Multipartite entanglement and
sudden death in Quantum Optics:

continuous variables domain
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Quantum phenomena do not occur in a Hilbert
space; they occur in a laboratory (Asher Peres)




Theory: Quantum Optics

Technigues: Measurement of the Electromagnetic Field

Tool: Optical Parametric Oscillator




Birth of a revolution at the dawn of the 20t Century

Introduction of the
concept of “quanta”
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F16. 4—Uniform spectrum and fit to Planck blackbody (T). Uncertainties are a small fraction of the line thickness.
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Quantization of the Electromagnetic Field (on the shoulders...)
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Maxwell Equations

Solution in a Box
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_____Woptics.

Energy of the EM Field
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Canonical Variables: going into Hamiltonian formalism

Gks(t) = uks(t) + vy, (1)
Ps (1) = —tw (g (t) — g, (1)]
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_____Woptics.

Energy of the EM Field
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A very familiar Hamiltonian!

Sum over independent harmonic oscillators



Energy of the EM Field
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Using creation and annihilation operators, associated with amplitudes u,
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Energy of the EM Field
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Amplitudes of Electric and Magnetic Fields




Field QuadraturesEesiessicall Description

» Classical Description of the Electromagnectic Field:

Fresnel Representation of a single mode
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Field QuadraturesEseiessical [Description

« Classical Description of the Electromagnectic Field:

Fresnel Representation of a single mode

Y For a fixed position




Field QuadratUieSEeniantim Optics

The electric field can be decomposed as
P .._ T | . - . -I'
) - ° E:E: [ fw —iwt : (=) — [}
b= L3/2 ” V 26 [a'ksuk‘q(r) ‘ } ’ = [E }

And also as
9
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X and Y are the field quadrature operators, satisfying
Xo(t) = e a(t) +e¥al (), Yo(t) = —i[e " a(t) — e al(1)]

X)X (0+3)] =2 Thus, AXAY > 1



Field QuadratUieSEeniantim Optics

X@O),X(0+3)] =20 Thus,  AXAY > 1

Uncertainty relation implies in a
probability distribution for a given

pair of quadrature measurements
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Field quadratures behave just as position and momentum operators!




Quanitingg Qm

Now we know that:
- the description of the EM field follows that of a set of

harmonic oscillators,
- the quadratures of the electric field are observables, and
- they must satisfy an uncertainty relation.
But how to describe different states of the EM field?
Can we find appropriate basis for the description of the field?

Or alternatively, can we describe it using density operators?

And how to characterize these states?



Quantum OpticsSE=NUImber States

Eigenstates of the number operator

Nics = (!L (s Nks|NMks) = Nks|Nks)

Number of excitations in a given harmonic oscillator -

number of excitations in a given mode of the field -2

number of photons in a given mode!

Fock States:

Annihilation and creation operators: Eigenvectors of the Hamiltonian
s [1ics) = v/ Mhes[Thes = 1) {n}) = T s
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Quantum OpticSEsNIner States

Complete, orthonormal, discrete basis

Z ks ) (nks| = 1= Z {n}){n}| = 1.
] {n}t

Ts =L

Disadvantage: except for the vacuum mode it is quite an unusual state of
the field.

Can we find something better?



Quantum OptlicSEsNeLIIErent States

Eigenvalues of the annihilation operator:  aks| ks) = kg Oks)

o'e T
. _ 2 fe (¥
In the Fock State Basis: (i;) = e~ M T2 N ,kq—l Tics )
Nke—0 Mks:

Completeness: but is not orthonormal
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Over-complete!

Moreover:
- corresponds to the state generated by a classical current,
- reasonably describes a monomode laser well above threshold,
- it is the closest description of a “classical’ state.



Quantum OpticSEaNinher States
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Precise number of photons

Growing dispersion of the quadratures
(X)=(Y)=0

(X2) = (Y2) =2n+1




Quantum OpticSEeuerent State




Quantum OpticSEeuerent State UANTUM
OPTICS

MARLAN O.SCULLY AND M. SUHAIL ZUBAIRY
—
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Mean value of number operator

(ola’alo) = |l
Poissonian distribution of photons Xl

(n)yre=
)

n!
Therefore, variance of photon number is equal to the mean number!

A%n = (n?) — (n)? = |af?

p(n) =




Quantum OpticSEeuerent State

}
|2 = D(2}|0

D(x) = exp(aa’ -




Quantum Optics —CEHEIEWRSHlUEeezed States

| %> = D(%)|0> S(e) = exp(1/2e%a? — 1/2zat?)
g = re*'?

D(x) = explaa’ — a*a)
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Quantum OpticSEEPENSILY Operators

Pure X Mixed States

|¢J> — ch|an> Z |am><a-m| =1

i = <a'n |Q)> <a*m |an> — 5?}1?1

(A) = (Y|A

¥) (@m|Alan) = Amn

Introducing the density operator (von Neumann — 1927)

*

CrnCm = Pnm = |77()><Q)|




Quantum OpticSEEpEnRS|ILY Operators

(4) = > (anlplam) (am|Alan)

= Z(an|pA|a-n> = Tr{pA}

Now we can represent a statistical mixture of pure states!




Quantum OpticSEEPENSILY Operators

Coherent States |) p = IP(O()|OK><O£| d?y

P(a) : representation of the density operator:
Glauber and Sudarshan




Quantum OptiCSEPENSItY Operators

Coherent States |) p = j P(2)|a>{o| d*n

P(a) : representation of the density operator:
Glauber and Sudarshan

Representations of the density operators provide a simple way
to describe the state of the field as a function of dimension 2N, where
N is the number of modes involved.

P representation is a good way to present “classical’ states,
like thermal light or coherent states.

But it is singular for “non classical states” (e.g. Fock and
sgueezed states).

We will see some other useful representations, but for the

moment, how can we get information from the state of the field?



Quantum Opticsi—WIEeSsHliEmeEnt of the Eield

Slow varying EM Field can be detected by an antenna:
—> conversion of electric field in electronic displacement.

—>amplification, recording, analysis of the signal.
—>electronic readly available.
Example: 3 K cosmic background (Penzias & Wilson).

Problems:
—>Even this tiny field accounts for a strong photon

density.
—>Every measurement needs to account for thermal

background (e.g. Haroche et al.).
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Quantum Opticsi—WIEeSsHliEmeEnt of the Eield

Fast varying EM Field cannot be measured directly.

L

We often detect the mean value of the Poynting vector: S = = E x B
Photoelectric effect converts photons into ejected electrons
We measure photo-electrons
—>individually with APDs or photomultipliers — a single electron is converted in a
strong pulse — discrete variable domain,
—>in a strong flux with photodiodes, where the photocurrent is converted into a
voltage — continuous variable domain.
Advantages: in this domain, photons are energetic enough:
—>in a small flux, every photon counts.
—>for the eV region (visible and NIR), presence of background photons is

negligible: measurements are nearly the same in L-He or at room temperature.
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Quantum Optics W

And detectors are cheap!

OPA657 Vo, = iy (500kQ)

F_sgs = 1.6MHz
OPA657: JFET input
Trimmed V,, + Drift
Q:20pF: e, =480VAHz
200pF Diode
[ E—




Quantum Optics — MeaSiEIERReIrthe |nji=s < Field

We can easily measure photon flux: field intensity

£

E:> -

E:Oz—l—c‘i
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(or more appropriate, optical power)

= (E* F) = o* «

n=ala

a = |alexp(ip)

n = lal|? + |ale?dat + |ale=%da + datda

n = |al? + |a|dp + O(2)



Quantum Optics — MeasuliEigEnReiRthe |rizrse Field

OK, we got the amplitude measurement, but that is only part of the history!

Amplitude is directly related to the measurement of the number of
photon, (or the photon counting rate, if you wish).

This leaves an unmeasured quadrature, that can be related to the
phase of the field.

But there is not such an evident “phase operator™!

Still, there is a way to convert phase into amplitude: interference

and interferometers.



Michelson or Mach Zender demonstration




Building an InterfereiErEig= e Beam Splitter




Building an InterfereiErEig= e Beam Splitter
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Homodyning if <|a|> << <[8|>

A (t) = |B8](A(t)e ™ + AT(t)e”)

Vacuum Homodyning

Calibration of the
’f?,_|_ = Ny <ﬁ_> — () AQ T <ﬁb> Standard Quantum Level



A% =

) ) Shot noise !
“Classical” Variance

Vacuum Homodyning allows the calibration of the detection, producing a Poissonian
distribution in the output (just like a coherent state).

| @7 | 2n

pn = |(n]a))* = exp(—|al?) n!



