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We investigate entanglement in the above-threshold optical parametric oscillator, both theoretically and ex-
perimentally, and discuss its potential applications to quantum information. The fluctuations measured in the
subtraction of signal and idler amplitude quadratures are �2p̂−=0.50�1�, or −3.01�9� dB, and in the sum of
phase quadratures they are �2q̂+=0.73�1�, or −1.37�6� dB. A detailed experimental study of the noise behavior
as a function of pump power is presented, and the discrepancies with theory are discussed. © 2007 Optical
Society of America
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. INTRODUCTION
he optical parametric oscillator (OPO) has been studied
ince the 1960s.1,2 In the 1980s it was already recognized
s an important tool in quantum optics for the generation
f squeezed states of light.3,4 It was also recognized as a
uitable system for the demonstration of continuous vari-
ble (CV) entanglement in 1988 by Reid and Drummond5

ho considered the above-threshold operation. In the
arly 1990s, CV entanglement was indeed demonstrated
or the first time in an OPO, although operating below
hreshold.6 The OPO has since been used in several appli-
ations in CV quantum information.7–11 Entanglement in
he above-threshold OPO, on the other hand, remained an
xperimental challenge until 2005, when it was first ob-
erved by Villar et al.,12 and subsequently by two other
roups.13,14

Bipartite CV entanglement can be demonstrated by a
iolation of the following inequality, obtained indepen-
ently by Duan et al.15 and Simon:16

�2p̂− + �2q̂+ � 2, �1�

here p̂−= �p̂1− p̂2� /�2 and q̂+= �q̂1+ q̂2� /�2 are Einstein–
odolsky–Rosen (EPR) -type operators constructed by
ombining operators of each subsystem. We chose p̂j and

ˆ j , j� �0,1,2�, as the amplitude and phase quadrature op-
rators of the pump, signal, and idler fields, respectively,
hich obey the commutation relations �p̂j , q̂k�=2i�jk. Any

eparable system must satisfy Eq. (1); a violation is an
nequivocal signature of entanglement.
Entanglement between the intense signal and idler

eams generated by an above-threshold OPO can be
0740-3224/07/020249-8/$15.00 © 2
hysically understood as a consequence of energy conser-
ation in the parametric process. On one hand, pump pho-
ons are converted into pairs of signal and idler photons,
eading to strong intensity correlations; on the other
and, the sum of the frequencies of signal and idler pho-
ons is fixed to the value of pump frequency, leading to
hase anticorrelations. The difficulty of measuring phase
uctuations was largely responsible for the long time be-
ween the prediction and the first observation of entangle-
ent in the above-threshold OPO. The technique we used

o measure phase fluctuations consists of reflecting each
eld off an empty optical cavity, as explained in Ref. 17.
The value of Eq. (1) obtained in the first demonstration

f entanglement was 1.41(2), with squeezing observed in
oth EPR-type operators, �2p̂−=0.59�1� and �2q̂+
0.82�2�.12 Nevertheless, such a result could be achieved
nly very close to threshold, otherwise the phase sum
2q̂+ would present excess noise, increasing with pump
ower relative to the threshold �=P0 /Pth. This strange
ehavior, also observed by other groups,18 is not predicted
y the standard linearized OPO theory for a shot-noise
imited pump beam. According to this model, entangle-

ent should exist for all values of �, although the degree
f entanglement should decrease for increasing �. This
resented an additional complication for the first demon-
tration of entanglement in the above-threshold OPO.

In this paper we present new improved results of en-
anglement in the above-threshold OPO, together with a
heoretical and experimental study of this unexpected ex-
ess phase sum noise. The paper is organized as follows.
e begin by describing the linearized model for the OPO

nd its predictions for a shot-noise limited pump beam.
007 Optical Society of America
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his model includes losses and also allows for nonvanish-
ng detunings of pump, signal, and idler modes with re-
pect to the OPO cavity. We then present a full-quantum
reatment, neglecting losses and for zero detunings. Even
fter eliminating the linearization approximation, the
heory does not predict the observed excess noise. The ex-
eriment is described next, and we present the measure-
ents of the sum and difference of the quadrature fluc-

uations as a function of �. As we will see, the excess noise
n the phase sum can be related to pump noise generated
nside the OPO cavity. Finally we present our current best

easurement of two-color squeezed-state entanglement.
e conclude by mentioning applications of this entangle-
ent in quantum information.

. THEORETICAL DESCRIPTION OF THE
PTICAL PARAMETRIC OSCILLATOR

he OPO consists of three modes of the electromagnetic
eld coupled by a nonlinear crystal, which is held inside
n optical cavity. The OPO is driven by an incident pump
eld at frequency �0. Following the usual terminology, the
ownconverted fields are called the signal and the idler of
requencies �1 and �2, where, by energy conservation �0
�1+�2. Here we will treat the case of a cavity that is tri-
ly resonant for �0 ,�1, and �2. Each field is damped via
he cavity output mirror, thereby interacting with reser-
oir fields. The effective second-order nonlinearity of the
rystal is represented by the constant �.

Reid and Drummond investigated the correlations in
he nondegenerate OPO (NOPO) both above19 and below
hreshold.20 In the above-threshold case, they studied the
ffects of phase diffusion in the signal and idler modes,
eginning with the positive P-representation equations of
otion for the interacting fields.21,22 Changing to inten-

ity and phase variables, they were able to show that out-
ut quadratures could be chosen that exhibited fluctua-
ions below the coherent state level and also EPR-type
orrelations. In the below-threshold case, a standard lin-
arized calculation was sufficient to obtain similar corre-
ations. In the limit of a rapidly decaying pump mode,
heruntsyan and Petrosyan were able to calculate the ex-
ct steady-state Wigner function for the NOPO, showing
learly the threshold behavior and the phase diffusion
bove this level of pumping.23 We begin by describing the
inearized model, and then proceed to calculate the noise
pectra beyond linearization.

. Linearized Model
he equations describing the evolution of signal, idler,
nd pump amplitudes, �j, inside the triply resonant OPO
avity are given below.17 They are obtained by writing the
ensity operator equation of motion in the Wigner repre-
entation, and then searching for a set of equivalent
angevin equations,

�
d

dt
�0 = − 	0��1 − i�0��0 − 2�*�1�2 + �2	0�0

in + �2
0�v0,

�
d

dt
�1 = − 	��1 − i���1 + 2��0�2

* + �2	�u1 + �2
�v1,
�
d

dt
�2 = − 	��1 − i���2 + 2��0�1

* + �2	�u2 + �2
�v2,

�2�

here 	 and 	0 are half the transmissions of the mirrors,
� and 	0� are the total intracavity losses, 
=	�−	 and
0=	0�−	0 are the spurious intracavity losses, � and �0
re the detunings of the OPO cavity relative to the central
requencies of the fields, and � is the cavity roundtrip
ime. We have considered here that 	1=	2=	 and 	1�=	2�
	�. The parameter � is the effective second-order nonlin-
arity. The terms �uj and �vj are vacuum fluctuations as-
ociated to the losses from transmissions from the mirrors
nd from spurious sources, respectively. In the case of the
ntracavity pump mode, the fluctuations that come from
he mirror transmission are attributable to the quantum
uctuations of the input pump laser beam, ��0

in=�p0
in

i�q0
in.

Linearization consists in writing �j�t�=ei�j�pj+�pj�t�
i�qj�t�� and ignoring terms that involve products of fluc-

uations in the equations. Here ��j	=pjei�j is each field’s
ean amplitude, with p1=p2
p for equal overall intrac-

vity losses in the signal and the idler, �pj�t� is the ampli-
ude fluctuation, and �qj�t� is the phase fluctuation. Tak-
ng the average of the resulting equations gives us
nformation on the mean values of the fields. We may
hen separate the fluctuating part in the real and imagi-
ary contributions to obtain the equations of evolution for
he quadratures of the fields. Defining �q±

��q1±�q2� /�2 and �p±= ��p1±�p2� /�2 as the normalized
um–subtraction of the signal and the idler amplitude
nd phase quadratures, we write the above equations in
erms of the EPR variables:

�
d

dt
�p− = − 2	��p− + �2	�up−

+ �2
�vp−
,

�
d

dt
�q− = 2�	��p− + �2	�uq−

+ �2
�vq−
,

�
d

dt
�p+ = − 2�	��q+ + �2	���p0 + �2�	���q0 + �2	�up+

+ �2
�vp+
,

�
d

dt
�q+ = − 2	��q+ − �2�	���p0 + �2	���q0 + �2	�uq+

+ �2
�vq+
,

�
d

dt
�p0 = − �2	���p+ + �2�	���q+ − 	0��p0 − �0	0��q0

+ �2	0�p0
in + �2
0�vp0

,
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�
d

dt
�q0 = − �2�	���p+ − �2	���q+ + �0	0��p0 − 	0��q0

+ �2	0�q0
in + �2
0�vq0

, �3�

here �=p /p0 is the ratio between the intracavity ampli-
udes of the downconverted and the pump fields. The
oise spectra of the transmitted fields are calculated by
olving the above equations in Fourier space. We define
p± and Sq± as the noise spectra of the operators p̂± and

ˆ ±, respectively.
It is clear from Eq. (3) that the quadrature subtraction

ubspace decouples from the others, so that Sq−
and Sp−

epend only on the ratio of losses through the output cav-
ty mirror to the total intracavity losses and on the analy-
is frequency 
. These fluctuations do not depend on
ump power, and are in a minimum uncertainty state,
p−

�Sq−
=1, if 	=	�.

On the other hand, the sum of the quadratures and
ump field subspaces are connected. This directly implies
hat excess noise in the pump beam degrades signal–idler
ntanglement, and can even destroy it.17 The behavior of
he twin beams’ fluctuations as functions of pump power
elative to threshold �, for a shot-noise limited pump, is
resented in Fig. 1. The maximum squeezing of Sq+ oc-
urs at threshold, and approaches shot noise for higher
ump powers.
This behavior changes in the presence of excess noise in

he pump. In that case, both Sq+ and Sp+ increase from
heir values at threshold. In particular, Sq+ goes from
queezing to excess noise. The point where it crosses the
hot noise value depends solely on the amount of excess
hase noise present in the pump beam. For this reason, it
as necessary to filter the pump field in the experiment,

n order to observe entanglement.

. Noise Spectra beyond the Linearized Model
e present here a comparison between the linearized ap-

roach to the quantum noise in the OPO and the numeri-
al integration of the quantum stochastic equations in the
ositive P representation. This will help us to eliminate

ig. 1. (Color online) Prediction of the linearized theory for fluc-
uation in the sum–subtraction of field quadratures as a function
f � for a shot-noise limited pump beam. Solid line, Sq+

; dashed
urve, Sp+

; line with crosses, Sp−
; line with circles, Sq−

.

he linearization procedure as the reason for the discrep-
ncy between the theoretical prediction of squeezing and
he experimentally observed excess phase noise for �
1.2. We shall follow the procedure used in Ref. 24.
Although exact Heisenberg equations of motion can be

ound for this system, it is, at the very least, extremely
ifficult to solve nonlinear operator equations. Therefore
e develop stochastic equations of motion in the positive
representation, which in principle give access to any

ormally ordered operator expectation values we may
ish to calculate. To find the appropriate equations, we
roceed via the master and Fokker–Planck equations. Us-
ng the standard techniques for elimination of the
aths,25 we find the zero-temperature master equation for
he reduced density operator. The master equation may
e mapped onto a Fokker–Planck equation26 for the
ositive-P pseudoprobability distribution.
The cavity damping rates at each frequency are

D=2	 /�, with 	1=	2=	. We further define 	r=	0 /	. To
pply the perturbation theory, we introduce a normalized
oupling constant

g =
�

	D�2	r

, �4�

hich will be a power expansion parameter. Moreover, it
ill be useful to work with the scaled quadratures

x0 = g�2	rp0, q0 = g�2	rq0,

x+ = gp+, y+ = gq+,

x− = gp−, y− = gq−,

�5�

o render the stochastic equations amenable to perturba-
ion. The stochastic equations for the scaled EPR vari-
bles become

dx0

dT
= − 	r�x0 − 2�� +

1

2
�x+

2 − x−
2 − y+

2 + y−
2�� ,

dy0

dT
= − 	r�y0 + x+y+ − x−y−�,

dx−

dT
= − x− −

1

2
�x0x− + y0y−� +

g

�2
��x0 + iy0�− + �x0 − iy0�−

+�,

dy+

dT
= − y+ +

1

2
�y0x+ − x0y+� − i

g

�2
��x0 + iy0�+ − �x0 − iy0�+

+�,

dx+

dT
= − x+ +

1

2
�x0x+ + y0y+� +

g

�2
��x0 + iy0�+ + �x0 − iy0�+

+�,

dy−

dT
= − y− +

1

2
�x0y− − y0x−� − i

g

�2
��x0 + iy0�− − �x0 − iy0�−

+�,

�6�

here T=	Dt is time in units of the cavity lifetime for the
ownconverted fields. The functions �±�T� and �±

+�T� are
ndependent Langevin forces with the following nonvan-
shing correlation functions:
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��+�T��+�T��	 = ��+
+�T��+

+�T��	 = ��T − T��,

��−�T��−�T��	 = ��−
+�T��−

+�T�T�	 = − ��T − T��. �7�

e notice the symmetry properties of the stochastic Eqs.
6). In fact, it is easy to verify that the equations of motion
re unchanged by the transformation x−↔y+ and x+↔
y−. Of course, all noise terms appearing in Eqs. (6) are
tatistically equivalent. Therefore these equations should
ot change the symmetries of the initial values chosen for
+ and y−.

To provide a comparison between the linearized model
nd the full stochastic integration, we will use a pertur-
ation expansion of the positive P representation of the
ynamical equations. This allows us to include quantum
ffects in a systematic fashion.27 We first introduce a for-
al perturbation expansion in powers of the parameter g:

xk = 

n=0

�

gnxk
�n�,

yk = 

n=0

�

gnyk
�n�. �8�

he series expansion written in this way has the property
hat the zeroth-order term corresponds to the classical
eld of order 1 in the unscaled quadrature, while the first-
rder term is related to quantum fluctuations of order g,
nd the higher-order terms correspond to the nonlinear
orrections to the quantum fluctuations of order g2 and
reater. The stochastic equations are then solved by the
echnique of matching powers of g in the corresponding
ime evolution equations.

The steady-state solutions xjs of the zeroth order give
he operation point of the OPO and describe its macro-
copic behavior. For a triply resonant operation, the ex-
ressions for the steady state are quite simple:

x0s = 2,

x+s = 2��� − 1�1/2,

x−s = 0,

y0s = y+s = y−s = 0. �9�

The first-order equations are often used to predict
queezing in a linearized fluctuation analysis. They are
onclassical in the sense that they can describe states
ithout a positive-definite Glauber–Sudarshan P
istribution,28,29 but correspond to a simple form of linear
uctuation that has a Gaussian quasi-probability distri-
ution. A full quantum description of the OPO dynamics
an be obtained by a numerical integration of the stochas-
ic Eqs. (6), and can be compared to analytical expressions
btained from the linearized approach. Taking the first-
rder terms and using the steady-state solutions given by
qs. (9), we can write the following equations for the lin-
ar quantum fluctuations:
dx0
�1�

dT
= − 	r�x0

�1� + 2��� − 1�1/2x+
�1��,

dy0
�1�

dT
= − 	r�y0

�1� + 2��� − 1�1/2y+
�1��,

dx+
�1�

dT
= − ��� − 1�1/2x0

�1� + ��+ + �+
+�,

dx−
�1�

dT
= − 2x−

�1� + ��− + �+�,

dy+
�1�

dT
= − 2y+

�1� + ��� − 1�1/2y0
�1� − i��+ − �+

+�,

dy−
�1�

dT
= − i��− − �−

+�. �10�

he linear coupled stochastic equations obtained agree
ith Eqs. (3), for zero detunings and no spurious losses.
rom them we may readily calculate the steady-state av-
rages of the first-order corrections and use them to com-
ute the linearized fluctuations. Notice that under the
inear approximation y− becomes a purely diffusive vari-
ble (phase diffusion).
In an experimental situation, the noise spectra outside

he cavity are generally the quantities of interest. There-
ore we will proceed to analyze the problem in frequency
pace, via a Fourier decomposition of the fields. The first-
rder stochastic equations may be rewritten in the fre-
uency domain so that we may calculate the spectra of
he squeezed and antisqueezed field quadratures.

The solutions for the noise of the squeezed operators,
ˆ − and q̂+, are

Sp−
�
�� = 1 −

1


�2 + 1
, �11�

Sq+�
�� = 1

−
�4
�2 + 	r

2�2


�2�4
�2 + 	r
2 − 2	r��� − 1��2 + �4
�2 + 	r

2���2
,

�12�

here 
�=
 /	D is the analysis frequency in units of the
avity bandwidth.

Under the limits of the linearized approach, the results
f the noise spectra are independent of the phase space
epresentation employed. Therefore these results coincide
ith the usual ones obtained with the Wigner represen-

ation.
The spectra given by Eqs. (11) and (12) can now be com-

ared with those found via a stochastic integration of the
ull equations of motion (6) in the positive P representa-
ion. The nonlinear spectra are calculated by Fourier
ransform of the stochastic integration, which must be
erformed numerically. A somewhat subtle point arises
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ere: the nonlinear Eqs. (6) have more than one possible
teady-state solution. Thus for a fair comparison with the
inearized spectra, it is necessary to choose the same
teady state. By doing this, we verified that both predic-
ions, in the above-threshold OPO, agree within a good
umerical precision. Therefore we conclude that possible

imitations of the linearized model for dealing with the
PO dynamics under phase diffusion do not account for

he experimentally observed excess noise of q̂+.

. EXPERIMENT
ur system is a triply resonant type-II OPO operating
bove threshold. The experimental setup is depicted in
ig. 2. The pump beam is a diode-pumped doubled
d:YAG laser (Innolight Diabolo) with 900 mW output
ower at 532 nm. A secondary output at 1064 nm is used
or alignment purposes. Since the pump beam presents
xcess noise for frequencies as high as 20 MHz, a filter
avity is necessary. Our filter cavity has a bandwidth of
.4 MHz and assures that the pump laser is shot-noise
imited for analysis frequencies higher than 15 MHz (see
ig. 3). We measured the laser phase noise by reflecting
he beam off an empty cavity, in the same way we mea-
ure the phase noise of the downconverted beams. The
hase noise equals the intensity noise, except at a fre-
uency of 12 MHz, where there is very big phase noise,
wing to a frequency modulation inside the Diabolo laser
or stabilization purposes. This excess noise saturates our
lectronics and prevents measurements for analysis fre-
uencies close to 12 MHz and also to its second harmonic,
4 MHz, as can be seen in Fig. 3. The OPO cavity is a lin-
ar semimonolithic cavity composed of a flat input mirror,
irectly deposited on one face of the nonlinear crystal,
ith 93% reflectivity at 532 nm and high reflectivity

�99.8% � at 1064 nm, and a spherical output mirror
50 mm curvature radius) with high reflectivity at 532 nm
�99.8% � and 96% reflectivity at 1064 nm. The nonlinear
rystal is a 10 mm long potassium titanyl phosphate
KTP) from Litton. The threshold power is 12 mW.

The signal and the idler beams are separated by a po-
arizing beam splitter (PBS) and sent to detection, which
onsists of a ring cavity and a photodetector (Epitaxx ETX
00) for each beam. The overall detection efficiency is �
80�2�%. Both analysis cavities have bandwidths of
4 MHz, allowing for a complete conversion of phase to
mplitude noise for analysis frequencies higher than
0 MHz. The measurements are taken at an analysis fre-
uency equal to 27 MHz. To access the same quadrature

Fig. 2. (Color online) Sketch of the experimental setup.
or both beams, the two cavities must be detuned by the
ame amount at the same time. By scanning the detun-
ngs synchronously, we can measure all quadratures of
he twin beams. In particular, we can easily select the am-
litude (off resonance) or phase (detuning equal to one-
alf the bandwidth) quadratures.30

The data acquisition is carried out by a demodulating
hain, which mixes the photocurrents from each detector
ith a sinusoidal electronic reference at the analysis fre-
uency and filters the resulting low-frequency signal. The
emodulated photocurrent fluctuations are sampled at
00 kHz repetition rate by an analog-to-digital (A/D) card
onnected to a personal computer. The variances of these
uctuations are then computed taking groups of 1000
oints, resulting in something proportional to the power
pectrum of the photocurrents at the analysis frequency.
t the end, measured variances are normalized to the
hot noise standard quantum level (SQL).

. Fluctuations as a Function of �
he input pump field is guaranteed to be shot-noise lim-

ted for frequencies above 15 MHz after being transmitted
hrough the filter cavity. Even before being filtered, the
ump field is shot-noise limited above 25 MHz, as shown
n Fig. 3. Nevertheless, we observed excess noise in the
um of the phases of the signal and the idler beams, pre-
enting the violation of the inequality given in Eq. (1) ex-
ept for pump powers very close to threshold.12

As seen in Section 2 from the theoretical description of
he OPO, excess noise in the pump beam would generate
xcess noise in the phase sum of the twin beams. Yet how
ould that be the case if we carefully measured the input
ump to be shot-noise limited? By following this single
ead, it is natural to examine the noise properties of the
ump beam reflected from the OPO cavity. This was done
y scanning the OPO cavity for crystal temperatures such
hat there was no parametric oscillation (triple resonance
epends sharply on crystal temperature and can easily be
voided). Since the incident beam is shot-noise limited,
ould there be excess noise generated inside the cavity

ig. 3. (Color online) Measurement of the pump noise as a func-
ion of the analysis frequency. Open circles, unfiltered laser
oise; full circles, laser noise at the output of the filter cavity. In
iew of the large excess noise at 12 MHz and its second har-
onic, we suppressed those frequencies from the data.
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ontaining the KTP crystal? We did indeed find excess
oise in the reflected pump’s amplitude (Fig. 4) and phase
uadratures. The maximum values, for �=1, were Sp0

R

1.8�1� and Sq0
R =4.5�3�.

At present, we can still not claim to fully understand
he origin of this excess noise. We verified, of course, that
o such noise is generated in an empty cavity (which
ould also invalidate the measurements we perform with

he analysis cavities for the twin beams). We also checked
hether this effect depended on � and would thus be di-

ectly related to the parametric process. For a polariza-
ion of the incident beam orthogonal to the usual polar-
zation, phase matching cannot be fulfilled, and no
ownconversion can occur. The noise in the reflected
eam did not show any significant dependence on the in-
ident polarization. It does, however, increase for increas-
ng power of the incident beam. We can speculate that
his can be a result of photon absorption by the crystal at
32 nm (which is at the origin of the thermal bistability
bserved in Fig. 4), with a subsequent relaxation by spon-
aneous emission or nonradiative processes. This, may
ive rise to an intensity-dependent refractive index, yield-
ng phase and amplitude modulation at 532 nm. We are
urrently investigating these possibilities.

As a first approximation, in order to see whether this
ould account for the behavior of �2p̂−,�2q̂−,�2p̂+, and
2q̂+, as a function of �, we simply added excess noise to

he input pump beam in the linearized OPO theory. In
ig. 5 we compare the results from the model, with inci-
ent Sp0=1.5 and Sq0=5.5, to the measured data. The sig-
al and idler powers varied from 0.4 up to 5.5 mW each
uring the experiment, corresponding to pump powers be-
ween 13 and 26 mW, or 1.06���2.2. As expected, noises
orresponding to the subtraction subspace, �2p̂− and �2q̂−,
re independent of pump power. But �2q̂+ is very sensi-
ive to �, as is �2p̂+ to a lesser degree. The agreement
ith the theoretical model is surprisingly good. This is a

ig. 4. (Color online) Intensity noise of the reflected pump
eam, as a function of the detuning of the OPO cavity. The excess
oise observed is peaked for �0, close to one-half the OPO cavity
andwidth. The asymmetry in the mean-field signal is attribut-
ble to the thermal bistability. The analysis frequency is 27 MHz.
ircles, reflected pump noise; full curve, reflected average

ntensity.
trong indication that the intracavity pump excess noise
s the main responsible for the excess noise in �2q̂+.

. Two-Color Entanglement
he sum of the phase noise is squeezed very close to

hreshold, and the squeezing is degraded with increasing
ump power. �2q̂+ crosses the shot-noise level approxi-
ately at �=1.20, from squeezing to antisqueezing, al-

hough only below �=1.15 can squeezing be observed with
ertainty.

Figure 6 shows the recorded noise in sum and subtrac-
ion of the photocurrent fluctuations of the signal and the
dler beams as functions of the detuning of the analysis
avities for �=1.06. Off-resonance, quantum correlations
re observed in the subtraction of amplitudes, �2p̂−
0.50�1�, or −3.01�9� dB. For detuning of analysis cavities
qual to one-half the bandwidth, squeezing is present in
he sum of phases, �2q̂+=0.73�1�, or −1.37�6� dB. The
uan et al. and Simon criteria [Eq. (1)], are clearly vio-

ated:

�2p̂− + �2q̂+ = 1.23�2� � 2, �13�

ttesting to the entanglement. This value, together with
he one reported by Jing et al.,14 is the lowest achieved for

ig. 5. (Color online) Noise behavior as a function of �. (a) Pre-
ictions of the linearized model for an input pump beam with
p0

=1.5 and Sq0=5.5; dashed curve, Sp+
; solid line with open

ircles, Sq−, solid curve, Sq+
; solid line with crosses, Sp−; SQL

1.0 is indicated by a dashed line. (b) Experimental result for �
anging from 1.06 to 2.2. Full circles, Sp+

; triangles, Sq−
; open

ircles, Sq+
; squares, Sp−

; SQL=1.0 is indicated by a dashed line.
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win beams produced by an above-threshold OPO.
We also point out that, in this experiment, the twin

eams have very different frequencies (the wavelengths
iffer by �1 nm), an unusual situation. Such two-color en-
anglement can be very interesting for the transfer of
uantum information between different parts of the elec-
romagnetic spectrum.

. CONCLUSION
e presented a theoretical and experimental investiga-

ion of phase noise and entanglement in the above-
hreshold OPO. Excess noise in the phase sum of the twin
eams was measured as a function of pump power rela-
ive to threshold, and we found that it decreases as pump
ower is lowered. We finally discovered that excess pump
oise is generated inside the OPO cavity containing the
onlinear crystal, even for a shot-noise limited pump
eam and without parametric oscillation. The ultimate
hysical origin of this phenomenon still requires further
nvestigation. Another important question to address is
ow one can eliminate this effect. Su et al.13 were able to
bserve entanglement for � of the order of 2. The differ-
nce between their setup and others is a lower cavity fi-
esse for the pump field. If the assumption of an

ntensity-dependent index of refraction is correct, this
akes sense. For a lower finesse, the phase shifts accu-
ulated inside the cavity should be smaller, hence the ex-

ess noise generated should also be smaller.
In spite of these unexpected phenomena, two-color en-

anglement was measured in the above-threshold OPO.
here are interesting avenues to pursue for applications

n quantum information. First of all, we should mention
hat the strongest squeezing measured to date, −9.7 dB,
as generated in an above-threshold OPO.18 Thus, en-

anglement in the above-threshold OPO may be the stron-
est ever achieved for continuous variables. The bright
win beams can have very different frequencies, and one
an envisage CV quantum teleportation10 to transfer
uantum information from one frequency to another (in

ig. 6. Sum (full circles) and difference (open circles) of the
uadrature noise measured as a function of the detuning of the
nalysis cavities. Squeezed-state entanglement can be directly
bserved, with �2p̂−=0.50�1�, or −3.01�9� dB, and �2q̂+=0.73�1�,
r −1.37�6� dB.
ther words, to tune quantum information). For example,
his system could be used to communicate quantum infor-
ation between quantum memories or quantum comput-

rs based on hardware that has different resonance fre-
uencies. Finally, a quantum key distribution protocol
roposed by Silberhorn et al.31 can be readily imple-
ented with the advantage that the measurement with

nalysis cavities does not require sending a local oscilla-
or together with the quantum channel to the distant re-
eiver.

The above-threshold OPO, which was the first system
roposed to observe CV entanglement, has finally been
dded to the optical quantum information toolbox. We ex-
ect new and exciting applications to come in the near fu-
ure.
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