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-Classical fluid past obstacles
-BEC past obstacles
-Kelvin ship waves
-Oblique dark solitons
-Nonlinear Optics “Hydrodinamics”







Classical Fluids with viscosity

Navier(1827) & Stokes (1845)
with viscosity η

2nd viscosity ζ
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momentum conservation



No. de Reynolds

ηρ /Re 0Dv=
Similarity principle of Reynolds (1883)

D = depends of the shape/size of the body [L]
v0 = flux velocity

Viscous imcompressible homogeneous fluid





1.3-kilometer  high volcanic island of Guadalupe, 
west of Baja California in the Pacific Ocean. 
was taken by the Multi-angle Imaging
SpectroRadiometer (MISR) camera



Vortices behind a cylinder

Guadalupe Island

“Von- Karman

vortex street”





Classical supersonic flow, M=1.5

Bow waves

by Andrew Davidhazy
Rochester Institute of Technology



JILA 2005

Quantum Fluids-
BEC



Carusotto et.al, PRL(2006)

JILA 



Gross-Pitaevskii equation

Dynamics of a dilute condensate is described

by the Gross-Pitaevskii equation
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Disc-shaped trap
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Bose-Einstein Condensates-dimensionless units
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Madelung
Transformation (1929)!

ϕρψ ie=

ϕ∇=v



Gross-Pitaevskii Eq. in hydrodinamic form
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And sound velocity for uniform solution is 

ρ=sc No viscosity
quantum pressure term



E. Cornell (2005)



Quantum Reynolds Number
Is the quantum pressure important at all?

L: characteristic length, e.g. width of shock front

→QP important when important lengthscale

beomces on order of healing length! (e.g. after 

sufficient self-steepening).

Classical case:

Viscoscity important when

low Reynolds number Re. η
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Quantum case:

Compare mean field to quantum pressure.
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Let the order parameter 

ψ
satisfies the initial condition

)exp(|),( 0 iMxyx t =Ψ =

That is the flow with Mach velocity M is switched on 
at the moment t=0. We suppose that the potential 
V(x,y) corresponds  to interaction of the condensate 
with  the obstacle which is modeled by impenetrable 
disc with radius r . Numerical solution given M yield
the evolution of the condensate.  

Numerical simulations



Numerical calculations were made in the stationary frame with 
respect to the obstacle after making frame transformations so as
the obstacle remained at rest  



M=0.5, r=5  

Low velocities -> vortex generation     see Frisch et al PRL (1992)



M=0.5, r=5  

Low velocities -> vortex generation     see Frisch et al PRL (1992)



M=0.5, r=5  

Low velocities -> vortex generation     see Frisch et al PRL (1992)



Vortices behind a small cylinder

laser beam

vortices

Cornell (2005)



What happens 
at supersonic flow M>1?



Winiecki, et 1999 reported vortex street…



M=5, r=1  Supersonic velocities



M=5, r=1  



M=5, r=1  



Now we consider in the hydrodynamic form a stationary system of 
equations for the density n(x,y) and two components of the velocity 
field u= (u(x,y),v(x,y))
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Far enough from the end points of the oblique soliton we can restrict 

our consideration to potential flows using the condition uy=vx.

Then the above equations can be integrated once to give
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We look for the solution in the form 

),(θnn = ),(θuu = ),(θvv = where ayx −=θ

and a denotes a slope of the soliton with respect to y axis. 
It must also satisfy the boundary condition that BEC flow is uniform
At |x|-> infinity n =1, u=M, v=0 

The velocity components can be easily expressed in terms of the density  
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So that the system is reduced to the equation
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The above equation has the integral
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Simple integration of this equation yields the soliton solution in the form
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This formula give the exact dark spatial soliton solution of the 2D 
Gross-Pitaevskii equation. If the parameter a is determined from a
numerically found slope of the oblique soliton then n(

θ
) 

describes the profile of the density of the condensate.



M=5, r=1  

Cutting in x we see dark solitons



G.El, A.G., A.M.Kamchatnov
PRL (2006)



Differently from Navier-Stokes, that predicts 
turbulence for sufficient high velocities, 
the potential flow in GP-2D at simple case showed 
to be integrable, which seems a remarkable result! 



M=5, r=5  

Increasing radius generate more dark solitons!

Increasing the radius -> more solitons!



Kelvin
Ship waves



r=1, M=2



Using the same techniques developed by 
by Lord Kelvin applied to the GP equation 
were able to derive analytical shape of the 
“Ship waves” profile  



Yu.G. Gladush, G. El, A. G., A.M. Kamchatnov
PRA (2007)

r=1, M=2



Carusotto et.al, PRL(2006)

JILA 



Expansion in 2D, r=1

Thanks to referee…



Nonlinear optics “Hidrodynamics”



Within paraxial approximation luminous flow 
inside nonlinear Kerr medium (cristal) 
can be well described by  
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n0 = linear refracting index
Ep= applied electric field
r33= electro optical index

2ψρ =

=ψ envelope field strength of EM wave

=dρ saturation parameter
λπ /2 00 nk = wave number



Gross-Pitaevskii 2D equation
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Nonlinear optics 2D equation



W.Wan, S.Jia, J.W. Fleischer,
Nature Physics (2006)





G.A.El, A.G., E.G.Khamis, R.A.Kraenkel, A.M.Kamchatnov
PRA (2007).







density phase



Conclusions

-As we increase the velocity to supersonic velocities 
the vortex generation turns to a continuum

-This “vortex street” can be shown analytically and numerically 
to be an oblique dark soliton. REMARKABLE RESULT

-Complex multi-soliton formations arise when we 
increase the obstacle radius 

-Hope that experimentalists in BEC and in Nonlinear crystals
can detect these dark solitons!



Outros projetos

-Dinâmica de condensados em redes
óticas não lineares
c/ Prof. F.Abdullaev (Uzbekistão)
estudantes : Hedhio Luz         

-Condesados densos e 
férmions ultrafrios (DAAD) c/ 
Prof. Klaus  Ziegler (Alemanha)



To finish I recall someone that well understand 
Fluid Dynamics …



Thank You !



Sound in gas
de Bose
MIT (1997)


