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ParametricParametric DownDown ConversionConversion

ω0= ω1+ ω2 k0=k1+k2

Energy and momentum conservation

Polarization and transverse momentum correlations
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Optical Parametric Oscillator (OPO)Optical Parametric Oscillator (OPO)
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- Sub-threshold
squeezed vacuum (degenerate case) - OPA
entangled fields (non-degenerate case)

- Above threshold: intense entangled fields



Let us describe classical properties of the system before we 
analyze quantum properties. We’ll consider a Triply Resonant 
OPO (TR-OPO) in a ring cavity (for simplicity).
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Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical

If we consider that the single pass gain is 
small, we can approximate the equations for 
the amplification inside the crystal



Consistency of the field for a round trip gives us

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical
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If δϕj is small, we can write:

where the total loss for 
each mode is defined

Normalizing the detuning, we 
have

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical



A first solution of these equations is α1 = α2 = 0, 
corresponding to operation below threshold.  We are more 
interested in above-threshold operation.  Multiplying the 
complex conjugate of the third equation by the second, we 
have:

The intracavity pump power is easily obtained and we see it 
is “clipped”: above-threshold it is always the same 

Besides, for                        , we also have 

The classical equations are already signaling that the intensities 
of signal and idler beams should be strongly correlated and that
the pump must be depleted.

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical
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Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical
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From the first equation we can derive the threshold power, 
given the intracavity pump field (α1 = α2 = 0)

An important parameter will be the ratio of incident power to 
threshold power on resonance: 

Substituting α2 in the first equation, we have 

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical



Since 

We get

and 

Solving for αj

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical



This gives the photon flux.  Considering, for the sake of the 
argument, the frequency-degenerate case (ω1=ω2=ω0/2), we 
can obtain the total output power and the efficiency

Where ηmax is the maximum efficiency leading to

We will see that the parameter ξ determines the maximum 
squeezing in the above-threshold OPO.

Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- ClassicalClassical



Rest of the Universe
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Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) -- QuantumQuantum



Optical Parametric Oscillator (OPO) Optical Parametric Oscillator (OPO) –– Master EquationMaster Equation
Evolution of the density operator

System + Reservoir + Interaction

Evolution of an operator acting only on the system:

Master Equation: Evolution of ρs



Hamiltonian and the master equation:

OK, simpler now?

Quantum Properties of the OPOQuantum Properties of the OPO

We can improve this if we change from the density matrix into an equivalent

representation: it will replace (ordering sensitive) operators by c-numbers. 

But the nonclassicallity makes P representation a tricky choice...



P‐ Glauber ‐ Sudarshan

Wigner

QuasiQuasi--Probability RepresentationsProbability Representations



Evident quantum/ classical frontier

Squeezed states

States with W<0 
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Fock states

Wigner RepresentationWigner Representation



The operators              are replaced by amplitudes

and  the density operator is replaced by 

Using the rules

Quantum Properties of the OPOQuantum Properties of the OPO



We obtain
Quantum Properties of the OPOQuantum Properties of the OPO

Fokker-Planck equation



Which is equivalent to a set of Langevin equations
(Do you remember the Brownian Motion ?)

The mean values in steady state are the same as in the classical
treatment.  

Quantum Properties of the OPOQuantum Properties of the OPO

Since we will (typically) deal with intense fields, we proceed by 
linearizing the fluctuations, neglecting products of fluctuating terms:



Quantum Properties of the OPOQuantum Properties of the OPO



Defining

with
We get

Quantum Properties of the OPOQuantum Properties of the OPO



Defining

with
We get

Quantum Properties of the OPOQuantum Properties of the OPO



The subspace related to the subtraction of the fields decouples from 
the sum and the pump fluctuations.  However, q- does not have any 
decay term, thus the solutions are not strictly stable.  As a matter of 
fact, there is phase diffusion and the subtraction of the phases is 
unbounded.  Nevertheless, this is a slow process and we will be 
interested in measuring phases with respect to the phase of the 
mean field (in other words, we will follow “adiabatically” the diffusion).

Instead of solving these equations in the time domain, we look in the 
frequency domain.

Quantum Properties of the OPOQuantum Properties of the OPO



Usual treatment of the OPO: Master Equation

Quasi-probability representation

Langevin Equation



Usual treatment of the OPO: Langevin Equation

Linearization

Input – Output Formalism

Frequency Domain



Covariance Matrix X Spectral Matrix

Complete description of the state: Wigner function (for a Gaussian State)



Covariance Matrix

36 independent terms !



Covariance Matrix

18 independent terms !
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ω1 + ω2 = ω0

δϕ1 + δϕ2 = δϕ0

Energy Conservation

δI1 - δI2 = 0
Intensity Correlation

A. Heidmann et al., PRL. 59, 2555 (1987) A. S. Villar et al., PRL 95, 243603 (2005)
Phase Anti‐correlation
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EPR’s example

|ψ〉 ≅ δ(x1 – x2 – L)δ(p1 + p2) (localized in x1 – x2 e p1 + p2)

A measurement of x1 yields x2, as well as a measurement of p1
gives p2. But x2 and p2 don’t commute!  ↔ [x, p] = i ħ



Bohr’s reply


