values:

£.. =
n'h'

with n having only whole-number values. These are just the

energy' values that are found experimentally and just the ones

given by the Bohr theoiy! In Schrodinger's theoiy, this result

follows directly fi om the mathematical formulation of the wave

and particle nature of the electron. The existence of these

stationary states is not assumed, and no assumptions are made
about orbits. The new theoiy yields all the results of the Bohr

theoiy, with none of the Bohr theoiy s inconsistent hypotheses.

The new theoiy also accounts for the experimental information

for which the Bohr theoiy failed to account. For instance, it deals

with the probability of an electron changing from one energy

state to another.

On the other hand, quantum mechanics does not supply a

physical model or visualizable "picture" of the atom. The
planetaiy model of the atom has been given up, but has not been

replaced by another simple picture. There is now a highly

successful mathematical model, but no easily visualized physical

model. The concepts used to build quantum mechanics are

more abstract than those of the Bohr theoiy. Thus, it is difficult

to get a "feeling" for atomic- structure without training in the
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field. But the mathematical theory of quantum mechanics is

much more powerful than the Bohr theory in predicting and

explaining phenomena. Many problems that were previously

unsolvable have been solved with quantum mechanics. Physicists

have learned that the world of atoms, electrons, and photons

cannot be thought of in the same mechanical terms as the world

of everyday experience. Instead, the study of atoms presents

some fascinating new concepts, which will be discussed in the

next two sections. What has been lost in easy visualizability is

made up for by an increase in fundamental understanding.

what does it mean to "visualize" or

"picture" something? One answer
is that it means relating an abstract

idea to something that you are fa-

miliar with from everyday life; for

example, a particle is like a baseball

or a marble. But why should there

be an>i:bing from everyday life that

is exactly like an electron or an
atom?

• 7. The set of energy states of hydrogen could be derivedfrom
Bohr's postulate that mvi^ = nh/2'iT. In what respect was the

derivation from Schrodinger's equation better?

8. Qjuantum (or wave) mechanics has had great success. What

is its drawback for those trained on physical models?

20»S
\
The uncertainly' principle

Up to this point, it has been assumed that any physical property

can be measured as accurately as necessary. To reach any

desired degree of accuracy would require only a sufficiently

precise instrument. Wave mechanics showed, however, that even

in thought experiments with ideal instruments there are limits

to the accuracy that can be achieved.

Think how you would go about measuring the positions and

velocity of a car moving slowly along a driveway. You could mark

the position of the front end of the car at a given instant by

making a scratch on the ground. At the same time, you could

start a stopwatch. Then you could run to the end of the

driveway, where you have previously placed another mark. At the

instant when the front of the car reaches this point, you stop the

watch. You then measure the distance between the marks and

get the average speed of the car by dividing the distance traveled

by the time elapsed. Since you know the direction of the car's

motion, you know the average velocity. Thus, you know that at

the moment the car reached the second mark it was at a certain

distance from its starting point and had traveled at a certain

average velocity. By going to smaller and smaller intervals, you

could also get the instantaneous velocity at any point along its

path.

How did you get the needed information? You located the car

by sunlight bounced off the front end into your eyes. The light

permitted you to see when the car reached a mark on the

ground. To get the average speed, you had to locate the front

end twice.

Werner Heisenberg (1901-1976), a

German physicist, was one of the

developers of modern quantum
mechanics (at the age of 23). He
was the first to state the uncer-

tainty principle. After the discovery

of the neutron in 1932, he pro-

posed the proton-neutron theory

of nuclear structure.
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c 3 X 10 m/sec
k ^ - = = 300 m

/ 10 sec

The extreme smallness of ihe

atomic scale is indicated by these

pictures made with techniques that

are near the ven limits of magnifi-

cation, about 10,1)00,000 times /7i

these reproductions. Below right:

I'attern produced bv charged parti-

cles repelledfrom the tip of a mi-

croscopically thin tungsten crystal.

The entire section shown is only

about 10 nanometers across. The
finest detail that can be revealed bv
this "field-ion microscope" is

about 0.1 nanometer. The bright

spots indicate the loc-ations of
atoms along edges of the crystal,

but should not be thought of as

pictures of the atoms.

But suj3pose that you had decided to use reflected radio waves

instead of light of visible wavelength. At 1,000 kHz, a typical value

for radio signals, the wavelength is 300 m. This wavelength is

very much greatei- than the dimensions of the car. Thus, it would
be impossible to locate the position of the car with an\' accuracy.

The wave would reflect fi'om the car ("scatter" is a better term)

in all directions. It would also sweep around any human-sized

device you may wash to use to detect the wave direction. The
wiivelength has to be comparable with oi" smaller than the

dimensions of the object before the object can be located well.

Radar uses wavelengths ft^om about 0.1 cm to about 3 cm, so a

radar apparatus could be used instead of sunlight. But even

radar would leave uncertainties as large as several centimeters in

the two measurements of position. The wavelength of visible light

is less than 10"'' m. For visible light, then, you could design

instiTiments that would locate the position of the car to an

accuracy of a few thousandths of a millimeter.

: Ni

;^ .*•'

-*•:;,/;

Above: Pattern produced by elec-

tron beam scattered from a sec-

lion of a single gold crystal. The
entire section of crystal shown is

only 10 nanometers across. This is

smaller than the shortest wave-

length of ultraviolet light that could

be used in a light microscope. The

finest detail that can be resolved

with this "electron microscope ' is

Just under 0.2 nanometer. So the

lavers ofgold atoms (spaced

slightly more than 0.2 nanometer)
show as a checked pattern; individ-

ual atoms are beyond the resolving

power.

f'or more discussion of this pi'ob-

Icm of r(!solutions, refer to Unit 4.

Now think of an election moving across an exacuated tube.

You will tiy to measure the position and speed of the electron.

But you must change your method of measurement. The

electron is so small that you cannot locate its position by using

visible light. iThe wiuelength of \islble light, small as it is, is still

at least lO' times gieatei- than thc^ diamiitcr of an atom.
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You are attempting to locate an electron within a region the

size of an atom (about 10^*" m across). So you need a light beam
whose wavelength is about 10~^° or smaller. But a photon of such

a short wavelength X (and high frequency/] has very great

momentum (h/X) and energy (hfl. Recalling Compton's work (Sec.

20.2); you know that such a photon will give the electron a strong

kick when it is scattered by the electron. As a result, the velocity

of the electron will be greatly changed, into a new and unknown
direction. (This is a new problem, one you did not even think

about when measuring the position of the car!) Therefore, vv^hen

you receive the scattered photon, you can deduce from its

direction where the electron once was; in this sense you can

"locate" the electron. But in the process you have changed the

velocity of the electron (in both magnitude and direction). In

short, the more accurately you locate the electron (by using

photons of shorter wavelength), the less accurately you can know
its velocity. You could try to disturb the electron less by using

less energetic photons. But because light exists in quanta of

energy hf, a /ower-energy photon will have a longer wavelength.

This would create greater uncertainty about the electron's

position !

In other words, it is impossible to measure both the position

and velocity of an electron to unlimited accuracy- This conclusion

is expressed in the uncertainty principle, first stated by Werner

Heisenberg. The uncertainty principle can be expressed

quantitatively in a simple formula, derived from Schrodinger's

wave equation for the motion of particles. Let A;c represent the

uncertainty in position, and Ap the uncertainty in momentum.
The product of these two uncertainties must be equal to, or

greater than, Planck's constant divided by 27t:

A;cAp > —
^ 2tt

SG 15

The chief use nicide of the uncer-
tainty principle is in general argu-

ments in atomic theory rather than

in particuhir numerical problems.
Physicists do not really need to

know exactly where an electron is.

But they sometimes want to know
if it could be in some region of

space.

The same reasoning (and equation) holds for the experiment

on the car. But the limitation has no practical consequence with

such a massive object. (See the worked-out example on page

616.) It is only on the atomic scale that the limitation becomes
evident and important.

Sg 16-18

9. Ifphotons used in finding the velocity of an electron

disturb the electron too much, why cannot the observation be

improved by using less energetic photons?

10. If the wavelength of light used to locate a particle is too

long, why cannot the location be found more precisely by using

light of shorter wavelength?

CHAPTER 20 / SOME IDEAS FROM MODERN PHYSICAL THEORIES 615



lilose UpI
The Uncertointy Principle: Examples

I

Applied to a large mass.

Consider a car, with a mass of 1,000 kg, moving

with a speed of about 1 m/sec. Suppose that in this

experiment the inherent uncertainty Au in the meas-

ured speed is 0.1 m/sec (10% of the speed). What
is the minimum uncertainty in the position of the

car?

AxAp > —

Ap = mlv = 100 kg-m/sec

h = 6.63 X 10 ""J-sec

J-sec6.63 10
X —-.

6.28 10^ kg-m/sec
Ax

Ax > 1 X 10"^^ m

This uncertainty in position, which is many orders

smaller than the size of an atom, is much too small

to be observable. In this case, you can determine

the position of the body with as high an accuracy

as you would ever need.

Applied to a small mass.

Consider an electron, with a mass of 9.1 x
10"^' kg, moving with a speed of about 2 x 10^ m/

sec. Suppose that the uncertainty Iv in the speed

is 0.2 X 10' m/sec (10% of the speed). What is the

minimum uncertainty in the position of the electron?

Ap = m^v = 1.82 X 10"'^ kg-m/sec

h = 6.63 X 10 ''J-sec

Ax
6.63 10""^ J-sec

6.28 1.82 X 10"'' kg-m/sec

Ax> 5 X 10 '°m

The uncertainty in position is of the order of

atomic dimensions and is significant in atomic prob-

lems. It is impossible to specify exactly where an

electron is in an atom.

The reason for the difference between these two

results is that Planck's constant h is very small, so

small that the uncertainty principle becomes im-

portant only on the atomic scale. For ordinary-sized

objects, the equations give the same result as if h

had the value zero.
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20.6
I

Probabilitv interpretation

To explore dualism further, it is necessary to review some ideas

of probability. In some situations, no single event can be

predicted with certainty. But it may still be possible to predict

the statistical probabilities of certain events. On a holiday

w^eekend during which perhaps 25 million cars are on the road,

statisticians predict that about 600 people will be killed in

accidents. It is not known which cars in which of the 50 states

will be inv^olved in the accidents. But, on the basis of past

experience, the average behavior is still quite accurately

predictable.

It is in this way that physicists think about the behavior of

photons and material particles. As you have seen, there are basic

limitations on the ability to describe the behavior of an individual

particle. But the laws of physics often make it possible to

describe the behavior of large collections of particles with good

accuracy. Schrodinger's equations for the behavior of waves

associated with particles give the probabilities for finding the

particles at a given place at a given time.

To see how probability works, consider the situation of a star

being photographed through a telescope. As you have already

seen (for example, on the page on "Diffraction and Detail" in

Chapter 13), the image of a point source is not a precise point.

Rather , it is a dijfraction pattern, a central spot with a series of

progressively fainter circular rings.

The image of a star on the photographic film in the telescope

would be a similar pattern. Imagine now that you wish to

photograph a very faint star. If the energy in light rays were not

quantized, it would spread continuously over ever-expanding

wave fronts. Thus, you would expect the image of a very faint

star to be exactly the same as that of a much brighter star,

except that the intensity of light would be less over the whole

pattern. However, the energy of light is quantized; it exists in

separate quanta, "photons," of a definite energy. A photon

striking a photographic emulsion produces a chemical change in

the film at a single location, not all over the image area. If the

star is very remote, only a few photons per second may arrive at

the film. The effect on the film after a very short period of

exposure would be something like the diffraction pattern in

drawing A in the margin. As the exposure continued, the effect

on the film would begin to look like B. Each successive photon

falls on the photographic plate as if its location were decided by

some wheel fixed to yield e\/entually not a completely random
pattern but one with the radial symmetry shown in C. Finally, a

pattern like C would be produced, just like the image produced

by a much brighter star with a much shorter exposure.

These sketches represent succes-

sive stages of a greatly enlarged

image of a distant star on a photo-

graphic plate.
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As discussed in connection with ki-

netic theory and disorder, it is easy

to predict the axerage heha\ior of

\ery large niimliers of particles,

tnen tlioiigh nothing is known ahout

the hehaxior of any single one of

them. Unlike kinetic theoiy, how-
ever, the use of probabilities in

quantum mechanics is not for con-

venience, but seems to be an intrin-

sic necessity'. There is no other way
to deal with quantum mechanics.

For tremendous numbers of quanta, the overall distribution is

very well described by the distribution of wave intensity. For

small numbers of quanta, the wave intensity is not very useful for

predicting where thtry will go. You might expect them to go

mostly to the "high-intensity" parts of the image, but you cannot

predict exactly where. These facts fit together- beautifully if you
consider the wave intensitv' at a location to indicate the

probability of a photon going there!

A similar connection can be made for de Broglie waves and

particles of matter. For this purpose, rather than considering a

diffraction pattern formed by an electron beam, consider an

ele('tron wave that is confined to a particuilar region in space. An
example is the de Broglie wave associated with the electron in

a hydrogen atom, which is spread out all over the atom. (Another-

example is the de Broglie wave of an electr^on in a good

conductor of electricity.) In neither case would you think of the

electron itself as spread out over the entire region; it is far more

useful to picture the electron as a pariicle mo\ing around the

nucleus (or wandering throughout the conductor). The waxes
amplitude at some location represents the probability of the

electron being there, if a measurement of the electron's precise

location were to be performed.

According to modem quantum theory, the hydrogen atom
does not consist of a localized negative particle moving around a

nucleus as in the Bohr model. Indeed, the theory does not

provide any picture of the hydrogen atom. A description of the

probability distribution is the closest thing to a picture that the

theory provides. The probability distribution for the lowest

energy state of the hydrogen atom is represented in the drawing

above. The probabilitv distribution for a higher ener-gy state, still

for a single electron, is represented in the dr awing at the left

below. In each case, whiter shading at a point indicates greater

probability.

However, quantum theory is not really concerned with the

position of any individual electron in any individual atom.

Instead, the theory gives a mathematical r^epresentation that can

be used to predict interaction with pariicles, fields, and

radiation. For example, it can be used to calculate the probability

that hydrogen will emit light of a par-ticular wavelength. The
intensity and wavelength of light emitted by a large number of

hydrogen atoms can then be compared with these calculations.

Comparisons such as these have shown that the theory agr-ees

v\ith experiment.

To understand atomic physics, you must deal with the average

behavior of many atomic particles. The laws governing this

average behavior are those of wave mechanics. The waves, it

seems, ar-e waves whose amplitudes ar-e a measirre of pr-obabilitv'.

The inlbiriiation Icorncerning the pr-obabilitv with which a
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particle will reach some position at a given time) travels through

space in waves. These waves can interfere wdth each other in

exactly the same way that water waves do. Now, for example,

think of a beam of electrons passing through two slits. You can

consider the electrons to be waves and compute their

interference patterns. These patterns determine the directions in

which there are high wave amplitudes (high probability of

electrons going there). If there are no more slits or othei-

interactions of the waves with matter, you can continue the

description in tenns of particles. You can say that the electrons

are likely to (and on the average will) end up going in particular

directions with particular speeds.

The success of wave mechanics emphasized the importance of

the dual wave-particle nature of radiation and matter. How can

a particle be thought of as "really" having wave properties? The
answer is that matter, particularly on the atomic scale, need not

be thought of as being either "really" particles or "really" waves.

Ideas of waves and particles, taken from the world of visible

things, just do not apply on the atomic scale.

In describing something that no one has ever seen or ever can

see directly, it would be surprising if you could use the concepts

of the visible world unchanged. It appeared natural before 1925

to talk about the transfer of energy in either u^ave tenns or

particle terms. Indeed, such terms were all physicists needed or

kneu^ at the time. Almost no one suspected that both wave and

particle descriptions could apply to light and to matter. Even

today, imagination and language have only these two ideas of

waves and particles to stumble along on. Until new concepts

appear, dualism cannot be wished away, but will remain the best

way to handle experimental results.

Max Born, one of the founders of quantum mechanics, has

vmtten:

The ultimate origin of the difficulty lies in the fact (or

philosophical principle) that we are compelled to use the

words of common language when we wish to describe a

phenomenon, not by logical or mathematical analysis, but by a

picture appealing to the imagination. Common language has

grown by everyday experience and can never surpass these

limits. Classical physics has restricted itself to the use of

concepts of this kind; by analyzing visible motions it has

developed two ways of representing them by elementary

processes: moving particles and waves. There is no other way of

giving a pictorial description of motions—we have to apply it

even in the region of atomic processes, where classical physics

breaks down.

The idea that the wave represents the probability of finding its

associated particle in some specific condition of motion has had
great success. Yet many scientists found it hard to accept the
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"Deterministic" means here that if

all the conditions of an isolated sys-

tem are known and the laws de-

scribing interaction are known, then

it is possible to predict precisely,

according to "strict causality," what
will happen next, without any need

for probability.

SG 19-23

idea that it is impossible to know exactly what any (jne particle

is doing. The most prominent of such disbelievers was Einstein.

In a letter to Born written in 1926, he remarked:

The quantum mechanics is very imposing. But an inner voice

tells me that it is still not the final truth. Ihe theory yields

much, but it hardly brings us nearer to the secret of the Old

One. In any case, I am con\inced that He does not play dice.

Thus, Einstein agreed udth the usefulness and success of wave

mechanics, but he refused to accept probability-based laws as

the final level of explanation in physics. The remark about not

beliexdng that God played dice Ian expression he used many
times later) expressed Einstein's faith that more basic,

deterministic laws are yet to be found. Like Einstein, some other

scientists refused to accept the probabilit\' laws in quantum
mechanics. Howevei , no one has yet succeeded in replacing

Born's probability interpretation of quantum mechanics.

Scientists agree that quantum mechanics works. It gives the

right answers to many questions in physics; it unifies ideas and

occurrences that were once unconnected; and it has produced

many new experiments and new concepts. On the other hand,

there is still vigorous argument about its basic significance. It

yields probability functions, not precise trajectories. Some
scientists see in this aspect of the theory an important indication

of the nature of the world. For other scientists, the same fact

indicates that quantum theory is incomplete. Some in this

second group are trying to develop a more basic, nonstatistical

theory. For such a theory, the present quantum theory is only a

special, extreme case. As in other fields of physics, the greatest

discoveries here may be those vet to be made.

11. In wave terms, the bright lines of a diffraction pattern are

regions where there is a high field intensity produced by

constructive interference. What is the probability'

interpretation of quantum mechanics for the bright lines of a

diffraction pattern?

12. Quantum mechanics can predict only probabilities for the

behavior of any one particle. How, then, can it predict many
phenomena, for e?cample, half-lives and diffraction patterns,

with great certainty?
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"Sea and Sky, " by M. C. Escher.

(See SG 24.)'
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study
guide
1. The Project Physics materials particularly

appropriate for Chapter 20 include:

Activities

Standing Waves on a Band-Saw Blade

'I\irntable Oscillator Patterns Resembling de Broglie

Waves

Standing Waves in a Wire Ring

Film Loops
Standing Wa\ es on a Wire

2. How fast would you have to mo\'e to increase

your mass by 1%?

3. The centripetal force on a mass mo\ing with

relati\istic speed v around a c-ircular orbit of radius H
is F = mv'/R, where m is the relativistic mass.

Electrons mo\ing at a speed 0.(i() c are to be

deflected in a circle of radius 1.0 m. What must be

the magnitude of the force applied? Im^ = 9.1 x

10 " kg)

4. The formulas (p = m„v, KE = V-ztny) used in

Newtonian physics are convenient approximations to

the more general relativistic formulas. The factor

1/ V 1 — v^/c' Ciin be expressed its an infinite series of

steadily decreasing terms by using a binomial series

expiinsion. When this is done, it is found that

1

i 7
1 v" 3 V 5 v' 35 v1+ + + +
2c~ 8 c 16 c' 128 c"

(a) Show, by simple substitution, that when v/c is

less than 0.1, the values of the terins drop off so

rapidly that only the first few terms need be

considered.

(b) You rarely observe familiar objects moving faster

than about 3,000 m sec; the sp(;ed of light is 3 x lO"

msec, so the value of v/c for familiar objects is

rarely greater than about 10 '. What error is caused

by using only the first two terms of the series?

(c) Substitute the first two terms of the series into

the relativistic expression for kinetic energy and
show that KE = Yzm^ is a good approximation for

familiar objects.

5. According to relativity theory, changing the

energy of a system by \E also changes the mass of

the system by Am = \E/c\ Something like 10 J per

kilogram of substance are usually released as heat

energy in chemical reactions.

(a) Calculate the mass change associated with a

change of energy of 10" J.

(b) Why then are mass changes not detected in

chemical reactions?

6. The speed of the earth in its orbit is about 3 x

10^ m/sec. Its "rest" mass is 6.0 x lo" kg.

(a) What is the kinetic energy of the eartli in its

orbit?

(b) What is the mass equivalent of that kinetic

energy?

(c) By what percentage is the earth's "rest" mass
increased at orbital spcied?

(d) Refer back to Unit 2 to recall how the mass of

the earth was found; was it the rest mass or the

mass at orbital speed?

7. In relativistic mechiinics, the formula p = mv
still holds, but the mass tn is given by ni = mj
Vl — vV?, The rest mass of an electron is 9.1

X IQ-"' kg.

(a) VMiat is the electron's momentum when it is

moving down the axis of a linear accelerator at a

speed of 0.4 c with respect to the accelerator tube?

(b) What would \evvton have calculated for the

momentum of the eh;ctron?

(c) By how much would the relativistic momentum
increase if the speed of the electron were doubled?

(d) What would \ewton have calculated its change in

momentum to be?

». ('cdculate the momentum of a jihoton of

wavelength 400 x i() ' m. How fast would an

electron have to move in order to have the same
momentum?
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9. Describe Compton's work. What did it prove?

10. What explanation would you offer for the fact

that the wave aspect of light was shown to be valid

before the particle aspect was demonstrated?

11. The electrons that produced the diffraction

photograph on page 608 had de Broglie wavelengths

of 10 '" ni. To what speed must they have been

accelerated? (Assume that the speed is small

compared to c, so that the electron mass is about

10 '° kg.)

la. A ball of mass 0.2 kg moves with a speed of 1 m/

sec. What is its de Broglie wavelength?

13. Show that the de Broglie wavelength of a

classical particle of mass m and kinetic energy KE is

given by

h
X =

V2m(KE)

14. A particle confined in a box cannot have a

kinetic energy less than a certain amount; this least

amount corresponds to the longest de Broglie

wavelength that produces standing waves in the box;

that is, the box size is one-half wavelength. For each

of the foUowing situations, find the longest de Broglie

wavelength that would fit in the box. Then use p =

h/\ to find the momentum p, and use p = mv to

find the speed v.

(a) a dust particle (about 10 ' kg) in a display case

(about 1 m across)

(b) an argon atom (6.6 x lo"^ kgl in a light bulb

(about 10 '^ m across!

(c) a protein molecule (about 10 ^^ kg) in a

bacterium (about 10'' m across)

(d) an electron (about 10"^" kg) in an atom (about

10'° m across)

15. Suppose that the only way you could obtain

information about the world was by throwing rubber

balls at the objects around you and measuring their

speeds and directions of rebound. What kind of

objects would you be unable to learn about?

16. A bullet can be considered a particle having

dimensions in each direction of approximately 1 cm.

It has a mass of about 10 g and a speed of about

3 X 10^ cm/sec. Suppose you can measure its

speed to an accuracy of ± 1 cm/sec. What is the

corresponding uncertainty in its position according

to Heisenberg's principle?

17. Show that if Planck's constant were equal to

zero, quantum effects would disappear and even

atomic particles would behave according to

Newtonian physics. What effect would this have on

the properties of light?

18. Some writers have claimed that the uncertainty

principle proves that there is free will. Do you think

this extrapolation from atomic phenomena to the

world of living beings is valid?

19. A physicist has written:

It is enough that quantum mechanics predicts the

average value of observable quantities correctly.

It is not really essential that the mathematical

symbols and processes correspond to some
intelligible physical picture of the atomic world.

Do you regard such a statement as acceptable? Give

your reasons.

20. In Chapters 19 and 20, you saw that it is

impossible to avoid the wave-pctrticle dualism of

light and matter. Bohr coined the word

complementarity for the situation in which two

opposite views seem valid and the correct choice

depends only on which aspect of a phenomenon one

chooses to consider. Can you think of situations in

other fields (outside of atomic physics) to which this

idea might apply?

ai. Units 1-4 discussed the behavior of large-scale

"classical particles" (for example, tennis balls) and
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"classical waves" (for example, sound waves). Such

particles and waves in most cases can be described

without any use of ideas such as the quantum of

energy or the de Broglie matter-\\a\c. Uoes this

mean that there is one sort of physics ("classical

physics") for the phenomena of the large-scide world

and quite a different physics ("quantum physics'i

for the phenomena of the atomic world? Or does it

mean that quantum physics really applies to all

phenomena but is no different from classical physics

when applied to large-scale particles and \va\es?

What arguments or examples would you use to

defend your answer?

22. If there are laws that describe precisely the

beha\ior of atoms, one can reason that the future is

completely determined by the present (and the

present was determined in the ancient past I. This

idea of complete determinLsm was uncomfortable to

many philosophers during the centuries following

the great success of \ewtonian mechanics. The great

French physicist Pierre Laplace (1748-1827) wrote:

GK'en for one instant an intelligence which could

comprehend all the forces by which nature is

animated and the respective situation of the beings

who compose it—an intelligence sufficiently \'ast

to submit these data to analysis— it would embrace

in the same formula the movements of the

greatest bodies of the universe and those of the

lightest atom; for it, nothing would be uncertain

and the future, as the past, would be present to its

eyes. [A Philosophical Essay on Probabilities]

(The later statistical view of kinetic theory may have

emphasized the difficult^' of actually predicting the

future. But it did not weaken the idea of an

underlying chain of cause and effect.)

(a) Is Laplace's statement consistent v\ith modern
physical theory?

(b) What implications do you see in relativity theory

for the idea of determinism?

(c) What implications do you see for determinism in

quantum theory?

23. Those ancient Greeks who belioxed in natural

law were also troubled by the idea of determinism.

Compare the ideas expressed in the following

passage from Lucretius' On the Xature of Things

(about 80 B.C.) with somewhat analogous ideas of

modern physics.

If cause forever follows after cause

In infinite, undeviating sequence

And a new motion always has to come
Out of an old one, by fixed law; if atoms

Uo not. by swerving, cause new muxes which

break

The laws of fate; if cause forever follows.

In infinite sequence, cause—where would we get

This free vxill that we ha\'e, wrested from fate . . .

What keeps the mind from having inside itself

Some such compulsiveness in all its doings,

What keeps it from being matter's absolute slave?

The answer is that our free will derives

From just that ever-so-slight atomic swerve

At no fixed time, at no fixed place whatever.

24. Many scientists like the drawings of \I. C.

Escher such as that on page 621 because one can

read into them some (not-too-farfetched) likeness to

notions that are prominent in science. Do you see

such a likeness between the drawing on page 621

and the dual nature of light? When does the likeness

(analogy) break down?
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This unit has traced the concept

of the atom from the early ideas

of the Greeks to the quantum mechanics now generally accepted

by physicists. The search for the atom started with the qualitative

assumptions of Leucippus and Democritus who thought that

atoms offered a rational explanation of the behavior of matter.

Hovv^ever, for many centuries most natural philosophers thought

that other explanations, not involving atoms, were more
reasonable. Atomism was pushed aside and received only

occasional consideration until the seventeenth century.

With the growth of the mechanical philosophy of nature in the

seventeenth and eighteenth centuries, particles (corpuscles)

became important. Atomism was reexamined, mostly in

connection with physical properties of matter. Galileo, Boyle,

Neuron, and others speculated on the role of particles for

explaining the expansion and contraction of gases. Chemists

speculated about atoms in connection with chemical change.

Finally, Dalton began the modern development of atomic theory,

introducing a quantitative conception that had been lacking: the

relative atomic mass.

Chemists, in the nineteenth century, found that they could

correlate the results of many chemical experiments in temis of

atoms and molecules. They also found that there are relations

between the properties of different chemical elements.

Quantitative information about atomic masses provided a

framework for the system organizing these relations: the periodic

table of Mendeleev. During the nineteenth centuiy, physicists

developed the kinetic theory of gases. This theoiy, based on the

assumption of very small coipuscles, particles, molecules, or

whatever else they might be called, helped strengthen the

position of the atomists. Other work of nineteenth-centuiy

physicists helped pave the way to the study of the structure of

atoms, through the study of the spectra of the elements and of

the conduction of electricity in gases, and through the discovery

of cathode rays, electrons, and X rays.

Nineteenth-century chemistry and physics converged, at the

beginning of the twentieth century, on the problem of atomic

structure. It became clear that the uncuttable, infinitely hard

atom was too simple a model; that the atom itself is made up of

small particles. The search for a model vvdth structure began. Of

the early models, that of Thomson gave way to Rutherford's

nuclear atom, with its small, heavy, positively charged nucleus,

surrounded somehow by negative charges. Then came the atom
of Bohr, with its electrons thought to be moxang in orbits like

planets in a miniature solar system. The Bohr theory had many
successes and linked chemistry and spectra to the physics of

atomic structure. Beyond that, it could not advance substantially
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without giving up an easily grasped picture of the atom. 1 lie tool

needed is the mathematical model, not pictures. Quantum
mechani(;s makes it possible to (calculate how atoms beha\e; it

helps explain the physical and chemical properties of the

elements. But at the most basic level, nature still has secrets. The
next stage in the stoiy of physics in Unit 6 is the nucleus at the

center of the atom. Is the nucleus made up of smaller

components? Does it have laws of physics all its own?
The study of the nucleus has been one of the most exciting

blanches of physics in the twentieth centuiy. Progress in nuclear

physics has advanced not only basic science but also technology,

which both supplies tools for research and applies some of the

results of research in practical ways. These applications,

including the production of electricity from nuclear energy, the

many clinical and industrial uses of F'adiation, and, of course, the

militaiy weapons, have had economic, social, and political

consequences. The use and control of nuclear technology,

therefore, are often front-page news, and citizens find it

necessaiy to infomi themselves about these problems in order to

participate effectively in decisions that affect their lives.
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CHAPTER 21 Radioactivity

CHAPTER 22 Isotopes

CHAPTER 23 Probing the Nucleus

CHAPTER 24 Nuclear Energv; Nuclear Forces
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In Unit 5, you learned that the

atom consists of a veiy small,

positively charged nucleus surrounded by electrons. Experiments

on the scattering of a particles showed that the nucleus has

dimensions of the order of 10 " m. Since the diameter of an

atom is of the order of 10 "' m, the nucleus takes up only a

minute fraction of the volume of an atom. The nucleus, however,

contains nearly all of the mass of the atom, as was also shown
by the scattering experiments. The existence of the atomic

nucleus and its properties raised new questions. Is the nucleus

itself made up of still smaller units? If so, what are these units,

and how are they arranged in the nucleus? What methods can

be used to get answers to these questions? What experimental

evidence can be used as a guide?

You saw in Unit 5 that the study of the properties and
structure of atoms needed new physical methods. The methods
that could be used to study the properties of bodies of ordinary

size, that is, those with dimensions of the order of centimeters or

meters, could not yield information about the stiTJcture of atoms.
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The Yankee Atomic Electric nu-

clear power station in Rowe, Mas-
sachusetts, which has been produc-

ing electricity with a capacity of
175.000 kW since 1961.

It is reasonable to expect that it is still more dillicult to get

informaion about what goes on inside the nucleus, which is such

a small part of the atom. New kinds of experimental data must

be obtained. New theories must be devised to help correlate and
explain the data. In these respects, the study of the nucleus is

still another step on the long road from the very large to the very

small along which you have traveled in this course. In this unit,

you udll further explore the problem of the constitution of matter

by studying the atomic nucleus.

One of the first and most important steps to an understanding

of the atomic nucleus was the discovery of radioactivity in 1896.

This discussion of nuclear physics will, therefore, start with

radioactivity. You will see how the study of radioactivity' led to

additional discoveries, to the development of methods for

probing the nucleus, and to ideas about the constitution of the

nucleus. In fact, the discovery that the atom has a nucleus was a

consequence of the study of radioactivity. You will examine the

interaction between experiment and theorv, and the step-by-step

development of ideas about the nucleus. You will see how
particular experimental results led to new ideas, and how the

latter, in turn, led to new experiments. This historical study is

especially useful and interesting because nuclear physics is a

new branch of physics, which has developed over a relatively

short period of time. The repoits and papers through which

discoveries have been made known are readily available. The
research is still going on and at an ever-increasing rate. Progress

in nuclear physics is closely related to modern technologv',

which both supplies tools for further research and applies some
of the research in practical ways. Some of these practical

applications have serious economic and political consequences.

Newspapers report about these applications almost daily, and

it is the citizens' duty to inform themselves as well as they can in

order to participate effectively in decisions that affect their lives.

Now that the use and control of nuclear technology is often

front-page news, it may be difficult to realize that the study of

the atomic nucleus is connected v\ith a chance discoveiA' made
in 1896. But it was that discovery that touched of! the whole

enterprise called nuclear physics.
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21«1.
I

BecquereFs discovery

A legendary chapter in physics began with the discov^ery of the

phenomenon known as "radioactivity" early in 1896 by the

French physicist Henri Becquerel. It was another of those

"accidents" that illustrate how the trained and prepared mind is

able to respond to an unexpected obsewation.

Only two months before, in November 1895, Rontgen had
discovered X rays. In doing so, he had unwittingly set the stage

for the discovery of radioactivity. Rontgen had found that X rays

came from the glowing spot on a glass tube where a beam of

cathode rays (high-speed electrons) was hitting. (See Sees. 18.2

and 18.6 in Unit 5.) When the cathode-ray beam was turned off,

the spot of light on the face of the glass tube disappeared; the X

rays coming from that spot also stopped.

The emission of light by the glass tube when it is excited by

the cathode-ray beam is an example of the phenomenon called

SG 1
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Right: Urnniuin is inine;d in one of
the thousands of tunnels dug into

the mesa walls of the Colorado Pla-

teau.

K IfAi^
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X-ray production by bombardment

of electrons (cathode rays I on

glass.

Rontgen showed that one method
of detecting tlie presence of X rays

is to let tli(;m expose a vveU-wrapped

photographic plate. I See Sec. 18. (>

in Unit 5.i

Henri Becquerel i1fi52-WU8I re-

ceived the 1903 \'obel Prize in

physics for the discovery of natu-

ral radioactivity) along with Pierre

and Marie Curie for the discov(;r\'

of the radioactive elements radium
and polonium).

>>:
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fluorescence, which was well knowTi before Rontgen's work. A
considerable amount of research had been done on fluorescence

during the latter part of the nineteenth centuiy. A substance is

said to be fluorescent if it immediately emits visible light when
stnu^k by 11) \isible light of shorter wax elength, I2i inxisible

radiations, such as ultraviolet light, or 13) the beam of electrons

that make up cathode rays. Fluorescence stops when the exciting

light is turned off. IThe tenn phosphorescence is generally

applied to a related phenomenon, the emission of visible light

that continues after the exciting light is turned off.)

Rontgen's observation that the X rays also came from the spot

that showed fluorescence raised the suspicion that there was a

close connection between X rays and fluorescence or

phosphorescence. Becquerel was fortunate in haxing the

necessary materials and training to study this problem. In

addition, he was the son and grandson of physicists who had

made important contributions to the field of fluorescence and

phosphorescence. In his Paris laboratory, Becquerel had devised

an instrument for examining materials in complete dar'kness a

small fraction of a second after- they had been exposed to a

brilliant light. Ihe question occurred to Becquerel: When bodies

are made to fluoresce lor- phosphoresce) in the \isible region

with sufficient intensity, do they also emit X ra\s in addition to

the light rays? He tested a number of substances by exposing

them to sunlight; his method of checking whether- they also

emitted invisible X rays followed Rontgen's idea: Is a well-

wrapped photographic plate exposed by such inxdsible ra^'s? One

of the samples Becquerel used happened to be a salt of the

metal uranium, a saiiipU^ of |3otassiirm-ur-an\'l sirlfate. In his

vvor-ds
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I wrapped a . . . photographic plate . . . with two sheets of thick

black paper, so thick that the plate did not become clouded

by exposure to the sun for a whole day. I placed on the paper a

crust of the phosphorescent substance, and exposed the whole

thing to the sun for several hours. When I developed the

photographic plate I saw the silhouette of the phosphorescent

substance in black on the negative. If I placed between the

phosphorescent substance and the paper a coin or a metallic

screen pierced with an open-work design, the image of these

objects appeared on the negative. The same experiment can be

tried with a thin sheet of glass placed between the

phosphorescent substance and the paper, which excludes the

possibility of a chemical action resulting from vapors which

might emanate from the substance when heated by the sun's

rays.

We may therefore conclude fix)m these experiments that the

phosphorescent substance in question emits radiations which

penetrate paper that is opaque to light. . .

.

In his published paper, Becquerel was careful to conclude As it turned out, and will be shovvoi

from his experiment only that "penetrating radiations" were in Sec. 21.3, the Becquerel rays are

emitted from the phosphorescent substance. He did not UTite "°* rays,

that the substance emitted X rays while it phosphoresced,

because he had not fully verified that the radiations were X rays

(though the radiations were transmitted through the black paper,

just as X rays are) or that they were actually related to the

phosphorescence (though he strongly suspected that they were).

Before he could investigate these possibilities, he made this

discovery:

. . . among the preceding experiments some had been made
ready on Wednesday the 26th and Thursday the 27th of

February [18S6]; and as on those days the sun only showed
itself intermittently, I kept my arrangements all prepared and
put back the holders in the dark in the drawer of the case, and
left in place the crusts of uranium salt. Since the sun did not

show itself again for several days, I developed the photographic

plates on the 1st of March, expecting to find the images very

feeble. On the contrary, the silhouettes appeared with great

intensity. I at once thought that the action might be able to go

on in the dark. ... ^

Further experiments verified this surprising thought. Even
when the uranium compound was not being excited by sunlight

to phosphoresce, it continually emitted something that could

penetrate black paper and other substances opaque to light,

such as thin plates of aluminum or copper. Becquerel found that

all the compounds of uranium, many of w^hich were not

phosphorescent at all, and metallic uranium itself had the same
property. The amount of action on the photographic plate did

not depend on what the particular compound of uranium was,

but only on the amount of uranium present in it!
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The ionizing effect of the Bec-

querel rays could be demonstrated

with a charged electroscope (a).

When a sample of uranium is held

near the electroscope leaves (b),

the ravs cause gas molecules in the

air to ionize, that is, to become
electrically charged. Ions, with a

charge opposite to that on the

leaves, drift to the leaves and neu-

tralize their charge. The time

taken for the leaves to fall is a

measure of the rate of ionization

of the gas and, therefore, of the

activity of the uranium source.

Becquerel also found that the pei'sistent radiation from a

sample of uranium did not appear to change, either in intensity

or character, with the passing of time. Nor was a change in the

activity observed when the sample of uranium or of one of its

compounds was exposed to ultraviolet light, infrared light, or X

rays. Moreover, the intensity of the uranium radiation lor

"Becquerel rays," as they came to be known I was the same at

room temperature I20°CI, at 200°C, and at the temperature at

which oxygen and nitrogen lair) liqueK', about — 190°C. Thus,

these rays seemed unaffected by physical (and chemical) changes.

Becquerel also showed that the radiations from uranium

produced ionization in the surrounding air. They could

discharge a positively or negatively charged body such as an

electroscope. So the uranium rays resemble X rays in two

important respects: their penetrating power and their ionization

power. Both kinds of rays were invisible to the unaided eye, but

both affected photographic plates. Still, X rays and Becquerel rays

differed in at least two important ways: Compared to X rays,

these newly discovered rays from uranium needed no cathode-

ray tube or even light to start them, and they could not be

turned off. Becquerel showed that even after a period of 3 years a

given piece of uranium and its compounds continued to emit

radiations spontaneously.

The yeare 1896 and 1897 were years of great excitement in

physics, to a large extent because of the interest in the recently

discovered X rays and in cathode rays. It quickly became evident

that X rays could be used in medicine, and they were the subject

of much research. In comparison, the properties of the Becquerel

rays were less spectacular, and little work was done on them in

the period from the end of May 1896 until the end of 1897. In

any case, it seemed that somehow Becquerel rays were special

cases of X-ray emission. Even Becquerel himself turned his

attention to other work. But attention began to be attracted by

the fact that the invisible rays from the uranium and its

compounds appeared spontaneously.

Two questions were asked. First, what was the source of the

energy creating the uranium rays and making it possible for

them to penetrate opaque substances? Second, did any other of

the 70 or more elements knov\Ti then have properties similar to

those of uranium? The first question was not answered for some
time, although it was considered seriously. The second question

was answered early in 1898 by the Curies, who, by doing so,

opened a whole new field of research in physical science.

• 1. Why was Becquerel experimenting with a uraniuru

compound? Describe his e^cperiment.
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2. How did uranium compounds have to be treated in order to

emit the "Becquerel rays'F

3. What were the properties of the "Becquerel rays"? In what

ways were they similar to those ofX rays?

21 .2
I

Other radioactive elements are
discovered

One of Becquerel's colleagues in Paris was the physicist Pierre

Curie, who had recently married a Polish-born physicist, Marie

Sklodowska. Marie Curie undertook a systematic study of the

Becquerel rays and looked for other elements and minerals that

might emit them. Using a sensitive tyjDe of electrometer that her

husband had recently invented, she measured the small electric

current produced when the rays ionized the air. This current

was assumed to be (and actually is) proportional to the intensity

of the rays. With this new technique. Curie could give a

numerical value to the ionizing effect produced by the rays.

These values were reproducible within a few percent from one

experiment to the next with the same sample.

One of Marie Curie's first results was the discovery that the

element thorium (Th) and its compounds emitted radiations vvnth

properties similar to those of the uranium rays. (The same
finding was made independently in Gemiany by Gerhardt C.

Schmidt, at about the same time.) The fact that thorium emits

rays like those of uranium was of great importance; it showed
that the mysterious rays were not a property peculiar just to one

element. The discovery spurred the search for still other

elements that might emit similar rays. The fact that uranium and
thorium were the elements with the greatest known atomic

masses indicated that the very heavy elements might have

special properties different from those of the lighter elements.

The evident importance of the problems raised by the

discovery of the uranium and thorium rays led Pierre Curie to

lay aside his researches in other fields of physics and to work
with his wdfe on these new problems. They began a herculean

task. First, they found that the intensity of the emission from any

thorium compound was directly proportional to the fraction by

weight of the metallic element thorium present. (Recall that

Becquerel had found a similar result for uranium compounds.)

Moreover, the amount of radiation was independent of the

physical conditions or the chemical combination of the active

elements. These results led the Curies to the conclusion that the

emission of the rays depended only on the presence of atoms
of either of the two elements uranium or thorium. Atoms of other

elements that were present were simply inactive or absorbed

some of the radiation.

Eorth

Sketch of an electroscope used by

Pierre and Marie Curie in many
of their early experiments. The ac-

tive material is placed on a plate

laid on top of the fi^ed circular

plate P, which is connected with

the case of the instrument and with

the earth. The upper insulated

plate P' is connected with the insu-

lated gold-leaf system LL'. S is an

insulating support and L the gold

leaf The system is first charged to

a suitable potential by means of
the rod C. The rate of movement of
the gold leaf is observed by means
of a microscope.
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In this note, the term "radioactiv-

ity" was used for the first time.

Compare the positions of polonium
(Pol and bismuth IBil in the peri-

odic table on page 654.

Compare the positions of barium
(Ba) and radium (Ha) in the periodic

table.

These ideas were especially impoi-tant because they helped the

Curies interpret their later experiments. For example, in their

studies of the I'adioactivitv' of minerals they examined

pitchblende, an ore containing about 80% uranium oxide (U^Og).

They found that the emission from pitchblende, as measured by

its effect in ionizing air, was about foui' or five times as great as

that to be expected from the amount of uranium in the ore. The

other elements known at the time to be associated with uranium

in pitchblende, such as bismuth and liarium, had been shown
to be not radioactive. If emission of rays is an atomic

phenomenon, the unexpected activity of pitchblende could be

explained only by the presence of another, hitherto

undiscovered, element in pitchblende, an element more active

than uranium itself.

To explore this hypothesis, the Curies applied chemical

separation processes to a large sample of pitchblende to try to

isolate this hvpothetical active substance. After each separation

process, the products were tested, the inactive part discarded,

and the active part analyzed further. Finally, the Curies obtained

a highly active product that presumably consisted mainly of the

unknov\Ti element. In a note titled "On a New Radioactive

Substance Contained in Pitchblende," which they submitted to

the French Academy of Sciences in July of 1898, they reported:

By caiTving on these different operations . . . finally we obtained

a substance whose activity is about 400 times greater than that

of uranium. . .

.

We believe, therefore, that the substance which we removed
from pitchblende contains a metal which has not yet been

known, similar to bismuth in its chemical properties. If the

existence of this new metal is confirmed, we piopose to call it

polonium, aiXer the name of the native countiy of one of us.

Six months after the discovery of polonium, the Curies

chemically separated another substance from pitchblende. They
found the emission from it so intense as to indicate the presence

of still another new element, even more radioactive than

polonium! This substance had an acti\dty per unit mass 900

times that of uranium and was chemically entirely different from

uranium, thorium, or polonium. Spectroscopic analysis of this

substance revealed spectral lines characteristic of the inactive

element barium, but also a line in the ultraviolet region that did

not seem to belong to any known element. The Curies reported

their belief that the substance, "although for the most part

consisting of barium, contains in addition a new element which

produced radioactivity and, fuilheiTnore, is very near barium in

its chemical properties." For this new element, so extiaoidinaiily

r^adioactive, they proposed the name radiuryi.

The next step in making the evidence for- the newly discovei^ed

elements more convincing was to detennine their properties,
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especially their atomic masses. The Curies had made it clear that

they had not yet been able to isolate either polonium or radium

in pure metallic fomi or even to obtain a pure sample of a

compound of either element. From the substance containing the

strongly radioactive substance that they called radium, they had

separated a part consisting of barium chloride mixed with a

presumably veiy small quantity of radium chloride. Additional

separations yielded an increasing proportion of radium chloride.

The difficulty of this task is indicated by the Curies' remark that

radium "is very near barium in its chemical properties," for it is

very difficult to separate elements whose chemical properties are

similar. Moreover, to obtain their highly radioactive substances

in usable amounts, they had to start with a veiy large amount of

pitchblende.

With an initial 100-kg shipment of pitchblende (from which the

uranium salt had been removed to be used in the manufacture

of glass) the Curies went to work in an abandoned woodshed at

the School of Physics where Pierre Curie taught. Having failed

to obtain financial support, the Curies made their preparations

wdthout technical help in this "laboratory." Marie Curie wrote

later:

I came to treat as many as twenty kilograms of matter at a time,

which had the effect of filling the shed with great jars full of

precipitates and liquids. It was killing work to carry the

receivers, to pour off the liquids and to stir, for hours at a

stretch, the boiling material in a smelting basin.

From the mixture of radium chloride and barium chloride they

produced, only the average atomic mass of the barium and
radium could be computed. At first an average value of 146 was
obtained, as compared to 137 for the atomic mass of barium.

After many additional purifications that increased the proportion

of radium chloride, the average value for atomic mass rose to

174. Continuing the tedious purification proess for 4 years,

during which she treated several tons of pitchblende residue,

Marie Curie was able to report in July 1902 that she had isolated

0.1 g of radium chloride, so pure that spectroscopic examination

showed no evidence of any remaining barium. She calculated the

atomic mass of radium to be 225 (the present-day value is

226.03). The activity of radium is more than a million times that

of the same mass of uranium.

The present yield of radium from
1 ton of high-grade uranium ore is

about 0.2 g.

SG 2

4, How is the radioactive emission of an element affected by

being combined into different chemical compounds?

5. Why did the Curies suspect the existence of another

radioactive material in uranium ore, in addition to uranium

itself?
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Close Up\
Marie ond Pierre Curie

Mane Curie. Mane and Pierre in their laboratory.

Pierre Curie (1859-1906) studied at the Sor-

bonne in Paris. In 1878, he became an assistant

teacher in the physical laboratory there, and some

years later, professor of physics. He was well

known for his research on crystals and magnetism.

Pierre married Marie Sklodowska in 1895 (she was

28 years old). After their marriage, Marie undertook

her doctoral research on radioactivity. In 1898,

Pierre joined his wife in this work. Their collabora-

tion was so successful that in 1903 they were

awarded the Nobel Prize in physics, which they

shared with Becquerel. Pierre Curie was run over

and killed by a horse-drawn vehicle in 1906. Marie

Curie was appointed to his professorship at the

Sorbonne, the first woman to have this post.

In 1911, Marie Curie was awarded the Nobel

Prize in chemistry for the discovery of the two new

elements, radium and polonium. She was the first

person to win two Nobel prizes in science. The rest

of her career was spent in the supervision of the

Paris Institute of Radium, a center for research on

radioactivity and the use of radium in the treatment

of cancer.

Marie Curie died in 1934 of leukemia, a form of

cancer of the leukocyte-forming cells of the body,

probably caused by overexposure to the radiations

from radioactive substances.

Marie and Pierre on a bicvcJinci hoUdR'.

Mane, Irene, and Pierre:

all three won Nobel prizes
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6. What was the main difficulty in producing a pure sample of

the element radium?

21.3
I

The penetrating power of the radiation.
a, (3, and 7 rays

Once the extraordinary properties of radium became known,

they excited interest both inside and outside the scientific world,

and the number of people studying radioacti\ it\' increased

rapidly. The main question that attracted attention was: What are

the mysterious radiations emitted by radioactixe bodies?

In 1899, Ernest Rutherford, whose theory of the nuclear atom

was discussed in Chapter 19, started to seek answers to this

question. Rutherford found that a sample of uranium emits at

least two distinct kinds of rays: one that is verv' readily absorbed,

which he called for convenience a rays (alpha rays), and the

other more penetrating, which he called P rays ibeta raysi. In

1900, the French physicist P. V'illard obseived that the emission

from radium contained rays much more penetrating than even

the P rays; this type of emission was gi\'en the name 7 (gamma)

rays. The penetrating power of the three t\pes of rays, as known
at the time, is compared in the table below, first published by

Rutherford in 1903.

APPROPRIATE THICKNESS OF ALUMINUM REQUIRED TO
REDUCE THE RADIATION INTENSITY TO ONE-HALF ITS

INITIAL VALUE

Radiation Type Ttiickness of Aluminum

a 0.0005 cm
P 0.05

y 8

Thus, the Becquerel rays were more complex than had been

SG 2 thought exen before the nature of a, (3, and 7 rays was
ascertained. Of the three kinds of rays, the a rays are the most

strongly ionizing and the 7 rays the least. The power of

penetration is imersely proportional to the power of ionization.

This is to be expected; the penetrating power of the a rays from

uranium is low because they expend their energy very rapidly

in causing intense ionization. Alpha ra\'s can be stopped, that is,

almost all are absorbed, by about 0.006 cm of aluminum, by a

sheet of ordinary UTiting paper, or by a few centimeter's of air.

Beta rays are completeK' stopped onl\' after traxeling many
meters in air, or a centimeter in aluminum. Gamma rays can

pass through many centimeters of lead, or through a meter of

,«.... ., concrete, befor-e being almost completoK' absorbed. One
The rays ionize and, consequently, " ^

break down molecules in li\ irig consequence of these proper-ties of the rays is that hea\y and

cells. expensive shielding is sometimes needed in the study or use of
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a MOTOR CONTROL

radiations, especially of y rays, to protect people from harmful

effects of the rays. In some cases, these "radiation shields" are as

much as 3 m thick. Such shielding is required around a target

at the output of an electron accelerator (where 7 rays are created

by a method different from radioactivity, as you will find later in

this unit).

• 7. List a, p, and 7 rays in order of penetrating ability. Why is

penetrating power inversely related to ionizing power?

RADIOACTIVE SOURCE"

The absorption of P rays gives rise

to many modern practical applica-

tions of radioactivity. One e^cample

is the thickness gauge illustrated

in the photograph and drawing

above. Sheet metal or plastic is re-

duced in thickness by rolling. The
thickness is measured continuously

and accurately by determining the

intensity of the (3 rays that pass

through the sheet. The rollers are

adjusted so that the desired sheet

thickness is obtained.

2i'L»4
\

The charge and mass of a, (3, and 7 rays

Another method used to study the rays was to direct them
through a magnetic field to see if they were deflected or deviated

from their initial directions by the action of the field. This

method came to provide one of the most widely used tools for

the study of atomic and nuclear events. It is based on the now
familiar fact that a force acts on a charged particle when it

moves across a magnetic field. As was discussed in Sec. 14.13,

this force acts always at right angles to the direction of motion of

the charged particle. The particle experiences a continual

deflection and, if sent into a uniform field at right angles, moves
along the arc of a circle. (It might be wdse to review Sec. 14.13

now.)

This property had been used in the 1890 s by J. J. Thomson in

his studies of cathode rays. He showed that these rays consist

of very small negatively charged particles, or electrons (Chapter

18). Becquerel, the Curies, and others found that the a, p, and 7
rays behaved differently from one another in a magnetic field.

The behavior of the rays is illustrated in the diagram on page

640.
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c.

(a) a, 3, and y rays are separated

from a sample of radioactive mate-
rial by their passage through a

magnetic field, (b) No magnetic

field, (c) Weak magnetic field, (d)

Stronger magnetic field, (e) Very

strong magnetic field.

SG 4-6

Suppose that some radioactive material, such as a sample of

uranium, is placed at the end of a narrow hole in a lead block

and that a narrow beam consisting of a, p, and 7 rays escapes

from the opening. If the beam enters a strong, uniform magnetic

field (as in the last two drauangs in the margin), the three types

of rays will go along paths separated from one another. The 7
rays continue in a straight line without any deviation. The P rays

will be deflected to one side, moving in circular arcs of differing

radii. The a rays will be deflected slightly to the other side,

moving in a circular arc of large radius; they are rapidly absorbed

in the air.

The direction of the deflection of the |3 rays in such a

magnetic field is the same as that obseived earlier in Thomson's

studies of the properties of cathode rays. It was concluded,

therefore, that the (3 rays, like cathode rays, consist of rwgatively

charged particles. IThe negative charge on the (3 particles was

confiiTned by the Curies in 1900; they caused the beam of the

particles to enter an electroscope that became negatively

charged.) Since the direction of the deflection of the a rays was
opposite that of the P rays, it was concluded that the a rays

consist of positively charged particles. Since the 7 rays were not

deflected, it was concluded that they are neutral, that is, they

have no electric charge. No conclusion could be drawn from this

type of experiment as to whether the 7 rays are, or are not,

particles.

The deflection of a charged particle in electric and magnetic

fields depends on both its charge and mass. Therefore, the ratio

of charge to mass for (3 particles can be calculated from

measured deflections in fields of known intensity. Becquerel,

investigating P particles in 1900, used a procedure that was
essentially the same as that used by J. J. Thomson in 1897 to

obtain a reliable value for the ratio of charge q^ to mass m^. for

the particles in cathode rays. [At that time, the fact that a

consistent single value of qjm had been found established

quantitatively the e?cistence of the electron (see Sec. 18.2).] By

sending p rays through electric and magnetic fields, Becquerel

was able to calculate the speed of the P particles. He obtained a

value of q/m for p particles which was close to that found by

Thomson for the electron, and so permitted the deduction that

the p particles are electrons.

The nature of the a radiation was more dil icult to establish. It

was necessarv' to use a verv^ strong magnetic field to produce

measurable deflections of a rays. 1 he value of q/m found for a

particles (4.8 X lo" C/kg) was about 4,000 times smaller than the

q/m for P particles. The reason for the small q/m value could be

a small value of qf or a large value of m. Other evidence available

at the time indicated that q for an a particle was not likely to be

smaller than that for a P paiticle. It was therefore conckided tliat
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a.

m would have to be much larger for the a particle than for the

P particle.

The value of q/m given above for a particles is just one-half

that of q/m found earlier for a hydrogen ion. The value would be

explained in a reasonable way if the a particle were like a

hydrogen molecule minus one electron (H,^), or if it were a

helium atom (whose mass was knowai to be about four times that

of a hydrogen atom) vvdthout its two electrons (He^^). Other

possibilities might have been entertained, for example, bare

nuclei of carbon, nitrogen, or oxygen would have about the same

q/m ratio. In fact, however, the right identification turned out to

be that of a particles vvdth He ^ ^
. The clever experiment

described in the following section provided the final proof.

C.

Electric and magnetic fields can be

set up perpendicularly so that the

deflections they cause in a beam of
charged particles will be in oppo-

site directions. Particles moving
at a certain speed will not be de-

flected, because the electric and
magnetic forces balance, (a) Elec-

tric field only, (b) Magnetic field

only, (cl Both electric and magnetic

field.

The a particle was found to be the

same as a helium nucleus and,

therefore, has a mass of about 4

atomic mass units.

8. What was the evidence to support the theory that (3

particles are electrons?

9. What observation led to the suggestion that a particles are

much more massive than P particles?

2t'i.»S
\
The identity of a rays: Rutherford^s
"mousetrap"

It was known that the gas helium can be found imprisoned in

radioactive minerals. In addition. Sir William Ramsey and

Frederick Soddy had discovered, in 1903, that helium is given off

from a radioactive compound, radium bromide. This led

Rutherford to advance the hypothesis that the a particle is a

doubly ionized helium atom, that is, a He atom minus its two

electrons, or, as we would now say, the nucleus of a helium

atom. In a series of experiments conducted from 1906 to 1909,

Rutherford succeeded in proving the correctness of his

hypothesis in several different ways. The last and most

convincing of these experiments was made in 1909, with T. D.

Royds, by constnjcting what Sir James Jeans later called "a sort

of mousetrap for a particles."

The experiment used the radioactive element radon (Rn).

Radon had been discovered by Pierre Curie and Andre Debierne

in 1901; they had found that a gas is given off from radium. A
small amount of the gas collected in this way was found to be a
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itherford's "mousetrap"

r identifying particles.
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strong a emitter. The gas was shoun to be a new element and

was called "radium emanation" and later "radon." Ramsey and
Soddy then found that when radon is stored in a closed vessel,

helium always appears in the xessel also. Thus, helium is given

off not only by radium by also by radon.

Rutherford and Royds put a small amount of radon in a fine

glass tube with a wall only 0.01 mm thick. This wall was thin

enough so that a particles could pass through it, but radon itself

could not. The tube was sealed into a thick-walled, outer glass

tube that had an electric discharge section at the top. ISee sketch

A in the margin.) The air was pumped out of the outer tube, and

the apparatus was allowed to stand for about a week. During this

time, while a particles fiom the radon passed through the thin

walls of the inner tube, a gas was found gradually to collect in

the previously evacuated space (sketch B). Mercury was then

pumped in at the bottom to compress the very small quantity of

gas and confine it in the discharge tube (sketch CI. When a

potential difference was applied to the electrodes of the

discharge tube, an electric discharge was produced in the gas.

The resulting light was examined vvath a spectroscope, and the

spectral lines seen u'ere characteristic of helium. (In a separate

control experiment, helium gas itself was put in the inner, thin-

walled tube and did not leak through the wall of the inner tube.)

Now it was clear to Rutherford how to interpret his results. He
could safely conclude that the helium gas that collected in the

outer tube was forTned from a particles that had passed into the

outer tube. Rutherford's result implied conclusions more

important than just the identity of a particles. Apparently, an

atom of an element (radon) can spontaneously emit a fragment

(an a particle) that is the nucleus of another element (helium). A
startling idea, but only the beginning of more startling things to

come.

642

10. How did Rutherford know that the gas that appeared in the

tube was helium?

21. .6
I

Radioactive transformations

The emission of a and (3 particles raised difficult questions with

respect to existing ideas of matter and its structure. The rapid

development of chemistry in the nineteenth century had made
the atomic-molecular theory of matter highly convincing.

According to this theory, a pure element consists of identical

atoms, which are indestriictible and unchangeable. But if a

radioactive! atom emits as substantial a fragnieMit as an a particle
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(shown to be an ionized helium atom), can the radioactive atom
remain unchanged? That did not seem plausible. Rather, it

seemed that there must be a transformation in which the

radioactive atom is changed to an atom of a different chemical

element.

If an atom emits an a particle, a substantial part of its mass
will be carried away by the a particle. What about the atoms that

emit P particles? The P particle (shown to be an electron] is far

less massive than the a particle. However, its mass is not zero; so

a radioactive atom must also undergo some change when it

emits a P particle. It was again difficult to escape the conclusion

that radioactive atoms are, in fact, subject to division (into two
parts of markedly unequal mass), a conclusion contraiy to the

basic concept that the atom is indivisible.

Another fundamental question arose in connection with the

energy carried by the rays emitted by radioactive substances. As
early as 1903, Rutheiford and Soddy, and Pierre Curie and a

young co-worker, A. Laborde, noted that a sample of radium kept

itself at a higher temperature than its surroundings merely by
reabsorbing some of the energy of the a particles emitted by
atoms inside the sample. (Curie and Laborde found that 1 g of

radium can produce about 0.1 kcal of heat per hour.) A sample of

radium thus can continue to release energy year after year, and
evidently for a very long time.

The continuing release of such a quantity of heat could not be

explained by treating radioacti\aty as an ordinary chemiccd

reaction. It was clear that radioactixdty did not involve chemical

changes in the usual sense. Energy was emitted by samples of

pure elements; energy emission by compounds containing

radioactive elements did not depend on the type of molecule in

which the radioactive element was present. The origin of the

production of heat had to be sought in some deep changes

within the atoms of radioactive elements, rather than in chemical

reactions among atoms.

Rutherford and Soddy proposed a bold theory of radioactive

transformation to explain the nature of these changes. They
suggested that when a radioactive atom emits an a or a p
particle, it really breaks into two parts: the a or p particle that is

emitted and a heavy, leftover part that is physically and
chemically different from the "parent" atom. There was a good
deal of evidence for the last part of the assumption. For example,

the formation of radon gas from radium was knovvoi, as

mentioned earlier. When the atomic mass of radon was
determined, it turned out to be smaller than that of radium by
just 4 atomic mass units, the mass of an a particle.

The idea of radioactive transformation can be represented by
an "equation" similar to the kind used to represent chemical
reactions. For example, using the symbols Ra and Rn to

The water is being boiled bv the

heat given ojf by a small capsule of
cobalt-60. This capsule, the first

ever made to produce heat from
radioactive cobalt, was generating

heat at the rate of 360 watts when
this photo was taken.
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Here He stands for the helium atom
formed by the doubly charged a
particle after it has picked up tvvo

electrons.

Rutherford and Soddy received No-

bel prizes in chemistry for their

work on the radioactive transfor-

mation of one element into an-

other.

represent atoms of radium and radon, the transformation of

radium into radon can be expressed as:

Ra Rn + He

SG 7

The process of transformation can be described as the

transfoiTnation ("disintegration, " "decay," or "transmutation") of

radium into radon, with the emission of an a particle.

Many decay processes in addition to the example just cited

had been found and studied by the Curies, by Rutherford and
his co-workers, and by others, and these processes fitted easily

into the kind of scheme proposed by Rutherford and Soddy. For

example, radon is radioactive also, emitting another a particle

and thereby decaying into an atom of an element that was called

"radium A" at the time. Radium A was later shown to be

polonium (Pol:

Rn -^ Po + He

Polonium is also a radioactive solid. In fact, the original

"parent" radium atoms undergo a series or chain of

transfomiations into generation after generation of new,

radioactive, "daughter" elements, ending finally with a

"daughter" element that is nonradioactive or, in other words,

stable.

11. Why was radioactive decay believed not to be an ordinary

chemical reaction?

12. Give an e;>cample of a radioactive transformation. Why is it

contrary to the ideas of nineteenth-century chemistry?

21..T
I

Radioactive decay series

The decay of radium and its daughters was found eventually to

lead to a stable end product that was identified by its chemical

behavior as lead. The chain beginning with radium has 10

members, some emitting a particles and others emitting P
particles. Some gamma rays are emitted during the decay series,

but gamma rays do not appear alone; they are emitted only

together with an a particle or a P particle. Rutherford and Soddy

also suggested that, since radium is always found in uranium

ores, radium itself may be a member of a series starting v\ith

uranium as the ancestor of all the members. Research showed

that this is indeed the case. Each uranium atom may in time give

rise to successive daughter atoms, radium being the sixth

generation and stable lead the fifteenth.

Table 21-1 shows all the members of the so-called

urnnium-rndiinn scries. The meaning of some of the s\'ml)(jls will
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be discussed in later sections. The number following the name
of an element, as in uranium-238, indicates the atomic mass.

Notice that there are heavier and lighter varieties of the element,

such as uranium-238 and 235, polonium-218, 214, and 210. Much
more will be said about these varieties in the next chapter.

TABLE 21-1. URANIUM-RADIUM DECAY SERIES
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there would also begin to accumulate a signficant number of

atoms from the list in Table 21-1.)

A sample of pure, freshly separated radium iRa"'') would also

change in composition in a complicated way, but much more

slowly. Eventually it would consist of a mixture of some
remaining radium-226, plus radon-222, polonium-218, lead-214,

and all the rest of the members of the chain down to, and

including, stable "radium G" {lead-206).

Similarly, a sample of pure uranium may contain, after a time,

14 other elements of which 13 (all but the last, stable portion)

contribute to the radioactive emission, each in its own way. In all

such cases, a complicated mixture of elements results. After

starting as a pure a emitter, a sample eventually emits many a

particles, p particles, and 7 rays, apparently continuously and

simultaneously.

It is evident that the separation of the different members of a

radioactive chain from one another would be difficult, especially

if some members of the chain decay rapidly. The detennination

of the chemical nature and the radioactive properties of each

member required great experimental ingenuity. One successful

method depended on the skillful chemical purification of a

particular radioactive substance, as the Curies had done with

radium and polonium. For example, suppose that a sample has

been obtained from which all the radioactive atoms except those

of radium-226 have been removed. The sample immediately

starts to give off radon gas. The latter can be drawn off and its

properties examined before it becomes seriously contaminated

by the disintegration of many of its atoms into polonium-218. If

this is done, it is found that radon decays (through several

transformations) into lead much more quickly than radium

decays into radon.

13. Give at least three reasons for the difficulty ofseparating

decay products.

14. Ifyou start with a sample made entirely ofpure uranium-

238 atoms, what emission is obser\'ed at the start? How will

the emission change as time goes on?

'c.Ty tcyri
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21 .8 Decav rate and half-life

In the last section, you saw that of 1,000,000 polonium-218 atoms

present in a freshly prepared sample of that radioactive

substance, only about 10,000 would remain after 20 min, the rest

having decayed into atoms of iead-214 and its daughter products.

It would take only 3 min following the preparation of the pure

sample of Po^^^ for 50% of the atoms originally present in the

sample to have decayed. In the case of radium (Ra'"''), it u^ould

take 1,620 years for half of the radium atoms in a freshly

prepared sample of radium to be transformed into radon atoms.

These two examples illustrate the experimental fact that

samples of radioactive elements show great difference in their

rates of decay. These different rates are the result of averages of

many individual, different decay events going on at random in

a sample. Looking at one atom of any radioactive element, one

never can tell when it vvdll decay; some may decay as soon as

they are produced, while others may never decay. Still, it has

been found experimentally that for a large group of atoms of one

kind, the fraction of these atoms that decay per second is

unchangeable and aways the same for any large group of atoms

of that kind. This fraction is almost completely independent of

all physical and chemical conditions, such as temperature,

pressure, and form of chemical combination. These remarkable

properties of radioactivity deserve special attention, and the

meaning of the italicized statement above now vvdll be discussed

in detail because it is basic to an understanding of radioactivity.

Say, for example, that 1/1,000 of the atoms in a freshly

prepared pure sample decay during the first second. Then you
would expect that 1/1,000 of the remaining atoms will decay

during the next second. But also, 1/1,000 of the atoms remaining

after 10 sec will decay during the eleventh second, and so on.

In fact, during any subsequent second of time, 1/1,000 of the

atoms remaining at the beginning of that second will decay, at

least until the number of remaining atoms becomes so small that

predictions become veiy uncertain.

Since the fraction of the atoms that decay per unit time is a

constant for each element, the number of atoms that decay per

unit time will decrease in proportion to the diminishing number
of atoms that have not yet changed. Consequently, if the

percentage of surviving, unchanged atoms is plotted as a

function of time, a curve like the one on the opposite page is

obtained. The number of atoms in a sample that decay per unit

time is the activity of the sample. Thus, the graph on the

opposite page also represents the way in which the measured

activity of a sample would decrease with time.

The curve that shows the number of atoms that have not

decayed as a ftmction of time approaches the time axis

In 1898, the Curies obtained a total

of about 200 g of radium. Seventy

years later (1968), 194 g of this re-

mained as radium. The other 6 g
corresponded to 16 x 10'^ radium
atoms that had decayed into radon
and subsequently into other ele-

ments during those 70 years.

In a few cases, pressure and chem-
ical combination have been found
to make slight (and now well-

understood) differences in the rate

of decav.

SG 9, 10

If the daughter atoms were also ra-

dioactive, then the change of meas-
ured activity would, of course, be
complicated and not have so sim-

ple a form of graph.
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asymptotically; that is, the number of survivors becomes small,

but it never becomes zero. This is another way of saying that a

definite "lifetime" in which all of the original atoms for a sample
will have decayed cannot be assigned.

SG 11 However, it is possible to specify the time required for any
particular /racf/on of a sample to decay, Vz, Vi, or 37%, for

instance. For convenience in making comparisons, the fraction Vz

has been chosen. Rutheiford called the time required for the

decay of one-half of the original atoms of a pure sample the half-

life. Each kind of radioactive atom has a unique half-life, and
thus the half-life of an element can be used to identify a

radioactive element. As Table 21-1 shows, a wide variety of half-

lives have been found.

For uranium-238, the parent of the uranium series, the half-life

is 4.5 billion years. This means that after 4.5 x 10'' yeare, half of

the uranium-238 atoms will have decayed. For polonium-214, the

half-life is of the order of 10"^ sec; that is, in only 1/10,000 of a

second, half of an original sample of Po"^* atoms will have

decayed. If pure samples of each, containing the same number of

atoms, were available, the initial activity (atoms decaying per

second) of polonium-214 would be very strong and that of

uranium-238 very feeble. If left for even 1 min though, the

polonium would have decayed so thoroughly and, therefore, the

number of its surviving atoms would be so small, that at this

point the actixaty due to polonium would now be less than the

activity of the uranium. Perhaps some radioactive elements,

present in great quantities long ago, decayed so rapidly that no

measurable traces are now left. On the other hand, many
radioactive elements decay so slowly that during any ordinary

experimentation time the counting rates that indicate decay

seem to remain constant.

The principal advantage of the concept of half-life lies in the

experimental result implied in the graph in the margin: For any

element of half-life T^,, no matter how old a sample is, half of the

atoms udll still have sunaved after an additional time interval T^,.

Thus, the half-life is not to be thought of as an abbreviation for

"half a life." If one-half the original atoms remain unchanged

after a time Ti.^, one-fourth (Vz x Vz) will remain after two

consecutive half-life intervals 2T^,, one-eighth after 3Ti,, and so

on. Note how different the situation is for a population of, say,

human beings instead of radioactive atoms. In a group of N^

babies, half the number may sumve to their 70th birthday: of

these NJI senior citizens, none is likely to celebrate a 140th

birthday. But of N^ radioactive atoms with a half-life of 70 years,

SG 12-15 yV(,/4 will have remained intact after 140 years, NJS after 210

years, etc. To put it differently, the statistical probability of

survival for atoms is unchanged by the age they have already

reached. In humans, of course, the probability of sun ival Isay, for
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The activity of a sample, the number of disinte-

grations per second, the decay rate are alternative

expressions for the same quantity. Using the letter

N to represent generally the number of atoms of a

given kind present in a radioactive sample, the ac-

tivity is AA//Af, where AN is the number of atoms

disintegrating in the same interval Af. But A/V/Af

depends both on the type of atom involved, and

how many happen to be in the sample. Therefore,

a more useful quantity is needed. If, in a time in-

terval At, AN atoms disintegrate out of a total num-

ber N, the fraction of atoms disintegrating is AN/N.

The fraction of atoms disintegrating per unit time

is AN/N/At. (this quantity can be thought of as the

ratio of the activity AN/At to the total number. A/.)

This quantity, usually called X or the decay con-

stant, will be important, as you will see at once

below. It is analogous to the death rate in a human
population. In the United States, for example, about

5,000 persons die each day out of a population of

about 200,000,000. The death rate is therefore one

person per 40,000 per day (or one person per day

per 40,000).

The beautifully simple mathematical aspect of ra-

dioactive decay is that the fraction of atoms decay-

ing per second does not change with time. If initially

there are N^ atoms, and a certain fraction k decay

in 1 sec, the actual number of atoms decaying in

1 sec is XA/q. Then, at any later time t, when there

are only /V, atoms remaining, the fraction that decay

in 1 sec will still be \, but the number of atoms

decaying in one second is now \A/,, a smaller num-

ber than before.

The constant fraction A of atoms decaying per

unit time is called the decay constant. The value

of this constant \ can be found for each radioactive

species. For example, K for radium is 1 .36 x 10"''

per second, which means that on the average

0.0000000000136th of the total number of atoms

in any sample of radium will decay in 1 sec.

The fact that X. is a constant can be represented

by the expression

AN/At
X =

N
= constant

which can be rewritten as

AN/At = constant x A/ or AN/At ^ N

Close Upl
The Mothemotics of Decoy

This form of the relation expresses clearly the fact

that the decay rate depends directly on the number

of atoms left.

By using calculus, a relation of this type can be

turned into an expression for A/ as a function of

elapsed time t:

!^
A/.

= e or N, = A/
e"

where N^ is the number of atoms a\t = 0, A/, is the

number remaining unchanged at time t, and e is a

mathematical constant that is approximately equal

to 2. 71 8. The factor e"*' has the value 1 whenf =

0, and decreases toward as t increases. Since

the decay constant appears as an exponent, the

decay is called "exponential" and takes the form

shown by the graph on page 646.

The relationship between the half-life 7,^ and the

decay constant X can be derived as follows. Write

the exponential decay equation in logarithmic form

by taking the logarithm of both sides of the equation

N
log -^ = log e " = -kt log e

o

After a time equal to the half-life 7,^, the ratio A//A/^

= V2. So you can substitute V2 for A//A/^ if you sub-

stitute T,„ for t in the above equation, and get

log (Va) = - XT,^ log e

The value of log (Va) is -0.301 and the value of

log e = 0.4343; therefore,

-0.301 = -xr,^ (0.4343)

and xr,^ = 0.693

So the product of the decay constant and the half-

life is always equal to 0.693. Knowing either one
allows you to compute the other.

For example, radium-226 has a decay constant

X = 1.36 X 10"'' per second; so

(1.36 X 10" sec"') 7,,^ = 0.693

0.693
'^ 1.36 X 10"" sec-'

7,^ = 5.10 X 10'° sec

Thus, the half-life of radium-226 is 5.10 x 10'° sec
(about 1620 years).
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The use of this statistical law, in

practice, is justified because even

a minute sample of a radioactive

element contains \'ery many atoms.

For example, one-millionth of a

gram of uranium contains 3 x lO'"

atoms.

another year) depends strongly on age, and so the concept "half-

life" is not usable in this case.

You ha\'e been considering the behavior not of individual

atoms, but of a very large number of them. As you sav\' in

considering the behavior of gases in Chapter 11, this method
allows you to use laws of statistics to describe the average

behavior of the group. If a hundred thousand people were to flip

coins simultaneously just once, you could predict with good

accuracy that about one-half of them would get heads. But you
could not accurately predict that one particular person in this

crowd would obtain heads on a single flip. If the total number of

coins tossed is small (10) the observed count is likely to differ

considerably from the prediction of 50% heads. From
experiments in radioactivity, you can predict that a certain

fraction of a relatively large number of atoms in a sample uill

survive in any given time interval (for example, one-half will

survive to reach the age T), but not whether a particular atom
will be among the survivors. As the sample of sumvors decreases

in size owing to disintegrations, predictions become less precise.

Eventually, when only a few unchanged atoms are left, you could

no longer make useful predictions at all. In short, the

disintegration law is a statistical law and is thus applicable only

to large populations of the radioactive atoms. Moreover, it makes

no assumptions as to why the atoms disintegrate.

In the discussion of the kinetic theory of matter, you saw that

it is a hopeless and meaningless task to try to describe the

motions of each individual molecule, but you could calculate the

average pressure of a gas containing a veiy large number of

molecules. Similarly, in dealing with radioactivity, the inabilitv to

specify when each of the tremendous number of atoms in a

normal sample will disintegrate makes a statistical treatment

necessaiT and useful.

Radioactive decay pattern for

strontium-90.

100 r

PERCENT OP
RADIOACTIVITY 50 -

FR.OM Sr
36

90

15. Why can one not specify the lifetime of a sample of

radioactive atoms? of a single radioactive atom?

16. How much of a substance will be left unchanged after a

period equal to four times its half-life?

17. If after many many half-lives, only two atoms of a

radioactive substance remain, what will happen during an

additional period equal to one hnlf-life?

BKINNINQ I HALP-LIFe 2HALF-LIVES 3 HALF-LIVES 4 HALP- KVES

OF COUNT 26YEARS 5fr YEARS M YEAILS HZYSAZS
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study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 21 include:

Experiments

Random Events

Range of a and p Particles

Half-Life I

Half-Life II

Radioactive Tracers

Measuring the Energy of (3 Radiation

Activities

Magnetic Deflectionof ^ Rays

A Sweet Demonstration

Ionization of Radioactivity

Elxponential Decay in Concentrations

Transparencies

Separation of a, p, 7 Rays

Rutherford's a-Particle "Mousetrap"

Radioactive Disintegration Series

2. Which of the Curies' discoveries would have

been unlikely if they had used Becquerel's

photographic technique for detecting radioactivity?

3. A spectroscopic examination of the 7 rays from

bismuth-214 shows that rays of several discrete but

different energies are present. The rays are said to

show a "line spectrum." The measured wavelength

corresponding to one of the lines is 0.0016

nanometer.

(a) Show that the energy of each of the 7-ray

photons responsible for that line is 1.2 x 10" J.

(Hint: See Chapter 20.)

(b) What is the equivalent energy in electron volts?

4. Suppose that in the figure on page 640 the

magnetic field strength is 1.0 x 10 ' N/A-m.

(a) What would be the radius of curvature of the

path of electrons entering the magnetic field with a

speed of 1.0 x 10' m/sec? (The charge and mass of

the electron are 1.6 x 10

respectively.)

C and 9.1 x 10 " kg,

(b) If a particles entered the magnetic field with the

same speed as the electrons in part (a), what would

be the radius of curvature of their orbit? (The mass
of an a particle is 6.7 X 10 "' kg.)

(c) Compare your answers to parts (a) and (b).

5. The electric field in the figure on page 641 is

produced by a + charge at the top plate and a —

charge at the bottom. What is the sign of charges in

the beam going through the tube? What is the

direction of the magnetic field (into or out of the

page)?

6. If the electrons described in part (a) of SG 4 pass

through crossed electric and magnetic fields as

shown in part (c) of the figure on page 641,

(a) what must be the strength of the electric field to

just balance the effect of a magnetic field of strength

1.0 X 10"'N/A-m?

(b) what voltage must be supplied to the electric

field deflecting plates to produce the electric field

strength of part (a) of this problem if the plates are

0.10 m apart?

(c) what will happen to the a particles of SG 4(b)

moving through the crossed magnetic and electric

fields of this problem?

7. For each part below, select the most
appropriate radiation(s): a, (3, or 7.

(a) most penetrating radiation

(b) most easily absorbed by aluminum foil

(c) most strongly ionizing radiation

(d) may require thick "radiation shields" for

protection

(e) cannot be deflected by a magnet

(f) largest radius of curvature when traveling across

a magnetic field

(g) highest q/m value

(h) important in Rutherford's and Royd's

"mousetrap" experiment

(i) involved in the transmutation of radium to radon

(j) involved in the transmutation of bismuth-210 to

polonium-210
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8. Suggest an explanation for the following

obsen'ations:

The English physicist Sir William Crookes

discoxered in 1900 that inini(!diately after a strongly

radioacti\'e uranium-containing compound was

purified chemically, the uranium compound itself

showed much smaller acti\it\', and the separate

residue that contained none of the uranium was

strongly radioacti\'e.

In 1901, Becquerel found that in such a case the

uranium compound regained its originiil actixity

after several months, while the residue gradually lost

most of its activity during the same time.

9. A Geiger counter shows that the rate of emission

of P particles from an initially pure sample of a

radioactixe element decreases to one-hidf the initial

rate in 25 hours.

(a) \\1iat fraction of the original number of

radioactixe atoms is still unchanged at that time?

(b) What fraction of the original number will have

disintegrated in 50 hours?

(c) What assumptions have you made in gixing these

ansxxers? Ho\x' might you check them?

10. It took 10 years for 10% of the atoms of a

certain freslily prepared sample of radioactixe

substance to decay. Hoxx much of the material that

is left unchanged will decay in the ne.xt 10 xears?

11. Suppose at time f a sample of pure radium

consisted of 2.66 x lo" atoms. (The hidf-life of

radium is approximately 1,600 years.)

(a) If iV is the number of radium atoms in the

siimple at a time /, make a graph of A'_ xersus time

covering a period of 8,000 years.

(bl Shoxv that at the end of 8.000 years, 8.3 x lo'^

radium atoms still remain in the sample.

(c) From your graph, estimate the number of

radium atoms in the sample after 4,000 years.

12. The capsule containing cobalt -60, shoxxn and

described on page 643, is reported to haxe an actixity

of 17,000 curies. One curie is defined as 3.70 x lo'"

disintegrations per second.

(a) Hoxv much energy is released per disintegration

in the cobalt-60?

(b) What would be the rate of heat production of

that sample after 15 years? (The half-life of cobalt-60

is approximately 5 years.) Assume all radioactixe

emission is converted into heat in the water jacket

around the sample.

13. Kadioactive isotopes in quantities of 10 micro-

curies or less can be purchased for instructional

purposes from the Department of Energy. How
many disintegrations per second occur in a 10

micro-curie sample? iFor data, see SG 12.1

14. Beloxv are the obserxed disintegration rates

(counting rates I as a function of time for a

radioactive sample.

Time
(hr)

Counting
Rate

(counts min)
Time
(hr)

Counting
Rate

(counts min)

0.0



(a) What is the half-life of the material they called

thorium X?

(b) In 1931, Rutherford was elevated to the British

peerage, becoming "Baron Rutherford of Nelson." It

is claimed that there is a connection between

Rutherford's design of his coat of arms (shown

below) and his work. Wliat might the connection be?

KLli

16. Activity: Magnetic Deflection of p Rays. ClamjD a

radioactive (3 source securely a distance of about 30

cm from a Geiger tube. Place a sheet of lead at least

1 mm thick between source and counter to reduce

tlie count to background level. Hold one end (pole) of

a strong magnet above or to the side of the sheet,

and change its position until the count rate increases

appreciably. By what path do the (3 rays reach the

counter? Try keeping the magnet in the same

position but reversing the two poles; does the

radiation still reach the counter? Determine the

polarity of the magnet by using a compass needle. If

P rays are pai'ticles, what is the sign of their charge?

(See Experiment 4—6 for hints.)

17. Activity: A Sweet Demonstration. In Experiment

2, "Half-Life I," it is difficult to show that the number
of dice "decaying" is directly proportional to the

initial number of dice, because statistical fluctuations

are fairly large with only 120 dice. An inexpensive

way to show that AA' is directly proportional to A^ is

to use at least 400 sugar cubes (there are 198 in the

commonly available 0.45-kg packages). Mark one face

with edible food coloring. Then shake the cubes and

record how many decayed as described in

Elxperiment 6-2.

18. Activity: Ionization by Radioactivity. Place a

different radioactive sample inside each of several

identical electroscopes. Charge the electroscopes

negatively (as by rubbing a hard, rubber comb on

wool and touching the comb to the electroscope

knob). Compare the times taken for the

electroscopes to completely lose their charges, and

interpret your observations.

Place no sample in one electroscope so that you

can check how fast it discharges without a sample

present. What causes this type of discharge?

19. Activity: Elxponential Decay in Concentration. Stir

10 drops of food coloring into 1,000 cm^ of water.

Pour off 100 cm' into a beaker. Add 100 cm' of water,

stir up the mixture, and pour off a second 100 cm'

sample. Keep repeating until you have collected

10-15 samples.

The original concentration was 10 drops/1,000 cm^

or 1 drop/100 cm'. What is the concentration after

one removal and the addition of pure water (one

dilution cycle)? What is the concentration after two

cycles? after three cycles? after n cycles? [Answer:

(0.9)" drops/100 cm'.]

What is the number of cycles required to reduce

the concentration of approximately one-half of its

original concentration?

How many times would you have to repeat the

process to get rid of the dye completely?

CHAPTER 21 / STUDY GUIDE 653



ss



Isotopes

22.1 The concept of isotopes

22.2 Transformation rules

22.3 Direcjt evidence for isotopes of lead

22.4 Positive ravs

22.5 Separating isotopes

22.6 Summarv of a usefiil notation for nuclides; nuclear

reactions

22.7 The stable isotopes of the elements and their relative

abundances
22.8 Atomic masses

22.1.
I

The concept of isotopes

The discovery that there are three radioactive series, each

containing apparently new substances, created a serious

problem. In 1910, there were still some empty spaces in the

periodic table of the elements, but not enough spaces for the

many new substances. The periodic table represents an

arrangement of the elements according to their chemical

properties, and, if it could not include the radioactive elements,

it would have to be revised, perhaps in some drastic and
fundamental way.

The clue to the puzzle lay in the observation that some of the

newly found materials that were members of a radioactive series

have chemical properties identical to those of well-known

elements, although some of their physical properties are different.

A mass spectrograph

rate isotopes.

used to sepa-

SG 1
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For example, Uranium II, the "great-gianddaughtei " of Uranium
I, was found to have the same chemical properties as Uranium I

itself. When both were mixed together, the two could not be

separated by chemical means. No chemist has detected, by

chemical analysis, any difference between these two substances.

But the two substances, now known as uranium-238 and

uranium-234, do differ from each other in certain physical

properties. As Table 21-1 shows, uranium-238 and 234 have quite

different radioactive half-lives: 4.5 x 10^ years and 2.5 X 10'

years, respectively. The mass of a uranium-234 atom must be

smaller than that of a uranium-238 atom by the mass of one a

particle and two (3 particles. Another pair of radioactive

substances, radium B and radium G, were found to have the

same chemical properties as lead; when mixed with lead they

could not be separated from it by chemical means. These

substances are now known as lead-214 and lead-206, respectively.

Lead-214 is radioactive, and lead-206 is stable. Table 21-1

indicates that the atoms must differ from each other in mass by

the mass of two a particles and four (3 particles. There are many
other examples of such physical differences among two or more
radioactive substances with the same chemical behaxdor.

Soddy suggested a solution that threw a flood of light on the

nature of matter and on the lelationship of the elements in the

periodic table. He proposed that a chemical element could be

regarded as a pure substance only in the sense that all of its

atoms have the same chemical properties; that is, a chemical

element may in fact be a mi}cture of atoms ha\dng different

radioactive behiivior and different atomic masses, but all haxing

the same chemical properties. This idea meant that one of the

basic postulates of Dalton's atomic theory would have to be

changed, namely, the postulate that the atoms of a pure element

are alike in all respects. According to Soddy, it is only in

chemical properties that the atoms of a given element are

identical. The several physically different species of atoms

making up a particulai" element occupy the same place in the

periodic table, that is, have the same atomic number Z. Soddy

called them isotopes of the element, fiom the Greek isos and

topos, meaning same and place (same place in the periodic

table). Thus, uranium-238 and uranium-234 are isotopes of

uranium; lead-214 and lead-206 are isotopes of lead.

With this idea in mind, the many species of radioactive at(jms

in the thiee ladioactive series were soon shouai by chemical

analysis to be isotopes of one or anothei' of the last 11 elements

in the periodic table, from lead to uranium. For example, the

second and fifth members of the uranium series Isee Table 21-1)

were shown to be isotopes of thorium, with Z = 90; the 8th,

This shorthand notation is ex- 11th, and 14th members turned out to be isotopes of polonium

plained further on page (i65. (Z = 84). The old names and sxinliols gixen to the meiiilnMS of
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radioactive series upon their discovery were therefore rewritten

to represent both the chemical similarity and physical difference

among isotopes. The present names for uranium X, and ionium,

for example, are thorium-234 and thorium-230 (as shown in

Table 21-1). A modern "shorthand" form for symbolizing any

species of atom, or nuclide, is also given in the same table (for

example, goTh''"*^ and g(,Th^^° for two of the isotopes of thorium).

The subscript (90 in both cases for thorium) is the atomic

number Z, the place number in the periodic table; the

superscript (234 or 230) is the mass number A; the approximate

atomic mass in atomic mass units. Note that the chemical

symbol (such as Th) adds nothing to the information given by

the subscript.

1. Why was it not necessary, after all, to expand the periodic

table to fit in the newly discovered radioactive substances?

2. The symbol for the carbon-12 nuclide is ^C^^. What is the

approximate atomic mass of carbon-12 in atomic mass units?

What is its position in the list of elements (the atomic

number Z)?

22.2
I

Transformation rules

Two questions then arose: Hovv^ do changes in chemical nature

come about as an atom undergoes radioactive decay? More

specifically, what determines whether the atomic number Z
increases or decreases in a given radioactive transformation?

In 1913, the answers to these questions were given

independently by Soddy in England and by A. Fajans in

Germany. They each proposed two rules that systematized all

the relevant obseivations for natural radioactixaty. They are called

the transformation rules of radioactivity. Recall that by 1913

Rutherford's nuclear model of the atom was generally accepted.

Using this model, one could consider a radioactiv^e atom to have

an unstable nucleus that emits an a or |3 particle (sometimes

with emission of a 7 ray). Eveiy nucleus has a positive charge

Zq^,, where Z is the atomic number and q^. is the magnitude of

the charge of an electron. The nucleus is surrounded by Z
electrons that make the atom as a whole electrically neutral and

determine the chemical behaxdor of the atom. An a particle has

an atomic mass of about four units and a positive charge of tw^o

units, +2q^. A (3 particle has a negative charge of one unit, —
q^,

and very little mass compared to an a particle.

The transformation rules may now be stated as follows:

1. When a nucleus emits an a particle, the mass of the atom

decreases by four atomic mass units, and the atomic number Z

Frederick Soddy (1877-1956), an

English chemist, studied at O^ord
and went to Canada in 1899 to

work under Rutherford at McGill

University in Montreal. There the

two worked out their ey.planation

of radioactive decay. Soddy re-

turned to England in 1902 to work
with Sir William Ramsay, the dis-

coverer of the rare gases argon,

neon, krypton, and ^cenon. Ramsay
and Soddy showed, in 1903, that

helium was continuously produced
by naturally radioactive substances.

In 1921, Soddy was awarded the

Nobel Prize in chemistry for his

discovery of isotopes. He was a

professor of chemistry at 0}ford

from 1919 to 1936.
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ot the nucleus decreases by Uvo units; the resulting atom
belongs to an element tw^o spaces back in the periodic table.

2. When a nucleus emits a (3 particle, the mass of the atom is

changed very little, but the atomic number Z increases by one
unit; the resulting atom belongs to an element one place forward

in the pei'iodic table. When only a 7 ra\' is emitted, there is no

change in the number corresponding to the atomic mass, and
none in the atomic number. Table 21-1 shows how these rules

apply to the uranium-radium series, at least as far as the atomic

number is concerned.

The Rutherford-Bohr model of the atom helps to explain why
a change in chemical nature occurs as a result of a or p
emission. Emission of an a particle takes two positive charges

from the nucleus. I'he resulting new atom with its less positive

nucleus can hold in its outer shells two fewer electrons than

before, so two excess electrons drift away. The chemical behaxior

of atoms is controlled by the number of electrons; therefore, the

new atom acts chemically like an atom of an element with an

atomic number two units less than that of the parent atom. On
the other hand, in the case of (3 emission, the nucleus, and with

it the whole atom, becomes more positixely charged, by one unit.

The number of electrons that the atom can hold around the

nucleus has increased by one, and after it has picked up an extra

Example of a and (3 decay: electron to become neutral again, the atom acts chemically as

Pq2>« _^ PJ52" + cj
an atom wath an atomic number one unit greater than that of the

yj,Th'" -^ .„Pa"^^ + P atom before the radioactive change occurred.

By using the transfoi'mation rules, Soddy and Fajans were able

to determine the place in the periodic table for every one of the

substances (or nuclides) in the radioactive series; no revision of

the existing periodic table was needed. xMany of the nuclides

between Z = 82 (lead) and Z = 92 (uranium) are now known to

contain severed isotopes each. These results were expected from

the hypothesis of the existence of isotopes, but direct,

SG 2, 3 independent evidence was also sought and obtained in 1914.

• 3. By how many units does the mass of an atom change during

a decay? during (3 decay?

4. By how many units does the charge of a nucleus change

during a decay? during (3 decay?

5. What are the transformation rules of radioactivity? Give an

actual e^cample of how they apply. How do these rules follow

froin the Butherford-Bohr model of the atom?

22 ,3
I

Direct eiidence for isotopes of lead

Soddy knew that the stable end product of the uranium-radium
series had the chemical properties of lead and that the end
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product of the thorium series cdso had the chemical properties

of lead. But he realized that these end products should have

atomic masses different from that of ordinary lead (that is, lead

that was not produced from a radioactive series). This result

follows from a simple calculation of the change in mass as an

atom decays from the starting point of a radioactive series to the

end point. The calculation may be simplified by ignoring beta

decays in which no appreciable change in mass is involved.

In the uranium series, eight a particles, each with atomic mass

of four units, are emitted. Therefore, the end product of the

series starting from U^^" is expected to hav^e an atomic mass close

to 238 -(8X4) = 206 units. In the thorium series, the end

product derives from thorium-232, with an atomic mass of about

232 units, and six a particles are emitted along the way. It

should therefore have an atomic mass close to 232 — 16 X 4) =

208 units. The average atomic mass of ordinary lead, found

where there is no radioactive material evident, was known from

chemical analysis to be 207.2 units.

The lead extracted from the mineral thorite, which consists

mainly of thorium and contains only 1% or 2% by mass of

uranium, may be presumed to be the final product of the

thorium series. The atomic mass of lead extracted from thorite

should therefore be significantly different both from the atomic

mass of lead extracted from a uranium mineral, such as

pitchblende, and different from the atomic mass of ordinary lead.

Here was a quantitative prediction, built on the transformation

rules, that could be checked, and a number of chemists in

Scotland, France, Germany, Austria, and the United States

attacked the problem. The U.S. chemist T. W. Richards (later

recipient of a Noble Prize in chemistiy) found atomic masses as

low as 206.08 for samples of lead from ores rich in uranium.

Chemists in Austria found samples of lead, in the ore uraninite,

wdth an atomic mass of 206.04. Soddy and others found samples

of lead from thorite with atomic masses as high as 207.08 and

207.9. The results left no doubt that uranium was transformed

into a light isotope of lead, and thorium into a heavier isotope of

lead.

• 6. On what grounds was the e}iistence of different atomic

masses of lead predicted?

22 •4:
I

Positive rays

It was difficult to prove by independent, direct evidence that

stable elements may be mixtures of isotopes. By definition,

isotopes cannot be .s(>parated by ordinaiy chemical methods. Any

CHAPTER 22 / ISOTOPES

There are four naturally occurring

lead isotopes:

P5^o4
82

The first is found only as one of the

isotopes of "ordinary" lead. Pb'" is

also found as the end product of a

decay chain starting with actinium.

SG 13 involves the fact that the de-

cay of U^^" yields a distinct isotope

of lead.

(JAS !^3!P,r

y VACXHjM

C
JO M^ht

Discharge tube for producing a

beam of positive ions. The low-

pressure gas between anode and
cathode is ionized by the action of

the electric field. The positive ions

are accelerated bv the electric field

toward the cathode; some of them
do not fall on the plate but pass

through a small hole and enter the

well-evacuated region beyond, on

the right side. Here, an eternal

electric or magnetic field can be

applied.
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J. J. Thomson (1856-1940) at work
in the Cavendish laboratory.

attempt to separate a pair of isotopes must depend on a

difference in some behavior that depends, in turn, on the

difference between their atomic masses. Moreover, except for the

very lightest elements, the difference in atomic mass is small

compared to the atomic masses themselves. For the lead isotopes

discussed in the last section, the difference was only two units

in about 200 units, or about 1%. Any difference in a physical

property between two isotopes having such a small mass
difference would be expected to be very small, making separation

difficult to achieve. Fortunately, when the question of the

possible existence of isotopes of stable elements arose, a method
was available that could be adapted to answer the question. This

device, developed by J. J. Thomson in Great Britain and extended

by A. J. Dempster in the United States and others, depended on
the behavior of positively charged ions when these are traveling

in electric and magnetic fields.

In a cathode-ray tube, electrons emitted from the cathode can

knock electrons out of neutral atoms of gas with which they

collide. It was thought that the positive ions produced in this

way would accelerate toward the cathode and be neutralized

there. In 1886, the Gennan physicist Goldstein found that if a

hole is made in the cathode, a ray passes through the cathode

and emerges beyond it. The sketch in the margin I page 659) is a

schematic diagram of a discharge tube for producing such rays.

If the cathode fits the tube tightly, so that no gas can enter the

region behind it, and if the holes are so small that very little gas

can get through them, a high vacuum can be produced on the

right side, where the ray emerges. The ray then has quite a long

range and can be deflected by externally applied electric and

magnetic fields. From the direction of the deflection, it could be

concluded that the rays consist of positively charged particles.

The rays were therefore called "positive rays" and were thought

(correctly) to consist of positively charged ions of the atoms or

molecules of the gas in the left side of the discharge tube.

In this manner, Thomson prepared positive rays from different

gases and used the observed deflection produced by external

fields to detemiine the relative masses of the atoms of the gases.

It was a crucially important method, as you will see. Instead of

the details of Thomson's early apparatus, an improved type of

instrument based on the early form, and one that is still in

common use will be described in this section.

The modern instrument typically consists of two main parts:

The first part accelerates and then selects a beam of ions all

moving with the same speed; in the second part, these ions pass

through a magnetic field that deflects them from a straight path

into several different cuned paths detemiined by theii' relative

masses. Ions of different mass are thus separated to such an

extent that they can be detected separately. By analogy with the
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instrument that separates light of different wavelengths, the

instrument that separates ions of different masses was called a

mass spectrograph. Its operation (including how it can be used

to measure q/m of ions) is explained on page 663. The details

show what an ingenious and useful piece of equipment this is.

Thomson obtained results in his measurements of q/m for

positive rays that were quite different from those that had been

obtained for q/m of cathode-ray particles or (3 particles. Both the

speeds of the ions and values of q/m were found to be smaller

for gases with heavier molecules. These results were consistent

with the idea that the positive rays are streams of positively

ionized atoms or molecules.

Of course it would be very desirable if the values of q and m
could be determined separately. The magnitude of q must be a

multiple of the electron charge q^; that is, it can only be q^, or

2qfg, or 3q^, 4q^, etc. The greater the charge on an ion, the greater

the magnetic force will be and, therefore, the more curved the

path of the ions. In the apparatus shown on page 663, a doubly

ionized atom (an ion with charge +2qJ wdll follow a path with

half the radius of that of a singly ionized atom of similar type; a

triply ionized atom will trace out a semi-circular path with one-

third the radius, etc. Thus, for each type of atom analyzed, the

path with the largest radius will be that taken by the ions with

the single charge q^. Since q is therefore known for each of the

paths, the mass of the ions can be determined from the values of

q/m found for each path.

Thus, study of positive rays wdth the mass spectrograph made
it possible to measure for the first time the massesof individual

atoms. [With the electrolysis methods that had been available

befor (described in Sec. 17.7), it was possible to obtain only

average masses for very large numbers of atoms.] The uncertainty

of mass determinations made with modem mass spectrographs

can be less than one part in a hundred thousand, that is, less

than 0.001%. The difference in the masses of the isotopes of an

element is thus easily detected, because in no case is it less than

about 0.3%.

Some mass spectrometers are

portable; small ones similar to this

are carried aloft by rocket or bal-

loon for the analysis of the gases in

the upper atmosphere.

• 7. The radius of curvature of the path ofan ion beam in a

magnetic field depends on both the mass and speed of the

ions. How must a mass spectrograph be constructed to allow

separation of the ions in a beam by mass?

22*5
I

Separating isotopes

In Thomson's original instrument, the uncertainty in measured

mass of ions was about 1%, but this was small enough to permit
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Fnincis William Aston (1877-1945)

studied chemistn' at the Universit\'

of Birminghani. In 1910, he went

to Cambridge to work under J. J.

Thomson. Aston was awarded the

Nobel Prize in chemistry, in 1922,

for his work on isotopic mass de-

terminations with the mass spec-

trograph. In disagreement with

Rutherford, Aston pictured a future

in which the energy of the atom
would be tapped by humanity. In

his Nobel acceptance speech, he

also spoke of the dangers involved

in such a possibility. (Aston lived

just long enough, bv three months,

to learn of the explosion of the nu-

clear bombs.)

Two views of one ofAston s earlier

mass spectrographs. The electro-

magnet was used to deflect a beam
of charged atoms. Compare the

photo with the sketch on the oppo-

site page.

Thomson to make the first obseivation of separated isotopes. He
introduced a beam of neon ions from a discharge tube

containing chemically pure neon into his mass spectiograph.

The atomic mass of neon had been determined as 20.2 amu by

means of the usual chemical methods for determining the

atomic lor molecular! mass of a gas. At about the position on the

photographic plate where ions of atomic mass 20 were expected

to arrive, a dark line was observed when the plate was
developed. But, in addition, there was also present nearby a faint

line such as would indicate the presence of particles with atomic

mass 22. No chemical element of gaseous compound was known
which had this atomic or molecular mass. The presence of this

line suggested, therefore, that neon might be a mixture of two

isotopes, one vvdth atomic mass 20, and the other with atomic

mass 22. The average chemical mass 20.2 would result if neon

contained about 10 times as many atoms of atomic mass 20 as

those of atomic mass 22.

The tentative evidence from this physical experiment

indicating that neon has two isotopes was so intriguing that

Thomson's associate, F. W. Aston, looked for ways to strengthen

the case for the existence of isotopes. It was well known from

kinetic theoiy (see Sec. 11.51 that in a mixture of two gases with

different molecular masses, the average molecular kinetic energy

is the same for both. Therefore, the lighter molecules have a

highei' average speed than the heavier molecules and collide

more often with the walls of a container. If the mixture is

allowed to diffuse through a porous wall from one container into

another, the slower, heavier molecules are less likely to reach

and pass through the wall. The portion of the gas sample that

does not get through the wall will, therefore, contain more of the

heavier molecules than will the portion that does pass through

the wall.

Aston allowed part of a sample of chemically pure neon gas to

pass through such a wall. One pass accomplished only a slight

separation of the lighter and heavier molecules, so a portion of
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BEAM
ACCELERATOR

The direction of B' is into ttie

plane of the page.

PLPTE

OR ION ClJRKCN'T

!>trTFCTOR)

Close Upl^
The Moss Spectrograph

The magnetic separation of isotopes begins by
electrically charging the atoms of a sample of ma-
terial, for example, by means of an electric dis-

charge through a sample of gas. The resulting ions

are then further accelerated by means of the elec-

tric potential difference between the lower pair of

electrodes, and a beam emerges.

Before the different Isotopes in the beam are
separated, there is usually a preliminary stage that

allows only those ions with a certain velocity to pass
through. In one type, the ion beam initially enters
a region of crossed magnetic fields B and E, pro-

duced by current in coils and charged plates as
shown. There, each ion experiences a magnetic
force of magnitude qvB and an electric force of

magnitude qE. The magnetic and electric forces act

on an ion in opposite directions, and only for ions
of a certain speed will the forces be balanced, al-

lowing them to pass straight through the crossed
fields and the hole in the diaphragm below them.
For each of these ions, qvB = qE; so their speed
V = E/B. Because only ions with this speed in the
original direction remain in the beam, this portion

of the first part of the apparatus is called a velocity

selector.

The separation of isotopes in the beam is now
accomplished in another magnetic field of strength

B'. As the beam enters this field, the magnetic field

causes a centripetal force to act on each ion, de-
flecting it into a circular arc whose radius R de-
pends upon the ion's charge-to-mass ratio. That is,

qvB' = m\//R, and so q/m = v/B'R.

The divided beams of ions fall on either a pho-
tographic plate (in a mass spectrograph) or a sen-
sitive ion current detector (in a mass spectrometer),

allowing the radii R of their deflections to be cal-

culated from the geometry of the apparatus. Since
V, B', and R can be determined from measure-
ments, the charge-to-mass ratio of each beam of

ions can be calculated directly.

Because this method uses electric and magnetic
fields, it is called the electromagnetic method of

separation of isotopes.
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the gas which had passed through the wall was passed through

a porous wall again, with the same process repeated many times.

Aston measured the average atomic mass of each fraction of the

gas by density measurements and found values of 20.15 amu for

the fraction that had passed through the wall many times, and
20.28 units for the fraction that had been left behind in many
tries. The difference in average atomic mass indicated that the

neon was, indeed, a mixture of isotopes.

VACUUM
TUBE

An alternative representation of the

mass spectrograph used by Thom-
son and Aston to measure the

atomic weight of neon.

ION STREAM SENT
BY MAGNETIC FIELD
OF A MAGNET

LIGHTER IONS BENT
MORE SHARPLV

PM0r06<?APMIC
PLATE.

NEON lONSj FORN^EO BY AN
Elktron stkeaMj enter here

A photographic record of the mass
spectrum ofgermanium, showing

the isotopes of mass numbers 70,

72, 73, 74, and 76.

Even more impressive was the change in the relative intensities

of the tw^o traces (for atomic masses 20 and 22) in the mass
spectrograph. The line corresponding to ions vvdth 22 amu was
more prominent in the analysis of the fraction of the gas that

had been left behind, showing that this fraction was "enriched"

in atoms of mass 22. The optical emission spectiTim of the

enriched sample was the same as that of the original neon
sample, proving that no substance other than neon was present.

These results of separating isotopes at least partially by gas

diffusion encouraged Aston to improve the method of

determining the atomic masses of the isotopes of many elements

other than neon. Today, the nuinber and the atomic masses of

virtually all naturally found isotopes of the whole list of elements

have been determined. As an example, the figure below shows
the mass spectrograph record obtained for the element

germanium, indicating that this element has five isotopes. A
picture of this kind is called a mass spectrogram.

Both the electromagnetic method and the gas-diffusion

method of separating isotopes have been modified for large-scale

I III I
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applications. The electromagnetic method shown in principle

on page 663 is used by the Department of Energy to proxdde

samples of separated isotopes for research. The gas-diffusion

method used by Aston in achieving a small degree of separation

of the neon isotopes has been developed on an enormous scale

to separate the isotopes of uranium in connection vvath the

manufacture of nuclear bombs and the production of nuclear

power.

Ahhough the mass of a neutral
atom cannot be measured in a

mass spectrograph (why not?), it is

the custom to compute and list iso-

topic masses for neutral atoms,
based on the measurement of ions.

SG 5

8. What were three e}iperimental results that supported the

belief in the existence of two isotopes of neon?

9. Isotopes at a given speed are separated by the

electromagnetic method in a mass spectrograph because

more massive ions are deflected less than lighter ions going at

the same speed. Why are isotopes separated in diflusing

through a porous wall?

22mG
I

Summarv of a useful notation for
nuclides; nuclear reactions

It will be useful to summarize and recapitulate some ideas and

notations. Because of the existence of isotopes, it was no longer

possible to designate an atomic species only by means of the

atomic number Z. To distinguish among the isotopes of an

element some new symbols were introduced. One is the mass
number, A, defined as the whole number closest to the measured
atomic mass (see Table 22-1). For example, the lighter and

heavier isotopes of neon are characterized by the pairs of values.

Z ^ 10,A = 20 and Z = 10, /\ = 22. (An element that consists

of a single isotope can, of course, also be characterized by its Z
and A values.)

These values of Z and A are detemiined by the properties of

the atomic nucleus; according to the Rutheiford-Bohr model of

the atom, the atomic number Z is the magnitude of the positive

charge of the nucleus in elementary charge units. The mass
number /\ is very nearly equal to (but a bit less than) the atomic

mass of the nucleus because the total mass of the electrons

around the nucleus is very small compared to the mass of the

nucleus.

The term nuclide is used to denote an atomic species

characterized by particular values of Z and A. An isotope is then

one of a group of two or more nuclides, all having the same
atomic number Z but different mass numbeis A. A radioactive

atomic species is called a radioactive nuclide, or radionuclide for

short. A nuclide is usuallv denoted bv the chemical symbol with
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The current international conxen-

tion is to write both Z and A values

on the left: ^X. For purposes of clar-

ity in this introductory text, how-
ever; the former convention, pi.\ is

used.

There is also an antineutrino iv)

given off together with the (3 parti-

cle. The neutrino and antineutrino

are two particles that will be dis-

cussed briefly in Sec. 23.6. Z and A
are both zero for neutrinos and
gamma rays: ^v"; ^,7".

SG 6-9

a subscript at the lower loft gixing the atomic number and a

superscript at the upper right giving the mass number, hi the

symbol ^X^ for a certain nuclide, Z stands for the atomic number,

X stands for the chemical symbol, and A stands for the mass

number. For example, ^Be^ is the nuclide beryllium with atomic

number 4 and mass number 9; the symbols m^'e^" and ,„\."

represent the neon isotopes discussed above. The Z-value is the

same for all the isotopes of a given element (X), and so it is often

omitted, except when needed for balancing equations las you

will shortly see). Thus, you can write Ne"" for mi\'e^", or U"'" for

The introduction of the mass number and the symbol foi- a

nuclide makes it possible to represent radioactixe nut^litles in an

easy and consistent way las was done in Table 21-11. hi addition,

radioactive decay can be expressed by a simple "equation"

i-epresenting the changes that occur in the decay process. For

example, the first step in the uranium-radium series, namely, the

decay of uraniuni-238 into tliorium-234, may be written:

.u- „Th''^ + .He^

The symbol ^He^ stands for the helium nucleus (a particle); the

other two symbols represent the initial and final atomic nuclei,

each with the appropriate charge and mass number. The arrow

stands for "decays into." The "equation" represents a nuclear

reaction and is analogous to an equation tor a chemical reaction.

The atomic number s on the two sides of the equation must
balance because the electric charge of the nucleus must be

conserved: 92 = 90 + 2. Also, the mass numbers must balance

because of conservation of mass: 238 - 234 + 4.

For another example, in the table of the uranium-iadiuni

series, .joTh"* (tlior-iuni-234) decays by (3 emissitjn, becoming

,,,Pa"^^ (pr'otactinium-2341. Since a P particle (electron) has charge

—
q^, and has an extremely small mass, the symbol ,e" is used

for it. This (S-decay process may then be represented by the

equation:

rpi 234 ^ ri„234
' ~ ~

,Pa^ + .e" + ,.v

• 10. Write the complete symbol for the nuclide with atomic

mass 194 and atomic number 78. Of which clement is it an

isotope?

11. Complete the following equation for a decay. 'I'd! what law

or rule you relied on.

X ^ ^He^ + ^ ,X

12. In the same way, complete the following equation for p
decay:

I
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Chart of the known nuclides. Each
black square represents a stable,

natural nuclide. Each open square
represents a known, unstable nu-

clide, with only a small number
of these found naturally, the rest

being artificial. Note that all iso-

topes of a given elenient are found
in a vertical column centered on
the element's atomic number Z.

(As will be seen in the ne.Yf chap-

ter, the Z number is the number of
protons in the nucleus, and A-Z,
the difference between the atomic
mass and atomic number, is the

number of neutrons.)
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TABLE 22-1. RELATIVE NATURAL ABUNDANCES AND MASSES OF SOME NUCLIDES

The masses are given in atomic mass units (amu) based on ^C^ = 12.000000.

Element Chemical Symbol

Atomic
Number

(Zl

Mass
Number

(A)

Relative

Abundance
(%)

Mass of

Neutral Atom
(amu)

Hydrogen

Helium
Lithium

Beryllium

Carbon

Nitrogen

Oxygen

Neon

He
Li

Be
C

N

O

Ne

Aluminum



This is a photograph of the oscillo-

scope display of a high-resolution

mass spectrometer when both hy-

drogen and helium are present.

The high peak, on the left, indicates

the He' isotope of mass 3.016U30

amu. The other peak indicates H\
the e\tra-heaw hvdrogen isotope,

otherwise known as tritium, whose
mass is 3.016049 amu. The mass
difference between the tivo nu-

clides is therefore about two parts

in 300,000. This difference is easily

observable.

evident that naturally occurring nuclides with e\'en Z and even A
are much more numerous than those with any other

combination. Elements with even Z ha\'e, on the average, more
isotopes per element tiian do those with odd Z. Every theory of

the nucleus has to tiy to account for these regularities, which are

related to the stabilitv of atomic nuclei. Information of this kind

is analogous to ohseiAations of the positions of planets, to data

on chemical compounds, and to atomic spectra. All of these

provide material for the building of theories and models.

TABLE 22-2. SOME INTERESTING DATA CONCERNING NATURALLY
OCCURRING NUCLIDES

Number of Number of Nuclides

Stable

Elements Odd A Even A Total

Average No.

of Isotopes

per Element

Odd Z



the older chemical methods. Carbon forms an exceptional variety

of compounds, from light to veiy heavy, which can be used as

comparison standards in the mass spectrograph.

The results that have been obtained for the atomic masses of

some elements of special interest are listed in Table 22-1. Atomic

masses can be determined with great accuracy, and, when
expressed in atomic mass units, they all turn out to be veiy close

to integers. For each nuclide, the measured mass differs from an

integer by less than 0.06 amu. This result is known as Aston s

whole-number rule, and provides the justification for using the

mass number /\ in the symbol ^X^ for a nuclide or atom. As you

will see in the next chapter, the explanation or physical basis for

this rule is connected with the struicture of the nucleus.

• 16. What nuclide is the current standardfor atomic mass?

Whv has it been chosen?

Study
guide
1. The Project Physics learning materials

particularly appropriate for Chapter 22 include the

following Transparencies:

Radioactivity Displacement Rules

Mass Spectrometer

Chart of Nuclides

Nuclear Equations

2. Soddy's proposal of the existence of isotopes

meant that not all atoms of the same element are

identical. Explain why this proposal does not require

that the atoms of a given element show differences

in chemical behavior.

3. After Soddy's proposal of the existence of

isotopes, how could one go about determining

whether an apparently new element was really new
and should be given a separate place in the periodic

table , or was simply an isotope of an already known
element?

4. At the National Bureau of Standards, in 1932, 3.8

L of liquid hydrogen was evaporated slowly until only

about 1 g remained. This residue allowed the first

experimental check on the existence of the "heavy"

hydrogen isotope H\

(a) With the help of the kinetic theory of matter,

explain why the evaporation should leave in the

residue an increased concentration of the isotope of

greater atomic mass.

(b) Why should the evaporation method be especially

effective with hydrogen?

5. A mass spectrograph similar to that sketched on

page 672 causes singly charged ions of chlorine-37

to travel a semi-circular path and strike a

photographic plate (in the magnetic field at the

right). Use the equation on page 663 to answer the

following questions:

(a) Show that the path radius is proportional to the

ion mass.
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(b) If the path diameter for chlorine ions is about 1.0

m, how far apart will the traces of Cl' and Cl'' be

on the photographic plate?

(c) What would be the diameter of the orbit of lead-

208 ions if the same electric and magnetic field

intensities were used to analyze a sample of lead?

(d) The problems of maintaining a uniform magnetic

field over surfaces larger than 1 m"^ are considerable.

What separation between lead-207 and lead-208

would be achieved if the diameter of the orbit of

lead-208 were held to 1.000 m?

6. Supply the missing data indicated by these

transformation "equations":

(a) ,Pb''' -^ Bi'" + ?

(b) ,Bi'" -> + _,e"

(c) ? -> Pb'"" + ^He'

7. A radioactive series, origincdly called the

actinium series, is now known to start with the

uranium isotope ,,_,LJ'". This parent member
undergoes transmutations by emitting in succession

the following particles: a, p, a, p, a, a, a, a, (5, a,

p. The last of these disintegrations yields „,Pb~"',

which is stable. From this information, and by
consulting the periodic table, determine the

complete symbol for each member of the series. List

Ihe members of the series in a column, and bedside

each member give its mode of decay (similar to what
was done in Table 21-1).

8. In the following diagram of the thorium series,

which begins with ,,j,Th^", the symbols used are those

that were origincdly assigned to the members of the

sequence:

Supply the missing data; then, by consulting the

periodic table, replace the old symbols v\ith the

present ones. Indicate where alternative possibilities

exist in the series.

? ? ^

pRaTh^Z—^ pThX?/ > yln ' L. ^

Q4ThA^/ >. ?ThB?Z ^ pThC

The'?/ » ,,ThD^^6 (stable)84

9. From .^^PU''^', an isotope of plutonium produced

artificially by bombarding uranium in a nuclear

reactor, a radioactive series has been traced for

which the first seven members are g^Pu""', ^JKiTi"\

,,Np"', ,j,Pa"', ^JJ''\ 3oTh''', and ,„Ra'''. Outline the

disintegration series for these first seven members,
showing the modes of decay as in the preceding

question.

10. A trace of radioactivity found in natural carbon

makes it possible to estimate the age of materials

that were once living. The radioactivity of the carbon

is due to the presence of a small amount of the

unstable isotope, carbon- 14. This isotope is created

mainly in the upper atmosphere by transformation

(induced by cosmic rays) of the stable isotope

carbon-13 to carbon-14. The rate of production of

carbon- 14 from carbon-13 matc;hes the rate of P

decay of carbon-14 into nitrogen-14, so the

percentage of total carbon in the atmosphere

consisting of carbon-14 is relatively constant. When
carbon dioxidt; is used by plants in photosynthesis,

the cell incorporates the isotopes of carbon in the

same proportions as exist in the atmosphere. The

average activity of the carbon at that point is 15.3 P
emissions per minute per gram of carbon. When the

interaction of the living plant \\ ith th(! atmosphere

stops, for exiunple, wiien a branch is broken off a

living tree for use as a tool, the radioactivity begins
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so
to decrease at a rate characteristic of carbon-14. This

rate has been measured, and the half-life of carbon

is known to be 5,760 years. So if the activity is

measured at some later time and if the half-life of

carbon-14 is known, then one can use the decay

curve given on page 646 to determine the time

elapsed since the branch was taken from the tree.

For example, suppose the activity was found to have

dropped from the normal rate of 15.3 to 9.2 3
emissions per minute per gram of carbon. Knowing

the half-life, determine the time elapsed.

Use the same procedure to calculate the age of

charcoal found in an ancient Indian fire pit if the

activity of the carbon in the charcoal is now found to

be 1.0 P emission per minute per gram of carbon.

What assumption are you making in this part of the

problem?

11. (a) Find the average atomic mass of carbon by

calculating the "weighted average" of the atomic

masses of the two natural carbon isotopes. (Use the

data of Table 22-1.)

(b) Find the average atomic mass of lithium.

(c) Find the average atomic mass of ordinary lead.

la. The mass of a neutral helium atom is 4.00260

amu, and that of an electron is 0.00055 amu. From
these data find the mass of the a particle in atomic

mass units.

13. The age of a rock containing uranium can be

estimated by measuring the relative amount of U""

and Pb""*" in a sample of the rock. Consider a rock

sample that is found to contain three times as many
U"^* atoms as Pb^'"' atoms.

(a) What fraction of the U"^" contained in the sample

when it was formed has decayed, assuming there

was no Pb"™ in the rock initially?

(b) Refer to the graph on page 646 and estimate the

fraction of a half-life needed for that fraction of the

U"^" to decay.

(c) How old is the rock?

(d) For this simple method to work, it is necessary

to assume that each U"^" atom that decays appears as

a Pb"'"" atom, in other words, that the half-lives of

all the intermediate substances in the uranium chain

are negligible compared to that of U"^*. Is this

assumption a valid one?
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Probing the Mucleus
23.1 The problem of the structure of the atomic nucleus

23.2 The proton—electron hypothesis of nuclear structure

23.3 The discovert' of artificial transmutation

23.4 The discover*' of the neutron

23.5 The proton—neutron theort' of the composition of atomic

nuclei

23.6 The neutrino

23.7 The need for particle accelerators

23.8 Xuclear reactions

23.9 y\rtificiallv induced radioactivitv

SG 1

23.1
I

The problem of the structure of the
atomic nucleus

The discoveries of radioacti\dty and isotopes raised new
questions about the stixicture of atoms, questions that inxoh'ed

the atomic nucleus. You siiw in Sec. 22.2 that the transformation

rules of radioactivity could be understood in terms of the

Rutheiford-Bohr model of the atom. But that model said nothing

about the nucleus other than that it is small, has charge and

mass, and may emit an a or a p particle. This implies that the

nucleus has a structure that changes when a radioac:ti\e process

occurs. The question arose: Can a theoiy or model of the atomic

nucleus be developed that uall explain the facts of radioacti\ity

and the existence of isoto|ies.^

The answer to this question makes up much of nucleiir

physics. The problem of nuclear structure can be broken dow n
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into two question: 11) what are the building blocks of which the

nucleus is made, and (2) how are the nuclear building blocks put

together? Answers to the first question are considered in this

chapter. The next chapter uall take up the question of how the

nucleus is held together. The attempt to solve the problem of

nuclear stiucture, although not yet completed, has led to many
new basic discoveries and to large-scale practical applications. It

has also had important social and political consequences,

stretching far beyond physics into the life of society in general.

Some of these consequences will be discussed in Chapter 24.

Ernest O. Lawrence (left) and M. S.

Livingston (right) are shown stand-

ing beside the magnet for one of
the earliest cyclotrons. Lawrence
and Livingston invented the cvclo-

tron in 1931, thereby initiating the

development of high-energy physics

in the United States.

The Project Physics Supplemental
Unit A, entitled "Elementary Parti-

cles," goes one step further, into

the nature and structure of the

subatomic particles themselves.

23.2
I

The proton—electron hypothesis of
nuclear structure

The emission of a and (3 particles by radioactive nuclei suggested

that a model of the nucleus might be constructed by starting

with a and (3 particles as building blocks. Such a model would
make it easy to see, for example, how a number of a particles

could be emitted, in succession, in a radioactive series. But not

all nuclei are radioactive, nor do all nuclei have masses that are

SG 2
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"Proton" comes from the Greek
"protos" (first). It is not known who
suggested the name originally; it is

found in the literature as far back
as 1908. In 1920, Hutherfords for-

mal proposid of the name proton

was accepted by the British Asso-

ciation for the Advancement of Sci-

ence.

SG 3

Careful inspection of the modern
values of nuclide masses (page 669)

shows that nuclides can not be con-

sidered as simple conglomerates of

hydrogen and electrons.

multiples of the a-particle mass. For example, the nucleus of an

atom of the lightest element, hydrogen, with an atomic mass of

one unit Itwo units in the case of the heaxy isotopei, is too light

to contain an a particle; so is the light isotope of helium, ,He\

A positively charged particle with mass of one unit would
seem to be more satisfactory as a nuclear building block. Such a

particle does indeed exist: the nucleus of the common isotope

of hydrogen. This particle has been named the proton. According

to the Rutheiford-Bohr theory of atomic sti\icture, the hydrogen

atom consists of a proton with a single electron revolving

around it.

In the preceding chapter (Sec. 22.4), Aston s whole-number rule,

which expressed the experimental result that the atomic masses

of the nuclides are very close to whole numbers, was discussed.

This rule, together with the properties of the proton (for

example, its single positive charge) made it appear possible that

all atomic nuclei are made up of protons. Could a nucleus of

mass number y4 consist of A protons? If this were the case, the

charge of the nucleus would be A units, but, except for

hydrogen, the nuclear charge Z is found to be always less than A,

usually less than VzA. To get around this difficulty', it was

assumed that in addition to the protons, atomic nuclei contain

just enough electrons to cancel the charge of the extra protons;

that is, they were supposed to contain A—Z electrons. These

electrons would contribute only a small amount to the mass of

the nucleus, but together with the protons they would make the

net charge equal to +Z units, as required. It seemed plausible

to consider the atom as consisting of a nucleus made up of A
protons and A—Z electrons, with Z additional electrons outside

the nucleus to make the entire atom electrically neutr'al. For

example, an atom of „0"' would have a nucleus with 16 protons

and eight electrons, with eight additional electrons outside the

nucleus. This model of the nucleus is known as the proton-

electron hypothesis of nuclear composition.

The proton-electron hypothesis seemed to be consistent with

the emission of a and P particles by atoms of radioactixe

substances. Since it was assumed that the nucleus contained

electrons, explanation of P decay was no problem. When the

nucleus is in an appropriate state, it may simply eject one of its

electrons. It also seemed reasonable that an a particle could be

formed, in the nucleus, by the combination of four protons and

two electrons. (An a particle might exist already foriiKHl in the

nucleus, or it might be formed at the instant of emission.)

The proton-electron hvpothesis is similar to an earlier idea

suggested by the English physician William Piout in 1815. On the

basis of the small number of atomic masses then knoxvn, Prout

proposed that all atomic masses are multiples of the atomic

mass of hydrogen and that therefore all the elements might be
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built up of hydrogen. Prout's hypothesis was discarded when,

later in the nineteenth century, the atomic masses of some

elements were found to be fractional, in particular, those of

chlorine (35.46 units) and copper (63.54 units). With the discovery

of isotopes, however, it was realized that the ft actional atomic

masses of chlorine and copper, like that of neon, arse because

these elements are mi;<^tures of isotopes, with each separate

isotope having an atomic mass close to a whole number.

Although the proton-electron hypothesis was satisfactory in

some respects (for example, in accounting for the whole-number

rule for isotope masses and in being consistent wdth the

emission of a and P particles by radioactive nuclides) it led to

serious difficulties and had to be given up.

# 1. Why was the idea of hydrogen atoms being a basic building

block of all atoms given up in the nineteenth century?

2. On the basis of the proton-electron hypothesis, what would

a nucleus of JC^^ contain?

3. Does the proton-electron hypothesis work out for, say, Jtie*?

23.3
I

The discovery of artificial transmutation

A path that led to a better understanding of nuclear composition

was opened, almost by accident, in 1919. In that year, Rutherford

found that when nitrogen gas was bombarded uath a particles

from bismuth-214, swift particles were produced that could travel

farther in the gas than did the a particles themselves. When
these particles struck a scintillation screen, they produced

flashes of light fainter than those produced by a particles, about

the intensity that would be expected for positive hydrogen ions

(protons). Measurements of the effect of a magnetic field on the

paths of the particles suggested that they were indeed protons.

Rutherford ruled out, by means of careful experiments, the

possibility that the protons came from hydrogen present as an

impurity in the nitrogen. Since the nitrogen atoms in the gas

were the only possible source of protons, Rutherford concluded

that an a particle, in colliding with a nitrogen nucleus, can

occasionally knock a small particle (a proton) out of the nitrogen

nucleus. In other words, Rutherford deduced that an a particle

can cause the artificial disintegration of a nitrogen nucleus, uith

one of the products of the disintegration being a proton. But this

process does not happen easily. The experimental results

showed that only one proton was produced for about 1 million a

particles passing through the gas.

Between 1921 and 1924, Rutherford and Chadwick extended

the work on nitrogen to other elements and found evidence for

>w////^//w/w/ww/ww/www///>^/JM;

Diagram of Rutherford's apparatus

used to detect the protons from
disintegrations produced by parti-

cles. The a source was on a mova-

ble stand, D. Nitrogen nuclei in the

nitrogen gas that filled the bo^ are

transmuted by the a particles. At

the end of the bo}c was a piece of
silver foil, F, thick enough to stop

particles but not protons. Behind

the foil was a lead sulfide screen, S,

which would show flashes of light

when struck by protons. To see the

flashes, the screen had to be

watched through a microscope

with a dark-adapted eye.

tivcteoi
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The Wilson cloud chamber. When
the piston is moved down rapidly,

the gas in the cylinder cools and
becomes supersaturated with water

vapor. The water vapor will con-

dense on the ions created along

the path of a high-energ\' charged
particle, thereby nmking the track.

For his invention of the cloud

chamber, C. T. R. Wilson

(1869-1959) of Scotland shared the

1927 Nobel Prize in physics with

Arthur H. Compton. (See also page
692 margin.)

the artificial disintegration of all the light elements from boron to

potassium, with the exception of carbon and oxygen. (These

elements were later shown also to undergo artificial

disintegration.)

The next step was to determine the nature of the nuclear

process leading to the emission of the [iioton. Two hypotheses

were suggested for this process: la) the nucleus of the

bombarded atom loses a proton, "chipped off" as the result of a

collision with a swift a particle; or Ibl the a particle is captured

by the nucleus of the atom it hits, forming a new nucleus that, a

moment later, emits a proton. It was possible to distinguish

experimentally between these two possible cases by using a

device called a "cloud chamber," which reveals the path or track

of an individual charged particle. The cloud chamber was

invented by C. T. R. Wilson and perfected by him oxer a period of

years. In 1911, it became a major scientific instrument; a

simplified diagram is shown at the left. If hypothesis (a) holds,

the chipped-off proton should create four tracks in a photograph

of a disintegration event: the track of an a particle before the

collision, the track of the same a particle after collision, and the

tracks of both the proton and the recoiling nucleus after

collision. In case (b), on the other hand, the a particle should

disappear in the collision, and only three tracks would be seen:

that of the a particle before collision and those of the proton and

recoil nucleus after the collision. The choice between the two

possibilities was settled in 1925 when P. M. S. Blackett studied

the tracks produced when particles passed through nitrogen gas

in a cloud chamber. He found, as shown in the photograph below,

Alpha-particle tracks from a

source at the left, in a cloud cham-
ber filled with nitrogen gas. At the

far right, one a particle has hit a

nitrogen nucleus; a proton is

ejected upward toward the left, and
the resulting os.ygen nucleus re-

coils downward to the right. (From
P. M. S. Blackett, 1925.)
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that the only tracks in which artificial disintegration could be

seen were those of the incident a particle, a proton, and the

recoil nucleus. The absence of a track corresponding to the

presence of an a particle after the collision proved that the a

particle disappeared completely and that case (b) is the correct

interpretation of artificial disintegration.

The process in which an a particle is absorbed by a nitrogen

nucleus and a proton is emitted may be represented by an

"equation" that is analogous to the representation used near the

end of Sec. 22.6 to represent radioactive decay. The equation

expresses the fact that the total mass number is the same before

and after the collision (that is, there is conservation of mass

number! and the fact that the total charge is the same before and

after the collision (there is conservation of charge). The atomic

number, the mass number, and the nuclear charge are known for

the target nucleus _N^^, for the incident a particle ^He^, and for

the proton ^H\ The product nucleus will therefore have the

atomic number 7 + 2 — 1 = 8 (which is the atomic number for

oxygen) and will have the mass number 14 + 4 — 1 = 17.

Therefore, the product nucleus must be ^O^', an isotope of

oxygen. The disintegration process may therefore be represented

by the nuclear reaction:

,He' + ,N'^ -> ,0'' + jH'

This reaction shows that a transmutation of an atom of one

chemical element into an atom of another chemical element has

taken place. The transmutation did not occur spontaneously, as

it does inthe case of natural radioactixity; it was produced by

exposing target atoms (nuclei) to projectiles emitted from a

radioactive nuclide. In the paper in which he reported this first

artificially produced nuciear reaction, Rutherford said:

The results as a whole suggest that, if a particles—or similar

projectiles—of still greater energy were available for experiment,

we might expect to break down the nuclear structure of many
of the lighter atoms.

The further study of reactions involving light nuclei led (as you

will see in the next section) to the discovery of a new particle,

the neutron, and to a better theoiy of the constitution of the

nucleus. Many types of reactions have been observed with nuclei

of all masses, from the lightest to the heaxaest, and the

possibilities indicated by Rutherford have been realized to an

extent far beyond what he would have imagined in 1919.

®X

SG4

This call for greater energies of
"projectiles" was soon answered by
the construction of accelerators.

(See Sec. 23.7.)

• 4. What evidence showed that the bombarding a particle was

temporarily absorbed by the nitrogen nucleus rather than

simply broken up and bounced off?
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James Chadwick (born 1891) re-

ceived the Nobel Prize in physics

in 1935 for his discovery of the

neutron.

23.4r
I

The discover*' of the neutron

In 1920; Rutherford suggested that a proton inside the nucleus

might have an electron tied to it so closely as to form a neutial

particle. Rutherford even suggested the name neutron for this

hypothetical particle. Physicists looked for neutrons, but the

search presented at least two difficulties: (1) they could find no

naturally occurring neutron-emitting materials; and (21 the

methods used for detecting atomic particles all depended on

effects of the electric charge of the particles and so could not be

applied directly to neutral particles. Until 1932, the search for

neutrons was unsuccessful.

The proof of the existence of neutrons came in 1932 as the

climax of a series of experiments on nuclear reactions made by

physicists in different countries. The discovery of the neutron

is a good example of how physicists operate, how they think

about problems and arrive at solutions; it is an excellent "case

history" in experimental science. Working in Germany in 1930, W.

G. Bothe and H. Becker found that when samples of boron or of

beiyllium were bombarded with a particles, they emitted

radiations that appeared to be of the same kind as 7 rays, at least

insofar as the 7 rays had no electric charge. Beryllium gave a

particularly marked effect of this kind. Observations by physicists

in Germany, France, and Great Britain showed that the radiation

from the beryllium penetrated farther (through lead, for example)

than any 7 radiation found up to that time and had an energy

of about 10 MeV. The radiation was thus much more energetic

than the 7 rays (that is, high-energy photons) previously observed

and, as a result, aroused much interest.

Among those who investigated this radiation were the French

physicists Frederic Joliot and his wife Irene Curie, a daughter of

the discoverers of radium. They studied the absoiption of the

radiation in paraffin, a material rich in hydrogen. In the course of

their experiments, Joliot and Curie found that the radiation from

beiyllium, when it fell on paraffin, ejected large numbers of

hydrogen nuclei (protons) from the paraffin. The energies of

these protons were found to be about 5 MeV. Using the

principles of conseivation of momentum and energy, they

calculated the energy a 7 ray would need if it were to transfer 5

MeV to a proton in a collision. The result was about 50 MeV, a

value much greater than the 10 MeV that had been measured for

the radiation. In addition, the number of protons produced was

found to be much greater than that predicted on the assumption

that the radiation consisted of 7 rays.

These discrepancies (between the results of two sets of

experiments and between theoiy and experiment 1 left physicists

in a dilemma. Either they could conclude that the consenation

principles of momentum and of energy did not apply to the
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collisions between the radiation and the protons in the paraffin,

or they could adopt another hypothesis about the nature of the

radiation. Now, if there is any one thing physicists do not want

to do it is to give up the principles of conservation of momentum
and of energy. These principles are so basic to scientific thought

and have proven so useful thiit physicists tried very hard to find

an alternative to giving them up.

The English physicist James Chadwick found similarly

perplexing results for recoiling nuclei from several other light

elements, including helium, lithium, carbon, nitrogen, and argon.

In 1932, Chadwick proposed a successful alternative hypothesis

about the nature of the radiation. Chadwick's first published

report of his hy|30thesis is reproduced on the next page. In a

later, more complete paper, "The Existence of a Neutron, " he

said:

If we suppose that the radiation is not a quantum radiation [7

ray], but consists of particles of mass very nearly equal to that

of the proton, all the difficulties connected with the collisions

disappear, both with regard to their frequency and to the

energy transfers to different masses. In order to explain the

great penetrating power of the radiation, we must further

assume that the particle has no net charge. We must suppose it

to consist of a proton and electron in close combination, the

'neutron' discussed by Rutherford in liis Bakerian Lecture of

1920.

Thus, according to Chadudck's hypothesis, when an element

such as beryllium is bombarded with a particles, a nuclear

reaction can take place that produces neutrons:

,He' + ,Be' ,.C" +

Here, the symbol (,n' represents the neutron postulated by

Chadwick, with zero charge and mass number equal to 1. Such

neutrons, because they have no electric charge, could penetrate

bricks of a material as dense as lead without giving up their

energy. When neutrons go thi^ough paraffin, theie would
occasionally be head-on collisions with hydrogen nuclei

(protons). The recoiling protons could then be observed because

of the ionization they produce. Thus, Chadwack's chargeless

particle hypothesis could account in a qualitative way for the

observed effects of the mysteriously penetrating radiation.

Chadwick's estimate that the particle's mass must be nearly

equal to the mass of a proton was made by applying the laws of

conservation of momentum and energy to the case of perfectly

elastic collisions, that is, simply applying the laws that worked
well for the case of interacting billiard balls and other objects

treated in "classical" physics. In a perfectly elastic head-on

collision between two bodies, as you saw in Chapter 9, almost all

®-

SG 5, 6

pc,y-A^(ni

Paraffin wa}c contains 14 hydrocar-

bon compounds ranging from

CHAPTER 23 / PROBING THE NUCLEUS 681



312 NATURE [February 27, 1932

Letters to the Editor

[The Editor does not hold himself responsible for
opinions expressed by his correspondents. Neither

can he undertake to return, nor to correspond with

the urriters of, rejected manuscripts intended for this

or any other part of Natlke. So notice is taken

of anonymous communicatiot\s .]

Possible Existence of a Neutron

It has been shown by Bothe and others that
beryllium when bombarded by a-partirles of polonium
emit-s a radiation of great penetrating power, which
has an absorj)tion coefficient in leA<l of aboutO 3 (cm.)*.
Recently Mme. Curie-Joliot and M. Joliot found,
when inea.surinp the ionisation produced by this

ber\lliuin radiation in a v(*i.sel with a thin window,
that the ionisation increased when matter containing
hydrogen was placed in front of the window. The
effect appeared to be due to the ejection of protons
with velocities \ip to a maximum of nearly 3 x 10* cm.
per sec. They su>:tztv<t«»<l that the transference of

enerery to the pn)toii wti-s by a proce.s.s similar to the
Compton effect, and Rstirnatcxl that the beryllium radia-

tion had a (juantum energy of 50 x 10' electron volts.

I have made some exf)eriments using the valve
counter to examine the properties of this ra<liation

excite<l in beryllium. The valve counter consists of

a small ionisation chamber connected to an amplifier,

and the sudden pr<»duction of ions by the entry of a
particle, svich as a proton or a-p)article, is recorded
by the deflexion of an oscillograph. These exp>eri-

ments liave shown that the radiation ejects particles

from liydrogen, helium, lithium, berj-llium, carbon,
air, and argon. The particles ejected from hydrogen
behave, as regards range and ionising power, like

protons with speeds up to about 3-2 x 10* cm. per sec.

The particles from the other elements have a large
ionising power, and appear t« be in each case recoil

atoms of the elements.
If we ascribe the ejection of the proton to a Compton

recoil from a quantum of 52 x 10« electron volts,

then the nitrogen recoil atom arising by a similar
proces.s should have an energv' not greater than about
400,000 volts, should produce not more than about
10,000 ions, and have a range in air at N.T.P. of
about 1-3 mm. Actually, some of the recoil atoms
in nitrogen produce at least 30,000 ions. In col-

laboration with Dr. Feather, I have observed the
recoil atoms in an expansion chamber, and their
range, estimate*! visually, was sometimes as much
as 3 mill, at N.T.I'.

Thase results, and others I have obtained in the
course of the v/ork, are very difficult to explain on
the assumption that the radiation from beryllium
is a quantum radiation, if energy and momentum
are to be conserved in the collisions. The difficulties
di.sappear, however, if it be assumed that the radia-
tion consists of particles of mass 1 and charge 0, or
neutrons. The capture of the a-particle by the
Be* nucleus may be supposed to result in the
formation of a C'^ nucleus and the emi.ssion of the
neutron. From the energy- relations of this process
the velocity of the neutron emitted in the forward
direction may well be about 3 x 10» cm. per sec.
The collisions of this neutron with the atoms through
which it passes give rise to the recoil atoms, and the
observed energies of the recoil atoms are in fair
agreement with this view. Moreover, I have ob-
served that the protons ejected from hydrogen by the
radiation emitt€<i in the opposite direction to that of
the exciting a-particle appear to have a much smaller
range than those eject^xl by the forward ra<iiation.

No. 3252, Vol. 129]

This again receives a simple explanation on the
neutron hypothesis.

If it be supposed that the radiation consists of
quanta, then the capture of the a-particle by the
Be* nucleus will form a C* nucleus. The mass
defect of C" is known with sufficient accuracy to

show that the energy of the quantum emitted in this

process cannot be greater than about 14 x 10* volts.

It is difficult to make such a quantum responsible
for the effects observed.

It is to bo expected that many of the effects of a
neutron in passing through matter should res(>rnble

those of a (juantum of high energy, and it is not easy
to reach the final decision between the two hypo-
theses. I'p to the present, all the evidence is in

favour of the neutron, while the quantum hypothesis
can only be upheld if the conservation of energy and
momentum be relinquished at some point.

J. Chadwick.
Cavendish Laboratory,
Cambridge, Feb. 17.

Chadwick s first publication of the

"neutron hypothesis' to esplain the

Joliot-Curie experimental results.



of the kinetic energy of the initially mo\dng body will be

transferred to the initially stationary body only if the bodies have

approximately equal masses. In collisions that are not precisely

head-on, less kinetic energy will be transferred. Therefore, on the

average, a kinetic energy of about 5 MeV for the recoiling protons

would be about right for collisions produced by neutrons with

energies about 10 MeV, if the neutron and proton masses were

approximately equal.

Chadwdck was able to make a more precise calculation of the

neutron's mass by applying the conservation laws to data on

collisions vvdth nuclei of different masses; the details of the

derivation are shown on page 686. Chadwick found the mass of

the neutron to be 1.16 amu. The difficulties of measuring the

kinetic energies of the recoiling nuclei made this only an

approximate value, but it was good enough to show that the

neutron has a mass very close to that of the proton; thus,

Chadwdck's hypothesis did indeed offer a satisfactory solution to

the problem of the "radiation " emitted when beiyllium or boron

was bombarded wdth particles.

Much research has been done since 1932 on the properties of

neutrons and on the interactions between neutrons and atoms.

An entire branch of study called neutron physics has been

developed. Neutron physics deals with the production of

neutrons, their detection, and their interaction vvath atomic

nuclei and with matter in bulk. This research has led, among
other things, to the discovery of nuclear fission, to be discussed

in Chapter 24.

As explained in Sec. 14.8, the elec-

tron volt (eV) is a unit of energy.

IkeV = lO'eV

iMeV = lO'eV

iBeV = lO'eV

SG 7, 8

The best methods now available for

determining the neutron mass give

1.008665 amu (based on the scale

C" = 12 exactly).

5. Why could the penetrating radiation from bombarded
beryllium not be considered 7 rays?

6. Why did the mass of a neutron have to be found by

measurements on protons ejected by the neutrons in collision?

7. How could the principles of conservation discussed in Unit

3 be used to find the mass of the neutron?

2i3*S
I

The proton—neutron theory ofthe
composition of atomic nuclei

The discovery of the neutron, with an atomic mass close to one

unit and wdth no electric charge, confimied Rutherford's

suggestion that the atomic nucleus is made up of protons and
neutrons. This hypothesis w^as soon used as the basis of a

detailed theory of the nucleus by Heisenberg in 1932 and is still

the basis of attempts to describe the properties and structure of

the nucleus. According to the proton-neutron hypothesis, the

/ ©

Me

'^' m>

f>ro'ton

oL- pariicle
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nucleus of an atom ha\ing atomic number Z and mass number /\

consists of Z protons and A-Z neutrons. The nuclei of the

isotopes of a given element differ only in the number of neutrons

they contain. Thus, the nucleus of the hydrogen isotope of mass
number 1 contains one proton; the nucleus of the hydrogen

isotope of mass number 2 contains one proton and one neutron.

(That nucleus is called a deuteron.) The nucleus of the neon

isotope Ne"'" contains 10 protons and 10 neutrons, while that of

Ne*^" contains 10 protons and 12 neutrons. The atomic number Z
identified with the charge on the nucleus, is the number of

protons in the nucleus. The mass number /\ is the total number
of protons and neutrons. If the tenn nucleons refers to both

kinds of nuclear particles, then A is simply the number of

nucleons.

SG 9, 10 Is the proton-neutron hypothesis for the structure of nuclei

fully consistent with the facts of radioacti\it\', such as a and (3

emission and the transformation rules? If two protons and two

neutrons could combine, the resulting particle would have Z = 2

and A = 4, just the properties of the a particle. The emission of

two protons and two neutrons I in the combined form of an a

particle) would be consistent with the first transfomiation njle of

radioactivitA'. IThe a particle might exist as such in the nucleus,

or it might be foimed at the instant of emission; the latter

possibility is now considered more likely. I But if the nucleus

consists of protons and neutrons, where could a P particle come
from? This question is more difficult to answer than that of the

origin of an a particle. The second transfomiation njle of

radioactivity provides a clue: When a nucleus emits a (3 particle,

its charge Z increases by one unit while its mass number A
remains unchanged. This would happen if a neutron were to

change into a proton and a P particle.

This idea was not a return to the proton-electron hypothesis

discussed in Sec. 23.2. Physicists had already come to the

conclusion that electrons are not present in the nucleus, so P
decay was not considered to be a simple separation of a proton

and electron; it would have to be a transformation of a neutron

that created a proton and electron. However, there were

additional experimental data that raised difficulties for such a

simple transformation idea.

P
8. According to the proton-neutron theory of the nucleus,

what is in the nucleus of .N^*?

9. Describe an ordinary helium atom in terms of the three

elementary particles: the proton, the neutron, and (outside the

nucleus! the electron.

10. If nuclei do not contain p particles, how can P emission be

explained?
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23.6 The neutrino

The description of 3 decay in terms of the transformation of a

neutron in the nucleus is part of one of the most fascinating

stories in modern physics: the prediction and eventual discovery

of the particles called the neutrino and the antineutrino

.

Quantitative studies of the energy relations in (B decay during the

1920's and 1930's raised a difficult and serious question. Methods
were devised for determining the energy change in a nucleus

during (3 decay. According to the principle of conservation of

energy, the energy lost by the nucleus should be equal to the

energy carried off by the P particle, but the kinetic energy of the

P particles had a whole range of measured values, all smaller

than the amount of energy lost by the nucleus. Some of the

energy lost by the nucleus seemed to have disappeared.

Measurements made on a large number of p-emitters indicated

that on the average about two thirds of the energy lost by the p-

decaying nuclei seemed to disappear. Attempts to find the

missing energy failed. For example, some physicists thought that

the missing energy might be carried off by 7 rays, but no such

7 rays could be detected experimentally. The principle of

conservation of energy seemed to be violated in P decay. Similar

discrepancies were found in measurements of the momentum
of the emitted electron and the recoiling nucleus.

As in the case of the experiments that led to the discovery of

the neutron, physicists tried very hard to find an alternative to

accepting the failure of the principles of conservation of energy

and momentum. The Austrian physicist Wolfgang Pauli suggested

in 1933 that another, hitherto unnoticed, particle is emitted in P
decay along with the electron and that this particle carries off

the missing energy and momentum. This hypothetical particle

could have no electric charge, because the positive charge of the

proton and the negative charge of the P particle together are

equal to the zero charge of the original neutron. The
mass-energy balance in the decay of the neutron indicated that

the rest mass of the hypothetical particle should be very small,

much smaller than the mass of an electron and possibly even

zero. The combination of zero electric charge and zero or nearly

zero mass would make the particle extremely hard to detect.

The Italian physicist Enrico Fermi called the suggested particle

the neutrino ("little neutral one" in Italian). In 1934, Fermi

constructed a theory of P decay based on Pauli's suggestion. This

theory has been successful in describing the known facts of P
decay. From 1934 on, the neutrino was accepted as a "real"

particle for two reasons, both theoretical: It saved the principle of

conservation of energy in p decay, and it could be used

successfully both to describe the results of experiments in p
decay and to predict the results of new experiments.

®

P2
.1

It is now known that a free neu-
tron, that is, a neutron separated

from an atom, sooner or later de-

cays into a proton, an electron, and
a neutrino. (The half-life of a beam
of free neutrons has been mea-
sured to be 12 min.)
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Close Upl 1
Determining the Neutron's Moss

n_ ^r\ Vo

Ml

PAItAFFIN

(a) The sketch above represents an elastic col-

lision of a neutron (n) and a proton (p). If it were a

head-on collision, the neutron would rebound straight

back and the proton would be seen to emerge
along the same line. To determine the mass of the

neutron, m,,, you may use the principles of conser-

vation of kinetic energy and conservation of mo-

mentum, which provide two algebraic equations

that must both hold. The case is particularly simple

if you consider a perfectly elastic head-on collision.

As shown at the right, an expression for the pro-

ton's recoil speed v' can be derived by combining

the equations algebraically (solving the momentum
equation for v^, substituting the resulting expression

for v' in the energy equation, expanding, collecting

terms, and solving for v). However, this expression

includes the term v„, the neutron's initial speed,

which cannot be measured directly. You can elim-

inate v^ from the equation by analyzing another col-

lision and combining the results with what you al-

ready have.

(b) The sketch above represents a perfectly elas-

tic collision between a neutron (n) and a nitrogen

nucleus (N). When the collision is head-on, you can

write energy and momentum equations similar to

what you wrote before, but this time leading to an

expression for the recoil speed of tfie nitrogen nu-

cleus, v'. . This expression also includes the un-

measurable quantity v^.

CONSERVATION OP EWERGY

CONSeRVATiOM OF MOMENTUM

T
v; =

i

MpVp+ MnVp = 2Mn Vp

2MnVn
\/p =

Mpt-Mp

CONSERVATION OF EKJERC5Y

IfJ

CONSERVATION OF MOMEMTUM

2MnVn

Vp _ M^j+Mn

'^N



Many unsuccessful attempts were made to capture neutrinos

over a period of 25 years. Finally, in 1956, neutrinos were

detected in an experiment using the extremely large flow of

neutrinos that comes out of a nuclear reactor (see Chapter 24).

The detection of neutrinos is an indirect process that involves

detecting the products of a reaction provoked by a neutrino. The

reaction used was a reverse (3 decay, the production of a proton

from a neutron. Because the proper meeting of a proton, an

electron, and a neutrino at the same place and same time is an

exceedingly unlikely event, and the resulting neutron difficult to

detect, "catching" the neutrinos required a very elaborate and

sensitive trap. (See photo at the right.) Again the faith of

physicists in the principle of conservation of energy was justified.

There is one more complication. It is now known that there

are several kinds of neutrinos. The one involved in (3 decay (as

discussed so far) is now referred to as an antineutrino and is

denoted by the symbol v. The transformation of a neutron during

P emission is then vvritten:

oH^^^p^ + _,e'' + V

11. Why was an almost undetectable particle invented to patch

up the theory of (3 decay?

23.T
I

The need for particle accelerators

Up to 1932, the study of nuclear reactions was limited by the

kind of projectile that could be used to bombard nuclei. Only a

particles from the naturally radioactive nuclides could bring

about reactions. Progress was limited because a particles could

be obtained only in beams of lou' intensity and with fairly low

kinetic energies. These relatively low-energy particles could

produce transmutations only in light elements. When heavier

elements are bombarded with a particles, the repulsive electric

force exerted by the greater charge of the heavy nucleus on an a

particle makes it difficult for the a particle to reach the nucleus.

The probability of a nuclear reaction taking place becomes very

small or zero. Because the interest in nuclear reactions was
great, physicists in many countries sought methods of increasing

the energy of charged particles to be used as projectiles.

There were advantages to be gained in working with particles

like the proton or the deuteron (the nucleus of the deuterium

or heavy hydrogen atom) that have only one positive charge.

Having only a single charge, these particles would experience

smaller repulsive electric forces than would a particles in the

neighborhood of a nucleus and thus would be more successful

The first detection of neutrinos was
in this tank. Reactions provoked
by neutrinos cause flashes of light

in the liquid with which the tank

is filled. The flashes are detected

by the photoelectric tubes that

stud the tank wall. This work was
done by two American physicists,

Clyde Cowan and Frederick Heines.

Chapter 4 of Project Physics Sup-

plemental Unit B, "Discoveries in

Physics, " discusses the story of the

neutrino in much more detail.

I he proton accelerator at Fermi-

lab, where the d.G-BeV "Upsilon"

particle was discovered.
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A Van de Graaffgenerator, built on
a vertical a,xis.

SG 16

in getting close enough to produce transmutations, even of heavy

land therefore high-charge I target nuclei. Protons or deuterons

could he ohtained horn positive-ray tubes, but their energies

u'ere rather low. Some device was needed to accelerate these

particles to higher energies, as Rutheiford was among the first to

say I see page 686). Such devices might also offer other

advantages. The speed land energy) of the bombarding particles

could be controlled by the experimenter, and very intense

projectile beams might be obtained. It would then be possible to

find how nuclear reactions depend on the energy of the

bombarding particles.

Since 1930, many dexaces for accelerating charged particles

have been invented and developed. In each case, the particles

used (electrons, protons, deuterons, a particles, or heavy ions)

are accelerated by an electric field. In some cases, a magnetic

field is used to control the path of particles, that is, to steer

them. The simplest type has a single high-voltage step. These

machines cannot be practically operated above about 10 million

volts, so they cannot be used to increase electron or proton

energies above about 10 MeV.

Another type has a long series of low-voltage steps applied as

the particle travels in a straight line. Some of these machines

produce electron energies up to 20 GeV (1 GeV = 10^ eV, and
used to be v\Titten also as 1 BeV). A third general type uses

niiignetic fields to hold the particles in a circular path, returning

them over and over to the same low-voltage accelerating fields.

The first machine of this type was the cyclotron (see the

photograph on page 675). Other circular types are illustrated on
pages 690 and 691. Some of these accelerators produce 7 GeV
electrons or 500 GeV protons. Accelerators producing 1,000 GeV
(1 TeV) will soon be in operation. Accelerators have become basic

tools for research in nuclear and high-energy physics; the way
they operate and the way a topical experiment was actually done
are the subject of the two Project Physics films, "Synchrotron,"

and 'People and Particles." Accelerators also are used in the

production of radioactive isotopes and serve as radiation sources

for medical and industrial purposes.

Table 22-3 summarizes the major types of particle accelerators

now being used or planned. One of the most powerful is a 500-

GeV particle accelerator now in operation at the National

Accelerator Laboratory (Fer-milab) in Batavia, Illinois. Such

"machines" are among the most complex and grandiose

strTictures ever built. Irndeed, they are monuments to human
imagination and ingenuity, the abilitv' to reason and to

collaborate in groups on peacefirl projects that further the

understanding of nature. Basically, the "machines" are tools to

help physicists find out as much as they can about the stnjctur'e

of rTirclear particles and the for-ces holding them together-.
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TABLE 22-3. MAJOR TYPES OF PARTICLE ACCELERATORS

Type Principle of Operation Maximum Energy Particles Notes and Examples of Use

Once-Through Acceleration

Cockcroft-



Close Upl
Accelerators

Research into the nature of matter has disclosed

the structure of the atom and the atomic nucleus.

Current research is focused on the particles that

make up the nucleus. f\/latter responds to four dif-

ferent types of force: (1) the strong force, (2) the

electromagnetic force, (3) the weak force, and (4)

the gravitational force. By observing how particles

react when influenced by these forces, scientists

have discovered the existence of many new and

bizarre particles with properties like "charm" and

"color." The discovery of these particles has only

become possible through the use of particle accel-

erators of increasingly higher energy. The first ac-

celerator was built by E. O. Lawrence in 1930. Par-

ticle physics research in the United States is carried

on at Brookhaven National Laboratory, the Stanford

Linear Accelerator Center, Argonne National Lab-

oratory, and the Fermi National Accelerator Labo-

ratory. In Europe, the most powerful accelerators

are at CERN in Geneva, Switzerland, and near Ser-

pukhov in the Soviet Union. Probing the nature of

matter is an international endeavor. For example,

scientists from over 20 countries participate in re-

search at Fermilab.

The photos on these two pages show facilities at

Brookhaven (shown below) and Fermilab (oppo-

site, bottom).

EXPERIMENTAL AREAS

_ FOR ISABELLE

CRYOGENIC
WING

ACCELERATOR WERV'CE BUILDING

CONTROl X^ COMPLEX
WING &
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The top photograph shows C. T. H.

Wilson's cloud chamber. (See also

page 678.) The middle photograph
shows particle tracks in a cloud

chamber. (The positively and nega-

tively charged ions had separated

before the cloud was formed, so
the track shows up as two vertical

streaks.) In the bottom photograph,

high voltages between the plates

in a spark chamber cause sparks

tojump along the ionized trails left

by high-energy charged particles.

another. These particles are grouped into "families" according to

their properties. Most of these particles exist onl\' briefly; tvpical

lifetimes are of the order of 10 "* sec or less. A whole new field,

high-energy physics, has evolved, and the aim of the high-energy

physicist of today is to discern the order and stmc^tiire behind

the large number of "elementaiy" particles that have been

discovered.

How do physicists detect these particles? A number of

methods by which physicists can obseive and measure

radioactive emissions have already been mentioned. They

include the electroscope and the electrometer employed since

the early days of radioactivity, the Geiger counter Isee Sec. 19.3),

and the Wilson cloud chamber. In addition, various types of

ionization chambers, scintillation counters, photographic

emulsions, semiconductor devices, spark chambei's, and bubble

chambers (some of which are displayed on pages 694 and 695)

are also in use. One of the supplemental units in the Project

Physics course, entitled "Elementaiy Particles," describes in detail

the de\ices and the discoveries made with them.

• 12. Why can lo\v-cnerg\^ a particles cause transmutations only

in nuclei of relatively small atomic number':'

13. Why are protons more effective projectiles for producing

nuclear reactions than are a particles or hea\y ions?

14. What are some of the devices for producing high-energy

particles to be used as projectiles? What are some devices for

detecting nuclear reactions induced by such projectiles?

23*8
I

Nuclear reactions

The development of the cyclotron and other particle accelerators

led to great ad\'ances in the study of nuclear reactions. Xearly

all of the stable nuclides have now been bombarded vvdth

protons, deuterons, a particles, neutrons, and 7 rays, and

hundreds of nuclear reactions have been examined. Examples of

reactions induced by a particles and protons have already been

discussed.

Since the first knomi alchemical writings during the third or

fourth centuries a.d., and throughout the historical de\'elopment

of chemistiy, the di^am of transmuting materials (usually into

gold) has always haunted some people. In most nuclear

reactions, one element is indeed changed into another; in a

sense the ancient di-eam of the alchemist has come tiaie, but it is

unlikely to make a foitune for anyone. It is possible to transmute

various elements into gold, but such transfonnations are, of

course, completch' different, both in method and purpose, fioni
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the attempts of the ancient alchemists. (Moreover, they are all

entirely uneconomical methods for "making gold.")

Gold has only one stable isotope found in nature, ^gAu"'; other

gold isotopes can be made, but are radioactive. Two types of

nuclear reactions induced by deuterons both result in the stable

isotope of gold:

+ .He"

+ .n'

In both cases, an accelerator is needed to produce high-energy

deuterons; in bombarding a mercury isotope, a particles are

produced in addition to the desired gold. In bombarding

platinum, neutrons are produced in addition to the gold.

The last reaction, in which a neutron was produced, is an

example of reactions that have become especially important

because of the usefulness of the neutrons. Neutrons can be

produced when nuclei are bombarded with protons, deuterons,

or a particles, as in the reactions:

^Ni^**



Close UpI
Bubble Chambers

Below left: The tiny bubble chamber
(only 3 cm long) invented by D. A.

Glaser in 1952. (Note the particle

track.) Glaser was 26 at the time of his

invention of the bubble chamber and
was later awarded the Nobel Prize.

Below right: The 4.5-m bubble
chamber at the Fermi National

Accelerator Laboratory. High-energy

particles from the accelerator enter the

chamber from the nght. The particles

interact with liquid hydrogen in the

chamber to form tracks, which are

photographed by seven cameras in the

top of the chamber.

The bubble chamber photo on the

opposite page was taken in a 25-cm
liquid-hydrogen bubble chamber at the

Lawrence Radiation Laboratory of the

University of California. The chamber is

also shown on the opposite page
(below, left) with the liquid-nitrogen

shield removed. The accompanying
diagram (below, nght) gives some of

the details of the bubble chamber and
its auxiliary equipment.



The bubble chamber photo at the left

Illustrates one of the major discoveries of

modern physics, the interconversion of

energy and matter (discussed in Chapter

20). The diagram at the right shows the

significant tracks recorded in the photo. In

the upper left of the diagram, an

electron-positron pair is formed by a

gamma ray (not visible in bubble chamber
pictures) interacting with a hydrogen

nucleus. (The discovery of positrons is

described briefly on page 697.) An applied

magnetic field causes the electron and the

positron to be deflected in opposite

directions. (In what direction was the

magnetic field?) In the lower left of the

diagram, a gamma ray forms another

electron-positron pair; the additional

electron (third track, upward) was knocked

out of a hydrogen atom during this process.
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SG 11

SG 12

Irene Curie and F. JuUut in their

laboratory. They were married in

1926. In 1935, they shared the No-

bel Prize for chemistry.

Note that since there is no change in the atomic number, the

element here remains the same. An isotope of the target nucleus

is produced with a mass number greater by one unit than that

of the target nucleus. The new nucleus so produced has more
energ\' than it needs to be stiible and is said to be produced in

an "excited state. " The nucleus returns to its lowest energy state

by emitting one or more y rays.

Some nuclei can also undergo reactions when bombarded with

7 rays; an example (for illustration's sake, once again resulting

in gold) is the reaction:

7 + «oHg' ..Au- +

In this case, the energy of the 7 ray excites the mercury target

nucleus, which becomes unstable, ejects a proton, and thereby

becomes a gold nucleus.

The amount of gold that can be produced by the above

reaction is very small; these reactions are simply illustrations of

some typical ai-tificial transmutations. The examples given barely

suggest the rich variety of such reactions that have been

observed. The products of these reactions may change as the

energy of the bombarding particles changes. Nuclear reactions

are important, not only because they indicate an ability to

produce new nuclides, but also because they provide important

data about nuclear stnicture. A model of nuclear stnjcture, to

be successful, must enable physicists to predict the results of

these nuclear reactions, just as a successful model of atomic

structure must allow chemists to predict the results of chemical

reactions.

15. What property of neutrons makes them particularly useful

for producing nuclear reactions?

16. Complete the following equation for a nuclear reaction:

,H' ,n + M

23•S
I

Artificially induced radioactivity

The discussion of nuclear reactions has hinted at another

interesting discovery. In the last section, you saw that the

capture of a neutron by p3latinum-196 results in platinum-197

and the emission of a 7 ray. As listed in Table 22-1, six diffei'ent

isotopes of platinum are found in nature, but platinum-197 is not

among these. The question arises: Is platinum-197, produced by

neutron capture, stable? The answer is no; it is radioactixe and

decays by the emission of a P particle to gold- 197 (the only stable

gold isotope I:
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„pt^ ,,^u"' + _,e" + V

The half-life of platinum-197 is 20 hr.

The production of radioactive platinum-197 in a nuclear

reaction is an example of artificially induced radioactivity. This

phenomenon was discovered in 1934 by Irene Curie and F. Joliot.

They were studying the effects of a particles on the nuclei of

light elements. When they bombarded boron, magnesium, and
cduminum with a particles from polonium, they obseiA^ed the

immediate ejection of protons and neutrons from the bombarded
nuclei, as expected. But, in addition to these particles, positive

electrons, or positrons, also were obseived to be emitted. The
positron is a particle whose mass is the same as that of the

electron, and whose charge has the same magnitude but

opposite sign to that of the electron.

The positron had been discovered by the American physicist

C. D. Anderson in 1932 while studying cosmic rays. (Cosmic rays

are highly penetrating radiations which originate outside the

earth and consist of protons, electrons, neutrons, photons, and
other particles.) Employing a cloud chamber situated in a

magnetic field, Anderson obseived some tracks which, judged by
the density of ionization along the track, could have been
produced only by high-speed particles havang the same mass
and magnitude of charge as an electron; but the curvature was
opposite in direction to that of the high-speed electron tracks.

Anderson concluded that the particles producing them must
have been positively charged electrons, to which the name
positron was given (symbol (3^, or ,e°).

In the Joliot-Curie experiment, the production of positrons

along with neutrons as a result of the bombardment of a light

element with a a particles seemed to indicate that a new type of

nuclear reaction was occurring. Further experiments by this

couple showed that the light-element targets continued to emit

positrons, even after the source of the a particles had been

removed. When the rate of emission of the positrons was plotted

against time elapsed since removal of the a-particle source,

curves for each target were obtained that were similar to the

curves obtained in natural P radioactivity. (The half-life of the

emitter was found to be 2.5 min.) The results seemed to show
that an initially stable nuclide had been changed into a

radioactive one. In the case of the bombardment of i^Al"' by a
particles, which produced neutrons as well as a new radioactive

material, a nuclear reaction would produce a nuclide of mass
number 30 (

= 27 + 4 - 1) and atomic number 15 ( = 13 -I- 2 -

0), an isotope of phosphorus. The reaction would be:

,3A1^^ + ,He^ ^ „n* + ,,P^''

Curie and Joliot ran chemical separations similar to those

made in the study of the naturallv radioactive elements and

One of the earliest records of a

"shower" of electrons and posi-

trons; it shows their tracks curving

in opposite directions in a strong

magnetic field. The shower was

caused by cosmic rays and was re-

corded in a Wilson cloud chamber
taken to an altitude of 4.3 km.
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Spectrum ofy rays emittedfrom a

human hair after it had been ir-

radiated by neutrons. The peaks in

intensity are created by activated

metals normally present in hair in

minute amounts. Because everyone

has a slightly different hair spec-

trum, activation analysis is a useful

identification tool. By the same
technique, the composition of most
other objects can be determined.

Among the various modes of decay

of artificial radioactive nuclides are

a, P - P ' 7 emissions and capture

of an orliital electron by the nu-

cleus.

100

60

z
Ui

? 40

20

5O£>l0M-2^

0.2 0.4 O.fo 0.8 I.O 1.2 1.4

showed that the target, after bombardment, indeed contained a

small amount of phosphonjs and an isotope that was
radioactive. Phosphorus occurs in nature only as jgP"; no isotope

of phosphorus with mass number 30 had ever been found to

occur naturally. It was reasonable to suppose that if P*" u^ere

made in a nuclear reaction, it would not be stable but

radioactive. If it decayed by emission of a positron, that reaction

would be expressed in the folIov\ing manner:

PJO f • ^l)
I

u
I

,.,Si + ,e + V

where i^Si"*" is a knowTi isotope of silicon, ,0" represents a

positron, and v is a neutrino.

This kind of decay implies that a proton in the nucleus may be

transformed into a neutron that remains in the nucleus, a

positron that is emitted, and a neutrino:

iP ,n' + .e" + V (within the nucleus)

In sum; after the discovery that the bombardment of light

nuclides by a particles could lead to radioactive products, it was

found that nuclear reactions induced by protons, deuterons,

neutrons, and photons could also result in radioacti\e products.

As in the case of the natural radionuclides, an artificial

radionuclide can be characterized by its half-life and the type of

radiation it emits. When the products of nuclear reactions are

radioactive, they can be traced in chemical separations by means

of their characteristic half-lives or deca\' products, rrhey cannot

be traced chemically because veiy small amounts are inxoKed,

often less than 1 millionth of a grani.i The spei-ial branch of
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chemistry that deals with the separation and identification of the

radioactive products of nuclear reactions is called radiochemistry

and has become an impoitant part of nuclear science. The
breadth of this field is indicated by the fact that since 1935 about

1,200 artificially radioactive nuclides have been made and
identified, many of which are in use in research and industry. SG 13-16

17. Complete the following equation for a positive p decay:

.N' y + y
How many neutrons and protons were there in the nitrogen

nucleus before decay? How many in the resulting product

nucleus afterward?

Study
guide

1. The Project Physics learning materials

particularly appropriate for Chapter 23 include the

foUowing:

Activity

Neutron Detection Problem Analogue

Film Loop
Collisions With an Object of Unknown Mass

Films

People and Particles

Synchrotron

2. Why would it be difficult to explain the nucleus

of ^,U''^' as a mixture of alpha particles and electrons?

3. On the basis of the proton-electron hypothesis

of nuclear composition, how many protons would
you expect to find in the ^,U"" nucleus? How many
electrons?

4. Complete the following nuclear equations:

(a) 3B" + ^He' ^ ( ) + ,H'

(b) „Na'' + ,He' ^ ( ) + ,H'

(c) ^/d" + ^He -^ { ) + ^H'

(d) ( ) + ^He" -^ ,XP + ,rf

(e) ( ) + ,He' -^ ,„Ca'' + ^H'

5. Complete the foUowing nuclear equations:

(a) ^Lf + ,H' -» ^He' + ( )

(b) ,Be' + ,H' -^ ^He' + ( )

(c) ,Be' + ,H' ^ ( ) + ,H'

(d) 3B'' + ,He' -^ .N'"* + ( )

6. Complete the following nuclear equations

(consult the periodic table of elements for the atomic

numbers of indicated nuclides):

(a) Al^'



sg
7. (a) Elxplain briefly why the maximum speed

gained by nitrogen nuclei in ("ollisions with neutrons

is roughly 10 times less than that gained by hydrogen

nuclei in collisions with neutrons.

(b) VXliere in this course was the physics needed for

this problem first developed?

». One major disadvantage of indirect methods of

measurement is that the exjjerimental uncertainty is

often larger. If Chadwick had measured a maximum
speed of 3.4 x lO' cm/sec for hydrogen nuclei (a

change of only 3% ) and 4.7 x lo" cmsec for nitrogen

nuclei (no change), what would be the calculated

mass of the neutron? By what percentage would the

calculated mass of the neutron change because of

the 3% shift in the speed measurement?

9. Copy the following table in your notebook and

indicate the mass number /\, the atomic number Z,

the number of protons, and the number of neutrons

for each of the nuclei.

Number of

Protons

Number of

Neutrons

10. How many electrons are there in a neutnil atom
of

(a) platinum-196?

(b) gold-198?

(c) mercury-198?

(d) mercury-199?

11. Complete the following nuclear equations:

(a) „i\a'' + ,H' ^ ,H' + ( )

(b) „Na" +y-^ y + ( )

(c) „Mg" + „n' -^ _H' + ( )

(d) .^Ig"" + ,H' ^ ^He' + ( )

What aspect of nuclear reactions do these equations

illustrate?

IZ. Describe the following reactions in words:

,^" + „n' ^ .Mg^' + ,H'

.^Mg""-^ ^/d" + _^e" + V + y (T^., = 9.5 min)

13. It is often necessary to infer information in the

absence of direct evidence. Thus, when a hiker

following the tracks of a rabbit in the snow finds that

the tracks suddenly stop with no e\idence of other

tracks or of hiding places, the hiker may infer

something about the possible presence of owls or

eagles.

The bubble chamber photograph below shows,

iuiiong other things, the tracks of two nuclear

particles that originate or terminate at a point in the

lower center. Describe interactions that might occur

at that point in terms of your knowledge of the law

of conservation of momentum.

14. How may the disco\'er\' of artificially radioactive

nuclides have helped the development of theories

of nuclear structure?

15. If you have seen one or more of the films

"S\Tichrotron, " "People and Particles," and The

World of Enrico Fermi," write an essay on either:
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(a) the way research teams work together in modern
high-energy physics;

(b) the reasons why some parts of modern
experimental physics require large "machines" to do

research; or

(c) why in many major countries millions of dollars

of public money are appropriated to buUd and run

these machines.

16. Compare the mass of a neutral helium atom
with the sum of the masses of four hydrogen nuclei

plus two electrons outside (to get a neutral helium

atom). What conclusions do you draw?

17. Activity: Neutron Detection Problem Analogue

(Chadwick's Problem). It is impossible to determine

both the mass and the velocity of a neutron from

_:1
s:^-

^#

4/

measurements of the mass and the final velocity of a

target particle that the neutron has hit. To help you

understand this, try the following:

Set up an inclined groove on a table as shown in

the diagram. Let a small baU bearing roU part way
down the groove, hitting the larger target ball and

knocking it off the table. Note the point where the

target ball strikes the floor. Now use another smaller

ball as the projectUe. Can you adjust the point of

release untU the target ball strikes the same spot on

the floor as it did when you used tlie large projectile?

If so, then two different combinations of mass and

velocity for the projectile cause the same velocity

of the target ball. Are there more combinations of

mass and velocity of the target ball? Are there more
combinations of mass and velocity of the "neutron"

that will give the same result?

Now repeat the ex|3eriment, but this time have the

same projectUe collide in turn with two different

target balls of different masses, and measure the

velocities of the targets.

Use these velocity values to calculate the mass of

the incoming neutron. (Hint: Refer to Sec. 23.4. You

need only the ratio of the final velocities achieved

by the different targets; therefore, you can use the

ratio of the two distances measured along the floor

from directly below the edge of the table, since they

are directly proportional to the velocities.) See also

Film Loop 48.
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Muclear Energy: Muclear Forces
Conservation of ener^' in nuclear reactions

The ener^' of nucleiir binding

Nuclecir binding energt' and stability'

The mas.s—energi' balance in nucle«ir reactions

Nuclear fission: discovert'

Xuclear fission: controlling chain reactions

Xuclear fission: liu'ge-scale energ^' release and some of its

consequences
Nucleiu* fusion

Fusion reactions in st.u's

The strength of nuclear forces

The liquid-drop nuclear model
The shell model
Biologic.d and medical applications of nucleiu^ phji'sics

SG 1

In both kinds of chemical reac-

tions, the sniiill amount of energy
that may be required to trigger the

reaction is neglected.

24•!
I

Conservation of energy in nuclear
reactions

In the discussion of nuclear reactions in the last chapter-, the

emphasis was on the transformations of nuclei and on the

properties of the nuclides formed. But there is another property

of these reactions that is important, that is, the ahsorption or-

release of energy.

You know that in some chemical reactions energ\/ must be

supplied fr-om th(^ outside to keef:) the reat-tion going, while in

others energx' is liberated. Ihe formation of water- from owgen
and hydrogen is an example of a reaction in which enei^gv is
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liberated; the reaction between these two gases is usually violent,

and heat is given off. Therefore, the water that is fonned has less

energy than did the substances of which the water is made. On
the other hand, when water is decomposed by electrolysis,

electrical energy must be supplied by passing a current through

the water, and the products of the reaction, the oxygen and

hydrogen liberated, have more energy than the water.

Nuclear reactions, too, may absorb energy or liberate energy.

One main reason for the interest in nuclear reactions is the fact

that the amount of energy absorbed or liberated per nucleus

involved can be greater by a factor of 1 million or more than the

amount involved per atom in a chemical reaction. Nuclear fission

and nuclear fusion (discussed later in this chapter) are two

special kinds of nuclear reactions in which the energy release is

exceptionally large; these types of reactions are therefore

important in industrial and militaiy applications.

Since there is an equivalence between mass and energy, a large

release of energy in a nuclear reaction will be accompanied by

corresponding changes in the total rest mass of the interacting

nuclei. Therefore, the relation E — inc~ plays an important part

in interpreting nuclear reactions.

In this chapter, you will examine the mass and energy

relations in nuclear reactions. This study vdll show how some of

the ideas and experimental infomiation of the last three chapters

are linked together.

It would be a good idea to reread

Sec. 20.1 in Unit 5, to review the

relativistic relationship of mass and
energy. Two important ideas for

this chapter are: lal tlie mass of a

moving body is greater than the

rest mass by KE/&, and (b) a body
at rest has an energy of mf\

# 1. Is energy always liberated in a nuclear reaction?

24r«2
I

The energy of nuclear binding

The concepts of atomic and nuclear structure, that is, that an

iitom consists of a nucleus surrounded by electrons and that the

nucleus is made up of protons and neutrons, led to a

fundamental question: Is the mass of a neutral atom equal to the

sum of the masses of the protons, neutrons, and electrons that

make up the neutral atom? This question can be answered

precisely because the masses of the proton, the neutron, and the

electron are known, as are the masses of nearly all the atomic

species. A survey of the known atomic masses shows that, for

each kind of atom, the atomic mass is always less than the sum
of the masses of the constituent particles in their free states. The

simplest atom containing at least one proton, one neutron, and

one electron is deuterium, |H"; in this case, the masses are:

rest mass of one proton = 1.007276 amu
rest mass of one neutron = 1.008665

rest mass of one (orbiting) electron = 0.000549

As early as 1927, Aston concluded
from his measurements with a mass
spectrograph that when two light

nuclei combine to form a heavier

one, the new nucleus weiglis less

tlian the sum of the original ones.
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The energy equivalent of 1 atomic

mass unit:

1 amu = 1.66 x 10 "kg

AE = ^mc^
= (1.66 X 10 ''kg)

X (3 X lO^m/sec)'

= 14.9 X 10 " J

But 1 MeV = 1.60 x 10 '' J

14.9 X 10 " J
^E =

1.6 X 10"J/MeV
= 931 MeV

SG 2

HELIUM
NUCLEUS

TWO PfiOTONS

AND TWO MEL/TROWS^

ALL SEPARATE

A case where the whole seems to

be not equal to the sum of its

parts. Two protons and two neu-

trons, measured separately, are

distinctly heavier than a helium nu-

cleus, which consists of the same
particles, but are close together.

The energy associated with the

separate particles explains the dif-

ference.

total rest mass of constituent

particles in free state

rest mass of deuterium atom
difference (Am)

= 2.016490 amu
= 2.014102 amu
= 0.002388 amu

Although the difference in rest mass, Aah, may appear small, it

corresponds to a significant energy difference, because of the

factor c^ in the relation E — mc^. The difference Am in mass

corresponds to the difference A£ in energy according to the

relation: AE = Amc^. A convenient conversion factor from atomic

mass (expressed in atomic mass units! to energv (expressed in

million electron voltsi is, as shouai in the margin, 1 amu = 931

MeV. If you therefore consider the fonnation of a deuterium

atom when a proton and a neutron combine (and are joined by a

tiny electron), then an amount of mass 0.002388 amu will have

to be "lost" in the process. This means that an amount of energy

equal to 0.002388 amu x 931 MeV/amu = 2.22 MeV has to be

radiated away from this system of combining particles before

they settle dowm as a deuterium atom.

The expected energ\' loss calculated from the difference in rest

mass can be compared with the result of a direct experiment.

When hydrogen is bombarded wdth neutrons, a neutron can be

captured in the reaction:

.n' + ,H^ + 7

This reaction produces no particle fragments having large kinetic

energy, so the mass of 0.002388 amu by which ,H' is lighter than

^n' + ,H' must be carried away by the 7 ray. The energ\' of the

y ray has been determined experimentally and found to be 2.22

MeV, just as predicted! The inverse reaction, in which deuterium

is bombarded vAth 7 rays, has also been studied:

,H^ H'

When the energy of the 7 rays is less than 2.22 MeV, this reaction

cannot occur. But if 7 rays of energv 2.22 MeV or greater ai^e

used, the reaction does occur; the proton and neutron separate

and can be detected.

Following the "capture" of a neutron by the nucleus ,H\

energy is liberated in a 7 ray. This energy (2.22 MeV) is called the

binding energy of the deuteron. It can be thought of as the

energv released when a proton and neutron combine to form a

nucleus. To get the inverse reaction (when ,H' is bombarded
with 7 rays), energy must be absorbed. So you can think of the

binding energv as the amount of energ\' needed to bieak the

nucleus up into its constituent nuclear particles.

The concept of binding energy, of course, applies to all

situations in v\'hich simple parts are bound together by some
force to form a complex swstem. For example, the eaith is held in

orbit around the sun and would need to be gi\en a cei'tain

704 UNIT 6 / THE \UCLEUS



additional amount of kinetic energy to escape from the sun,

which binds it by gravitational attraction. In a hydrogen atom,

the electron needs 13 eV before it can escape fi om the nucleus

that binds it by an electric attraction. Conversely, when a bare

jH' nucleus captures an electron and becomes a stable, ordinary

neutral atom of hydrogen, the system must give up an amount
of energy equal to 13 eV by radiation, exactly the observed energy

of the photon emitted in this process of electron capture.

However, only the nuclear binding energies are relatively large

enough to represent measureable mass differences.

2. When energy is "liberated" during a nuclear reaction, what

becomes of it:'

3. What is the definition of binding energy fijr the case of the

deuteron nucleus?

24:,3
I

Nuclear binding energy and stability

The calculation of nuclear binding energy made for deuterium

can be extended to all other nuclear species, but it is first

necessaiy to explain a convention. In practice, physicists make
such calculations for neutral atoms rather than for bare atomic

nuclei. (Experimental values of masses found from mass-

spectrographic measurements are for atoms that are missing

only one or two electrons.) Since an atom contains electrons

orbiting around the nucleus as well as the protons and neutrons

inside the nucleus, the mass of one electron outside the nucleus

must be included for every proton inside the nucleus in the

calculations.

The follovvdng example illustrates the calculations done to find

the nuclear binding energy of an atom. Compare the actual mass
of a carbon-12 atom udth the sum of the masses of its

component particles:

rest mass of six hydrogen

atoms (includes six protons

and electrons)

rest mass of six neutrons

total rest mass of particles

rest mass of carbon-12 atom
difference in rest mass (Am)

corresponding energy =

0.09894 amu

6 X 1.007825



Notice the unusually high position

(above the curve) of the dot near 7.1

MeV, compared to its neighbors.

The point is for He\ The relatixely

high value of the binding energy of

their nucleus is related to its un-

usually great stability.

The average binding energy per
nucleon for stable nuclei as a func-
tion of the number ofparticles in

the nucleus.

graphic fonn how the nuclear binding energy for stable nuclides

actually increases with increasing atomic mass, as more particles

are added to form the nucleus. The term nuclcons refers to both

protons and neutrons; therefore, the binding energy of the

nucleus increases with the number of nucleons. But, as you see,

the result is not a straight line. Such experimental data have

important implications.

The implications can be seen more clearly if the average

binding energy per particle is calculated. In the case of the

carbon-12 example, the total binding energy is 92.1 MeV. Since

there are 12 particles inside the nucleus (six protons and six

neutrons), the average binding energ>' per particle is 92.1 MeV/12
or 7.68 MeV. In the graph below, the values of average binding

energ\' per particle (MeV) are plotted against the number of

particles in the nucleus (mass number, A). The significance of the

graph lies in its striking shape.
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Remember: High binding energy
per particle means a great deal of

energy needed per particle to take

the nucleus apart into its constitu-

ent nucleons.

Note that the binding energv per particle starts with a low

value for deuterium (the firet point) and then increases rapidh'.

Some nuclei in the early part of the curve, for example, He^, C'*^,

and 0'*", have exceptionally high xaiues as compared with their

neighbors. More energy would have to be supplied to remove a

particle from one of them than from one of their neighbors. You
would therefore expect He', C'~, and O"' to be exceptionally

stable. There is evidence in favor of this conclusion, for example,

the fact that the four particles making up the He' nucleus are

emitted as a single unit, the a particle, in radioactixity. The curve

has a broad maximum, extending from approximately /\ = 50 to

A — 90, and then drops off for the heaw elements. Thus, 2<,Cu"

neai' the maximum is found to ha\e a binding cMiergx' per jjaiticle
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of about 8.75 MeV, while ^^U'^^ near the high-/\ end of the cuive,

has a value of 7.61 MeV. It follows that the nuclei in the

neighborhood of the maximum of the curve, like those of copper,

should be more difficult to break up than those of uranium.

The idea of binding energy should now make it clear why
atomic masses, when precisely measured, are not exactly whole-

number multiples of the mass of a hydrogen atom, even though

nuclei are just collections of identical protons and neutrons.

When those particles combined to make a nucleus, their total

rest mass was reduced by an amount corresponding to the

binding energy, and the average binding energy varies from

nuclide to nuclide, as shown in the graph on page 706.

With the infomiation you now have about the nuclear binding

energy, you wall be able to calculate and predict the energy

needed for or released in nuclear reactions. (The average binding

energy cuwe has other important implications which vvdll be

mentioned later.)

4. Which would be more stable, a nuclide with a high total

binding energy or a nuclide with a high average binding energy

per nucleon?

24r«4
I

The mass—energ[v balance in nuclear
reactions

In the previous section, a very simple nuclear reaction was used

to introduce the concept of binding energy. In this section, a

more complicated reaction wall show an important relation

between the binding energy and the energy liberated in a

nuclear reaction.

The mass-energy balance in the reaction of a proton with

lithium-7 udll be analyzed here:

,He' +,H' + .Li' ^He"

This reaction has historiccd interest; it was the first case of a

nuclear disintegration brought about by artificially accelerated

particles. The analysis of the reaction provided one of the earliest

quantitative tests of Einstein's mass-energy relation. The reaction

was a good one to analyze because the masses of the proton, the

a particle, and the lithium atom were known, and the kinetic

energies of the incoming proton and the two resulting a particles

could be measured accurately (by their ionizing effects).

rest mass of Li" atom = 7.016005 amu
rest mass of H' atom = 1.007825 amu

rest mass of He^ atom = 4.002604 amu

REST MASSES

Before

Li' 7.016005 amu
H' 1.007825 amu

8.023830 amu

After

He' 4.002604 amu
He' 4.002604 amu

8.005208 amu

Difference

8.023830 amu
- 8.005208 amu

Am = 0.018622 amu
0.018622 amu X 931 MeV/amu

= 17.3 MeV
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The energy to be released in the reaction may he calculated by

finding the difference in rest masses before and after the nuclear

reaction takes place. The rest mass of the products is less by

0.018622 amu than the rest mass of the initial atoms,

corresponding to a deficit of 17.3 MeV. The corresponding deficit

in energy', 17.3 Me\ , appears as the kinetic energ\' of the two a

particles emitted. (In fact, the incident proton also has kinetic

energ\', so that the 17.3 Me\' represents the difference between

the kinetic energies of the tAvo emitted a particles and the kinetic

energy of the incident proton.)

When the experiment is made, full agreement is found

between the expected kinetic energ\' deficit calculated from the

data for the rest masses and the experimental value found for

the kinetic energies. This agreement shows that the mass-energy

relation is valid. There is a release of energv' when the lithium

atom is broken up, and this release shows up at the expense of

some of the rest mass of its fragments. This experiment was first

done in 1932; since then, hundreds of nuclear transformations

have been studied, and the results have invariably agreed with

the mass-energ\' relationships calculated by means of the

equation A£ = Amc~.

As you have seen, then, the kinetic energies of the products of

nuclear reactions can be related to the difference in the total rest

masses of the products and of the reactants. The kinetic energies

can also be related to the binding energies of the nuclei involved.

(Experimentally, of course, the binding energies are not

measured independently but are derixed ftom the mass and

kinetic energ\' data.i For example, consider the production of two

a particles from the reaction of a proton and a Li nucleus. The

binding energy of lithium-7 is 39.2 Me\'. (Note that in the

graph on page 706, the binding energ\' pei' nucleon in the case of

SG 4 Li^ is given as 5.6 MeV, and there are seven particles in the

nucleus of Li".) The incident proton has no binding energ\'. The

nuclear binding energv' of each resulting a particle is 28.3 MeV,

making a total of 56.6 MeV for the two a particles. The difference

between the total binding energies shows how much more

SG 5-7 strongly the nucleons are bound in an a particle than in a Li'

nucleus: 56.6 MeV - 39.2 MeV = 17.4 MeV. It is just this

difference in the binding energies that must be released

somehow by the reaction, and here it is released as the kinetic

energv' of the two a particles.

The conservation of energy' clearly recjuires that v\/7f.'n the total

binding energy^ of the products exceeds that of the renctants,

energy is liberated in the reaction: otheruise energy is required

for the reaction to proceed. 1 he analyses of many nuclear

reactions have verified this result. These findings can be

expressed in another way: When the average binding energy per

particle of the pi-oducts exceeds that of the reactants, energy is
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liberated. To express it graphically, energy will be liberated when
the products lie higher on the average binding energy curve than

the reactants do.

The shape of the average binding energy curve, which drops

off at both ends, indicates, therefore, that there are two general

nuclear reaction processes by which one can hope to release

energy from nuclei: (1) combining light nuclei into a more
massive nucleus, or (2) splitting up heavy nuclei into nuclei of

medium mass. In either process, the products would have

greater average binding energy, so energy would be released. A
process in which two nuclei join together to form a heavier

nucleus is called nuclear fusion. A process in which a heavy

nucleus splits into fragments of inteiTnediate mass is called

nuclear fission. Both fusion and fission have been shown to

occur, and the technology of fission has been simplified and
exploited in many countries. Fission reactions can be made to

take place slowly (as in a nuclear power plant) or very rapidly (as

in a nuclear explosion).

^ 5. Would breaking up a heavy nucleus into many light nuclei

result in the liberation of energy?

2t4:»S
\

Nuclear fission: discovery

The discovery of nuclear fission is an example of an unexpected

result of great practical importance, obtained during the course

of research carried on for reasons having nothing to do with the

possible usefulness of the discovery. It is also an excellent

example of the combined use of physical and chemical methods
in nuclear research and of the effectiveness of teamwork. After

Joliot and Curie showed that some products of nuclear reactions

are radioactive (Sec. 23.9), Fermi and his colleagues in Italy

undertook a systematic study of nuclear reactions induced by
neutrons. One of the purposes of this research vuas to produce
new nuclides. As a result, many new radioactive nuclides w^ere

made and their half-lives deteiTnined. One nuclear reaction used
successfully in this study w^as the capture of a neutron followed

at once by the emission of a 7 ray. For example, when aluminum
is bombarded udth neutrons, the following reaction occurs: ^n' +
i^Al" -^ igAl^* + 7. Aluminum-28 is radioactive, with a half-life of

2.3 min, decaying by P emission into silicon: ^^Al^^ -^ j^Si^* -I-

_^e° + V. As a result of these two reactions, a nuclide (i^Si'^*) is

produced wdth values of Z and A each greater by one unit than

those of the initial nucleus. Fermi thought that if neutrons

bombarded uranium, the atomic species having the largest value

A few of the problems encountered
by Fermi in his work on these re-

actions were described in the Pro-

logue to Unit 1. Chapter 3 of the

supplemental Project Physics Unit

B. "Discoveries in Physics" goes
into more detail on the discovery of

fission.
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isotope of strontium IZ = 38) and one ot yttrium (Z = 39) which
fulfilled these conditions, as well as isotopes of krypton IZ = 36)

and xenon (Z = 54). It was clear from the chemical evidence that

the uranium nucleus, when bombarded with neutrons, can

indeed split into two nuclei of intermediate atomic mass.

Although Hahn and Strassmann showed that isotopes of

intermediate mass did appear, they hesitated to state the

conclusion that the uranium nucleus could be split. In their

historic report, dated Januaiy 9, 1939, they said:

On the basis of these briefly presented experiments, we must,

as chemists, really rename the previously offered scheme and
set the symbols Ba, La, Ce in place of Ra, Ac, Th. As "nuclear

chemists" with close ties to physics, we cannot decide to make
a step so contrcuy to all existing experience of nuclear physics.

After all, a series of strange coincidences may, perhaps, have

led to these results.

n

Schematic diagram representing

/

o
o

o

uranium fission. \

The step which Hahn and Strassmann could not bring

themselves to take was taken on Januaiy 16, 1939 by two
Austrian physicists, Lise Meitner and Otto R. Frisch. They
suggested that the neutron provoked a disintegration of the

uranium nucleus into "two nuclei of roughly equal size," a

process they called "nuclear fission" by analogy to the biological

division, or fission, of a living cell into two parts. On the basis of

comparison of the low average binding energy per nucleon of

uranium wdth the higher average binding energy per nucleon of

the products, they piedicted that the fragments would have high

kinetic energy. This was soon verified experimentally. Shortly

afterward, it was found that transuranium elements may, after

all, also be formed when uranium is bombarded with neutrons.

In other words, the capture of a neutron by uranium sometimes
leads to fission and sometimes leads to P decay. The [3 decay

results in the formation of isotopes of elements of atomic

number 93 and 94, later named neptunium and plutonium. The
presence of both types of reaction, fission and neutron capture

Starting about 6 years after Fermi's

speculation of 1934, it was found

possible, by a variety of methods,

to create transuranium elements.

The new elements up lO Z = 106

are listed below. A tiny sample of

one of them, curium-244, dissolved

in a test tube of water, is shown
in the 5-min e;<^posure above (by

light produced when the radiation

interacts with the surrounding

matter).

.p



Otto fi. Frisch.

SG 9, 10

Similarly, ^,Kr''^ is transformed into

^^Zr'"" by four successive ^ decays.

See SG 11.

followed by p decay, was responsible for the difficulty and

confusion in the analysis of the effects of neutrons on the

uranium target. Now, the interpretation of the experiments

opened two new fields of scientific endea\'or: the physics and

chemistry of the transuranium elements, and the study of

nuclear fission.

1 he discovery of nuclear fission inspired research workers all

over the world, and much new information was obtained within

a short time. It was found that the uranium nucleus, after

capturing a neutron, can split into one oi moie than 40 different

pairs of fragments. Radiochemical analysis showed that nuclides

resulting from fission have atomic numbers betAA^een 30 and 63

and mass numbers between 72 and 158.

Yet nuclides of medium mass are not the only fission products.

Neutrons also are emitted in fission; the average number of

neutrons emitted is usually between two and three. The

foUoudng reaction indicates only one of the many ways in which

a uranium nucleus can split:

.n' + „.,U' Ba'" + .,Kr" -I- 3 „n'

ggBa"' and .(^Kr^^ are not "natural" nuclides and are not stable;

they are radioactive and decay by (3 emission. For example,

5gBa"' can decay into ^Pr^'*' by successive emission of three 3
particles, as shown by the following scheme (the numbers in

parentheses are the half-lives):

(18 mm (3.6 hr

Plutonium 239 (.,^Pu^") is produced
by the capture of a neutron by ,,,U^'"

and the subsequent emission of

tvvo P particles, as was discussed

on page 710.

It has been found that only certain nuclides can undergo

fission. For those that can, the probability that a nucleus will

split when bombarded depends on the energy of the neutrons

used in the bombardment. The nuclides g^U"^ and .j.,Pu"^' can

undergo fission when bombarded with neutrons of any energy,

even 0.01 eV or less. On the other hand, U"** and Th^^^ undergo

fission only when bombarded with neutrons ha\ing kinetic

energies of 1 MeV or* more.

The energy released in the fission of a nucleus is about 200

MeV. This value can be calculated either by comparing atomic

rest masses of leactants and products or- ft om the iuerage

binding energy curve of the graph on page 706. The energy

release in fission is more than 20 times larger than in the more
common nuclear reactions, where it is irsually less than 10 MeV,

and more than a million times larger than in chemical r-eactions.

Under appropr iate conditions the neutrons released in fission

can, in tirm, cause fission in neighboring uranium atoms, and

ci [)i()((\ss known as a chaii} raiction can de\(^l(ip in a sample of
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uranium. The combination of the large energy release in fission

and the possibility of a chain reaction is the basis of the large-

scale use of nuclear energy.

# 6. What two successive reactions can result in the appearance

of a transuranium element?

7. What product of the fission process makes a chain reaction

possible?

2i4*G
I

Nuclear fission: controlling^ chain
reactions

For a chain reaction in a sample of uranium to continue at an

even rate, there must be a favorable balance between the net

production of neutrons by fissions and the loss of neutrons due
to the following three processes:

1. capture of neutrons by uranium without fission resulting;

2. capture of neutrons by other materials in the sample or in

the stiTJcture containing the sample;

TvsTRAv MeufTaofs^

U-255

ORIGINAL FISSIOM

/fission ^^cagment

/-' une to fi

-r neu+ronsfrom
fission process \^

CHAM<55S TO PLUTONIUM

Piesiow n?A6MEfjr

A NEU"f eo.NJ

SOMETfMeS L05r

ONE NEW FISSiON

/

One +o fhree

-n' neutrons ogain V'

\
U'i35

FRAeMENT

U-235

FISSION
FRAGMENTS r f

-^

TWO NEW

FISSION
FCAGMCNr

This diagram indicates what hap-

pens in a chain reaction resulting

from the fission of uranium-235

atoms. (Not shown are other emis-

sions such as a, P^ and y rays.)
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Although nuclear reactors can be
built in which the fissions are in-

duced by fast neutrons, it has been
easier to build reactors with mate-
rials in which the fissions are in-

duced bv slow neutrons.

3. escape of neutrons from the sample without heing captured.

If too many neutrons escape from or are absorbed in the

structure or assembly (called a reactor), there v\ill not be enough
to sustain the chain reaction. If loo few neutrons escape or are

absorbed, the reaction will continue to build up more and more.

The design of nuclear reactors as energv' sources invokes finding

proper sizes, shapes, and materials to maintain or control a

balance between neutron production and neutron loss.

Since the nucleus occupies only a tiny fiaction of an atom's

volume, the chance of a neutron colliding with a uranium

nucleus is small, and a neutron can go past the nuclei of billions

of uranium lor otheri atoms while mox'ing a few centimeters. If

the reactor assembly is small, a signilicant percentage of the

fission neutrons can escape from the assembly without causing

further fissions. The "leakage" of neutrons can be so large that a

chain reaction cannot be sustained. The number of neutrons

produced is proportional to the volume, but the number of

neutrons that escape is proportional to the surface area. As the

linear size L of the assembly is increased, the volume and area

increase in proportion to L^ and iJ, respectively, so that neutron

production increases with size more rapidly than neutron escape

does. For a given combination of materials I uranium and other

structural materials that may be needed), there is a size of the

r-eactor, called the critical size, for which the net production of

neuti^ons by fission is just equal to the loss of neutrons by

nonfission capture and escape. If the size of the reactor assembly

is smaller than this criticuil size, a chain r-eaction cannot be

sustained. The design of a reactor of reasonable dimensions, with

given materials, which wall correspond to critical size is an

important part of research in the field of nuclear engineering.

Another- important consideration in the design of nuclear

reactors is the fact that fission is much more probable when U"^^

is bombai'ded with slow neutr-ons than when it is bombarded
with fast neutrons. The neutrons released in fission gener^allv

come out at veiA' high speeds, having kinetic energies from about

0.01 MeV to nearly 20 MeV^ with an average kinetic ener'gv of

about 2 MeV. The fast neutrons can be slowed dov\n in the

reactor by the addition of matei ial to which the neutrons can

lose ener'g\' in collisions. The material should be r^elatixely low in

atomic mass so that the neutrons will transfer- a signilicant

ft^action of their energy in elastic collision, but the material

should not also capture and absorb many neutrons. Pure car-bon

in the form of gr-aphite ar d also water- and beryllium meet these

requirements. These substances are called moderators because

they slow dovxii, or moder^ate, the newly pr-odirced iKurtions to

lower speeds at which the probability of causing additional

fission is high.

H\'dr-ogen atoms in water are very effectixe in slowing down
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neutrons because the mass of a hydrogen nucleus is nearly the

same as that of a neutron and because the number of hydrogen

atoms per unit volume is high. A neutron can lose a large

fraction of its energy in a collision with a hydrogen nucleus. Only

about 20 collisions are needed, on the average, to slow dow^ the

fast neutron to energies under 1 eV. However, neutrons can also

be captured by the hydrogen nucleus in the reaction:

.H' + on' -- .H^ + 7

The probability of this reaction occurring instead of an elastic

collision is high enough so that it has been found impossible to

achieve a chain reaction with natural uranium and ordinary

u^ater.

There are also other ways to make reactors. For example, the

absorption of a neutron by a deuterium nucleus, such as the

nucleus of the heavy isotope of hydrogen found in heavy water,

has an extremely small probability. Neutrons do not lose as

much energy per collision with H~ nuclei, but this disadvantage

is compensated for by the much lower absorption rate.

Therefore, a chain reaction can be achieved easily with natural

uranium and heavy water. Reactors vvath natural uranium as the

fuel and heavy water as the moderator have been built in the

United States, Canada, France, Sweden, Norway, and other

countries.

The contrast between the nuclear properties of hydrogen ,H^

and deuterium (,H^ or ,D^) has important implications for the

development of nuclear reactors. Heavy water is much more
expensive than ordinary water, but when it is used with natural

uranium (mostly U''^*'), a chain reaction can be achieved

efficiently. Ordinaiy water can be used, if uranium enriched in

the isotope U"^ is used instead of natural uranium. Many
reactors "fueled" with enriched uranium and moderated with
ordinary water have been built in the United States. In fact, this

general reactor type has been used in nearly all the large nuclear
power plants built so far and in the reactors used in nuclear-

powered ships.

Sec. 23.4 describes how neutrons

lose nearly all their kinetic energy

in a head-on collision with a hydro-

gen nucleus, but most collisions

will not be head-on.

Heavy water: (H'^l^O, or D^O.

, (low probability I

,H' + „n' ^,H' + 7

Schematic diagram of three types

offunctions fulfilled by parts of
a nuclear reactor.
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The nest wall of the football stands

ofStagg Field, University' of Chi-

cago. Squash courts under these

stands were used as the construc-

tion site of the first nuclear reactor.

Carbon in the form of graphite has been used as a moderator

in many reactors, including the earliest ones. It is not as good

a slowing-dowTi agent as water or heavy water; about 120

collisions with carbon atoms are needed to slov\' down a fast

neutron with an initial energ\' of 2 MeV to the desired energy of

about 0.025 eV; in hea\y water only about 2v5 collisions ai^e

needed. Although carbon in the form of graphite is not the best

moderator and absorbs some neutrons, it does permit a chain

reaction to occur when lumps of natural uranium (cylindrical

rods, for example i are arranged in a large mass of graphite. The

determination of just how this could be done was one of the

main problems that had to be solved before the world s first

chain reaction was achieved by a team working under Enrico

Fenni in December 1942 at the University of Chicago. (It was a

cnjcial experiment because until its success, it was by no means
certain that a chain reaction was really possible.! Many giaphite-

moderated reactors are now in operation throughout the VA'orld.

Their chief puipose will be discussed in the next section.

The control of a reactor is relatively simple. If fission is

occurring too frequently, a few "control" rods are inserted into

the reactor. The rods consist of a material (such as cadmium or

boroni that absorbs slow neutrons, thereby leducing the number
of neutrons in the moderator. Removal of the control rods will

allow the rate of the reactor to go up. The sketch at the bottom

of page 715 illustrates the basic reactions that occur in a nuclear

reactor in which uranium is the fissioniible material.

8. Whnt is a moderator?

9. What is an advantage and a disadvantage of using water as

a moderator in nuclear reactors?

10. How can the rate of reaction be controlled in a reactor?

24r«T
I

Xuclear fission: large-scale energj'
release and some of its consequences

The large-scale use of nuclear energy in chain reactions was
accomplished in the United States between 1939 and 1945. The
work was done under the pressure of World War II, as a result of

the cooperatixe efforts of large numbers of scientists and

engineers. The workers in the United States included Americans,

Britons, and European refugees from fascist-controlled countries.

They were working to obtain a nuclear- weapon before the

Germans, who were also working on one.

The aim was to produce a so-called atomic (more properly,

nuclear^ bomb, esscntialK an uncontrolled rurclcar" reactor- in
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which an extensive chain reaction occurs throughout the

material in a few millionths of a second. This reaction differs

therefore from the controlled nuclear reactor, in which the

operating conditions are so arranged that the energy from fission

is released at a much slower and essentially constant rate. In the

controlled reactor, the fissionable material is mixed with other

materials in such a way that, on the average, only one of the

neutrons emitted in fission causes the fission of another nucleus;

in this way, the chain reaction just sustains itself. In a nuclear

bomb, the fissionable material is pure, that is, not mixed with a

moderator, and the device is designed so that nearly all of the

neutrons emitted in each fission can cause fissions in other

nuclei.

Nuclear reactors were used during World War II to produce
raw materials for one kind of nuclear bomb, namely to

manufacture Pu""^'' from U~^**. These reactors were designed in

such a way that some of the neutrons from the fission of U"^'^

were slowed down sufficiently not to cause fission in U'^** atoms.
(In natural uranium, only about 0.75% of the atoms are U^^^)

Instead, the neutrons were absorbed by U"^ nuclei to fonn Pu^^^

through the reactions described in the previous section.

Scale model of the CP-1 (Chicago

Pile No. 1) used by Enrico Fermi
and his associates when they first

achieved a self-sustaining nuclear

reaction on December 2, 1942. Al-

ternate layers ofgraphite, contain-

ing uranium metal and/or uranium
o^iide, were separated by layers

of solid graphite blocks. Graphite

was used as a moderator, to slow
down neutrons in order to increase

the likelihood offissions.

The "pile reactions" to produce
Pu-239.

:n) NeuTROKJ

U-235
Nucueus

/

PROOWCTS f
^ 200M<rV<

NEUTRONS y^ -n

U-238
KIUCLIst>S

n_

U-239
Nuaeos

•rf^^v

^'%
Np-2J<? ^'n* ^e
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Recall that fission of U' '' can occur
v\ith neutrons of any speed, but fis-

sion of U'^" requires high-speed
neutrons.

From the beginning, scientists have

been prominently invoked in activ-

ities to alert their government and
fellow citizens to the moral and
practical problems raised by the

nuclear weapons race.

Genetic effects of radiation: effects

producing changes in cells that will

affect offspring of exposed indixid-

ual.

Somatic effects: all effects caused

by radiation to an exposed individ-

ual during the individual's lifetime.

A grain of radioactive dust from
the atmosphere caused these a-

particle tracks in a photographic
emulsion (enlarged ZUOO times).

Pu"^ acts like U"^; both materials can sustain a rapid,

uncontrolled chain reaction. Nuclear bombs have been made of

both materials; a single nuclear bomb, using U"'^, destroyed the

city of Hiroshima, Japan, on August 6, 1945; another bomb, using

g^Pu"^^, destroyed the city of Nagasaki three days later. Since the

end of World War II in 1945, the technolog\' of fission has been

further developed in two different directions. One direction has

been militaiy. Other countries besides the United States have

made nuclear weapons, including the United Kingdom, the

Soviet Union, France, India, and China. The enormous death-

dealing capability of these weapons, and the ever-larger numbers
of bombs of many varieties that have been accumulating all over

the globe, have increased and made more dangerous the

tensions existing throughout the world and have emphasized

critically the need for the peaceful settlement of international

disputes.

One incidental problem has been that of the radioactive ^//ouf

from bomb tests. In the explosion of a nuclear bomb, large

amounts of radioactive fission products are scattered. Ihese

materials can be blown by winds from one part of the worid to

another and carried dovvii from the atmosphere by rain or snow.

Some of the radioactive materials are long-lived; they ma}' be

absorbed in growing foodstuffs and eaten by animals and people.

It is known that such radioactive materials can cause harmful

genetic effects as well as somatic effects. One of the most

abundant and long-lived products of the fission of either U^"*" or

Pu''"' is strontium-90 l,j^Sr™l. This isotope of strontium is similar

to 2oCa^" in its chemical properties. Therefore, when Sr'^" from

radioactive fallout enters the body, it finds its way into bone

material. It decays by emission of 0.54-MeV P particles (half-life

= 28 yearsi, which can injure cells and cause leukemia, bone

tumor, and possibly other forms of damage, particularly in

growing children.

There has been much research and discussion concerning

possible harm to present and future generations. Partly as the

r esult of petitions and protests organized by scientists, the

United States, the United Kingdom, the Soviet Union, and most

other nations Ibut not France and China) agreed in 1963 to a

moratorium on further bomb tests in the atmosphere. Though it

allowed continuation of tests underground, the atmospher re test

ban treaty' was r ightly consider^ed a great step foravarcl in

simultaneously curbing r adioactive pollution and increasing

somewhat the chances for furrther amis control treaties. For

example, it is said to have helped pave the way to the treatv', in

effect since 1970, by which most nations agreed not to

disseminate nuclear weapons to "non-nuclear " nations and set

the stage for amis limitation talks that have been going on with

some siKX'ess since 1970.
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The second direction in which the use of nuclear energy has

been pushed on a large scale has been that of the production

of electrical energy from the energy released in fission. In almost

all present systems of nuclear-power production, the reactor is

the source of heat for running steam turbines; the turbines drive

electrical generators just as they do in coal-fired or oil-fired

power stations. The fissionable material replaces the coal or oil

used in a conventional power plant and so provides a new
source of energy in the fomi of electricity.

FOEL

IteAcTVfc //aAT Eicr.i/AmeK.

Heat produced in a reactor (by the

flying fission fragments) does not

directly turn water into steam. As
this simplified diagram indicates,

the water is heated in a "heat e;c-

changer" by a fluid that circulates

through the reactor core.

The ever-increasing use of electrical energy is an important

aspect of modern life. The amount of electricity used in the

United States, an advanced industrial country; increased by a

factor of about 40 between 1920 and 1970. This means that

during this 50-year period, the amount doubled approximately

every 10 years. Although large supplies of coal and oil still exist,

it has become evident that even in the greater efforts to use

energy more carefully and frugally, additional sources of energy

udll be required; nuclear energy from fission (and, in the long

run, fiom fusion) can help fill this need.

The need for new sources of energy was sharply emphasized
by the "Energy Crisis," which hit the United States, western

European countries, and Japan in 1973-1974. This shortage was
made severe because the oil-producing countries in the Mid-East

cut back shipments of oil to some highly industrialized

countries. These events focused attention on alternative methods
of energy, from more pollution-free uses of coal, to solar energy,

to the role of the nuclear-power industry in our economy.
The development of nuclear power in the United States has

been slower than was expected at the end of World War II. For a

variety of reasons, some administrative and some technical, but

mostly connected with the "Cold War" with the Soviet Union, the

U.S. Atomic Energy Commission (AEC), now replaced by the

Department of Energy, did not emphasize applied research on
nuclear electric power systems until President Eisenhower so

directed in 1953. Nuclear electric power became economically
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In March 1979, five nuclear power
plants in \'arious pai'ts of the United

States were closed by the Nuclear

Regulatory Agency. These plants

were designed and built according

to a computer formula; an error in

the formula created the possibility

that the plants would not be safe in

the event of an earthquake.

competitive with hydroelectricity and electricity from coal and oil

during the 1960's. By the beginning of 1978, 65 nuclear reactoi-s

were operating with over 47 million kilowatts capacity, about 9%
of the nation's total electric power production. With nearly 90

or more reactors under constr^lCtion, the nuclear poilion of U.S.

electricity output was expected to be about 17% by 1980 and

about 28% by 1985. In the rest of the world, there were, at the

beginning of 1978, about 130 nuclear power leactor^s in operation

with about 50 million kilowatts capacity; about 325 reactors are

expected to exist by 1995.

The increasing use of nuclear power has raised questions that

are now receiving much public attention. Proponents say that

in the United States the cost of electr icity from nuclear- energy is,

on the average, about 20% less than the cost of that from fossil

fuels (coal and oil). They see the nuclear electricity industry as

\iable and economic, and as helping to reduce the dependence
of the United States on imported oil. Opponents argue that

nuclear power plants are liable to major accidents. These might

result in the release of large amounts of radioactivity' and might

cause the deaths of many people. There might be a catastrophe

of a magnitude never befor e experienced by any industry.

Nuclear plants are designed to minimize the chance of such a

major accident. Although less serious accidents have occurred,

the safety r'ecor-d of the nuclear industry has been remarkably

good so far. Opponents of nuclear power argue that even though

a major accident is not expected to occur often, there is still a

possibilitv that one will occur. They ar^e also worried aboirt

unauthorized divei'sion of fissionable materials, and the long-

range, safe disposal of radioactive wastes. With more and more
nuclear power reactors being built, these problems will also

increase. It has therefore been suggested by well-quiilified

experts that the construction of nuclear power plants be stopped

until their safety and security' has been demoristrated beyond

any question. The U.S. go\'er^nment, relying also on expert advice,

has not agreed to stop the growth of nuclear power; mor^
r^eactor^s ar^e being built, and mor^e r^esear ch is being done to

improve reactor- design, to reduce further the possibility of a

major accident or diversion, and to find safe methods of waste

disposal. The debate is continuing, and citizens are participating,

as they should.

Waste heat, radioactive emissions, and radioactive wastes from

nuclear plants constitute possible enxironmental hazards that

are also subjects of lively public discussion. Most plants that

produce electricity by means of steam, whether nuclear or fossil-

fueled, have an efficiency of between 30 and 40% . This means
that for every three units of heat formed to power the generator',

one goes to produce electricity and approximately Uvo units ar^

discharged as waste. The power- plants using fossil firels Icoal, oil,
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and gas) discharge some of their waste heat into the air, while

all the waste heat from nuclear power plants goes into the

cooling water. Although themial waste is common to both

nuclear and fossil-fueled plants, nuclear plants use their heat

less efficiently and produce more waste heat. For the same
amount of electricity produced, a fossil-fueled plant discharges

about 40% less heat than a nuclear plant of the kind now
generally in use. This waste heat has to be disposed of; if

dumped into a river or lake, it may have harmful effects on

aquatic life and is therefore referred to as "thermal pollution."

Environmentalists have attacked the constn.iction of nuclear

power plants because of their greater contribution to thermal

pollution. Answers to the problem of thermal pollution are

available in several directions: increased thennal efficiency of

nuclear plants, the use of cooling towers or cooling ponds to

decrease the temperature of the waste heat, search for practical

uses of the waste heat.

The rate of release of radioactivity from nuclear power plants

under normal operating conditions must meet strict standards

set by biologists and medical scientists. It can be held to

insignificant levels by means of careful design and rigorous

operating procedures, except if there should be a major accident

of the kind previously discussed.

A problem that is now receiving much attention by engineers

as well as by the public is, as mentioned, that of the disposal of

the radioactive wastes, or "ashes," resulting from nuclear fission.

The immense number of atomic nuclei that must undergo fission

in a reactor to produce the desired electrical power results in

the formation of an immense number of radioactive fission

products. Some of these radioactive products have very long half-

lives, up to tens of thousands of years, and even more. A highly

complex technology has been developed for separating these

products from the still useful fissionable material in partially
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used fuel assemblies. The products must be handled in special

ways while they lose the part of their radioactivity that is due to

the shorter-lived fission products. Eventually, the radioactive

wastes must be stored where they will do no harm. Present plans

for the ultimate disposal of these wastes call for buiial deep

underground. However, this process presents many problems.

For example, it requires the development of long-lasting

containers that can be monitored for leakage or the conversion of

the wastes into a solid, insoluble, form. Appropriate geological

locations must be found where the wastes cause no

contamination of underground water or oil, should some leak

out after all. The problems are complicated by the fact that these

wastes will still have significant radioacti\it>' 10,000 years from

now. These wastes may outlast both their containers and even

the present fonn of society in which dangerous materials are not

wantonly allowed to be abused by a veiy few.

The problem of the proliferation of Pu^^'^, which may be used

in weapons, is of both national and international interest. In a

nuclear power reactor, some U""* is converted into Pu"''. In

operation, this Pu^^^ also undergoes fission, leading to the

production of heat energy and electricity. This process makes it

possible to increase the "lifetime" of the nuclear fuel elements,

that is, the length of time that the fuel elements can be in the

reactor before they must be replaced. It is possible, howe\'er, to

remove the fuel elements before the Pu''^^ is 'burned up"; this is

what is done in a Pu'' "-production reactor. The Pu''^^ can be

separated by means of a complicated and difficult chemical

processing procedure. The Pu~'' can then, uith appropriate

physical and metallurgical techniques, be made into nuclear

bombs. Thus, a nuclear reactor can be used to produce

electricity or to produce Pu~'^ as a by-product, perhaps as

material for weapons.

Up to now, only the United States, the Soviet Union, the United

Kingdom, France, and China have made and exploded nuclear

weapons. In 1974, the government of India exploded a "nuclear

device" as a test of peaceful applications, according to that

government. This explosion showed that countries other than

the five "nuclear powers" could, if they so desired, produce Pu"*'^

and, therefore, nuclear weapons. This capability is the so-called

"proliferation problem."

Most, but not all, of the industrial countries of the world

signed a "Nonproliferation Treaty" in 1970 and renewed it in

1975. President Carrier of the United States proposed limitations

on the use of Pu"^'' in certain types of reactors to reduce the

probability of proliferation. But many other countries that need

electric power arid ha\'e little or no coal or oil did not r-espond

favorably to Carter's proposal. The possibility of proliferation

remains an international political and economic problem.
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From the examples cited of numerous problemis raised by the

expected increased use of nuclear energy, it should be clear why
there is justifiably so much public discussion of the advantages

and disadvantages of nuclear energy. On the one hand, nuclear

energy offers a means of dealing with the fuel shortage in which
the United States and other countries find themselves. On the

other hand, the social costs of the nuclear energy revolution have

already been very high in human lives, in money, and in the

anxiety of life under the threat of nuclear war. In some ways,

these problems are analogous to the human price of

industrialization after the development of the steam engine (Unit

3). At the same time, the potential benefit to humanity is great.

As in the past, the decisions that wdll be necessary in the future

development of nuclear power cannot be made on the basis of

physics alone. Science can help to illuminate alternatives on
which essentially political decisions can be based, but it cannot

and should not be used by itself to choose among them.

Responsible scientific opinion must be supplemented by political

insight and a broad humanistic view of society. At the very least,

responsible citizens must have some understanding of the

scientific principles that will underlie the alternatives among
which thev must choose.

N 1

Among the many problems for
public policy created by develop-

ments in nuclear power was the

Plowshare Program. The crater

shown at the left was part of Plow-
share's research into the possibility

of creating lakes, harbors, and sea-

level canals between oceans by e,x:-

ploding nuclear devices. The prob-

lems raised included pollution and
the dangers of diversion for war
purposes. This kind of research
has now ceased because the U.S.,

the U.S.S.R., and the U.K. have

agreed to stop above-ground nu-

clear explosions.
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Close Up\
Some Developments in Nuclear

Science ond Technology

1896 H. Becquerel discovers unstable (radioactive)

atoms.

1899 Isolation of radium by Curies.

1905 Einstein's statement of equivalence of mass and
energy.

1911 Rutherford discovers nucleus.

1919 Rutherford achieves transmutation of one sta-

ble chemical element into another.

1920- Improved mass spectrographs show that

1925 changes in mass per nuclear particle accom-
panying nuclear reactions account for energy
released by nucleus.

E. 0. Lawrence and M. S. Livingston construct

first cyclotron.

1931

1932 Chadwick identifies neutrons.

Joliot-Curies in Paris discover artificial radio-

activity.

1934 Fermi's group in Rome finds radioactivity in-

duced by neutrons.

1939 Evidence of uranium fission by Hahn and
Strassmann, identification of fission products
by Meitner and Frisch.

1940 Discovery of neptunium and plutonium at the

University of California.

1942 Achievement of first self-sustaining nuclear re-

action at the University of Chicago.

1945 First test of a nuclear device, at Alamagordo,
New Mexico, followed by the dropping of nu-

clear bombs on Hiroshima and Nagasaki, at the

end of World War II.

1946 President Truman signs the bill creating the U.S.

Atomic Energy Commission.

First shipment of radioactive isotopes from Oak
Ridge to hospital in St. Louis, Mo.

1951 First significant amount of electricity (100 KW)
produced from nuclear energy at testing station

in Idaho.

1952 First detonation of a hydrogen bomb at Eniwe-
tok Atoll, Pacific Ocean.

1953 President Eisenhower announces U.S. Atoms-
for-Peace program and proposes establishment
of an international atomic energy agency.

1954 First nuclear-powered submarine. Nautilus,

commissioned.

1955 First United Nations international Conference
on Peaceful Uses of Atomic Energy held in Ge-

neva, Switzerland.

1956 First commercial power plant begins operation

at Calder Hall, England.

1957 Shippingport Atomic Power Plant in Pennsyl-
vania reaches full power of 60,000 KW.

International Atomic Energy Agency formally
established.

1959 First nuclear-powered merchant ship, the Sa-
vannah, launched at Camden, New Jersey.

1961 A radioactive isotope-powered electric genera-

tor placed in orbit, the first use of nuclear power
in space.

1963 President Kennedy signs the Limited Test Ban
Treaty for the United States

1964 President Johnson signs law permitting private

ownership of certain nuclear materials.

1966 Beginning of the rapid development of nuclear

power plants in the U.S.

1968 "Nonproliferation" agreement, signed by the

United States, the Soviet Union, and other

countries, limiting the number of countries pos-

sessing nuclear weapons.

1970 "Nonproliferation" agreement ratified.

1970- Nuclear power begins to constitute a significant

pres- fraction of the electrical power used in the U.S.

ent and there is widespread discussion of its future.
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\
Nuclear fusion

Fusion reactions have been produced in the laboratoiy by

bombarding appropriate light target materials with, for example,

high-energy deuterons from a particle accelerator. In these

reactions, nuclei result that are heavier than the nuclei of either

the "projectiles" or the targets; there are usually also additional

particles released and energy. Some typical examples of fusion

reactions, together vvdth the energy liberated in each reaction,

are:

jH' + jH'^ ,H' + ,H' + 4MeV
jH' + jH' -^ ,He' + ^n' + 3.2 MeV

,H' + ,H' -^ Me' + ,n' + 17.6 MeV

,H' + ,He^-^ ,,He^ + .H* + 18.3 MeV

In the first of the above equations, the heavier product nucleus is

an isotope of hydrogen, called tritium, with mass number y4 =

3; it has been found in small traces in nature, is radioactive with

a half-life of about 12 years, and decays by P emission into ,He^,

an isotope of helium. When a target containing tritium is

bombarded with deuterons, ^He^ can be fornied, as in the third

equation above, liberating 17.6 MeV of energy. Of this energy, 14.1

MeV appears as kinetic energy of the neutron and 3.5 MeV as

kinetic energy of the product nucleus.

The fusion of tritium and deuterium offers the possibility of

providing large sources of energy, for example, in electric power
plants. Deuterium occurs in water with an abundance of about

one part in seven thousand hydrogen atoms and can be

separated from the lighter isotope. Four liters of water contain

about 0.13 g of deuterium, which can now be separated at a cost

of about $0.08. If this small amount of deuterium could be made
to react under appropriate conditions with tritium (perhaps

produced by the reaction discussed above), the energy output

would be equivalent to that from about 1,140 L of gasoline. The
total amount of deuterium in the oceans is estimated to be about
10^' kg, and its energy content would be about 10^° kw-years. If

deuterium and tritium could be used to produce energy, they

would provide an enormous source of energy.

There are, however, some difficult problems to be solved before

fusion reactions are likely to be useful as steady sources of

energy; some of these should be discussed at least briefly. The
nuclei which react in the fusion processes are positively charged
and repel one another because of the repulsive electric force.

The nuclei must, therefore, be made to collide wdth a high

relative speed to overcome the repulsive force tending to keep
them apart. Experiments have shown that this can occur when

Although the energy liberated in a

single fusion is less than that in a

single fission, the energy released

per unit mass is much greater. The
mass of about 50 helium atoms is

approximately equal to the mass of

one uranium atom; 50 x 17.6 MeV
= 1040 MeV, compared to 200 MeV
for a typictd fission.

SG 13, 14
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A plasma is an ionized gas in which
positively and negatively charged

particles move about freely.

At Lawrence Livermore Laboratory,

scientists are tryini:, to initiate a

controlled fusion reaction hv im-

ploding, a fuel pellet using cnrrgv
supplied bv laser beams.

the particles have kinetic energies of ahout 0.1 MeV or more. The
nuclei must also be confined in a region where they can undergo

many collisions without escaping, or being absorbed by tlio walls

bounding the region, or losing energy by collisions with too

many "cooler" (less energetic) molecules. There must be enough

collisions per unit time so that fusion can occur at a rate that

wall yield more energ\' than that needed to cause the collisions.

The combination of these requirements means that the nuclei

must be contained at a temperature of the order of 100 million

degrees.

At the temperature required for fusion, the atoms have been

stripped of their electrons, and the resulting nuclei and

separated electrons are said to form a plasma. No wall made of

ordinary material can contain a hot plasma at lO" °K ithe wall

would be vaporized instantly!). But the charged particles of a

plasma can, in theory, be contained in an appropriately designed

magnetic field. The first problem to be solved, therefore, is to

contain the plasma of deuterium and tritium nuclei in a

magnetic field, while accelerating the nuclei by means of an

electric field to the required kinetic energy (or temperature). The
behavior of the charged particles in a plasma is complicated;

there are many kinds of instabilities that make the plasma

difficult to contain properly and long enough. These problems of

the release of eneigv to form a controlled and sustained fusion

reaction have not yet been solved on a practical scale, but

research on them is being carried on in many countries.

Significant advances ha\ e been made during the last few year's in

containment of the plasma and in r^eaching high temperatures;

as high as 5 X 10 °K. There are still difficult technological

problems to be overcome, and it may be a generation befor^e

electric powei" will be produced by firsion at costs that will
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compete with electricity from coal or uranium. There is

considerable international cooperation in this research, including

visits of research teams among the United States, Britain, France,

and the Soviet Union. Although the effort and expenses are great,

the possible payoff in temis of future power resources is

enormous.

# 11. Why are very high temperatures required to cause fusion

reactions?

12. How could extremely hot gases be kept from contacting

the wall of a container?

24*9 Fusion reac;tions in stars

One of the most fascinating aspects of nuclear physics is the

study of the sources of the energy of different types of stars. The
sun is an example. In the sun, the fusion process results in the

production of a helium nucleus from four protons. The net

results of the reactions can be wantten as:

4 ,H' -^ Me' + 2 26 MeV

The reaction does not take place in a single step but can

proceed through different sets of reactions whose net results are

summarized in the above equation; in each case, the overall

amount of energy released is 26 MeV.
The fusion of four protons into a helium nucleus is the main

source of the energy of the sun. Chemical reactions cannot

SG 15

For details, see SG 16, 17, and 18.
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provide energy at large enough rates lor for long enough
duration!) to account for energy production in the sun, but

nuclear fusion reactions can. Hydiogen and helium together

make up about 99% of the sun's mass, with approximately twice

as much H as He. There is enough hydrogen to supply the sun's

energy for many millions of years to come.

By which of the several possible sets of reactions does the

transfomiation of hydrogen into helium take place? The direct

process of four protons colliding to form a helium nucleus has

been ruled out because the probability for such a reaction under
solar conditions is too low. It may happen, but not often enough
for the amount of energ\' released. A more likely set of reactions

is the process represented in the sketch below. When the

temperature is about 10' °K, the kinetic energies are large enough
to overcome the electric repulsion between protons, and fusion

of two protons (jH*) takes place. The nuclear reaction results in a

deuteron l,H^), a positron ( + ie"), and a neutrino. As soon as a

deuteron is formed, it reacts udth another proton, resulting in

helium-3 (^He^) and a 7 ray. The helium-3 nuclei fuse with each

other, forming a particles and two protons. In each of these

reactions, energy is released, resulting in 26 MeV for the

complete cycle of four protons forming a helium nucleus.

Oi}^ form of the proton-proton •
fusion chiiin that releases energ\' in q ^ ^^ 9
stars f# protons, O neutrons, • ® -

'

x ^ ,

positrons, ^^ 7 rays). I
' '^

i 1 L_

<.>

The rates of the reaction depend on the number of nuclei per

unit volume and on the temperature; the higher the temperature,

the faster the themial motion of the pailicles and the more
frequent and energetic the collisions. At the temperature of the

sun's interior, which has been estimated to be 10-20 million

degrees, the kinetic energies resulting from the thermal motion

are in the neighborhood of 1 keV.

The release of large amounts of energy by means of fusion

processes on earth has so far been possible only in

728 UIXIT 6 / THE IVUCLEUS



themionuclear explosions, such as hydrogen bombs. A hydrogen

bomb consists of a mixture of light elements with a fission bomb.

The high particle energies produced by the fission reaction serve

to initiate the fusion reaction. The explosion of a fission bomb
produces a temperature of about 5 X 10^ °K, which is sufficiently

high to make fusion possible. The fusion reactions then release

additional large amounts of energy. The total energy release is

much greater than would be liberated by the fission bomb alone.

Moreover, while there is a sort of upper limit beyond which

fission bombs become not much more destructive (because they

disperse the extra fissionable material before it can undergo

fission), there seems to be no such upper limit to the size, and

therefore the destructive power, of fusion weapons.

The lack of an upper limit on the

destructiveness of fusion bombs is

one of the reasons why scientists

such as Oppenheimer, Fermi, and
Rabi advised against making such
weapons, at least as long as there

was any reasonable hope for inter-

national arms control agreements.

# 13. Is the ratio of the amount of hydrogen to the amount of
helium in the sun increasing or decreasing?

24.10
I

The strength of nuclear forces

The large energies involved in nuclear reactions, a million or

more times larger than the energies involved in chemical

(molecular) reactions, indicate that the forces holding the

nucleus together are very much stronger than the forces that

hold molecules together. Another clue to the magnitude of

nuclear forces is the density of a typical nucleus. The work of

Rutherford and his colleagues on the scattering of a particles

showed that atomic nuclei have radii in the neighborhood of

10~" cm to W~^^ cm; this means that the volume of an atomic

nucleus may be as small as 10"^^ to 10"^^ cm^. The mass of one
of the lighter atoms is of the order of 10

"^'^
g, and this mass is

almost all concentrated in the nucleus, with the result that the

density of the nucleus may be as high as 10^^ to lO" g/cm\
Densities of such magnitude are thousands of billions of times

beyond the limits of ordinary experience, since the greatest

densities of ordinary material are in the neighborhood of 20 g/

cm"* (uranium, gold, lead). It is evident that the forces that hold

the atomic nucleus together must be very different from any

forces considered so far. The search for understanding of these

forces is one of the most important problems of modern physics.

Although a good deal has been learned about nuclear forces, the

problem is far fr"om solved.

Information about nuclear forces has been obtained in several

ways. It is possible to deduce some of the properties of nuclear

forces from the knouoi properties of atomic nuclei, for example,

from the binding-energy curve of the graph on page 706. That

curve shows that the average binding energy per nucleon has
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The chief problem studied by the

team of physicists in tiie documen-
tary fihn People and I'articlcs is

whether the electric force between
charged particles of very small dis-

tiinces varies inversely as the square

of the distance. (It does.)

nearly the same value for all l)ut the lightest nuclei, ahout 8 MeV
per nucleon. In other words, the total binding energy of a

nucleus is roughly proportional to the number of nucleons. If

eveiy particle in the nucleus were to exei't a force on eveiy other

particle, it would be expected that the energy of the interactions,

and therefore the binding energy, would be ap|3ioximately

pioportional to the number of interacting pairs. But the number
of pairs of nucleons goes up nearly in proportion to the square

of the number of nucleons. Therefore, the binding energy

calculated by assuming such interacting pairs is veiy different

from the experimental results. To deal with this contradiction, it

is necessary to assume that a nuclear particle does not interact

with all other nuclear particles, but only with a limited number
of them, that is, only with its nearest neighbors. For this to be

the case, the nuclear forces must have a short range; the nuclear

foices must fall off veiy lapidly as the distance between two

nucleons increases. This decrease must be more rapid than the

1/r^ decrease of the graxitational force between two particles, or

the l/r~ decrease of the Coulomb electric force between two

charges.

The presence of protons in the nucleus also tells something

about nuclear forces. Since there are only positively charged and
neutral particles in the nucleus, the electric forces must be

repulsive. The nucleus is veiy small, of the order of 10" '" cm in

diameter; therefore, these repulsive forces must be enormous.

Why then do the pieces that make up the nucleus not fly apart?

It seems reasonable to assume that the electric repulsion is

overcome at very small distances by veiy strong attractive forces

between the nuclear particles. InfoiTnation about such

specifically nuclear forces can be obtained by studying the

scattering of protons or neutrons by materials containing

protons. Scattering experiments and the theoiy needed to

account for their results forni an important branch of nuclear

physics. These experiments show that such attractixe nuclear

forces do indeed exist. Many of the properties of these forces are

now knovvai. But the problems of nuclear forces and how they

hold the nucleus together lie at the frontier of nuclear research.

In the absence of a complete theoiy of nuclear forces and

stiTicture, models of the nucleus have been developed. Several

models are in use, each for a specific aspect of nuclear

phenomena, because no one model adequately describes the

w^hole wide range of phenomena, from particle emission in

radioactive decay to nuclear reactions and fission. Iwo of the

most prominent of these models are described briefly in tlu^ next

two sections: the liquid-dro[5 model and the shell model.

• 14. Why is it assumed that there are special nuclear forces to

hold the nucleus together.'
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15. Why is it assumed that the nuclear force is very short-

range?

24.1.1
I

The liquid-drop nuclear model

In the liquid-drop model, the nucleus is regarded as analogous

to a charged drop of liquid. This model was suggested because

the molecules in a liquid drop are also held together by short-

range forces. According to this model, the particles in the

nucleus, like the molecules in a liquid drop, are in continual

random motion; the nucleus retains its integrity because of

forces analogous to the surface tension of the liquid drop. The
model also suggests an analogy between the evaporation of

molecules from the surface of a drop and the escape of a

particles from the nucleus (the actual mechanisms for the two

processes are, however, quite different).

This model has been especially useful in describing nuclear

reactions. A particle may enter the nucleus from outside and
impart enough additional kinetic energy to the protons and
neutrons to permit the escape of a proton or a neutron, or a

combination such as a deuteron or an a particle. A detailed

quantitative theory of nuclear reactions based on this idea has

been developed.

The usefulness of the liquid-drop model is well shown in its

ability to account for fission. As you know, when a sample of U"^^

is bombarded wdth slow neutrons, that is, neutrons whose kinetic

energy is very small, a U'"*^ nucleus may capture a neutron to

forai a U'^^ nucleus. The energy made available inside the

nucleus by the captured neutron can be calculated:

mass of U"^" nucleus = 235.04393 amu
mass of neutron = 1.00867 amu
total mass = 236.05260 amu

mass of (unexcited) U"'' nucleus = 236.04573 amu
difference in mass = 0.00687 amu
corresponding excess energy = 0.00687 amu X 931 MeV/amu

=- 6.4 MeV
Therefore, at the instant when the neutron is captured, the U"""'

nucleus fomied has this additional energy, 6.4 MeV, which is

called the excitation energy due to the neutron capture. This

energy is several million electron volts, even though the kinetic

energy of the neutron (less than 1 eV) is relatively so small that it

can be neglected in this calculation.

What happens to the excited U""' nucleus? This problem was
studied theoretically in 1939 by Niels Bohr, who had come to the

United States, and John A. Wheeler, an American physicist. They
showed that, according to the liquid-drop model, the U~"' should
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be able to act like a drop of water when the lattei- is "excited"

by being given mechanical energy. The nucleus can be defoiTned

into an elongated or dumbbell-like shape whose two (charged)

parts may be beyond the lange ot the nuclear- forces of

attraction. The electric force of repulsion between the two parts

of the deformed nucleus can overcome the short-range attractixe

foi'ces, causing the nucleus to split, that is, to undergo fission,

and causing the fragments to separate wdth high speeds. Each of

the fr^agments will then quickly assume a spherical (or- nearly

spherical) for-m because within it the attr-actixe nuclear- forces

again predominate. A schematic picture of a possible sequence of

stages is sketched below.

<§;«l^#

Fission sometimes occurs sponta-

neously, but so rarely that it can be

neglected for this treatment.

SG 19, 20

I he liquid-diop model gives a simple answer to the question:

Why do some nuclides (U"^ and Pu"^) undergo fission with slow

neutrons while other-s (Th^^^ and U"^") undergo fission only with

fast neutr-ons? The answer is that a certain minimum amount of

energy must be available to a nucleus to deform it enough so

that the repulsive electric forces can oxercome the attractive

nuclear forces, i^his amount, called the activation energy, can be

calculated wdth the aid of the mathematical theory of the liquid-

diop model. When U"'" captures a neutr-on to make U''", the

excitation ener-g>' of the U""' nucleus is gr-eater- than the energy

required for fission, even if the exciting neutron has very low

kinetic energv. This (-al(-irlation was made by Bohr and Wheeler

in 1939; the}' found that their- model predicted, correctly, that U'^^

undergoes fission with slow neutrons. The theory also predicted

that when U"^" captures a slow neutron to form U"'", the

excitation energy is smaller than the activation energy by 0.9

MeV. Therefore, U"" should not irndergo fission unless

bombar-ded with neirtrons with kinetic energies of 0.9 MeV or

more. Ihe accui acy of this prediction was verified by experiment.

• 16. According to the liquid-drop model, what kind offorce is

responsible for fission of a nucleus?

17. Why does L'^'" require fast neutrons to provoke fission?

Whv does fission occur in t
"^" with slow neutrons?
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24.12 The shell model

Another nuclear model is required to account for other

properties of the nucleus that could not be accounted for by the

liquid-drop model. In Sec. 22.7, you saw that nuclides with even

numbers of neutrons and protons are more stable than nuclides

that contain odd numbers of either protons or neutrons. Detailed

experimental studies of nuclear stability have shown that nuclei

having 2, 8, 20, 50, or 82 protons, or 2, 8, 20, 50, 82, or 126

neutrons are unusually numerous and stable. These nuclei have

greater binding energies than do closely similar nuclei. When the

exceptional properties of nuclei with these numbers of protons

and neutrons became clear, in 1948, no available theory or model

of the nucleus could account for this situation. The numbers 2,

8, 20, 50, 82, and 126 were referred to as "magic numbers."

It was known from the study of chemical properties that atoms

vvdth atomic numbers 2, 10, 18, 36, 54, and 86 (gases helium to

radon) have special chemical stability. This property was

explained in the Bohr-Rutherford model of the atom by the idea

that the electrons around each nucleus tend to arrange

themselves in concentric shells, wdth each shell able to contain

only a certain maximum number of electrons: two for the

innermost shell, eight for the next, and so on. An especially

stable atom is one with a full electron shell on the outside.

Although the Bohr-Rutherford model has been replaced by a

more successful one based on quantum mechanics, the idea of

shells still provides a useful picture, and a nuclear model called

the nuclear shell model has been developed to deal with the

observation that some nuclei are particularly stable.

In the nuclear shell model, it is assumed that protons can, in a

rough way of speaking, arrange themselves in shells, and that

neutrons can, independently, do likevdse; in the "magic-number"

nuclei the shells are filled. The model has been worked out in

great detail on the basis of quantum mechanics and has been

successful in correlating the properties of nuclides that emit a or

P particles and 7 photons and in describing the electric and

magnetic fields around nuclei. But the nuclear shell model does

not help explain fission, and there are fundamental differences

between this model and the liquid-drop model. For example, the

shell model emphasizes definite patterns in which nucleons are

arranged, while the liquid-drop model pictures the nuclear

material in random motion. Each model is successful in

accounting for some nuclear phenomena, but fails for others.

When two seemingly contradictory theories or models must be

used in a field of physics, a strong effort is made to develop a

more general viewpoint, or theory, which can include the two as

special cases. Such a nuclear theoiy is being developed; it is

called the collective model, and one of the physicists who has

The upper portion of this photo

shows normal plant cell chromo-
somes divided into two groups. Be-

low, the same cell is shown after

X-ray exposure; fragments and
bridges between groups are typical

radiation-induced abnormalities.
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worked on this model is the Danish physicist Aage Bohr, the son

of Niels Bohr. This model represents an advance beyond the

shell and liquid-drop models in correlating nuclear data. It also

has limits; thus, it does not answer tlindamental questions about

nuclear forces, which are still among the chief problems in

modern physics.

• 18. According to the shell model, what gives nuclei having a

"magic number " ofprotons and neutrons their special

properties?

19. Which is more accurate, the liquid-drop or the shell model

of the nucleus?

An autoradiograph of a fern frond
made; after the plant had absorbed
a solution containing radioactive

sulfur (S'V.

24.13
I

Biolo^cal and medical applications of
nuclear physics

Section 24.7 discussed militaiy applications of nuclear energy

and the use of nuclear energy as a source of electric power for

cities, industries, and agriculture. There are many other

applications that may, in the long mn, turn out to be more

important than some of those already mentioned. These may be

included under the general headings of radiation biolog}' and

radiation medicine. The fields of science indicated by these

names are broad. This section will indicate, by means of a few

examples, some of the problems that are being worked on. In

this work, radiations are used in the study of biological

phenomena, in the diagnosis and treatment of disease, and in

the improvement of agriculture.

rhe physical and chemical effects of various kinds of

radiations on biological materials are being studied to find out,

for example, how radiation produces genetic changes. Since it

has been discovered that many of the key chemical processes in

cells are organized by single chains of molecules, it is clear that a

single particle of radiation can, by breaking a chemical bond in

such a chain, cause a permanent and perhaps disastrous change

in the cell.

The metabolism of plants and animals is being studied with

the aid of extremely small amounts of radioactive nuclides called

isotopic tracers, or "tagged atoms." A radioactive isotope (for

example, C") acts chemically (and therefore physiologically i
like

a stable isotope IC'^^l. Thus, by following a radioactive tracer with

counters, the behavior of a chemical matei ial can be followed as

it goes through various metabolic processes. The role of

micronutrients (elements that are essential, in extremelv small

amounts, for the well-being of plants and animals i can be

studied in this way. Agricultural ('.xperiinents with fertilizers
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Damaged trees surround a radio-

active cesium-137 capsule. The
capsule had been kept in place for

nearly 6 months in an e;<.periment

to study the effects of ionizing ra-

diation on biological systems.

.^tt.*-..-

An aerial view of Brookhaven Na-

tional Laboratory, where the exper-

iment shown above was performed.
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containing radioactive isotopes have shown at what point in the

grouch of a plant the fertilizer is essential. In cheniistiy,

radioactive isotopes help in the determination of the details of

chemical reactions and of the structure of complex molecules,

such as proteins, \atamins, and enzymes.

Perhaps the most rewarding uses of radioisotopes have been in

medical research, diagnosis, and therapy. For example, tracers

can help to determine the rate of flow of blood through the heart

and to the limbs, thus aiding in the diagnosis of abnomial

conditions. Intense doses of radiation can do serious damage to

all lixing cells, but diseased cells are often more easily damaged

than normal cells. Radiation can, therefore, be used to treat some
diseases, such as cancer. Some parts of the body take up
particular elements perferentially. For example, the thyroid gland

absorbs iodine easily. Specially prepared radioisotopes of such

elements can be administered to the \actims of certain diseases,

thus supplying desired radiation right at the site of the disease.

This method has been used in the treatment of cancer of the

thyroid gland, blood diseases, and brain tumors and in the

diagnosis of th3a^oid, liver, and kidney ailments.

SOME TYPICAL ISOTOPE APPLICATIONS

Isotope Half-Life Important Uses

,H^ 11 years Used as a tag in organic substances.

gC^'' 4,700 years Used as a tag in studying the synthesis of

many organic substances. When ^C" is

SG 21 incorporated in food material, its presence

can be traced in the metabolic products.

^Na^" 15 hours Useful in a wide variety of biochemical

investigations because of its solubility and
chemical properties.

,5P^' 14 days For the study of bone metabolism, the

treatment of blood diseases and the

diagnosis of tumors.

,gS^^ 87 days Has numerous chemical and industrial

applications.

j^Co^" 5.3 years Because of its intense 7 emission, may be

used as a low-cost substitute for radium in

radiography and therapy.

53I"' 8 days For the study of thyroid metabolism and the

treatment of thyroid diseases.

The increased use of radioisotopes has been closely related to

advances in the chemistry' of radioactive pharmaceuticals.

Together with advances in electronics and nuclear

instnjmentation, these advances have led to the emergence

during the 1960's and 1970's of an important medical specialty

called "nuclear medicine." The promise that nuclear physics

held for the future of biology and medicine is being realized.

This realization svanbolizes the meaning of science at its best:

Research in science lays open to our understanding the secrets of
nature, andfrom the application of this knowledge to human
needs, all people can beiwfit.
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1. The Project Physics learning materials

particularly appropriate for Chapter 24 include:

Activity

Two Models of a Chain Reaction

Film

The World of Enrico Fermi

Transparency
Binding Energy Curves

2. Suppose that a nucleus of ^C" is formed by

adding a neutron to a ,C'' atom. Neglecting any

kinetic energy the neutron may have, calculate the

energy that becomes available to the nucleus because

of the absorption of that neutron to make ^C". The

atomic masses of C'' and C" (in an unexcited state)

are 12.000000 and 13.003354 amu.

3. The atomic mass of He^ is 4.00260 amu; what is

the average binding energy per particle?

4. Suppose that a proton with relatively small

kinetic energy induces the follouang reaction:

Li' + H' He' + He

If the lithium nucleus were initially at rest, what

would be the relative directions of the two a

particles? What would be the kinetic energy of each

a particle?

5. The first nuclear transmutation (obtained by

Rutherford in 1919) was the reaction:

X' + ,He' -^ fl" + ,H'

The atomic masses involved are:

N"
O"
He'

H'

14.003074 amu
16.999134 amu
4.002604 amu
1.007825 amu

6. In an experiment on the reaction given in SG 5,

the a particles used had a kinetic energy of 7.68

MeV, and the energy of the protons was 5.93 MeV.

What was the energy of the "recoiling" O' nucleus?

7. Calculate the amount of energy (MeV) liberated

in the following nuclear reaction:

^" + ,H'

The atomic masses are:

_N" + H'

N": 14.003074 amu
H': 2.014102 amu
N'^: 15.000108 amu
H': 1.007825 amu

8. Appreciable amounts of the uranium isotope

g^U^^^ do not occur outside the laboratory; .,,U"" is

formed after the thorium nucleus .,„Th"^' has

captured a neutron. Give the probable steps leading

from ,„Th"^ to ,,U"\

9. Use the graph at the top right-hand corner of

page 705 to find the binding energies for U"'\ Ba"',

and Kr^'. Use these values to show that the energy

released in the fission of U"^" is approximately 200

MeV.

lO. Possible end products of U"° fission, when
provoked by capture of slow neutrons, are -Xa"" and

j^Mo'". This reaction may be described by the

equation:

U'^' + n' _La''' + ,,Mo'' + 2„n* + 7(_

Is energy absorbed or released in this reaction? How
much energy (MeV) is absorbed or released?

The mass of ,-La''" is 138.91 amu; that of ^.Mo"^ is

94.9057 amu. How much energy is released per atom

in this particular fission? (The mass of the seven

electrons may be neglected.)

11. Write a set of equations that describe the decay

of the fission product j„,Kr'' into j„Zr".

la. Loss of neutrons from a structure containing

fissionable material depends on its shape as well as

its size. For some shapes, it is impossible to reach a

critical size because the neutron loss through the

surface is too great. With what shape would a mass

of fissionable material suffer the least loss of

neutrons by passage through the surface? the most?
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13. Why are the hif^h tcmporatures prodiicc^d by the

explosion of a fission boml) necessar\' to initiate

liision in a th(;rnioniulear device?

14. It is generally agreed that stars are formed when
vast clouds of hydi'ogen gas collapse under the

mutual gravitational attraction of their particles. How-

might this process lead to fusion reactions beginning

in such stars? I Hint: The cloud has gra\ itatiomd

potential energy.)

15. One of the energ\' sources in the sun is the

production of helium nuclei by four protons as

described in Sec. 24.9: 4,H' -^ ,He' + 2 ,e". Show
that about 27 Me\' of energy are released in each

cycle.

16. Fusion reactions in the sun con\'ert a \'ast

amount of hydrogen into radiant energy each

second.

(a) Knowing that the energy output of the sun is 3.90

X 10"'' J/sec, calculate the rate at which the sun is

losing mass.

(b) Convert the value 3.90 x lo'" J/sec to

horsepower. (Recall that 1 horsepower is equivalent

to 746 W.I

17. A source of energy in the sun may be the

"carbon cycle," proposed by Hans Bethe, which is

outlined below.

(a) Complete the six steps of the cycle.

(b) After a cycle has been completed, which nuclides

used in the cycle ha\'e been changed (and in what

ways I, and which haxe come out the same as they

entered the cycle?

^C" + ,H' ^ ( ) + 7

( )^eC" + .,e" + V

,C'^ + ,H' ^ ( ) + y

( ) + ,H' ^ p'' + 7

,0''^
( ) + ^^e" + V

( ) + ,H' ^ ^C" + ^He"

18. Another reaction that may take place in the sun
is:

He' + He' ^ Be' + 7

The atomic mass of He' is 3.016030 amu, and that of

Be' is 7.016929. Is energy absorbed or released? How
much energ\'?

19. The atomic masses of ,,,L'"' and ,,,U"' are

233.039498 and 234.040900 amu. The acti\ation

energy for the fission of the; nucleus .,.X!~'^ is 4.6 MeV.

Is U"" fissionable by slow neutrons?

20. Bombardment of ,,,Pu"'' with slow neutrons

sometimes leads to the reaction:

Pu'" + Pu'"" + 7

The atomic masses of Pu " and Pu"" are 241.0o6711

amu and 242.058710 amu. The acti\ati()n energ\' of

Pu"'' is 5.0 MeV. Is Pu"" fissionable with slow

neutrons?

21. The chemical structural formula for the energy-

cariying adenosine triphosphate (ATPi molecule in

living cell is

H../ \,hh
X-\ 'Cv ^C'—C-0-p-6-P-C-P=O

/^"^ ^Ar?-" H o

NH H
0-M

Energy is pro\'ided to some other molecule when the

O
i

end phosphate group — P=0 ' is transferred to it,

I

C
chcUiging the AFP to adenosine d/phosphate (ADP).

Energy from the oxidation of food is used to attach

new phosphate groups to the ADP, changing it once

again to ATP. Suggest a procedure by which you

could determine the rate at which new molecules of

ATP are fornu^d.

22. Write an essay on one of the following topics:

(a) The various ways a citizen can help assure that

technological innovations will be made and used in a

manner benefiting society as a whole.

(b) The differences between technology' and basic

science.

(c) The responsibilities of scientists to society.

(d) The responsibilities of society to further science.

(e) The fields of physics or related sciences in which

\'ou mav want to do further studv.
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23. Activity: Two Models of a Chain Reaction.

Mousetraps
Carefully put six or more set mousetraps in a large

cardboard box. Place two small corks on each trap

in such a position that they will be thrown about

violently when the trap is sprung. Place a sheet of

clear plastic over the top. Then drop one cork in

through the corner before you slide the cover on

completely. Can you imagine the situation with

trillions of tiny mousetraps and corks in a much
smaller space?

What in the nucleus is represented by the potential

energy of the mousetrap spring? What do the corks

represent? Does the model have a critical size?

Describe the effect of the box cover.

Match Heads
Break off the heads of a dozen wooden matches

about 0.3 cm below the match head. Arrange the

WADS OF
PAPER

match heads as shown in the drawing. Place wads of

wet paper at certain points. Light a match and place

it at point A. Observe what happens to the right and

left sides of the arrangement. What component of

a nuclear reactor is represented by the wet paper?

How could you modify this model to demonstrate

the function of a moderator?

Comment on how good an analogue this is of a

nuclear chain reaction.
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This unit has traced the

development of nuclear physics

from the discovery of radioactixit)' to current work in nucleai'

fission and fusion. Radioactivity provided the starting place and
tools to w'oik with. Radioactivity rex'ealed the natuially occurring

transmutation of elements and so led to the achievement of

artificial transmutations. The naturally occurring radioactive

series pointed to the existence of isotopes, both ladioactixe and

stable. Artificial transmutation has increased by many hundreds

the number of nuclear species available for study and use.

Nuclear physicists and chemists study the i-eactions of the

stable and radioactive nuclides. The collection and correlation of

a vast body of experimental data now available are the result of

the vv^ork of the nineteenth-centuiy chemists and spectroscopists.

Nuclear models are built, changed, and replaced by newer and,

perhaps, better models. But the detailed nature of nuclear forces

is still the subject of much research, especially in the field of

high-energy physics.

Yet that is only one of the fields that remains to be explored.

The nucleus also has magnetic properties that affect the behaxior

of atoms. Sometimes it helps to study these properties when the

atoms of matter are at veiy low temperatures, as close to

absolute zero as possible. Nuclear physics overiaps with solid-

state physics and v\dth low-temperature physics; at low

temperatures extraordinaiy things hiippen, and quanta again

help to explain them.

The study of light through the development of de\ ices such as

the laser attiacts many physicists. These dexices are made
possible by, and contribute to, the increasing understanding of

hoxv complex atomic systems jump from one energx' to another,

and how they can be made to change xxhere and x\hen they are

needed.

The properties of liquids are still only imperfectly understood.

I hales of Miletus xvas perhaps the first person on record to make
a large-scale scientific speculation xxhen he proposed, oxer 26

(centuries ago, that maybe exeiything in the xvorld is basically

made of water in combinations of its xarious states. Thiiles was
wrong, but ex'en today scientists are tiying to dexelop an

adequate theory of the behaxioi- of water molecules.

a\11 the subjects mentioned touch on engineering, xvhere

physics and other disciplines are put to use to fashion the

"artificial world." All of the engineering fields inxolxe phxsics.

Nuclear engineering and space engineering aie the most recent

and, at the moment, perhaps the most glamorous. But today the

chemical engineer, the mechanical engineer, and the metallurgist

all use the physicist's xvay of understanding the properties of

atoms and atomic nuclei, because it is no longer enough to knoxv

only the properties of matter in bulk.
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The radiations talked about (a, p, and 7 rays) are tools for

industry, biology, and medicine. They help to cure, preserve,

study, understand. Neutrons are not only constituents of the

nucleus, they are also probes for studies in science and in

industry.

So the study of atoms and nuclei, indeed the whole course,

has been an introduction not only to physics but also to the

many fields with which physics is closely linked. It has been an

introduction to an ever-expanding world in which much is

known and understood; where much more, and perhaps the

most wonderful part, is waiting to be discovered.
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Pp. 417-418 Galilei, Galileo, Dialogues Concerning Two New
Sciences, translated by Crew H. and de Sahdo, A., copyiight

1952 by Dover Publications, pp. 42-43. Pp. 423-424 Gilbert,
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84. P. 468 Faraday, Michael, MacDonald, D. K. C, Faraday,

Ma,\well & Kelvin, Science Studies Series, Doubleday, Garden
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well, James Clerk, The Scientific Papers ofJames Clerk Ma;<-
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Great Books of the Western World, Vol. 34, copyright 1952 by

Encyclopaedia Britannica, Inc., pp. 525-531. Pp. 574—575
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translated by Frederick W. Truscott and Frederick L. Emory,

copyright 1951 by Dover Publications, Inc., p. 4.
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Book in Physics, copyright © 1964 by Harvard University Press,
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IndCH
Absolute temperature, defined,

295

Absolute temperature scale,

333-334

Absolute zero, 334

Acceleration, centripetal, 113-116

constant, 47-49

defined, 28, 76

force and, 85-87

free fall and, 85-87

gravity and, 57

instantaneous, 29-30

mass and, 81-83, 85-87

speed and, 28-30

uniform, 47-49

weight and, 85-87

Accelerator(s), electron, 445, 604
particle, 445, 687-692

Acoustics, 384

Action-at-a-distance theories,

393-394

Activation energy, defined, 732

ADP (adenosine diphosphate),

298-299

Aeolipile, 287-288

Age of Reason, 242-243

Air column, standing wave mo-
tion of, 371

Air pressure, 332

Alchemy, 528-529

Alkali metals, 537, 592-593

Alloy, defined, 533

Almagest (Ptolemy), 148-149

Alpha (a) particle, charge-to-mass
ratio, 640-641

as helium atom, 641-642

Alpha (a) rays, 575-576

identification of, 641-642

intensity of, 638

Alternating current, 481-484

defined, 473

Alternating-current generator,

471-473

Amber, properties of, 422
Ampere, 429

defined, 454
Ampere, Andre-Marie, biography,

453

force law of currents and,
453-454

Amplitude, defined, 360
Amplitude modulation, 511-512
Analogy, defined, 397

Anderson, and discovery of posi-

tron, 697

Angle of incidence, 376

Angle of reflection, 376

Angstrom, Anders Jonas, 411

Angstrom unit, 411

Anode, defined, 542

Antineutrino, 685-687

Antinodal lines, 366-367

defined, 366

Ai^c light, 477

Areas, Kepler's law of, 183-185

Aristarchus, and heliocentric the-

ory, 146-147

Aristotelian cosmology, defined,

46

Aristotle, and astronomical the-

ory, 131

atomic theory of matter,

526-528
^

biography, 38

cosmology of, 46

theoiy of motion, 36-41, 70-71

Artificial radioactivity, 1-5,

696-699

Artificial transmutation, discovery

of, 677-679

Aston, Francis William, biog-

raphy, 662

isotopes and, 662-665

whole number rule and, 671

Astronomical instruments, Tycho
Brahes, 173-174

Astronomical unit, defined, 161

Astronomy, and electromagnetic

spectrum, 514—515

history of, 128-132

Atmospheric pressure, 332

Atom(s), calculating nuclear bind-

ing energy of, 705-707

charged hydrogen, 544, 559

disordered motion of, 339

excited state of, 588-591

nuclear, 575

nucleus of, 674-675

planetary, 579

size of, 331

stationary states of, 583-587

structure of, 540-541

wave-like properties of, 610

Atomic (nuclear) bomb, 716-718

Atomic mass(es), of nuclides,

669-671

Atomic mass unit, 670-671
Atomic model(s), 559, 562-563

Bohr's, 562-563, 578-580, 589,

592-597

Rutherford's, 573-576
Thomson's, 562

Atomic nucleus, proton-neutron
composition of, 683-684

Atomic number, defined, 538
of elements, 537

Atomic theoiy, of matter, 526-530
in 1920s, 595-597

ATP (adenosine triphosphate),

298-299

Average acceleration, defined, 29
Average speed, 11, 14-17

computation of, 50

defined, 14, 16, 25, 29, 50

Average values, predictions

about, 325

Aztec calendar, 129

Bacon, Francis, and conseiA^ation

of mass, 249-250

Balmer, Johann Jakob, and wave-
lengths of spectra, 571-573

Bartholinus, Erasmus, and polari-

zation of light, 413

Basic forces, 92-94

Battery, Volta's, 442-443

Beats, defined, 384

Becker, H., and neutron, 680

Becquerel, Henri, and radioactiv-

ity, 629-633

Becquerel rays, 632

Beines, Frederick, and neutrino,

687

Bernoulli, Daniel, and kinetic

model of gas, 326

Beryllium atom, 593

bombardment of, 680-681

Beta ((3) particles, charge-to-mass

ratio, 639-640

Beta (|3) rays, intensity of,

638^639

Binary star system, motion of,

235

Binding energy, concept of,

704-705

of nucleus, 729-730

Bioenergetics, 299

Biological systems, energy in,

297-304

Biophysics, 303

Blackett, P. M. S., and artificial

transmutation, 678-679
Blake, William, and Industrial

Revolution, 290-291
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Bohr, Aage, and nuclear theon',

734

Bohr, Niels, atomic theory,

578-580, 595-597

biography, 584

electron oi-bit size and,

581-583

hydrogen spectrum and,

583-587

model of atom, 562-563, 589,

592-595

periodic table, 589, 592-595

quantization rule, 581-583

Boltzmann, Ludvvig, irreversibility

and, 341

kinetic theoiy and, 327

Bom, Max, probability interpreta-

tion, 619-620

wave mechanics and, 611-612

Bothe, VV. C, and neutron, 680

Boyle, Robert, mechanistic view-

point, 247-248

Boyle's law, 326-332

Brcihe, Tycho, astronomical in-

struments, 173-174

celestial motion and, 170-177

Bright-line spectra, 569

de Broglie, Louis, and
waxe-particle dualism,

608-609

de Bioglie wavelength, 608-609

Brovvii, Robert, and BrowTiian

motion, 335

Browne, Sir Thomas, and electric

repulsion, 424

Brownian motion, 335, 346

BTU (British Thermal Unit I, de-

fined, 286

Bubble chamber, 693-696

particle tracks in, 7

Bullet, motion of, 103-105

Bunsen, Robert W., and line

emission spectra, 568

Calendar, histoiy of, 135

origin of, 129

Caloric fluid, heat as, 284
Calorie(sl, daily human require-

ment, 299, 302

defined, 286

Camera obscura, 399

Capacitors, 440-441

Carbohydrates, defined, 298

production of, 298
Camot, Sadi, biography, 295

and engine efficiency, 295-298
Carnot's proof of efficiency,

300-301

Cathode, defined, 542

Cathode ray(si, 542-544

properties of, 543

Cavendish, Heniy, and gravita-

tional force, 230, 231

quantitative aspects of chemis-

try and, 529

Celestial equator, defined, 137

Celestial motion, Copernican sys-

tem, 155-159

geocentric theory of, 144-145,

148-152

Greek explanation of, 129-130,

142-143, 144-146, 148-152

heliocentric theory of, 146-147

Celestial navigation, 167

Cell, radiation-induced abnor-

malities in, 733

Celsius temperature scale, 333,

334

Centr'al for'ce, defined, 219

motion under, 218-219

Centripetal acceler-ation, 113-116

defined, 114

of satellite, 118-119

Centripetal force, 113-117

defined, 114

Chadwick, James, and artificial

transmutation, 677-678

discovery of neutron, 680-683

Chain reaction, 712-713

contr'ol of, 713-716

Charge, electron, 545-546

nuclear, 576-578

Char-ged hydrogen atom, 544, 559

Charged particles, deflection by
magnetic field, 456-457

Charge-to-mass r^atio of electi'ons,

541, 544

Chemical compounds, 532-535

Chemical formulas, 533-544

Chemical reactions, in closed

(isolated) system, 250-251

open-air, 250

Chemistry, history of, 528-531

quantitative aspect of, 529-530

Circles, as conic sections, 188

Circular motion, 110-113

table of frequency and periods

for. 111

Circular wave pulses, 363-367

Circular waves, reflection of,

376-377

Classical physics, defined, 579

Clausius, Rudolf, and kinetic the-

ory, 327

law of thermodynamics and,

312

size of molecules and, 329
Cloud chamber, 678, 692

Collective model, 733-734

Collisionlsi, and conservation of

velocity, 253-255

elastic, 264-266

experiments, 253-255

perfectly elastic, 266

in two dimensions, 259

Color, 406-411

Neuron's theory of, 407-411

wavelengths of, 411

Combining capacity, 533-534

Comet(s), and gravitation, 233

orbit of, 233

Communication, waves in,

511-512

Commutator, 473

Compounds, chemical, 532-535

defined, 530, 532

Compton, ,\ithur H., and mo-
mentum of photon,

606-607

Conductor's, 442

metallic, 446-^449

Conic sections, 188

ConserA'ation, general law of,

305-309

Conser\ation of electric charge,

439-441

Conservation of energv, 305-308,

312-314

efficiency and, 295

in nuclear reactions, 702-703

Conservation of kinetic energy,

265-266

Conser\'ation laws (table), 314

Conservation of mass, 249-253

law of, 251

Conservation of mechanical en-

ergy, 279-281

Conservation of momentum,
255-258, 260-264

Constant acceleration, 30

Constant speed, 13, 30

Constant of universal gravitation,

226

Constellations, 135-137

Constitution of United States,

and \ev\tonian phvsics,

243

Copernican system, 155-159

arguments against, 166-169

arguments for, 164-165

Galileo s defense of, 196-198

Ptolemaic system and, 158-164

(Copernican theory, historical

consecjiiences of, 170
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Copernicus, Nicholas, and Coper-
nican system, 155-159

Coulomb, defined, 429
Coulomb, Charles Augustin, biog-

raphy, 427
electric forces and, 427-428

Coulomb's law, 428-429
Cowan, Clyde, and neutrino, 687
Crookes, and cathode rays,

542-543

Crookes' tube, 542
Crystal, double refraction by,

413-414

Curie, Irene, and artificial radio-

activity, 1-2, 696-698
neutron and, 680

Curie, Marie, and radioactive ele-

ments, 1, 633-637
Curie, Pierre, and radioactive ele-

ments, 1, 633-637
radioactive transformation and,

643

Current balance. Ampere's, 454
Cyclotron, 688, 690

Dalton, John, atomic theory of,

530

law of fixed proportions and,
533

Dark-line spectra, 569
Davisson, C. J., and electron wave

properties, 608
Davy, Humphry, and arc light,

477

electrolysis and, 535

Decomposition, 532-533
De Magnete (William Gilbert),

422-424

Democritus, atomic theoiy of

matter, 526

Dempster, A. J., and positive ions,

660

Density factor, in wave propaga-
tion, 359

Descartes, Rene, 126-127

conservation of motion and,
266-267

model of ether, 394

Principles of Philosophy, 247
theory of space, 216, 221

Deuterium, 668

Deuterium atom, particle masses
of, 703

Deuteron nucleus, binding en-

ergy of, 704
Dialogue Concerning the Two

Chief World Systems (Gali-

leo), 196-197, 199

Diffraction, defined, 371

double-slit, 405

light, 404-406, 408

sound waves, 384

wave, 371-375

Diffraction patterns, X-ray, 558

Dioptrice (Kepler), 190

Dirac, P. A. M., and modern
quantum mechanics, 611

Direct current, 473, 480-481

Direct-current generator, 473-474

Discharge tube for producing
positive ions, 659-661

Displacement, defined, 11

wave, 356

Displacement current, 502

Displacement pattern, wave, 356

Doppler effect, 382

Double refraction of light,

413-414

Double-slit experiment, 405

Drum, vibration of, 372

Dry ice, in motion experiment,

9-10, 11-13

Duty of electric motor , 305

Dynamics, defined, 67

Dynamo, 471-474

Earth, magnetism of, 423-424

mass of, 251

mass compared with planets,

229

as open system, 251, 253
Earth satellites, motion of,

117-119

Eccentric, in planetary motion,
149-152

Eccentricities of planetary orbits,

186

Ecliptic, defined, 137

Edison, Thomas Alva, and incan-

descent light, 477-480

Efficiency, concept of, 294
of engines, 294-297

of reversible engines, 300-301

Einstein, Albert, biography, 553

Brounian motion and, 346

photoelectric effect and,

550-555

probability and, 620

relativity theory and, 519, 600

Einstein's Theory of Special Rela-

tivity (Max Bor^n), 504
Elastic collisions, 264-266
Elastic potential energy, 277-278
Electrical energy, from nuclear

power, 719-720

Electric cell, 535

Electric charge, 424
conservation of, 439-441
described, 425-432
of electron, 438-439
moving, and magnetic field,

455-457

positive and negative, 426
unit of, 429

Electric current(s), 442-443
action on currents, 453-454
action on magnets, 450-453

alternating, 473, 481-484

direct, 473

displacement, 502

electric potential difference

and, 446-447

photoelectric, 548

production of, 439-443

Electric field, 436-437

Electric force(s), 425-432

magnetic forces and, 424

Electric force law, 426-427

Electric generator, 470-471

Electricity, cost in home, 488

generation of, 471-474

magnetism and, 450-453

social aspects of, 485-490

Electric light bulb, 477-480

Electric lines of force, 500-501

Electric motor, 474—476

duty of, 305

Electric potential difference, and
current, 446-447

power and, 447-450

Electric potential energy, 278,

443-446

conver^sion of to kinetic energy,

445

Electric power, commercial dis-

tribution of, 482-484,

486-487

Electric power plant, efficiency

of, 491-495

Electric shielding, 431

Electric transformer, 481-482

Electrolysis, 535-536

defined, 535

laws of, 535

masses of elements released by
(table), 536

Electromagnetic force, 93

Electromagnetic induction, dis-

covery of, 467-471

Electromagnetic method of iso-

tope separation, 663-665

Electromagnetic radiation,

507-509
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Electromagnetic spectrum, and
astronomy, 514—515

defined, 510

Electromagnetic wave(s), defined,

504

light and, 505-510

propagation of, 503-506

speed of, 505

Electromagnetism, 395, 450-453

principles of, 500-501, 502

theories about, 393

Electronlsl, 544

in atom, 559, 562-563

calculating mass of, 546

charge-to-mass ratio, 541, 544

measuring charge of, 438-439

measuring kinetic energy of,

549-550

positive, 697

size of orbit, 581-583

wave properties of, 608-611

Electron accelerators, 445, 604

Electron charge, measurement of,

545-546

Electron shells, 589, 592-594

Electron \olt, defined, 445

Electroscope, 633

Electrostatic diffraction and re-

pulsion, 425-432

Electrostatic induction, 430

Electrostatic machines, 439-441

Electrostatics, defined, 395

Element! s), atomic number of,

537

Dalton's symbols for, 533

equivalent mass of, 534

masses of released by electrol-

ysis (table), 536

periodicity of, 540-541

periodic table of, 536-538, 589,

592-595

symbols for, 533

transuranium, 710

ElUpse, as conic section, 188

defined, 186

eccentricity of, 186-188

Elliptical orbits, Kepler's law of,

185-188

Empedocles, theory of rTiatter,

526

Empirical, defined, 188, 260
Empirical laws, 188-189

Ener-gy, activation, of nucleus,

732

alternate sources of, 490-491

in biological systems, 297-304

conservation of, 279-286,

.505-308, 312-314

conservation in nuclear reac-

tions, 702-703

dissipation of, 338-340

elastic potential, 277-278

electric potential, 278, 443-446

excitation, of nucleus, 731-732

from food, 298-299, 302-303

gr-a\itational potential, 274-275,

277

heat as, 284-286

human use of (tablel, 302

internal, 310-312

kinetic, 265-266

magnetic potential, 278

mass and, 603-604

mechanical, 279-281

nuclear binding, 703-705

potential, 277-279

quantum of, 551

solar-, 490-491

transformation of, 305-306

units of (tablel, 286

Energy' level, of hydrogen atom,

586

Engines, efficiency of, 294—297,

300-301

heat-producing, 295-298

Newcomen, 287-290

power ratings of (table), 292

reversible, 295-298, 300-301

steam, 287-293

Entropy, 311-312, 339

Environmental pollution, 342-343

Ephemeris, 167

Epicurus, atomic theory of mat-

ter, 526

Epicycle, 149-152

of Venus, 162

Equant, 149, 152

Equilibr-ium, defined, 71

Equinox, vernal, 137

Equivalent mass, of element, 534

Ether, 415-417

models of, 394

theories of, 517

Excitation energy, defined, 731

"Existence of a Neutron, The"
(J. Chadvvick), 681

Explanation, in physics, 67-69

in science, 143-144

Extrapolation, defined, 22

Fajans, A., and transfomiation

rules of radioactixity,

657-658

Faraday, Michael, biography, 468

ehn'trolvsis and, 53."

electromagnetic induction and,

305, 466-470

induction coil, 467-470, 481

lines of force and, 395, 499-500

Faraday disk dvnamo, 470

Fahrenheit scale, 333

Federal Communications Com-
mission (FCC), 512

Feedback, defined, 288-289

Fer-mi, Enrico, and artificial ra-

dioactivity, 2-5

neutr'ino and, 313, 685

nuclear fission and, 709-711

Field(s), concept of, 393-395,

432-435

electric, 436-437

forces and, 432-438

gravitational force, 435-436

magnetic, 432, 455-457

pressur-e, 434

relation between electric and
magnetic, 500-503

velocitv', 434

First law of thermodynamics,
309-311

Fission, nuclear, 709-713

Fixed proportions, law of, 533

Fixed stars, 136-137

Fizeau, Armand H. L., and speed

of light, 404, 505

Flammarion, Camille, arid end of

wo rid, 340

Fluctuations ftom average values,

325

Fluorescence, 630

of X r^ays, 556

Fluorescent lights, 542

Fluorine atom, 593-594

Foods, energy content of (table),

302

as energy source, 298-299,

302-303

Food supply, increasing wor-ld's,

302-303

Force(s), and acceleration, 85-87

basic, 92-94

central, motion under-, 218-219

centripetal, 113-116

electric, 424, 425-432

electromagnetic, 93

fields and, 432-438

frictional, 93-94

gravitational, 85, 93

interaction of, 88-89

lines of, 500-501

magnetic, 424

magnitude of, 221

measuring of, 82, 221
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on moving charged body,

455-457

net, 72-73

nuclear, 729-731

planetary, 213-216, 224-226

pressure and, 332

tidal, 231-232

work and, 281-283

Force law of currents, 453-454

Fossil(s), 7

Fossil-fuel power plant, 495

Foucault, Jean B. L., and speed of

light, 404

Fourier, Jean-Baptiste, and wave
motion, 363

Frames of reference, 92-93

moving, 108-110

Franck, James, and stationaiy

states of atoms, 587-589

Franklin, Benjamin, and electric-

ity, 425-427, 440

Fraunhofer, Joseph von, and
dark-line spectra, 569

Free fall, and acceleration, 85-87

defined, 45

Galileo's study of, 43-46

mass and weight and, 85-87

Free neutron, 685

Frequency, defined, 360

of standing waves, 370-371

Frequency modulation, 511-512

Frequency of motion, defined,

111

Fresnel, Augustin, biography, 406

wave theoiy of light and, 406

Friction, 93-94

heat production and, 284-285

Frisch, Otto R., and nuclear fis-

sion, 711-712

Fusion, nuclear, 709, 725-729

Galileo, and accelerated motion,

30

biography, 41-43

celestial motion and, 192-196

contributions of, 56-59

Copernican system and,

196-198

free fall and, 108-110

inclined plane motion and,

53-54, 77

Kepler and, 192-193

moving frames of reference

and, 108-110

relativity principle of, 109

satellites of Jupiter and, 195

scientific method and, 58-59

speed of light and, 400

telescopic obseivations of,

193-196

theories of motion, 40-41,

56-59

thought experiment, 44—45

time measurement, 55-56

trial of, 199-200

uniform acceleration and,

47-49

uniformly accelerated motion
and, 50-52

Gamma (7) rays, 516, 640

intensity of, 638-639

Gas(es), kinetic model of, 326

kinetic theoiy of, 322

light emission by, 566-570

nature of, 323-324

predicting behavior of, 331-336

spectra of, 566-570

volume of, 333

Gas-diffusion method of isotope

separation, 662-665

Gaseous state, model for, 323-326

Gas molecule(s), 323-324

diameter of, 331

kinetic theory and, 322

Gas pressure, and density, 332

kinetic explanation of, 334—337

temperature and, 333

Gay-Lussac, Joseph-Louis, and
ideal gas law, 333

Geiger, Hans, and nuclear model
of atom, 574-575

Geiger counter, 577

Geissler, Heinrich, and vacuum
pump, 542

Geissler tube, 542

Gell-Mann, Murray, and quarks,

545

General conseivation law,

305-309

Generator(s), 475-476

alternating current, 471-473

electric, 470-471

Geocentric theory of celestial

motion, 144—145

Geocentric viewjDoint, defined,

144

Geometric solids, 181-182

Germer, L. H., and electron wave
properties, 608

Gilbert, William, and magnetism,
422-424

Globular star cluster, 6

Goethe, Johann Wolfgang von,

and Nature Philosophers,

306

Newtonian theory and, 244, 411

Gold, transmutation of, 693-696
Goldstein, Eugen, and cathode

rays, 542

Gram, 83

Gram atomic weight, defined, 534
Graph(s), distance-time, 17-22, 29

slope on, 18-20

speed-time, 29-30

Graphing, of motion, 17-20

Gravitation, and motion of moon,
233-234

tides and, 231-232

universal, 212

Gravitational constant, 226,

227-229

Gravitational force, 85, 93

masses of planets and, 229-231
measuring of, 229-231

Gravitational force field, 435-436
Gravitational potential energy,

defined, 277
work and, 274-275

Gravity, and acceleration, 57

force of, 85

Neuron's theoiy of, 209-210

Gregorian calendar, 135

Ground state, defined, 583

Growth rate, graphing of, 24-25

Guericke, Otto von, and electric

charge, 439-440

Hahn, Otto, and nuclear fission,

710-711

Half-life, concept of, 647-650

Halley, Edmund, and comet or-

bits, 233

publication of Principia and,

210

Halley's comet, 179, 233

Halogens, 538

Harmonic law (law of periods),

188-190

Harmonics, 370-371

Harmony of the World (Kepler),

181, 189

Heat, as energy, 284-286

kinetic-molecular theory of,

321-322

law of thermodynamics and,

309-311

"Heat-death " idea, 339-340

Heat engines, 295-298

"Heavy " hydrogen, 668

Heavy water, 669

Heisenberg, Werner, and quan-

tum mechanics, 611, 613

uncertainty principle and, 615
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Heliocentric theory of celestial

motion, 146-147

Helium atom, 592

alpha particle and, 641-642

wave-like behaxior of, 610

Helmholtz, Hermann von, and
conservation of energy, 307

Helmont, Jan Baptista, and gas,

324

Henry, Joseph, and electromag-

netic induction, 467

transfoiTiier and, 482

Herapath, John, and kinetic the-

ory of gases, 326-327

Heixjn, and steam engine,

287-288

Herschel, John, and line emission

spectra, 568

Herschel, William, and binaiy

star system, 25

Hertz, 507

defined, 111

Hertz, Gustav, and stationary

states of atoms, 587-589

electromagnetic waves and,

506-510

photoelectric effect and, 546

History of Technology', The

(V' Gordon Childel, 117

Hooke, Robert, and color theory,

410

Horsepower, defined, 292

Human body, energy production

by, 298-299, 302-303

Human hair, alpha spectrum of,

698

Huygens, Christian, 126-127

biography, 265

consen'ation of kinetic energy

and, 265-266

speed of light and, 401

wave ditTiaction and, 373-374

Huygens principle, and wave
diffraction, 373-374

Hydroelectric power, 483-484

Hydrogen atom, charged, 544, 554

energy levels of, 586

energy states of, 581-583

size of, 580-581

Hydrogen molecule, wave-like

behavior of, 610

Hydrogen spectrum, 571-573,

583-587

Hyperbola, 188

Hypothesis, definition, 397

kinds of, 222-223

Ideal gas law, 333-334

Incandescent light, 477-480

Inclined plane motion, 53-54

Index of Forbidden Books,

199-200

Induction, electromagnetic,

467-471

electrostatic, 430

see also Propagation

Industrial Revolution, and steam

engine, 287-293

Inertia, principle of, 77-78, 79

Inertial mass, defined, 81

Infrared radiation, 513

Instantaneous acceleration, 29-30

defined, 29-30

Instantaneous speed, 11, 23-25

defined, 23, 25, 29

Insulatoi-s, 442

Integrated energy supply, 294

Intensities of sound (table), 381

Interference, light, 404-406

of sound waves, 384

two-slit, 374-375

Interference pattern, and compu-
tation of wavelength, 375

defined, 365

wave, 363-368, 369

Internal energy, 310-312

International System (SI I units, 84

International Telecommunication
Union (ITUl, 512

Interpolation, defined, 22

Inverse-square law, for electric

charges, 427-428

of planetaiy force, 213-216

Ionization effect, of uranium la-

diation, 632

Ions, positive, 659-661

Irreversible process, 339-343

Isolated system, and conser\'a-

tion of momentum,
263-264

Isotopes, concept of, 655-657

defined, 665

of lead, 658-659

neon, 662-665

relative abundances of, 668-671

separating of, 661-665

stable, 668-671

Isotopic tracers, 734-736

Johnson, Samuel, 244

Joliot, Frederic, and artificial ra-

dioacti\ity, 1-2, 69(^698

neution and, 680

Joule, 275

Joule, James Prescolt. l)i()gi'a|iii\

285

conservation of energy' and,

305-306

heat generation and, 285-286

kinetic theory and, 327

Julian calendar, 135

Jupiter, satellites of, 195, 215-216

gravitational force on sun, 225

satellites of, 204

Keats, John, and Industrial Revo-

lution, 291

Kelvin, Lord (William rhomson),

395

atom size and, 331

heat flow problem and, 395

reversibility paradox and,

343-345

Kelvin temperature, defined, 295

Kelvin temperature scale, 333-334

Kepler, Johannes, and celestial

motion, 180-183

Galileo and, 192-193

law of areas, 183-185

law of elliptical orbits, 185-188

law of periods, 188-190

laws compared with Newton's,

214-215

physical law concept and,

191-192

regular solids and, 181-182

Kilocalorie, defined, 286

Kilogram, 83-84

Kilowatt hour, defined, 286

Kinematics, defined, 67-68

Kinetic energv', consenation of,

265-266

defined, 275

from electric potential energy,

445

of electrons, 549-550

mass equivalent of, 604-605

work and, 273-277

Kinetic-molecular theory of heat,

321

Kinetic theoiy, ccntradictions of,

343-348

of gases, 322

gas pressui-e and, 334-337

pi-edicting gas behavior fiom,

331-336

Kirchhoff, and gas spectra, 569

line emission spectra and, 568

Laborde, A., and radioactive

transformation, 643

Land, Edwin IL, and polaioid

plastic, 414

Lasei-s, 400, 590-591
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Lavoisier, Antoine Laurent, biog-

raphy, 252

conservation of mass and,

250-251

quantitative aspects of chemis-

try and, 529-530

Liiw(s), empirical, 260

of tlieimodynamics, 309-314

Law of areas, 183-185

Law of conservation of electric

charge, 439-441

Law of conservation of energy,

305-308, 312-314

Law of conservation of mass, 251

Law of conservation of mechani-
cal energy, 279-281

Law of conservation of momen-
tum, 255-258, 260-262

Law of elliptical orbits, 185-188

Law of fixed proportions, 533

Law of periods, 188-190

Liiw of universal gravitation,

216-221

Lead, isotopes of, 658-659

Leibniz, Gottfried Wilhelm, biog-

raphy, 267

conseivation of momentum
and, 266-267

Leonardo da Vinci, and camera
ohscura, 399

Leucippus, atomic theory of mat-

ter, 526

Leyden jar-, 440

Light, defined, 396

as electromagnetic waves,

505-510

fluorescent, 542

incandescent, 477-480

interference and diffraction of,

404-406, 408

Newton's theory of, 244

particle-like properties of,

606-607

particle theory of, 292, 402-404

polarization of, 413-415

propagation of, 397-402,

415-417

properties of, 396-397

reflection and refraction of,

402-404

scattering of, 412-413

speed of, 400-402, 505

as transverse wave, 414

ultraviolet, 513-514

visible, 513

wavelengths of, 411-412, 413

wave theory of, 392-393,

405-406, 413-415

Light beam, 399-400

Light bulb, 477-480

Line absoriDtion spectrum, 570

Line emission spectrum, 568, 570

of hydrogen, 571-573

Lines of force, electric, 500-501

magnetic, 500-501

Liquid-drop nuclear model,
731-732

Liter-, 83

Lithium atom, 592

Lodestone, and magnetism,
422-424

Longitudinal waves, 356

Loschmidt, Josef, and reversibility

par-adox, 343

Lucretius, and atomic theory, 245

conservation of mass and, 249

magnetism and, 423

Magnet(s), action of currents on,

450-453

Magnetic field, 393-394, 424, 432

in gener-ation of electricity,

471-474

moving charges and, 455-457

Magnetic forces, and electric

forces, 424

Magnetic lines of force, 500-501

Magnetic potential energy, 278

Magnetism, and electricity,

450-453

Mar'coni, Guglielmo, and radio,

511

Mars, motion around earth, 179

orbital eccentricity of, 186-188

retrograde motion of, 140-141

Mascons, 235

Mass, and acceleration, 81-83,

85-87

conservation of, 249-253

defined, 87

electron, 546

free fall and, 85-87

inertial, 81

measurement of, 82-84

neutron, 683, 686

of planets and value of G,

229-231

relativistic, 602-603

rest, 602

universal standard of, 83

variation with speed, 602-605

weight and, 85-87

Mass-energy balance, in nuclear

reactions, 707-709

Mass number-, defined, 665

Mass spectrogram, 664

Mass spectrograph, 661, 663

Matter, ancient theories of, 525-529

atomic theory of, 526-530

nature of, 524-532

states of, 323

wave-particle dualism of,

609-611

Maxwell, James Clerk, biography,

517

electromagnetic theory and,

395, 500-503, 517-518

model of ether, 394

molecular speeds and, 327-328

thought experiment, 341-343

Mcixwell's demon, 340-343

Mayer, Julius von, and mechani-
cal equivalent of heat,

306-307

Mechanical energy, conservation

of, 279-281

Mechanical waves, 354-355

Mechanics, defined, 30, 43

Mechanistic world view, 246-248

Medieval, physical science, 37-41

world system, 36

Meitner, Lise, and nuclear fission,

711-712

Melvill, Thomas, and emission

spectra of gases, 568

Mendeleev, Dmitri, and periodic

table of elements, 538

Mercury, position relative to sun,

179

retrograde motion of, 139-141

Mercury atom, excitation of,

588-589

Mercury barometer, 332

Metal(s), alkali, 537, 592-593

electrical conduction of,

446-449

threshold frequency of, 548

Metallic conductors, 446-449

Metaphysics (Aristotle), 528

Meter, 83

Metric system, 83

(table), 286

Michelson, Albert A., and ether

concept, 518

Microwave(s), 512-513

Microwave radiation, 512-513

MUlikan, Robert A., biography,

555

electron charge and, 438-439

oil drop experiment and,

545-547

photoelectric effect and, 554

Milton, John, 175

Mitochondria, 298
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MKS system of measurement, 84,

296

MKSA system, 429

Model(s), collective, 733-734

defined, 397

of gas, 323-324

use of in science, 323-324

Moderators, in nuclear reactions,

714-716

Molecule(s), description, 321

disordered motion of, 339

gas, 322, 323-324

measuring speeds of, 330

sizes of, 329, 331

speeds of, 330, 326-328

wa\'c-like behavior of, 610

Momentum, change of, 260

conserv'ation of, 255-258,

26(>-262

defined, 255

equation for, 606

Newton's laws of motion and,

260-262

photon, 606-607

total, 255

de Montbeillard, growth-rate,

graph of, 24-25

Moon, flight to, 101-103

irregular motion of, 233-234

mascons on, 235

motions of, 138-139

orbit around, 119

phases of, 138

surface of, 228

Morley, Edward, and ether con-

cept, 518

Motion, accelerated, 28-30

Aiistotelian theory of, 36-41,

70-71

circular, 110-113

components of, 104—106

description of, 7-8

of earth satellites, 117-119

energy of, 274-275

first law of, 68-69, 76-79, 92-93

frecjuency of, 111

graphing of, 17-20

horizontal and vertical, 103-106

inclined plane, 53-54

of moon, 138-139

Newton's laws of, 68-69, 76-79,

87-89, 92-93, 260-262

ordered and disordered, 339
oscillation, 121

period of, 111

of planets, 139-141

projectile. 103-108

(luantily of, 254-255

r-etrograde, 139-140

second law of, 68, 7S)-84, 90-91,

93

simple harmonic, 121, 360

of sun and stars, 133-137

theories of, 70-71

third law of, 68, 87-89

under central force, 218-219

Motion experiments, 9-13

Motion pictures, 27

Motor-Is), electric, 305, 474-476

Moving frames of refer'ence,

108-110

Multiple mirror telescope, 176

Musical instruments, and stand-

ing waves, 368-371

Mussehenbrock, Peter van, and
Leyden jar-, 440

Nanometers, 411

Nature of matter, history of theo-

ries about, 524-532

Nature Philosophers, 244-245,

306-307

Newton's color theory and,

410-411

Naturphilosophie, 306-307

Neon isotopes, 662-665

Net force, 72-73

Neutrino, 313, 685-687

Neutron(s), 557

discovery of, 680-683

free, 685

in nuclear reaction, 693-696

production of, 693

Neutron-induced reactions,

693-696

Neutron physics, 683

New Astronomy iKepler), 182

Newcomen, Thomas, and steam

engine, 288-290

Newton, defined, 83

Newton, Isaac, and action-at-a-

distance theories, 393-394

biography, 208-210

contributions of, 233-237, 241,

246-247

first law of motion, 68-69,

76-79, 92-93

gas pressure and, 326

gravity and, 209-210

hyjDotheses and, 221-223

inverse-square law of planetary

force and, 213-216

Kepler's laws and, 214—215

laws of motion, 68-69, 76-79,

87-89, 92-93, 260-262

iiionicnluin and, 260-262

polarization of light arid,

413-414

rules of reasoning, 211-212

second law of motion, 68,

79-84, 90-91, 93

theory of color, 407-411

third law of motion, 68, 87-89

tidal phenomena and, 231-232

universal griivitation and, 212,

216-221, 226

Newtonian mechanics, 246-248

defined, 237

relativity theory and, 601-602

Newtonian synthesis, 220

Newtonian theory, and political

thought, 243-244

Newtonian world machine, 247

Newton meter, 275

Niagaia Falls power plant,

482-484

Nietzsche, Friedrich, and r-ecun-

ence paradox, 345

Noble gas, 592

Nodal lines, 366-367

defiried, 366

Notation, for nuclides, 666

A/ova Scientia fiontispiece (Tar-

taglia), 105

Novum Orgaruim I Francis Bacon I,

249^250

Nuclear atom, concept of, 575

Nuclear binding energy, 703-705

stabilit\' and, 705-707

Nuclear latomicl bomb, 716-718

Nuclear charge, magnitude of,

576-578

Nuclear energv, environmental

hazards of, 720-722

production of, 719-720

Nuclear engineering, 714

Nuclear fission, and chain r-eac-

tions, 713-716

defined, 709

discover^' of, 709-713

energv release by, 716-723

Nvrclear forceisl, strength of,

729-731

Nuclear fusion, 725-727

in stars, 727-729

Nuclear medicine, 736

Nuclear modells), liquid-drop,

731-732

shell, 733-734

Nuclear particles, forces between,

93

Nuclear- physics, biological and
medi(url applications of.

734-736
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Nuclear joower plant, 494

Nuclear power production,

719-720

Nuclear reactions, 692-696

equation for, 666

mass-energy balance in,

707-709

Nuclear reactors, design of,

714-715

Nuclear science and technology,

developments in (table!,

724

Nuclear structure, 674—675

proton-electron hypothesis of,

675-677

Nuclear weapons, proliferation

of, 722-723

Nucleus, of atom, 674-675

charge of, 576-578

defined, 684

estimating size of, 577-578

excitation energy of, 731-732

total binding energy of,

729-730

Nuclides, atomic masses of,

669-671

defined, 665

known, 667

notation for, 665-666

relative abundances and
masses of (table), 669

stable and unstable, 668

Observatories, astronomical, 176

Oerstead, Hans Christian, and
electromagnetism, 451-453

energy transfer and, 305

Ohm, Georg Wilhelm, and metal-

lic conductors, 446-447
Ohm's law, 447

Oil drop experiment, 545-547
"On Faraday's Lines of Force

"

(James Clerk Max-well), 501
On the Revolutions of the Heav-

enly Spheres (Copernicus),

155-159

Optiks (Neuion), 410-411
Orbit(s), of comet, 233

electron, 581-583

elliptical, 155-158

planetary, 186-188

Orbital speed, of satellite,

118-119

Orders of magnitude, 6, 7

Oresme, Nicholas, and
distance-time relationship,

46

Origins ofModern Science (But-

terfield); 168

Oscillation, 121

Pantheism, defined, 200

Parabola, 188

defined, 107

Parabolic trajectory, 107

Parallax, defined, 147

Parsons, Charles, and steam tur-

bine, 291

Particle(s), charged, 456-457

identification of, 641-642

masses of, 703-704

photons as, 606-607

scattering of light by, 412-413

wave-like behavior of, 608-611

Particle accelerators, 445, 687-692

Particle theory of light, 392,

402-404

Particle tracks, 7

Pascal, 332

Paschen, F., and line emission

spectrum, 572

Pauli, Wolfgang, and neutrino,

313, 685

Perfectly elastic coUisions, 266

Period(s), defined, 360

Kepler's law of, 188-190

of motion. 111

Periodicity, of elements, 540-541

Periodic table of elements,

536-538, 577, 589, 592-595,

654

Periodic waves, 359-362

refraction of, 378

speed of, 360-361

Periods of revolutions of planets

(table), 160

Phase, wave, 361

Philoponus, John, theory of mo-
tion, 40

Phosphorescence, 630

Photocell, 492-493

Photoelectric current, 548
Photoelectric effect, 546, 54&-550

Einstein's theory of, 550-555
Photoelectric equation, Einstein's,

551-552

Photoelectrons, 546

Photographs, time intervals be-

tween, 21

Photography, development of,

26-27

high-speed, 27

Photon, momentum of, 606
Photosynthesis, 298

Photovoltaic conversion, 490
Physics, classical, 579

described, 5-7

Pitchblende, discoveiy of, 634
Planck, Max, biography, 554
quantum theoiy and, 554

Planck's constant, 551

Planets, gravitational force on,

224-225

masses of, 229-231

motion of, 139-141, 148-152

orbits of, 186-188

periods of revolution of, 160

Planetary atom, concept of, 579
Planetary force, inverse-square

law of, 213-216

magnitude of, 224-226

Planetary motion, and gravita-

tional constant, 227-229

Plasma, defined, 726

Plato, and phases of moon, 138,

142-143

physical theory and, 143-144

Pliicker, Julius, and cathode rays,

542

Poincare, Henri, and conservation

of energy, 313

recurrence in mechanical sys-

tems and, 346

Poisson, Simon, and wave theory

of light, 406

Poisson bright spot, 406-407

Polarization, of light, 413-415

Polarized wave, 357

Pollution, of environment,

342-343

Polonium, discoveiy of, 634

Positive electron, 697

Positive ions, 659-661

Positive rays, 659-661

Positron, 697

Potassium atom, 592

Potential energy, 277-279

electric, 443-446

Power, defined, 450

electric potential difference

and, 447-450

nuclear, 719-720

Power, Henry, and gas pressure,

332

Power ratings (table), 292

Pressure, defined, 332

force and, 332

Pressure field, 434

Piiestley, Joseph, biography, 427
electric force and, 427

Principia (Newton), 69, 201, 210,

211-213, 222, 248
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Principles of Philosophy iDes-

cartesl, 247, 266

Probability, statistical, 617

Probabilit\' interpretation of

quantum mechanics,
617-620

Projectile, path of, 106-108

Projectile motion, 103-108

Propagation, of electromagnetic

waves, 503-506

of light, 397-402, 415-417

vva\'e, 357-358

Proton, 676

Proton-electron hypothesis of

nuclear structure, 675-677

Proton-neutron theory of atomic
nuclei, 683-684

Prout, William, and nuclear

stnjcture, 676-677

Ptolemaic system, and Coperni-

can system, 158-164

Ptolemy, geocentric theoiy of,

148-152

Pulse, wave, 356, 358-359

Pythagoreans, and harmony, 370

Quiditative, defined, 40

Quanta, 548

Quantitati\'e, defined, 40
Quantization rule, of Bohr,

581-583

Quantum of energy, defined, 551

Quantum mechanics, 322,

596-597, 611

limitations of, 525

mathematical theoiy of,

611-613

probability interpretation of,

617-620

Quantum theory, 548

Quai-k, 439, 545

"

Radar, 512

Radiation, harmful effects of, 718

infrared, 513

intensity of, 638-639
microwave, 513

par-ticle-like behavior of,

605-608

wave-painicle dualism of, 607
X ray, 630-632

Radiation biology, 734-736
Radiation medicine, 734-736
Radioacti\e decay, 642-644

matliemalics of, 649
rate and half-life of, 647-650

Radioactive decay series, 644-646
Radioactive fallout, 718

Radioactive transformations,

642-644

Radioactive wastes, disposal of,

721-722

Radioactivity, artificial, 1-5,

696-699

discovery of, 629-633

transformation rules of,

657-658

Radiochemistry, 699

Radiograph, 631

Radioisotopes, in medicine and
biology, 735-736

Radionuclide, defined, 665

Radio waves, 511-512
Radium, decay series of, 644-645

discovery of, 634

Radon, discovery of, 641-642

"Raisin-pudding" model of atom,
562

Ray(s), positive, 659-661

Recoil, of cannon, 261

Recurrence par-adox, 343-348
Reflecting telescope, 176

Newlon's drawing of, 208
Reflection, of light, 402-404
wave, 375-377

Refraction, 175

defined, 174, 380

double, 413-414

of light, 402-404

of sound waves, 384
wave, 377-380

Regular (geometric) solids,

181-182

Relativistic mass, 602

Relativity theory, Einstein's, 519
Galileo's, 519

limitations of, 525

results of, 600-605

Resistance, 447
Resistors, electric, 447
Rest, state of, 73

Rest mass, defined, 602

Resultant force, 72

Retrogi'ade motion, defined, 139

of planets, 139-140

Reversibility pai-adox, 343-348

Reversible enginels), efficiency of,

295-298, 300-301

Revolution, defined, 110

rotation and, 110

Richards, T. VV., and lead isotope,

659

Ripple tank, waves in, 363-365

Rocket flight, 101-103

Rogei\s, VVilliarTi Barton, and con-

siMAalion of cncig\', 307

Romanticism, r-eaction against

Newtonian thought,

244-245

Romer, Ole, and speed of light,

401

Rontgen, Wilhelm Konrad, and
X r-ays, 555-558, 629

Rope waves, 358-363, 370,

375-376

refraction of, 378
Rotation, defined, 110

revolution and, 110

Royds, T. D., and alpha particle,

641

Rudolphine tables, 190

Rumford, Count, biography, 284
heat generation and, 284-285

Rutherford, Ernest, and alpha
particle, 641-642

artificial transmutation and,
677-678

biography, 575

Bohr atomic theory and, 595
"mousetr-ap " of, 641-642

nuclear model of atom and,
573-576

radiation intensity and,

638-639

radioactive transfor-mation and,

642-644

scattering experiment of,

574-576

Rydberg, J. R., and spectra, 572
Rydberg constant for hydrogen,

572-573

Satellites, artificial (table), 120
of Jupiter, 195, 204, 215-216
motion of, 117-119

relaying of micr-owaves by, 512
of Saturn, 215-216

Saturn, retrograde motion of,

140-141

rings of, 195-196

satellites of, 215-216

Savery, Thomas, and steam en-

gine, 287
Scalar quantities, defined, 75

Scattering experiment, Ruther-

ford's, 574—575

Schelling, P'riedrich xon, and Na-
ture Philosophy, 244-245,

306

Newton's color theory and, 411

Schrodinger, Er-win, and wa\e
mechanics, 611-612

Science, and intellectual freedom,

200
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method of, 5-6

in seventeenth century,

205-210

Science and Hypothesis (Henri

Poincare), 313

Science and the Modern World
(Whitehead), 126, 127

Scientific method, 45, 58

explanation in, 143-144

hypotheses in, 221-223

Scintillation, 576

"Sea and Sky" (M. C. Escher),

621

Second law of motion, 68, 79-84,

90-91, 93

Second law of thermodynamics,
296, 311-312, 314, 338-343

dissipation of energy and,

338-340

statistical view of, 340-343

Shell model of nucleus, 733-734

SI, see International System
Simple harmonic motion, 121,

360

Sine wave, 360

Sky, color of, 411-413

Slope, defined, 18

measurement of, 18-20

Soddy, Frederick, biography, 657

isotopes and, 656

lead isotopes and, 658-659

radioactive transformation and,

642-644, 657-658

radon and, 641-642

Sodium atom, 592

Solar cell, 492-493

Solar energy, 490-491

Solar Ephemeris, 167

Solar year, 135

Sonic boom, 382

Sound, intensity of, 381

speed of, 384

Sound waves, 380-385

interference of, 366-367

"snapshot representation" of,

357

Spectrometer, 569
Spectroscope, 569

Spectrum(a), 407

alpha, of human hair, 698

electromagnetic, 510-517

of gases, 566-570

hydrogen, 571-573, 583-587

\asible range of, 411

Spectrum analysis, 569

Speed, and acceleration, 28-30

average, 11, 14-17, 50

characteristics of, 29-30

constant, 13

defined, 11, 29, 75

of electromagnetic waves, 505

instantaneous, 11, 23-25

of light, 400-402, 505

mass variation and, 602-605

of molecules, 326-328, 330

of periodic wave, 360-361

uniform, 13

velocity and, 25

Speedometer, in motion experi-

ment, 10-11

Sprengel, Hermann, and vacuum
pump, 477

Spring balance, calibration of,

83-84

Stable isotopes, relative abun-
dances of, 668

Stable nuclei, binding energy of,

705-707

Standing waves, 368-371

of air column, 371

defined, 368

harmonics and, 370-371

on rope, 368-370

on string, 368-371

Star(s), motion of, 133-137

nuclear fusion in, 727-729

Star cluster, 6

Starry Messenger, The (Galileo),

194-195

Stationary states, of atom, 579,

587-589

Statistical probability, 617

second law of thermodynamics
and, 340-348

Steam engine(s), and conserva-

tion of energy, 305

history of, 287-293

Steam turbine, 291

Stem, Otto, and speed of mole-
cules, 328

Stiffness factor, in wave propaga-
tion, 359

Stonehenge, 130

Stopping voltage, 549

Strassmann, Fritz, and nuclear
fission, 710-711

Strontium-90, radioactive decay
pattern, 650

Sun, gravitational force of Jupiter

on, 225

mass of, 229, 230

motion of, 133-137

Sunlight, as energy source,

490-491

Sunspots, 195

Superposition principle, 362-363

Tagged atom, 734-736
Target practice experiment,

327-328

Telescopes, astronomical, 176
Galileo's, 193-196

Newton's draudng of, 208
Television, broadcasting, 512

picture tube, 445
tuning section, 431, 447

Temperature, absolute, 295
coldest and hottest possible,

297

gas pressure and, 332
Kelvin, 295

Theoretical model, 324
Theory, defined, 397
Theory of Light and Colors (New-

ton), 210

Thermod3mamics, laws of,

309-314

second law of, 296, 311-314,

338-343

Third law of motion, 68, 87-89
Thompson, Benjamin, biography,

284

heat generation and, 284-285
Thomson, J. J., atomic model of,

562

biography, 543

cathode rays and, 543-544
charge-to-mass ratio of elec-

trons and, 541

photoelectric effect and, 546
positive ions and, 660-661

Thorium, discovery of, 633
Threshold frequency, defined,

548

Tides, and law of gravitation,

231-232

Time, Galileo's measurement of,

55-56

Time Charts, Aristotle, 39

Bohr, 585

Copernicus, 156

Galileo, 42

Maxwell, 508

Neuron, 207
Watt, 347

Torricellis barometer, 332
Torsional waves, 357

Torsion balance, 427-428
Total force, 72

Total momentum, 255
Townley, Richard, and gas pres-

sure, 332

Tracers, radioactive, 734-736
Traite Elementaire de Chimie

(Lavoisier), 250-251, 530
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Trajectory, of projectile, 107-108

Transformation, artificial, 677-679

Transformers, electric, 481-482

Transuranium elements, 710-712

Transverse vvav'e(s), 356, 358-359

light as, 414

1 lilobites, 7

Tungsten, atomic sites in, 6

Two Chief World Systems (Gali-

leo), 43

Two New Sciences (Galileo),

43-46, 331

Two-slit wave interference,

374-375

Ultraviolet light, 513-514

Uncertainty principle, 613-616

Uniform acceleration, Galileo's

definition of, 47-49

Uniform circular motion, 110-111

Uniform speed, 13

see also Constant speed
Unit of charge, 429

Universal gravitation, constant of,

226

law of, 216-221, 226

Newton's theory of, 212
scope of, 231-236

Universal standard of mass, 83

Uranium, ladioaclivity of
630-632, 638-639

Uranium-radium decay seines,

644-646

Urey, Harold C, and "heavy " hy-

drogen, 668

Vacuum, existence of 45
Vacuum pump, 542
Valence, defined, 534
Van de Graaf generator, 688
\'ector(s), described, 74-76

head-to-tail construction of 75

in pandlelogram construction,

75

Vector quantities, 74-76
Vector resultant, 72, 74
Vector sum of forces, 72, 74
Velocity, change in, 76

conservation of, 253-255
defined, 25

speed and, 25

Velocity field, 434
Venus, epicycle of, 162

phases of, 195-196

position relative to sun, 179
retrograde motion of 139-141

Vernal (springi ecjuinox, 137
VeiTie, Jules, 101

Vibration(s), of drum, 372
periodic, 359-362

Visible light, 513

Volt, electron, 445

Volta, Count Alessandio, and
electric cell, 535

electric cunents and, 442
Voltage, concept of, 443-446
Volume, gas, 333

Wallis, John, and elastic colli-

sions, 265

Water-, boiling point of 333, 334
freezing point of, 333
heavy, 669

mass of, 83

Water clock, 55-56

Water waves, 363-366

diffraction of, 371-375

reflection of, 376

reftaction of 378-380
Watt, 291-292

defined, 291

Watt, James, and steam engine,

288-289

Wave(s), circular, 376-377
in communication, 511-512

diflraction of 371-375

displacement, 356

electromagnetic, 503-506

finding sfjeed of 360-361

ft-equency, 360

gamma ray, 516

infrared, 513

interference pattern, 363-368,

369

longitudinal, 356

mechanical, 354-355

microwaves, 512-513

periodic, 359-362

polarized, 357

propagation of 357-359

properties of 355-358

pulse, 358-359

radio, 511-512

reflection of 375-377

reftaction of, 377-380

in ripple tank, 363-365

lope, 358-363, 378

sine, 360

"snapshots" of, 356-357

sound, 380-385

standing, 368-371

super|3osition principle of
362-363

torsional, 357

transverse, 356, 358-359

tvvo-slit interference, 374—375

ultraviolet, 513-514
water, 363-366, 371, 375, 376,

378-380

X-ray, 516, 557
Wave fronts, 371-375

defined, 373

Wavelength, calculation of 369
computation of, 375
defined, 360

of light, 411-412, 413
standing waves and, 370-371

Wave mechanics, 611

Wave model of light, 405-406,

413-415

Wave reflectors, 377
Wave theoiy of light, 392-393

Weather maps, 434-435

Weight, and acceleration, 85-87

defined, 82, 87

ft-ee fall and, 85-87

mass and, 85-87

Westinghouse, George, and elec-

tric transformer, 482

Whole-number rule, 671

Wilson, C. T. R., and cloud cham-
ber, 678

Wilson, James, 243

Wilson cloud chamber, 678, 692

Wollaston, William, and daik-line

spectra, 569

Work, concept of 273-274

defined, 275

force and, 281-283

kinetic energy and, 273-277

Working model, 324

Wren, Christopher, and elastic

collisions, 265

X-ray photon, 607

X rays, 516, 555-561

diffraction patterns, 558

emissions of, 630-633

properties of, 556-558

uses of 558-559, 560-561

wave behavior of, 610

Young, Thomas, biography, 405

light interference patterns and,

404-406

polarization of light and,

413-414

Zartmann, and speeds of mole-

cules, 328

Zermelo, Ernst, and kinetic the-

ory', 343-348

Zeic) net force, 438

Zodiac, dcfin(>(i, 141
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