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We present a study of orbital angular momentum transfer from pump to down-converted beams in a type-I|
optical parametric oscillator. Cavity and anisotropy effects are investigated and demonstrated to play a central
role in the transverse mode dynamics. While the idler beam can oscillate in a Laguerre-Gauss mode, the crystal
birefringence induces an astigmatic effect in the signal beam that prevents the resonance of such a mode.
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I. INTRODUCTION been done with transverse multimode optical parametric os-

) . . cillators (OPQ’9, showing interesting possibilities in pattern
_ Early experiments have shown that circularly polarizediormation and quantum images for cavities with degenerate
Il_ght carries an_gular momentufid]. In a quantum desc_:rlp— transverse modes, like plangk3,14 and spherical cavities
tion of light, this angular momentum is associated with theyqg 16. Moreover, experiments have shown pattern forma-
spin of. the photon. More recently_ significant attention has;jgp in confocal[17] and concentri¢18] cavities, and oscil-
been given to the study of the orbital angular momentum ofation in modes with higher order than the fundamental are
light, associated with phase singularities in the wave front. Innommon in many different experimerts9,20.
a paraxial description of wave propagation, it is found that  apart from theoretical studies on generation of phase sin-
Laguerre-Gaussian beams_ carry orbital angula_r mome”tu_”&ularities with nonlinear optical effecf@1,22, only a few
Such beams can be experimentally produced either by astigyperimental results have been published on this subject, and
matic mode conversion with cylindrical lensga3], or by 1 our knowledge, there is no result showing the necessary
holographic technlqugs. In the latter, an optical peam is difsonditions for intracavity OAM transfer from the pump to
fracted through amplitudgd—6] or phase maskg] in order  the gown-converted beams. In the present work, we study the
to produce the optical vortex. On one hand, amplitude maskgan transfer in a nondegenerate, type-Il optical parametric
can be easily produced with simple photographic techniquegyscijlator (OPO), operating above threshold. We show the
but their use is quite limited when high power is required.onditions that must be satisfied for the OAM transfer, al-
On the other hand, the use of phase plates for high powgping one of the down-converted beams to oscillate with
operation requires delicate manufac;turmg techm_ques. Astighe same phase singularity of the pump beam. As we shall
matic mode converters can use simple opficglindrical ~ gee  the astigmatism caused by the crystal birefringence
lenseg to convert Hermite-Gauss into Laguerre-Gaussy|ays a central role in the selection of the beam oscillating in
modes. They are also fairly suitable for high-power purposesy,e Laguerre-Gauss mode. However, under certain condi-

but require a high-order Hermite-Gauss mode to start with.jons  the OAM may be lost, and no phase singularity is
Many recent experiments have been performed to demonspserved in the down converted beams.

strate the orbital angular momenty@AM) conservation in

nonlinear optical processes. It was observed in second har-

monic generatiorj8,9], and a test of OAM conservation in II. EXPERIMENTAL SETUP AND RESULTS

parametric down conversiai?DC) was made by Arlet al.

[10], in the spontaneous regime. In the latter, no conservation The experimental setup is shown in Fig. 1. The OPO is

was obtained in the macroscopic regime since the authofgade by two spherical mirrors M1 and M2, with equal cur-

were detecting images of incoherent fields and hence WergaturesR,,=13mm Inside the cavity, we have a KTP crystal

not sensitive to conservation properties of individual photon(by Cristal Laser 10 mm long, cut for noncritical phase

pairs. Clear evidence of OAM conservation in spontaneougnatching in 532—1064 nm down conversion at room tem-

PDC was obtained by Maiet al. [11], who observed en- perature. In this case, the crystallographic axeg, z) of the

tanglement between OAM variables of twin photons. In an-rystal are oriented as follows. Treaxis of the crystal is

other experiment, Caetared al. [12] introduced a stimulat- yertically oriented while the propagation direction lies on the

ing b_e_am, and parametric ampllflcanon was shown to b&,qrizontal plane(xy). The x axis forms an anglep=23.5°

conditioned to OAM conservation. with respect to the propagation direction.

So far, little attention has been given to OAM conserva-  The mirrors have high reflectance for the infraree

tion in intracavity nonlinear coupling. Many studies have —gqg gos at 1064 nim and a small transmittance at the pump
wavelength(R=92% at 532 nm Crystal losses in the infra-
red come mainly from surface reflection, reduced by antire-

* Author to whom correspondence should be addressed; electronftective coating(R=0.1%), since crystal absorption at this
address: khoury@if.uff.br wavelength is small0.05%. For the pump, we have reflec-
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FIG. 2. (a) Transverse profile of the pumfh) interference pat-
tern showing the topological defects characteristic of phase
singularities.
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The output power of the pump and infrared beams is mea-
sured as the cavity length is scanned. The corresponding

FIG. 1. Setup for the study of the phase singularities in therasonance peaks are shown in Fig. 3. Awide peak is obtained
output of Fhe type-Il triply re;onant OPO. The mode converter in-for the pump, over which narrow dips appear, owing to the
troduced in the pump beam is not shown. pump depletion in different oscillation regimes. The reso-
tion losses(R=0.5%) and crystal absorption, increased by "ance peaks for the infrared are also shown in Fig. 3. They
gray-tracking effect$23). comc.lde with the depletion dips in the pump resonance. Ex—

The cavity length is controlled by a piezoelectric actuatorP@nding the curve, we can observe that the depletion dips
on the mirror, and the cavity is kept nearly confocal, in orderhave a parabolic shape, in good agreement with the depletion
to help the alignment and reduce the consequences of ttxpected for a triply resonant OHQ5]. From the finesse of
walk off. the resonance peak for the pump, we measure 29% of inter-

The OPO is pumped by the second harmonic of ahallosses in the cavity. For signal and idler modes, the fitting
Nd:YAG laser (Lightwave 143. This laser generates a of the parabolic depletion gives a value of 1% for the infra-
TEMg Gaussian beam, that is converted to a nearly Hermitered losses. The threshold power for parametric oscillation is
Gauss TEN; beam[24]. With a telescope formed by two around 20 mW.
cylindrical lenses, we implemented a mode converter that The OPO could be kept oscillating, with a continuous
produces a Laguerre-Gauss bef@ with a good cylindrical  output for as long as 10 min. In this situation, we registered
symmetry for the intensity and a phase singularity in thethe output image of signal and idler beams, as well as their
center. This phase singularity was evidenced by the selfself-interference patterns. These images are shown in Fig. 4.
interference pattern obtained in a Michelson interferometerThey are labeled in correspondence to the oscillation peaks
In Fig. 2 we show the transverse profile and interferenc&hown in Fig. 3.
pattern of the beam used to pump the OPO. The resulting In images 1 and 4, the output intensity in the idler is the
pump power is 60 mW. The beam is horizontally polarized,one of a Laguerre-Gauss beam. The corresponding interfer-
and mode matched to the cavity with the help of coatecknce patterns show the topological defects in the center of
lenses. the Laguerre-Gauss beam characteristic of phase singulari-

Although the mirrors were high reflecting at 1064 nm, theties. In this situation, the idler beam carries the orbital angu-
output power coming out from the cavity through M2 can belar momentum of the down converted pump photons. In im-
detected by a PIN photodiode. The green light coming fromage 2, the shape of the idler beam is intermediary between a
the cavity is filtered by a dichroic mirrqDM), and detected first order Laguerre-Gauss and a diagonal first-order
by an amplified Si photodetectdDg). The infrared light is Hermite-Gauss modes. A vortex can still be observed
detected by a PIN InGaAs photodiog; (ETX-300, from  through the interference fringes. In both cases, the signal
Epitaxx, that samples part of the output beam that is re-beam remains in the fundamental Gaussian mode. Following
flected by a beam splittgBS). the Poincaré-sphere representation proposed in[Rgf. we

In the output, signal and idler beams are separated by ean look at the idler mode shown in image 2 as an orbital
polarizing cube(PBS. Adopting the usual convention in equivalent of an elliptical polarization.
type-Il OPO's, the idler beam polarization is horizontal, and  An interesting effect appears in image 3. In this situation,
the signal beam has a vertical polarization, aligned to thehe signal beam oscillates in the transverse mode with higher
crystal z axis. Each down converted beam is sent into aorder, but with no angular momentum. The output is a pure
Michelson interferometer made by a nonpolarizing 50/50Hermite-Gauss TEN mode, vertically oriented, while the
beam splitteBS) and two flat mirrors, in order to produce idler remains in the fundamental Gaussian mode. Therefore
interference fringes that can reveal the existence of a phaske orbital angular momentum is not conserved in the para-
singularity. The two outputs are recombined in another pometric down conversion process, and the crystal is expected
larizing cube(PBS and sent onto a charge-coupled deviceto suffer a twisting torque. This effect is analogous to the
(CCD) camera, that is used to register either the interferencenechanical torque applied to a quarter wave plate used for
pattern or the intensity profile of the beam. light polarization conversiofil], or to a pair of cylindrical
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lenses used for transverse-mode convergn wave equation for the propagating beams can be expressed

The reason for this asymmetry in the OAM conservationwith the help of rescaled spatial coordinates. All scaling pa-
of the pump can be explained when the propagation ofameters appearing in Eq#13) and(A17) can be absorbed
paraxial beams in anisotropic media is investigateek the by a suitable definition of an effective wave numlgy; for
Appendi®. The resulting astigmatic cavity formed by the each transverse direction and for each polarization. This
spherical mirrors and the anisotropic crystal will select thebrings Eqs(A13) and(Al17) to the general form
modes that will be able to oscillate. ]

FU(X,y) = 2iKesr U(X,Y). (1)

] ] The normalized solution of Eq1) is [27]
As can be seen in the Appendix, when the effects of the

crystal birefringence are taken into account, the paraxial Keff Xg va Keff Xg
VY =\ —aznzaa ] TlY Vi 2,2
72"l 4(X° + Xg) X+ Xg

xexp[— iLf - i(n + l)arctar<x)} ,
2(X +ixg) 2 XRr
)

where xg is the Rayleigh length, an#l(x) is the Hermite
polynomial of ordem=0. The term arctax/xg is the well
known Gouy phase shift. This term avoids multiple reso-
nances of high-order Hermite-Gaussi@iG) modes in a
high finesse cavity for the signal and idler modes of the
OPO. The beam propagation is characterized by the beam
waist Wy=v2xg/keis @and the wave-front curvatur@(x) =x(1
+x&4/x?) . The change in the effective wave number is
equivalent(in terms of beam diffractionto the propagation
in a shorter length of free space. Since the effective wave
number depends both on polarization and transverse direc-
tion, we can consider a different propagation length in each
case.
Let us now consider the refractive index of the KTP crys-
tal at 1064 nm (n,=1.7404n,=1.7479n,=1.8296 and
532 nm (n,=1.7797n,=1.7897n,=1.8877, according to
FIG. 4. (a) Intensity patterns for signatight) and idler (left) the mgnufacturer, Cristal _Laser S.A. We have, for the ex-
beams labeled in correspondence with the infrared peaks shown faordinary wave, a refractive index1064 nm=1.7467 and
Fig. 3.(b) Self-interference patterns showing the presence or not of(532 nm=1.7881. From the distanc&,=17.4 mm be-
phase singularities. tween the mirrors in our near-confocal cavity, and the crystal

IIl. ASTIGMATIC CAVITY

4)

(a) (b)
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length €=10.0 mm, we can calculate the effective lengith ment with the predicted 93 mrad for 532 nm. On the other
of the cavity for each transverse mode, and for each polamand, for horizontal polarizatiofextraordinary wavg the

ization, in the infrared case. Using the relation LG resonance presents a single peak. In this case, the split-
ting is expected to be around 8 mrad, well below the resolu-
L=Lo- gw’ (3)  tion of the cavity used for this measurement.
f From this analysis we conclude that the OPO can support

the oscillation of an LG mode for the extraordinary wave,
(A17) since its HG components have a degenefatequasidegen-
eratg resonance frequency. On the other hand, an LG mode
L% =12.87 mm, L9=13.40 mm, L, =13.17 mm, in the ordinary wave cannot operate because its HG compo-
Y Y nents will not have the same resonance frequency. This ex-
e plains the results shown in Fig. 4, that is, the orbital angular
L,=13.12 mm, ) momentum(OAM) is transferred from the pump lasex-

where the superscrift () refers to the ordinaryextraordi-  traordinary wavgto the idler modeextraordinary wavebut

nary) wave. The effect of the walk off for the extraordinary Nnot to the signal modeordinary wave. Notice that, under
wave has been taken into account, but the correction wa@ur experimental conditions, only one of the down converted
~10% and could be neglected. The values of the Rayleighinodes oscillates in a high-order transverse mode, while the
length inside the cavityx3=L%(2R,~L)/4] for each trans- ~Other one oscillates in the fundamental transverse mode. So,
verse direction of the beam, and for each polarization, diffethe OAM exchange between pump, signal and idler modes is
by less than 1%, and cannot be noticed in the freegoverned by the cavity dynamics under the crystal aniso-

we obtain, from the values d4;¢; given by Egs(A13) and

propagating beam, tropy, involving polarization and transverse profile aspects.
0 —_ o _
Xy =6.500 mm, xg,=6.497 mm, IV. THEORETICAL MODEL
e _ e Transverse multimode operation of OPO’s has already
Xry =6.499 mM, Xg,=6.500 mm. ® been theoretically discussed in R¢28]. The pump beam

On the other hand, the total Gouy phase shift accumulated ifan excite many different cavity modes for signal and idler,
a round trip inside the cavityp=4 arctafiyL/\2R,~L), bPut in general it is the one with the lowest threshold that

will be survives. Therefore modes with the best recovering integral
should oscillate. To extend this description to our experi-
<I>Cy’, =3.122 rad, ®9=3.204 rad, ment, we must take into account the walk off and the astig-
matism due to the crystal anisotropy. As we have seen, the
@, =3.167 rad, ®¢=3.161 rad. 6 astigmatism will introduce a phase shift between the two
y z ® Hermite-Gauss components of the Laguerre-Gauss beam. We

The phase added in a round trip depends on the order &@n choose to treat the problem either in the Laguerre-Gauss
the Hermite-Gauss TEJ}, mode resonating inside the cav- basis or in the Hermite-Gauss one. For the Laguerre-Gauss

ity. The total Gouy phase for this mode is basis, the astigmatism couples the right-handed beam to the
left-handed one. In the Hermite-Gauss basis, this coupling
= (m+1/2P,+ (n+1/2D,. (7)  implies in a phase difference between the two first-order

From the calculated values of the Gouy phase shift, we se@l0des. Here we chose to work in the Hermite-Gauss basis,
that there will be a small phase difference between thUt the change of basis is straightforward.

TEM,,; and the TEM, modes. This difference will result in a In order to study the_ dynamics of th_e relevant transverse
splitting of the resonance position. At 1064 nm, this separam0des, we shall consider the normalized mode functions

tion is of 82 mrad for the ordinary wave, and 6 mrad for theli kX',¥",2), wherej=p,s,i for pump, signal, and idler re-
extraordinary one. spectively, andk=0,h,v for the Hermite-Gauss TE),

In order to study this splitting, we pumped the OPO with TEM1o, and TEM,, respectively. The overlap integrals,
a Laguerre-GaussighG) mode obtained with an astigmatic
mode convertef2]. The LG mode is the superposition of A,dm:fffupk(x’,y’,z)u;(x’,y’,z)
two HG modes orthogonally oriented, that is, a T&Mnd a
TEM;omode. Once the OPO cavity is scanned, a single reso- Xu (x',y',2)dx dy' dz, (8)
nance peak is expected if the cavity is degenerate for the two
TEM modes. Otherwise, two resonance peaks are expecteBlay an important role in the dynamics since they determine
one corresponding to each TEM mode. In Fig. 5, we showhe transverse-mode coupling. The mode functions
the resonance peak of a high finesse cavity for a 532-nm L&k(X',y",2) are given by Eqs(A13), (A17), and(2), where
pump. The polarization of the pump laser was rotated irastigmatism and walk-off effects are taken into account. The
order to provide both, the ordinary and extraordinary waveswalk off is slightly different for pump(4.1 mrad and idler
For the vertical polarizatiogordinary wave, a double reso- (3.2 mrad, and the significant astigmatism occurs in the
nance is observed as expected. This splitting shows a rourttirection of the signal mode. The integrals are calculated in
trip phase difference of 88 mrad, in reasonable good agredhe whole crystal volume.
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With the overlap integrals, we can obtain the dynamicthe signal beam oscillates in the fundamental TgEkode,
equations for the transverse-mode amplitudes. From all posvhile the idler lies in the TEM, and TEM,; subspacépeaks
sible combinations of oscillating modes, the cavity parityl, 2, and 4 in Fig. 8 or the idler beam oscillates in the
will restrict the number of transverse modes for a given lon-TEM,, mode (peak 3 in Fig. 3. Let us describe these re-
gitudinal mode. If there were no anisotropic effects, with agimes
first order Laguerre-Gaussian pump mode, which is odd, sigseparately.
nal and idler must have opposite parities in order to give a
nonzero overlap integral. Therefore, for isotropic propaga-
tion, if signal oscillates in a first-order mode, idler must os- In this case, the set of dynamic equations for pump, sig-
cillate in the fundamental one, and vice versa. In principlehal, and idler transverse-mode amplitudes is

A. Signal beam operating in the TEMyy mode

this parity selection breaks down for an anisotropic medium . . =
specially due to walk off. However, when the overlap inte- = ~[7p+1(&p+ 0p)]ag, = ixAy0,8%08, + Ein/\2,
grals are calculated, we can see that the integrals for odd . ) . ] —
combinations of modes, like»,0,0) or (v,v,v) for example, apn="~[%p +1(Ap— op)]apn = i xAnondsodin — i Ein/V2,
are indeed much smaller than those obtained with an even _ _ . .
combination like(v,v,0). This allows us to neglect many of agp =~ (y+iAgagp +ixA,0,808, + 1 XAnon@pnin,
the mode couplings and restrict the number of dynamic equa- ) .

tions. Two kinds of operation regimes are observed: either &, == [y+i(Aj+ o)) ], + ixA,08pas,
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an =~ [y +i(A = 0)Jayn + i xAnondpraso: 9) b = bj, * ibj,

where the subindexegs, s, andi refer to pump, signal, and " \E
idler respectively, and Oy, and h refer to fundamental . G
(TEMq), vertical (TEMyy), and horizontal(TEM,) trans- The threshold_ vaIEe ok, for parametric oscillation is ob-
verse modes. Pump losses are describegipyhile a com- tained by setiindo=0 so that
mon decay ratey represents the losses for signal and idler. 0 Py~
The respective cavity detunings for pump, signal, and idler X =5+ A)). (13
are A, Ag, and A;. The astigmatic symmetry breaking is K
accounted for through the frequency splitting parametgrs As we shall see, a different threshold condition is obtained
for pump ando; for idler. They are calculated with the help for the other operation regime, in which the idler beam op-
of Eq. (7). The pump beam amplitude transmitted througherates in the TEN}, mode.
the input mirror is represented by the source té&m Since The analytical solution for the steady state including all
it is prepared in a Laguerre-Gauss mode, the source terngarameters is cumbersome but E(l) give us a good es-
appearing in the dynamic equations for the amplitudgs timate for the orders of magnitude. In fact, as we discussed
and a,, are 7/2 out of phase. Finallyy is the nonlinear in Sec. IV, the expected value for the pump and idler splitting
coupling constant. parameters are indeed very smalf,=4 mrad and o;

The dynamic equations, as well as their steady-state solu=3 mrad[the splitting parameter is half the astigmatic phase
tions, are considerably simplified if we express time in unitsshift calculated from Eq(7)]. However, this small splitting
of the cavity round-trip timer and define the following nor- may be responsible for partial transfer of the orbital angular
malized variables: momentum from the pump to the idler mode. In order to
illustrate this, we numerically integrated the dynamic equa-
tions (9) with a fourth-order Runge-Kutta method until the
steady state was reached. In Fig. 6 this time evolution is

(12

bjk = XAooo™@ks  Xin = XAooo™Ein,

Yi=vn A=A, o=AT, shown together with the valulg given by Eq.(11). In the
inset, we show the expected image for sigigland idler(l)
A obtained with the numerical steady-state results. A good
Mim= - (100  qualitative agreement is obtained with the experimental re-
Aooo sults corresponding to peaks 1, 2, and 4 of Fig. 3.

As before,j=p,s,i for pump, signal, and idler, respectively,
and each of the subindexds I, and m may assume the
values 0,h, or v. Cavity losses are around 29% at 532 nm ) ) )
and 1% at 1064 nm that givg,=145 mrad andy=5 mrad. In this case the dynamic equations are
In the absence of astigmatism and walk off the relevant nor- . _ _ : gt 5
malized overlap integrals ar@,,o=7h0= 7,00 = 7hon=0.71 % == Lyp +1(8p + 0p) ]85, = TxAvu0B08i0 + Ein/\2,
approximately. When the walk-off effect is considered, the . ) o, ) -
overlap integrals are averaged over the crystal volume. &@pn="[¥%*i(Ap=0p)]apn~ixApnasrio =i Ein/\2,
Moreover, the astigmatism is included through the appropri-

B. Idler beam operating in the TEMyy mode

ate correction of the mode functions. Taking into account the ag, =—[y+i(As+oglag, + iXAUUOapUa:O,
experimental values for the walk-off and astigmatism param-
eters we find,,0=0.70, 7,,0=0.60 and,q, = 7non=0.71. ag=—[y+i(As— o)lag+ iXAhhoapha:o,

So, a significant change is obtained only fgfy.

It is instructive to consider the steady-state solution of . . . - x
Egs. (9) in the simplified conditionA,=A =0, =¢,=0 and %0 =~ (¥ #1430 + XA uuofpas, + IXAnnoRpnds (14)
7y00= Thon= 17 Which correspond to neglecting walk off and The transverse-mode splitting now appears in the dynamic
astigmatism. In this case the orbital angular momentum igquation for the signal beam and is represented by the pa-
perfectly transferred to the idler beam which will also oscil- rametero,. However, the splitting parameter is expected to
late in a Laguerre-Gauss mode with the same topologicdbe of the order of 41 mrad. Since cavity losses in the infrared
charge of the pump beam. Therefore the steady-state solare of the order of 1%, the corresponding normalized decay

tions are rate isy=5 mrad, so thats>". Under such conditions it is
o 2y 2 impossible for the OPO to support the simultaneous opera-
lp-=1i-=0, Ip = Vi, tion of theh andv modes necessary to compose a Laguerre-
Gauss mode. Therefore the orbital angular momentum can-
Y D not be transferred to the down-converted beams. The cavity
|30=|i+=|0=? 7_%_ Yo (1) tuning will select the signal Hermite-Gauss mode whose

resonance frequency is closer to the idler resonance. For ex-
where we defined the normalized intensitlg§=|bjk|2. The ample, forAg=-o, the cavity frequency falls far away from
Laguerre-Gauss amplitudds, are given in terms of the the h signal resonance while themode gets on resonance.
Hermite-Gauss amplitudes as In this caseag,=0 and the steady-state solution of E(&4)
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can be analytically obtained. Notice that the normalizedresponds just to an empty cavity. On the other hand.uthe
overlap integraly,o Will not play any role in this case. We component of the signal beam, as well as the fundamental
therefore setn=7,,, and use the same normalizations idler mode, presents a steady-state intensity lower than the

adopted in Eqs(10) to find one found in Eqs(11) for the same pump level,. This
/2 % corresponds to the situation found in peak 3 of Fig. 3, which
=0, o= e o= "3 is clearly lower than the other infrared peaks. Again, the
3/%+ A,zj Y oscillation threshold is readily obtained by takikg-0:

5
lo=lg =14= zlw/”z;” A ~] (15) XEZWL;Z()/Z+A2) (16)

The h component of the pump beam does not couple to thét is twice the threshold value for the case where the orbital
down-converted modes so that its steady-state solution coangular momentum is transferred for the idler beam, what is

x 10
1 T T T T
0.9+ 1
0.8k e i FIG. 7. Time evolution of the
P down-converted beam intensities
. 07} / . (in units of the cavity round-trip
% il time) obtained from numerical in-
5 06f / 1 tegration of the dynamic equations
2 I (14). The inset shows the corre-
fi 051 i T sponding expected images for sig-
= 1 nal (s) and idler(i). The parameter
5 0.4r i' 1 values used aré,=0.28y,, As=
i= - —-41 mrad, Aj=0, y,=145 mrad,
osr ! I =5 mrad =4 mrad
F . S - y=5mrad, o,=4 mrad, o
ook i 1 .0 =41 mrad, xj,=1.5¢, and 7,0
“l & =0.70. The horizontal solid line
/ s .
0.1 | shows the analytical valuk.
0
\
O .\ 1 e 1 1
0 1000 2000 3000 4000 5000

t(1)
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=7 APPENDIX: PARAXIAL WAVES

. . . IN A BIREFRINGENT CRYSTAL
FIG. 8. Coordinate system used to describe the paraxial propa-

gation through the anisotropic crystal. The walk-off angle is In a type-Il down-conversion, we use the crystal birefrin-
indicated as the angle between the Poynting veStand the propa- gence to achieve the desired phase matching condition
gation axisx’. [32,33. It was shown by many authors that the paraxial

equation, from which we can derive the propagation modes

also coherent with the lower height of peak 3 in Fig. 3.  of a beam in free space or isotropic medium, will change
The numerical evolution of Eq$14) using a fourth order When we work with an anisotropic mediufd4,35. Here we
Runge-Kutta method was performed without the simplifyingWill extend the study of Fleck and Fe[B6] of paraxial
assumptions. These results are presented in Fig. 7, where tREOpagation in uniaxial crystals to the biaxial case, adapting
inset shows the expected images for signal and idler. Theeir description to the case of a crystal inside a cavity. Our
walk-off and astigmatic effects were fully considered and adim is to reduce the wave equations to the paraxial wave

good agreement with the experimental result was obtained€quations that define the Hermite-Gauss modes coupled to
the resonances of a linear cavity.

Let us define the crystallographic axes @sy,z). The
KTP crystal used in our experiment is a quasiuniaxial one
We have shown that the transfer of orbital angular mo-with n,~ny#n,, where n, , is the refraction index for

mentum in intracavity parametric down conversion isx(y,z) polarized light. Since the displacement vecibisat-
strongly subjected to cavity and anisotropy effects. OrbitaisfiesV-D=0, we can write the wave equation for the elec-
angular momentum conservation can be observed only ifric field E, derived from Maxwell’'s equations, as

pump, signal, and idler are in a set of modes where the

Hermite-Gauss(HG) components of the Laguerre-Gauss VZE—V<V-E—
(LG) modes are degenerate inside the cavity. While that can

be easily achieved for the idler beam, the signal beam cannoth —w/cis th ber i di
fulfill this condition unless cavity losses are large. If the idlerV ereko=w/c is the wave number in vacuum corresponding

beam oscillates in the fundamental mode, one can still obtaiff frequencyw, anda IS a constant to b_e co_nvenlently ch_o-

signal oscillation in a higher transverse mode. However>€": Th'? constant V\."" S|gn!flca_ntly S|mpl|f_y the paraX|aI_

since the HG components are not degenerate, the thresho%(.)pagat'on analy5|s in the birefringent "‘?ed'“”.‘- The consti-

power increases, and the orbital angular momentum is n tive rglatlonD—e-E depends on the d|electr|.c tenser

transferred to the down-converted beams. at is diagonal when we use the crystallographic coordinates
We also developed a theoretical model, which presents n 0 0

good agreement with the experimental results, and which 5

should be useful for future investigations of the transverse- e=| 0 ny 0 (A2)

mode dynamics in the quantum domain. Interesting perspec- 0 O n§

tives can be envisaged if the OPO operation is subject to an

injected signal. Recent studies on degenefag and non-

degeneratg30] parametric processes with injected signal

have considered interesting issues such as the preparation

V. CONCLUSION

>+k§e-E:o, (A1)

o

The wave equations for the electric field components can
be derived from Eq(Al) by using the constitutive relation
apd choosingv=n{ to obtain

quantum correlated stat¢ginstein-Podolsky-Rosen states ni ) n§ -
as well as the study of critical behaviors of the OPO 5 Ex+ B+ BB~ | 1~ | ddE, + knZE,=0,
operation[31]. ny ny
n2 n2
ACKNOWLEDGMENTS FEy+ GE, + B, ~ |1~ n—g A= 1~ n—; ay0,E,
A. Z. K. thanks Professor D. Petrov for bringing the op- 5 5 Y Y
tical vortices to his attention during the Jorge André Swieca +konyEy =0,
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2 2
n n
KE,+ FE, + 5 5E,~ (1 - —;)azaxEx +Kon’E,= 0.
ny ny
(A3)

Notice that for a uniaxial crystaln,=n,) we recover the

equations obtained in Ref36]. Let us now consider propa-

gation along an axig’ lying on thexy plane with an angleb
with respect to the crystallographic axsas shown in Fig.

8. This definition of¢ has the advantage to match the angle
and axis definitions usually given by crystal manufacturers
For our KTP crystal, cut for type-Il phase matching of 532
and 1064 nm, we haveé=23.5°. A rotated reference frame
(x",y’,2) can be used to describe the propagation inside the
crystal. The coordinate transformation between the tw%r

frames is
x' =X cos¢+y sin ¢,
y'==xsin ¢+y cos ¢,
(Ad)

=Z.

1. Plane-wave analysis

PHYSICAL REVIEW A 70, 013812(2004)

sin ¢ cos ¢(n’ — nf)
n; cos’ ¢+ sir? ¢

This angle is represented in Fig. 8. It is related to the well-
known walk-off effect, which appears as a consequence of
the crystal anisotropy. However, as we shall see shortlyz the
polarized field will also have an anisotropic effect when the
propagation of a transversely finite beam is considered. This
effect appears as an astigmatic deformation of the beam dur-

tang’ = (A10)

ing the propagation along the crystal.

2. Paraxial propagation

On the other hand, to obtain a direct solution of Ejl)

a paraxial beam propagation is not so straightforward and
some careful approximations have to be made to uncouple
the differential equations for each polarization. For the
component, the wave equation has the form

2

2
n a—nNn
(‘9>2< + ‘95 + _zag + kgnz) = (—X)axﬁzEx
a a

2
-n
- (a—QY)ayazEyzo. (A11)

Two orthogonally polarized plane-wave solutions propa-To reduce this equation to the paraxial wave equatiorzfor

gating alongx’ can be found for Eqs(A3), one with E,

=E,=0 andE,# 0 (z polarized and another polarized in the
xy plane(E,=0). For thez polarized solution, only the last of

Egs.(A3) remain and its solution is
E, = Eg,e"oX. (A5)

The plane-wave solution polarized on tkg plane can be
found by makingE,=0 in the first two of Eqs(A3). This
solution is of the kind

E = Eg %), (A6)

where Eg=EqX+Egy. From substitution of Eg(A6) in the
first one of Eqs(A3), we find

K K
S+ 2=k, A7
no o ng < (A7)

which is the projection of the well-known index ellipsoid on

the xy plane. By makingk,=n k, cos ¢ andk,=n k; sin ¢,
we get

cosg¢p sty 1
Z e (89

wheren is the index of refraction for propagation alorg
On the other hand, if we substitute Hé®6) in the constitu-
tive relationD=¢-E and inV-D=0 we find that

NZkeEy + nokyEy = 0. (A9)

Sincen, # ny, this means thakE andk are not orthogonal.

Therefore the Poynting vect@, that is orthogonal td, is
not parallel tok . Let us call¢’ the angle betwee8 andk.

polarization, we can begin by eliminating the terms with
cross derivatives. One way to do this is to approximate the
biaxial crystal by a uniaxial one for thepolarization. This is
valid since|n,—n,|<[n,-n/. If we chosea=n? we have
|(a—n?)/ a|=107%for i={x,y}, giving a very small contribu-
tion. In the limit n,=n,=n these terms will vanish, and we
have the uniaxial crystal studied in R¢R6).

A paraxial solutionE,=u,(x’,y’,z)e "% of Eq. (A1)
can be obtained if we adopt the rotated reference frame. The
resulting equation is close to the paraxial wave equation,
except for the asymmetry in the coefficients of the transverse
second-order derivatives:

2

Zug+ %fﬁuz = 2in Kol Uy, (A12)

The asymmetry between the transverse coordingtasd
z appears as a rescaling of theoordinate. This means that
the optical beam follows an astigmatic propagation inside the
crystal with different diffraction scales for each transverse
coordinate. Let us separate the dependenag ohy’ andz
making u,(x',y’,2)=U,X",y")V,.X",2), in order to obtain
two paraxial wave equations for the beam diffraction in each
transverse direction:

2 .
ay,UZ: 2inkydy U,

2
M 2 = 2in Kooy V. (A13)
n2 zVz Z x'Vz-

When calculating the propagation of the beam through an
OPO cavity, this diffraction asymmetry can be seen as a dif-

A straightforward geometric analysis allows one to obtain derent effective length of the crystal for each transverse de-

simple relation betweeg and ¢':

pendence of the mode function. For a crystal with length

013812-9
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the effective length for th&J, propagation will bef/n,, as  transformationy’=y’ —tan ¢'x’ is necessary. This transfor-
usual in the treatment of beam propagation through a unimation corresponds to a transverse offset obtheolarized
form crystal[28,33. For V,, the effective length it will be beam. Using Eq. (A8) and defining &=sirf¢
£n,/n?, resulting in an asymmetry in the effective cavity +(n§/n§)cos’-¢, we can rewrite Eq(A15) as
length for each transverse evolution. The calculation of the
cavity geometry, and the resulting beam parameters ex- 2
pressed by the Rayleigh lengka, will therefore differ for 2ikoﬂyax/uy é (75”
the two transverse coordinates. n
Let us now turn to the paraxial solution for the field po-

larized on thexy plane. Since a plane-wave solution with that is, the usual paraxial equation with wave vedgn;/n)
E,=0 can be found, it is natural to conceive a paraxial soluand a rescaled transverse coordingtés. However, since
tion for which E, is negligible. Therefore if we choose — n ~n,, this transverse rescaling is much smaller than the one
=nZ in Eq. (A1) and use the rotated coordinates, we Obta”"present in the polarized field. Therefore, while thepolar-
the following propagation equation fd,: ization has a significant astigmatism but no walk off, fye

02 polarization presents walk off and a small astigmatism. From

co¢p azx/ +sirfe ,9)2// — Sin 2 60, + —5(sirfe ai/ now on we shall designate the polarized field as thex-
Ny traordinary wave and thez polarized field as therdinary

Uy + Uy, (A16)

wave.
+cog¢ &)2/, +8in 26 dyidyr) + aﬁ + kény} E,=0. As we made for the component, we can try a factorized
solution of the paraxial wave equatigA16) of the form
(A14) u,=Uy(X',y")Vy(X",2), so that

We now try a paraxial solution of the fornk, , o
=u,(x',y’,2e"™" in Eq. (A14), using Eq.(A8) and mak- é 35/,Uy= 2iko(ny/n) Uy,
ing the paraxial approximation to obtain

ny v 2V, = 2iko(n2/N) oy V. A17
2ikon, | coge + E%sin% [dyrUy + tang’ d,u | 2Vy = 2iko(Ny/M)d Vy. (A17)
X
5 . L .
] n ) Thus the paraxial propagation inside the crystal is well de-
= (S'n2¢+ H%COSZ ¢) J, Uy + Uy, (A15)  scribed by Eqs(A13) and (A17) for the ordinary and ex-
X traordinary waves, respectively. A paraxial equation forxhe
where ¢’ is the walk-off angle given by EqQA10). In order  component of the extraordinary wave can be obtained on the
to obtain a paraxial wave equation, a second coordinateame lines leading to EgA17).
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