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Abstract

We propose a direct measurement of the quadrature correlations of signal and idler beams in a non-degenerate opti-

cal parametric oscillator operating above threshold. We investigate the experimental limits where quantum correlations

can be observed, fulfilling an inseparability criterion for defining them as intense entangled beams. The use of optical

cavities to access quadrature noise in this situation is studied, and its advantages over homodyne detection are dis-

cussed. We also consider the application of this entanglement and the quadrature noise measurement technique to

quantum cryptography.
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1. Introduction

Entanglement of two states (e.g., a pair of light

beams) is a purely quantum behavior, leading to
non-locality, which is in the heart of the quantum

information theory [1,2]. When the fields are in an

entangled state, the non-classical behavior can be

demonstrated by the violation of the Bell inequal-

ity [3,4]. For continuous variables, a Bell inequal-
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ity is no longer directly applicable, but many

authors have developed other relations that must

be violated to show the inseparability of continu-

ous variable systems [5], such as the proposal of
Duan et al. [6], which we will refer to as the DGCZ

criterion.

A well known example of entangled states are

the twin photons produced by atomic fluorescence

[7] or spontaneous parametric down-conversion

[8,9]. For continuous variables, it has been demon-

strated that squeezed states, combined in a beam

splitter, can produce entangled states [10,11].
Experimentally, this source of entanglement has
ed.
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already been produced by the combination of

pulsed squeezed beams generated by the v(3) non-
linearity in optical fibers [12].

Optical parametric oscillators (OPO) or amplifi-

ers (OPA) can be sources of entangled states.
Sub-threshold OPO�s are shown to produce an

entangled pair of fields, either in frequency degen-

erate OPO�s [13] and non-degenerate OPO�s [14].

EPR-like beams have also been produced from

the combination of the outputs of two degenerate

sub-threshold OPO�s and used for quantum

teleportation [15].

On the other hand, it has already been predicted
that the OPO would still produce entangled states

above threshold, generating intense entangled

beams that would satisfy the DGCZ entanglement

criterion. But there are difficulties in performing

this kind of measurement. The theory predicts that

signal and idler beams will be intensity-correlated

and phase-anti-correlated [16,17]. While it is easy

to measure intensity correlations leading to sub-
shot noise fluctuations in the difference of beam

intensities [18], the measurement of phase quadra-

ture fluctuations often requires the use of a local

oscillator for an homodyne detection [19].

Typical OPO�s will produce non-degenerate sig-
nal and idler beams with a frequency separation

that is a multiple of the cavity free spectral range

[20], but the usual configuration used for measur-
ing quadrature fluctuations can be implemented

only if signal and idler fields are frequency degen-

erate, like in the case of squeezed vacuum [21].

In this article, we investigate the possibility of

measuring entanglement between intense signal

and idler beams even in the non-degenerate situa-

tion, taking into account typical experimental con-

ditions such as a noisy pump beam and a detuned
OPO cavity. Our calculations for the OPO indicate

that there is an experimentally accessible region of

parameters where entanglement can happen.

Although excess noise in the phase of the pump

field can destroy the entanglement, its intensity

noise has little effect.

In order to measure phase fluctuations of signal

and idler, we propose a self-homodyne technique
that uses external cavities to independently rotate

the phase of the fields� fluctuations relative to their

mean values [22], leading to a direct conversion of
phase fluctuations into intensity fluctuations [23].

By summing or subtracting the measured signal

and idler quadrature fluctuations, correlation or

anti-correlation between their quadratures can be

seen, and the DGCZ criterion can be applied. This
implementation allows a generalized quadrature

measurement and noise correlation even if the

beams are not degenerate, thus overcoming the

difficulties associated with homodyne detection in

this system.

We finally consider using this implementation

for quantum secure key distribution according to

a recently proposed protocol [24]. This requires a
stronger condition for the correlation between

amplitudes and anti-correlation between phases:

both of them must be squeezed. We show that this

can be the case for the non-degenerate OPO, there-

fore enabling its use for quantum cryptography.

One direct advantage of this system is that in-

tense beams are easier to manipulate than

squeezed vacuum. The beams� mean intensities
are another parameter to check any violation of

the secure channel. Besides, the use of optical cav-

ities to access quadrature noise has advantages

over homodyne detection in this situation. By

making Alice and Bob�s measurements independ-

ent of local oscillators, difficulties like their

production and distribution are eliminated, simpli-

fying the experimental setup.
We begin by a brief description of the DGCZ

criterion, and then we review the expected results

for a type-II OPO above threshold, studying the

effect of the pump noise and cavity detuning on

entanglement. The conversion of phase noise into

intensity noise by a lossy cavity is studied, and

the experimental proposal is then described, show-

ing that the use of cavities allows a local selection
of the measured quadrature noise of the entangled

beams, thus establishing a secure channel for

quantum key distribution.
2. Entanglement criterion

As described in [6], a quantum state composed
by two modes, 1 and 2, is said to be separable if

its density matrix q can be described by a statistical

mixture of the product of normalized states of the
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systems 1 and 2 (qi1 and qi2), q ¼
P

ipiqi1 � qi2

with positive probabilities pi that satisfy
P

ipi ¼ 1.

If the system is composed of two modes of the

quantized electromagnetic field, we can define

annihilation and creation operators for each
mode, respectively aj and ayj [25], where j 2 {1, 2}

stands for the mode. These operators follow the

usual commutation relation ½aj; ayj0 � ¼ dj;j0 , and

since they are not hermitian operators, the mean

value will return a complex number that represents

the complex field amplitude envelope. From these

operators we can define a pair of hermitian opera-

tors, giving the quadratures of the field in the Fres-
nel representation:

qjðtÞ ¼ i½eiuayðtÞ � e�iuaðtÞ�;
pjðtÞ ¼ ½eiuayðtÞ þ e�iuaðtÞ�;

ð1Þ

where the phase u rotates the field in the plane of

the Fresnel representation. We have then the com-

mutation relation: [pj, qj 0] = 2idj,j 0, that implies in

the uncertainty relation: D2pjD
2qj P 1. For a

coherent state, D2pj = D2qj = 1, and for a squeezed
state [25,26] we have, for instance, D2qj > 1 > D2pj.

If we study two modes of the field, we can look for

a vanishing commutator for a linear combination

of the quadrature operators, that are called EPR-

like operators of the system. As an example of a

pair of EPR-like operators, we have

u ¼ q1 þ q2ffiffiffi
2

p ; v ¼ p1 � p2ffiffiffi
2

p : ð2Þ

In this case, the variables u and v commute, and

therefore they can be determined simultaneously

with arbitrary precision.

Duan et al. [6] have shown that if a system com-

posed of two modes is separable then there is a

lower bound for the variances of the measure-
ments of u and v:

hD2ui þ hD2vi P 2: ð3Þ

Violation of this inequality is a sufficient condition

for a quantum state to be considered inseparable,
or, equivalently, for having an entanglement be-

tween modes 1 and 2. On the other hand, if we

have gaussian states, it can be shown that violation

of relation (3) is a sufficient and necessary condi-

tion for the inseparability of states.
Therefore one can verify the entanglement of

two fields by measuring the variance of the sum

of phase quadratures and subtraction of amplitude

quadratures. We will now discuss the entangle-

ment of the fields produced by a non-degenerate
OPO, and study how its signature is affected by a

noisy pump and a detuned cavity.
3. Entanglement of signal and idler fields

Strong intensity correlations between signal and

idler beams produced in an above-threshold OPO
have already been demonstrated with experimental

data [18,27] that agrees with the usual treatment of

the fields as classical values with stochastic fluctu-

ations. This is equivalent to the quantum treat-

ment using the density matrix, which is converted

to a Wigner representation for the field values

[28]. Similarly, there have been studies of phase

anti-correlation between the output fields [29].
But, while intensity correlation is shown to be

independent of cavity parameters like detuning

and pump power and quite insensitive to pump

noise, anti-correlation in phase fluctuations were

predicted in only a very specific situation: zero cav-

ity detuning and coherent pump [17], which is far

from the usual situation observed in the

laboratory.
We outline here a full treatment of the problem,

showing that, although not completely independ-

ent of pump noise as intensity correlation is, phase

anti-correlation can be obtained in normal experi-

mental conditions, using the DGCZ criterion to

demonstrate entanglement of a pair of macro-

scopic fields produced by an OPO above

threshold.
Consider the complex field amplitudes, repre-

sented by the annihilation operators {a0(t),

a1(t), a2(t)} for pump, signal and idler, respec-

tively. Any field operator can be described in an

equivalent way by its mean value and an operator

for the field fluctuation taking the general form

a(t) = a + da(t), where a = Æa(t)æ = jaj eiu. The

intensity of each beam will be given by an average
value and a real valued fluctuating term I(t) = jaj2
+ ada�(t) + a*da(t), where terms of higher order in

the fluctuation are neglected, since all fields are
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assumed intense (jaj2 � 1). Therefore, the intensity

will be given by I(t) = jaj2 + jajdp(t), where

dp(t) = [eiuda�(t) + e�iuda(t)] is obtained from Eq.

(1). The conjugate operator dq(t) defines the phase
quadrature fluctuation of the field.

In our procedure, we will begin with the Lang-

evin equations obtained from the Wigner represen-

tation of the fields, presented in [28,30], and change

it into the equivalent description of fields� quadra-
ture fluctuations dp(t), dq(t). We will be searching

for a DGCZ-like correlation between signal and id-

ler fields, Eq. (3), obtained directly from the sum

and subtraction of the fields� quadratures, p�ðtÞ ¼
½p1ðtÞ � p2ðtÞ�=

ffiffiffi
2

p
and q�ðtÞ ¼ ½q1ðtÞ � q2ðtÞ�=

ffiffiffi
2

p
.

Changing the density operator representation

of the system into the Wigner representation of

the fields as complex variables, we can obtain the

Langevin equations of the fields, in the form

s
d

dt
P ¼ �AP þ BP in; ð4Þ

where the vector of field fluctuations is P =

[dp�(t), dq�(t), dp+(t), dq+(t), dp0(t), dq0(t)]
T. Here,

s is the cavity�s round trip time, and the drift ma-

trix A and the damping matrix B depend on cavity

loss and detuning. The external fluctuations Pin are
coupled to the OPO�s cavity through the damping

matrix. We will limit ourselves to the study of field

fluctuations above oscillation threshold.

From the steady state values of the fields above

threshold [20,28] we obtain the drift matrix

A¼

2c 0 0 0 0 0

�2cD 0 0 0 0 0

0 0 0 2cD �
ffiffiffi
2

p
cg

ffiffiffi
2

p
cDg

0 0 0 2c �2cDg �2cg

0 0
ffiffiffi
2

p
cg

ffiffiffi
2

p
cDg c0 �c0D0

0 0 �
ffiffiffi
2

p
cDg

ffiffiffi
2

p
cg c0D0 c0

2
666666664

3
777777775

¼
A� 0

0 Aþ

� �
; ð5Þ

where the total cavity losses for pump (c0) and sig-

nal and idler fields (c) are related to the coupling

mirror transmissivity T = 2c. If we have other spu-
rious losses, they can be added to the mirror trans-

missivity when calculating the output fluctuations,

but considering that only the field coming out

through the coupling mirror will be detected,
resulting in a linear degradation of the squeezing

[19]. D and D0 are the cavity detunings normalized

by the internal loss (D = u/c). The ratio g of the

mean values of the signal (and idler) and pump

fields (a, a0) is given by

g ¼ jaj
ja0j

¼
ffiffiffiffi
c0
c

r DD0 � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� ðDþ D0Þ2

q
1þ D2

2
4

3
5

1=2

;

ð6Þ
where r is the relative pump power, normalized to

threshold power on resonance (D = D0 = 0). Signal

and idler detunings are equal as a condition for

stable oscillation [20]. Phase matching in the

non-linear crystal is implicit in the normalized

pump power [20], and will change the threshold

power of the OPO and the phase difference of sig-
nal and idler to the pump field. The small bistabil-

ity region close to the oscillation threshold [28] is

hardly seen in CW operation, and will not be con-

sidered in our calculations.

The incoming fluctuations Pin, coupled to the

cavity through its input mirror, can be simply con-

sidered as vacuum fluctuations for the signal and

idler fields, but not for the pump, where the pump-
ing laser fluctuations must be taken into account.

The phase difference between the intracavity fields

and the incoming fields is considered in the cou-

pling matrix B,

B ¼
B� 0 0

0 Bþ 0

0 0 B0

2
64

3
75; ð7Þ

with each submatrix Bj given by

Bj ¼
ffiffiffiffiffiffi
2cj

q cosðuin
j � ujÞ � sinðuin

j � ujÞ
sinðuin

j � ujÞ cosðuin
j � ujÞ

" #
:

ð8Þ
The relationship between the phases of intra-

cavity fields uj and incident fields uin
j , for pump,

signal and idler modes can be reduced to a simple

form if we consider the incoming pump field as a

reference and set its phase to zero, uin
0 ¼ 0. The

incoming vacuum fluctuations in the sum and sub-

traction of signal and idler modes can be arbitrar-

ily set to be in phase with the intracavity fields.
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Therefore, we will have for the linear combination

of signal and idler beams uin
þ ¼ uþ and uin

� ¼ u�.

Finally, the phase of the intracavity pump mode

is found to be

e2iuþ ¼
ffiffiffi
r

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� ðDþ D0Þ2

q
� iðDþ D0Þ

;

eiu0 ¼ 1� iDffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p e2iuþ :

ð9Þ

To complete the treatment, and find the output

field fluctuations, we need to combine the intracav-

ity field transmitted through the coupling mirror
with the incident field. Once again, we have to con-

sider the phase relations between incoming field,

intracavity field and output field to maintain our

definitions of field quadratures p and q. The

output field fluctuations vector will be

Pout = B 0P � B00Pin, where the phase rotated cou-

pling matrices for reflection (B00) and transmission

(B 0) of the fields are similar to the one defined in
Eq. (7), but with the submatrices given by

B0
j ¼

ffiffiffiffiffiffi
2cj

q cosðuj � uout
j Þ � sinðuj � uout

j Þ
sinðuj � uout

j Þ cosðuj � uout
j Þ

" #
;

B00
j ¼

cosðuin
j � uout

j Þ � sinðuin
j � uout

j Þ
sinðuin

j � uout
j Þ cosðuin

j � uout
j Þ

" #
:

ð10Þ
From these equations defining the time evolution

of the intracavity field and its coupling to the

external modes, we can obtain the noise spectrum

of each quadrature as a function of the cavity

parameters, pump power, pump noise and analysis

frequency.

In frequency domain, we have ~P ðXÞ ¼R
P ðtÞeiXt dt. The matrix of the output noise spectra

Vout ¼ h~P outðXÞ~P
T

outð�XÞi is given by

Vout ¼ B0ðAþ iXIÞ�1
B� B00

h i
� Vin B0ðA� iXIÞ�1

B� B00
h iT

; ð11Þ

where Vin ¼ h~P inðXÞ~P
T

inð�XÞi.
From the Langevin equations of the fields we

can observe that those for the subtraction of the
field quadratures are uncoupled from those for

the sum of the quadratures and for the pump field.

Therefore, we can independently obtain the noise

spectra of the subtraction and the sum of the out-

put fields. Considering the input field spectrum
normalized to the vacuum fluctuations, we have

for the subtraction of the amplitudes and phase

quadratures [17]

Sp�ðXÞ ¼ hdpout�ðXÞdpout�ð�XÞi

¼ 1� 4c2

4c2 þ s2X2
;

Sq�ðXÞ ¼ hdqout�ðXÞdqout�ð�XÞi

¼ 1

Sp�ðXÞ
:

ð12Þ

Therefore, the fluctuations of the subtraction of

the outcoming fields are in a state of minimum

uncertainty, and will show squeezing in the ampli-

tude quadrature. Moreover, they are independent

of pump or cavity parameters. For the sum of

the fields� fluctuations, the result is not so simple,
but can be obtained from Eq. (11), showing their

dependence on cavity detuning, pump power and

pump noise.

In what follows, we present results for the noise

spectrum of the sum of fields quadratures

(Sp+, Sq+), considering that the pump field can be

either in a coherent state, or with excess noise

either in amplitude or phase (considering that
these fluctuations are uncorrelated). While the

fluctuations of the difference of fields will depend

only on the analysis frequency (X) and cavity

bandwidth for signal and idler (dx = 2c/s), the

fluctuation of the sum will also depend on the nor-

malized pump power r, cavity bandwidth for the

pump (dx0 = 2c0/s), cavity detuning for the pump

(D0), signal and idler (D) and pump noise
(Sp0, Sq0).

Consider a simple case: resonance (D = D0 = 0)

and a coherent pump (Sp0 = Sq0 = 1), operating

at twice the threshold power (r = 2), the cavity

coupling mirror having a small transmissivity for

signal and idler (T = 2c = 2%) and a large one

for the pump (T = 2c = 10%). In Fig. 1, the nor-

malized noise for each one of the quadratures of
the difference of the field fluctuations are

presented.
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As we can see, perfect intensity correlation be-

tween the fields can be obtained for a long integra-

tion time (Sp� = 0), and consequently the

fluctuations of the conjugate variable (Sq�) di-

verge. This can be seen as a process of phase diffu-

sion, already discussed in [17,31]. Energy

conservation and phase matching imply that signal

and idler phases are anti-correlated. Hence, the
sum of phases is little affected by phase diffusion.

The fluctuations in the sum of phases have a lower

bound, as a function of analysis frequency, given

by Sq+ = 0.5. Lower values could be achieved as

the threshold limit is approached (r ! 1,

Sq+ ! Sp�), but the practical stability of the exper-

imental setup is reduced. Of course, these values

apply for a cavity without any spurious losses
(the only loss is through the coupling mirror)

and no losses in the detection process. But from

these values we observe that an OPO can act as

a source of entangled beams even with intense out-

puts, according to the DGCZ criterion, Eq. (3).

Losses in the beam path and inside the cavity will

linearly reduce the level of squeezing [19].

Perfect resonance and a pump laser with small
noise are not the usual situation met in a labora-

tory. Squeezing in Sp� has been shown to be insen-
sitive to these non-ideal laboratory conditions. As

for the Sq+ squeezing, we show that the effects of

these imperfections are not so drastic, and entan-

glement can still be obtained in quite fair condi-

tions of operation. In Fig. 2 we present the noise

power and the absolute value of the correlation

Cpq = Ædpout+(X)dqout+(�X)æ of the sum of the

quadratures in typical measurement conditions
(X = 2c/s, r = 2), as a function of pump and signal

detuning, for different pump noise conditions.

The non-zero values are the results for an oscil-

lating OPO operating above threshold. In the first

row, we see that although there is some depend-

ence of noise power with detuning, it remains quite

flat, with a minimum value of 2 for Sp+ and a max-

imum of 0.5 for Sq+. Correlation between the
quadratures occurs mainly in conditions of de-

tuned cavity for the signal, being almost insensitive

to pump detuning. As we will see, the Cpq correla-

tion can mask the entanglement characterization

of signal and idler fields, and its value should be

taken into account when performing a

measurement.

In the second row, we consider a pump laser
with phase quadrature fluctuations, but shot noise

limited intensity fluctuations. That is the typical



Fig. 2. Normalized noise of the field correlations in an OPO, as a function of the cavity detuning, for different pump noise conditions.

SP: noise of the sum of the amplitude quadratures p+, SQ: noise of the sum of the phase-related quadratures q+, jCpqj: absolute value of
correlations between the sum of amplitude and phase-related fluctuations. Parameters are c = 0.01, c0 = 0.05, X = 2c/s, r = 2.
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case of diode lasers [23]. We observe that the fluc-

tuations can destroy the squeezing of Sq+ at exact

resonance; nevertheless, for detuned cavities close

to the threshold limit, good squeezing is still

achievable, and the DGCZ inequality is still vio-

lated. The third row shows a more convenient sit-

uation, where the pump has excess noise in
amplitude fluctuations, but phase fluctuations are

small. The effect in the Sq squeezing is small over

the whole range of possible detuning values.

Finally, with a noisy beam on both quadratures,
the squeezing is much degraded, and the region

where the DGCZ inequality is violated is really

small, only very close to threshold.

We can conclude that, while the entanglement

signature is quite stable under detuned cavity con-

ditions, it is very sensitive to the phase noise of the

pump. Therefore, to produce an entangled pair of
intense beams in an OPO, we need a low noise

pump. In the following section, we will describe

how to make an independent measurement of the

quadrature fluctuations of each field, allowing a
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local measurement of the field quadratures that

can be applied, for instance, to quantum

communications.
4. Phase rotation of noise ellipse

We are interested in accessing the quadrature

fluctuations of both signal and idler beams to

measure correlation and anti-correlation. Measur-

ing quadrature fluctuations usually requires the

use of a local oscillator, but, regarding the difficul-

ties this technique faces when applied to a non-
degenerate OPO, the use of an optical cavity can

be more interesting. As first showed by Galatola

et al. [22], an optical cavity can project phase

quadrature fluctuations into amplitude quadrature

fluctuations, which is an easily measurable

quantity, for some range of cavity detuning and

analysis frequency.

In our case, the fields to be analyzed are the sig-
nal and idler fields produced by a type-II OPO:

they can thus be separated by polarization and

each one sent to its own analysis cavity. We treat

the physical problem as schematized in Fig. 3.

The field to be analyzed (input beam), signal or id-

ler, is injected into a Fabry–Perot cavity, generat-

ing reflected and transmitted beams. In this

process, owing to imperfections like a residual
transmission in the output mirror of the cavity,

vacuum leaks inside it and contributes to the noise

of reflected and transmitted fields.

In what follows, we treat this problem explicitly

relating the reflected beam quadrature fluctuations

to the input beam ones, taking into account the in-

put vacuum. All fields (input beam, input vacuum,

reflected and transmitted beams) can be described
as a stable mean value, with a well defined fre-

quency x0, presenting small fluctuations in time
Fig. 3. Physical situation
with frequencies X� x0, so that their annihilation

operators can be written in the general form

aðtÞ ¼ aðtÞ þ d~aðtÞ ¼ ½aþ daðtÞ�e�ix0t; ð13Þ
which have Fourier components

aðxÞ ¼
Z

aðtÞeixt dt;

ayðxÞ ¼
Z

ayðtÞeixt dt ¼ ½að�xÞ�y
ð14Þ

(unless otherwise specified, integrals are made

from �1 to 1).

In the situation we are considering, the quan-

tum equations relating reflected (aout) and trans-
mitted (bout) beams to input beam (ain) and input

vacuum (bin) have the same form as the classical

ones. In frequency domain:

aoutðxÞ ¼ rðxÞainðxÞ þ tðxÞbinðxÞ;
boutðxÞ ¼ tðxÞainðxÞ � r0ðxÞbinðxÞ;

ð15Þ

where r(x), t(x) are the reflection and transmission

coefficients of a Fabry–Perot cavity for the input

beam, and r 0(x) is the reflection coefficient for

the input vacuum:

rðxÞ ¼ r1 � r2 exp½i2pðx� xcÞ=F sr�
1� r1r2 exp½i2pðx� xcÞ=F sr�

;

tðxÞ ¼ t1t2 exp½ipðx� xcÞ=F sr�
1� r1r2 exp½i2pðx� xcÞ=F sr�

;

r0ðxÞ ¼ r2 � r1 exp½i2pðx� xcÞ=F sr�
1� r1r2 exp½i2pðx� xcÞ=F sr�

;

ð16Þ

with Fsr being the free spectral range of the cavity,
xc, its resonance frequency, and r1, r2, t1 and t2, its

mirrors� reflection and transmission coefficients for

amplitudes.

As the vacuum mean value bin is null, the aver-

age of these equations gives
being considered.
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aout ¼ rðx0Þain; bout ¼ tðx0Þain; ð17Þ
showing that the transmitted field mean value is
rotated through the action of the cavity when com-

pared to the input beam (i.e., it gains a phase). In

order to assure the same quadrature is being com-

pared in both input and output fields, this fact

must be taken into account when defining the

quadrature operators.

Therefore, we define, respectively, p(t) and q(t)

as the input beam amplitude and phase quadra-
tures, x(t) and y(t) as the input vacuum quadra-

tures, P(t) as the reflected field amplitude

quadrature and P 0(t) as the transmitted field one,

in the following way: if the input beam mean value

is chosen real for simplicity ðain ¼ a�inÞ; rðx0Þ ¼
j rðx0Þ j ei/0 and tðx0Þ ¼j tðx0Þ j ei/

0
0 , we have, in

the interaction picture,

pðtÞ ¼ ainðtÞeix0t þ ayinðtÞe�ix0t;

qðtÞ ¼ �i½ainðtÞeix0t � ayinðtÞe�ix0t�;
xðtÞ ¼ binðtÞeix0t þ byinðtÞe�ix0t;

yðtÞ ¼ �i½binðtÞeix0t � byinðtÞe�ix0t�;
P ðtÞ ¼ e�i/0aoutðtÞeix0t þ ei/0ayoutðtÞe�ix0t;

P 0ðtÞ ¼ e�i/0
0boutðtÞeix0t þ ei/

0
0byoutðtÞe�ix0t:

ð18Þ

In frequency domain, we define the Fourier

transforms of these operators, so that their fluctu-

ations can be written in terms of fluctuations of

annihilation and creation operators in the interac-
tion picture. For instance, we have for the trans-

mitted field amplitude quadrature,

P ðXÞ ¼
Z

P ðtÞeiXt dt ) dPðXÞ

¼ e�i/0daoutðXÞ þ ei/0dayoutð�XÞ; ð19Þ

where X is the analysis frequency.

For the annihilation operators� fluctuations, the
first of Eq. (15) becomes

d~aoutðxÞ ¼ rðxÞd~ainðxÞ þ tðxÞd~binðxÞ: ð20Þ

But, according to our definitions, daðXÞ ¼
d~aðXþ x0Þ and dayðXÞ ¼ d~ayðX� x0Þ, so that,

using Eq. (20) in Eq. (18), it is possible to write

dP(X) and dP 0(X) in terms of dain(X), dbin(X) and
their adjoint operators. Using the first four equa-

tions of Eq. (18), we may express dP(X) in terms

of input beam�s quadratures fluctuations, obtaining

dPðXÞ ¼ g1ðXÞdpðXÞ þ ig2ðXÞdqðXÞ
þ g3ðXÞdxðXÞ þ ig4ðXÞdyðXÞ; ð21Þ

with

g1ðXÞ ¼
1

2
e�i/0rðx0 þ XÞ þ ei/0r�ðx0 � XÞ
� �

;

g2ðXÞ ¼
1

2
e�i/0rðx0 þ XÞ � ei/0r�ðx0 � XÞ
� �

;

g3ðXÞ ¼
1

2
e�i/0 tðx0 þ XÞ þ ei/0 t�ðx0 � XÞ
� �

;

g4ðXÞ ¼
1

2
e�i/0 tðx0 þ XÞ � ei/0 t�ðx0 � XÞ
� �

:

ð22Þ
In Fig. 4, we present curves of the coefficients

appearing in Eq. (21) for various analysis frequen-

cies X as a function of analysis cavity detuning. In

particular, we notice that it is only possible to

completely rotate the noise ellipse (i.e., jg1(X)j
must go to zero for some value of X) when

X P
ffiffiffi
2

p
dx; ð23Þ

where dx is the cavity bandwidth (FWHM), in

agreement with [22]. Also noteworthy is the fact

that, for common analysis frequencies X, the max-

imum of jg2(X)j (and, consequently, the minimum

of jg1(X)j) occurs approximately at the half maxi-

mum of the mean transmitted intensity. In the case
of a lossy cavity, we can observe that, as the anal-

ysis frequency is increased, the vacuum contribu-

tion to the amplitude fluctuations, coupled by g3
and g4, will be reduced close to the cavity reso-

nance. This is easily understood when one remem-

bers that the noise term can be seen as a

contribution of two sidebands of frequencies

x0 ± X. When X increases, these sidebands are far-
ther detuned from resonance and therefore do not

couple to the cavity field.

An analogous calculation reveals that the trans-

mitted field amplitude fluctuations dP 0(X) are re-

lated to the input fluctuations by a relation

similar to Eq. (21). Unfortunately, a careful anal-

ysis shows that the noise ellipse is never completely



Fig. 4. These curves show the behaviour of the coefficients

appearing in Eq. (21) as a function of cavity detuning (in units

of cavity bandwidth). A finesse F = 270 is assumed. Continuous

line: X ¼ dx=
ffiffiffi
2

p
; dashed line: X ¼

ffiffiffi
2

p
dx; dotted line:

X ¼ 2
ffiffiffi
2

p
dx. (a) jg1(X)j2, (b) jg2(X)j2, (c) jg3(X)j2 + jg4(X)j2.
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rotated in the transmitted beam, regardless of the

analysis frequency or the cavity detuning.

The reflected beam�s amplitude quadrature

noise spectrum [32,33] SP(X) = ÆdP(X)dP�(X 0)æ is

given by

SP ðXÞ ¼ jg1ðXÞj
2SpðXÞ þ jg2ðXÞj

2SqðXÞ
þ 2Imfg1ðXÞg�2ðXÞCpqðXÞg

þ jg3ðXÞj
2 þ jg4ðXÞj

2
; ð24Þ

where Sp(X) and Sq(X) are the input beam p and q

quadratures� noise spectra, and Cpq(X) is their cor-
relations. Sx(X) and Sy(X) are normalized vacuum

fluctuations, therefore equal to 1.

The correlation Cpq has the effect of making SP

asymmetric as a function of the analysis cavity

detuning, for its coefficient in Eq. (24) is antisym-

metric. Nevertheless, we will be interested in a cav-

ity detuning for which jg1j 	 0 and, consequently,

the effect of Cpq will be minimized.
5. Experimental setup

We propose the experimental setup as shown in

Fig. 5. The two beams created in a type-II OPO,
signal and idler, are separated by polarization

using a polarizing beam splitter (PBS) just after
ntal setup.
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they emerge from the OPO�s cavity. Each beam

passes through an optical circulator made by a

quarter waveplate and a PBS. The field is reflected

by a nearly confocal cavity after mode matching

by a set of lenses (not shown). The reflected beams
are sent to balanced detection setups, made by

non-polarizing 50/50 beam splitters (NPBS) and

two pairs of balanced photodetectors.

Each balanced detection has a sum/subtrac-

tion circuit (S1 and S2) for the measured photo-

currents. A third circuit (S3) is used to combine

the resulting signals coming from the two detec-

tions. Shot noise is measured with S1 and S2 in
subtraction position. Noise in each beam is

measured with both S1 and S2 in sum position;

these noises can then be summed or subtracted

using S3, where the photocurrent fluctuation will

be dP±(X) = dP1(X) ± dP2(X), the combination of

the signal and idler fluctuations after the trans-

formation through the cavity reflection given

by Eq. (21). The noise power is measured in a
spectrum analyzer.

When the cavities are far away from resonance,

the quadrature being measured is the amplitude.

Correlation between amplitude quadrature fluctu-

ations is one of the EPR variables of the pair and,

for an OPO, it is well known to be squeezed. The

other EPR variable is the anti-correlation between

phase quadratures, obtained by a synchronous
sweep of both cavities length while measuring the

noise of the sum of the photocurrents, looking

for a dip of the noise below the shot noise level.

This measurement can also be made with stable

cavities locked at the side of the transmission peak,

making adirectmeasurement of the anti-correlation

of the phase quadratures. Length fluctuations will

add some information of the amplitude quadra-
ture, reducing the squeezing level. As far as we

can keep the cavity locked in the side of the peak,

with usual techniques, this contribution can be

neglected.

In order to characterize entanglement of signal

and idler while the cavity length is swept, it is

experimentally desirable that SP+ assumes

squeezed values on both sides of cavity resonance,
for detunings where g1(X) 	 0. In this case, even if

CPQ causes asymmetries, the result can still be

trusted.
Besides the stability of the cavities, it is important

that the analysis cavities have very low spurious

losses, reducing the amount of (uncorrelated) vac-

uum fluctuations added in the reflected fluctuations

through the coefficients g3 and g4 in Eq. (21). The
range of frequencies where entanglement can be

characterized in this system has, as a lower bound,

the bandwidth of the analysis cavity for a full ellipse

rotation (according to Eq. (23)), and the diffusion of

the phase difference, producing excess noise in the

measurement, and as an upper bound, theOPO cav-

ity bandwidth for signal and idler, that will deter-

mine the range of values where squeezing is still
clearly measurable. With a careful project of the

cavities, a range of tens of MHz can be achieved.

Higher ranges can be implemented with very short

OPO cavities, increasing its bandwidth.
6. Application to quantum cryptography

With the proposed setup, it is easy to imagine

an implementation of the quantum communica-

tion protocol suggested in [24]. Alice and Bob have

a cavity each one, and establish, through a classi-
cal channel, the analysis frequency they are going

to look at and the synchronicity of the measure-

ment (clock). A third part has the OPO, and can

send each one of the entangled beams to Alice

and Bob, that will perform, locally, a sequence of

quadrature fluctuations measurements. Each one

can choose randomly the quadrature to measure,

storing the information, and Bob, for instance,
sends the values of his photocurrent to Alice. Alice

then compares the answers and checks whether

they have chosen the same quadrature looking at

the noise correlations that are below shot noise.

Alice will return to Bob only the information of

which events in the sequence were coincident.

Establishing a binary relation of 0 and 1 to the

quadratures, now Alice and Bob share a randomly
generated key they can use to encrypt a message

that is shared through the classical channel.

Any attack on the system can be noticed by a

reduction in the squeezing level in the correlation

measurement, or an increase in the error rate

(bad quadrature choices of Alice and Bob), that

should be around 50%. In this case, the output
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beams of an OPO are in the order of a few mW,

and can be easily detected. The mean values of

the beams are also a tool to improve the quality

of the detection, assuring a good mode matching

to the analysis cavity, and an extra information
on the possibility of an attack, which is an advan-

tage over entanglement with squeezed vacuum.

Finally, using analysis cavities to access quadra-

ture noise has some implementation advantages

over homodyne detection schemes in quantum

cryptography. Alice and Bob need a local oscilla-

tor, that has to be phase-locked to the incoming

field, in order to perform the homodyne detection.
If they are using entangled intense fields, either the

OPO source has to send them the reference, or

they will need to tap part of the entangled fields

to seed their oscillators, degrading the entangle-

ment characterization. For entangled squeezed

vacuum, a distinct channel for sending the local

oscillator is needed, making it sensitive to phase

perturbations in the beam path.
On the other hand, analysis cavities allow each

station to perform its measurement independently

of the source. Any non-dispersive phase perturba-

tion in the entangled beam path will affect simulta-

neously their mean values and their fluctuations,

thus not disturbing the entanglement characteriza-

tion. Besides, the experimental setup is simplified

in comparison to the homodyne detection.
CW OPO�s operating above threshold are

therefore a reliable source of entangled fields,

the communication bit rate being only limited

by its cavity bandwidth. Frequency degeneracy

of signal and idler beams is not an issue since a

local self-homodyne technique is used in this

implementation.
7. Conclusion

We propose a direct measurement of the entan-

glement of the intense beams produced by a

non-degenerate type-II OPO operating above

threshold, showing that entanglement is still

preserved in typical experimental conditions, such
as a detuned cavity and a noisy pump.

As entanglement is charaterized by the violation

of the DCGZ inequality, a measurement of phase
quadrature noise of signal and idler fields is needed.

The use of analysis cavities to access phase noise al-

lows a non-degenerate operation, and avoids some

difficulties related to the use of local oscillators.

This setup can be used in secure key distribu-
tion through entanglement. Possible applications

of this entanglement can also be expected in quan-

tum teleportation and other implementations of

quantum cryptography.
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