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What for?
• You have an infinite dimensional Hilbert 
space that you could use to implement 
protocols

• You want perfect entanglement in 
polarization, then you DON’T want 
entanglement in frequency

•New applications: timing, OCT, etc.
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Frequency entanglement



Frequency entanglement

• It is difficult to measure the frequency 
entangled state: 
– We don’t have the equivalent of the 
transversal modes

• Realization of quantum information 
protocols with frequency states is VERY 
difficult



Measuring frequency states

• We can use frequency filters: then, we 
don’t have information on the phases of 
the states

• We could use time measurements BUT:
– Present detectors are orders of 
magnitudes slower than needed

– Turn to Hong Ou Mandel type 
measurements
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Hong Ou Mandel

If |R|^2=|T|^2=1/2
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Hong Ou Mandel

Two photon interference effect

You can use it for measuring frequency
properties of photons
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• Waveform

• Type of freq.
correlations
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Engineering the joint spectrum



Why to engineer the spectrum of photons??

2) Quantum metrology

1) Generation of heralded
pure single photons

Completely
uncorrelated

frequency photons

3) Quantum optical
coherence tomography

Large bandwidth
hundreds of nanometers (THz)

4) Atom-photon interaction Narow bandwidth
less than a nanometer (MHz)

To get narrow

)( 21 tt −∆

• Timing and positioning protocols
based on second order
correlation measurements

• Timing and positioning protocols
based on the use of frequency
correlated photons

Correlated frequency
photons



Also

•Optical Coherence Tomography (OCT)
Largely enhanced bandwidth

•Quantum Optical Coherence Tomography (OCT)  
Largely enhanced bandwidth + dispersion compensation with
frequency correlated photons



Generation of frequency 
entanglement

• You can generate a given state by choosing a 
proper crystal and a proper pump

• You can use gratings for the pump and signal 
and idler to control the output state (pulse-
front technique)

• You can use the spatial-frequency correlations 
to change the state (spatial to spectral 
mapping)



1) Tilt pulse front technique

M. Hendrych et. al., Opt. Lett. 32, 2339 (2007)

J.P. Torres et. al., Phys. Rev. A. 71, 022320 (2005)

J.P. Torres et. al., Opt. Lett. 30, 314 (2005)



By introducing the appropiate angular dispersion it is possible to
modify the type of frequency correlations and the bandwidth of the

photons
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Pulse-front techniques (angular dispersion)
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New group velocity dispersion

Torres et al., Opt. Lett. 25, 1735 (2000)

New inverse group velocity

Induce dispersion in free space, 

broadband SHG

temporal solitons in second order nonlinear media



Tilt pulse technique
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Control over
the bandwidth

Control over
group velocities
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Modifying bandwidth and type of frequency correlations via 
Tilt pulse technique
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By choosing the
appropiate tilt angle it is
possible to modify the

slope of the joint
spectrum

Anticorrelated frequency photons
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Two-photon Interference
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Modifying bandwidth and type of frequency 
correlations via Tilt pulse technique

M Hendrych, M. Micuda and J.P. Torres Opt. Let. 32 2339 (2007)
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Modifying bandwidth and type of frequency 
correlations via Tilt pulse technique
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• narrowband and
triangular shape
like type-II process

• Dip shifted from
zero delay

Visibility 83%

• Broadband like
type-I process

• Dip centered at
zero delay



Spatial-to-Spectral Mapping

A. Valencia et. al., Phys. Rev. Lett. (2007)

S. Carrasco et. al., Phys. Rev. A 70, 043817 (2004)



Modifying the type of frequency correlations of 
paired photons via spatial-to-spectral mapping
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Spatial-to-Spectral Mapping
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The noncollinear geometry madiates the mapping of spatial
characteristics of the pump into the joint spectrum of the

downconverted photons
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spatial-to-spectral mapping
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spatial-to-spectral mapping
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Experimental demonstration of spatial-to-spectral mapping
Image of

spatial Mode

C.C

Microscope slab

Pump beam modified by microscope slabPump beam modified by hologram

Image of
spatial Mode



CCD
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Experimental demonstration of spatial-to-spectral mapping

Microscope slab
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Pump beam modified by Hologram Pump beam modified by microscope slab



Pump beam modified by Hologram Pump beam modified by microscope slab

Experimental demonstration of spatial-to-spectral mapping

Spatial distribution of the pump

Joint spectrum



Modifying the type of frequency correlations of paired photons 
via spatial-to-spectral mapping
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Modifying the type of frequency correlations of paired photons 
via spatial-to-spectral mapping
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