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We investigate entanglement in the above-threshold optical parametric oscillator, both theoretically and ex-
perimentally, and discuss its potential applications to quantum information. The fluctuations measured in the
subtraction of signal and idler amplitude quadratures are A%25_=0.50(1), or —3.01(9) dB, and in the sum of
phase quadratures they are A%§,=0.73(1), or —1.37(6) dB. A detailed experimental study of the noise behavior
as a function of pump power is presented, and the discrepancies with theory are discussed. © 2007 Optical

Society of America
OCIS codes: 270.0270, 270.6570, 190.4970.

1. INTRODUCTION

The optical parametric oscillator (OPO) has been studied
since the 1960s.5? In the 1980s it was already recognized
as an important tool in quantum optics for the generation
of squeezed states of light.>* It was also recognized as a
suitable system for the demonstration of continuous vari-
able (CV) entanglement in 1988 by Reid and Drummond®
who considered the above-threshold operation. In the
early 1990s, CV entanglement was indeed demonstrated
for the first time in an OPO, although operating below
threshold.® The OPO has since been used in several appli-
cations in CV quantum information.” ™ Entanglement in
the above-threshold OPO, on the other hand, remained an
experimental challenge until 2005, when it was first ob-
served by Villar et od.,12 and subsequently by two other
groups. 1514

Bipartite CV entanglement can be demonstrated by a
violation of the following inequality, obtained indepen-
dently by Duan et al. 1% and Simon:!®

A%_+ A%, =2, (1)

where p_=(ﬁ1—ﬁ2)/\x§ and Q+=((}1+(jz)/\e’§ are Einstein—
Podolsky—Rosen (EPR) -type operators constructed by
combining operators of each subsystem. We chose p; and
qj,j<1{0,1,2}, as the amplitude and phase quadrature op-
erators of the pump, signal, and idler fields, respectively,
which obey the commutation relations [5;,§,,]=2i5;. Any
separable system must satisfy Eq. (1); a violation is an
unequivocal signature of entanglement.

Entanglement between the intense signal and idler
beams generated by an above-threshold OPO can be
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physically understood as a consequence of energy conser-
vation in the parametric process. On one hand, pump pho-
tons are converted into pairs of signal and idler photons,
leading to strong intensity correlations; on the other
hand, the sum of the frequencies of signal and idler pho-
tons is fixed to the value of pump frequency, leading to
phase anticorrelations. The difficulty of measuring phase
fluctuations was largely responsible for the long time be-
tween the prediction and the first observation of entangle-
ment in the above-threshold OPO. The technique we used
to measure phase fluctuations consists of reflecting each
field off an empty optical cavity, as explained in Ref. 17.

The value of Eq. (1) obtained in the first demonstration
of entanglement was 1.41(2), with squeezing observed in
both EPR-type operators, A%5_=0.59(1) and AZ2g,
=0.82(2).12 Nevertheless, such a result could be achieved
only very close to threshold, otherwise the phase sum
A%G, would present excess noise, increasing with pump
power relative to the threshold o=Py/Py,. This strange
behavior, also observed by other groups,18 is not predicted
by the standard linearized OPO theory for a shot-noise
limited pump beam. According to this model, entangle-
ment should exist for all values of o, although the degree
of entanglement should decrease for increasing o. This
presented an additional complication for the first demon-
stration of entanglement in the above-threshold OPO.

In this paper we present new improved results of en-
tanglement in the above-threshold OPO, together with a
theoretical and experimental study of this unexpected ex-
cess phase sum noise. The paper is organized as follows.
We begin by describing the linearized model for the OPO
and its predictions for a shot-noise limited pump beam.

© 2007 Optical Society of America
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This model includes losses and also allows for nonvanish-
ing detunings of pump, signal, and idler modes with re-
spect to the OPO cavity. We then present a full-quantum
treatment, neglecting losses and for zero detunings. Even
after eliminating the linearization approximation, the
theory does not predict the observed excess noise. The ex-
periment is described next, and we present the measure-
ments of the sum and difference of the quadrature fluc-
tuations as a function of . As we will see, the excess noise
in the phase sum can be related to pump noise generated
inside the OPO cavity. Finally we present our current best
measurement of two-color squeezed-state entanglement.
We conclude by mentioning applications of this entangle-
ment in quantum information.

2. THEORETICAL DESCRIPTION OF THE
OPTICAL PARAMETRIC OSCILLATOR

The OPO consists of three modes of the electromagnetic
field coupled by a nonlinear crystal, which is held inside
an optical cavity. The OPO is driven by an incident pump
field at frequency wg. Following the usual terminology, the
downconverted fields are called the signal and the idler of
frequencies w; and wy, where, by energy conservation w
=w;+wy. Here we will treat the case of a cavity that is tri-
ply resonant for wgy,w;, and wy. Each field is damped via
the cavity output mirror, thereby interacting with reser-
voir fields. The effective second-order nonlinearity of the
crystal is represented by the constant y.

Reid and Drummond investigated the correlations in
the nondegenerate OPO (NOPO) both above'® and below
threshold.”® In the above-threshold case, they studied the
effects of phase diffusion in the signal and idler modes,
beginning with the positive P-representation equations of
motion for the interacting fields.21-?2 Changing to inten-
sity and phase variables, they were able to show that out-
put quadratures could be chosen that exhibited fluctua-
tions below the coherent state level and also EPR-type
correlations. In the below-threshold case, a standard lin-
earized calculation was sufficient to obtain similar corre-
lations. In the limit of a rapidly decaying pump mode,
Kheruntsyan and Petrosyan were able to calculate the ex-
act steady-state Wigner function for the NOPO, showing
clearly the threshold behavior and the phase diffusion
above this level of pumping.?® We begin by describing the
linearized model, and then proceed to calculate the noise
spectra beyond linearization.

A. Linearized Model

The equations describing the evolution of signal, idler,
and pump amplitudes, «;, inside the triply resonant OPO
cavity are given below.!” They are obtained by writing the
density operator equation of motion in the Wigner repre-
sentation, and then searching for a set of equivalent

Langevin equations,

d ) o
Taao =- ’)/6(1 - iAo)[IO - 2X a g+ \‘”2’)/0(16[1 + \1'2M05U0,

d . — —
TECYI =— vy (1-iM)ay + 2xagay + \2y6u; + \2udvq,
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=" Y (1= iA)ay + 2xaga; + \2ydus + 210,
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where y and vy, are half the transmissions of the mirrors,
v and 7, are the total intracavity losses, u=7' -7y and
Ho=7Yy— Yo are the spurious intracavity losses, A and A
are the detunings of the OPO cavity relative to the central
frequencies of the fields, and 7 is the cavity roundtrip
time. We have considered here that y;=y,=vy and y;=7
=1v'. The parameter y is the effective second-order nonlin-
earity. The terms ou; and dv; are vacuum fluctuations as-
sociated to the losses from transmissions from the mirrors
and from spurious sources, respectively. In the case of the
intracavity pump mode, the fluctuations that come from
the mirror transmission are attributable to the quantum
fluctuations of the input pump laser beam, day =dpy'
+18gg".

Linearization consists in writing aj(t)zei¢j(pj+ opj(t)
+id8q;(t)) and ignoring terms that involve products of fluc-
tuations in the equations. Here («;)= pje‘d’J is each field’s
mean amplitude, with p;=py=p for equal overall intrac-
avity losses in the signal and the idler, dp;(¢) is the ampli-
tude fluctuation, and dq;(¢) is the phase fluctuation. Tak-
ing the average of the resulting equations gives us
information on the mean values of the fields. We may
then separate the fluctuating part in the real and imagi-
nary contributions to obtain the equations of evolution for
the quadratures of the fields. Defining &g,
=(8q1% 5(12)/\5 and dp.=(dp1= 5p2)/\s“§ as the normalized
sum-subtraction of the signal and the idler amplitude
and phase quadratures, we write the above equations in
terms of the EPR variables:

d
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Fig. 1. (Color online) Prediction of the linearized theory for fluc-
tuation in the sum—subtraction of field quadratures as a function
of o for a shot-noise limited pump beam. Solid line, Sq+; dashed
curve, Sh; line with crosses, S, ; line with circles, S, .
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where B=p/p, is the ratio between the intracavity ampli-
tudes of the downconverted and the pump fields. The
noise spectra of the transmitted fields are calculated by
solving the above equations in Fourier space. We define
Sp. and Sg. as the noise spectra of the operators p. and
g, respectively.

It is clear from Eq. (3) that the quadrature subtraction
subspace decouples from the others, so that S, and S,
depend only on the ratio of losses through the output cav-
ity mirror to the total intracavity losses and on the analy-
sis frequency (). These fluctuations do not depend on
pump power, and are in a minimum uncertainty state,
S, X8, =1,if y=v".

On the other hand, the sum of the quadratures and
pump field subspaces are connected. This directly implies
that excess noise in the pump beam degrades signal-idler
entanglement, and can even destroy it.!” The behavior of
the twin beams’ fluctuations as functions of pump power
relative to threshold o, for a shot-noise limited pump, is
presented in Fig. 1. The maximum squeezing of S, oc-
curs at threshold, and approaches shot noise for higher
pump powers.

This behavior changes in the presence of excess noise in
the pump. In that case, both S,, and S, increase from
their values at threshold. In particular, S,, goes from
squeezing to excess noise. The point where it crosses the
shot noise value depends solely on the amount of excess
phase noise present in the pump beam. For this reason, it
was necessary to filter the pump field in the experiment,
in order to observe entanglement.

B. Noise Spectra beyond the Linearized Model

We present here a comparison between the linearized ap-
proach to the quantum noise in the OPO and the numeri-
cal integration of the quantum stochastic equations in the
positive P representation. This will help us to eliminate
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the linearization procedure as the reason for the discrep-
ancy between the theoretical prediction of squeezing and
the experimentally observed excess phase noise for o
>1.2. We shall follow the procedure used in Ref. 24.

Although exact Heisenberg equations of motion can be
found for this system, it is, at the very least, extremely
difficult to solve nonlinear operator equations. Therefore
we develop stochastic equations of motion in the positive
P representation, which in principle give access to any
normally ordered operator expectation values we may
wish to calculate. To find the appropriate equations, we
proceed via the master and Fokker—Planck equations. Us-
ing the standard techniques for elimination of the
baths,? we find the zero-temperature master equation for
the reduced density operator. The master equation may
be mapped onto a Fokker—Planck equaltionz6 for the
positive-P pseudoprobability distribution.

The cavity damping rates at each frequency are
YP=2y/7, with y;=v,=7v. We further define y,=7v,/y. To
apply the perturbation theory, we introduce a normalized
coupling constant

X
8§=—"FH—>
P2,

which will be a power expansion parameter. Moreover, it
will be useful to work with the scaled quadratures

4)

Xo =g\“”2 YPo> qo =g\“”2 Y490,
X: =8P+, Y+=89+, (5)
xX_=8p_, y-=89-,

to render the stochastic equations amenable to perturba-
tion. The stochastic equations for the scaled EPR vari-
ables become

] R SR |

dT 2

dyg
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dr_ 1 8 — —
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dy, 1 g

ar = O+t E[ym —Xqy.] - lﬁ[vxo +1yoé, = VX9 = iYoL],

dux, 1 g i ’ i

ar - —x,+ E[xoﬁh +yoye] + V_E[on + 1Y€, + X0 — iyo&l],

dy- 1 8 —

—=—y_+ —[xqy_—yox_] —i—=[\xo + iyoé_ — Vxo— o ],

a7 = Y- * gl el V’,2[\o Yo = \xo = iyoé]
(6)

where T'=+P¢ is time in units of the cavity lifetime for the
downconverted fields. The functions &.(7) and &(T) are
independent Langevin forces with the following nonvan-
ishing correlation functions:
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E(DET) =(EMEMT ) =T -T"),

EDET))=(EDET'T)=-aT-T"). (7)

We notice the symmetry properties of the stochastic Egs.
(6). In fact, it is easy to verify that the equations of motion
are unchanged by the transformation x_<y, and x,«
—y_. Of course, all noise terms appearing in Egs. (6) are
statistically equivalent. Therefore these equations should
not change the symmetries of the initial values chosen for
x, and y_.

To provide a comparison between the linearized model
and the full stochastic integration, we will use a pertur-
bation expansion of the positive P representation of the
dynamical equations. This allows us to include quantum
effects in a systematic fashion.?” We first introduce a for-
mal perturbation expansion in powers of the parameter g:

E gn (n)

E gn (n) (8)

The series expansion written in this way has the property
that the zeroth-order term corresponds to the classical
field of order 1 in the unscaled quadrature, while the first-
order term is related to quantum fluctuations of order g,
and the higher-order terms correspond to the nonlinear
corrections to the quantum fluctuations of order g2 and
greater. The stochastic equations are then solved by the
technique of matching powers of g in the corresponding
time evolution equations.

The steady-state solutions x;; of the zeroth order give
the operation point of the OPO and describe its macro-
scopic behavior. For a triply resonant operation, the ex-
pressions for the steady state are quite simple:

08=2’

2y =2(Jo - 1)1,
x,=0,

Yos=Y+s=Y-s=0. 9

The first-order equations are often used to predict
squeezing in a linearized fluctuation analysis. They are
nonclassical in the sense that they can describe states
without a positive-definite Glauber—Sudarshan P
distribution,?®® but correspond to a simple form of linear
fluctuation that has a Gaussian quasi-probability distri-
bution. A full quantum description of the OPO dynamics
can be obtained by a numerical integration of the stochas-
tic Egs. (6), and can be compared to analytical expressions
obtained from the linearized approach. Taking the first-
order terms and using the steady-state solutions given by
Eqgs. (9), we can write the following equations for the lin-
ear quantum fluctuations:
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dy®

a7 =" (& -&). (10)

The linear coupled stochastic equations obtained agree
with Egs. (3), for zero detunings and no spurious losses.
From them we may readily calculate the steady-state av-
erages of the first-order corrections and use them to com-
pute the linearized fluctuations. Notice that under the
linear approximation y_ becomes a purely diffusive vari-
able (phase diffusion).

In an experimental situation, the noise spectra outside
the cavity are generally the quantities of interest. There-
fore we will proceed to analyze the problem in frequency
space, via a Fourier decomposition of the fields. The first-
order stochastic equations may be rewritten in the fre-
quency domain so that we may calculate the spectra of
the squeezed and antisqueezed field quadratures.

The solutions for the noise of the squeezed operators,
p- and ¢, are

S (Q)=1-—0, 11
p (Q) 0711 (11)
Sq+(Q/)= 1
(492 + )2
Q402+ 2 - 2y, (Jo - DI +[40% + 42|02’
(12)

where Q' =Q/+” is the analysis frequency in units of the
cavity bandwidth.

Under the limits of the linearized approach, the results
of the noise spectra are independent of the phase space
representation employed. Therefore these results coincide
with the usual ones obtained with the Wigner represen-
tation.

The spectra given by Eqgs. (11) and (12) can now be com-
pared with those found via a stochastic integration of the
full equations of motion (6) in the positive P representa-
tion. The nonlinear spectra are calculated by Fourier
transform of the stochastic integration, which must be
performed numerically. A somewhat subtle point arises
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here: the nonlinear Eqs. (6) have more than one possible
steady-state solution. Thus for a fair comparison with the
linearized spectra, it is necessary to choose the same
steady state. By doing this, we verified that both predic-
tions, in the above-threshold OPO, agree within a good
numerical precision. Therefore we conclude that possible
limitations of the linearized model for dealing with the
OPO dynamics under phase diffusion do not account for
the experimentally observed excess noise of §,.

3. EXPERIMENT

Our system is a triply resonant type-II OPO operating
above threshold. The experimental setup is depicted in
Fig. 2. The pump beam is a diode-pumped doubled
Nd:YAG laser (Innolight Diabolo) with 900 mW output
power at 532 nm. A secondary output at 1064 nm is used
for alignment purposes. Since the pump beam presents
excess noise for frequencies as high as 20 MHz, a filter
cavity is necessary. Our filter cavity has a bandwidth of
2.4 MHz and assures that the pump laser is shot-noise
limited for analysis frequencies higher than 15 MHz (see
Fig. 3). We measured the laser phase noise by reflecting
the beam off an empty cavity, in the same way we mea-
sure the phase noise of the downconverted beams. The
phase noise equals the intensity noise, except at a fre-
quency of 12 MHz, where there is very big phase noise,
owing to a frequency modulation inside the Diabolo laser
for stabilization purposes. This excess noise saturates our
electronics and prevents measurements for analysis fre-
quencies close to 12 MHz and also to its second harmonic,
24 MHz, as can be seen in Fig. 3. The OPO cavity is a lin-
ear semimonolithic cavity composed of a flat input mirror,
directly deposited on one face of the nonlinear crystal,
with 93% reflectivity at 532nm and high reflectivity
(>99.8%) at 1064 nm, and a spherical output mirror
(50 mm curvature radius) with high reflectivity at 532 nm
(>99.8%) and 96% reflectivity at 1064 nm. The nonlinear
crystal is a 10 mm long potassium titanyl phosphate
(KTP) from Litton. The threshold power is 12 mW.

The signal and the idler beams are separated by a po-
larizing beam splitter (PBS) and sent to detection, which
consists of a ring cavity and a photodetector (Epitaxx ETX
300) for each beam. The overall detection efficiency is 7
=80(2)%. Both analysis cavities have bandwidths of
14 MHz, allowing for a complete conversion of phase to
amplitude noise for analysis frequencies higher than
20 MHz. The measurements are taken at an analysis fre-
quency equal to 27 MHz. To access the same quadrature

Analysis Cavity 1

3

Analysis Cavity 2

Fig. 2. (Color online) Sketch of the experimental setup.
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Fig. 3. (Color online) Measurement of the pump noise as a func-
tion of the analysis frequency. Open circles, unfiltered laser
noise; full circles, laser noise at the output of the filter cavity. In
view of the large excess noise at 12 MHz and its second har-
monic, we suppressed those frequencies from the data.

for both beams, the two cavities must be detuned by the
same amount at the same time. By scanning the detun-
ings synchronously, we can measure all quadratures of
the twin beams. In particular, we can easily select the am-
plitude (off resonance) or phase (detuning equal to one-
half the bandwidth) quadratures.30

The data acquisition is carried out by a demodulating
chain, which mixes the photocurrents from each detector
with a sinusoidal electronic reference at the analysis fre-
quency and filters the resulting low-frequency signal. The
demodulated photocurrent fluctuations are sampled at
600 kHz repetition rate by an analog-to-digital (A/D) card
connected to a personal computer. The variances of these
fluctuations are then computed taking groups of 1000
points, resulting in something proportional to the power
spectrum of the photocurrents at the analysis frequency.
At the end, measured variances are normalized to the
shot noise standard quantum level (SQL).

A. Fluctuations as a Function of o

The input pump field is guaranteed to be shot-noise lim-
ited for frequencies above 15 MHz after being transmitted
through the filter cavity. Even before being filtered, the
pump field is shot-noise limited above 25 MHz, as shown
in Fig. 3. Nevertheless, we observed excess noise in the
sum of the phases of the signal and the idler beams, pre-
venting the violation of the inequality given in Eq. (1) ex-
cept for pump powers very close to threshold.?

As seen in Section 2 from the theoretical description of
the OPO, excess noise in the pump beam would generate
excess noise in the phase sum of the twin beams. Yet how
could that be the case if we carefully measured the input
pump to be shot-noise limited? By following this single
lead, it is natural to examine the noise properties of the
pump beam reflected from the OPO cavity. This was done
by scanning the OPO cavity for crystal temperatures such
that there was no parametric oscillation (triple resonance
depends sharply on crystal temperature and can easily be
avoided). Since the incident beam is shot-noise limited,
could there be excess noise generated inside the cavity
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containing the KTP crystal? We did indeed find excess
noise in the reflected pump’s amplitude (Fig. 4) and phase
quadratures. The maximum values, for =1, were S
=1.8(1) and S 0=4.5(3).

At present, we can still not claim to fully understand
the origin of this excess noise. We verified, of course, that
no such noise is generated in an empty cavity (which
would also invalidate the measurements we perform with
the analysis cavities for the twin beams). We also checked
whether this effect depended on y and would thus be di-
rectly related to the parametric process. For a polariza-
tion of the incident beam orthogonal to the usual polar-
ization, phase matching cannot be fulfilled, and no
downconversion can occur. The noise in the reflected
beam did not show any significant dependence on the in-
cident polarization. It does, however, increase for increas-
ing power of the incident beam. We can speculate that
this can be a result of photon absorption by the crystal at
532 nm (which is at the origin of the thermal bistability
observed in Fig. 4), with a subsequent relaxation by spon-
taneous emission or nonradiative processes. This, may
give rise to an intensity-dependent refractive index, yield-
ing phase and amplitude modulation at 532 nm. We are
currently investigating these possibilities.

As a first approximation, in order to see whether this
would account for the behavior of A%p_,A%G_,A%p,, and
A%§,, as a function of o, we simply added excess noise to
the input pump beam in the linearized OPO theory. In
Fig. 5 we compare the results from the model, with inci-
dent Spp=1.5 and S;(=5.5, to the measured data. The sig-
nal and idler powers varied from 0.4 up to 5.5 mW each
during the experiment, corresponding to pump powers be-
tween 13 and 26 mW, or 1.06 <0< 2.2. As expected, noises
corresponding to the subtraction subspace, A%p_ and A2%§_,
are independent of pump power. But A2%4, is very sensi-
tive to o, as is A%p, to a lesser degree. The agreement
with the theoretical model is surprisingly good. This is a
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Fig. 4. (Color online) Intensity noise of the reflected pump
beam, as a function of the detuning of the OPO cavity. The excess
noise observed is peaked for A, close to one-half the OPO cavity
bandwidth. The asymmetry in the mean-field signal is attribut-
able to the thermal bistability. The analysis frequency is 27 MHz.
Circles, reflected pump noise; full curve, reflected average
intensity.
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Fig. 5. (Color online) Noise behavior as a function of o. (a) Pre-
dictions of the linearized model for an input pump beam with
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ranging from 1.06 to 2.2. Full circles, S, ; triangles, S, ; open
circles, Sq+; squares, S, ; SQL=1.0 is indicated by a dashed line.
strong indication that the intracavity pump excess noise
is the main responsible for the excess noise in A%§,.

B. Two-Color Entanglement

The sum of the phase noise is squeezed very close to
threshold, and the squeezing is degraded with increasing
pump power. A%j, crosses the shot-noise level approxi-
mately at 0=1.20, from squeezing to antisqueezing, al-
though only below o=1.15 can squeezing be observed with
certainty.

Figure 6 shows the recorded noise in sum and subtrac-
tion of the photocurrent fluctuations of the signal and the
idler beams as functions of the detuning of the analysis
cavities for 0=1.06. Off-resonance, quantum correlations
are observed in the subtraction of amplitudes, A%p_
=0.50(1), or —3.01(9) dB. For detuning of analysis cavities
equal to one-half the bandwidth, squeezing is present in
the sum of phases, A%§,=0.73(1), or —1.37(6) dB. The
Duan et al. and Simon criteria [Eq. (1)], are clearly vio-
lated:

A%H_+ A%, =1.23(2) <2, (13)

attesting to the entanglement. This value, together with
the one reported by Jing et al. ,* is the lowest achieved for
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Fig. 6. Sum (full circles) and difference (open circles) of the
quadrature noise measured as a function of the detuning of the
analysis cavities. Squeezed-state entanglement can be directly
observed, with A%2p_=0.50(1), or —3.01(9) dB, and A%j,=0.73(1),
or —1.37(6) dB.

twin beams produced by an above-threshold OPO.

We also point out that, in this experiment, the twin
beams have very different frequencies (the wavelengths
differ by =1 nm), an unusual situation. Such two-color en-
tanglement can be very interesting for the transfer of
quantum information between different parts of the elec-
tromagnetic spectrum.

4. CONCLUSION

We presented a theoretical and experimental investiga-
tion of phase noise and entanglement in the above-
threshold OPO. Excess noise in the phase sum of the twin
beams was measured as a function of pump power rela-
tive to threshold, and we found that it decreases as pump
power is lowered. We finally discovered that excess pump
noise is generated inside the OPO cavity containing the
nonlinear crystal, even for a shot-noise limited pump
beam and without parametric oscillation. The ultimate
physical origin of this phenomenon still requires further
investigation. Another important question to address is
how one can eliminate this effect. Su et al.'® were able to
observe entanglement for o of the order of 2. The differ-
ence between their setup and others is a lower cavity fi-
nesse for the pump field. If the assumption of an
intensity-dependent index of refraction is correct, this
makes sense. For a lower finesse, the phase shifts accu-
mulated inside the cavity should be smaller, hence the ex-
cess noise generated should also be smaller.

In spite of these unexpected phenomena, two-color en-
tanglement was measured in the above-threshold OPO.
There are interesting avenues to pursue for applications
in quantum information. First of all, we should mention
that the strongest squeezing measured to date, —9.7 dB,
was generated in an above-threshold OPO.!® Thus, en-
tanglement in the above-threshold OPO may be the stron-
gest ever achieved for continuous variables. The bright
twin beams can have very different frequencies, and one
can envisage CV quantum teleportation'® to transfer
quantum information from one frequency to another (in
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other words, to tune quantum information). For example,
this system could be used to communicate quantum infor-
mation between quantum memories or quantum comput-
ers based on hardware that has different resonance fre-
quencies. Finally, a quantum key distribution protocol
proposed by Silberhorn et al®! can be readily imple-
mented with the advantage that the measurement with
analysis cavities does not require sending a local oscilla-
tor together with the quantum channel to the distant re-
ceiver.

The above-threshold OPO, which was the first system
proposed to observe CV entanglement, has finally been
added to the optical quantum information toolbox. We ex-
pect new and exciting applications to come in the near fu-
ture.
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